Science.gov

Sample records for nematode cholinergic pharmacology

  1. Nematode cholinergic pharmacology

    SciTech Connect

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  2. Actions of cholinergic drugs in the nematode Ascaris suum. Complex pharmacology of muscle and motorneurons

    PubMed Central

    1993-01-01

    The cholinergic agonists acetylcholine (ACh), nicotine, and pilocarpine produced depolarizations and contractions of muscle of the nematode Ascaris suum. Dose-dependent depolarization and contraction by ACh were suppressed by about two orders of magnitude by 100 microM d- tubocurarine (dTC), a nicotinic antagonist, but only about fivefold by 100 microM N-methyl-scopolamine (NMS), a muscarinic antagonist. NMS itself depolarized both normal and synaptically isolated muscle cells. The muscle depolarizing action of pilocarpine was not consistently antagonized by either NMS or dTC. ACh receptors were detected on motorneuron classes DE1, DE2, DI, and VI as ACh-induced reductions in input resistance. These input resistance changes were reversed by washing in drug-free saline or by application of dTC. NMS applied alone lowered input resistance in DE1, but not in DE2, DI, or VI motorneurons. In contrast to the effect of ACh, the action of NMS in DE1 was not reversed by dTC, suggesting that NMS-sensitive sites may not respond to ACh. Excitatory synaptic responses in muscle evoked by depolarizing current injections into DE1 and DE2 motorneurons were antagonized by dTC; however, NMS antagonized the synaptic output of only the DE1 and DE3 classes of motorneurons, an effect that was more likely to have been produced by motorneuron conduction failure than by pharmacological blockade of receptor. The concentration of NMS required to produce these changes in muscle polarization and contraction, ACh antagonism, input resistance reduction, and synaptic antagonism was 100 microM, or more than five orders of magnitude higher than the binding affinity for [3H]NMS in larval Ascaris homogenates and adult Caenorhabditis elegans (Segerberg, M. A. 1989. Ph.D. thesis. University of Wisconsin-Madison, Madison, WI). These results describe a nicotinic- like pharmacology, but muscle and motorneurons also have unusual responses to muscarinic agents. PMID:8455017

  3. Pharmacological modulation of Alzheimer's beta-amyloid precursor protein levels in the CSF of rats with forebrain cholinergic system lesions.

    PubMed

    Haroutunian, V; Greig, N; Pei, X F; Utsuki, T; Gluck, R; Acevedo, L D; Davis, K L; Wallace, W C

    1997-06-01

    Abnormal deposition and accumulation of Alzheimer's amyloid beta-protein (A beta) and degeneration of forebrain cholinergic neurons are among the principal features of Alzheimer's disease. Studies in rat model systems have shown that forebrain cholinergic deficits are accompanied by induction of cortical beta-amyloid precursor protein (beta-APP) mRNAs and increased levels of secreted beta-APP in the CSF. The studies reported here determined whether the CSF levels of secreted beta-APP could be altered pharmacologically. In different experiments, rats with lesions of the forebrain cholinergic system received injections of vehicle, a muscarinic receptor antagonist scopolamine, or one of two cholinesterase inhibitors - diisopropyl phosphorofluoridate (DFP) or phenserine. Scopolamine was administered to determine whether the levels of beta-APP in the CSF could be increased by anticholinergic agents. The cholinesterase inhibitors were administered to determine whether the forebrain cholinergic system lesion-induced increases in CSF beta-APP could be reduced by cholinergic augmentation. Scopolamine administration led to a significant increase in the CSF levels of secreted beta-APP in sham-lesioned rats. Phenserine, a novel, reversible acetyl-selective cholinesterase inhibitor, significantly decreased the levels of secreted beta-APP in the CSF of forebrain cholinergic system-lesioned rats whereas DFP, a relatively non-specific cholinesterase inhibitor, failed to affect CSF levels of secreted beta-APP. These results suggest that the levels of secreted beta-APP in the CSF can be pharmacologically modulated but that this modulation is dependent upon the status of the forebrain cholinergic system and the pharmacological properties of the drugs used to influence it. PMID:9191090

  4. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity. PMID:26438517

  5. Pharmacological Mechanisms of Cortical Enhancement Induced by the Repetitive Pairing of Visual/Cholinergic Stimulation

    PubMed Central

    Kang, Jun-Il; Huppé-Gourgues, Frédéric; Vaucher, Elvire

    2015-01-01

    Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1) induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR), M1 and M2 muscarinic (mAChR) or GABAergic A (GABAAR) receptors was performed during the training session and visual evoked potentials (VEPs) were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD), suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by nAChRs, M2 m

  6. An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease

    PubMed Central

    Wang, Liqun; Hagemann, Tracy L.; Messing, Albee

    2016-01-01

    The role that glia play in neurological disease is poorly understood but increasingly acknowledged to be critical in a diverse group of disorders. Here we use a simple genetic model of Alexander disease, a progressive and severe human degenerative nervous system disease caused by a primary astroglial abnormality, to perform an in vivo screen of 1987 compounds, including many FDA-approved drugs and natural products. We identify four compounds capable of dose-dependent inhibition of nervous system toxicity. Focusing on one of these hits, glycopyrrolate, we confirm the role for muscarinic cholinergic signaling in pathogenesis using additional pharmacologic reagents and genetic approaches. We further demonstrate that muscarinic cholinergic signaling works through downstream Gαq to control oxidative stress and death of neurons and glia. Importantly, we document increased muscarinic cholinergic receptor expression in Alexander disease model mice and in postmortem brain tissue from Alexander disease patients, and that blocking muscarinic receptors in Alexander disease model mice reduces oxidative stress, emphasizing the translational significance of our findings. We have therefore identified glial muscarinic signaling as a potential therapeutic target in Alexander disease, and possibly in other gliopathic disorders as well. SIGNIFICANCE STATEMENT Despite the urgent need for better treatments for neurological diseases, drug development for these devastating disorders has been challenging. The effectiveness of traditional large-scale in vitro screens may be limited by the lack of the appropriate molecular, cellular, and structural environment. Using a simple Drosophila model of Alexander disease, we performed a moderate throughput chemical screen of FDA-approved drugs and natural compounds, and found that reducing muscarinic cholinergic signaling ameliorated clinical symptoms and oxidative stress in Alexander disease model flies and mice. Our work demonstrates that small

  7. Gaining Insights Into the Pharmacology of Anthelmintics Using Haemonchus contortus as a Model Nematode.

    PubMed

    Lanusse, C E; Alvarez, L I; Lifschitz, A L

    2016-01-01

    Progress made in understanding pharmacokinetic behaviour and pharmacodynamic mechanisms of drug action/resistance has allowed deep insights into the pharmacology of the main chemical classes, including some of the few recently discovered anthelmintics. The integration of pharmaco-parasitological research approaches has contributed considerably to the optimization of drug activity, which is relevant to preserve existing and novel active compounds for parasite control in livestock. A remarkable amount of pharmacology-based knowledge has been generated using the sheep abomasal nematode Haemonchus contortus as a model. Relevant fundamental information on the relationship among drug influx/efflux balance (accumulation), biotransformation/detoxification and pharmacological effects in parasitic nematodes for the most traditional anthelmintic chemical families has been obtained by exploiting the advantages of working with H. contortus under in vitro, ex vivo and in vivo experimental conditions. The scientific contributions to the pharmacology of anthelmintic drugs based on the use of H. contortus as a model nematode are summarized in the present chapter. PMID:27238011

  8. Electrophysiological and pharmacological evaluation of the nicotinic cholinergic system in chagasic rats

    PubMed Central

    2013-01-01

    Background Two theories attempt to explain the changes observed in the nicotinic acetylcholine receptors (nAChRs) in chagasic cardiomyopathy. The neurogenic theory proposes that receptor changes are due to loss of intracardiac ganglia parasympathetic neurons. The immunogenic theory proposes that the nAChRs changes are the result of autoantibodies against these receptors. Both theories agreed that nAChRs functional expression could be impaired in Chagas disease. Methods We evaluated nAChRs functional integrity in 54 Sprague Dawley rats, divided in two groups: healthy and chronic chagasic rats. Rats were subjected to electrocardiographic studies in the whole animal under pentobarbital anesthesia, by isolation and stimulation of vagus nerves and in isolated beating hearts (Langendorff’s preparation). Results Nicotine, 10 μM, induced a significant bradycardia in both groups. However, rats that had previously received reserpine did not respond to nicotine stimulation. β-adrenergic stimulation, followed by nicotine treatment, induced tachycardia in chagasic rats; while inducing bradycardia in healthy rats. Bilateral vagus nerve stimulation induced a significantly higher level of bradycardia in healthy rats, compared to chagasic rats; physostigmine potentiated the bradycardic response to vagal stimulation in both experimental groups. Electric stimulation (e.g., ≥ 2 Hz), in the presence of physostigmine, produced a comparable vagal response in both groups. In isolated beating-heart preparations 1 μM nicotine induced sustained bradycardia in healthy hearts while inducing tachycardia in chagasic hearts. Higher nicotine doses (e.g.,10 – 100 uM) promoted the characteristic biphasic response (i.e., bradycardia followed by tachycardia) in both groups. 10 nM DHβE antagonized the effect of 10 μM nicotine, unmasking the cholinergic bradycardic effect in healthy rats only. 1 nM α-BGT alone induced bradycardia in healthy hearts but antagonized the 10 μM nicotine

  9. Nematode cys-loop GABA receptors: biological function, pharmacology and sites of action for anthelmintics.

    PubMed

    Accardi, Michael V; Beech, Robin N; Forrester, Sean G

    2012-06-01

    Parasitic nematode infection of humans and livestock is a major problem globally. Attempts to control nematode populations have led to the development of several classes of anthelmintic, which target cys-loop ligand-gated ion channels. Unlike the vertebrate nervous system, the nematode nervous system possesses a large and diversified array of ligand-gated chloride channels that comprise key components of the inhibitory neurotransmission system. In particular, cys-loop GABA receptors have evolved to play many fundamental roles in nematode behaviour such as locomotion. Analysis of the genomes of several free-living and parasitic nematodes suggests that there are several groups of cys-loop GABA receptor subunits that, for the most part, are conserved among nematodes. Despite many similarities with vertebrate cys-loop GABA receptors, those in nematodes are quite distinct in sequence similarity, subunit composition and biological function. With rising anthelmintic resistance in many nematode populations worldwide, GABA receptors should become an area of increased scientific investigation in the development of the next generation of anthelmintics. PMID:22430311

  10. Different Neuropeptides are Expressed in Different Functional Subsets of Cholinergic Excitatory Motorneurons in the Nematode Ascaris suum

    PubMed Central

    Konop, Christopher J.; Knickelbine, Jennifer J.; Sygulla, Molly S.; Vestling, Martha M.; Stretton, Antony O. W.

    2016-01-01

    Neuropeptides are known to have dramatic effects on neurons and synapses; however, despite extensive studies of the motorneurons in the parasitic nematode Ascaris suum, their peptide content had not yet been described. We determined the peptide content of single excitatory motorneurons by mass spectrometry and tandem mass spectrometry. There are 2 subsets of ventral cord excitatory motorneurons, each with neuromuscular output either anterior or posterior to their cell body, mediating forward or backward locomotion, respectively. Strikingly, the two sets of neurons contain different neuropeptides, with AF9 and 6 novel peptides (As-NLP-21.1-6) in anterior projectors, and the 6 afp-1 peptides in addition to AF2 in posterior projectors. In situ hybridization confirmed the expression of these peptides, validating the integrity of the dissection technique. This work identifies new components of the functional behavioral circuit, as well as potential targets for anti-parasitic drug development. PMID:25812635

  11. A pilot study of serotonin-1A receptor genotypes and rapid eye movement sleep sensitivity to serotonergic/cholinergic imbalance in humans: a pharmacological model of depression

    PubMed Central

    Biard, Kathleen; Douglass, Alan B; Robillard, Rébecca; De Koninck, Joseph

    2016-01-01

    Rationale The serotonergic and cholinergic systems are jointly involved in regulating sleep but this system is theorized to be disturbed in depressed individuals. We previously reported that cholinergic and serotonergic agents induce sleep changes partially consistent with monoamine models of sleep disturbances in depression. One potential cause of disturbed neurotransmission is genetic predisposition. The G(-1019) allele of the serotonin-1A (5-HT1A) receptor promoter region predicts an increased risk for depression compared to the wild-type C(-1019) allele. Objective The goal of this study was to investigate how serotonin-1A receptor genotypes mediate sleep sensitivity to pharmacological probes modeling the serotonergic/cholinergic imbalance of depression. Methods Seventeen healthy female participants homozygous for either C (n=11) or G (n=6) alleles aged 18–27 years were tested on four nonconsecutive nights. Participants were given galantamine (an anti-acetylcholinesterase), buspirone (a serotonergic agonist), both drugs together, or placebos before sleeping. Results As reported previously, buspirone significantly increased rapid eye movement (REM) latency (P<0.001), as well as awakenings, percentage of time spent awake, and percentage of time asleep spent in stage N1 (P<0.019). Galantamine increased awakenings, percentage of time spent awake, percentage of time asleep spent in stage N1, and percentage of time asleep spent in REM, and decreased REM latency and percentage of time asleep spent in stage N3 (P<0.019). Galantamine plus buspirone given together disrupted sleep more than either drug alone, lowering sleep efficiency and percentage of time asleep spent in stage N3 and increasing awakenings, percentage of time spent awake, and percentage of time asleep spent in stage N1 (P<0.019). There was no main effect of genotype nor was there a significant multivariate interaction between genotype and drug condition. Conclusion These findings are partially

  12. Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases.

    PubMed

    Salmon, Michael; Luttmann, Mark A; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Burman, Miriam; Webb, Edward F; DeHaas, Christopher J; Kotzer, Charles J; Barrett, Victoria J; Slack, Robert J; Sarau, Henry M; Palovich, Michael R; Lainé, Dramane I; Hay, Douglas W P; Rumsey, William L

    2013-05-01

    Activation of muscarinic subtype 3 (M3) muscarinic cholinergic receptors (mAChRs) increases airway tone, whereas its blockade improves lung function and quality of life in patients with pulmonary diseases. The present study evaluated the pharmacological properties of a novel mAChR antagonist, GSK573719 (4-[hydroxy(diphenyl)methyl]-1-{2-[(phenylmethyl)oxy]ethyl}-1-azoniabicyclo[2.2.2]octane; umeclidinium). The affinity (Ki) of GSK573719 for the cloned human M1-M5 mAChRs ranged from 0.05 to 0.16 nM. Dissociation of [(3)H]GSK573719 from the M3 mAChR was slower than that for the M2 mAChR [half-life (t1/2) values: 82 and 9 minutes, respectively]. In Chinese hamster ovary cells transfected with recombinant human M3 mAChRs, GSK573719 demonstrated picomolar potency (-log pA2 = 23.9 pM) in an acetylcholine (Ach)-mediated Ca(2+) mobilization assay. Concentration-response curves indicate competitive antagonism with partial reversibility after drug washout. Using isolated human bronchial strips, GSK573719 was also potent and showed competitive antagonism (-log pA2 = 316 pM) versus carbachol, and was slowly reversible in a concentration-dependent manner (1-100 nM). The time to 50% restoration of contraction at 10 nM was about 381 minutes (versus 413 minutes for tiotropium bromide). In mice, the ED50 value was 0.02 μg/mouse intranasally. In conscious guinea pigs, intratracheal administration of GSK573719 dose dependently blocked Ach-induced bronchoconstriction with long duration of action, and was comparable to tiotropium; 2.5 μg elicited 50% bronchoprotection for >24 hours. Thus, GSK573719 is a potent anticholinergic agent that demonstrates slow functional reversibility at the human M3 mAChR and long duration of action in animal models. This pharmacological profile translated into a 24-hour duration of bronchodilation in vivo, which suggested umeclidinium will be a once-daily inhaled treatment of pulmonary diseases. PMID:23435542

  13. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    PubMed Central

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  14. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes.

    PubMed

    Courtot, Elise; Charvet, Claude L; Beech, Robin N; Harmache, Abdallah; Wolstenholme, Adrian J; Holden-Dye, Lindy; O'Connor, Vincent; Peineau, Nicolas; Woods, Debra J; Neveu, Cedric

    2015-12-01

    Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  15. Pharmacology.

    PubMed

    Bolay, Hayrunnisa; Durham, Paul

    2010-01-01

    Headache treatment has been based primarily on experiences with non-specific drugs such as analgesics, non-steroidal anti-inflammatory drugs, or drugs that were originally developed to treat other diseases, such as beta-blockers and anticonvulsant medications. A better understanding of the basic pathophysiological mechanisms of migraine and other types of headache has led to the development over the past two decades of more target-specific drugs. Since activation of the trigeminovascular system and neurogenic inflammation are thought to play important roles in migraine pathophysiology, experimental studies modeling those events successfully predicted targets for selective development of pharmacological agents to treat migraine. Basically, there are two fundamental strategies for the treatment of migraine, abortive or preventive, based to a large degree on the frequency of attacks. The triptans, which exhibit potency towards selective serotonin (5-hydroxytryptamine, 5-HT) receptors expressed on trigeminal nerves, remain the most effective drugs for the abortive treatment of migraine. However, numerous preventive medications are currently available that modulate the excitability of the nervous system, particularly the cerebral cortex. In this chapter, the pharmacology of commercially available medications as well as drugs in development that prevent or abort headache attacks will be discussed. PMID:20816410

  16. [Pharmacology].

    PubMed

    González, José; Orero, Ana; Olmo, Vicente; Martínez, David; Prieto, José; Bahlsen, Jose Antonio; Zaragozá, Francisco; Honorato, Jesús

    2011-06-01

    Two of the main characteristics of western societies in the last fifty years have been the medicalization of the human life and the environmental degradation. The first one has forced human being to consider medicines use related to what would be rational, reasonable and well-reasoned. The second one brought us to a new ecologist conscience. In relation to the "human social system", the effects of medication can be considered very positive as a whole, particularly those related to the amazing increase of expectative and quality of life. But, along with those unquestionable beneficial effects, medicines have also caused some negative effects for other biotic and abiotic systems, such as microbian alterations and their undesirable consequences which have involved the massive use of antibiotics in medicine and veterinary, the uncontrolled elimination of millions of doses of all kind of drugs, additives and excipients, etc., as well as atmospheric contamination and degradation of forests and deep oceans which can have been caused by investigation and production of determinated drugs. In this context Pharmacology appears as a scientific discipline that studies the research (R), development (D), production (P), and utilization (U) of drugs and medical substances in relation to the environment. From a farmaecologic perspective the drugs utilization has its development in three main contexts, all of them closely related: prescription quality, farmaceutical care, and patient's active participation in his own disease and treatment. PMID:21666997

  17. The cholinergic hypothesis of geriatric memory dysfunction.

    PubMed

    Bartus, R T; Dean, R L; Beer, B; Lippa, A S

    1982-07-30

    Biochemical, electrophysiological, and pharmacological evidence supporting a role for cholinergic dysfunction in age-related memory disturbances is critically reviewed. An attempt has been made to identify pseudoissues, resolve certain controversies, and clarify misconceptions that have occurred in the literature. Significant cholinergic dysfunctions occur in the aged and demented central nervous system, relationships between these changes and loss of memory exist, similar memory deficits can be artificially induced by blocking cholinergic mechanisms in young subjects, and under certain tightly controlled conditions reliable memory improvements in aged subjects can be achieved after cholinergic stimulation. Conventional attempts to reduce memory impairments in clinical trials hav not been therapeutically successful, however. Possible explanations for these disappointments are given and directions for future laboratory and clinical studies are suggested. PMID:7046051

  18. Cholinergic influences on feature binding.

    PubMed

    Botly, Leigh C P; De Rosa, Eve

    2007-04-01

    The binding problem refers to the fundamental challenge of the central nervous system to integrate sensory information registered by multiple brain regions to form a unified neural representation of a stimulus. Human behavioral, neuropsychological, and functional neuroimaging evidence suggests a fundamental role for attention in feature binding; however, its neurochemical basis is currently unknown. This study examined whether acetylcholine (ACh), a neuromodulator that has been implicated in attentional processes, plays a critical role in feature binding. Using a within-subjects pharmacological design and the cholinergic muscarinic antagonist scopolamine, the present experiments demonstrate, in a rat model, a critical role for the cortical muscarinic cholinergic system in feature binding. Specifically, ACh and the attentional resources that it supports are essential for the initial feature binding process but are not required to maintain neural representations of bound stimuli. PMID:17469916

  19. Dynamics of cholinergic function

    SciTech Connect

    Hanin, I.

    1986-01-01

    This book presents information on the following topics; cholinergic pathways - anatomy of the central nervous system; aging, DSAT and other clinical conditions; cholinergic pre- and post-synaptic receptors; acetylcholine release; cholinesterases, anticholinesterases and reactivators; acetylcholine synthesis, metabolism and precursors; second messenger messenger mechanisms; interaction of acetylcholine with other neurotransmitter systems; cholinergic mechanisms in physiological function, including cardiovascular events; and neurotoxic agents and false transmitters.

  20. Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms

    PubMed Central

    Bartolini, Alessandro; Cesare Mannelli, Lorenzo Di; Ghelardini, Carla

    2011-01-01

    The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed. PMID:21585331

  1. Dietary polyunsaturated fatty acids improve cholinergic transmission in the aged brain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cholinergic theory of aging states that dysfunction of cholinergic neurons arising from the basal forebrain and terminating in the cortex and hippocampus may be involved in the cognitive decline that occurs during aging and Alzheimer’s disease. Despite years of research, pharmacological interven...

  2. The Conqueror Worm: recent advances with cholinergic anthelmintics and techniques excite research for better therapeutic drugs

    PubMed Central

    Martin, R.J.; Puttachary, S.; Buxton, S.K.; Verma, S.; Robertson, A.P.

    2014-01-01

    The following account is based on a review lecture given recently at the British Society of Parasitology. We point out that nematode parasites cause very widespread infections of humans, particularly in economically underdeveloped areas where sanitation and hygiene are not adequate. In the absence of adequate clean water and effective vaccines, control and prophylaxis relies on anthelmintic drugs. Widespread use of anthelmintics to control nematode parasites of animals has given rise to the development of resistance and so there is a concern that similar problems will occur in humans if mass drug administration is continued. Recent research on the cholinergic anthelmintic drugs has renewed enthusiasm for the further development of cholinergic anthelmintics. Here we illustrate the use of three parasite nematode models, Ascaris suum, Oesophagostomum dentatum and Brugia malayi, microfluidic techniques and the Xenopus oocyte expression system for testing and examining the effects of cholinergic anthelmintics. We also show how the combination of derquantel, the selective nematode cholinergic antagonist and abamectin produce increased inhibition of the nicotinic acetylcholine receptors on the nematode body muscle. We are optimistic that new compounds and combinations of compounds can limit the effects of drug resistance, allowing anthelmintics to be continued to be used for effective treatment of human and animal helminth parasites. PMID:24871674

  3. Cholinergic dysfunction in Parkinson's disease.

    PubMed

    Müller, Martijn L T M; Bohnen, Nicolaas I

    2013-09-01

    There is increasing interest in the clinical effects of cholinergic basal forebrain and tegmental pedunculopontine complex (PPN) projection degeneration in Parkinson's disease (PD). Recent evidence supports an expanded role beyond cognitive impairment, including effects on olfaction, mood, REM sleep behavior disorder, and motor functions. Cholinergic denervation is variable in PD without dementia and may contribute to clinical symptom heterogeneity. Early in vivo imaging evidence that impaired cholinergic integrity of the PPN associates with frequent falling in PD is now confirmed by human post-mortem evidence. Brainstem cholinergic lesioning studies in primates confirm the role of the PPN in mobility impairment. Degeneration of basal forebrain cholinergic projections correlates with decreased walking speed. Cumulatively, these findings provide evidence for a new paradigm to explain dopamine-resistant features of mobility impairments in PD. Recognition of the increased clinical role of cholinergic system degeneration may motivate new research to expand indications for cholinergic therapy in PD. PMID:23943367

  4. Probing peripheral and central cholinergic system responses.

    PubMed Central

    Naranjo, C A; Fourie, J; Herrmann, N; Lanctôt, K L; Birt, C; Yau, K K

    2000-01-01

    OBJECTIVE: The pharmacological response to drugs that act on the cholinergic system of the iris has been used to predict deficits in central cholinergic functioning due to diseases such as Alzheimer's disease, yet correlations between central and peripheral responses have not been properly studied. This study assessed the effect of normal aging on (1) the tropicamide-induced increase in pupil diameter, and (2) the reversal of this effect with pilocarpine. Scopolamine was used as a positive control to detect age-dependent changes in central cholinergic functioning in the elderly. DESIGN: Randomized double-blind controlled trial. PARTICIPANTS: Ten healthy elderly (mean age 70) and 9 young (mean age 33) volunteers. INTERVENTIONS: Pupil diameter was monitored using a computerized infrared pupillometer over 4 hours. The study involved 4 sessions. In 1 session, tropicamide (20 microL, 0.01%) was administered to one eye and placebo to the other. In another session, tropicamide (20 microL, 0.01%) was administered to both eyes, followed 23 minutes later by the application of pilocarpine (20 microL, 0.1%) to one eye and placebo to the other. All eye drops were given in a randomized order. In 2 separate sessions, a single dose of scopolamine (0.5 mg, intravenously) or placebo was administered, and the effects on word recall were measured using the Buschke Selective Reminding Test over 2 hours. OUTCOME MEASURES: Pupil size at time points after administration of tropicamide and pilocarpine; scopolamine-induced impairment in word recall. RESULTS: There was no significant difference between elderly and young volunteers in pupillary response to tropicamide at any time point (p > 0.05). The elderly group had a significantly greater pilocarpine-induced net decrease in pupil size 85, 125, 165 and 215 minutes after administration, compared with the young group (p < 0.05). Compared with the young group, the elderly group had greater scopolamine-induced impairment in word recall 60, 90

  5. Diseases caused by nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter comprises an updated review of plant-parasitic nematodes of alfalfa. Many species of plant-parasitic nematodes are associated with alfalfa, but the stem nematode, root-knot nematodes, and root-lesion nematodes are economically the most important. As a result of root injury, aboveground ...

  6. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  7. Physical urticarias and cholinergic urticaria.

    PubMed

    Abajian, Marina; Schoepke, Nicole; Altrichter, Sabine; Zuberbier, Torsten; Zuberbier, H C Torsten; Maurer, Marcus

    2014-02-01

    Physical urticarias are a unique subgroup of chronic urticaria in which urticarial responses can be reproducibly induced by different specific physical stimuli acting on the skin. These conditions include urticaria factitia/symptomatic dermographism, delayed pressure urticaria, cold contact urticaria, heat contact urticaria, solar urticaria, and vibratory urticaria/angioedema. Physical urticarias and cholinergic urticarias are diagnosed based on the patients' history and provocation tests including trigger threshold testing where possible. Treatment is mainly symptomatic. Many patients benefit from avoiding eliciting triggers, and desensitization to these triggers can be helpful in some physical urticarias and in cholinergic urticaria. PMID:24262690

  8. A cholinergic hypothesis of the unconscious in affective disorders

    PubMed Central

    Vakalopoulos, Costa

    2013-01-01

    The interactions between distinct pharmacological systems are proposed as a key dynamic in the formation of unconscious memories underlying rumination and mood disorder, but also reflect the plastic capacity of neural networks that can aid recovery. An inverse and reciprocal relationship is postulated between cholinergic and monoaminergic receptor subtypes. M1-type muscarinic receptor transduction facilitates encoding of unconscious, prepotent behavioral repertoires at the core of affective disorders and ADHD. Behavioral adaptation to new contingencies is mediated by the classic prototype receptor: 5-HT1A (Gi/o) and its modulation of M1-plasticity. Reversal of learning is dependent on increased phasic activation of midbrain monoaminergic nuclei and is a function of hippocampal theta. Acquired hippocampal dysfunction due to abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis predicts deficits in hippocampal-dependent memory and executive function and further impairments to cognitive inhibition. Encoding of explicit memories is mediated by Gq/11 and Gs signaling of monoamines only. A role is proposed for the phasic activation of the basal forebrain cholinergic nucleus by cortical projections from the complex consisting of the insula and claustrum. Although controversial, recent studies suggest a common ontogenetic origin of the two structures and a functional coupling. Lesions of the region result in loss of motivational behavior and familiarity based judgements. A major hypothesis of the paper is that these lost faculties result indirectly, from reduced cholinergic tone. PMID:24319409

  9. Nematodes (Rhabditida: Steinernematidae and Heterorhabditidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes are roundworms in the phylum Nematoda. Although most are free-living, some nematodes are parasites of plants, humans, or livestock. Entomopathogenic nematodes in the families Steinernematidae & Heterorhabditidae only parasitize insects. These nematodes are used as environmentally friend...

  10. Genetically Induced Cholinergic Hyper-Innervation Enhances Taste Learning

    PubMed Central

    Neseliler, Selin; Narayanan, Darshana; Fortis-Santiago, Yaihara; Katz, Donald B.; Birren, Susan J.

    2011-01-01

    Acute inhibition of acetylcholine (ACh) has been shown to impair many forms of simple learning, and notably conditioned taste aversion (CTA). The most adhered-to theory that has emerged as a result of this work – that ACh increases a taste’s perceived novelty, and thereby its associability – would be further strengthened by evidence showing that enhanced cholinergic function improves learning above normal levels. Experimental testing of this corollary hypothesis has been limited, however, by side-effects of pharmacological ACh agonism and by the absence of a model that achieves long-term increases in cholinergic signaling. Here, we present this further test of the ACh hypothesis, making use of mice lacking the p75 pan-neurotrophin receptor gene, which show a resultant over-abundance of cholinergic neurons in sub-regions of the basal forebrain (BF). We first demonstrate that the p75−/− abnormality directly affects portions of the CTA circuit, locating mouse gustatory cortex (GC) using a functional assay and then using immunohistochemisty to demonstrate cholinergic hyper-innervation of GC in the mutant mice – hyper-innervation that is unaccompanied by changes in cell numbers or compensatory changes in muscarinic receptor densities. We then demonstrate that both p75−/− and wild-type (WT) mice learn robust CTAs, which extinguish more slowly in the mutants. Further testing to distinguish effects on learning from alterations in memory retention demonstrate that p75−/− mice do in fact learn stronger CTAs than WT mice. These data provide novel evidence for the hypothesis linking ACh and taste learning. PMID:22144949

  11. Cholinergic modulation of hippocampal network function

    PubMed Central

    Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.

    2013-01-01

    Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628

  12. New Etiology of Cholinergic Urticaria.

    PubMed

    Tokura, Yoshiki

    2016-01-01

    Cholinergic urticaria (CholU) is characterized by pinpoint-sized, highly pruritic wheals occurring upon sweating. Both direct and indirect theories in the interaction of acetylcholine (ACh) with mast cells have been put forward in the sweating-associated histamine release from mast cells. In the mechanism of indirect involvement of ACh, patients are hypersensitive to sweat antigen(s) and develop wheals in response to sweat substances leaking from the syringeal ducts to the dermis, possibly by obstruction of the ducts. Some patients with CholU exhibit a positive reaction to intradermal injection of their own diluted sweat, representing 'sweat allergy (hypersensitivity)'. Regarding the direct interaction theory between ACh and mast cells, we found that CholU with anhidrosis and hypohidrosis lacks cholinergic receptor M3 (CHRM3) expression in eccrine sweat gland epithelial cells. The expression of CHRM3 is completely absent in the anhidrotic areas and lowly expressed in the hypohidrotic areas. In the hypohidrotic area, where CholU occurs, it is hypothesized that ACh released from nerves cannot be completely trapped by cholinergic receptors of eccrine glands and overflows to the adjacent mast cells, leading to wheals. PMID:27584968

  13. Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain.

    PubMed

    Shah, Disha; Blockx, Ines; Keliris, Georgios A; Kara, Firat; Jonckers, Elisabeth; Verhoye, Marleen; Van der Linden, Annemie

    2016-07-01

    Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders. PMID:26195064

  14. Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]dexetimide and [11C]levetimide.

    PubMed

    Dannals, R F; Långström, B; Ravert, H T; Wilson, A A; Wagner, H N

    1988-01-01

    Dexetimide (Fig. 1a), a potent muscarinic cholinergic receptor antagonist, and levetimide (Fig. 1b), its pharmacologically inactive enantiomer, were labeled with 11C for non-invasive in vivo studies of muscarinic cholinergic receptors in the human brain using positron emission tomography. The syntheses were completed in approximately 32 min using [alpha-11C]benzyl iodide as the precursor. The synthesis, purification, characterization and determination of specific activity are presented and discussed. PMID:2838435

  15. Cellular and molecular basis of cholinergic function

    SciTech Connect

    Dowdall, M.J.; Hawthorne, J.N.

    1987-01-01

    This book contains 105 selections. Some of the titles are: Functional correlates of brain nicotine receptors; Muscarinic receptor subclasses; Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system; Developmentally regulated neurontrophic activities of Torpedo electric organ tissue; and Association of a regulatory peptide with cholinergic neurons.

  16. Optogenetic studies of nicotinic contributions to cholinergic signaling in the central nervous system

    PubMed Central

    Jiang, Li; López-Hernández, Gretchen Y.; Lederman, James; Talmage, David A.; Role, Lorna W.

    2015-01-01

    Molecular manipulations and targeted pharmacological studies provide a compelling picture of which nicotinic receptor subtypes are where in the central nervous system (CNS) and what happens if one activates or deletes them. However, understanding the physiological contribution of nicotinic receptors to endogenous acetylcholine (ACh) signaling in the CNS has proven a more difficult problem to solve. In this review, we provide a synopsis of the literature on the use of optogenetic approaches to control the excitability of cholinergic neurons and to examine the role of CNS nicotinic ACh receptors (nAChRs). As is often the case, this relatively new technology has answered some questions and raised others. Overall, we believe that optogenetic manipulation of cholinergic excitability in combination with some rigorous pharmacology will ultimately advance our understanding of the many functions of nAChRs in the brain. PMID:25051276

  17. Entomopathogenic nematodes and insect management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes (genera Heterorhabditis, Steinernema, and Neosteinernema) are used as bioinsecticides. The nematodes are ubiquitous and have been isolated in soil of every continent except Antarctica. The nematodes kill insects through a mutualism with a bacterium (Photorhabdus spp. or ...

  18. Application technology for entomopathogenic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diverse technology is available for the application of entomopathogenic nematodes. Application usually consists of nematode distribution via aqueous suspension in various irrigation systems and spray equipment. The choice of application equipment, and method in which the nematodes are applied, can...

  19. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test

    PubMed Central

    Addy, N.A.; Nunes, E.J.; Wickham, R.J.

    2015-01-01

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125 mg/kg, intra-cranial; 1 or 2 μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24 μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30 μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST. PMID:25865152

  20. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    PubMed

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST. PMID:25865152

  1. A Reaction-Diffusion Model of Cholinergic Retinal Waves

    PubMed Central

    Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan

    2014-01-01

    Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327

  2. Striatal cholinergic interneurons: birthdates predict compartmental localization.

    PubMed

    van Vulpen, E H; van der Kooy, D

    1998-07-01

    The striatal patch and matrix compartment neurons are born at different times during rat development. The majority of the early born neurons preferentially end up in the patch compartment, while the majority of the later born neurons end up in the matrix compartment. Although the cholinergic interneurons are all born early in neurogenesis (between embryonic day E12 and E17), and we would therefore expect them to be located mainly in the patches, they are relatively homogeneously distributed in the adult, with a preference for the matrix area just outside the patches (the intermediate zone). To ask if birthdate can predict the compartmental localization of cholinergic neurons in the striatum, we marked new postmitotic neurons in the embryo with a maternal injection of bromodeoxyuridine (BrdU) on E13, E15 or E17 and labeled the patch compartment with an injection of the retrograde tracer True Blue into the substantia nigra on postnatal day (P) 1. The pups were sacrificed at P40 and the tissue was processed for BrdU, choline acetyltransferase, and True Blue triple labeling. Cholinergic neurons that became postmitotic at E13, had a higher chance of ending up in the patch compartment compared to either the intermediate zone or the rest of the matrix compartment. On the other hand cholinergic neurons that became postmitotic at E17 had a higher chance of ending up in the matrix compartment (including the intermediate zone). We conclude that birthdate can predict compartmental localization, with the cholinergic neurons in the intermediate zone following the same pattern as the cholinergic neurons in the rest of the matrix compartment. Cholinergic neurons show the same relative birthdate/compartment relationship as do other striatal neurons, although the absolute birthdates of cholinergic neurons are shifted earlier in neurogenesis. PMID:9706390

  3. The Nematode Caenorhabditis Elegans.

    ERIC Educational Resources Information Center

    Kenyon, Cynthia

    1988-01-01

    Discusses advantages of nematode use for studying patterns of cell division, differentiation, and morphogenesis. Describes nematode development. Cites experimental approaches available for genetic studies. Reviews the topics of control of cell division and differentiation, the nervous system, and muscle assembly and function of the organism. (RT)

  4. Root-knot nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although root-knot nematodes (Meloidogyne species) can reduce crop yields worldwide, methods for their identification are often difficult to implement. This review summarizes the diagnostic morphological and molecular features for distinguishing the ten major previously described root-knot nematode ...

  5. Striatal cholinergic neurotransmission requires VGLUT3.

    PubMed

    Nelson, Alexandra B; Bussert, Timothy G; Kreitzer, Anatol C; Seal, Rebecca P

    2014-06-25

    It is now clear that many neuronal populations release more than one classical neurotransmitter, yet in most cases the functional role of corelease is unknown. Striatal cholinergic interneurons release both glutamate and acetylcholine, and vesicular loading of glutamate has been shown to enhance acetylcholine content. Using a combination of optogenetics and whole-cell recordings in mice, we now provide physiological evidence that optogenetic stimulation of cholinergic interneurons triggers monosynaptic glutamate- and acetylcholine-mediated currents in striatal fast-spiking interneurons (FSIs), both of which depend on the expression of the vesicular glutamate transporter 3 (VGLUT3). In contrast to corticostriatal glutamatergic inputs onto FSIs, which are mediated primarily by AMPA-type glutamate receptors, glutamate release by cholinergic interneurons activates both AMPA- and NMDA-type glutamate receptors, suggesting a unique role for these inputs in the modulation of FSI activity. Importantly, we find that the loss of VGLUT3 not only markedly attenuates glutamatergic and cholinergic inputs on FSIs, but also significantly decreases disynaptic GABAergic input onto medium spiny neurons (MSNs), the major output neurons of the striatum. Our data demonstrate that VGLUT3 is required for normal cholinergic signaling onto FSIs, as well as for acetylcholine-dependent disynaptic inhibition of MSNs. Thus, by supporting fast glutamatergic transmission as well as by modulating the strength of cholinergic signaling, VGLUT3 has the capacity to exert widespread influence on the striatal network. PMID:24966377

  6. Striatal Cholinergic Neurotransmission Requires VGLUT3

    PubMed Central

    Nelson, Alexandra B.; Bussert, Timothy G.

    2014-01-01

    It is now clear that many neuronal populations release more than one classical neurotransmitter, yet in most cases the functional role of corelease is unknown. Striatal cholinergic interneurons release both glutamate and acetylcholine, and vesicular loading of glutamate has been shown to enhance acetylcholine content. Using a combination of optogenetics and whole-cell recordings in mice, we now provide physiological evidence that optogenetic stimulation of cholinergic interneurons triggers monosynaptic glutamate- and acetylcholine-mediated currents in striatal fast-spiking interneurons (FSIs), both of which depend on the expression of the vesicular glutamate transporter 3 (VGLUT3). In contrast to corticostriatal glutamatergic inputs onto FSIs, which are mediated primarily by AMPA-type glutamate receptors, glutamate release by cholinergic interneurons activates both AMPA- and NMDA-type glutamate receptors, suggesting a unique role for these inputs in the modulation of FSI activity. Importantly, we find that the loss of VGLUT3 not only markedly attenuates glutamatergic and cholinergic inputs on FSIs, but also significantly decreases disynaptic GABAergic input onto medium spiny neurons (MSNs), the major output neurons of the striatum. Our data demonstrate that VGLUT3 is required for normal cholinergic signaling onto FSIs, as well as for acetylcholine-dependent disynaptic inhibition of MSNs. Thus, by supporting fast glutamatergic transmission as well as by modulating the strength of cholinergic signaling, VGLUT3 has the capacity to exert widespread influence on the striatal network. PMID:24966377

  7. Cholinergic connectivity: it's implications for psychiatric disorders

    PubMed Central

    Scarr, Elizabeth; Gibbons, Andrew S.; Neo, Jaclyn; Udawela, Madhara; Dean, Brian

    2013-01-01

    Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system. PMID:23653591

  8. Clinical Characteristics of Cholinergic Urticaria in Korea

    PubMed Central

    Kim, Jung Eun; Eun, Young Sun; Park, Young Min; Park, Hyun Jeong; Yu, Dong Su; Kang, Hoon; Cho, Sang Hyun; Park, Chul Jong; Kim, Si Yong

    2014-01-01

    Background Cholinergic urticaria is a type of physical urticaria characterized by heat-associated wheals. Several reports are available about cholinergic urticaria; however, the clinical manifestations and pathogenesis are incompletely understood. Objective The purpose of this study was to investigate the clinical characteristics of cholinergic urticaria in Korea. Methods We performed a retrospective study of 92 patients with cholinergic urticaria who were contacted by phone and whose diagnoses were confirmed by the exercise provocation test among those who had visited The Catholic University of Korea, Catholic Medical Center from January 2001 to November 2010. Results All 92 patients were male, and their average age was 27.8 years (range, 17~51 years). Most of the patients had onset of the disease in their 20s and 30s. Non-follicular wheals were located on the trunk and upper extremities of many patients, and the symptoms were aggravated by exercise. Eight patients showed general urticaria symptoms and 15 had accompanying atopic disease. Forty-three patients complained of seasonal aggravation. Most patients were treated with first and second-generation antihistamines. Conclusion Dermatologists should consider these characteristics in patients with cholinergic urticaria. Further investigation and follow-up studies are necessary to better understand the epidemiological and clinical findings of cholinergic urticaria. PMID:24882973

  9. Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in Parkinsonian mice.

    PubMed

    Won, Lisa; Ding, Yunmin; Singh, Pardeep; Kang, Un Jung

    2014-02-19

    3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia (LID) is a debilitating side effect of long-term dopamine replacement therapy in Parkinson's Disease. At present, there are few therapeutic options for treatment of LID and mechanisms contributing to the development and maintenance of these drug-induced motor complications are not well understood. We have previously shown that pharmacological reduction of cholinergic tone attenuates the expression of LID in parkinsonian mice with established dyskinesia after chronic L-DOPA treatment. The present study was undertaken to provide anatomically specific evidence for the role of striatal cholinergic interneurons by ablating them before initiation of L-DOPA treatment and determining whether it decreases LID. We used a novel approach to ablate striatal cholinergic interneurons (ChIs) via Cre-dependent viral expression of the diphtheria toxin A subunit (DT-A) in hemiparkinsonian transgenic mice expressing Cre recombinase under control of the choline acetyltransferase promoter. We show that Cre recombinase-mediated DT-A ablation selectively eliminated ChIs when injected into striatum. The depletion of ChIs markedly attenuated LID without compromising the therapeutic efficacy of L-DOPA. These results provide evidence that ChIs play a key and selective role in LID and that strategies to reduce striatal cholinergic tone may represent a promising approach to decreasing L-DOPA-induced motor complications in Parkinson's disease. PMID:24553948

  10. Chemical Communicators in Nematodes

    PubMed Central

    Huettel, R. N.

    1986-01-01

    Chemical signals released by one organism and perceived by another organism are classified as semiochemicals. Semiochemicals are divided into pheromones, which elicit intraspecific responses, and allelochemics, which elicit interspecific responses. Nematodes utilize and (or) recognize signals from both categories of semiochemicals. The existence of pheromones, specifically sex and aggregation pheromones, has been demonstrated in numerous plant and animal parasitic and free-living nematodes. Sex pheromones have been isolated and purified from Nippostrongylus brasiliensis and Heterodera glycines, and epidietic pheromones have been shown to be responsible for initiation of dauer juvenile formation in Caenorhabditis elegans. Allelochemics cause interspecific responses in insects and other invertebrates but are only postulated to occur in nematodes. Food-finding behavior of nematodes is almost certainly caused by host-released allelochemic messengers. Understanding of the behavioral responses and the chemical messengers that affect bioregulation of various processes in nematodes will influence future management strategies. PMID:19294130

  11. Central cholinergic neurons are rapidly recruited by reinforcement feedback

    PubMed Central

    Hangya, Balázs; Ranade, Sachin P.; Lorenc, Maja; Kepecs, Adam

    2015-01-01

    Summary Basal forebrain cholinergic neurons constitute a major neuromodulatory system implicated in normal cognition and neurodegenerative dementias. Cholinergic projections densely innervate neocortex, releasing acetylcholine to regulate arousal, attention and learning. However, their precise behavioral function is poorly understood because identified cholinergic neurons have never been recorded during behavior. To determine which aspects of cognition their activity might support we recorded cholinergic neurons using optogenetic identification in mice performing an auditory detection task requiring sustained attention. We found that a non-cholinergic basal forebrain population — but not cholinergic neurons — were correlated with trial-to-trial measures of attention. Surprisingly, cholinergic neurons responded to reward and punishment with unusual speed and precision (18±3ms). Cholinergic responses were scaled by the unexpectedness of reinforcement and were highly similar across neurons and two nuclei innervating distinct cortical areas. These results reveal that the cholinergic system broadcasts a rapid and precisely timed reinforcement signal supporting fast cortical activation and plasticity. PMID:26317475

  12. Impaired Cholinergic Excitation of Prefrontal Attention Circuitry in the TgCRND8 Model of Alzheimer’s Disease

    PubMed Central

    Proulx, Éliane; Fraser, Paul; McLaurin, JoAnne; Lambe, Evelyn K.

    2015-01-01

    Attention deficits in Alzheimer’s disease can exacerbate its other cognitive symptoms, yet relevant disruptions of key prefrontal circuitry are not well understood. Here, in the TgCRND8 mouse model of this neurological disorder, we demonstrate and characterize a disruption of cholinergic excitation in the major corticothalamic layer of the prefrontal cortex, in which modulation by acetylcholine is essential for optimal attentional function. Using electrophysiology with concurrent multiphoton imaging, we show that layer 6 pyramidal cells are unable to sustain cholinergic excitation to the same extent as their nontransgenic littermate controls, as a result of the excessive activation of calcium-activated hyperpolarizing conductances. We report that cholinergic excitation can be improved in TgCRND8 cortex by pharmacological blockade of SK channels, suggesting a novel target for the treatment of cognitive dysfunction in Alzheimer’s disease. PMID:26377466

  13. An update on the pharmacology of galantamine.

    PubMed

    Villarroya, Mercedes; García, Antonio G; Marco-Contelles, José; López, Manuela G

    2007-12-01

    Alzheimer's disease (AD) is associated with a gradual loss of attention and memory that has been related to impairment of brain cholinergic neurotransmission, particularly a deficit of cholinergic neurons. The first therapeutic target that has demonstrated therapeutic efficacy on cognition, behaviour and functional daily activities has been the inhibition of acetylcholinesterase. The acetylcholinesterase inhibitors used to treat AD patients at present are donepezil, rivastigmine and galantamine. This review summarises the current state of the art concerning the pharmacology of galantamine, focusing on the most important details of its possibilities as an acetylcholinesterase inhibitor, an allosteric potentiator of neuronal nicotinic receptors for acetylcholine, a modulator of neurotransmitter release, and an agent causing neuroprotection through an antiapoptotic action. In so doing, galantamine will be discussed in the context of the treatment of dementia, both of AD type and of mixed vascular-Alzheimer type. PMID:18042006

  14. Pharmacological aspects of (-)-deprenyl.

    PubMed

    Magyar, K; Pálfi, M; Tábi, T; Kalász, H; Szende, B; Szöko, E

    2004-08-01

    Deprenyl, the selective irreversible inhibitor of monoamine oxidase-B (MAO-B), has been synthesised as a potential antidepressant, however, due to its dopamine potentiating capacity, became a registered drug in the treatment of Parkinson's disease. Deprenyl possesses a wide range of pharmacological activities; some of them are not related to its MAO-B inhibitory potency. Beside its dopamine potentiating effect, it renders protection against a number of dopaminergic, cholinergic and noradrenergic neurotoxins with a complex mechanism of action. By inducing antioxidant enzymes and decreasing the formation of reactive oxygen species, deprenyl is able to combat an oxidative challenge implicated as a common causative factor in neurodegenerative diseases. In a dose substantially lower than required for MAO-B inhibition (10(-9)-10(-13) M), deprenyl interferes with early apoptotic signalling events induced by various kinds of insults in cell cultures of neuroectodermal origin, thus protecting cells from apoptotic death. Deprenyl requires metabolic conversion to a hitherto unidentified metabolite to exert its antiapoptotic effect, which serves to protect the integrity of the mitochondrion by inducing transcriptional and translational changes. Pharmacokinetic and metabolism studies have revealed that deprenyl undergoes intensive first pass metabolism, and its major metabolites also possess pharmacological activities. The ratio of the parent compound and its metabolites reaching the systemic circulation and the brain are highly dependent on the routes of administration. Therefore, in the treatment of neurodegenerative diseases, reconsideration of the dosing schedule, by lowering the dose of deprenyl and choosing the most appropriate route of administration, would diminish undesired adverse effects, with unaltered neuroprotective potency. PMID:15279565

  15. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions.

    PubMed

    Gonzales, Kalynda K; Smith, Yoland

    2015-09-01

    Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction. PMID:25876458

  16. Entomopathogenic nematode application technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biocontrol success when using entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema relies on a variety of factors including components of the application event itself. Successful application encompasses both abiotic and biotic influences. For example, adverse array of equi...

  17. Neuroparasitic infections: nematodes.

    PubMed

    Walker, M D; Zunt, J R

    2005-09-01

    Globalization has produced an increase in the number of people at risk for contracting parasitic infection. Central nervous system infection by nematodal parasites can be devastating. Early recognition and treatment of infection can significantly decrease morbidity of the parasitic infection, as well as the risk of secondary superinfection. The clinical presentation, diagnosis, and treatment for five of the more common nematodal infections of the nervous system--Angiostrongylus spp., Baylisacaris procyonis, Gnathostoma spinigerum, Strongyloides stercoralis, and Toxocara spp.--is reviewed. PMID:16170738

  18. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    PubMed Central

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases. PMID:24179466

  19. Cholinergic regulation of the vasopressin neuroendocrine system

    SciTech Connect

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The median eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.

  20. Cholinergic enhancement of functional networks in older adults with MCI

    PubMed Central

    Pa, Judy; Berry, Anne S.; Compagnone, Mariana; Boccanfuso, Jacqueline; Greenhouse, Ian; Rubens, Michael T.; Johnson, Julene K.; Gazzaley, Adam

    2013-01-01

    Objective The importance of the cholinergic system for cognitive function has been well-documented in animal and human studies. The objective of this study was to elucidate the cognitive and functional connectivity changes associated with enhanced acetylcholine (ACh) levels. We hypothesized older adults with mild memory deficits would show behavioral and functional network enhancements with an acetylcholinesterase inhibitor treatment (donepezil) when compared to a placebo control group. Methods We conducted a 3-month, double-blind, placebo-controlled study on the effects of donepezil in twenty-seven older adults with mild memory deficits. Participants completed a delayed recognition memory task. FMRI scans were collected at baseline prior to treatment and at 3-month follow-up while on a 10 mg daily dose of donepezil or placebo. Results Donepezil treatment significantly enhanced the response time for face and scene memory probes when compared to the placebo group. A group-by-visit interaction was identified for the functional network connectivity of the left fusiform face area (FFA) with the hippocampus and inferior frontal junction, such that the treatment group showed increased connectivity over time when compared to the placebo group. Additionally, the enhanced functional network connectivity of the FFA and hippocampus significantly predicted memory response time at 3-month follow-up in the treatment group. Interpretation These findings suggest that increased cholinergic transmission improves goal-directed neural processing and cognitive ability and may serve to facilitate communication across functionally-connected attention and memory networks. Longitudinal fMRI is a useful method for elucidating the neural changes associated with pharmacological modulation and is a potential tool for monitoring intervention efficacy in clinical trials. PMID:23447373

  1. Roles of Steroids in Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inability of nematodes to biosynthesize steroids de novo and the resulting dependence of parasitic nematodes upon their hosts have enhanced the importance of elucidating the metabolism of sterols and the hormonal and other functions of steroids in nematodes. Biochemical research has revealed th...

  2. Cholinergic imaging in dementia spectrum disorders.

    PubMed

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios

    2016-07-01

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [(11)C]MP4A and [(11)C]PMP PET for acetylcholinesterase (AChE), [(123)I]5IA SPECT for the α4β2 nicotinic acetylcholine receptor and [(123)I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. PMID:26984612

  3. Pharmacologic vitreolysis.

    PubMed

    Rhéaume, Marc-André; Vavvas, Demetrios

    2010-01-01

    It is now well recognized that vitreous plays an important role in the pathogenesis of various retinal disorders. In many instances it can be addressed with pars plana vitrectomy, although this approach, like any surgery, has its limitations. The search for alternatives or adjunct to surgery has led to the development of pharmacologic vitreolysis. The use of intravitreal agents to alter the vitreous in order to reduce or eliminate its role in disease seems promising. The purpose of this article is to summarize the present knowledge on pharmacologic vitreolysis. A review of the different agents used and of ongoing trials will be presented. Also, current understanding of vitreous structure and its interaction with the retina will be discussed. PMID:21091015

  4. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  5. Effect of neostigmine on organ injury in murine endotoxemia: missing facts about the cholinergic antiinflammatory pathway.

    PubMed

    Akinci, Seda B; Ulu, Nadir; Yondem, Omer Z; Firat, Pinar; Guc, M Oguz; Kanbak, Meral; Aypar, Ulku

    2005-11-01

    Electrical and pharmacologic stimulation of the efferent cholinergic antiinflammatory pathway suppress the systemic inflammatory response and can prevent lethal endotoxemia. Neostigmine, a cholinergic agent, has not been tested to determine if it can prevent histopathologic organ injury in endotoxemia. In the present study, the effects of neostigmine treatment on the histopathologic organ injury inflicted by Escherichia coli endotoxin in a mouse model of septic shock was investigated. Endotoxemia in mice caused weight loss and increased spleen, liver, and lung weight. When the organs were examined for histopathologic injury, endotoxemia increased interstitial inflammation in the lungs, liver injury, and organ injury in general terms; neostigmine, at a dose of 0.1 mg/kg, failed to attenuate these effects. Although the simultaneous administration of neostigmine at a dose of 0.3 mg/kg and endotoxin decreased interstitial inflammation in the lungs, vacuolar degeneration in the liver, and total liver injury, mortality was increased with this dose in the presence of endotoxemia. We conclude that neostigmine at a dose of 0.1 mg/kg was not protective against histopathologic organ injury in mice with endotoxemia, and a higher dose (0.3 mg/kg) was not tolerated probably owing to nonspecific parasympathetic action including cardiovascular effects. Further studies are required to determine the contribution of sites in the cholinergic antiinflammatory pathway. PMID:16222449

  6. Formulation of Nematodes.

    PubMed

    Peters, Arne

    2016-01-01

    The enduring stages of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis are infective juveniles, which require a high humidity and sufficient ventilation for survival. Formulations must account for these requirements. Nematodes may be formulated inside the insects in which they reproduced or they need to be cleaned and mixed with a suitable binder to maintain humidity but allowing for gas exchange. Another method for formulation is the encapsulation in beads of Ca-alginate. Generic procedures for these formulation techniques are described. PMID:27565496

  7. Mixed cholinergic/glutamatergic neuromuscular innervation of Onychophora: a combined histochemical/electrophysiological study.

    PubMed

    Stern, Michael; Bicker, Gerd

    2008-08-01

    Morphological and molecular phylogenetic data show that the Onychophora are close relatives of the Arthropoda. However, onychophoran neuromuscular junctions have been reported to employ acetylcholine, as in annelids, nematodes, and other bilaterians, rather than glutamate, as in arthropods. Here, we show that the large longitudinal muscles of Peripatoides respond indeed only to acetylcholine, whereas the oblique and ring muscles of the body wall are sensitive both to acetylcholine and to L-glutamate. Moreover, cytochemical staining reveals both acetylcholinesterase- and glutamate-positive synaptic boutons on oblique and ring muscles. These novel findings agree with a phylogenetic position of onychophorans basal to that of the arthropods. Although the glutamatergic phenotype of excitatory neuromuscular transmission may be a characteristic feature of arthropods and present even in a subset of onychophoran motor neurons, the motor neurons of the longitudinal muscles still retain the cholinergic phenotype typical for annelids and other taxa. PMID:18563449

  8. The behavioral pharmacology of hallucinogens

    PubMed Central

    Fantegrossi, William E.; Murnane, Aeneas C.; Reissig, Chad J.

    2008-01-01

    Until very recently, comparatively few scientists were studying hallucinogenic drugs. Nevertheless, selective antagonists are available for relevant serotonergic receptors, the majority of which have now been cloned, allowing for reasonably thorough pharmacological investigation. Animal models sensitive to the behavioral effects of the hallucinogens have been established and exploited. Sophisticated genetic techniques have enabled the development of mutant mice, which have proven useful in the study of hallucinogens. The capacity to study post-receptor signaling events has lead to the proposal of a plausible mechanism of action for these compounds. The tools currently available to study the hallucinogens are thus more plentiful and scientifically advanced than were those accessible to earlier researchers studying the opioids, benzodiazepines, cholinergics, or other centrally active compounds. The behavioral pharmacology of phenethylamine, tryptamine, and ergoline hallucinogens are described in this review, paying particular attention to important structure activity relationships which have emerged, receptors involved in their various actions, effects on conditioned and unconditioned behaviors, and in some cases, human psychopharmacology. As clinical interest in the therapeutic potential of these compounds is once again beginning to emerge, it is important to recognize the wealth of data derived from controlled preclinical studies on these compounds. PMID:17977517

  9. Chagas’ disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells

    PubMed Central

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V.; PereiraPerrin, Mercio

    2008-01-01

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas’ disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas’ disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas’ disease patients. PMID:18502403

  10. Chagas' disease parasite-derived neurotrophic factor activates cholinergic gene expression in neuronal PC12 cells.

    PubMed

    Akpan, Nsikan; Caradonna, Kacey; Chuenkova, Marina V; PereiraPerrin, Mercio

    2008-06-27

    A parasite-derived neurotrophic factor (PDNF) produced by the Chagas' disease parasite Trypanosoma cruzi binds nerve growth factor (NGF) receptor TrkA, increasing receptor autophosphorylation, and activating phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK/Erk) pathways, and transcription factor CREB. The end-result is enhanced survival and neuritogenesis of various types of neurons. PDNF also enhances the expression and activity of tyrosine hydroxylase, a rate limiting enzyme in the synthesis of dopamine and other catecholamine neurotransmitters. It remains unknown, however, if PDNF alters expression and metabolism of acetylcholine (ACh), a neurotransmitter thought to play a role in Chagas' disease progression. Here we demonstrate that PDNF stimulates mRNA and protein expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are critical for synthesis and storage of ACh. Stimulation requires functional TrkA because it did not occur in cell mutants that lack the receptor and in TrkA-expressing wild-type cells treated with K252a, an inhibitor of TrkA kinase activity. It also requires TrkA-dependent PI3K and MAPK/Erk signaling pathways because PDNF stimulation of cholinergic transcripts is abolished by specific pharmacological inhibitors. Furthermore, the cholinergic actions of PDNF were reproduced by PDNF-expressing extracellular T. cruzi trypomastigotes at the start of host cell invasion. In contrast, host cells bearing intracellular T. cruzi showed decreased, rather than increased, cholinergic gene expression. These results suggest that T. cruzi invasion of the nervous system alters cholinergic gene expression and that could play a role in neuropathology, and/or lack thereof, in Chagas' disease patients. PMID:18502403

  11. Production of entomopathogenic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production technology is critical for the success of entomopathogenic nematodes (EPNs) in biological control. Production approaches include in vivo and in vitro methods (solid or liquid fermentation). For laboratory use and small scale field experiments, in vivo production of EPNs appears to be th...

  12. Nematode management in pecans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2002, the pecan root-knot nematode (Meloidogyne partityla = PRKN) was found on pecan in the southeastern U.S. and was associated with stressed trees exhibiting dead branches in the upper canopy and (or) typical mouse ear (ME) associated foliar symptoms. This research evaluates the host susceptib...

  13. Cholinergic Circuit Control of Postnatal Neurogenesis

    PubMed Central

    Asrican, Brent; Paez-Gonzalez, Patricia; Erb, Joshua; Kuo, Chay T.

    2016-01-01

    New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents a distinct form of nervous system plasticity. During embryonic development, precise temporal and spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell (NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following developmental assembly, it remains relatively unclear what may be the key driving forces that sustain continued production of neurons in the postnatal/adult brain. Recent experimental evidence suggests that patterned activity from specific neural circuits can also directly govern postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic modulation, and how patterns of neuronal activity and acetylcholine release may differentially or synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs regulating cholinergic neuron firing, and their implications in neurogenesis control are also considered. PMID:27468423

  14. Decreased subcortical cholinergic arousal in focal seizures

    PubMed Central

    Motelow, Joshua E.; Li, Wei; Zhan, Qiong; Mishra, Asht M.; Sachdev, Robert N. S.; Liu, Geoffrey; Gummadavelli, Abhijeet; Zayyad, Zaina; Lee, Hyun Seung; Chu, Victoria; Andrews, John P.; Englot, Dario J.; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Blumenfeld, Hal

    2015-01-01

    SUMMARY Impaired consciousness in temporal lobe seizures has a major negative impact on quality of life. The prevailing view holds that this disorder impairs consciousness by seizure spread to the bilateral temporal lobes. We propose instead that seizures invade subcortical regions and depress arousal, causing impairment through decreases rather than through increases in activity. Using functional magnetic resonance imaging in a rodent model, we found increased activity in regions known to depress cortical function including lateral septum and anterior hypothalamus. Importantly, we found suppression of intralaminar thalamic and brainstem arousal systems and suppression of the cortex. At a cellular level, we found reduced firing of identified cholinergic neurons in the brainstem pedunculopontine tegmental nucleus and basal forebrain. Finally, we used enzyme-based amperometry to demonstrate reduced cholinergic neurotransmission in both cortex and thalamus. Decreased subcortical arousal is a novel mechanism for loss of consciousness in focal temporal lobe seizures. PMID:25654258

  15. Cholinergic innervation and receptors in the cerebellum.

    PubMed

    Jaarsma, D; Ruigrok, T J; Caffé, R; Cozzari, C; Levey, A I; Mugnaini, E; Voogd, J

    1997-01-01

    We have studied the source and ultrastructural characteristics of ChAT-immunoreactive fibers in the cerebellum of the rat, and the distribution of muscarinic and nicotinic receptors in the cerebellum of the rat, rabbit, cat and monkey, in order to define which of the cerebellar afferents may use ACh as a neurotransmitter, what target structures are they, and which cholinergic receptor mediate the actions of these pathways. Our data confirm and extend previous observations that cholinergic markers occur at relatively low density in the cerebellum and show not only interspecies variability, but also heterogeneity between cerebellar lobules in the same species. As previously demonstrated by Barmack et al. (1992a,b), the predominant fiber system in the cerebellum that might use ACh as a transmitter or a co-transmitter is formed by mossy fibers originating in the vestibular nuclei and innervating the nodulus and ventral uvula. Our results show that these fibers innervate both granule cells and unipolar brush cells, and that the presumed cholinergic action of these fibers most likely is mediated by nicotinic receptors. In addition to cholinergic mossy fibers, the rat cerebellum is innervated by beaded ChAT-immunoreactive fibers. We have demonstrated that these fibers originate in the pedunculopontine tegmental nucleus (PPTg), the lateral paragigantocellular nucleus (LPGi), and to a lesser extent in various raphe nuclei. In both the cerebellar cortex and the cerebellar nuclei these fibers make asymmetric synaptic junctions with small and medium-sized dendritic profiles. Both muscarinic and nicotinic receptor could mediate the action of these diffuse beaded fibers. In the cerebellar nuclei the beaded cholinergic fibers form a moderately dense network, and could in principle have a significant effect on neuronal activity. For instance, the cholinergic fibers arising in the PPTg may modulate the excitability of the cerebellonuclear neurons in relation to sleep and arousal (e

  16. Cholinergic modulation of cognitive processing: insights drawn from computational models

    PubMed Central

    Newman, Ehren L.; Gupta, Kishan; Climer, Jason R.; Monaghan, Caitlin K.; Hasselmo, Michael E.

    2012-01-01

    Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers. PMID:22707936

  17. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence.

    PubMed

    Hshieh, Tammy T; Fong, Tamara G; Marcantonio, Edward R; Inouye, Sharon K

    2008-07-01

    Deficits in cholinergic function have been postulated to cause delirium and cognitive decline. This review examines current understanding of the cholinergic deficiency hypothesis in delirium by synthesizing evidence on potential pathophysiological pathways. Acetylcholine synthesis involves various precursors, enzymes, and receptors, and dysfunction in these components can lead to delirium. Insults to the brain, like ischemia and immunological stressors, can precipitously alter acetylcholine levels. Imbalances between cholinergic and other neurotransmitter pathways may result in delirium. Furthermore, genetic, enzymatic, and immunological overlaps exist between delirium and dementia related to the cholinergic pathway. Important areas for future research include identifying biomarkers, determining genetic contributions, and evaluating response to cholinergic drugs in delirium. Understanding how the cholinergic pathway relates to delirium may yield innovative approaches in the diagnosis, prevention, and treatment of this common, costly, and morbid condition. PMID:18693233

  18. CHOLINERGIC CIRCUITS AND SIGNALING IN THE PATHOPHYSIOLOGY OF SCHIZOPHRENIA

    PubMed Central

    Berman, Joshua A.; Talmage, David A.; Role, Lorna W.

    2008-01-01

    Central cholinergic signaling has long been associated with aspects of memory, motivation, and mood, each affected functions in neuropsychiatric disorders such as schizophrenia. In this chapter, we review evidence related to the core hypothesis that dysregulation of central cholinergic signaling contributes to the pathophysiology of schizophrenia. Although central cholinergic circuits are resistant to simplification—particularly when one tries to parse the contributions of various classes of cholinergic receptors to disease related phenomena—the potential role of ACh signaling in Schizophrenia pathophysiology deserves careful consideration for prospective therapeutics. The established role of cholinergic circuits in attentional tuning is considered along with recent work on how the patterning of cholinergic activity may modulate corticostriatal circuits affected in schizophrenia. PMID:17349862

  19. Alzheimer's Disease: Targeting the Cholinergic System

    PubMed Central

    Ferreira-Vieira, Talita H.; Guimaraes, Isabella M.; Silva, Flavia R.; Ribeiro, Fabiola M.

    2016-01-01

    Acetylcholine (ACh) has a crucial role in the peripheral and central nervous systems. The enzyme choline acetyltransferase (ChAT) is responsible for synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic vesicles. Following depolarization, ACh undergoes exocytosis reaching the synaptic cleft, where it can bind its receptors, including muscarinic and nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is recycled into the presynaptic nerve terminal by the high-affinity choline transporter (CHT1). Cholinergic neurons located in the basal forebrain, including the neurons that form the nucleus basalis of Meynert, are severely lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia affecting 25 million people worldwide. The hallmarks of the disease are the accumulation of neurofibrillary tangles and amyloid plaques. However, there is no real correlation between levels of cortical plaques and AD-related cognitive impairment. Nevertheless, synaptic loss is the principal correlate of disease progression and loss of cholinergic neurons contributes to memory and attention deficits. Thus, drugs that act on the cholinergic system represent a promising option to treat AD patients. PMID:26813123

  20. Relative Contributions of Sympathetic, Cholinergic, and Myogenic Mechanisms to Cerebral Autoregulation

    PubMed Central

    Hamner, J.W.; Tan, Can Ozan

    2014-01-01

    Background and Purpose Prior work aimed at improving our understanding of human cerebral autoregulation has explored individual physiologic mechanisms of autoregulation in isolation, but none has attempted to consolidate the individual roles of these mechanisms into a comprehensive model of the overall cerebral pressure–flow relation. Methods We retrospectively analyzed this relation before and after pharmacologic blockade of alpha-adrenergic, muscarinic, and calcium channel-mediated mechanisms in 43 healthy volunteers to determine the relative contributions of the sympathetic, cholinergic, and myogenic controllers to cerebral autoregulation. Projection pursuit regression was used to assess the effect of pharmacologic blockade on the cerebral pressure–flow relation. Subsequently, analysis of covariance decomposition was used to determine the cumulative effect of these three mechanisms on cerebral autoregulation and whether they can fully explain it. Results Sympathetic, cholinergic, and myogenic mechanisms together accounted for 62% of the cerebral pressure–flow relation (p < 0.05), with significant and distinct contributions from each of the three effectors. ANCOVA decomposition demonstrated that myogenic effectors were the largest determinant of the cerebral pressure–flow relation but their effect was outside of the autoregulatory region where neurogenic control appeared prepotent. Conclusions Our results suggest that myogenic effects occur outside the active region of autoregulation, whereas neurogenic influences are largely responsible for cerebral blood flow control within it. However, our model of cerebral autoregulation left 38% of the cerebral pressure–flow relation unexplained, suggesting that there are other physiologic mechanisms that contribute to cerebral autoregulation. PMID:24723314

  1. Hypothesis for synergistic toxicity of organophosphorus poisoning-induced cholinergic crisis and anaphylactoid reactions

    SciTech Connect

    Cowan, F.M.; Shih, T.M.; Lenz, D.E.; Madsen, J.M.; Broomfield, C.A.

    1996-08-01

    The neurotoxicity of organophosphorus (OP) compounds Involves the Inhibition of acetylchollnesterase (AChE), causing accumulation of acetyicholine (ACh) at synapses. However, cholinergic crisis may not be the sole mechanism of OP toxicity. Adverse drug reactions caused by synergistic toxicity between drugs with distinct pharmacological mechanisms are a common problem. Likewise, the multiple pharmacological activities of a single molecule might also contribute to either toxicity or efficacy. For example, certain OP compounds (e.g. soman) exhibit anti-AChE activity and also act as secretagogues by inducing mast cell degranulation with associated autacoid release and anaphylactoid reactions. Anaphylactoid shock can produce a lethal syndrome with symptoms of respiratory failure and circulatory collapse similar to the physiological sequelae observed for OP poisoning. Moreover, the major classes of drugs used as antidotes for OP intoxication can affect anaphylaxis. Acetylcholine can act as an agonist of autacoid release, and autacoids such as histamine can augment soman-Induced bronchial spasm. In concert with the demonstrably critical role of cholinergic crisis In OP toxicity, the precepts of neuroimmunology indicate that secondary adverse reactions encompassing anaphylactold reactions may complicate OP toxicity.

  2. Alcoholism and depressive disorders: is cholinergic sensitivity a biological marker?

    PubMed

    Overstreet, D H; Janowsky, D S; Rezvani, A H

    1989-01-01

    There is an overlap between alcoholism and depressive disorders. However, alcoholics tend to be resistant to the effect of cholinergic agonists, whereas depressives tend to be more sensitive. A recently developed animal model of depression which is more sensitive to cholinergic agonists is also more sensitive to the acute effects of ethanol. These consistent human and animal studies suggest that cholinergic challenges may be helpful in separating alcoholics from depressives. PMID:2757700

  3. Brain cholinergic impairment in liver failure.

    PubMed

    García-Ayllón, María-Salud; Cauli, Omar; Silveyra, María-Ximena; Rodrigo, Regina; Candela, Asunción; Compañ, Antonio; Jover, Rodrigo; Pérez-Mateo, Miguel; Martínez, Salvador; Felipo, Vicente; Sáez-Valero, Javier

    2008-11-01

    The cholinergic system is involved in specific behavioural responses and cognitive processes. Here, we examined potential alterations in the brain levels of key cholinergic enzymes in cirrhotic patients and animal models with liver failure. An increase (~30%) in the activity of the acetylcholine-hydrolyzing enzyme, acetylcholinesterase (AChE) is observed in the brain cortex from patients deceased from hepatic coma, while the activity of the acetylcholine-synthesizing enzyme, choline acetyltransferase, remains unaffected. In agreement with the human data, AChE activity in brain cortical extracts of bile duct ligated (BDL) rats was increased (~20%) compared to controls. A hyperammonemic diet did not result in any further increase of AChE levels in the BDL model, and no change was observed in hyperammonemic diet rats without liver disease. Portacaval shunted rats which display increased levels of cerebral ammonia did not show any brain cholinergic abnormalities, confirming that high ammonia levels do not play a role in brain AChE changes. A selective increase of tetrameric AChE, the major AChE species involved in hydrolysis of acetylcholine in the brain, was detected in both cirrhotic humans and BDL rats. Histological examination of BDL and non-ligated rat brains shows that the subcellular localization of both AChE and choline acetyltransferase, and thus the accessibility to their substrates, appears unaltered by the pathological condition. The BDL-induced increase in AChE activity was not parallelled by an increase in mRNA levels. Increased AChE in BDL cirrhotic rats leads to a pronounced decrease (~50-60%) in the levels of acetylcholine. Finally, we demonstrate that the AChE inhibitor rivastigmine is able to improve memory deficits in BDL rats. One week treatment with rivastigmine (0.6 mg/kg; once a day, orally, for a week) resulted in a 25% of inhibition in the enzymatic activity of AChE with no change in protein composition, as assessed by sucrose density gradient

  4. Brain cholinergic impairment in liver failure

    PubMed Central

    García-Ayllón, María-Salud; Cauli, Omar; Silveyra, María-Ximena; Rodrigo, Regina; Candela, Asunción; Compañ, Antonio; Jover, Rodrigo; Pérez-Mateo, Miguel; Martínez, Salvador; Felipo, Vicente

    2008-01-01

    The cholinergic system is involved in specific behavioural responses and cognitive processes. Here, we examined potential alterations in the brain levels of key cholinergic enzymes in cirrhotic patients and animal models with liver failure. An increase (∼30%) in the activity of the acetylcholine-hydrolyzing enzyme, acetylcholinesterase (AChE) is observed in the brain cortex from patients deceased from hepatic coma, while the activity of the acetylcholine-synthesizing enzyme, choline acetyltransferase, remains unaffected. In agreement with the human data, AChE activity in brain cortical extracts of bile duct ligated (BDL) rats was increased (∼20%) compared to controls. A hyperammonemic diet did not result in any further increase of AChE levels in the BDL model, and no change was observed in hyperammonemic diet rats without liver disease. Portacaval shunted rats which display increased levels of cerebral ammonia did not show any brain cholinergic abnormalities, confirming that high ammonia levels do not play a role in brain AChE changes. A selective increase of tetrameric AChE, the major AChE species involved in hydrolysis of acetylcholine in the brain, was detected in both cirrhotic humans and BDL rats. Histological examination of BDL and non-ligated rat brains shows that the subcellular localization of both AChE and choline acetyltransferase, and thus the accessibility to their substrates, appears unaltered by the pathological condition. The BDL-induced increase in AChE activity was not parallelled by an increase in mRNA levels. Increased AChE in BDL cirrhotic rats leads to a pronounced decrease (∼50–60%) in the levels of acetylcholine. Finally, we demonstrate that the AChE inhibitor rivastigmine is able to improve memory deficits in BDL rats. One week treatment with rivastigmine (0.6 mg/kg; once a day, orally, for a week) resulted in a 25% of inhibition in the enzymatic activity of AChE with no change in protein composition, as assessed by sucrose density

  5. Bacterial endosymbionts of plant-parasitic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several groups of bacteria have been reported as endosymbionts of various orders of nematodes including the filarial nematodes (Brugia malayi, Wucheria bancrofti and Onchocerca volvulus (Spiruida)), the entomopathogenic nematodes (Steinernema spp., and Heterorhabditis spp. (Rhabditida)), and plant-p...

  6. Intestinal nematodes: biology and control.

    PubMed

    Epe, Christian

    2009-11-01

    A variety of nematodes occur in dogs and cats. Several nematode species inhabit the small and large intestines. Important species that live in the small intestine are roundworms of the genus Toxocara (T canis, T cati) and Toxascaris (ie, T leonina), and hookworms of the genus Ancylostoma (A caninum, A braziliense, A tubaeforme) or Uncinaria (U stenocephala). Parasites of the large intestine are nematodes of the genus Trichuris (ie, whipworms, T vulpis). After a comprehensive description of their life cycle and biology, which are indispensable for understanding and justifying their control, current recommendations for nematode control are presented and discussed thereafter. PMID:19932365

  7. [Syndrome of partial cholinergic deafferentation of the cortical mantle--a concept for describing the brain-behavior relationship in dementia diseases].

    PubMed

    Arendt, T

    1991-03-01

    The identification of morphological and biochemical changes in neurodegenerative disorders with both common and different patterns of neuropsychological dysfunction may help to define the neurobiological substrate of amnesic and dementing disorders, and, furthermore, will give some insight into the neuronal organisation of memory processes. The concept of "subcortical and cortical dementia" and the "cholinergic hypothesis of memory dysfunction" reflect two different theoretical approaches which relate psychopathological disturbances in Alzheimer's disease, Parkinson's disease, Korsakoff's psychosis and related conditions either to structurally or to chemically defined systems of the brain. In order to overcome limitations arising from this dichotomy of structural and chemical approaches to the brain-behaviour-relationship, the concept of a "syndrome of partial cholinergic deafferentation of the cortical mantle" is suggested in the present paper. This concept is supported by evidence derived from the biochemical, morphological and behavioural sequelae of acute and chronic experimental interference with the cholinergic afferentation of the cortical mantle by the application of neurotoxins, by pharmacological intervention and by neurotransplantation in rat. Regarding the cholinergic projection neurons of the basal forebrain and upper brainstem as components of the reticular activating system, the involvement of the cholinergic afferentation of the cortical mantle in the mediation of memory processes and their dysfunction under the conditions of neurodegenerative disorders can be explained on the basis of the "Hippocampal Memory Indexing Theory" of Teyler and DiScenna. PMID:2050315

  8. Gas sensing in nematodes.

    PubMed

    Carrillo, M A; Hallem, E A

    2015-01-01

    Nearly all animals are capable of sensing changes in environmental oxygen (O2) and carbon dioxide (CO2) levels, which can signal the presence of food, pathogens, conspecifics, predators, or hosts. The free-living nematode Caenorhabditis elegans is a powerful model system for the study of gas sensing. C. elegans detects changes in O2 and CO2 levels and integrates information about ambient gas levels with other internal and external cues to generate context-appropriate behavioral responses. Due to its small nervous system and amenability to genetic and genomic analyses, the functional properties of its gas-sensing microcircuits can be dissected with single-cell resolution, and signaling molecules and natural genetic variations that modulate gas responses can be identified. Here, we discuss the neural basis of gas sensing in C. elegans, and highlight changes in gas-evoked behaviors in the context of other sensory cues and natural genetic variations. We also discuss gas sensing in other free-living nematodes and parasitic nematodes, focusing on how gas-sensing behavior has evolved to mediate species-specific behavioral requirements. PMID:24906953

  9. Neuroparasitic Infections: Nematodes

    PubMed Central

    Walker, M.D.; Zunt, J.R.

    2009-01-01

    Globalization has produced an increase in the number of people at risk for contracting parasitic infection. Central nervous system infection by nematodal parasites can be devastating. Early recognition and treatment of infection can significantly decrease morbidity of the parasitic infection, as well as the risk of secondary superinfection. The clinical presentation, diagnosis, and treatment for five of the more common nematodal infections of the nervous system—Angiostrongylus spp., Baylisacaris procyonis, Gnathostoma spinigerum, Strongyloides stercoralis, and Toxocara spp.—is reviewed. Objectives On completion of this article, the reader should be able to summarize the clinical presentation, diagnosis, and treatment of the common nematodal infections of the nervous system. Accreditation The Indiana University School of Medicine is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. Credit The Indiana University School of Medicine designates this educational activity for a maximum of 1 Category 1 credit toward the AMA Physicians Recognition Award. Each physician should claim only those credits that he/she actually spent in the educational activity. Disclosure Statements of disclosure have been obtained regarding the authors’ relevant financial relationships. The authors have nothing to disclose. PMID:16170738

  10. Ocular pharmacology.

    PubMed

    Novack, Gary D; Robin, Alan L

    2016-05-01

    Ophthalmic diseases include both those analogous to systemic diseases (eg, inflammation, infection, neuronal degeneration) and not analogous (eg, cataract, myopia). Many anterior segment diseases are treated pharmacologically through eye drops, which have an implied therapeutic index of local therapy. Unlike oral dosage forms administered for systemic diseases, eyedrops require patients not only to adhere to treatment, but to be able to accurately perform-ie, instill drops correctly. Anatomical and physiological barriers make topical delivery to the anterior chamber challenging-in some cases more challenging than absorption through the skin, nasal passages, or gut. Treatment of the posterior segment (eg, vitreous, retina, choroid, and optic nerve) is more challenging due to additional barriers. Recently, intravitreal injections have become a standard of care with biologics for the treatment of macular degeneration and other diseases. Although the eye has esterases, hydroxylases, and transporters, it has relatively little CYP450 enzymes. Because it is challenging to obtain drug concentrations at the target site, ocular clinical pharmacokinetics, and thus pharmacokinetic-pharmacodynamic interactions, are rarely available. Ophthalmic pharmaceuticals require consideration of solubility, physiological pH, and osmolarity, as well as sterility and stability, which in turn requires optimal pharmaceutics. Although applied locally, ocular medications may be absorbed systemically, which results in morbidity and mortality (eg, systemic hypotension, bronchospasm, and bradycardia). PMID:26360129

  11. Cholinergic Coercion of Synaptic States for Motivational Memories.

    PubMed

    Rossi, Mark A; Stuber, Garret D

    2016-06-01

    Acetylcholine is critical for learning, yet the relationship between cholinergic signaling, plasticity, and behavior remains elusive. In this issue of Neuron, Lee et al. (2016) and Jiang et al. (2016) investigate how cholinergic signaling in the amygdala and nucleus accumbens influences synaptic plasticity and learning. PMID:27253445

  12. Optogenetic cholinergic modulation of the mouse superior colliculus in vivo

    PubMed Central

    Thompson, John A.; Felsen, Gidon

    2015-01-01

    The superior colliculus (SC) plays a critical role in orienting movements, in part by integrating modulatory influences on the sensorimotor transformations it performs. Many species exhibit a robust brain stem cholinergic projection to the intermediate and deep layers of the SC arising mainly from the pedunculopontine tegmental nucleus (PPTg), which may serve to modulate SC function. However, the physiological effects of this input have not been examined in vivo, preventing an understanding of its functional role. Given the data from slice experiments, cholinergic input may have a net excitatory effect on the SC. Alternatively, the input could have mixed effects, via activation of inhibitory neurons within or upstream of the SC. Distinguishing between these possibilities requires in vivo experiments in which endogenous cholinergic input is directly manipulated. Here we used anatomical and optogenetic techniques to identify and selectively activate brain stem cholinergic terminals entering the intermediate and deep layers of the awake mouse SC and recorded SC neuronal responses. We first quantified the pattern of the cholinergic input to the mouse SC, finding that it was predominantly localized to the intermediate and deep layers. We then found that optogenetic stimulation of cholinergic terminals in the SC significantly increased the activity of a subpopulation of SC neurons. Interestingly, cholinergic input had a broad range of effects on the magnitude and timing of SC responses, perhaps reflecting both monosynaptic and polysynaptic innervation. These findings begin to elucidate the functional role of this cholinergic projection in modulating the processing underlying sensorimotor transformations in the SC. PMID:26019317

  13. Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons

    PubMed Central

    Estandian, Daniel; Xu, Min; Kwan, Alex C.; Lee, Seung-Hee; Harrison, Thomas C.; Feng, Guoping; Dan, Yang

    2014-01-01

    The basal forebrain provides the primary source of cholinergic input to the cortex, and it plays a crucial role in promoting wakefulness and arousal. However, whether rapid changes in basal forebrain neuron spiking in awake animals can dynamically influence sensory perception is unclear. Here we show that basal forebrain cholinergic neurons rapidly regulate cortical activity and visual perception in awake, behaving mice. Optogenetic activation of the cholinergic neurons or their V1 axon terminals improved performance of a visual discrimination task on a trial-by-trial basis. In V1, basal forebrain activation enhanced visual responses and desynchronized neuronal spiking, which could partly account for the behavioral improvement. Conversely, optogenetic basal forebrain inactivation decreased behavioral performance, synchronized cortical activity and impaired visual responses, indicating the importance of cholinergic activity in normal visual processing. These results underscore the causal role of basal forebrain cholinergic neurons in fast, bidirectional modulation of cortical processing and sensory perception. PMID:24162654

  14. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission.

    PubMed

    Ovsepian, Saak V; O'Leary, Valerie B; Zaborszky, Laszlo

    2016-06-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  15. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission

    PubMed Central

    Ovsepian, Saak V.; O'Leary, Valerie B.; Zaborszky, Laszlo

    2015-01-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  16. Social networks of educated nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound...

  17. Using good nematodes to kill bad nematodes: Applications of entomopathogenic nematodes for control of the pecan root-knot nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meloidogyne partityla is a nematode parasite of pecan and walnut. Our objective was to determine interactions between the entomopathogenic nematode-bacterium complex and M. partityla. Specifically, we investigated suppressive effects of Steinernema feltiae and S. riobrave applied as infective juve...

  18. Estrogen-Cholinergic Interactions: Implications for Cognitive Aging

    PubMed Central

    Newhouse, Paul; Dumas, Julie

    2015-01-01

    While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  19. Estrogen-cholinergic interactions: Implications for cognitive aging.

    PubMed

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. PMID:26187712

  20. Megakaryocytopoiesis in culture: modulation by cholinergic mechanisms.

    PubMed

    Burstein, S A; Adamson, J W; Harker, L A

    1980-05-01

    Treatment of murine bone marrow cultures with the cholinergic agonist carbamylcholine enhanced megakaryocytic colony growth by as much as 65%. In contrast, adrenergic agonists had no such effect. Addition to cultures of dibutyryl cyclic GMP (db-cGMP) also enhanced megakaryocytic colonies up to 50%, whereas dibutyryl cyclic AMP (db-cAMP) had no effect. Sodium nitroprusside and sodium nitrite, putative guanyl cyclase activators, also enhanced colony numbers, as did imidazole, a postulated cGMP phosphodiesterase inhibitor. Preincubation of marrow for two hours with carbamylcholine resulted both an increase in colony numbers (58%) and percent of progenitors in DNA synthesis (48%, compared to 14% for controls) as determined by tritiated thymidine suicide studies. Treatment of mice with the acetylcholinesterase inhibitor neostigmine resulted in an increase in CFU-M/humerus (62%) and percent in DNA synthesis (45%). These data indicate that 1) cholinergic, but not adrenergic, agonists modulate megakaryocytopoiesis in culture; 2) this effect may be mediated by cyclic GMP; and 3) only a brief period of exposure of marrow cells to agonist results in enhancement of megakaryocytic colonies. PMID:6108328

  1. Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes.

    PubMed

    Holden-Dye, Lindy; Joyner, Michelle; O'Connor, Vincent; Walker, Robert J

    2013-12-01

    Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes. PMID:23500392

  2. Interactions of microfungi and plant parasitic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant parasitic nematodes and microfungi inhabit many of the same ecological habitats and interact in almost every conceivable way. Nematodes can feed on fungi, and conversely fungi can use nematodes as a food source. Fungi have been widely studied as biological controls of plant parasitic nematod...

  3. Nematodes, bacteria, and flies: a tripartite model for nematode parasitism.

    PubMed

    Hallem, Elissa A; Rengarajan, Michelle; Ciche, Todd A; Sternberg, Paul W

    2007-05-15

    More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes. PMID:17475494

  4. Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum.

    PubMed

    Ponterio, G; Tassone, A; Sciamanna, G; Riahi, E; Vanni, V; Bonsi, P; Pisani, A

    2013-12-01

    Cholinergic interneurons (ChIs) of dorsal striatum play a key role in motor control and in behavioural learning. Neuropeptides regulate cholinergic transmission and mu opioid receptor (MOR) activation modulates striatal acetylcholine release. However, the mechanisms underlying this effect are yet uncharacterized. Here, we examined the electrophysiological responses of ChIs to the selective MOR agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol)5] enkephalin}. We observed a robust, dose-dependent inhibition of spontaneous firing activity (0.06-3 μM) which was reversible upon drug washout and blocked by the selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) (1 μM). Voltage-clamp analysis of the reversal potential of the DAMGO effect did not provide univocal results, indicating the involvement of multiple membrane conductances. The MOR-dependent effect persisted in the presence of GABAA and ionotropic glutamate receptor antagonists, ruling out an indirect effect. Additionally, it depended upon G-protein activation, as it was prevented by intrapipette GDP-β-S. Because D2 dopamine receptors (D2R) and MOR share a common post-receptor signalling pathway, occlusion experiments were performed with maximal doses of both D2R and MOR agonists. The D2R agonist quinpirole decreased spike discharge, which was further reduced by adding DAMGO. Then, D2R or MOR antagonists were used to challenge the response to the respective agonists, DAMGO or quinpirole. No cross-effect was observed, suggesting that the two receptors act independently. Our findings demonstrate a postsynaptic inhibitory modulation by MOR on ChIs excitability. Such opioidergic regulation of cholinergic transmission might contribute to shape information processing in basal ganglia circuits, and represent a potential target for pharmacological intervention. PMID:23891638

  5. The cholinergic system in the olfactory center of the terrestrial slug Limax.

    PubMed

    Matsuo, Ryota; Kobayashi, Suguru; Wakiya, Kyoko; Yamagishi, Miki; Fukuoka, Masayuki; Ito, Etsuro

    2014-09-01

    Acetylcholine plays various important roles in the central nervous system of invertebrates as well as vertebrates. In the olfactory center of the terrestrial slug Limax, the local field potential (LFP) oscillates, and the change in its oscillatory frequency is thought to correlate with the detection of odor that potentially changes an ongoing behavior of the animal. Acetylcholine is known to upregulate the frequency of the LFP oscillation, and is one of the candidates for the neurotransmitters that are involved in such higher cognitive functions. However, there have been no histological data on the cholinergic system in gastropods, nor are there data on the receptors that are responsible for the upregulation of the oscillatory frequency of LFP due to the lack of analytical tools (such as antibodies or cDNA sequence information on cholinergic system-related genes). Here we cloned the cDNAs of choline acetyltransferase (ChAT), acetylcholinesterase, vesicular acetylcholine transporter, and several nicotinic acetylcholine receptors (nAChRs), and investigated their localization in the brain of Limax. We also generated a polyclonal antibody against ChAT to examine its localization, and investigated pharmacologically the involvement of nAChRs in the LFP oscillation. Our data showed: 1) dense distribution of the neurons expressing mRNAs of ChAT and vesicular acetylcholine transporter in the olfactory center; 2) spatially unique expression patterns of different nAChRs in the olfactory center; 3) involvement of nAChRs in the upregulation of the oscillation; 4) localization of ChAT protein in nerve fibers and/or terminals; and 5) the presence of cholinergic nerves in the tentacles. PMID:24523205

  6. Characterization of a novel mechanism accounting for the adverse cholinergic effects of the anticancer drug irinotecan

    PubMed Central

    Blandizzi, Corrado; De Paolis, Barbara; Colucci, Rocchina; Lazzeri, Gloria; Baschiera, Fabio; Del Tacca, Mario

    2001-01-01

    This study investigates the mechanisms accounting for the adverse cholinergic effects of the antitumour drug irinotecan. The activity of irinotecan and its active metabolite, 7-ethyl-10-hydroxy-camptothecin (SN-38), was assayed in models suitable for pharmacological studies on cholinergic system. Irinotecan moderately inhibited human or electric eel acetylcholinesterase activity, SN-38 had no effect, whereas physostigmine blocked both the enzymes with high potency and efficacy. Irinotecan and SN-38 did not affect spontaneous or electrically-induced contractile activity of human colonic muscle. Acetylcholine and dimethylphenylpiperazinium (DMPP) caused phasic contractions or relaxations, respectively. Physostigmine enhanced the motor responses elicited by electrical stimulation. Although irinotecan and SN-38 did not modify the basal contractile activity of guinea-pig ileum longitudinal muscle strips, irinotecan 100 μM moderately enhanced cholinergic twitch contractions. Acetylcholine or DMPP caused phasic contractions, whereas physostigmine enhanced the twitch responses. Electrically-induced [3H]-acetylcholine release was reduced by irinotecan (100 μM) or physostigmine (0.1 μM). Intravenous irinotecan stimulated gastric acid secretion in rats, but no effects were obtained with SN-38, physostigmine or i.c.v. irinotecan. Hypersecretion induced by irinotecan was partly prevented by ondansetron, and unaffected by capsazepine. In the presence of atropine, vagotomy and systemic or vagal ablation of capsaicin-sensitive afferent fibres, irinotecan did not stimulate gastric secretion. The present results indicate that irinotecan and SN-38 do not act as specific acetylcholinesterase blockers or acetylcholine receptor agonists. It is rather suggested that irinotecan promotes a parasympathetic discharge to peripheral organs, mediated by capsaicin-sensitive vagal afferent fibres, and that serotonin 5-HT3 receptors are implicated in the genesis of vago-vagal reflex

  7. Beyond the cholinergic hypothesis: do current drugs work in Alzheimer's disease?

    PubMed

    Martorana, Alessandro; Esposito, Zaira; Koch, Giacomo

    2010-08-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory and cognitive loss, and represents the leading cause of dementia in elderly people. Besides the complex biochemical processes involved in the neuronal degeneration (formation of senile plaques containing Abeta peptides, and development of neurofibrillary tangles), other molecular and neurochemical alterations, like cholinergic deficit due to basal forebrain degeneration, also occur. Because acetylcholine has been demonstrated to be involved in cognitive processes, the idea to increase acetylcholine levels to restore cognitive deficits has gained interest (the so-called cholinergic hypothesis). This has led to the development of drugs able to prevent acetylcholine hydrolysis (acetylcholinesterase inhibitors). However, the analysis of clinical efficacy of these drugs in alleviating symptoms of dementia showed unsatisfactory results. Despite such critical opinions on the efficacy of these drugs, it should be said that acetylcholinesterase inhibitors, and for some aspects memantine also, improve memory and other cognitive functions throughout most of the duration of the disease. The pharmacological activity of these drugs suggests an effect beyond the mere increase of acetylcholine levels. These considerations are in agreement with the idea that cognitive decline is the result of a complex and not fully elucidated interplay among different neurotransmitters. The role of each of the neurotransmitters implicated has to be related to a cognitive process and as a consequence to its decline. The current review aims to highlight the positive role of cholinergic drugs in alleviating cognitive deficits during wake as well as sleep. Moreover, we suggest that future therapeutic approaches have to be developed to restore the complex interplay between acetylcholine and other neurotransmitters systems, such as dopamine, serotonin, noradrenaline, or glutamate, that are likely involved in the progressive

  8. Eye Movements and Abducens Motoneuron Behavior During Cholinergically Induced REM Sleep

    PubMed Central

    Marquez-Ruiz, Javier; Escudero, Miguel

    2009-01-01

    Study objectives: The injection of cholinergic drugs in the pons has been largely used to induce REM sleep as a useful model to study different processes during this period. In the present study, microinjections of carbachol in the nucleus reticularis pontis oralis (NRPO) were performed to test the hypothesis that eye movements and the behavior of extraocular motoneurons during induced REM sleep do not differ from those during spontaneous REM sleep. Methods: Six female adult cats were prepared for chronic recording of eye movements (by means of the search-coil technique) and electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves at the lateral geniculate nucleus, and identified abducens motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPO. Results: Unilateral microinjections (n = 13) of carbachol in the NRPO induced REM sleep-like periods in which the eyes performed a convergence and downward rotation interrupted by phasic complex rapid eye movements associated to PGO waves. During induced-REM sleep abducens motoneurons lost their tonic activity and eye position codification, but continued codifying eye velocity during the burst of eye movements. Conclusion: The present results show that eye movements and the underlying behavior of abducens motoneurons are very similar to those present during natural REM sleep. Thus, microinjection of carbachol seems to activate the structures responsible for the exclusive oculomotor behavior observed during REM sleep, validating this pharmacological model and enabling a more efficient exploration of phasic and tonic phenomena underlying eye movements during REM sleep. Citation: Marquez-Ruiz J; Escudero M. Eye movements and abducens motoneuron behavior during cholinergically induced REM sleep. SLEEP 2009;32(4):471–481. PMID:19413141

  9. Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea.

    PubMed

    Roux, Isabelle; Wersinger, Eric; McIntosh, J Michael; Fuchs, Paul A; Glowatzki, Elisabeth

    2011-10-19

    In the developing mammalian cochlea, the sensory hair cells receive efferent innervation originating in the superior olivary complex. This input is mediated by α9/α10 nicotinic acetylcholine receptors (nAChRs) and is inhibitory due to the subsequent activation of calcium-dependent SK2 potassium channels. We examined the acquisition of this cholinergic efferent input using whole-cell voltage-clamp recordings from inner hair cells (IHCs) in acutely excised apical turns of the rat cochlea from embryonic day 21 to postnatal day 8 (P8). Responses to 1 mm acetylcholine (ACh) were detected from P0 on in almost every IHC. The ACh-activated current amplitude increased with age and demonstrated the same pharmacology as α9-containing nAChRs. Interestingly, at P0, the ACh response was not coupled to SK2 channels, so that the initial cholinergic response was excitatory and could trigger action potentials in IHCs. Coupling to SK current was detected earliest at P1 in a subset of IHCs and by P3 in every IHC studied. Clustered nAChRs and SK2 channels were found on IHCs from P1 on using Alexa Fluor 488 conjugated α-bungarotoxin and SK2 immunohistochemistry. The number of nAChRs clusters increased with age to 16 per IHC at P8. Cholinergic efferent synaptic currents first appeared in a subset of IHCs at P1 and by P3 in every IHC studied, contemporaneously with ACh-evoked SK currents, suggesting that SK2 channels may be necessary at onset of synaptic function. An analogous pattern of development was observed for the efferent synapses that form later (P6-P8) on outer hair cells in the basal cochlea. PMID:22016543

  10. Local cholinergic and non-cholinergic neural pathways to the rat supraoptic nucleus

    SciTech Connect

    Meeker, M.L.

    1986-01-01

    An estimated two thirds of the input to the supraoptic nucleus of the rat hypothalamus (SON) including a functionally significant cholinergic innervation, arise from local sources of unknown origin. The sources of these inputs were identified utilizing Golgi-Cox, retrograde tracing, choline acetyltransferase immunocytochemistry and anterograde tracing methodologies. Multipolar Golgi impregnated neurons located dorsal and lateral to the SON extend spiney processes into the nucleus. Injections of the retrograde tracers, wheat germ agglutinin or wheat germ agglutinin-horseradish peroxidase, into the SON labeled cells bilaterally in the arcuate nucleus, and ipsilaterally in the lateral hypothalamus, anterior hypothalamus, nucleus of the diagonal band, subfornical organ, medial preoptic area, lateral preoptic area and in the region dorsolateral to the nucleus. Immunocytochemistry for choline acetyltransferase revealed cells within the ventro-caudal portion of cholinergic cell group, Ch4, which cluster dorsolateral to the SON, and extend axon- and dendrite-like processes into the SON. Cells double-labeled by choline acetyltransferase immunocytochemistry and retrograde tracer injections into the SON are localized within the same cholinergic cell group dorsolateral to the SON. Injections of the anterograde tracer, Phaseolus vulgaris-leucoagglutinin, deposited dorsolateral to the SON results in labeled pre-and post-synaptic processes within the SON. The identification and characterization of endogenous immunoglobulin within the SON and other neurons innervating areas lacking a blood-brain barrier established a novel and potentially important system for direct communication of the supraoptic cells with blood-borne constitutents.

  11. Basic and modern concepts on cholinergic receptor: A review

    PubMed Central

    Tiwari, Prashant; Dwivedi, Shubhangi; Singh, Mukesh Pratap; Mishra, Rahul; Chandy, Anish

    2013-01-01

    Cholinergic system is an important system and a branch of the autonomic nervous system which plays an important role in memory, digestion, control of heart beat, blood pressure, movement and many other functions. This article serves as both structural and functional sources of information regarding cholinergic receptors and provides a detailed understanding of the determinants governing specificity of muscarinic and nicotinic receptor to researchers. The study helps to give overall information about the fundamentals of the cholinergic system, its receptors and ongoing research in this field.

  12. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain

    SciTech Connect

    Dewey, S.L.; Brodie, J.D.; Fowler, J.S.; MacGregor, R.R.; Schlyer, D.J.; King, P.T.; Alexoff, D.L.; Volkow, N.D.; Shiue, C.Y.; Wolf, A.P. )

    1990-01-01

    Interactions between the dopaminergic D2 receptor system and the muscarinic cholinergic system in the corpus striatum of adult female baboons (Papio anubis) were examined using positron emission tomography (PET) combined with (18F)N-methylspiroperidol (( 18F)NMSP) (to probe D2 receptor availability) and (N-11C-methyl)benztropine (to probe muscarinic cholinergic receptor availability). Pretreatment with benztropine, a long-lasting anticholinergic drug, bilaterally reduced the incorporation of radioactivity in the corpus striatum but did not alter that observed in the cerebellum or the rate of metabolism of (18F)NMSP in plasma. Pretreatment with unlabelled NMSP, a potent dopaminergic antagonist, reduced the incorporation of (N-11C-methyl)benztropine in all brain regions, with the greatest effect being in the corpus striatum greater than cortex greater than thalamus greater than cerebellum, but did not alter the rate of metabolism of the labelled benztropine in the plasma. These reductions in the incorporation of either (18F)NMSP or (N-11C-methyl)benztropine exceeded the normal variation in tracer incorporation in repeated studies in the same animal. This study demonstrates that PET can be used as a tool for investigating interactions between neurochemically different yet functionally linked neurotransmitters systems in vivo and provides insight into the consequences of multiple pharmacologic administration.

  13. ( sup 3 H)cytisine binding to nicotinic cholinergic receptors in brain

    SciTech Connect

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J. )

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic {sup 3}H-agonist ligands. Here we have examined the binding of ({sup 3}H)cytisine in rat brain homogenates. ({sup 3}H)Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for ({sup 3}H)cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that ({sup 3}H)cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of ({sup 3}H)cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of ({sup 3}H)cytisine should make it a very useful ligand for studying neuronal nicotinic receptors.

  14. [Negative symptoms in schizophrenia: new pharmacological approaches].

    PubMed

    Lodovighi, M-A; Palomba, A; Belzeaux, R; Adida, M; Azorin, J-M

    2015-12-01

    The management of negative symptoms appears to be a major challenge because of functional disability induced by these symptoms and their relative resistance to treatments currently on the market. The aim of this article is to review new approaches that may enable optimal management of these symptoms. First, we describe the methodological difficulties that hindered the development and evaluation of specific treatment, and objectives currently defined to enable the development of new pharmacological approaches. Then we present the monotherapy and adjuvant therapies that have been assessed, including first and second generation antipsychotics, psychostimulants, antidepressants, cholinergic and glutamatergic agents, the oxytocin, hormones and more invasive therapies such as transcranial magnetic stimulation (rTMS) and electroconvulsive therapy (ECT). Other molecules are under development and evaluation such alpha-7 nicotinic receptor agonists. PMID:26776392

  15. Bacteria can mobilize nematode-trapping fungi to kill nematodes

    PubMed Central

    Wang, Xin; Li, Guo-Hong; Zou, Cheng-Gang; Ji, Xing-Lai; Liu, Tong; Zhao, Pei-Ji; Liang, Lian-Ming; Xu, Jian-Ping; An, Zhi-Qiang; Zheng, Xi; Qin, Yue-Ke; Tian, Meng-Qing; Xu, You-Yao; Ma, Yi-Cheng; Yu, Ze-Fen; Huang, Xiao-Wei; Liu, Shu-Qun; Niu, Xue-Mei; Yang, Jin-Kui; Huang, Ying; Zhang, Ke-Qin

    2014-01-01

    In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode–predatory form; this predacious form is characterized by formation of specialized cellular structures or ‘traps’. The bacteria significantly promote the elimination of nematodes by A. oligospora. Disruption of genes involved in urea transport and metabolism in A. oligospora abolishes the urea-induced trap formation. Furthermore, the urea metabolite ammonia functions as a signal molecule in the fungus to initiate the lifestyle switch to form trap structures. Our findings highlight the importance of multiple predator–prey interactions in prey defense mechanisms. PMID:25514608

  16. Social Networks of Educated Nematodes

    PubMed Central

    Willett, Denis S.; Alborn, Hans T.; Duncan, Larry W.; Stelinski, Lukasz L.

    2015-01-01

    Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound specific manner, increasing preference for volatiles they previously were exposed to and decreasing attraction to other volatiles. In addition, persistence of volatile exposure influences this response. Longer exposure not only increases preference, but also results in longer retention of that preference. These entomopathogenic nematodes display interspecific social behavioral plasticity; experienced nematodes influence the behavior of different species. This interspecific social behavioral plasticity suggests a mechanism for rapid adaptation of belowground communities to dynamic environments. PMID:26404058

  17. Striatal cholinergic interneurons drive GABA release from dopamine terminals

    PubMed Central

    Nelson, Alexandra B.; Hammack, Nora; Yang, Cindy F.; Shah, Nirao M.; Seal, Rebecca P.; Kreitzer, Anatol C.

    2014-01-01

    Summary Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically-driven IPSCs were not affected by ablation of striatal fast-spiking interneurons, but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons. PMID:24613418

  18. The Geological Record of Parasitic Nematode Evolution.

    PubMed

    Poinar, George O

    2015-01-01

    This chapter discusses the evolutionary history of nematode parasites of invertebrates, vertebrates and plants based on fossil remains in amber, stone and coprolites dating from the Palaeozoic to the Holocene. The earliest parasitic nematode is a primitive plant parasite from the Devonian. Fossil invertebrate-parasitic nematodes first appeared in the Early Cretaceous, while the earliest fossil vertebrate-parasitic nematodes are from Upper Triassic coprolites. Specific examples of fossil nematode parasites over time are presented, along with views on the origin and evolution of nematodes and their hosts. PMID:26597065

  19. Intrinsic membrane plasticity via increased persistent sodium conductance of cholinergic neurons in the rat laterodorsal tegmental nucleus contributes to cocaine-induced addictive behavior.

    PubMed

    Kamii, Hironori; Kurosawa, Ryo; Taoka, Naofumi; Shinohara, Fumiya; Minami, Masabumi; Kaneda, Katsuyuki

    2015-05-01

    The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus implicated in reward processing and is one of the main sources of cholinergic afferents to the ventral tegmental area (VTA). Neuroplasticity in this structure may affect the excitability of VTA dopamine neurons and mesocorticolimbic circuitry. Here, we provide evidence that cocaine-induced intrinsic membrane plasticity in LDT cholinergic neurons is involved in addictive behaviors. After repeated experimenter-delivered cocaine exposure, ex vivo whole-cell recordings obtained from LDT cholinergic neurons revealed an induction of intrinsic membrane plasticity in regular- but not burst-type neurons, resulting in increased firing activity. Pharmacological examinations showed that increased riluzole-sensitive persistent sodium currents, but not changes in Ca(2+) -activated BK, SK or voltage-dependent A-type potassium conductance, mediated this plasticity. In addition, bilateral microinjection of riluzole into the LDT immediately before the test session in a cocaine-induced conditioned place preference (CPP) paradigm inhibited the expression of cocaine-induced CPP. These findings suggest that intrinsic membrane plasticity in LDT cholinergic neurons is causally involved in the development of cocaine-induced addictive behaviors. PMID:25712572

  20. Delirium Accompanied by Cholinergic Deficiency and Organ Failure in a 73-Year-Old Critically Ill Patient: Physostigmine as a Therapeutic Option

    PubMed Central

    Zujalovic, Benedikt; Barth, Eberhard

    2015-01-01

    Delirium is a common problem in ICU patients, resulting in prolonged ICU stay and increased mortality. A cholinergic deficiency in the central nervous system is supposed to be a relevant pathophysiologic process in delirium. Acetylcholine is a major transmitter of the parasympathetic nervous system influencing several organs (e.g., heart and kidneys) and the inflammatory response too. This perception might explain that delirium is not an individual symptom, but rather a part of a symptom complex with various disorders of the whole organism. The cholinergic deficiency could not be quantified up to now. Using the possibility of bedside determination of the acetylcholinesterase activity (AChE activity), we assumed to objectify the cholinergic homeostasis within minutes. As reported here, the postoperative delirium was accompanied by a massive hemodynamic and renal deterioration of unclear genesis. We identified the altered AChE activity as a plausible pathophysiological mechanism. The pharmacological intervention with the indirect parasympathomimetic physostigmine led to a quick and lasting improvement of the patient's cognitive, hemodynamic, and renal status. In summary, severe delirium is not always an attendant phenomenon of critical illness. It might be causal for multiple organ deterioration if it is based on cholinergic deficiency and has to be treated at his pathophysiological roots whenever possible. PMID:26550498

  1. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits.

    PubMed

    Paolone, Giovanna; Mallory, Caitlin S; Koshy Cherian, Ajeesh; Miller, Thomas R; Blakely, Randy D; Sarter, Martin

    2013-12-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/- mice. Additionally, CHT+/- mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/- mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/- cholinergic terminals. Further analyses of molecular and functional compensations in the CHT+/- model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders. PMID:23958450

  2. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits

    PubMed Central

    Cherian, Ajeesh Koshy; Miller, Thomas R.; Blakely, Randy D.; Sarter, Martin

    2013-01-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/− mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/− mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/− mice. Additionally, CHT+/− mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/− mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/− cholinergic terminals. Further analyses of molecular and functional compensations in the CHT +/− model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders. PMID:23958450

  3. Basic and applied research: Entomopathogenic nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema kill arthropods with the aid of their bacterial symbionts. These nematodes are potent microbial control agents that have been widely commercialized for control of economically important insect pests. Biocontrol efficacy relies...

  4. In Vivo Production of Entomopathogenic Nematodes.

    PubMed

    Shapiro-Ilan, David I; Morales-Ramos, Juan A; Rojas, M Guadalupe

    2016-01-01

    In nature, entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are obligate parasites of insects. The nematodes are used widely as biopesticides for suppression of insect pests. More than a dozen entomopathogenic nematode species have been commercialized for use in biological control. Most nematodes intended for commercial application are produced in artificial media via solid or liquid fermentation. However, for laboratory research and small greenhouse or field trials, in vivo production of entomopathogenic nematodes is the common method of propagation. Additionally, small companies continue to produce nematodes using in vivo methods for application in niche markets. Advances in mechanization and alternative production routes (e.g., production geared toward application of nematodes in infected host cadavers) can improve efficiency and economy of scale. The objective of this chapter is to describe basic and advanced procedures for in vivo production of entomopathogenic nematodes. PMID:27565497

  5. Striatal cholinergic interneuron regulation and circuit effects

    PubMed Central

    Lim, Sean Austin O.; Kang, Un Jung; McGehee, Daniel S.

    2014-01-01

    The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1–2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction. PMID:25374536

  6. Intrinsic Cholinergic Neurons in the Hippocampus: Fact or Artifact?

    PubMed Central

    Blusztajn, Jan Krzysztof; Rinnofner, Jasmine

    2016-01-01

    It is generally agreed that hippocampal acetylcholine (ACh) is synthesized and released exclusively from the terminals of the long-axon afferents whose cell bodies reside in the medial septum and diagonal band. The search for intrinsic cholinergic neurons in the hippocampus has a long history; however evidence for the existence of these neurons has been inconsistent, with most investigators failing to detect them using in situ hybridization or immunohistochemical staining of the cholinergic markers, choline acetyltransferase (ChAT) or vesicular acetylcholine transporter (VAChT). Advances in the use of bacterial artificial chromosome (BAC) transgenic mice expressing a reporter protein under the control of the genomic elements of the Chat gene (Chat-BAC mice) have facilitated studies of cholinergic neurons. Such mice show robust and faithful expression of the reporter proteins in all known cholinergic cell populations. The availability of the Chat-BAC mice re-ignited interest in hippocampal cholinergic interneurons, because a small number of such reporter-expressing cells is frequently observed in the hippocampus of these mice. However, to date, attempts to confirm that these neurons co-express the endogenous cholinergic marker ChAT, or release ACh, have been unsuccessful. Without such confirmatory evidence it is best to conclude that there are no cholinergic neurons in the hippocampus. Similar considerations apply to other BAC transgenic lines, whose utility as a discovery tool for cell populations heretofore not known to express the genes of interest encoded by the BACs, must be validated by methods that detect expression of the endogenous genes. PMID:27014052

  7. Using entomopathogenic nematodes for crop insect control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this paper is to provide an overview on using entomopathogenic nematodes for insect pest control. Entomopathogenic nematodes (genera Steinernema and Heterorhabditis), are be used as natural biopesticides. Unlike plant parasitic nematodes, which can be serious crop pests, entomopat...

  8. Phytochemistry and Pharmacology of Berberis Species

    PubMed Central

    Mokhber-Dezfuli, Najmeh; Saeidnia, Soodabeh; Gohari, Ahmad Reza; Kurepaz-Mahmoodabadi, Mahdieh

    2014-01-01

    The genus Berberis (Berberidaceae) includes about 500 species worldwide, some of which are widely cultivated in the north-eastern regions of Iran. This genus consists of spiny deciduous evergreen shrubs, characterized by yellow wood and flowers. The cultivation of seedless barberry in South Khorasan goes back to two hundred years ago. Medicinal properties for all parts of these plants have been reported, including: Antimicrobial, antiemetic, antipyretic, antioxidant, anti-inflammatory, anti-arrhythmic, sedative, anti-cholinergic, cholagogic, anti-leishmaniasis, and anti-malaria. The main compounds found in various species of Berberis, are berberine and berbamine. Phytochemical analysis of various species of this genus revealed the presence of alkaloids, tannins, phenolic compounds, sterols and triterpenes. Although there are some review articles on Berberis vulgaris (as the most applied species), there is no review on the phytochemical and pharmacological activities of other well-known species of the genus Berberis. For this reason, the present review mainly focused on the diverse secondary metabolites of various species of this genus and the considerable pharmacological and biological activities together with a concise story of the botany and cultivation. PMID:24600191

  9. Phytochemistry and pharmacology of berberis species.

    PubMed

    Mokhber-Dezfuli, Najmeh; Saeidnia, Soodabeh; Gohari, Ahmad Reza; Kurepaz-Mahmoodabadi, Mahdieh

    2014-01-01

    The genus Berberis (Berberidaceae) includes about 500 species worldwide, some of which are widely cultivated in the north-eastern regions of Iran. This genus consists of spiny deciduous evergreen shrubs, characterized by yellow wood and flowers. The cultivation of seedless barberry in South Khorasan goes back to two hundred years ago. Medicinal properties for all parts of these plants have been reported, including: Antimicrobial, antiemetic, antipyretic, antioxidant, anti-inflammatory, anti-arrhythmic, sedative, anti-cholinergic, cholagogic, anti-leishmaniasis, and anti-malaria. The main compounds found in various species of Berberis, are berberine and berbamine. Phytochemical analysis of various species of this genus revealed the presence of alkaloids, tannins, phenolic compounds, sterols and triterpenes. Although there are some review articles on Berberis vulgaris (as the most applied species), there is no review on the phytochemical and pharmacological activities of other well-known species of the genus Berberis. For this reason, the present review mainly focused on the diverse secondary metabolites of various species of this genus and the considerable pharmacological and biological activities together with a concise story of the botany and cultivation. PMID:24600191

  10. Cholinergic Functioning in Stimulant Addiction: Implications for Medications Development

    PubMed Central

    Sofuoglu, Mehmet; Mooney, Marc

    2009-01-01

    Acetylcholine (ACh), the first neurotransmitter discovered, participates in many CNS functions including sensory and motor processing, sleep, nociception, mood, stress response, attention, arousal, memory, motivation and reward. These diverse cholinergic effects are mediated by nicotinic (nAChR) and muscarinic (mAChR) type cholinergic receptors. The goal of this review is to synthesize a growing literature that supports the potential role of ACh as a treatment target for stimulant addiction. ACh interacts with the dopaminergic reward system in the ventral tegmental area (VTA), nucleus accumbens (NAc) and prefrontal cortex (PFC). In the VTA, both nAChR and mAChR stimulate the dopaminergic system. In the NAc, cholinergic interneurons integrate cortical and subcortical information related to reward. In the PFC, the cholinergic system contributes to the cognitive aspects of addiction. Preclinical studies support a facilitative role of nicotinic agonists in the development of stimulant addiction. Muscarinic agonists seem to have an inhibitory role depending on the subtype of mAChR. In human studies acetylcholine esterase (AChE) inhibitors, which increase synaptic ACh levels, have shown promise for the treatment of stimulant addiction. Further studies testing the efficacy of cholinergic medications for stimulant addiction are warranted. PMID:19845415

  11. Endogenous Cholinergic Neurotransmission Contributes to Behavioral Sensitization to Morphine

    PubMed Central

    Bajic, Dusica; Soiza-Reilly, Mariano; Spalding, Allegra L.; Berde, Charles B.; Commons, Kathryn G.

    2015-01-01

    Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg. PMID:25647082

  12. Astrocyte Intermediaries of Septal Cholinergic Modulation in the Hippocampus.

    PubMed

    Pabst, Milan; Braganza, Oliver; Dannenberg, Holger; Hu, Wen; Pothmann, Leonie; Rosen, Jurij; Mody, Istvan; van Loo, Karen; Deisseroth, Karl; Becker, Albert J; Schoch, Susanne; Beck, Heinz

    2016-05-18

    The neurotransmitter acetylcholine, derived from the medial septum/diagonal band of Broca complex, has been accorded an important role in hippocampal learning and memory processes. However, the precise mechanisms whereby acetylcholine released from septohippocampal cholinergic neurons acts to modulate hippocampal microcircuits remain unknown. Here, we show that acetylcholine release from cholinergic septohippocampal projections causes a long-lasting GABAergic inhibition of hippocampal dentate granule cells in vivo and in vitro. This inhibition is caused by cholinergic activation of hilar astrocytes, which provide glutamatergic excitation of hilar inhibitory interneurons. These results demonstrate that acetylcholine release can cause slow inhibition of principal neuronal activity via astrocyte intermediaries. PMID:27161528

  13. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees

    PubMed Central

    Palmer, Mary J.; Moffat, Christopher; Saranzewa, Nastja; Harvey, Jenni; Wright, Geraldine A.; Connolly, Christopher N.

    2013-01-01

    Pesticides that target cholinergic neurotransmission are highly effective, but their use has been implicated in insect pollinator population decline. Honeybees are exposed to two widely used classes of cholinergic pesticide: neonicotinoids (nicotinic receptor agonists) and organophosphate miticides (acetylcholinesterase inhibitors). Although sublethal levels of neonicotinoids are known to disrupt honeybee learning and behaviour, the neurophysiological basis of these effects has not been shown. Here, using recordings from mushroom body Kenyon cells in acutely isolated honeybee brain, we show that the neonicotinoids imidacloprid and clothianidin, and the organophosphate miticide coumaphos oxon, cause a depolarization-block of neuronal firing and inhibit nicotinic responses. These effects are observed at concentrations that are encountered by foraging honeybees and within the hive, and are additive with combined application. Our findings demonstrate a neuronal mechanism that may account for the cognitive impairments caused by neonicotinoids, and predict that exposure to multiple pesticides that target cholinergic signalling will cause enhanced toxicity to pollinators. PMID:23535655

  14. Cholinergic neurotransmission in human corpus cavernosum. II. Acetylcholine synthesis

    SciTech Connect

    Blanco, R.; De Tejada, S.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1988-03-01

    Physiological and histochemical evidence indicates that cholinergic nerves may participate in mediating penile erection. Acetylcholine synthesis and release was studied in isolated human corporal tissue. Human corpus cavernosum incubated with ({sup 3}H)choline accumulated ({sup 3}H)choline and synthesized ({sup 3}H)acethylcholine in an concentration-dependent manner. ({sup 3}H)Acetylcholine accumulation by the tissue was inhibited by hemicholinium-3, a specific antagonist of the high-affinity choline transport in cholinergic nerves. Transmural electrical field stimulation caused release of ({sup 3}H)acetylcholine which was significantly diminished by inhibiting neurotransmission with calcium-free physiological salt solution or tetrodotoxin. These observations provide biochemical and physiological evidence for the existence of cholinergic innervation in human corpus cavernosum.

  15. Hemicholinium mustard derivatives: preliminary assessment of cholinergic neurotoxicity.

    PubMed

    Tagari, P C; Maysinger, D; Cuello, A C

    1986-07-01

    We have attempted to design novel neurotoxins based on the use of hemicholinium derivatives. Three compounds were tested for their neurochemical effects on cholinergic, gabaergic and catecholaminergic markers in the hippocampus, striatum and cortex following intracerebroventricular administration. The effects were compared with those of the non-specific alkylating agent (nitrogen mustard) and the previously reported ethylcholine mustard aziridinium ion (AF 64A). The results indicate that only one of these derivatives (HcM-9) exhibits comparable neurotoxic effects on cholinergic markers with a similar pattern of specificity to that of AF 64A. In addition, HcM-9 showed less overall toxicity, this being reflected in a higher survival rate. The present results indicate that hemicholinium derivatives could be good substrates for further molecular modifications, thus a step towards the design of a more specific cholinergic neurotoxin. PMID:3748277

  16. Cholinergic modulation of food and drug satiety and withdrawal.

    PubMed

    Avena, Nicole M; Rada, Pedro V

    2012-06-01

    Although they comprise only a small portion of the neurons in the region, cholinergic interneurons in the dorsal striatum appear to play an important role in the regulation of various appetitive behaviors, in part, through their interactions with mesolimbic dopamine (DA) systems. In this review, we describe studies that suggest that the activity of cholinergic interneurons in the nucleus accumbens (NAc) and cholinergic projections to the ventral tegmental area (VTA) affect feeding behavior. In vivo microdialysis studies in rats have revealed that the cessation of a meal is associated with a rise in acetylcholine (ACh) levels in the NAc. ACh activation will suppress feeding, and this is also associated with an increase in synaptic accumulation of ACh. Further, we discuss how, in addition to their role in the ending of a meal, cholinergic interneurons in the NAc play an integral role in the cessation of drug use. Another cholinergic system involved in different aspects of appetitive behavior is the projection from the pedunculpontine nuclei directly to the VTA. Activation of this system enhances behaviors through activation of the mesolimbic DA system, and antagonism of ACh receptors in the VTA can reduce drug self-administration. Finally, we discuss the role of accumbens ACh in both drug and palatable food withdrawal. Studies reveal that accumbens ACh is increased during withdrawal from several different drugs of abuse (including cocaine, nicotine and morphine). This rise in extracellular levels of ACh, coupled with a decrease in extracellular levels of DA, is believed to contribute to an aversive state, which can manifest as behaviors associated with drug withdrawal. This theory has also been applied to studies of overeating and/or "food addiction," and the findings suggest a similar imbalance in DA/ACh levels, which is associated with behavioral indications of drug-like withdrawal. In summary, cholinergic neurons play an important role in the modulation of both

  17. Biochemical pathology and treatment strategies in Alzheimer's disease: emphasis on the cholinergic system.

    PubMed

    Winblad, B; Messamore, E; O'Neill, C; Cowburn, R

    1993-01-01

    The neurochemical pathology of Alzheimer's disease (AD) has been consistently shown to involve cholinergic degeneration in the cerebral cortex. This together with evidence from experimental animal studies showing that cholinergic neurones play a role in learning and memory processes has formed the basis of the cholinergic hypothesis of Alzheimer's dementia and the major rationale for neurotransmitter replacement therapy of the disorder. PMID:8128837

  18. Principles of Safety Pharmacology

    PubMed Central

    Pugsley, M K; Authier, S; Curtis, M J

    2008-01-01

    Safety Pharmacology is a rapidly developing discipline that uses the basic principles of pharmacology in a regulatory-driven process to generate data to inform risk/benefit assessment. The aim of Safety Pharmacology is to characterize the pharmacodynamic/pharmacokinetic (PK/PD) relationship of a drug's adverse effects using continuously evolving methodology. Unlike toxicology, Safety Pharmacology includes within its remit a regulatory requirement to predict the risk of rare lethal events. This gives Safety Pharmacology its unique character. The key issues for Safety Pharmacology are detection of an adverse effect liability, projection of the data into safety margin calculation and finally clinical safety monitoring. This article sets out to explain the drivers for Safety Pharmacology so that the wider pharmacology community is better placed to understand the discipline. It concludes with a summary of principles that may help inform future resolution of unmet needs (especially establishing model validation for accurate risk assessment). Subsequent articles in this issue of the journal address specific aspects of Safety Pharmacology to explore the issues of model choice, the burden of proof and to highlight areas of intensive activity (such as testing for drug-induced rare event liability, and the challenge of testing the safety of so-called biologics (antibodies, gene therapy and so on.). PMID:18604233

  19. Studies in neuroendocrine pharmacology

    NASA Technical Reports Server (NTRS)

    Maickel, R. P.

    1976-01-01

    The expertise and facilities available within the Medical Sciences Program section on Pharmacology were used along with informational input from various NASA sources to study areas relevant to the manned space effort. Topics discussed include effects of drugs on deprivation-induced fluid consumption, brain biogenic amines, biochemical responses to stressful stimuli, biochemical and behavioral pharmacology of amphetamines, biochemical and pharmacological studies of analogues to biologically active indole compounds, chemical pharmacology: drug metabolism and disposition, toxicology, and chemical methodology. Appendices include a bibliography, and papers submitted for publication or already published.

  20. Pine wood nematode, Bursaphelenchus xylophilus.

    PubMed

    Futai, Kazuyoshi

    2013-01-01

    After devastating vast areas of pine forests in Asian countries, the pine wilt disease spread into European forests in 1999 and is causing worldwide concern. This disease involves very complicated interactions between a pathogenic nematode, its vector beetle, host pine species, and fungi in dead hosts. Pathogenicity of the pine wood nematode is determined not only by its physical and chemical traits but also by its behavioral traits. Most life history traits of the pine wood nematode, such as its phoretic relationship with vector beetles, seem to be more effective in virulent than in avirulent isolates or species. As the pathogenicity determinants, secreted enzymes, and surface coat proteins are very important, they have therefore been studied intensively. The mechanism of quick death of a large pine tree as a result of infection by a tiny nematode could be ascribed to the dysfunction of the water-conducting system caused by the death of parenchyma cells, which must have originally evolved as an inherent resistant system. PMID:23663004

  1. ORAL NEMATODE INFECTION OF TARANTULAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oral nematode infection of Theraphosidae spiders, known as tarantulas, has been recently identified from several collections in the UK and mainland Europe. The disease has also been seen in captive and wild spiders from the Americas, Asia and Africa. Spider symptoms are described from anorexia until...

  2. Plant Nematodes Occurring in Arkansas

    PubMed Central

    Wehunt, E. J.; Golden, A. M.; Robbins, R. T.

    1989-01-01

    A total of 110 species of plant nematodes were found in various habitats in Arkansas. Thirty species from 19 genera are reported here for the first time. Included in the new reports are the known plant pathogens Criconemella onoense, Hirshmanniella oryzae, Longidorus elongatus, and Pratylenchus pratensis. PMID:19287671

  3. Animal Manure Harms Entomopathogenic Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure forms an alternative to synthetic fertilizer that provides the additional benefits of reducing nutrient leaching and soil erosion, and promoting greater soil biodiversity. Studies show that animal manures can suppress plant parasitic nematodes by increasing densities of antagonistic mi...

  4. Free-living nematode peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All nematodes employ a wide array of peptide messengers to control nearly all aspects of the life cycle, including hatching, locomotion, feeding, defense, mating, reproduction, and other behavioral and metabolic events. There are molecular and biological similarities, as well as significant differen...

  5. Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons.

    PubMed

    Sciamanna, Giuseppe; Napolitano, Francesco; Pelosi, Barbara; Bonsi, Paola; Vitucci, Daniela; Nuzzo, Tommaso; Punzo, Daniela; Ghiglieri, Veronica; Ponterio, Giulia; Pasqualetti, Massimo; Pisani, Antonio; Usiello, Alessandro

    2015-06-01

    Ras homolog enriched in striatum (Rhes) is highly expressed in striatal medium spiny neurons (MSNs) of rodents. In the present study, we characterized the expression of Rhes mRNA across species, as well as its functional role in other striatal neuron subtypes. Double in situ hybridization analysis showed that Rhes transcript is selectively localized in striatal cholinergic interneurons (ChIs), but not in GABAergic parvalbumin- or in neuropeptide Y-positive cell populations. Rhes is closely linked to dopamine-dependent signaling. Therefore, we recorded ChIs activity in basal condition and following dopamine receptor activation. Surprisingly, instead of an expected dopamine D2 receptor (D2R)-mediated inhibition, we observed an aberrant excitatory response in ChIs from Rhes knockout mice. Conversely, the effect of D1R agonist on ChIs was less robust in Rhes mutants than in controls. Although Rhes deletion in mutants occurs throughout the striatum, we demonstrate that the D2R response is altered specifically in ChIs, since it was recorded in pharmacological isolation, and prevented either by intrapipette BAPTA or by GDP-β-S. Moreover, we show that blockade of Cav2.2 calcium channels prevented the abnormal D2R response. Finally, we found that the abnormal D2R activation in ChIs was rescued by selective PI3K inhibition thus suggesting that Rhes functionally modulates PI3K/Akt signaling pathway in these neurons. Our findings reveal that, besides its expression in MSNs, Rhes is localized also in striatal ChIs and, most importantly, lack of this G-protein, significantly alters D2R modulation of striatal cholinergic excitability. PMID:25818655

  6. Anthelmintic resistance in equine nematodes

    PubMed Central

    Matthews, Jacqueline B.

    2014-01-01

    Anthelmintics have been applied indiscriminately to control horse nematodes for over 40 years. Three broad-spectrum anthelmintic classes are currently registered for nematode control in horses: benzimidazoles (fenbendazole, oxibendazole), tetrahydropyrimidines (pyrantel) and macrocyclic lactones (ivermectin, moxidectin). Generally, control strategies have focused on nematode egg suppression regimens that involve the frequent application of anthelmintics to all horses at intervals based on strongyle egg reappearance periods after treatment. The widespread use of such programmes has substantially reduced clinical disease, especially that associated with large strongyle species; however, high treatment frequency has led to considerable selection pressure for anthelmintic resistance, particularly in cyathostomin species. Field studies published over the last decade indicate that benzimidazole resistance is widespread globally in cyathostomins and there are also many reports of resistance to pyrantel in these worms. Cyathostomin resistance to macrocyclic lactone compounds is emerging, principally measured as a reduction in strongyle egg reappearance time observed after treatment. Ivermectin resistance is a further concern in the small intestinal nematode, Parascaris equorum, an important pathogen of foals. These issues indicate that horse nematodes must now be controlled using methods less dependent on anthelmintic use and more reliant on management practices designed to reduce the force of infection in the environment. Such strategies include improved grazing management integrated with targeted anthelmintic administration involving faecal egg count (FEC)-directed treatments. The latter require that the supporting diagnostic tests available are robust and practically applicable. Recent research has focused on maximising the value of FEC analysis in horses and on optimizing protocols for anthelmintic efficacy testing. Other studies have sought to develop diagnostics

  7. Anthelmintic resistance in equine nematodes.

    PubMed

    Matthews, Jacqueline B

    2014-12-01

    Anthelmintics have been applied indiscriminately to control horse nematodes for over 40 years. Three broad-spectrum anthelmintic classes are currently registered for nematode control in horses: benzimidazoles (fenbendazole, oxibendazole), tetrahydropyrimidines (pyrantel) and macrocyclic lactones (ivermectin, moxidectin). Generally, control strategies have focused on nematode egg suppression regimens that involve the frequent application of anthelmintics to all horses at intervals based on strongyle egg reappearance periods after treatment. The widespread use of such programmes has substantially reduced clinical disease, especially that associated with large strongyle species; however, high treatment frequency has led to considerable selection pressure for anthelmintic resistance, particularly in cyathostomin species. Field studies published over the last decade indicate that benzimidazole resistance is widespread globally in cyathostomins and there are also many reports of resistance to pyrantel in these worms. Cyathostomin resistance to macrocyclic lactone compounds is emerging, principally measured as a reduction in strongyle egg reappearance time observed after treatment. Ivermectin resistance is a further concern in the small intestinal nematode, Parascaris equorum, an important pathogen of foals. These issues indicate that horse nematodes must now be controlled using methods less dependent on anthelmintic use and more reliant on management practices designed to reduce the force of infection in the environment. Such strategies include improved grazing management integrated with targeted anthelmintic administration involving faecal egg count (FEC)-directed treatments. The latter require that the supporting diagnostic tests available are robust and practically applicable. Recent research has focused on maximising the value of FEC analysis in horses and on optimizing protocols for anthelmintic efficacy testing. Other studies have sought to develop diagnostics

  8. Curriculum Guidelines for Pharmacology.

    ERIC Educational Resources Information Center

    Shaw, David H.; And Others

    1990-01-01

    Pharmacology embraces the physical and chemical properties of drugs; the preparation of pharmaceutical agents; the absorption, fate, and excretion of drugs; and the effects of drugs on living systems. These guidelines represent a consensus on what would constitute a minimally acceptable pharmacology course for predoctoral dental students. (MLW)

  9. Pharmacology Information System Ready

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses the development and future of Prophet,'' a specialized information handling system for pharmacology research. It is designed to facilitate the acquisition and dissemination of knowledge about mechanisms of drug action, and it is hoped that it will aid in converting pharmacology research from an empirical to a predictive science. (JR)

  10. Pharmacology for the Psychotherapist.

    ERIC Educational Resources Information Center

    Goldenberg, Myron Michael

    This book covers those areas of pharmacology that are of importance and interest to the psychotherapist. The 1st chapter introduces the various types of drugs. The 2nd chapter presents an overview of pharmacology and its principles. The 3rd chapter reviews aspects of the human body of importance to understanding the workings of psychotropic drugs.…

  11. Nurse Practitioner Pharmacology Education.

    ERIC Educational Resources Information Center

    Waigandt, Alex; Chang, Jane

    A study compared the pharmacology training of nurse practitioner programs with medical and dental programs. Seventy-three schools in 14 states (40 nurse practitioner programs, 19 schools of medicine, and 14 schools of dentistry) were surveyed by mailed questionnaire about the number of hours devoted to the study of pharmacology. The major findings…

  12. Integrating pharmacology and clinical pharmacology in universities.

    PubMed

    Buckingham, Julia C

    2012-06-01

    Continuing development of safe and effective new medicines is critically important for global health, social prosperity and the economy. The drug discovery-development pipeline depends critically on close partnerships between scientists and clinicians and on educational programmes that ensure that the pharmacological workforce, in its broadest sense, is fit for purpose. Here I consider factors that have influenced the development of basic and clinical pharmacology in UK universities over the past 40 years and discuss ways in which basic pharmacologists, clinical pharmacologists and scientists from different disciplines can work together effectively, while retaining their professional identities and fostering developments in their disciplines. Specifically, I propose the establishment of Institutes of Drug Discovery and Development, whose activities could include development and implementation of a translational pharmacology research strategy, drawing on the collective expertise of the membership and the university as whole; provision of a forum for regular seminars and symposia to promote the discipline, encourage collaboration and develop a cohesive community; provision of a research advisory service, covering, for example, data management, applications for ethics permission, clinical trials design, statistics and regulatory affairs; liaison with potential funders and leadership of major funding bids, including funding for doctoral training; provision of advice on intellectual property protection and the commercialization of research; liaison with corporate partners to facilitate collaboration, knowledge transfer and effective translation; and leadership of undergraduate and postgraduate education in basic and clinical pharmacology and related sciences for medical and science students, including continuing professional development and transferable skills. PMID:22360628

  13. Integrating pharmacology and clinical pharmacology in universities

    PubMed Central

    Buckingham, Julia C

    2012-01-01

    Continuing development of safe and effective new medicines is critically important for global health, social prosperity and the economy. The drug discovery–development pipeline depends critically on close partnerships between scientists and clinicians and on educational programmes that ensure that the pharmacological workforce, in its broadest sense, is fit for purpose. Here I consider factors that have influenced the development of basic and clinical pharmacology in UK universities over the past 40 years and discuss ways in which basic pharmacologists, clinical pharmacologists and scientists from different disciplines can work together effectively, while retaining their professional identities and fostering developments in their disciplines. Specifically, I propose the establishment of Institutes of Drug Discovery and Development, whose activities could include development and implementation of a translational pharmacology research strategy, drawing on the collective expertise of the membership and the university as whole; provision of a forum for regular seminars and symposia to promote the discipline, encourage collaboration and develop a cohesive community; provision of a research advisory service, covering, for example, data management, applications for ethics permission, clinical trials design, statistics and regulatory affairs; liaison with potential funders and leadership of major funding bids, including funding for doctoral training; provision of advice on intellectual property protection and the commercialization of research; liaison with corporate partners to facilitate collaboration, knowledge transfer and effective translation; and leadership of undergraduate and postgraduate education in basic and clinical pharmacology and related sciences for medical and science students, including continuing professional development and transferable skills. PMID:22360628

  14. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    SciTech Connect

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. )

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  15. Cholinergic modulation of event-related oscillations (ERO).

    PubMed

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N; Havstad, James; Ehlers, Cindy L

    2014-04-22

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  16. Mitochondrial Transplantation Attenuates Airway Hyperresponsiveness by Inhibition of Cholinergic Hyperactivity

    PubMed Central

    Su, Yuan; Zhu, Liping; Yu, Xiangyuan; Cai, Lei; Lu, Yankai; Zhang, Jiwei; Li, Tongfei; Li, Jiansha; Xia, Jingyan; Xu, Feng; Hu, Qinghua

    2016-01-01

    Increased cholinergic activity has been highlighted in the pathogenesis of airway hyperresponsiveness, and alternations of mitochondrial structure and function appear to be involved in many lung diseases including airway hyperresponsiveness. It is crucial to clarify the cause-effect association between mitochondrial dysfunction and cholinergic hyperactivity in the pathogenesis of airway hyperresponsiveness. Male SD rats and cultured airway epithelial cells were exposed to cigarette smoke plus lipopolysaccharide administration; mitochondria isolated from airway epithelium were delivered into epithelial cells in vitro and in vivo. Both the cigarette smoke plus lipopolysaccharide-induced cholinergic hyperactivity in vitro and the airway hyperresponsiveness to acetylcholine in vivo were reversed by the transplantation of exogenous mitochondria. The rescue effects of exogenous mitochondria were imitated by the elimination of excessive reactive oxygen species or blockage of muscarinic M3 receptor, but inhibited by M receptor enhancer. Mitochondrial transplantation effectively attenuates cigarette smoke plus lipopolysaccharide-stimulated airway hyperresponsiveness through the inhibition of ROS-enhanced epithelial cholinergic hyperactivity. PMID:27279915

  17. IL-4 Induces Cholinergic Differentiation of Retinal Cells In Vitro.

    PubMed

    Granja, Marcelo Gomes; Braga, Luis Eduardo Gomes; Carpi-Santos, Raul; de Araujo-Martins, Leandro; Nunes-Tavares, Nilson; Calaza, Karin C; Dos Santos, Aline Araujo; Giestal-de-Araujo, Elizabeth

    2015-07-01

    Interleukin-4 (IL-4) is a pleiotropic cytokine that regulates several phenomena, among them survival and differentiation of neuronal and glial cells. The aim of this work was to investigate the effect of IL-4 on the cholinergic differentiation of neonatal rat retinal cells in vitro, evaluating its effect on the levels of cholinergic markers (CHT1-high-affinity choline transporter; VAChT-vesicular acetylcholine transporter, ChAT-choline acetyltransferase, AChE-acetylcholinesterase), muscarinic receptors, and on the signaling pathways involved. Lister Hooded rat pups were used in postnatal days 0-2 (P0-P2). Our results show that IL-4 treatment (50 U/mL) for 48 h increases the levels of the cholinergic transporters VAChT and CHT1, the acetylcholinesterase activity, and the number of ChAT-positive cells. It also induces changes in muscarinic receptor levels, leading to a small decrease in M1 levels and a significant increase in M3 and M5 levels after 48 h of treatment. We also showed that IL-4 effect on M3 receptors is dependent on type I IL-4 receptor and on an increase in NFκB phosphorylation. These results indicate that IL-4 stimulates cholinergic differentiation of retinal cells. PMID:25682112

  18. Basal ganglia cholinergic and dopaminergic function in progressive supranuclear palsy.

    PubMed

    Warren, Naomi M; Piggott, Margaret A; Greally, Elizabeth; Lake, Michelle; Lees, Andrew J; Burn, David J

    2007-08-15

    Progressive Supranuclear Palsy (PSP) is a progressive neurodegenerative disorder. In contrast to Parkinson's disease (PD) and dementia with Lewy bodies (DLB), replacement therapy with dopaminergic and cholinergic agents in PSP has been disappointing. The neurochemical basis for this is unclear. Our objective was to measure dopaminergic and cholinergic receptors in the basal ganglia of PSP and control brains. We measured, autoradiographically, dopaminergic (dopamine transporter, 125I PE2I and dopamine D2 receptors, 125I epidepride) and cholinergic (nicotinic alpha4beta2 receptors, 125I 5IA85380 and muscarinic M1 receptors, 3H pirenzepine) parameters in the striatum and pallidum of pathologically confirmed PSP cases (n=15) and controls (n=32). In PSP, there was a marked loss of dopamine transporter and nicotinic alpha4beta2 binding in the striatum and pallidum, consistent with loss of nigrostriatal neurones. Striatal D2 receptors were increased in the caudate and muscarinic M1 receptors were unchanged compared with controls. These results do not account for the poor response to dopaminergic and cholinergic replacement therapies in PSP, and suggest relative preservation of postsynaptic striatal projection neurones bearing D2/M1 receptors. PMID:17534953

  19. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  20. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited

    PubMed Central

    van Enkhuizen, Jordy; Janowsky, David S; Olivier, Berend; Minassian, Arpi; Perry, William; Young, Jared W; Geyer, Mark A

    2014-01-01

    Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research. PMID:25107282

  1. Cholinergic modulation of event-related oscillations (ERO)

    PubMed Central

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N.; Havstad, James; Ehlers, Cindy L.

    2014-01-01

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time–frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx–Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC–Amyg and Fctx–DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  2. Nematode.net: a tool for navigating sequences from parasitic and free-living nematodes

    PubMed Central

    Wylie, Todd; Martin, John C.; Dante, Michael; Mitreva, Makedonka Dautova; Clifton, Sandra W.; Chinwalla, Asif; Waterston, Robert H.; Wilson, Richard K.; McCarter, James P.

    2004-01-01

    Nematode.net (www.nematode.net) is a web- accessible resource for investigating gene sequences from nematode genomes. The database is an outgrowth of the parasitic nematode EST project at Washington University’s Genome Sequencing Center (GSC), St Louis. A sister project at the University of Edinburgh and the Sanger Institute is also underway. More than 295 000 ESTs have been generated from >30 nematodes other than Caenorhabditis elegans including key parasites of humans, animals and plants. Nematode.net currently provides NemaGene EST cluster consensus sequence, enhanced online BLAST search tools, functional classifications of cluster sequences and comprehensive information concerning the ongoing generation of nematode genome data. The long-term goal of nematode.net is to provide the scientific community with the highest quality sequence information and tools for studying these diverse species. PMID:14681448

  3. Cholinergic and perfusion brain networks in Parkinson disease dementia

    PubMed Central

    McKeith, Ian G.; Burn, David J.; Wyper, David J.; O'Brien, John T.; Taylor, John-Paul

    2016-01-01

    Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). Results: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor–naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition. PMID:27306636

  4. Pharmacology of FMRFamide-related peptides in helminths.

    PubMed

    Geary, T G; Marks, N J; Maule, A G; Bowman, J W; Alexander-Bowman, S J; Day, T A; Larsen, M J; Kubiak, T M; Davis, J P; Thompson, D P

    1999-01-01

    Nervous systems of helminths are highly peptidergic. Species in the phylum Nematoda (roundworms) possess at least 50 FMRFamide-related peptides (FaRPs), with more yet to be identified. To date, few non-FaRP neuropeptides have been identified in these organisms, though evidence suggests that other families are present. FaRPergic systems have important functions in nematode neuromuscular control. In contrast, species in the phylum Platyhelminthes (flatworms) apparently utilize fewer FaRPs than do nematodes; those species examined possess one or two FaRPs. Other neuropeptides, such as neuropeptide F (NPF), play key roles in flatworm physiology. Although progress has been made in the characterization of FaRP pharmacology in helminths, much remains to be learned. Most studies on nematodes have been done with Ascaris suum because of its large size. However, thanks to the Caenorhabditis elegans genome project, we know most about the FaRP complement of this free-living animal. That essentially all C. elegans FaRPs are active on at least one A. suum neuromuscular system argues for conservation of ligand-receptor recognition features among the Nematoda. Structure-activity studies on nematode FaRPs have revealed that structure-activity relationship (SAR) "rules" differ considerably among the FaRPs. Second messenger studies, along with experiments on ionic dependence and anatomical requirements for activity, reveal that FaRPs act through many different mechanisms. Platyhelminth FaRPs are myoexcitatory, and no evidence exists of multiple FaRP receptors in flatworms. Interestingly, there are examples of cross-phylum activity, with some nematode FaRPs being active on flatworm muscle. The extent to which other invertebrate FaRPs show cross-phylum activity remains to be determined. How FaRPergic nerves contribute to the control of behavior in helminths, and are integrated with non-neuropeptidergic systems, also remains to be elucidated. PMID:10676450

  5. Nematode communities in contaminated river sediments.

    PubMed

    Heininger, Peter; Höss, Sebastian; Claus, Evelyn; Pelzer, Jürgen; Traunspurger, Walter

    2007-03-01

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. PMID:16905227

  6. Choline on the Move: Perspectives on the Molecular Physiology and Pharmacology of the Presynaptic Choline Transporter.

    PubMed

    Ennis, E A; Blakely, R D

    2016-01-01

    Genetic, biochemical, physiological, and pharmacological approaches have advanced our understanding of cholinergic biology for over 100 years. High-affinity choline uptake (HACU) was one of the last features of cholinergic signaling to be defined at a molecular level, achieved through the cloning of the choline transporter (CHT, SLC5A7). In retrospect, the molecular era of CHT studies initiated with the identification of hemicholinium-3 (HC-3), a potent, competitive CHT antagonist, though it would take another 30 years before HC-3, in radiolabeled form, was used by Joseph Coyle's laboratory to identify and monitor the dynamics of CHT proteins. Though HC-3 studies provided important insights into CHT distribution and regulation, another 15 years would pass before the structure of CHT genes and proteins were identified, a full decade after the cloning of most other neurotransmitter-associated transporters. The availability of CHT gene and protein probes propelled the development of cell and animal models as well as efforts to gain insights into how human CHT gene variation affects the risk for brain and neuromuscular disorders. Most recently, our group has pursued a broadening of CHT pharmacology, elucidating novel chemical structures that may serve to advance cholinergic diagnostics and medication development. Here we provide a short review of the transformation that has occurred in HACU research and how such advances may promote the development of novel therapeutics. PMID:27288078

  7. Clinical pharmacology of bimatoprost.

    PubMed

    Cantor, Louis B

    2005-06-01

    Bimatoprost (Lumigan), Allergan) is a highly efficacious ocular hypotensive agent that provides good diurnal control of intraocular pressure in glaucoma and ocular hypertensive patients. Bimatoprost is a synthetic molecule that is structurally and pharmacologically similar to prostamide F(2), and appears to mimic the activity of the prostamides. Consistent with prostamide-mimetic activity, bimatoprost has potent inherent pharmacological activity in prostamide-sensitive preparations and essentially remains intact in the living primate eye. This is sufficient to explain its potent and efficacious ocular hypotensive activity, and suggests that bimatoprost is a pharmacologically unique compound. PMID:16922657

  8. Involvement of dopaminergic and cholinergic pathways in the induction of yawning and genital grooming by the aqueous extract of Saccharum officinarum L. (sugarcane) in rats.

    PubMed

    Gamberini, Maria T; Gamberini, Maria C; Nasello, Antonia G

    2015-01-01

    Yawning, associated with genital grooming, is a physiological response that may be used for elucidating the mechanism of action of drugs. Preliminary analysis showed that aqueous extract (AE) of Saccharum induced yawns in rats. So, we aimed to quantify these behavioral responses and investigate the pharmacological mechanisms involved in these actions. During 120 min, after AE administration, the yawns and the genital grooming were quantified at 10 min intervals. Since dopaminergic and cholinergic pathways are implied in these responses, AE were evaluated in the presence of haloperidol 0.5 mg/kg and atropine 2 mg/kg. AE 0.5 g/kg increased the yawns, effect that was blocked both by haloperidol and atropine. Genital grooming could only be stimulated by AE 0.5 g/kg when dopaminergic receptors were blocked by haloperidol. However, it was inhibited when atropine was previously administered. So, we demonstrated a central action of Saccharum and it was postulated that neural circuits with the participation of dopaminergic and cholinergic pathways are involved. The fact that AE is comprised of innumerous compounds could justify the extract's distinct responses. Also, we cannot disregard the presence of different neural circuits that count on the participation of dopaminergic and cholinergic pathways and could be activated by the same induction agent. PMID:25459296

  9. Management of the Citrus Nematode, Tylenchulus semipenetrans.

    PubMed

    Verdejo-Lucas, S; McKenry, M V

    2004-12-01

    Of the many nematode species that parasitize citrus, Tylenchulus semipenetrans is the most important on a worldwide basis. Management of the citrus nematode remains problematic as no one tactic gives adequate control of the nematode. An overall management strategy must include such components as site selection, use of non-infected nursery stock, use of at lease one post-plant nematode control tactic, and careful management of other elements of the environment that may stress the trees. Nematicides continue to play a key role in management of this pest. Optimum results require careful attention to application techniques. PMID:19262822

  10. Management of the Citrus Nematode, Tylenchulus semipenetrans

    PubMed Central

    Verdejo-Lucas, S.; McKenry, M. V.

    2004-01-01

    Of the many nematode species that parasitize citrus, Tylenchulus semipenetrans is the most important on a worldwide basis. Management of the citrus nematode remains problematic as no one tactic gives adequate control of the nematode. An overall management strategy must include such components as site selection, use of non-infected nursery stock, use of at lease one post-plant nematode control tactic, and careful management of other elements of the environment that may stress the trees. Nematicides continue to play a key role in management of this pest. Optimum results require careful attention to application techniques. PMID:19262822

  11. Nicotinic cholinergic receptors in rat brain. Annual report No. 3, 1 May 85-30 Apr 86

    SciTech Connect

    Kellar, K.J.

    1986-05-01

    We have compared the characteristics of the recognition sites for 3(H)acetylcholine and 3H(-)nicotine in rat brain and found that the pharmacology, distribution, disulfide bond requirement, and regulation by chronic administration of nicotine and soman are identical. From these studies we conclude that 3Hacetylcholine and 3H(-)nicotine recognize the same recognition site which has the characteristics expected of a nicotinic cholinergic receptor. We have also determined that 3Hacetylcholine of high specific radioactivity (80 Ci/mmol) is an excellent ligand with which to study muscarinic receptors that have high affinity for agonists. These receptors may represent a subtype of muscarinic receptors found in brain, heart, glands, an some smooth muscle. (JS)

  12. Age-associated leukoaraiosis and cortical cholinergic deafferentation

    PubMed Central

    Bohnen, N I.; Müller, M L.T.M.; Kuwabara, H; Constantine, G M.; Studenski, S A.

    2009-01-01

    Objective: To investigate the relationship between age-associated MRI leukoaraiosis or white matter hyperintensities (WMH) and cortical acetylcholinesterase (AChE) activity. Background: One possible mechanism of cognitive decline in elderly individuals with leukoaraiosis is disruption of cholinergic fibers by strategically located white matter lesions. Periventricular lesions may have a higher chance of disrupting cholinergic projections compared with more superficial nonperiventricular white matter lesions because of anatomic proximity to the major cholinergic axonal projection bundles that originate from the basal forebrain. Methods: Community-dwelling, middle-aged and elderly subjects without dementia (mean age 71.0 ± 9.2 years; 55–84 years; n = 18) underwent brain MRI and AChE PET imaging. The severity of periventricular and nonperiventricular WMH on fluid-attenuated inversion recovery MRI images was scored using the semiquantitative rating scale of Scheltens et al. [11C]methyl-4-piperidinyl propionate AChE PET imaging was used to assess cortical AChE activity. Age-corrected Spearman partial rank correlation coefficients were calculated. Results: The severity of periventricular (R = −0.52, p = 0.04) but not nonperiventricular (R = −0.20, not significant) WMH was inversely related to global cortical AChE activity. Regional cortical cholinergic effects of periventricular WMH were most significant for the occipital lobe (R = −0.58, p = 0.02). Conclusions: The presence of periventricular but not nonperiventricular white matter hyperintensities (WMH) is significantly associated with lower cortical cholinergic activity. These findings support a regionally specific disruption of cholinergic projection fibers by WMH. GLOSSARY AChE = acetylcholinesterase; AD = Alzheimer disease; CADASIL = cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CPT-RT = Conners continuous performance test reaction time; CPT-SE = Conners

  13. Cholinergic modulation of food and drug satiety and withdrawal

    PubMed Central

    Avena, Nicole M.; Rada, Pedro V.

    2015-01-01

    Although they comprise only a small portion of the neurons in the region, cholinergic interneurons in the dorsal striatum appear to play an important role in the regulation of various appetitive behaviors, in part, through their interactions with mesolimbic dopamine (DA) systems. In this review, we describe studies that suggest that the activity of cholinergic interneurons in the nucleus accumbens (NAc) and cholinergic projections to the ventral tegmental area (VTA) affect feeding behavior. In vivo microdialysis studies in rats have revealed that the cessation of a meal is associated with a rise in acetylcholine (ACh) levels in the NAc. ACh activation will suppress feeding, and this is also associated with an increase in synaptic accumulation of ACh. Further, we discuss how, in addition to their role in the ending of a meal, cholinergic interneurons in the NAc play an integral role in the cessation of drug use. Another cholinergic system involved in different aspects of appetitive behavior is the projection from the pedunculpontine nuclei directly to the VTA. Activation of this system enhances behaviors through activation of the mesolimbic DA system, and antagonism of ACh receptors in the VTA can reduce drug self-administration. Finally, we discuss the role of accumbens ACh in both drug and palatable food withdrawal. Studies reveal that accumbens ACh is increased during withdrawal from several different drugs of abuse (including cocaine, nicotine and morphine). This rise in extracellular levels of ACh, coupled with a decrease in extracellular levels of DA, is believed to contribute to an aversive state, which can manifest as behaviors associated with drug withdrawal. This theory has also been applied to studies of overeating and/or “food addiction,” and the findings suggest a similar imbalance in DA/ACh levels, which is associated with behavioral indications of drug-like withdrawal. In summary, cholinergic neurons play an important role in the modulation of

  14. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.

    PubMed

    Jordan, Larry M; McVagh, J R; Noga, B R; Cabaj, A M; Majczyński, H; Sławińska, Urszula; Provencher, J; Leblond, H; Rossignol, Serge

    2014-01-01

    Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a "hyper-cholinergic" state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments

  15. Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects.

    PubMed Central

    Dewey, S L; Smith, G S; Logan, J; Brodie, J D; Simkowitz, P; MacGregor, R R; Fowler, J S; Volkow, N D; Wolf, A P

    1993-01-01

    Previously we demonstrated that positron emission tomography (PET) can be used to measure changes in the concentrations of synaptic dopamine and acetylcholine. Whether induced directly or indirectly through interactions with other neurotransmitters, these studies support the use of PET for investigating the functional responsiveness of a specific neurotransmitter to a pharmacologic challenge. In an extension of these findings to the human brain, PET studies designed to measure the responsiveness of striatal dopamine release to central cholinergic blockade were conducted in normal male volunteers using high-resolution PET and [11C]raclopride, a D2-dopamine receptor antagonist. [11C]Raclopride scans were performed prior to and 30 min after systemic administration of the potent muscarinic cholinergic antagonist, scopolamine (0.007 mg/kg). After scopolamine administration, [11C]raclopride binding decreased in the striatum (specific binding) but not in the cerebellum (nonspecific binding) resulting in a significant decrease, exceeding the test/retest variability of this ligand (5%), in the ratio of the distribution volumes of the striatum to the cerebellum (17%). Furthermore, scopolamine administration did not alter the systemic rate of [11C]raclopride metabolism or the metabolite-corrected plasma input function. These results are consistent not only with the known inhibitory influence that acetylcholine exerts on striatal dopamine release but also with our initial 18F-labeled N-methylspiroperidol and benztropine studies. Thus these data support the use of PET for measuring the functional responsiveness of an endogenous neurotransmitter to an indirect pharmacologic challenge in the living human brain. Images Fig. 2 PMID:8265632

  16. Behavioral and emerging pharmacologic treatment options for cognitive impairment in schizophrenia.

    PubMed

    Vinogradov, Sophia; Schulz, S Charles

    2016-02-01

    In recent years, the goal of treatment for individuals with schizophrenia has shifted from symptom control to functional recovery. For recovery to occur, the substantial cognitive impairments associated with this disorder must be addressed. Advances in neuroscience have paved the way for the development of more effective behavioral and pharmacologic treatments. Behavioral interventions such as cognitive training are tapping into the innate plasticity and adaptive qualities of the brain. Emerging pharmacologic treatments are targeting new neurotransmitters and systems, such as the glutamatergic system and the nicotinic-cholinergic system, which are involved in the cognitive and sensory deficits that lead to impairment. The best chances for recovery will most likely occur by combining behavioral and pharmacologic interventions. PMID:26919053

  17. [Probable mechanism of recognition of cholinergic ligands by acetylcholine receptors].

    PubMed

    Demushkin, V P; Kotelevtsev, Iu V; Pliashkevich, Iu G; Khramtsov, N V

    1982-01-01

    Dryding's models were used for the conformational analysis of compounds affecting muscarin-specific acetylcholine receptor and nicotin-specific acetylcholine receptor. Ammonium group and ether oxygen (3.6 A apart from the ammonium group) specifically oriented to each other were shown to be necessary structural elements to reveal muscarin-type cholinergic activity. Ammonium group along with carbonyl oxygen or its substituent (5 A distance) are the necessary structural units providing nicotin-type cholinergic activity. The presence of two hydrophobic substituents (one in the ammonium area and the other neighbouring the second active grouping) is the additional factor. The developed principles were justified by the use of a series of synthetic samples. The compounds were obtained likely favouring affinitive modification of acetylcholine receptor (dissociation constants of acetylcholine receptor complexes equalling to 10(-4)--10(-7) M-1). PMID:7070378

  18. Possible influence of AMPD1 on cholinergic neurotransmission and sleep.

    PubMed

    Buyse, Bertien; Van Damme, Philip; Belge, Catharina; Testelmans, Dries

    2016-02-01

    It is known that adenosine excess due to monophosphate deaminase deficiency (AMPD1) can be linked to muscle problems. Recently, Perumal et al., 2014 reported a first case of possible impact of AMPD1 on sleep, REM sleep and cholinergic neurotransmission. We report a second patient with similar sleep complaints: long sleep duration with residual daytime sleepiness and a need to sleep after exercise. On polysomnography we observed a long sleep duration, with high sleep efficiency and a SOREMP; on MSLT a shortened sleep latency and 4 SOREMPS were observed. Frequency power spectral heart rate analysis during slow wave sleep, REM sleep and wakefulness revealed an increased parasympathetic tone. In conclusion, AMPD1 could have a profound influence on cholinergic neurotransmission and sleep; further studies are mandatory. PMID:26439223

  19. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    PubMed

    de Kloet, Sybren F; Mansvelder, Huibert D; De Vries, Taco J

    2015-10-15

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit. PMID:26208783

  20. Fasting stimulates 2-AG biosynthesis in the small intestine: role of cholinergic pathways.

    PubMed

    DiPatrizio, Nicholas V; Igarashi, Miki; Narayanaswami, Vidya; Murray, Conor; Gancayco, Joseph; Russell, Amy; Jung, Kwang-Mook; Piomelli, Daniele

    2015-10-15

    The endocannabinoids are lipid-derived signaling molecules that control feeding and energy balance by activating CB1-type cannabinoid receptors in the brain and peripheral tissues. Previous studies have shown that oral exposure to dietary fat stimulates endocannabinoid signaling in the rat small intestine, which provides positive feedback that drives further food intake and preference for fat-rich foods. We now describe an unexpectedly broader role for cholinergic signaling of the vagus nerve in the production of the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), in the small intestine. We show that food deprivation increases levels of 2-AG and its lipid precursor, 1,2-diacylglycerol, in rat jejunum mucosa in a time-dependent manner. This response is abrogated by surgical resection of the vagus nerve or pharmacological blockade of small intestinal subtype-3 muscarinic acetylcholine (m3 mAch) receptors, but not inhibition of subtype-1 muscarinic acetylcholine (m1 mAch). We further show that blockade of peripheral CB1 receptors or intestinal m3 mAch receptors inhibits refeeding in fasted rats. The results suggest that food deprivation stimulates 2-AG-dependent CB1 receptor activation through a mechanism that requires efferent vagal activation of m3 mAch receptors in the jejunum, which, in turn, may promote feeding after a fast. PMID:26290104

  1. Involvement of Cholinergic and Opioid System in γ-Terpinene-Mediated Antinociception

    PubMed Central

    Passos, Flávia Franceli de Brito; Lopes, Everton Moraes; de Araújo, Jonas Moura; de Sousa, Damião Pergentino; Veras, Leiz Maria C.; Leite, José Roberto S. A.; Almeida, Fernanda Regina de Castro

    2015-01-01

    The literature shows that the monoterpenes are great candidates for the development of new drugs for the treatment of various pathological processes, including painful conditions. The gamma terpinene (γ-TPN) is a monoterpene present in plant species that have multiple pharmacological properties and has structural similarity to antinociceptive monoterpenes, such as limonene and alpha-phellandrene. The γ-TPN molecular mass was evaluated by mass spectrometry and showed a pseudomolecular ion with m/z 137.0 Da. The animals did not present any signs of acute toxicity at 2 g/kg, p.o. γ-TPN (1.562 to 50 mg/kg, p.o.) showed an antinociceptive effect in the formalin, capsaicin, and glutamate tests. γ-TPN has antinociceptive action when administered by others routes in glutamate test. To eliminate a possible sedative effect of γ-TPN, the open field and rota-rod test were conducted and the γ-TPN did not show muscle relaxant activity or central depressant effect. To investigate the mechanisms of action, the animals were pretreated with naloxone, glibenclamide, atropine, mecamylamine, or L-arginine in the glutamate test. γ-TPN antinociception was inhibited in the presence of naloxone, glibenclamide, atropine, and mecamylamine. The results suggest that the γ-TPN (p.o.) produced antinociceptive effect in models of chemical nociception through the cholinergic and opioid systems involvement. PMID:26170885

  2. Interspecific nematode signals regulate dispersal behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2) of plant parasitic Meloidogyne spp. and infective ...

  3. Parasitic Nematodes - From Genomes to Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diseases caused by parasitic nematodes in domestic and companion animals are major factors that decrease production and quality of the agricultural products. Methods available for the control of the parasitic nematode infections are mainly based on chemical treatment, non-chemical management pra...

  4. Managing nematode pests in Midsouth soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean producers must contend with nematode pests, several species of which may inhabit a single field. Significant yield losses caused by soybean cyst (Heterodera glycines), southern root-knot (Meloidogyne incognita), reniform (Rotylenchulus reniformis) and other nematodes were estimated at 2.6% (...

  5. Mechanisms of host seeking by parasitic nematodes.

    PubMed

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. PMID:27211240

  6. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling

    PubMed Central

    Chuhma, Nao; Mingote, Susana; Moore, Holly; Rayport, Stephen

    2014-01-01

    Summary Midbrain dopamine neurons fire in bursts conveying salient information. Bursts are associated with pauses in tonic firing of striatal cholinergic interneurons. While the reciprocal balance of dopamine and acetylcholine in the striatum is well known, how dopamine neurons control cholinergic neurons has not been elucidated. Here we show that dopamine neurons make direct fast dopaminergic and glutamatergic connections with cholinergic interneurons, with regional heterogeneity. Dopamine neurons drive a burst-pause firing sequence in cholinergic interneurons in the medial shell of the nucleus accumbens, mixed actions in the accumbens core, and a pause in the dorsal striatum. This heterogeneity is due mainly to regional variation in dopamine-neuron glutamate cotransmission. A single dose of amphetamine attenuates dopamine neuron connections to cholinergic interneurons with dose-dependent regional specificity. Overall, the present data indicate that dopamine neurons control striatal circuit function via discrete, plastic connections with cholinergic interneurons. PMID:24559678

  7. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  8. Dysfunctional penile cholinergic nerves in diabetic impotent men

    SciTech Connect

    Blanco, R.; Saenz de Tejada, I.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A. )

    1990-08-01

    Impotence in the diabetic man may be secondary to a neuropathic condition of the autonomic penile nerves. The relationship between autonomic neuropathy and impotence in diabetes was studied in human corporeal tissue obtained during implantation of a penile prosthesis in 19 impotent diabetic and 15 nondiabetic patients. The functional status of penile cholinergic nerves was assessed by determining their ability to accumulate tritiated choline (34), and synthesize (34) and release (19) tritiated-acetylcholine after incubation of corporeal tissue with tritiated-choline (34). Tritiated-choline accumulation, and tritiated-acetylcholine synthesis and release were significantly reduced in the corporeal tissue from diabetic patients compared to that from nondiabetic patients (p less than 0.05). The impairment in acetylcholine synthesis worsened with the duration of diabetes (p less than 0.025). No differences in the parameters measured were found between insulin-dependent (11) and noninsulin-dependent (8) diabetic patients. The ability of the cholinergic nerves to synthesize acetylcholine could not be predicted clinically with sensory vibration perception threshold testing. It is concluded that there is a functional penile neuropathic condition of the cholinergic nerves in the corpus cavernosum of diabetic impotent patients that may be responsible for the erectile dysfunction.

  9. Cholinergic system during the progression of Alzheimer's disease: therapeutic implications

    PubMed Central

    Mufson, Elliott J; Counts, Scott E; Perez, Sylvia E; Ginsberg, Stephen D

    2009-01-01

    Alzheimer's disease (AD) is characterized by a progressive phenotypic downregulation of markers within cholinergic basal forebrain (CBF) neurons, frank CBF cell loss and reduced cortical choline acetyltransferase activity associated with cognitive decline. Delaying CBF neurodegeneration or minimizing its consequences is the mechanism of action for most currently available drug treatments for cognitive dysfunction in AD. Growing evidence suggests that imbalances in the expression of NGF, its precursor proNGF and the high (TrkA) and low (p75NTR) affinity NGF receptors are crucial factors underlying CBF dysfunction in AD. Drugs that maintain a homeostatic balance between TrkA and p75NTR may slow the onset of AD. A NGF gene therapy trial reduced cognitive decline and stimulated cholinergic fiber growth in humans with mild AD. Drugs treating the multiple pathologies and clinical symptoms in AD (e.g., M1 cholinoceptor and/or galaninergic drugs) should be considered for a more comprehensive treatment approach for cholinergic dysfunction. PMID:18986241

  10. Inhibition of airway surface fluid absorption by cholinergic stimulation.

    PubMed

    Joo, Nam Soo; Krouse, Mauri E; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20-70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  11. Distribution of cholinergic cells in guinea pig brainstem

    PubMed Central

    Motts, S.D.; Slusarczyk, A.S.; Sowick, C.S.; Schofield, B.R.

    2008-01-01

    We used an antibody to choline acetyltransferase (ChAT) to label cholinergic cells in guinea pig brainstem. ChAT-immunoreactive (ChAT-IR) cells comprise several prominent groups, including the pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, and parabigeminal nucleus, as well as the cranial nerve somatic motor and parasympathetic nuclei. Additional concentrations are present in the parabrachial nuclei and superior colliculus. Among auditory nuclei, the majority of ChAT-IR cells are in the superior olive, particularly in and around the lateral superior olive, the ventral nucleus of the trapezoid body and the superior paraolivary nucleus. A discrete group of ChAT-IR cells is located in the sagulum, and additional cells are scattered in the nucleus of the brachium of the inferior colliculus. A group of ChAT-IR cells lies dorsal to the dorsal nucleus of the lateral lemniscus. A few ChAT-IR cells are found in the cochlear nucleus and the ventral nucleus of the lateral lemniscus. The distribution of cholinergic cells in guinea pigs is largely similar to that of other species; differences occur mainly in cell groups that have few ChAT-IR cells. The results provide a basis for further studies to characterize the connections of these cholinergic groups. PMID:18222049

  12. Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators

    PubMed Central

    Whittington, Miles A.; Kopell, Nancy J.

    2015-01-01

    The dynamical behavior of the cortex is extremely complex, with different areas and even different layers of a cortical column displaying different temporal patterns. A major open question is how the signals from different layers and different brain regions are coordinated in a flexible manner to support function. Here, we considered interactions between primary auditory cortex and adjacent association cortex. Using a biophysically based model, we show how top-down signals in the beta and gamma regimes can interact with a bottom-up gamma rhythm to provide regulation of signals between the cortical areas and among layers. The flow of signals depends on cholinergic modulation: with only glutamatergic drive, we show that top-down gamma rhythms may block sensory signals. In the presence of cholinergic drive, top-down beta rhythms can lift this blockade and allow signals to flow reciprocally between primary sensory and parietal cortex. SIGNIFICANCE STATEMENT Flexible coordination of multiple cortical areas is critical for complex cognitive functions, but how this is accomplished is not understood. Using computational models, we studied the interactions between primary auditory cortex (A1) and association cortex (Par2). Our model is capable of replicating interaction patterns observed in vitro and the simulations predict that the coordination between top-down gamma and beta rhythms is central to the gating process regulating bottom-up sensory signaling projected from A1 to Par2 and that cholinergic modulation allows this coordination to occur. PMID:26558772

  13. Plant basal resistance to nematodes: an update.

    PubMed

    Holbein, Julia; Grundler, Florian M W; Siddique, Shahid

    2016-03-01

    Most plant-parasitic nematodes are obligate biotrophs feeding on the roots of their hosts. Whereas ectoparasites remain on the root surface and feed on the outer cell layers, endoparasitic nematodes enter the host to parasitize cells around or within the central cylinder. Nematode invasion and feeding causes tissue damage which may, in turn, lead to the activation of host basal defence responses. Hitherto, research interests in plant-nematode interaction have emphasized effector-triggered immunity rather than basal plant defence responses. However, some recent investigations suggest that basal defence pathways are not only activated but also play an important role in determining interaction outcomes. In this review we discuss the major findings and point out future directions to dissect the molecular mechanisms underlying plant basal defence to nematodes further. PMID:26842982

  14. Subtilisin-like proteases in nematodes.

    PubMed

    Poole, Catherine B; Jin, Jingmin; McReynolds, Larry A

    2007-09-01

    Cleavage by subtilisin-like proteases (subtilases) is an essential step in post-translational processing of proteins found in organisms ranging from yeast to mammals. Our knowledge of the diversity of this protease family in nematodes is aided by the rapid increase in sequence information, especially from the Brugia malayi genome project. Genetic studies of the subtilases in Caenorhabitis elegans give valuable insight into the biological function of these proteases in other nematode species. In this review, we focus on the subtilases in filarial nematodes as well as other parasitic and free-living nematodes in comparison to what is known in C. elegans. Topics to be addressed include expansion and diversity of the subtilase gene family during evolution, enhanced complexity created by alternative RNA splicing, molecular and biochemical characterization of the different subtilases and the challenges of designing subtilase-specific inhibitors for parasitic nematodes. PMID:17570539

  15. How do humans affect wildlife nematodes?

    USGS Publications Warehouse

    Weinstein, Sara B.; Lafferty, Kevin D.

    2015-01-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host–parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife.

  16. How do humans affect wildlife nematodes?

    PubMed

    Weinstein, Sara B; Lafferty, Kevin D

    2015-05-01

    Human actions can affect wildlife and their nematode parasites. Species introductions and human-facilitated range expansions can create new host-parasite interactions. Novel hosts can introduce parasites and have the potential to both amplify and dilute nematode transmission. Furthermore, humans can alter existing nematode dynamics by changing host densities and the abiotic conditions that affect larval parasite survival. Human impacts on wildlife might impair parasites by reducing the abundance of their hosts; however, domestic animal production and complex life cycles can maintain transmission even when wildlife becomes rare. Although wildlife nematodes have many possible responses to human actions, understanding host and parasite natural history, and the mechanisms behind the changing disease dynamics might improve disease control in the few cases where nematode parasitism impacts wildlife. PMID:25680855

  17. Cryopreservation of the Pinewood Nematode, Bursaphelenchus spp.

    PubMed

    Riga, E; Webster, J M

    1991-10-01

    Populations of three isolates of Bursaphelenchus xylophilus, the pinewood nematode, and one of B. mucronatus were treated with three cryoprotectants at -70 C for 24 hours followed by deep freezing at -180 C in liquid nitrogen for different periods of time. A solution of 15% glycerol, 35% buffer S, and 50% M9, or 1% aqueous solution of dimethylsulfoxide (DMSO), or a mixture of 60% M9 and 40% S buffer were used as cryoprotectants. A significantly larger number of juveniles than adults survived deep freezing. Significantly more nematodes were motile after cryopreservation in the 15% glycerol-S-M9 soludon than in the M9-S buffer solution or the DMSO aqueous solution. When cryopreserved nematodes that had been treated with glycerol solution were plated onto Botrytis cinerea, they reproduced rapidly over several generations. Cryopreserved nematodes were as pathogenic as untreated nematodes to Scots pines. PMID:19283151

  18. Cholinergic Neurotransmission in the Posterior Insular Cortex Is Altered in Preclinical Models of Neuropathic Pain: Key Role of Muscarinic M2 Receptors in Donepezil-Induced Antinociception

    PubMed Central

    Ferrier, Jérémy; Bayet-Robert, Mathilde; Dalmann, Romain; El Guerrab, Abderrahim; Aissouni, Youssef; Graveron-Demilly, Danielle; Chalus, Maryse; Pinguet, Jérémy; Eschalier, Alain; Richard, Damien; Daulhac, Laurence; Balayssac, David

    2015-01-01

    Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS 1H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment. SIGNIFICANCE STATEMENT Our study describes a decrease in cholinergic neurotransmission in the posterior insular

  19. Cognitive Impairments Induced by Concussive Mild Traumatic Brain Injury in Mouse Are Ameliorated by Treatment with Phenserine via Multiple Non-Cholinergic and Cholinergic Mechanisms.

    PubMed

    Tweedie, David; Fukui, Koji; Li, Yazhou; Yu, Qian-Sheng; Barak, Shani; Tamargo, Ian A; Rubovitch, Vardit; Holloway, Harold W; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Becker, Kevin G; Perez, Evelyn; Van Praag, Henriette; Luo, Yu; Hoffer, Barry J; Becker, Robert E; Pick, Chaim G; Greig, Nigel H

    2016-01-01

    Traumatic brain injury (TBI), often caused by a concussive impact to the head, affects an estimated 1.7 million Americans annually. With no approved drugs, its pharmacological treatment represents a significant and currently unmet medical need. In our prior development of the anti-cholinesterase compound phenserine for the treatment of neurodegenerative disorders, we recognized that it also possesses non-cholinergic actions with clinical potential. Here, we demonstrate neuroprotective actions of phenserine in neuronal cultures challenged with oxidative stress and glutamate excitotoxicity, two insults of relevance to TBI. These actions translated into amelioration of spatial and visual memory impairments in a mouse model of closed head mild TBI (mTBI) two days following cessation of clinically translatable dosing with phenserine (2.5 and 5.0 mg/kg BID x 5 days initiated post mTBI) in the absence of anti-cholinesterase activity. mTBI elevated levels of thiobarbituric acid reactive substances (TBARS), a marker of oxidative stress. Phenserine counteracted this by augmenting homeostatic mechanisms to mitigate oxidative stress, including superoxide dismutase [SOD] 1 and 2, and glutathione peroxidase [GPx], the activity and protein levels of which were measured by specific assays. Microarray analysis of hippocampal gene expression established that large numbers of genes were exclusively regulated by each individual treatment with a substantial number of them co-regulated between groups. Molecular pathways associated with lipid peroxidation were found to be regulated by mTBI, and treatment of mTBI animals with phenserine effectively reversed injury-induced regulations in the 'Blalock Alzheimer's Disease Up' pathway. Together these data suggest that multiple phenserine-associated actions underpin this compound's ability to ameliorate cognitive deficits caused by mTBI, and support the further evaluation of the compound as a therapeutic for TBI. PMID:27254111

  20. Cognitive Impairments Induced by Concussive Mild Traumatic Brain Injury in Mouse Are Ameliorated by Treatment with Phenserine via Multiple Non-Cholinergic and Cholinergic Mechanisms

    PubMed Central

    Li, Yazhou; Yu, Qian-sheng; Barak, Shani; Tamargo, Ian A.; Rubovitch, Vardit; Holloway, Harold W.; Lehrmann, Elin; Wood, William H.; Zhang, Yongqing; Becker, Kevin G.; Perez, Evelyn; Van Praag, Henriette; Luo, Yu; Hoffer, Barry J.; Becker, Robert E.; Pick, Chaim G.; Greig, Nigel H.

    2016-01-01

    Traumatic brain injury (TBI), often caused by a concussive impact to the head, affects an estimated 1.7 million Americans annually. With no approved drugs, its pharmacological treatment represents a significant and currently unmet medical need. In our prior development of the anti-cholinesterase compound phenserine for the treatment of neurodegenerative disorders, we recognized that it also possesses non-cholinergic actions with clinical potential. Here, we demonstrate neuroprotective actions of phenserine in neuronal cultures challenged with oxidative stress and glutamate excitotoxicity, two insults of relevance to TBI. These actions translated into amelioration of spatial and visual memory impairments in a mouse model of closed head mild TBI (mTBI) two days following cessation of clinically translatable dosing with phenserine (2.5 and 5.0 mg/kg BID x 5 days initiated post mTBI) in the absence of anti-cholinesterase activity. mTBI elevated levels of thiobarbituric acid reactive substances (TBARS), a marker of oxidative stress. Phenserine counteracted this by augmenting homeostatic mechanisms to mitigate oxidative stress, including superoxide dismutase [SOD] 1 and 2, and glutathione peroxidase [GPx], the activity and protein levels of which were measured by specific assays. Microarray analysis of hippocampal gene expression established that large numbers of genes were exclusively regulated by each individual treatment with a substantial number of them co-regulated between groups. Molecular pathways associated with lipid peroxidation were found to be regulated by mTBI, and treatment of mTBI animals with phenserine effectively reversed injury-induced regulations in the ‘Blalock Alzheimer’s Disease Up’ pathway. Together these data suggest that multiple phenserine-associated actions underpin this compound’s ability to ameliorate cognitive deficits caused by mTBI, and support the further evaluation of the compound as a therapeutic for TBI. PMID:27254111

  1. The Pharmacology of Immunosuppression

    PubMed Central

    2009-01-01

    Objective To provide students with a comprehensive, integrated presentation on the pharmacology of immuosuppression. Design Course content on the pharmacology of immunosuppression relating to organ transplantation and treatment of autoimmune disorders was presented in integrated sequence modules that included content from pharmacology, medicinal chemistry, and therapeutics. Weekly recitation sessions and active-learning exercises were incorporated to allow students to apply the information they learned to integrated patient cases and stimulate involvement and critical thinking. Fundamental material related to the components and functions of the immune system was presented to students early in curriculum with courses such as biochemistry, pathophysiology, and immunology/microbiology. Assessment Comprehensive examinations, in-class quizzes, written case submissions, case discussions, review exercises, and group exercises were used to assess student learning. Conclusion Students at South University received a comprehensive and detailed understanding of all aspects relating to immunosuppressive therapy. This was accomplished by integrating instruction on immunosuppressive therapy from various disciplines. PMID:20221337

  2. Pain sensitivity following loss of cholinergic basal forebrain (CBF) neurons in the rat.

    PubMed

    Vierck, C J; Yezierski, R P; Wiley, R G

    2016-04-01

    Flexion/withdrawal reflexes are attenuated by spinal, intracerebroventricular (ICV) and systemic delivery of cholinergic agonists. In contrast, some affective reactions to pain are suppressed by systemic cholinergic antagonism. Attention to aversive stimulation can be impaired, as is classical conditioning of fear and anxiety to aversive stimuli and psychological activation of stress reactions that exacerbate pain. Thus, in contrast to the suppressive effects of cholinergic agonism on reflexes, pain sensitivity and affective reactions to pain could be attenuated by reduced cerebral cholinergic activation. This possibility was evaluated in the present study, using an operant test of escape from nociceptive thermal stimulation (10 °C and 44.5 °C) before and after destruction of basal forebrain cholinergic neurons. ICV injection of 192 IgG-saporin produced widespread loss of basal forebrain cholinergic innervation of the cerebral cortex and hippocampus. Post-injection, escape from thermal stimulation was decreased with no indication of recovery for upto 19 weeks. Also, the normal hyperalgesic effect of sound stress was absent after ICV 192-sap. Effects of cerebral cholinergic denervation or stress on nociceptive licking and guarding reflexes were not consistent with the effects on operant escape, highlighting the importance of evaluating pain sensitivity of laboratory animals with an operant behavioral test. These results reveal that basal forebrain cholinergic transmission participates in the cerebral processing of pain, which may be relevant to the pain sensitivity of patients with Alzheimer's disease who have prominent degeneration of basal forebrain cholinergic neurons. PMID:26812034

  3. Modified expression of peripheral blood lymphocyte muscarinic cholinergic receptors in asthmatic children.

    PubMed

    Cherubini, Emanuela; Tabbì, Luca; Scozzi, Davide; Mariotta, Salvatore; Galli, Elena; Carello, Rossella; Avitabile, Simona; Tayebati, Seyed Koshrow; Amenta, Francesco; De Vitis, Claudia; Mancini, Rita; Ricci, Alberto

    2015-07-15

    Lymphocytes possess an independent cholinergic system. We assessed the expression of muscarinic cholinergic receptors in lymphocytes from 49 asthmatic children and 10 age matched controls using Western blot. We demonstrated that CD4+ and CD8+ T cells expressed M2 and M4 muscarinic receptors which density were significantly increased in asthmatic children in comparison with controls. M2 and M4 receptor increase was strictly related with IgE and fraction of exhaled nitric oxide (FeNO) measurements and with impairment in objective measurements of airway obstruction. Increased lymphocyte muscarinic cholinergic receptor expression may concur with lung cholinergic dysfunction and with inflammatory molecular framework in asthma. PMID:26025056

  4. Extrinsic Sources of Cholinergic Innervation of the Striatal Complex: A Whole-Brain Mapping Analysis

    PubMed Central

    Dautan, Daniel; Hacioğlu Bay, Husniye; Bolam, J. Paul; Gerdjikov, Todor V.; Mena-Segovia, Juan

    2016-01-01

    Acetylcholine in the striatal complex plays an important role in normal behavior and is affected in a number of neurological disorders. Although early studies suggested that acetylcholine in the striatum (STR) is derived almost exclusively from cholinergic interneurons (CIN), recent axonal mapping studies using conditional anterograde tracing have revealed the existence of a prominent direct cholinergic pathway from the pedunculopontine and laterodorsal tegmental nuclei to the dorsal striatum and nucleus accumbens. The identification of the importance of this pathway is essential for creating a complete model of cholinergic modulation in the striatum, and it opens the question as to whether other populations of cholinergic neurons may also contribute to such modulation. Here, using novel viral tracing technologies based on phenotype-specific fluorescent reporter expression in combination with retrograde tracing, we aimed to define other sources of cholinergic innervation of the striatum. Systematic mapping of the projections of all cholinergic structures in the brain (Ch1 to Ch8) by means of conditional tracing of cholinergic axons, revealed that the only extrinsic source of cholinergic innervation arises in the brainstem pedunculopontine and laterodorsal tegmental nuclei. Our results thus place the pedunculopontine and laterodorsal nuclei in a key and exclusive position to provide extrinsic cholinergic modulation of the activity of the striatal systems. PMID:26834571

  5. Pharmacologic Therapies in Anticoagulation.

    PubMed

    Ferreira, Joana Lima; Wipf, Joyce E

    2016-07-01

    Anticoagulants are beneficial for prevention and treatment of venous thromboembolism and stroke prevention in atrial fibrillation. The development of target-specific oral anticoagulants is changing the landscape of anticoagulation therapy and created growing interest on this subject. Understanding the pharmacology of different anticoagulants is the first step to adequately treat patients with best available therapy while avoiding serious bleeding complications. This article reviews the pharmacology of the main anticoagulant classes (vitamin K antagonists, direct oral anticoagulants, and heparins) and their clinical indications based on evidence-based data currently available in the literature. PMID:27235611

  6. Laser capture microdissection of nematode feeding cells.

    PubMed

    Ithal, Nagabhushana; Mitchum, Melissa G

    2011-01-01

    Obligate plant-parasitic nematodes, such as cyst nematodes (Heterodera and Globodera spp.) and root-knot nematodes (Meloidogyne spp.), form specialized feeding cells in host plant roots. These feeding cells provide the sole source of nutrition for the growth and reproduction of the nematode to complete its life cycle. Feeding cell formation involves complex physiological and morphological changes to normal root cells and is accompanied by dramatic changes in plant gene expression. The distinct features of feeding cells suggest that their formation entails a unique gene expression profile, a better understanding of which will assist in building models to explain signaling pathways that modulate transcriptional changes in response to nematodes. Ultimately, this knowledge can be used to design strategies to develop resistance against nematodes in crop plants. Feeding cells comprise a small fraction of the total root cell population, and identification of plant gene expression changes specific to these cells is difficult. Until recently, the specific isolation of nematode feeding cells could be accomplished only by manual dissection or microaspiration. These approaches are limited in that only mature feeding cells can be isolated. These limitations in tissue accessibility for macromolecule isolation at different stages of feeding cell development can be overcome through the use of laser microdissection (LM), a technique that enables the specific isolation of feeding cells from early to late stages for RNA isolation, amplification, and downstream analysis. PMID:21359812

  7. Pharmacology. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based course in pharmacology for practical nursing. The following are covered in the five instructional units: calculating medication dosages, documenting medications, identifying classification and effects of medications, administering medications, and assisting with…

  8. Social pharmacology: expanding horizons.

    PubMed

    Maiti, Rituparna; Alloza, José Luis

    2014-01-01

    In the current modern and global society, social changes are in constant evolution due to scientific progress (technology, culture, customs, and hygiene) and produce the freedom in individuals to take decisions by themselves or with their doctors toward drug consumption. In the arena of marketed drug products which includes society, individual, administration, and pharmaceutical industry, the young discipline emerged is social pharmacology or sociopharmacology. This science arises from clinical pharmacology, and deals with different parameters, which are important in creating knowledge on marketed drugs. However, the scope of "social pharmacology" is not covered by the so-called "Phase IV" alone, but it is the science that handles the postmarketing knowledge of drugs. The social pharmacology studies the "life cycle" of any marketed pharmaceutical product in the social terrain, and evaluates the effects of the real environment under circumstances totally different in the drug development process. Therefore, there are far-reaching horizons, plural, and shared predictions among health professionals and other, for beneficial use of a drug, toward maximizing the benefits of therapy, while minimizing negative social consequences. PMID:24987168

  9. Pharmacological management of sepsis

    SciTech Connect

    Fletcher, J.R.

    1985-01-01

    Systemic sepsis continues to be the most-difficult management problem in caring for the combat casualty. The complications of sepsis pervade all areas of injury to soldiers in the field, whether it is mechanical (missiles), thermal (burns), chemical, biological, or radiation injury. With the advent of tactical nuclear weapons, the problem of sepsis will be much higher in future wars than has previously been experienced through the world. The purpose of this chapter is a) to review the data suggesting pharmacological agents that may benefit the septic patient, and b) to emphasize the adjunctive therapies that should be explored in clinical trials. The pharmacological management of sepsis remains controversial. Most of the drugs utilized clinically treat the symptoms of the disease and are not necessarily directed at fundamental mechanisms that are known to be present in sepsis. A broad data base is emerging, indicating that NSAID should be used in human clinical trials. Prostaglandins are sensitive indicators of cellular injury and may be mediators for a number of vasoactive chemicals. Opiate antagonists and calcium channel blockers require more in-depth data; however, recent studies generate excitement for their potential use in the critically ill patient. Pharmacological effects of antibiotics, in concert with other drugs, suggest an entirely new approach to pharmacological treatment in sepsis. There is no doubt that new treatment modalities or adjunctive therapies must be utilized to alter the poor prognosis of severe sepsis that we have observed in the past 4 decades.

  10. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice

    PubMed Central

    Hedrick, Tristan; Danskin, Bethanny; Larsen, Rylan S.; Ollerenshaw, Doug; Groblewski, Peter; Valley, Matthew; Olsen, Shawn; Waters, Jack

    2016-01-01

    The study of cholinergic signaling in the mammalian CNS has been greatly facilitated by the advent of mouse lines that permit the expression of reporter proteins, such as opsins, in cholinergic neurons. However, the expression of opsins could potentially perturb the physiology of opsin-expressing cholinergic neurons or mouse behavior. Indeed, the published literature includes examples of cellular and behavioral perturbations in preparations designed to drive expression of opsins in cholinergic neurons. Here we investigate expression of opsins, cellular physiology of cholinergic neurons and behavior in two mouse lines, in which channelrhodopsin-2 (ChR2) and archaerhodopsin (Arch) are expressed in cholinergic neurons using the Cre-lox system. The two mouse lines were generated by crossing ChAT-Cre mice with Cre-dependent reporter lines Ai32(ChR2-YFP) and Ai35(Arch-GFP). In most mice from these crosses, we observed expression of ChR2 and Arch in only cholinergic neurons in the basal forebrain and in other putative cholinergic neurons in the forebrain. In small numbers of mice, off-target expression occurred, in which fluorescence did not appear limited to cholinergic neurons. Whole-cell recordings from fluorescently-labeled basal forebrain neurons revealed that both proteins were functional, driving depolarization (ChR2) or hyperpolarization (Arch) upon illumination, with little effect on passive membrane properties, spiking pattern or spike waveform. Finally, performance on a behavioral discrimination task was comparable to that of wild-type mice. Our results indicate that ChAT-Cre x reporter line crosses provide a simple, effective resource for driving indicator and opsin expression in cholinergic neurons with few adverse consequences and are therefore an valuable resource for studying the cholinergic system. PMID:27243816

  11. Advances in the pharmacological treatment of Parkinson's disease: targeting neurotransmitter systems.

    PubMed

    Brichta, Lars; Greengard, Paul; Flajolet, Marc

    2013-09-01

    For several decades, the dopamine precursor levodopa has been the primary therapy for Parkinson's disease (PD). However, not all of the motor and non-motor features of PD can be attributed solely to dopaminergic dysfunction. Recent clinical and preclinical advances provide a basis for the identification of additional innovative therapeutic options to improve the management of the disease. Novel pharmacological strategies must be optimized for PD by: (i) targeting disturbances of the serotonergic, noradrenergic, glutamatergic, GABAergic, and cholinergic systems in addition to the dopaminergic system, and (ii) characterizing alterations in the levels of neurotransmitter receptors and transporters that are associated with the various manifestations of the disease. PMID:23876424

  12. Novel aspects of cholinergic regulation of colonic ion transport.

    PubMed

    Bader, Sandra; Diener, Martin

    2015-06-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (I sc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on I sc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport - up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors - is more complex than previously assumed. PMID:26236483

  13. Potential animal model of multiple chemical sensitivity with cholinergic supersensitivity.

    PubMed

    Overstreet, D H; Miller, C S; Janowsky, D S; Russell, R W

    1996-07-17

    Multiple Chemical Sensitivity (MCS) is a clinical phenomenon in which individuals, after acute or intermittent exposure to one or more chemicals, commonly organophosphate pesticides (OPs), become overly sensitive to a wide variety of chemically-unrelated compounds, which can include ethanol, caffeine and other psychotropic drugs. The Flinders Sensitive Line (FSL) rats were selectively bred to be more sensitive to the OP diisopropylfluorophosphate (DFP) compared to their control counterparts, the Flinders Resistant Line (FRL) rats. The present paper will summarize evidence which indicates that the FSL rats exhibit certain similarities to individuals with MCS. In addition to their greater sensitivity to DFP, the FSL rats are more sensitive to nicotine and the muscarinic agonists arecoline and oxotremorine, suggesting that the number of cholinergic receptors may be increased, a conclusion now supported by biochemical evidence. The FSL rats have also been found to exhibit enhanced responses to a variety of other drugs, including the serotonin agonists m-chlorophenylpiperazine and 8-OH-DPAT, the dopamine antagonist raclopride, the benzodiazepine diazepam, and ethanol. MCS patients report enhanced responses to many of these drugs, indicating some parallels between FSL rats and MCS patients. The FSL rats also exhibit reduced activity and appetite and increased REM sleep relative to their FRL controls. Because these behavioral features and the enhanced cholinergic responses are also observed in human depressives, the FSL rats have been proposed as a genetic animal model of depression. It has also been reported that MCS patients have a greater incidence of depression, both before and after onset of their chemical sensitivities, so cholinergic supersensitivity may be a state predisposing individuals to depressive disorders and/or MCS. Further exploration of the commonalities and differences between MCS patients, human depressives, and FSL rats will help to elucidate the

  14. Heterogeneity of phasic cholinergic signaling in neocortical neurons.

    PubMed

    Gulledge, Allan T; Park, Susanna B; Kawaguchi, Yasuo; Stuart, Greg J

    2007-03-01

    Acetylcholine (ACh) is a neurotransmitter critical for normal cognition. Here we demonstrate heterogeneity of cholinergic signaling in neocortical neurons in the rat prefrontal, somatosensory, and visual cortex. Focal ACh application (100 muM) inhibited layer 5 pyramidal neurons in all cortical areas via activation of an apamin-sensitive SK-type calcium-activated potassium conductance. Cholinergic inhibition was most robust in prefrontal layer 5 neurons, where it relies on the same signal transduction mechanism (M1-like receptors, IP(3)-dependent calcium release, and SK-channels) as exists in somatosensory pyramidal neurons. Pyramidal neurons in layer 2/3 were less responsive to ACh, but substantial apamin-sensitive inhibitory responses occurred in deep layer 3 neurons of the visual cortex. ACh was only inhibitory when presented near the somata of layer 5 pyramidal neurons, where repetitive ACh applications generated discrete inhibitory events at frequencies of up to approximately 0.5 Hz. Fast-spiking (FS) nonpyramidal neurons in all cortical areas were unresponsive to ACh. When applied to non-FS interneurons in layers 2/3 and 5, ACh generated mecamylamine-sensitive nicotinic responses (38% of cells), apamin-insensitive hyperpolarizing responses, with or without initial nicotinic depolarization (7% of neurons), or no response at all (55% of cells). Responses in interneurons were similar across cortical layers and regions but were correlated with cellular physiology and the expression of biochemical markers associated with different classes of nonpyramidal neurons. Finally, ACh generated nicotinic responses in all layer 1 neurons tested. These data demonstrate that phasic cholinergic input can directly inhibit projection neurons throughout the cortex while sculpting intracortical processing, especially in superficial layers. PMID:17122323

  15. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    PubMed Central

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O.; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  16. Purinergic and cholinergic components of bladder contractility and flow.

    PubMed

    Theobald, R J

    1995-01-01

    The role of ATP as a neurotransmitter/neuromodulator in the urinary tract has been the subject of much study, particularly whether ATP has a functional role in producing urine flow. Recent studies suggested significant species variation, specifically a variation between cat and other species. This study was performed to determine the in vivo response of cat urinary bladder to pelvic nerve stimulation (PNS) and to the exogenous administration of cholinergic and purinergic agents. In anesthetized cats, bladder contractions and fluid expulsion was measured in response to PNS and to the exogenous administration of cholinergic and purinergic agents. Fluid was instilled into the bladder and any fluid expelled by bladder contractions induced by PNS or exogenous agents was collected in a beaker. The volume was measured in a graduated cylinder and recorded. PNS, carbachol and APPCP produced sustained contractions with significant expulsion of fluid. ATP, ACh and hypogastric nerve stimulation did not produce any significant expulsion of fluid. Atropine, a cholinergic antagonist, inhibited PNS contractions and fluid expulsion with no effect on purinergic actions. There was a significant relationship between the magnitude of the contraction, duration of the contractions and volume of fluid expelled. The data and information from other studies, strongly suggests a functional role for ATP as a cotransmitter in the lower urinary tract different from ACh's role. ATP stimulation of a specific purinergic receptor plays a role in initiation of bladder contractions and perhaps in the initiation of urine flow from the bladder. ACh's role is functionally different and appears to be more involved in maintenance of contractile activity and flow. PMID:7830505

  17. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  18. COLCHICINE INDUCED DEAFFERENTATION OF THE HIPPOCAMPUS SELECTIVELY DISRUPTS CHOLINERGIC RHYTHMICAL SLOW WAVE ACTIVITY

    EPA Science Inventory

    It has been proposed that hippocampal theta rhythm (RSA)is generated by the cholinergic septo-hippocampal system. Although ablations of the septum or its projections to the hippocampus disrupt hippocampal RSA, such non-selective lesions damage both cholinergic and noncholinergic ...

  19. Down regulation of the muscarinic cholinergic receptor of the rat prostate following castration

    SciTech Connect

    Shapiro, E.; Miller, A.R.; Lepor, H.

    1985-07-01

    Prostatic secretion is dependent upon the integrity of the endocrine and autonomic nervous systems and is dramatically influenced by muscarinic cholinergic analogs. In this study, the authors have used radioligand receptor binding methods on whole tissue homogenates and slide mounted tissue sections of rat prostate to determine whether androgens regulate the density of muscarinic cholinergic receptors in the prostate. The muscarinic cholinergic receptor binding affinities (Kd) of (/sup 3/H) N-methylscopolamine in prostatic homogenates obtained from intact, castrate, and castrate rats receiving testosterone replacement (castrate + T) were similar (0.07 to 0.10 nM). The muscarinic cholinergic receptor binding capacity decreased 73 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in castrate rats to intact levels. In order to ensure that the loss of receptor density was not due to a decrease in the epithelial: stromal cell ratio, the number of muscarinic cholinergic receptors per unit area of epithelium was determined in the 3 treatment groups using autoradiography on slide mounted tissue sections. The density of muscarinic cholinergic receptors in a unit area of epithelium was decreased 91 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in the castrate rats to intact levels. The modulation of neurotransmitter receptors by steroid hormones may be a mechanism by which sex steroids regulate biological responsiveness of target tissues.

  20. Features of cholinergic cardia regulation under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Markova, Y. A.; Bondarenko, Y. I.; Bolyarskaya, V. A.; Fayfura, V. V.; Rosolovskiy, A. P.; Babinskaya, L. N.

    1980-01-01

    The features of cholinergic processes in the heart on the 4th, 8th, 16th and 30th days of hypokinesia were studied in experiments on 382 albino rats. It was shown that hypokinesia is attended by increased acetylcholine content in the atria, reduced choline acetyltransferase activity in the atria and ventricles and by increased activity of acetylcholinesterase in the ventricles and of pseudocholinesterase in both parts of the heart. The sensitivity of the heart to exogenic acetylcholine and to stimulation of the vagus nerve increases.

  1. Central cholinergic control of vasopressin release in conscious rats

    SciTech Connect

    Iitake, K.; Share, L.; Ouchi, Y.; Crofton, J.T.; Brooks, D.P.

    1986-08-01

    Intracerebroventricular (icv) administration of carbachol into conscious rats evoked a substantial increase in vasopressin secretion and blood pressure in a dose-dependent manner. These effects were blocked by pretreatment with the muscarinic blocker, atropine (10 g icv), but not by the nicotinic blocker, hexamethonium (10 g icv). Hexamethonium did, however, block the increase in blood pressure, the decrease in heart rate, and they very small elevation in the plasma vasopressin concentration induced by nicotine (10 g icv). These results indicate that stimulation of either central nicotinic or muscarinic receptors can affect the cardiovascular system and suggest that the cholinergic stimulation of vasopressin secretion may involve primarily muscarinic receptors in the conscious rat.

  2. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  3. How cellular slime molds evade nematodes.

    PubMed Central

    Kessin, R H; Gundersen, G G; Zaydfudim, V; Grimson, M

    1996-01-01

    We have found a predator-prey association between the social amoeba Dictyostelium discoideum and the free soil living nematode Caenorhabditis elegans. C. elegans feeds on the amoebae and multiplies indefinitely when amoebae are the sole food source. In an environment created from soil, D. discoideum grows and develops, but not in the presence of C. elegans. During development, C. elegans feeds on amoebae until they aggregate and synthesize an extracellular matrix called the slime sheath. After the sheath forms, the aggregate and slug are protected. Adult nematodes ingest Dictyostelium spores, which pass through the gut of the worm without loss of structure and remain viable. Nematodes kill the amoebae but disperse the spores. The sheath that is constructed when the social amoebae aggregate and the spore coats of the individual cells may protect against this predator. Individual amoebae may also protect themselves by secreting compounds that repel nematodes. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8643493

  4. Conserving and enhancing biological control of nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from plant-parasitic nematodes. This approach to biological control has received insufficient attention compared to inundative applications of ...

  5. Differential effects of ω-conotoxin GVIA on cholinergic and non-cholinergic secretomotor neurones in the guinea-pig small intestine

    PubMed Central

    Vremec, Melinda A; Bornstein, Joel C; Wright, Christine E; Humphrey, Andrea

    1997-01-01

    Ussing chambers were used to study the effects of the specific N-type Ca2+ channel antagonist, ω-conotoxin GVIA, on neurally evoked secretion across isolated submucosa/mucosa preparations from the small intestine of the guinea-pig. Cholinergic and non-cholinergic neurones were stimulated with 10 μM dimethylphenylpiperazinium (DMPP). Non-cholinergic secretomotor neurones were preferentially stimulated with 100 nM 5-hydroxytryptamine (5-HT), while cholinergic secretomotor neurones were preferentially stimulated with 3 μM 5-HT in the presence of the 5-HT2 receptor antagonist ketanserin (30 nM). ω-Conotoxin GVIA (1 nM–1 μM) depressed the secretion evoked by DMPP in a concentration-dependent manner, but a substantial residual response was observed. Hyoscine (100 nM) significantly depressed secretion evoked by DMPP, but did not prevent further depression of secretion by ω-conotoxin GVIA. The toxin was substantially more effective when the non-cholinergic secretomotor neurones were preferentially activated with 100 nM 5-HT, with a decrease in the response of more than 75% of the control value in the presence of 1 μM ω-conotoxin GVIA. ω-Conotoxin GVIA (1 μM) was relatively ineffective against secretion evoked by preferential activation of cholinergic secretomotor neurones with 3 μM 5-HT in the presence of 30 nM ketanserin, inhibiting the response by less than 33%. However, this inhibition was significant. Both 100 nM hyoscine and 300 nM tetrodotoxin abolished this effect of ω-conotoxin GVIA. It is concluded that N-type Ca2+ channels play a major role in transmitter release from non-cholinergic secretomotor neurones, but are not important for release from cholinergic secretomotor neurones in the guinea-pig small intestine. PMID:9154332

  6. A cellular and regulatory map of the cholinergic nervous system of C. elegans

    PubMed Central

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-01-01

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001 PMID:26705699

  7. Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association.

    PubMed

    Lee, Junuk; Finkelstein, Joel; Choi, Jung Yoon; Witten, Ilana B

    2016-06-01

    Despite the fact that cholinergic interneurons are a key cell type within the nucleus accumbens, a relationship between synaptic plasticity and the in vivo activity of cholinergic interneurons remains to be established. Here, we identify a three-way link between the activity of cholinergic interneurons, synaptic plasticity, and learning in mice undergoing the extinction of a cocaine-context association. We found that activity of cholinergic interneurons regulates extinction learning for a cocaine-context association and generates a sustained reduction in glutamatergic presynaptic strength onto medium spiny neurons. Interestingly, activation of cholinergic interneurons does not support reinforcement learning or plasticity by itself, suggesting that these neurons have a modulatory rather than a reinforcing function. PMID:27210555

  8. Conserving and Enhancing Biological Control of Nematodes

    PubMed Central

    Timper, Patricia

    2014-01-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  9. Pharmacological strategies for detoxification

    PubMed Central

    Diaper, Alison M; Law, Fergus D; Melichar, Jan K

    2014-01-01

    Detoxification refers to the safe discontinuation from a substance of dependence and is distinct from relapse prevention. Detoxification usually takes between a few days and a few weeks to complete, depending on the substance being misused, the severity of dependence and the support available to the user. Psychosocial therapies alongside pharmacological treatments are essential to improve outcome. The dependencies considered in this overview are detoxification from opioids (with methadone, buprenorphine, α2-adrenoceptor agonists and adjunct medications), alcohol (with benzodiazepines, anti-glutamatergics and γ-aminobutyric acid (GABA)-ergic drugs), stimulants and cannabis (with no clear recommended pharmacological treatments), benzodiazepines (with dose tapering) and nicotine (with nicotine replacement therapy, antidepressants and partial agonists). Evidence is limited by a lack of controlled trials robust enough for review bodies, and more research is required into optimal treatment doses and regimes, alone and in combination. PMID:24118014

  10. Similitude in modern pharmacology.

    PubMed

    Teixeira, M Z

    1999-07-01

    The principle of the similitude, the basis of homeopathy, has correspondences in the clinical studies of secondary effects of many modern pharmaceutical agents through the observation of the rebound effects of these drugs. Through clinical pharmacology, I proposed a model on which to base the scientificism of the homeopathic model. We have studied the effects of the drugs in the human body using pharmacological compendia and recent scientific works, confirming the mechanism of the homeopathic medicines' action through the verification of the primary action of the drugs and the consequent secondary reaction of the organism in hundreds of pharmaceutical agents. Treatment exploiting the "rebound" effect (curative vital reaction) may also be observed. This work suggests a research methodology to scientifically base the therapeutic principle of similitude. PMID:10449051

  11. [Pharmacological biomodulation in cancer].

    PubMed

    Arvelo, F; Merentes, E

    2001-01-01

    The discovery of the P-glycoprotein as a mediator of multidrug resistance (MDR) represents one of the most important research accomplishments in antineoplastic pharmacology during the last decade. Demonstration of Pgp in epithelial tissues, untreated and chemotherapeutically pretreated human malignancies, and identification of various agents capable of reversing in vitro resistance has generated enthusiasm for clinical studies throughout the world. This review discusses recent developments of experimental and clinical investigations of MDR reversing agents in cancer. PMID:11510431

  12. Biocontrol: Fungi as Nematode Control Agents

    PubMed Central

    Mankau, R.

    1980-01-01

    The fungal antagonists of nematodes consist of a great variety of organisms belonging to widely divergent orders and families of fungi. They include the nematode-trapping fungi, endoparasitic fungi, parasites of nematode eggs and cysts, and fungi which produce metabolites toxic to nematodes. The diversity, adaptations, and distribution of nematode-destroying fungi and taxonomic problems encountered in their study are reviewed. The importance of nemato-phagous fungi in soil biology, with special emphasis on their relationship to populations of plant-parasitic nematodes, is considered. While predacious fungi have long been investigated as possible biocontrol agents and have often exhibited spectacular results in vitro, their performance in field studies has generated little enthusiasm among nematologists. To date no species has demonstrated control of any plant pest to a degree achieved with nematicides, but recent studies have provided a much clearer concept of possibilities and problems in the applied use of fungal antagonists. The discovery of new species, which appear to control certain pests effectively under specific conditions, holds out some promise that fungi may be utilized as alternatives to chemical control after a more thorough and expanded study of their biology and ecology. PMID:19300699

  13. Social Pharmacology: Expanding horizons

    PubMed Central

    Maiti, Rituparna; Alloza, José Luis

    2014-01-01

    In the current modern and global society, social changes are in constant evolution due to scientific progress (technology, culture, customs, and hygiene) and produce the freedom in individuals to take decisions by themselves or with their doctors toward drug consumption. In the arena of marketed drug products which includes society, individual, administration, and pharmaceutical industry, the young discipline emerged is social pharmacology or sociopharmacology. This science arises from clinical pharmacology, and deals with different parameters, which are important in creating knowledge on marketed drugs. However, the scope of “social pharmacology” is not covered by the so-called “Phase IV” alone, but it is the science that handles the postmarketing knowledge of drugs. The social pharmacology studies the “life cycle” of any marketed pharmaceutical product in the social terrain, and evaluates the effects of the real environment under circumstances totally different in the drug development process. Therefore, there are far-reaching horizons, plural, and shared predictions among health professionals and other, for beneficial use of a drug, toward maximizing the benefits of therapy, while minimizing negative social consequences. PMID:24987168

  14. Neonatal clinical pharmacology

    PubMed Central

    Allegaert, Karel; van de Velde, Marc; van den Anker, John

    2013-01-01

    Effective and safe drug administration in neonates should be based on integrated knowledge on the evolving physiological characteristics of the infant who will receive the drug, and the pharmacokinetics (PK) and pharmacodynamics (PD) of a given drug. Consequently, clinical pharmacology in neonates is as dynamic and diverse as the neonates we admit to our units while covariates explaining the variability are at least as relevant as median estimates. The unique setting of neonatal clinical pharmacology will be highlighted based on the hazards of simple extrapolation of maturational drug clearance when only based on ‘adult’ metabolism (propofol, paracetamol). Secondly, maturational trends are not at the same pace for all maturational processes. This will be illustrated based on the differences between hepatic and renal maturation (tramadol, morphine, midazolam). Finally, pharmacogenetics should be tailored to neonates, not just mirror adult concepts. Because of this diversity, clinical research in the field of neonatal clinical pharmacology is urgently needed, and facilitated through PK/PD modeling. In addition, irrespective of already available data to guide pharmacotherapy, pharmacovigilance is needed to recognize specific side effects. Consequently, paediatric anesthesiologists should consider to contribute to improved pharmacotherapy through clinical trial design and collaboration, as well as reporting on adverse effects of specific drugs. PMID:23617305

  15. Overview of safety pharmacology.

    PubMed

    Goineau, Sonia; Lemaire, Martine; Froget, Guillaume

    2013-01-01

    Safety pharmacology entails the assessment of the potential risks of novel pharmaceuticals for human use. As detailed in the ICH S7A guidelines, safety pharmacology for drug discovery involves a core battery of studies on three vital systems: central nervous (CNS), cardiovascular (CV), and respiratory. Primary CNS studies are aimed at defining compound effects on general behavior, locomotion, neuromuscular coordination, seizure threshold, and vigilance. The primary CV test battery includes an evaluation of proarrhythmic risk using in vitro tests (hERG channel and Purkinje fiber assays) and in vivo measurements in conscious animals via telemetry. Comprehensive cardiac risk assessment also includes full hemodynamic evaluation in a large, anesthetized animal. Basic respiratory function can be examined in conscious animals using whole-body plethysmography. This allows for an assessment of whether the sensitivity to respiratory-depressant effects can be enhanced by exposure to increased CO2 . Other safety pharmacology topics detailed in this unit are the timing of such studies, ethical and animal welfare issues, and statistical evaluation. PMID:24510755

  16. Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging

    PubMed Central

    Parikh, Vinay; Howe, William M.; Welchko, Ryan M.; Naughton, Sean X.; D'Amore, Drew E.; Han, Daniel H.; Deo, Monika; Turner, David L.; Sarter, Martin

    2012-01-01

    The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain (BF) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno-associated viral vector-based RNA interference (AAV-RNAi) strategy to suppress the expression of trkA receptors by cholinergic neurons in the nucleus basalis of Meynert/ substantia innominata (nMB/SI) of adult and aged rats. Suppression of trkA receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trkA levels in the nMB/SI. TrkA knockdown neither affected nMB/SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trkA suppression augmented an age-related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release ACh. The capacity of cortical synapses to release acetylcholine (ACh) in vivo was also lower in aged/trkA-AAV-infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age-related increases in cortical proNGF and p75 receptor levels interacted with the vector-induced loss of trkA receptors to shift NGF signaling toward p75-mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early Alzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling. PMID:23228124

  17. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    PubMed

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  18. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    PubMed

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies. PMID:25938277

  19. Somatostatin modulates cholinergic neurotransmission in canine antral muscle

    SciTech Connect

    Koelbel, C.B.; van Deventer, G.; Khawaja, S.; Mogard, M.; Walsh, J.H.; Mayer, E.A. UCLA Medical Center, Torrance, CA )

    1988-02-01

    Somatostatin has been shown to inhibit antral motility in vivo. To examine the effect of somatostatin on cholinergic neurotransmission in the canine antrum, we studied the mechanical response of and the release of ({sup 3}H)acetylcholine from canine longitudinal antral muscle in response to substance P, gastrin 17, and electrical stimulation. In unstimulated tissues, somatostatin had a positive inotropic effect on spontaneous phasic contractions. In tissues stimulated with substance P and gastrin 17, but not with electrical stimulation, somatostatin inhibited the phasic inotropic response dose dependently. This inhibitory effect was abolished by indomethacin. Somatostatin stimulated the release of prostaglandin E{sub 2} radioimmunoreactivity, and prostaglandin E{sub 2} inhibited the release of ({sup 3}H)acetylcholine induced by substance P and electrical stimulation. Somatostatin increased the release of ({sup 3}H)acetylcholine from unstimulated tissues by a tetrodotoxin-sensitive mechanism but inhibited the release induced by substance P and electrical stimulation. These results suggest that somatostatin has a dual modulatory effect on cholinergic neutrotransmission in canine longitudinal antral muscle. This effect is excitatory in unstimulated tissues and inhibitory in stimulated tissues. The inhibitory effect is partially mediated by prostaglandins.

  20. Dopaminergic and Cholinergic Modulation of Striatal Tyrosine Hydroxylase Interneurons

    PubMed Central

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S.; Tepper, James M.; Koós, Tibor

    2015-01-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2013). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia. PMID:25908399

  1. Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons.

    PubMed

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S; Tepper, James M; Koós, Tibor

    2015-08-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2015). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulation of THINs in vitro. We found that the dominant effect of dopamine was a dramatic enhancement of the ability of THINs to generate long-lasting depolarizing plateau potentials (PPs). Interestingly, the same effect could also be elicited by amphetamine-induced release of endogenous dopamine suggesting that THINs may exhibit similar responses to changes in extracellular dopamine concentration in vivo. The enhancement of PPs in THINs is perhaps the most pronounced effect of dopamine on the intrinsic excitability of neostriatal neurons described to date. Further, we demonstrate that all subtypes of THINSs tested also express nicotinic cholinergic receptors. All THIS responded, albeit differentially, with depolarization, PPs and spiking to brief application of nicotinic agonists. Powerful modulation of the nonlinear integrative properties of THINs by dopamine and the direct depolarization of these neurons by acetylcholine may play important roles in mediating the effects of these neuromodulators in the neostriatum with potentially important implications for understanding the mechanisms of neuropsychiatric disorders affecting the basal ganglia. PMID:25908399

  2. Cholinergic transmission underlies modulation of frustration by open field exposure.

    PubMed

    Psyrdellis, Mariana; Pautassi, Ricardo Marcos; Mustaca, Alba; Justel, Nadia

    2016-01-01

    Frustration can be defined as an emotional state generated by the omission or devaluation in the quantity or quality of an expected appetitive reward. Thus, reactivity to a reward is affected by prior experience with the different reinforcer values of that reward. This phenomenon is known as incentive relativity, and can be studied by different paradigms. Although methodologically simple, the exploration of a novel open field (OF) is a complex situation that involves several behavioral processes, including stress induction and novelty detection. OF exposure can enhance or block the acquisition of associative and non-associative memories. These experiments evaluated the effect of OF exploration on frustration and the role played by the cholinergic system in this phenomenon. OF exploration before first or second trial of incentive downshift modulated the expression of frustration. This effect of OF was blocked by the administration of scopolamine either before or after OF exploration. These results indicate that the cholinergic system is involved in the acquisition and consolidation of OF information. PMID:26546747

  3. Low-level microwave irradiation and central cholinergic systems

    SciTech Connect

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W. )

    1989-05-01

    Our previous research showed that 45 min of exposure to low-level, pulsed microwaves (2450-MHz, 2-microseconds pulses, 500 pps, whole-body average specific absorption rate 0.6 W/kg) decreased sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. The effects of microwaves on central cholinergic systems were further investigated in this study. Increases in choline uptake activity in the frontal cortex, hippocampus, and hypothalamus were observed after 20 min of acute microwave exposure, and tolerance to the effect of microwaves developed in the hypothalamus, but not in the frontal cortex and hippocampus, of rats subjected to ten daily 20-min exposure sessions. Furthermore, the effects of acute microwave irradiation on central choline uptake could be blocked by pretreating the animals before exposure with the narcotic antagonist naltrexone. In another series of experiments, rats were exposed to microwaves in ten daily sessions of either 20 or 45 min, and muscarinic cholinergic receptors in different regions of the brain were studied by 3H-QNB binding assay. Decreases in concentration of receptors occurred in the frontal cortex and hippocampus of rats subjected to ten 20-min microwave exposure sessions, whereas increase in receptor concentration occurred in the hippocampus of animals exposed to ten 45-min sessions. This study also investigated the effects of microwave exposure on learning in the radial-arm maze. Rats were trained in the maze to obtain food reinforcements immediately after 20 or 45 min of microwave exposure.

  4. Evaluation of a patient with both aquagenic and cholinergic urticaria.

    PubMed

    Davis, R S; Remigio, L K; Schocket, A L; Bock, S A

    1981-12-01

    An 11-yr-old girl presented with a history of urticaria induced by warm or cool showers, exercise, and emotional stimuli. During evaluation she repeatedly developed generalized punctate urticaria, pruritus, palpitations, and headaches after warm baths or exercise, and she had a positive methacholine skin test. She developed similar lesions and pruritus after local application of sterile water, tap water, ethanol, normal saline, or 3% saline. The diagnosis of combined aquagenic and cholinergic urticaria was made and presented a unique opportunity to study and compare mediator release and clinical symptoms in both conditions. The patient was submerged in bath water at either 37 degree or 41 degree C to induce either aquagenic or cholinergic urticaria, respectively. Histamine was released into the systemic circulation in both conditions in a similar time course; however, systemic symptoms occurred only after the 41 degree C bath. After failure to induce tolerance to the 41 degree C bath water, hydroxyzine therapy was instituted. One week later she was rechallenged; few symptoms appeared, and a rise in serum histamine was not detected as had been shown in previous challenges. The data suggest that in our patient, hydroxyzine may have contributed to the inhibition of both histamine release and the appearance of symptoms during hot bath challenging. PMID:7310013

  5. Muscarinic cholinergic and alpha 2-adrenergic receptors in the epithelium and muscularis of the human ileum

    SciTech Connect

    Lepor, H.; Rigaud, G.; Shapiro, E.; Baumann, M.; Kodner, I.J.; Fleshman, J.W. )

    1990-04-01

    The aim of this study was to characterize the binding and functional properties of muscarinic cholinergic (MCh) and alpha 2-adrenergic receptors in the human ileum to provide insight into pharmacologic strategies for managing urinary and fecal incontinence after bladder and rectal replacement with intestinal segments. MCh and alpha 2-adrenergic binding sites were characterized in the epithelium and muscularis of eight human ileal segments with 3H-N-methylscopolamine and 3H-rauwolscine, respectively. The dissociation constant for 3H-N-methylscopolamine in the epithelium and muscularis was 0.32 +/- 0.07 nmol/L and 0.45 +/- 0.10 nmol/L, respectively (p = 0.32). The MCh receptor content was approximately eightfold greater in the muscularis compared with the epithelium (p = 0.008). The dissociation constant for 3H-rauwolscine in the muscularis and epithelium was 2.55 +/- 0.42 nmol/L and 2.03 +/- 0.19 nmol/L, respectively (p = 0.29). The alpha 2-adrenoceptor density was twofold greater in the epithelium compared with the muscularis (p = 0.05). Noncumulative concentration-response experiments were performed with carbachol, an MCh agonist, and UK-14304, a selective alpha 2-adrenergic agonist. The epithelium did not contract in the presence of high concentrations of carbachol and UK-14304. The muscularis preparations were responsive only to carbachol. The muscularis contains primarily MCh receptors mediating smooth muscle contraction. The alpha 2-adrenoceptors are localized primarily to the epithelium and may regulate water secretion in the intestine. The distribution and functional properties of ileal MCh and alpha 2-adrenergic receptors provide a theoretic basis for the treatment of incontinence after bladder and rectal replacement with intestinal segments.

  6. R-(+) and S-(−) Isomers of Cotinine Augment Cholinergic Responses In Vitro and In Vivo

    PubMed Central

    Callahan, Patrick M.; Bertrand, Daniel

    2015-01-01

    The nicotine metabolite cotinine (1-methyl-5-[3-pyridynl]-2-pyrrolidinone), like its precursor, has been found to exhibit procognitive and neuroprotective effects in some model systems; however, the mechanism of these effects is unknown. In this study, both the R-(+) and S-(−) isomers of cotinine were initially evaluated in an extensive profiling screen and found to be relatively inactive across a wide range of potential pharmacologic targets. Electrophysiological studies on human α4β2 and α7 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes confirmed the absence of agonistic activity of cotinine at α4β2 or α7 nAChRs. However, a significant increase in the current evoked by a low concentration of acetylcholine was observed at α7 nAChRs exposed to 1.0 μM R-(+)- or S-(−)-cotinine. Based on these results, we used a spontaneous novel object recognition (NOR) procedure for rodents to test the hypothesis that R-(+)- or S-(−)-cotinine might improve recognition memory when administered alone or in combination with the Alzheimer’s disease (AD) therapeutic agent donepezil. Although both isomers enhanced NOR performance when they were coadministered with donepezil, neither isomer was active alone. Moreover, the procognitive effects of the drug combinations were blocked by methyllycaconitine and dihydro-β-erythroidine, indicating that both α7 and α4β2 nAChRs contribute to the response. These results indicate that cotinine may sensitize α7 nAChRs to low levels of acetylcholine (a previously uncharacterized mechanism), and that cotinine could be used as an adjunctive agent to improve the effective dose range of cholinergic compounds (e.g., donepezil) in the treatment of AD and other memory disorders. PMID:25503389

  7. Long-term effects of selective immunolesions of cholinergic neurons of the nucleus basalis magnocellularis on the ascending cholinergic pathways in the rat: a model for Alzheimer's disease.

    PubMed

    Szigeti, Csaba; Bencsik, Norbert; Simonka, Aurel Janos; Legradi, Adam; Kasa, Peter; Gulya, Karoly

    2013-05-01

    Alzheimer's disease is associated with a significant decrease in the cholinergic input to the neocortex. In a rat model of this depletion, we analyzed the subsequent long-term changes in cholinergic fiber density in two well-defined areas of the frontal and parietal cortices: Fr1, the primary motor cortex, and HL, the hindlimb area of the somatosensory (parietal) cortex, two cortical cholinergic fields that receive inputs from the nucleus basalis magnocellularis (nBM). A specific cholinergic lesion was induced by the intraparenchymal injection of 192 IgG-saporin into the nBM. Choline acetyltransferase (ChAT) immunohistochemistry was applied to identify the loss of cholinergic neurons in the nBM, while acetylcholinesterase (AChE) enzyme histochemistry was used to analyze the decreases in the number of cholinoceptive neurons in the nBM and the cholinergic fiber density in the Fr1 and HL cortical areas in response to the nBM lesion. The immunotoxin differentially affected the number of ChAT- and AChE-positive neurons in the nBM. 192 IgG-saporin induced a massive, irreversible depletion of the ChAT-positive (cholinergic) neurons (to 11.7% of the control level), accompanied by a less dramatic, but similarly persistent loss of the AChE-positive (cholinoceptive) neurons (to 59.2% of the control value) in the nBM within 2 weeks after the lesion. The difference seen in the depletion of ChAT- and AChE-positive neurons is due to the specificity of the immunotoxin to cholinergic neurons. The cholinergic fiber densities in cortical areas Fr1 and HL remained similarly decreased (to 62% and 68% of the control values, respectively) up to 20 weeks. No significant rebound in AChE activity occurred either in the nBM or in the cortices during the period investigated. This study therefore demonstrated that, similarly to the very extensive reduction in the number of ChAT-positive neurons in the nBM, cortical areas Fr1 and HL underwent long-lasting reductions in the number of ACh

  8. Donepezil Treatment Restores the Ability of Estradiol to Enhance Cognitive Performance in Aged Rats: Evidence for the Cholinergic Basis of the Critical Period Hypothesis

    PubMed Central

    Gibbs, R.B.; Mauk, R.; Nelson, D.; Johnson, D.A.

    2009-01-01

    Recent studies suggest that the ability of estradiol to enhance cognitive performance diminishes with age and/or time following loss of ovarian function. We hypothesize that this is due, in part, to a decrease in basal forebrain cholinergic function. This study tested whether donepezil, a cholinesterase inhibitor, could restore estradiol effects on cognitive performance in aged rats that had been ovariectomized as young adults. Rats were ovariectomized at 3 months of age, and then trained on a delayed matching to position (DMP) T-maze task, followed by a configural association (CA) operant condition task, beginning at 12–17 or 22–27 months of age. Three weeks prior to testing, rats started to receive either donepezil or vehicle. After one week, half of each group also began receiving estradiol. Acclimation and testing began seven days later and treatment continued throughout testing. Estradiol alone significantly enhanced DMP acquisition in middle-aged rats, but not in aged rats. Donepezil alone had no effect on DMP acquisition in either age group; however, donepezil treatment restored the ability of estradiol to enhance DMP acquisition in aged rats. This effect was due largely to a reduction in the predisposition to adopt a persistent turn strategy during acquisition. These same treatments did not affect acquisition of the CA task in middle-aged rats, but did have small but significant effects on response time in aged rats. The data are consistent with the idea that estrogen effects on cognitive performance are task specific, and that deficits in basal forebrain cholinergic function are responsible for the loss of estradiol effect on DMP acquisition in aged ovariectomized rats. In addition, the data suggest that enhancing cholinergic function pharmacologically can restore the ability of estradiol to enhance acquisition of the DMP task in very old rats following long periods of hormone deprivation. Whether donepezil has similar restorative effects on other

  9. Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality and performance

    PubMed Central

    Paolone, Giovanna; Lee, Theresa M.; Sarter, Martin

    2012-01-01

    Although the impairments in cognitive performance that result from shifting or disrupting daily rhythms have been demonstrated, the neuronal mechanisms that optimize fixed time daily performance are poorly understood. We previously demonstrated that daily practice of a sustained attention task (SAT) evokes a diurnal activity pattern in rats. Here we report that SAT practice at a fixed time produced practice time-stamped increases in prefrontal cholinergic neurotransmission that persisted after SAT practice was terminated and in a different environment. SAT time-stamped cholinergic activation occurred irrespective of whether the SAT was practiced during the light or dark phase or in constant light conditions. In contrast, prior daily practice of an operant schedule of reinforcement, albeit generating more rewards and lever presses per session than the SAT, neither activated the cholinergic system nor affected the animals' nocturnal activity pattern. Likewise, food-restricted animals exhibited strong food anticipatory activity (FAA) and attenuated activity during the dark period but FAA was not associated with increases in prefrontal cholinergic activity. Removal of cholinergic neurons impaired SAT performance and facilitated the reemergence of nocturnality. Shifting SAT practice away from a fixed time resulted in significantly lower performance. In conclusion, these experiments demonstrated that fixed time, daily practice of a task assessing attention generates a precisely practice time-stamped activation of the cortical cholinergic input system. Time-stamped cholinergic activation benefits fixed time performance and, if practiced during the light phase, contributes to a diurnal activity pattern. PMID:22933795

  10. Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances Plasticity of Cortical-Amygdala Circuits.

    PubMed

    Jiang, Li; Kundu, Srikanya; Lederman, James D; López-Hernández, Gretchen Y; Ballinger, Elizabeth C; Wang, Shaohua; Talmage, David A; Role, Lorna W

    2016-06-01

    We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photostimulation of endogenous cholinergic input (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs), (2) enhances glutamatergic synaptic transmission in the BLA, and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories. PMID:27161525

  11. Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey

    PubMed Central

    Liberia, Teresa; Blasco-Ibáñez, José Miguel; Nácher, Juan; Varea, Emilio; Lanciego, José Luis; Crespo, Carlos

    2015-01-01

    The olfactory bulb (OB) of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca (HDB). At present, the synaptic connectivity of the cholinergic axons on the circuits of the OB has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the OB of the cynomolgus monkey (Macaca fascicularis). Our aim is to investigate whether the cholinergic innervation of the bulbar circuits is phylogenetically conserved between macrosmatic and microsmatic mammals. Our results demonstrate that the cholinergic axons form synaptic contacts on interneurons. In the glomerular layer, their main targets are the periglomerular cells, which receive axo-somatic and axo-dendritic synapses. In the inframitral region, their main targets are the granule cells, which receive synaptic contacts on their dendritic shafts and spines. Although the cholinergic boutons were frequently found in close vicinity of the dendrites of principal cells, we have not found synaptic contacts on them. From a comparative perspective, our data indicate that the synaptic connectivity of the cholinergic circuits is highly preserved in the OB of macrosmatic and microsmatic mammals. PMID:25852490

  12. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    PubMed

    Jeong, Jae Hoon; Woo, Young Jae; Chua, Streamson; Jo, Young-Hwan

    2016-01-01

    The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat. PMID:27611685

  13. Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways.

    PubMed

    Xiao, Cheng; Cho, Jounhong Ryan; Zhou, Chunyi; Treweek, Jennifer B; Chan, Ken; McKinney, Sheri L; Yang, Bin; Gradinaru, Viviana

    2016-04-20

    The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms, we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons; however, although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders. PMID:27100197

  14. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    SciTech Connect

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.; Fujiwara, M.

    1985-11-18

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM; ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.

  15. Clinical pharmacology and malaria.

    PubMed

    Breckenridge, A M; Winstanley, P A

    1997-10-01

    The role of clinical pharmacology in improving the prevention and treatment of malaria is reviewed. A series of general and specific issues is discussed, concentrating on risk-benefit and cost-effectiveness. The techniques of clinical pharmacokinetics play an important role in the optimal use of drugs and this is illustrated by studies on quinine and proguanil. In discussing amodiaquine toxicity, the role of the pharmacologist and the chemist in designing out drug toxicity lends hope for producing a new generation of antimalarial drugs. PMID:9625927

  16. Pharmacologic agents targeting autophagy

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Xia, Hong-guang; Yuan, Junying

    2015-01-01

    Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies. PMID:25654545

  17. Neuroimmune pharmacological approaches

    PubMed Central

    Holzer, Peter; Hassan, Ahmed; Jain, Piyush; Reichmann, Florian; Farzi, Aitak

    2016-01-01

    Intestinal inflammation is a major health problem which impairs the quality of life, impacts mental health and is exacerbated by stress and psychiatric disturbances which, in turn, can affect disease prognosis and response to treatment. Accumulating evidence indicates that the immune system is an important interface between intestinal inflammation and the enteric, sensory, central and autonomic nervous systems. In addition, the neuroimmune interactions originating from the gastrointestinal tract are orchestrated by the gut microbiota. This article reviews some major insights into this complex homeostatic network that have been achieved during the past two years and attempts to put these advances into perspective with novel opportunities of pharmacological intervention. PMID:26426677

  18. Pharmacologic treatment of paraphilias.

    PubMed

    Assumpção, Alessandra Almeida; Garcia, Frederico Duarte; Garcia, Heloise Delavenne; Bradford, John M W; Thibaut, Florence

    2014-06-01

    The treatment of paraphilias remains a challenge in the mental health field. Combined pharmacologic and psychotherapeutic treatment is associated with better efficacy. The gold standard treatment of severe paraphilias in adult males is antiandrogen treatment with cognitive behavioral therapy. Selective serotonin reuptake inhibitors have been used in mild types of paraphilia and in cases of sexual compulsions and juvenile paraphilias. Antiandrogen treatments seem to be effective in severe paraphilic subjects committing sexual offenses. In particular, gonadotropin-releasing hormone analogs have shown high efficacy working in a similar way to physical castration but being reversible at any time. Treatment recommendations, side effects, and contraindications are discussed. PMID:24877704

  19. Orexin Receptor Activation Generates Gamma Band Input to Cholinergic and Serotonergic Arousal System Neurons and Drives an Intrinsic Ca2+-Dependent Resonance in LDT and PPT Cholinergic Neurons

    PubMed Central

    Ishibashi, Masaru; Gumenchuk, Iryna; Kang, Bryan; Steger, Catherine; Lynn, Elizabeth; Molina, Nancy E.; Eisenberg, Leonard M.; Leonard, Christopher S.

    2015-01-01

    A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30–60 Hz) – a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT) and pedunculopontine (PPT) tegmental neurons and serotonergic dorsal raphe (DR) neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin) neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4–14 Hz) and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep, and intracortical gamma. PMID

  20. Attraction of pinewood nematode to endoparasitic nematophagous fungus Esteya vermicola.

    PubMed

    Wang, Chun Yan; Wang, Zhen; Fang, Zhe Ming; Zhang, Dong Liang; Gu, Li Juan; Liu, Lei; Sung, Chang Keun

    2010-05-01

    The investigations on attraction of nematodes to nematophagous fungi have mostly dealt with the nematode-trapping species. Esteya vermicola is the endoparasitic fungus of pinewood nematode (PWN) with high infection activity. In the present study, the attraction of PWNs to E. vermicola was investigated. It was confirmed that the living mycelia and exudative substances of E. vermicola were attractive to PWN. Compared with the nematode-trapping fungus A. brochopaga as well as nematode-feeding fungus B. cinerea, E. vermicola showed the significantly strongest attraction ability to nematode. It therefore appeared that the attraction ability reflects the dependence of the fungi on nematodes for nutrients. Furthermore, a new method was developed and used in the study to confirm the effect of volatile substances for the attraction of nematode to fungi. The results suggested that the attractive substances were consisted of avolatile exudative and volatile diffusing compounds. PMID:20012046

  1. The role of basal forebrain cholinergic neurons in fear and extinction memory.

    PubMed

    Knox, Dayan

    2016-09-01

    Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed. PMID:27264248

  2. Durotaxis in Nematode Caenorhabditis elegans.

    PubMed

    Parida, Lipika; Padmanabhan, Venkat

    2016-08-01

    Durotaxis is a process where cells are able to sense the stiffness of substrates and preferentially migrate toward stiffer regions. Here, we show that the 1-mm-long nematode, Caenorhabditis elegans are also able to detect the rigidity of underlying substrates and always migrate to regions of higher stiffness. Our results indicate that C. elegans are able to judiciously make a decision to stay on stiffer regions. We found that the, undulation frequency, and wavelength of worms, crawling on surfaces show nonmonotonic behavior with increasing stiffness. A number of control experiments were also conducted to verify whether C. elegans are really able to detect the rigidity of substrates or whether the migration to stiffer regions is due to other factors already reported in the literature. As it is known that bacteria and other single-celled organisms exhibit durotaxis toward stiffer surfaces, we conjecture that durotaxis in C. elegans may be one of the strategies developed to improve their chances of locating food. PMID:27508449

  3. [Trichostrongyloidea nematodes, parasites of Microchiroptera].

    PubMed

    Durette-Desset, M C; Chabaud, A G

    1975-01-01

    1. a) List of Nematodes collected by Professor Aellen in european Microchiroptera. Additionnal morphological data to the study of Molinostrongylus alatus, M. panousei, M. skrjabini. Description of M. aelleni n. sp. b) Description of M. richardae n. sp., M. benexae n. sp. et M. bauchoti n. sp., parasites of malagasian Molossidae. c) Description of M. colleyi n. sp. and M. owyangi n. sp., parasites of Malaysian Vespertilioninae, and of Allintoschius dunni n. sp., discovered in Myotis mystacinus from Malaysia and Pipistrellus nanus from Africa. 2. Taking into account the characteristics of the synlophe, the 17 species of the genus Molinostrongylus may be divided into five groups, each one being reasonably well characteristic of the genus of their Chiropteran host. 3. The composition of the Trichostrongyloidea fauna of Chiroptera and its relationship with Trichostrongyloidea from other Mammals (Tupaiidae, Pholidotes, Primates, Sciuridés) are analysed. Six groups are separated and divided into two well defined lines: 1) genus Strongylacantha, and 2) 12 genera stemming more or less directly from the Molineinae, 4. The three conical outgrowths at the tip of the female tail which differenciate presently the Anoplostrogylinae from the Molineinae appear to be an unreliable characteristic. The two subfamilies form a complex group which will be better understood if the evolution of the synlophe and that of the caudal bursa of the males are taken into account. PMID:1211768

  4. Biocontrol: The Potential of Entomophilic Nematodes in Insect Management

    PubMed Central

    Webster, John M.

    1980-01-01

    A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management. PMID:19300702

  5. Nematode model systems in evolution and development.

    PubMed

    Sommer, Ralf J; Bumbarger, Daniel J

    2012-01-01

    The free-living nematode Caenorhabditis elegans is one of the most important model organisms in all areas of modern biology. Using the knowledge about C. elegans as a baseline, nematodes are now intensively studied in evolution and development. Evolutionary developmental biology or for short, 'evo-devo' has been developed as a new research discipline during the last two decades to investigate how changes in developmental processes and mechanisms result in the modification of morphological structures and phenotypic novelty. In this article, we review the concepts that make nematode evo-devo a successful approach to evolutionary biology. We introduce selected model systems for nematode evo-devo and provide a detailed discussion of four selected case studies. The most striking finding of nematode evo-devo is the magnitude of developmental variation in the context of a conserved body plan. Detailed investigation of early embryogenesis, gonad formation, vulva development, and sex determination revealed that molecular mechanisms evolve rapidly, often in the context of a conserved body plan. These studies highlight the importance of developmental systems drift and neutrality in evolution. PMID:23801489

  6. Nematodes Associated with Blackberry in Arkansas

    PubMed Central

    Wehunt, E. J.; Golden, A. M.; Clark, J. R.; Kirkpatrick, T. L.; Baker, E. C.; Brown, M. A.

    1991-01-01

    A survey of the nematodes in blackberry (Rubus sp.) rhizospheres was conducted in Arkansas from 1986 to 1989. The state was divided arbitrarily into four quadrants. A total of 134 soil samples was collected, and 150-cm 3 subsamples were assayed for nematodes. Twenty-one species of plant-parasitic nematodes in 11 genera were extracted from the samples. There were differences (P = 0.05) among quadrants of the state in percentage occurrence of the nematodes and in population densities in samples. Xiphinema americanum, Helicotylenchus spp. (H. paraplatyurus, H. platyurus, and H. pseudorobustus), and Pratylenchus spp. (P. vulnus and P. zeae) were found in all quadrants. Xiphinema americanum population density was near 1,000 per 150 cm³ soil in soil samples from two locations. Other nematodes found in one or more quadrants were Criconemella spp. (C. axeste, C. curvata, C. denoudeni, C. ornata, C. sphaerocephala, and C. xenoplax), Paratrichodorus minor, Tylenchorhynchus claytoni, Hirschmanniella oryzae, Hoplolaimus magnistylus, Scutellonema bradys, and undescribed species of Criconema, Tylenchulus, Xiphinema, and Meloidogyne. Criconemella sphaerocephala and Helicotylenchus platyurus are reported from Arkansas for the first time. Helicotylenchus paraplatyurus is reported from the United States for the first time. PMID:19283173

  7. NEMBASE: a resource for parasitic nematode ESTs.

    PubMed

    Parkinson, John; Whitton, Claire; Schmid, Ralf; Thomson, Marian; Blaxter, Mark

    2004-01-01

    NEMBASE (available at http://www.nematodes.org) is a publicly available online database providing access to the sequence and associated meta-data currently being generated as part of the Edinburgh-Wellcome Trust Sanger Institute parasitic nematode EST project. NEMBASE currently holds approximately 100 000 sequences from 10 different species of nematode. To facilitate ease of use, sequences have been processed to generate a non-redundant set of gene objects ('partial genome') for each species. Users may query the database on the basis of BLAST annotation, sequence similarity or expression profiles. NEMBASE also features an interactive Java-based tool (SimiTri) which allows the simultaneous display and analysis of the relative similarity relationships of groups of sequences to three different databases. NEMBASE is currently being expanded to include sequence data from other nematode species. Other developments include access to accurate peptide predictions, improved functional annotation and incorporation of automated processes allowing rapid analysis of nematode-specific gene families. PMID:14681449

  8. Epigenetics and pharmacology

    PubMed Central

    Stefanska, Barbara; MacEwan, David J

    2015-01-01

    Recent advances in the understanding of gene regulation have shown there to be much more regulation of the genome than first thought, through epigenetic mechanisms. These epigenetic mechanisms are systems that have evolved to either switch off gene activity altogether, or fine-tune any existing genetic activation. Such systems are present in all genes and include chromatin modifications and remodelling, DNA methylation (such as CpG island methylation rates) and histone covalent modifications (e.g. acetylation, methylation), RNA interference by short interfering RNAs (siRNAs) and long non-coding RNAs (ncRNAs). These systems regulate genomic activity ‘beyond’ simple transcriptional factor inducer or repressor function of genes to generate mRNA. Epigenetic regulation of gene activity has been shown to be important in maintaining normal phenotypic activity of cells, as well as having a role in development and diseases such as cancer and neurodegenerative disorders such as Alzheimer's. Newer classes of drugs regulate epigenetic mechanisms to counteract disease states in humans. The reports in this issue describe some advances in epigenetic understanding that relate to human disease, and our ability to control these mechanisms by pharmacological means. Increasingly the importance of epigenetics is being uncovered – it is pharmacology that will have to keep pace. PMID:25966315

  9. Caenorhabditis elegans as Model System in Pharmacology and Toxicology: Effects of Flavonoids on Redox-Sensitive Signalling Pathways and Ageing

    PubMed Central

    Koch, Karoline; Havermann, Susannah; Büchter, Christian

    2014-01-01

    Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research. PMID:24895670

  10. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex.

    PubMed

    Lucas-Meunier, Estelle; Monier, Cyril; Amar, Muriel; Baux, Gérard; Frégnac, Yves; Fossier, Philippe

    2009-10-01

    This study aims to clarify how endogenous release of cortical acetylcholine (ACh) modulates the balance between excitation and inhibition evoked in visual cortex. We show that electrical stimulation in layer 1 produced a significant release of ACh measured intracortically by chemoluminescence and evoked a composite synaptic response recorded intracellularly in layer 5 pyramidal neurons of rat visual cortex. The pharmacological specificity of the ACh neuromodulation was determined from the continuous whole-cell voltage clamp measurement of stimulation-locked changes of the input conductance during the application of cholinergic agonists and antagonists. Blockade of glutamatergic and gamma-aminobutyric acid (GABAergic) receptors suppressed the evoked response, indicating that stimulation-induced release of ACh does not directly activate a cholinergic synaptic conductance in recorded neurons. Comparison of cytisine and mecamylamine effects on nicotinic receptors showed that excitation is enhanced by endogenous evoked release of ACh through the presynaptic activation of alpha(*)beta4 receptors located on glutamatergic fibers. DHbetaE, the selective alpha4beta2 nicotinic receptor antagonist, induced a depression of inhibition. Endogenous ACh could also enhance inhibition by acting directly on GABAergic interneurons, presynaptic to the recorded cell. We conclude that endogenous-released ACh amplifies the dominance of the inhibitory drive and thus decreases the excitability and sensory responsiveness of layer 5 pyramidal neurons. PMID:19176636

  11. Characterization of biocontrol traits in the entomopathogenic nematode Heterorhabditis georgiana (Kesah strain), and phylogenetic analysis of the nematode's symbiotic bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to estimate the biocontrol potential of the recently discovered entomopathogenic nematode species, Heterorhabditis georgiana (Kesha strain). Virulence and environmental tolerance were tested among several nematode species. Heterorhabditis georgiana expressed low or intermediate c...

  12. Towards a genome sequence for reniform nematode (Rotylenchulus reniformis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reniform nematode (Rotylenchulus reniformis) currently accounts for $130M in annual losses to the U.S. cotton industry and has supplanted root-knot nematode as the major nematode pest of cotton in Mississippi, Louisiana, and Alabama. Moreover, in other cotton-producing states the range and influenc...

  13. METABOLISM OF AN INSECT NEUROPEPTIDE BY THE NEMATODE C. ELEGANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are interested in neuropeptides in nematodes as leads to new control agents for parasitic nematodes. This includes physiological aspects of neuropeptide action and metabolic regulation of these peptides. The free-living nematode Caenorhabditis elegans, with its mapped genome, offers unique opport...

  14. Strawberry Cultivars Vary in their Resistance to Northern Lesion Nematode

    PubMed Central

    Dale, Adam; Potter, John W.

    1998-01-01

    The genetic diversity of commercial cultivars of strawberry Fragaria x ananassa from various parentages, as expressed by their resistance to the northem lesion nematode Pratylenchus penetrans, was evaluated in nematode-infested field plots for two growing seasons. Data taken for each plant in each season included soil nematode Pi and Pf, end-of-season nematode numbers in each entire root system, and end-of-season fresh and dry top weight and whole root system weight. Resistance was estimated using an index of the nematode load on the plant: Nematode load = {n(root) + (200 × n[soil])}/{root dry weight} where n (root) = number of nematodes in the root, n [soil] = number of nematodes in 50 g of nonfumigated soil, and 200 is a multiplier to convert the soil nematode count to a 10-kg basis. Nineteen strawberry cultivars varied in their resistance to the northern lesion nematode, from a mean load of 382 nematodes/plant for Pajaro to 1,818 nematodes/plant for Veestar. This variability could be related to the original family groupings, with the most resistant cultivars related to Lassen and the least resistant to Sparkle x Valentine. PMID:19274249

  15. How to identify nematode problems and why it is important

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-parasitic nematodes are microscopic worms that feed on plants. Several nematode species are serious pathogens of cotton, reducing overall US cotton production by an estimated 4.7%. Though losses in nematode infested fields are frequently 10 to 30%, losses can be greater than 50%. Cotton pla...

  16. Muscarinic cholinergic receptors in pancreatic acinar carcinoma of rat.

    PubMed

    Taton, G; Delhaye, M; Swillens, S; Morisset, J; Larose, L; Longnecker, D S; Poirier, G G

    1985-04-15

    The active enantiomer of tritiated quinuclidinyl benzilate (3H(-)QNB) was used as a ligand to evaluate the muscarinic receptors. The 3H(-)QNB binding characteristics of muscarinic cholinergic receptors obtained from normal and neoplastic tissues were studied to determine changes in receptor properties during neoplastic transformation. Saturable and stereospecific binding sites for 3H(-)QNB are present in homogenates of rat pancreatic adenocarcinoma. The proportions of high- and low-affinity agonist binding sites are similar for neoplastic and normal tissues. The density of muscarinic receptors is higher in neoplastic (200 femtomoles/mg protein) than in normal pancreatic homogenates (80 femtomoles/mg protein). The muscarinic binding sites of the neoplastic and fetal pancreas show similar KD values which are higher than those observed for normal pancreas. PMID:2580801

  17. Acute cholinergic syndrome following ingestion of contaminated herbal extract.

    PubMed

    Hsieh, M-J; Yen, Z-S; Chen, S-C; Fang, C-C

    2008-11-01

    Herbal preparations are becoming more and more popular and increasingly used in the USA. Herbs are from natural plants and therefore often considered to be harmless compared with western medicines. Nevertheless, as the use of herbal remedies has risen, so has the incidence of acute and chronic herbal intoxication. The case history is presented of a 68-year-old man who presented with an acute cholinergic syndrome soon after ingesting a herbal preparation containing Flemingia macrophylla and ginseng. His red blood cell acetylcholinesterase activity dropped to 50% of the normal reference range. He was treated successfully with atropine and supportive care. It was thought that contamination with pesticides, such as organophosphate residue, was the probable cause. This case highlights the need to be more aware of the possibility of acute pesticide intoxication in herbal users, even when only small amounts are consumed. PMID:18955628

  18. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation

    PubMed Central

    Saunders, Cecil J.; Christensen, Michael; Finger, Thomas E.; Tizzano, Marco

    2014-01-01

    Solitary chemosensory cells (SCCs) of the nasal cavity are specialized epithelial chemosensors that respond to irritants through the canonical taste transduction cascade involving Gα-gustducin and transient receptor potential melastatin 5. When stimulated, SCCs trigger peptidergic nociceptive (or pain) nerve fibers, causing an alteration of the respiratory rate indicative of trigeminal activation. Direct chemical excitation of trigeminal pain fibers by capsaicin evokes neurogenic inflammation in the surrounding epithelium. In the current study, we test whether activation of nasal SCCs can trigger similar local inflammatory responses, specifically mast cell degranulation and plasma leakage. The prototypical bitter compound, denatonium, a well-established activator of SCCs, caused significant inflammatory responses in WT mice but not mice with a genetic deletion of elements of the canonical taste transduction cascade, showing that activation of taste signaling components is sufficient to trigger local inflammation. Chemical ablation of peptidergic trigeminal fibers prevented the SCC-induced nasal inflammation, indicating that SCCs evoke inflammation only by neural activity and not by release of local inflammatory mediators. Additionally, blocking nicotinic, but not muscarinic, acetylcholine receptors prevents SCC-mediated neurogenic inflammation for both denatonium and the bacterial signaling molecule 3-oxo-C12-homoserine lactone, showing the necessity for cholinergic transmission. Finally, we show that the neurokinin 1 receptor for substance P is required for SCC-mediated inflammation, suggesting that release of substance P from nerve fibers triggers the inflammatory events. Taken together, these results show that SCCs use cholinergic neurotransmission to trigger peptidergic trigeminal nociceptors, which link SCCs to the neurogenic inflammatory pathway. PMID:24711432

  19. Cholinergic urethral brush cells are widespread throughout placental mammals.

    PubMed

    Deckmann, Klaus; Krasteva-Christ, Gabriela; Rafiq, Amir; Herden, Christine; Wichmann, Judy; Knauf, Sascha; Nassenstein, Christina; Grevelding, Christoph G; Dorresteijn, Adriaan; Chubanov, Vladimir; Gudermann, Thomas; Bschleipfer, Thomas; Kummer, Wolfgang

    2015-11-01

    We previously identified a population of cholinergic epithelial cells in murine, human and rat urethrae that exhibits a structural marker of brush cells (villin) and expresses components of the canonical taste transduction signaling cascade (α-gustducin, phospholipase Cβ2 (PLCβ2), transient receptor potential cation channel melanostatin 5 (TRPM5)). These cells serve as sentinels, monitoring the chemical composition of the luminal content for potentially hazardous compounds such as bacteria, and initiate protective reflexes counteracting further ingression. In order to elucidate cross-species conservation of the urethral chemosensory pathway we investigated the occurrence and molecular make-up of urethral brush cells in placental mammals. We screened 11 additional species, at least one in each of the five mammalian taxonomic units primates, carnivora, perissodactyla, artiodactyla and rodentia, for immunohistochemical labeling of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), villin, and taste cascade components (α-gustducin, PLCβ2, TRPM5). Corresponding to findings in previously investigated species, urethral epithelial cells with brush cell shape were immunolabeled in all 11 mammals. In 8 species, immunoreactivities against all marker proteins and ChAT were observed, and double-labeling immunofluorescence confirmed the cholinergic nature of villin-positive and chemosensory (TRPM5-positive) cells. In cat and horse, these cells were not labeled by the ChAT antiserum used in this study, and unspecific reactions of the secondary antiserum precluded conclusions about ChAT-expression in the bovine epithelium. These data indicate that urethral brush cells are widespread throughout the mammalian kingdom and evolved not later than about 64.5millionyears ago. PMID:26044348

  20. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  1. Nematode community structure of forest woodlots. I. Relationships based on similarity coefficients of nematode species.

    PubMed

    Johnson, S R; Ferris, V R; Ferris, J M

    1972-07-01

    Associations among nematode communities were studied in 18 Indiana mixed-hardwood stands of varying composition, soils, physiography, and past management practices. All sites were sampled in April, July, and October of 1968 and 1969. A total of 175 species representing eight orders were found, with 18 species occurring in all 18 sites, and approximately half the total species occurring in more than 50% of the sites. Taxonomic similarity, based on nematode species composition, was determined for the woodlots by means of a resemblance equation. Woodlots containing similar nematode species also showed similarities in dominant tree species and in soil types. Sites that had undergone major disturbances were the most dissimilar. PMID:19319263

  2. Nematode taxonomy: from morphology to metabarcoding

    NASA Astrophysics Data System (ADS)

    Ahmed, M.; Sapp, M.; Prior, T.; Karssen, G.; Back, M.

    2015-11-01

    Nematodes represent a species rich and morphologically diverse group of metazoans inhabiting both aquatic and terrestrial environments. Their role as biological indicators and as key players in nutrient cycling has been well documented. Some groups of nematodes are also known to cause significant losses to crop production. In spite of this, knowledge of their diversity is still limited due to the difficulty in achieving species identification using morphological characters. Molecular methodology has provided very useful means of circumventing the numerous limitations associated with classical morphology based identification. We discuss herein the history and the progress made within the field of nematode systematics, the limitations of classical taxonomy and how the advent of high throughput sequencing is facilitating advanced ecological and molecular studies.

  3. Towards sustainable nematode parasite control of livestock.

    PubMed

    Waller, P J

    1993-06-01

    Farmers worldwide have come to expect, and rely almost exclusively on, broad-spectrum anthelmintics to effectively control nematode parasites amongst their livestock. However, the threats of resistance, residues and ecotoxicity are of increasing concern to the future of chemotherapy. It is imperative that sustainable parasite control schemes be developed and implemented which will integrate a range of techniques to minimise anthelmintic use and still maintain high levels of profitability of the farming enterprise. At present, these need to focus on the better use of existing drugs to maximise their effectiveness and minimise the selection for resistance and impact on the environment. New drugs should also be used according to these principles. In the future it is expected that other non-chemotherapeutic options will become available, e.g. helminth vaccines, resistant hosts, biological control, nematode growth regulators, which will revolutionize the current thinking on nematode parasite control of livestock. PMID:8346643

  4. Remote Sensing of Parasitic Nematodes in Plants

    NASA Technical Reports Server (NTRS)

    Lawrence, Gary W.; King, Roger; Kelley, Amber T.; Vickery, John

    2007-01-01

    A method and apparatus for remote sensing of parasitic nematodes in plants, now undergoing development, is based on measurement of visible and infrared spectral reflectances of fields where the plants are growing. Initial development efforts have been concentrated on detecting reniform nematodes (Rotylenchulus reniformis) in cotton plants, because of the economic importance of cotton crops. The apparatus includes a hand-held spectroradiometer. The readings taken by the radiometer are processed to extract spectral reflectances at sixteen wavelengths between 451 and 949 nm that, taken together, have been found to be indicative of the presence of Rotylenchulus reniformis. The intensities of the spectral reflectances are used to estimate the population density of the nematodes in an area from which readings were taken.

  5. Anthelmintics. A comparative review of their clinical pharmacology.

    PubMed

    de Silva, N; Guyatt, H; Bundy, D

    1997-05-01

    Virtually all the important helminth infections in humans can be treated with one of 5 anthelmintics currently in use: albendazole, mebendazole, diethylcarbamazine, ivermectin and praziquantel. These drugs are vital not only for the treatment of individual infections, but also useful in controlling transmission of the more common infections. This article reviews briefly the pharmacology of these 5 drugs, and then discusses current issues in the use of anthelmintics in the treatment and/or control of soil-transmitted nematode infections, filariasis, onchocerciasis, schistosomiasis (and other trematode infections), neurocysticercosis and hydatidosis. Mebendazole and albendazole are most effective against intestinal nematodes, but are contraindicated during the first trimester of pregnancy. The efficacy of prolonged therapy with these 2 drugs for treatment of larval cestode infections has not yet been established. Diethylcarbamazine is widely used to treat and control lymphatic filariasis, but adverse effects related to death of microfilariae or damage to adult worms may be marked. While ivermectin has been used in the treatment of patients with onchocerciasis, it is also undergoing investigation against lymphatic filariae. Praziquantel, used to treat schistosome infections, is also effective in other trematode infections and adult cestode infections. PMID:9129865

  6. Delayed response to ring nematode (Mesocriconema xenoplax) feeding on grape roots linked to vine carbohydrate reserves and nematode feeding pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chronic impact of ring nematode (Mesocriconema xenoplax) feeding on grapevine (Vitis vinifera) was studied under controlled conditions. 'Pinot noir' grapevines were exposed to ring nematode or kept nematode-free for three growing seasons, and vines were either grown in full sunlight, 15% of full...

  7. Hsp-90 and the biology of nematodes

    PubMed Central

    Him, Nik AIIN; Gillan, Victoria; Emes, Richard D; Maitland, Kirsty; Devaney, Eileen

    2009-01-01

    Background Hsp-90 from the free-living nematode Caenorhabditis elegans is unique in that it fails to bind to the specific Hsp-90 inhibitor, geldanamycin (GA). Here we surveyed 24 different free-living or parasitic nematodes with the aim of determining whether C. elegans Hsp-90 was the exception or the norm amongst the nematodes. We combined these data with codon evolution models in an attempt to identify whether hsp-90 from GA-binding and non-binding species has evolved under different evolutionary constraints. Results We show that GA-binding is associated with life history: free-living nematodes and those parasitic species with free-living larval stages failed to bind GA. In contrast, obligate parasites and those worms in which the free-living stage in the environment is enclosed within a resistant egg, possess a GA-binding Hsp-90. We analysed Hsp-90 sequences from fifteen nematode species to determine whether nematode hsp-90s have undergone adaptive evolution that influences GA-binding. Our data provide evidence of rapid diversifying selection in the evolution of the hsp-90 gene along three separate lineages, and identified a number of residues showing significant evidence of adaptive evolution. However, we were unable to prove that the selection observed is correlated with the ability to bind geldanamycin or not. Conclusion Hsp-90 is a multi-functional protein and the rapid evolution of the hsp-90 gene presumably correlates with other key cellular functions. Factors other than primary amino acid sequence may influence the ability of Hsp-90 to bind to geldanamycin. PMID:19849843

  8. Pharmacology of Quercus infectoria.

    PubMed

    Dar, M S; Ikram, M; Fakouhi, T

    1976-12-01

    The galls of Quercus infectoria (Fagaceae), a commonly available plant in Iran, were studied pharmacologically. Two fractions were employed, a dried acetone-treated methanol extract dissolved in water (Fraction A) and a subfraction prepared by chloroform-methanol extraction (Fraction B). Fraction A was active as an analgesic in rats and significantly reduced blood sugar levels in rabbits. Fraction B had CNS depressant activity. Data obtained with a treadmill indicated a decreased activity ratio by Fraction B, suggesting a possible interference in motor coordination. It potentiated the barbiturate sleeping time significantly without changing the onset time or the loss of the righting reflex. In addition, Fraction B exhibited a moderate antitremorine activity by causing a delay in the onset and a decrease in the severity of tremorine-induced tremors. The local anesthetic action of Fraction B was evident due to the complete blockade of the isolated frog sciatic nerve conduction. PMID:1032663

  9. Pharmacology of antihypertensive drugs.

    PubMed

    Pepper, G A

    1999-01-01

    The wide variety of first-line agents available for managing high blood pressure include diuretics, beta adrenergic receptor blockers, alpha adrenergic receptor blockers, angiotensin converting enzyme inhibitors, and calcium channel blockers. Supplemental agents used for second-line therapy and special indications, such as pregnancy and hypertensive emergencies, include angiotensin receptor blockers, central-acting agents, direct vasodilators, and adrenergic neuron inhibitors. Selection of agents for particular patients requires consideration of research-based evidence for positive long-term outcomes and of the unique patient profile of age, race, co-morbidities, and lifestyle. A thorough understanding of the pharmacology (mechanism, pharmacokinetics, adverse effects and drug interactions, clinical use) of antihypertensive agents is an essential foundation for nursing practice in women's health. PMID:10584919

  10. Conus venom peptide pharmacology.

    PubMed

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  11. Pharmacology of GABA.

    PubMed

    Meldrum, B

    1982-01-01

    GABA-ergic systems are involved in all the main functions of the brain. In most brain regions impairment of this system produces epileptic activity. GABA-mediated inhibitory function can be enhanced by drugs of at least seven different types. They act on the metabolism or synaptic release of GABA, or its reuptake into neurones of glia, or on various components of the GABA receptor complex (GABA recognition site, "benzodiazepine" receptor or chloride ionophore). Among such compounds, those which act most specifically and potently on GABA receptors remain primarily research tools. Among compounds in clinical use, valproate, benzodiazepines, and anticonvulsant barbiturates al enhance GABA-mediated inhibition. In the future, new inhibitors of GABA uptake, new GABA agonists and potent inhibitors of GABA-transaminase are likely to become available. Trials of drugs enhancing GABA-ergic function have been made in a wide variety of neurological disorders. In most forms of epilepsy a therapeutic effect is evident. Real benefit from GABA therapies has not been demonstrated in the principal disorders of movement (Huntington's chorea, Parkinson's disease, dystonias), except in so far as they have a myoclonic or paroxysmal component. Among psychiatric disorders the acute symptoms of schizophrenia are exacerbated by enhanced GABA-ergic function. Abstinence syndromes (alcohol, barbiturate or narcotic withdrawal) are ameliorated by drugs enhancing GABA-ergic function, and there is some evidence for a beneficial action in anxiety states and mania. Attempts to relate the molecular neurobiology of GABA with clinical pharmacology are of very recent origin. Improved understanding of the variety of GABA receptor mechanisms will provide the key to the more selective pharmacological manipulations that are required for therapeutic success. PMID:6214305

  12. [Involvement and plasticity of brainstem cholinergic neurons in cocaine-induced addiction].

    PubMed

    Kaneda, Katsuyuki; Shinohara, Fumiya; Kurosawa, Ryo; Taoka, Naofumi; Ide, Soichiro; Minami, Masabumi

    2014-04-01

    Although the involvement and plasticity of the mesocorticolimbic dopamine (DA) system in cocaine-induced addiction have been studied extensively, the role of the brainstem cholinergic system in cocaine addiction remains largely unexplored. The laterodorsal tegmental nucleus (LDT) contains cholinergic neurons that innervate the ventral tegmental area (VTA) and is crucial for regulating the activity of VTA DA neurons, implying that LDT may also be associated with cocaine addiction. In this review, we summarize our recent findings showing that cholinergic transmission from the LDT to the VTA is involved in acquisition and expression of cocaine-induced conditioned place preference and that, after repeated cocaine exposures, these neurons exhibit synaptic plasticity, which is dependent on NMDA receptor activation, nitric oxide production, and the activity of medial prefrontal cortex. The findings strongly suggest that LDT cholinergic neurons may critically contribute to developing cocaine-induced addiction. PMID:24946392

  13. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1992-01-01

    The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.

  14. Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Turchi, Janita; Saunders, Richard C.; Mishkin, Mortimer

    2005-01-01

    Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition. PMID:15684066

  15. Cholinergic neurotransmission seems not to be involved in depression but possibly in personality.

    PubMed Central

    Fritze, J; Lanczik, M; Sofic, E; Struck, M; Riederer, P

    1995-01-01

    Concordant with the adrenergic-cholinergic imbalance hypothesis of affective psychosis, there is a cholinergic supersensitivity in depression. Thus, the anticholinergic properties of some antidepressants might contribute to their efficacy. However, in the present double-blind studies (n = 20) with mianserin and viloxazine, respectively, which lack anticholinergic properties, adjunctive treatment with the anticholinergic biperiden versus placebo did not enhance the antidepressive efficacy. Therefore, we hypothesized that cholinergic supersensitivity might be linked to some possibly predisposing dimension of personality. Indeed, in healthy male volunteers (n = 11) the behavioral and cardiovascular sensitivity to physostigmine correlated significantly with "irritability" and "emotional lability" as well as with habitually passive strategies in stress coping. The rise in plasma cortisol and norepinephrine correlated with "retardation"; that of epinephrine with active coping. Thus, the cholinergic supersensitivity in affective psychoses might be linked to a personality dimension like stress sensitivity rather than to the diagnostic category itself. Images Fig. 2 PMID:7865500

  16. Cholinergic inhibition of adrenergic neurosecretion in the rabbit iris-ciliary body

    SciTech Connect

    Jumblatt, J.E.; North, G.T.

    1988-04-01

    The prejunctional effects of cholinergic agents on release of norepinephrine from sympathetic nerve endings were investigated in the isolated, superfused rabbit iris-ciliary body. Stimulation-evoked release of /sup 3/H-norepinephrine was inhibited by the cholinergic agonists methacholine, oxotremorine, muscarine, carbamylcholine and acetylcholine (plus eserine), but was unmodified by pilocarpine or nicotine. Agonist-induced inhibition was antagonized selectively by atropine, indicating a muscarinic response. Atropine alone markedly enhanced norepinephrine release, revealing considerable tonic activation of prejunctional cholinergic receptors in this system. Prejunctional inhibition by carbamylcholine was found to completely override the facilitative action of forskolin or 8-bromo-cyclic AMP on neurotransmitter release. Cholinergic and alpha 2-adrenergic effects on neurosecretion were non-additive, suggesting that the underlying receptors coexist at neurotransmitter release sites.

  17. Genomics of reproduction in nematodes: prospects for parasite intervention?

    PubMed

    Nisbet, Alasdair J; Cottee, Pauline A; Gasser, Robin B

    2008-02-01

    Understanding reproductive processes in parasitic nematodes has the potential to lead to the informed design of new anthelmintics and control strategies. Little is known, however, about the molecular mechanisms underlying sex determination, gametogenesis and reproductive physiology for most parasitic nematodes. Together with comparative analyses of data for the free-living nematode Caenorhabditis elegans, molecular investigations are beginning to provide insights into the processes involved in reproduction and development in parasitic nematodes. Here, we review recent developments, focusing on technological aspects and on molecules associated with sex-specific differences in adult nematodes. PMID:18182326

  18. The evolution of spliced leader trans-splicing in nematodes.

    PubMed

    Pettitt, Jonathan; Harrison, Neale; Stansfield, Ian; Connolly, Bernadette; Müller, Berndt

    2010-08-01

    Spliced leader trans-splicing occurs in many primitive eukaryotes including nematodes. Most of our knowledge of trans-splicing in nematodes stems from the model organism Caenorhabditis elegans and relatives, and from work with Ascaris. Our investigation of spliced leader trans-splicing in distantly related Dorylaimia nematodes indicates that spliced-leader trans-splicing arose before the nematode phylum and suggests that the spliced leader RNA gene complements in extant nematodes have evolved from a common ancestor with a diverse set of spliced leader RNA genes. PMID:20659016

  19. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: a cholinesterase dependent mechanism.

    PubMed

    Del Pino, Javier; Zeballos, Garbriela; Anadon, María José; Capo, Miguel Andrés; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2014-11-01

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases. PMID:25201352

  20. Cholinergic dysregulation produced by selective inactivation of the dystonia-associated protein TorsinA

    PubMed Central

    Sciamanna, Giuseppe; Hollis, Robert; Ball, Chelsea; Martella, Giuseppina; Tassone, Annalisa; Marshall, Andrea; Parsons, Dee; Li, Xinru; Yokoi, Fumiaki; Zhang, Lin; Li, Yuqing; Pisani, Antonio; Standaert, David G.

    2012-01-01

    DYT1 dystonia, a common and severe primary dystonia, is caused by a 3-bp deletion in TOR1A which encodes torsinA, a protein found in the endoplasmic reticulum. Several cellular functions are altered by the mutant protein, but at a systems level the link between these and the symptoms of the disease is unclear. The most effective known therapy for DYT1 dystonia is use of anticholinergic drugs. Previous studies have revealed that in mice, transgenic expression of human mutant torsinA under a non-selective promoter leads to abnormal function of striatal cholinergic neurons. To investigate what pathological role torsinA plays in cholinergic neurons, we created a mouse model in which the Dyt1 gene, the mouse homolog of TOR1A, is selectively deleted in cholinergic neurons (ChKO animals). These animals do not have overt dystonia, but do have subtle motor abnormalities. There is no change in the number or size of striatal cholinergic cells or striatal acetylcholine content, uptake, synthesis, or release in ChKO mice. There are, however, striking functional abnormalities of striatal cholinergic cells, with paradoxical excitation in response to D2 receptor activation and loss of muscarinic M2/M4 receptor inhibitory function. These effects are specific for cholinergic interneurons, as recordings from nigral dopaminergic neurons revealed normal responses. Amphetamine stimulated dopamine release was also unaltered. These results demonstrate a cell-autonomous effect of Dyt1 deletion on striatal cholinergic function. Therapies directed at modifying the function of cholinergic neurons may prove useful in the treatment of the human disorder. PMID:22579992

  1. A Trojan horse mechanism of bacterial pathogenesis against nematodes

    PubMed Central

    Niu, Qiuhong; Huang, Xiaowei; Zhang, Lin; Xu, Jianping; Yang, Dongmei; Wei, Kangbi; Niu, Xuemei; An, Zhiqiang; Bennett, Joan Wennstrom; Zou, Chenggang; Yang, Jinkui; Zhang, Ke-Qin

    2010-01-01

    Understanding the mechanisms of host–pathogen interaction can provide crucial information for successfully manipulating their relationships. Because of its genetic background and practical advantages over vertebrate model systems, the nematode Caenorhabditis elegans model has become an attractive host for studying microbial pathogenesis. Here we report a “Trojan horse” mechanism of bacterial pathogenesis against nematodes. We show that the bacterium Bacillus nematocida B16 lures nematodes by emitting potent volatile organic compounds that are much more attractive to worms than those from ordinary dietary bacteria. Seventeen B. nematocida-attractant volatile organic compounds are identified, and seven are individually confirmed to lure nematodes. Once the bacteria enter the intestine of nematodes, they secrete two proteases with broad substrate ranges but preferentially target essential intestinal proteins, leading to nematode death. This Trojan horse pattern of bacterium–nematode interaction enriches our understanding of microbial pathogenesis. PMID:20733068

  2. The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex

    PubMed Central

    Bajo, Victoria M; Leach, Nicholas D; Cordery, Patricia M; Nodal, Fernando R; King, Andrew J

    2014-01-01

    Cholinergic inputs to the auditory cortex can modulate sensory processing and regulate stimulus-specific plasticity according to the behavioural state of the subject. In order to understand how acetylcholine achieves this, it is essential to elucidate the circuitry by which cholinergic inputs influence the cortex. In this study, we described the distribution of cholinergic neurons in the basal forebrain and their inputs to the auditory cortex of the ferret, a species used increasingly in studies of auditory learning and plasticity. Cholinergic neurons in the basal forebrain, visualized by choline acetyltransferase and p75 neurotrophin receptor immunocytochemistry, were distributed through the medial septum, diagonal band of Broca, and nucleus basalis magnocellularis. Epipial tracer deposits and injections of the immunotoxin ME20.4-SAP (monoclonal antibody specific for the p75 neurotrophin receptor conjugated to saporin) in the auditory cortex showed that cholinergic inputs originate almost exclusively in the ipsilateral nucleus basalis. Moreover, tracer injections in the nucleus basalis revealed a pattern of labelled fibres and terminal fields that resembled acetylcholinesterase fibre staining in the auditory cortex, with the heaviest labelling in layers II/III and in the infragranular layers. Labelled fibres with small en-passant varicosities and simple terminal swellings were observed throughout all auditory cortical regions. The widespread distribution of cholinergic inputs from the nucleus basalis to both primary and higher level areas of the auditory cortex suggests that acetylcholine is likely to be involved in modulating many aspects of auditory processing. PMID:24945075

  3. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    PubMed

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  4. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    PubMed Central

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  5. Impairment of reward-related learning by cholinergic cell ablation in the striatum.

    PubMed

    Kitabatake, Yasuji; Hikida, Takatoshi; Watanabe, Dai; Pastan, Ira; Nakanishi, Shigetada

    2003-06-24

    The striatum in the basal ganglia-thalamocortical circuitry is a key neural substrate that is implicated in motor balance and procedural learning. The projection neurons in the striatum are dynamically modulated by nigrostriatal dopaminergic input and intrastriatal cholinergic input. The role of intrastriatal acetylcholine (ACh) in learning behaviors, however, remains to be fully clarified. In this investigation, we examine the involvement of intrastriatal ACh in different categories of learning by selectively ablating the striatal cholinergic neurons with use of immunotoxin-mediated cell targeting. We show that selective ablation of cholinergic neurons in the striatum impairs procedural learning in the tone-cued T-maze memory task. Spatial delayed alternation in the T-maze learning test is also impaired by cholinergic cell elimination. In contrast, the deficit in striatal ACh transmission has no effect on motor learning in the rota-rod test or spatial learning in the Morris water-maze test or on contextual- and tone-cued conditioning fear responses. We also report that cholinergic cell elimination adaptively up-regulates nicotinic ACh receptors not only within the striatum but also in the cerebral cortex and substantia nigra. The present investigation indicates that cholinergic modulation in the local striatal circuit plays a pivotal role in regulation of neural circuitry involving reward-related procedural learning and working memory. PMID:12802017

  6. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    PubMed

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists. PMID:25183542

  7. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits.

    PubMed

    Ramanathan, Dhakshin S; Conner, James M; Anilkumar, Arjun A; Tuszynski, Mark H

    2015-03-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  8. Lesions of the Basal Forebrain Cholinergic System in Mice Disrupt Idiothetic Navigation

    PubMed Central

    Hamlin, Adam S.; Windels, Francois; Boskovic, Zoran; Sah, Pankaj; Coulson, Elizabeth J.

    2013-01-01

    Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer’s disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer’s disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze), and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer’s disease. PMID:23320088

  9. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation

    PubMed Central

    Grace, Kevin P.; Horner, Richard L.

    2015-01-01

    Rapid eye movement (REM) sleep – characterized by vivid dreaming, motor paralysis, and heightened neural activity – is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the “pontine REM sleep generator” by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  10. Molecular phylogeny of beetle associated diplogastrid nematodes suggests host switching rather than nematode-beetle coevolution

    PubMed Central

    2009-01-01

    Background Nematodes are putatively the most species-rich animal phylum. They have various life styles and occur in a variety of habitats, ranging from free-living nematodes in aquatic or terrestrial environments to parasites of animals and plants. The rhabditid nematode Caenorhabditis elegans is one of the most important model organisms in modern biology. Pristionchus pacificus of the family of the Diplogastridae has been developed as a satellite model for comparison to C. elegans. The Diplogastridae, a monophyletic clade within the rhabditid nematodes, are frequently associated with beetles. How this beetle-association evolved and whether beetle-nematode coevolution occurred is still elusive. As a prerequisite to answering this question a robust phylogeny of beetle-associated Diplogastridae is needed. Results Sequences for the nuclear small subunit ribosomal RNA and for 12 ribosomal protein encoding nucleotide sequences were collected for 14 diplogastrid taxa yielding a dataset of 5996 bp of concatenated aligned sequences. A molecular phylogeny of beetle-associated diplogastrid nematodes was established by various algorithms. Robust subclades could be demonstrated embedded in a phylogenetic tree topology with short internal branches, indicating rapid ancestral divergences. Comparison of the diplogastrid phylogeny to a comprehensive beetle phylogeny revealed no major congruence and thus no evidence for a long-term coevolution. Conclusion Reconstruction of the phylogenetic history of beetle-associated Diplogastridae yields four distinct subclades, whose deep phylogenetic divergence, as indicated by short internal branch lengths, shows evidence for evolution by successions of ancient rapid radiation events. The stem species of the Diplogastridae existed at the same time period when the major radiations of the beetles occurred. Comparison of nematode and beetle phylogenies provides, however, no evidence for long-term coevolution of diplogastrid nematodes and their

  11. Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology.

    PubMed

    Kimber, Michael J; Sayegh, Laura; El-Shehabi, Fouad; Song, Chuanzhe; Zamanian, Mostafa; Woods, Debra J; Day, Tim A; Ribeiro, Paula

    2009-09-01

    Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-living Caenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, is alternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventral body wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to those present in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic. PMID:19327362

  12. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    PubMed Central

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies. PMID:24860820

  13. The genomes of root-knot nematodes.

    PubMed

    Bird, David McK; Williamson, Valerie M; Abad, Pierre; McCarter, James; Danchin, Etienne G J; Castagnone-Sereno, Philippe; Opperman, Charles H

    2009-01-01

    Plant-parasitic nematodes are the most destructive group of plant pathogens worldwide and are extremely challenging to control. The recent completion of two root-knot nematode genomes opens the way for a comparative genomics approach to elucidate the success of these parasites. Sequencing revealed that Meloidogyne hapla, a diploid that reproduces by facultative, meiotic parthenogenesis, encodes approximately 14,200 genes in a compact, 54 Mpb genome. Indeed, this is the smallest metazoan genome completed to date. By contrast, the 86 Mbp Meloidogyne incognita genome encodes approximately 19,200 genes. This species reproduces by obligate mitotic parthenogenesis and exhibits a complex pattern of aneuploidy. The genome includes triplicated regions and contains allelic pairs with exceptionally high degrees of sequence divergence, presumably reflecting adaptations to the strictly asexual reproductive mode. Both root-knot nematode genomes have compacted gene families compared with the free-living nematode Caenorhabditis elegans, and both encode large suites of enzymes that uniquely target the host plant. Acquisition of these genes, apparently via horizontal gene transfer, and their subsequent expansion and diversification point to the evolutionary history of these parasites. It also suggests new routes to their control. PMID:19400640

  14. Thermoregulation in the life cycle of nematodes.

    PubMed

    Devaney, Eileen

    2006-05-31

    An unanswered question in the biology of many parasites is the mechanism by which environmental (or external) and intrinsic signals are integrated to determine the switch from one developmental stage to the next. This is particularly pertinent for nematode parasites, many of which have a free-living stage in the environment prior to infection of the mammalian host, or for parasites such as filarial nematodes, which utilise an insect vector for transmission. The environmental changes experienced by a parasite upon infection of a mammalian host are extremely complex and poorly understood. However, the ability of a parasite to sense its new environment must be intrinsically linked to its developmental programme, as progression of the life cycle is dependent upon the infection event. In this review, the relationship between temperature and development in filarial nematodes and in the free-living species Caenorhabditis elegans is summarised, with a focus on the role of heat shock factor and heat shock protein 90 in the nematode life cycle. PMID:16620827

  15. Nematodes: Model Organisms in High School Biology

    ERIC Educational Resources Information Center

    Bliss, TJ; Anderson, Margery; Dillman, Adler; Yourick, Debra; Jett, Marti; Adams, Byron J.; Russell, RevaBeth

    2007-01-01

    In a collaborative effort between university researchers and high school science teachers, an inquiry-based laboratory module was designed using two species of insecticidal nematodes to help students apply scientific inquiry and elements of thoughtful experimental design. The learning experience and model are described in this article. (Contains 4…

  16. Entomopathogenic nematode production and application technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production and application technology is critical for the success of entomopathogenic nematodes (EPNs) in biological control. Production approaches include in vivo, and in vitro methods (solid or liquid fermentation). For laboratory use and small scale field experiments, in vivo production of EPNs...

  17. Meloidogyne incognita nematode resistance QTL in carrot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-knot nematodes (Meloidogyne spp.) are major pests attacking carrots (Daucus carota) worldwide, causing galling and forking of the storage roots, rendering them unacceptable for market. Genetic resistance could significantly reduce the need for broad-spectrum soil fumigants in carrot production....

  18. The Future of Nematode Management in Cotton

    PubMed Central

    Starr, J. L.; Koenning, S. R.; Kirkpatrick, T. L.; Robinson, A. F.; Roberts, P. A.; Nichols, R. L.

    2007-01-01

    The importance of plant-parasitic nematodes as yield-limiting pathogens of cotton has received increased recognition and attention in the United States in the recent past. This paper summarizes the remarks made during a symposium of the same title that was held in July 2007 at the joint meeting of the Society of Nematologists and the American Phytopathological Society in San Diego, California. Although several cultural practices, including crop rotation, can be effective in suppressing the populations of the important nematode pathogens of cotton, the economic realities of cotton production limit their use. The use of nematicides is also limited by issues of efficacy and economics. There is a need for development of chemistries that will address these limitations. Also needed are systems that would enable precise nematicide application in terms of rate and placement only in areas where nematode population densities warrant application. Substantial progress is being made in the identification, characterization and mapping of loci for resistance to Meloidogyne incognita and Rotylenchulus reniformis. These data will lead to efficient marker-assisted selection systems that will likely result in development and release of nematode-resistant cotton cultivars with superior yield potential and high fiber quality. PMID:19259500

  19. Natural product synthesis: Making nematodes nervous

    NASA Astrophysics Data System (ADS)

    Snyder, Scott A.

    2011-06-01

    A highly inventive route for the synthesis of a key substance that stimulates potato cyst nematodes to hatch has been developed. This discovery has potential to impact food supplies, as treatment of crops with this compound could alleviate the devastating effect of these parasites.

  20. Proteomic analysis of soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode (Heterodera glycines, SCN) is the most destructive pathogen of soybean (Glycine max (L.) Merr.) worldwide causing an estimated $2 billion in losses annually. Proteomic technologies are powerful tools to examine protein expression profiles as well as modification of proteins. W...

  1. Diverse CLE peptides from cyst nematode species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...

  2. Key to nematodes reported in waterfowl

    USGS Publications Warehouse

    McDonald, Malcolm E.

    1974-01-01

    This key, covering 171 species and subspecies of nematodes in 49 genera, is based on the the listings in the author's "Catalogue of Helminths of Waterfowl" (McDonald, 1969b), but includes 19 additional forms from his continuing survey of new literature.

  3. Pharmacological treatment of vertigo.

    PubMed

    Hain, Timothy C; Uddin, Mohammed

    2003-01-01

    This review discusses the physiology and pharmacological treatment of vertigo and related disorders. Classes of medications useful in the treatment of vertigo include anticholinergics, antihistamines, benzodiazepines, calcium channel antagonists and dopamine receptor antagonists. These medications often have multiple actions. They may modify the intensity of symptoms (e.g. vestibular suppressants) or they may affect the underlying disease process (e.g. calcium channel antagonists in the case of vestibular migraine). Most of these agents, particularly those that are sedating, also have a potential to modulate the rate of compensation for vestibular damage. This consideration has become more relevant in recent years, as vestibular rehabilitation physical therapy is now often recommended in an attempt to promote compensation. Accordingly, therapy of vertigo is optimised when the prescriber has detailed knowledge of the pharmacology of medications being administered as well as the precise actions being sought. There are four broad causes of vertigo, for which specific regimens of drug therapy can be tailored. Otological vertigo includes disorders of the inner ear such as Ménière's disease, vestibular neuritis, benign paroxysmal positional vertigo (BPPV) and bilateral vestibular paresis. In both Ménière's disease and vestibular neuritis, vestibular suppressants such as anticholinergics and benzodiazepines are used. In Ménière's disease, salt restriction and diuretics are used in an attempt to prevent flare-ups. In vestibular neuritis, only brief use of vestibular suppressants is now recommended. Drug treatments are not presently recommended for BPPV and bilateral vestibular paresis, but physical therapy treatment can be very useful in both. Central vertigo includes entities such as vertigo associated with migraine and certain strokes. Prophylactic agents (L-channel calcium channel antagonists, tricyclic antidepressants, beta-blockers) are the mainstay of treatment

  4. Pharmacology of cortical inhibition

    PubMed Central

    Krnjević, K.; Randić, Mirjana; Straughan, D. W.

    1966-01-01

    1. We have studied the effects of various pharmacological agents on the cortical inhibitory process described in the previous two papers (Krnjević, Randić & Straughan, 1966a, b); the drugs were mostly administered directly by iontophoresis from micropipettes and by systemic injection (I.V.). 2. Strychnine given by iontophoresis or by the application of a strong solution to the cortical surface potentiated excitatory effects, but very large iontophoretic doses also depressed neuronal firing. Subconvulsive and even convulsive systemic doses had little or no effect at the cortical level. There was no evidence, with any method of application, that strychnine directly interferes with the inhibitory process. 3. Tetanus toxin, obtained from two different sources and injected into the cortex 12-48 hr previously, also failed to block cortical inhibition selectively. As with strychnine, there was some evidence of increased responses to excitatory inputs. 4. Other convulsant drugs which failed to block cortical inhibition included picrotoxin, pentamethylene tetrazole, thiosemicarbazide, longchain ω-amino acids and morphine. 5. The inhibition was not obviously affected by cholinomimetic agents or by antagonists of ACh. 6. α- and β-antagonists of adrenergic transmission were also ineffective. 7. Cortical inhibition was fully developed in the presence of several general anaesthetics, including ether, Dial, pentobarbitone, Mg and chloralose. A temporary reduction in inhibition which is sometimes observed after systemic doses of pentobarbitone, is probably secondary to a fall in blood pressure. 8. Several central excitants such as amphetamine, caffeine and lobeline also failed to show any specific antagonistic action on cortical inhibition. 9. In view of the possibility that GABA is the chemical agent mediating cortical inhibition, an attempt was made to find a selective antagonist of its depressant action on cortical neurones. None of the agents listed above, nor any other

  5. Overview of nematodes infesting cotton in the U.S., life beyond Temik.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three primary nematode pathogens of cotton are the cotton root-knot nematode (Meloidogyne incognita), the reniform nematode (Rotylenchulus reniformis), and the Columbia lance nematode (Hoplolaimus columbus). Those three nematodes are estimated to reduce US cotton production by 4.2%, with the co...

  6. Pharmacological approaches to migraine.

    PubMed

    Diener, H Ch

    2003-01-01

    Migraine is a paroxysmal disorder with attacks of headache, nausea, vomiting, photo- and phonophobia and malaise. This review summarises new treatment options both for the therapy of the acute attack as well as for migraine prophylaxis. Analgesics like aspirin or nonsteroidal antiinflammatory drugs (NSAIDs) are effective in treating migraine attacks. Few controlled trials were performed for the use of ergotamine or dihydroergotamine. These trials indicate inferior efficacy compared to serotonin (5-HT)1B/D-agonists (further on called "triptans"). The triptans (almotriptan, eletriptan, frovatriptan, naratriptan, rizatriptan, sumatriptan and zolmitriptan) are highly effective. They improve headache as well as nausea, photo- and phonophobia. The different triptans have minor differences in efficacy, headache recurrence and adverse effects. The knowledge of their different pharmacological profile allows a more specific treatment of the individual migraine characteristics. Migraine prophylaxis is recommended, when more than 3 attacks occur per month, if attacks do not respond to acute treatment or if side effects of acute treatment are severe. Substances with proven efficacy include the beta-blockers metoprolol and propranolol, the calcium channel blocker flunarizine, several 5-HT antagonists and amitriptyline. Recently antiepileptic drugs (valproic acid, gabapentin, topiramate) were evaluated for the prophylaxis of migraine. The use of botulinum-toxin is under investigation. PMID:12830928

  7. Pharmacological inhibition of FTO.

    PubMed

    McMurray, Fiona; Demetriades, Marina; Aik, WeiShen; Merkestein, Myrte; Kramer, Holger; Andrew, Daniel S; Scudamore, Cheryl L; Hough, Tertius A; Wells, Sara; Ashcroft, Frances M; McDonough, Michael A; Schofield, Christopher J; Cox, Roger D

    2015-01-01

    In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO's demethylase activity could be therapeutically useful for the treatment of obesity. PMID:25830347

  8. Pharmacological Inhibition of FTO

    PubMed Central

    McMurray, Fiona; Demetriades, Marina; Aik, WeiShen; Merkestein, Myrte; Kramer, Holger; Andrew, Daniel S.; Scudamore, Cheryl L.; Hough, Tertius A.; Wells, Sara; Ashcroft, Frances M.; McDonough, Michael A.; Schofield, Christopher J.; Cox, Roger D.

    2015-01-01

    In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO’s demethylase activity could be therapeutically useful for the treatment of obesity. PMID:25830347

  9. Pharmacology of cannabinoids.

    PubMed

    Grotenhermen, Franjo

    2004-01-01

    Dronabinol (Delta 9-tetrahydocannabinol, THC), the main source of the pharmacological effects caused by the use of cannabis, is an agonist to both the CB1 and the CB2 subtype of cannabinoid receptors. It is available on prescription in several countries. The non-psychotropic cannabidiol (CBD), some analogues of natural cannabinoids and their metabolites, antagonists at the cannabinoid receptors and modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues including spleen, leukocytes; reproductive, urinary and gastrointestinal tracts; endocrine glands, arteries and heart. Five endogenous cannabinoids have been detected so far, of whom anandamide and 2-arachidonylglycerol are best characterized. There is evidence that besides the two cannabinoid receptor subtypes cloned so far additional cannabinoid receptor subtypes and vanilloid receptors are involved in the complex physiological functions of the cannabinoid system that include motor coordination, memory procession, control of appetite, pain modulation and neuroprotection. Strategies to modulate their activity include inhibition of re-uptake into cells and inhibition of their degradation to increase concentration and duration of action. Properties of cannabinoids that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, anti-inflammation, anti-allergic effects, sedation, improvement of mood, stimulation of appetite, anti-emesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects. PMID:15159677

  10. The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice1[C

    PubMed Central

    Nahar, Kamrun; Kyndt, Tina; De Vleesschauwer, David; Höfte, Monica; Gheysen, Godelieve

    2011-01-01

    Complex defense signaling pathways, controlled by different hormones, are involved in the reaction of plants to a wide range of biotic and abiotic stress factors. We studied the ability of salicylic acid, jasmonate (JA), and ethylene (ET) to induce systemic defense in rice (Oryza sativa) against the root knot nematode Meloidogyne graminicola. Exogenous ET (ethephon) and JA (methyl jasmonate) supply on the shoots induced a strong systemic defense response in the roots, exemplified by a major up-regulation of pathogenesis-related genes OsPR1a and OsPR1b, while the salicylic acid analog BTH (benzo-1,2,3-thiadiazole-7-carbothioic acid S-methyl ester) was a less potent systemic defense inducer from shoot to root. Experiments with JA biosynthesis mutants and ET-insensitive transgenics showed that ET-induced defense requires an intact JA pathway, while JA-induced defense was still functional when ET signaling was impaired. Pharmacological inhibition of JA and ET biosynthesis confirmed that JA biosynthesis is needed for ET-induced systemic defense, and quantitative real-time reverse transcription-polymerase chain reaction data revealed that ET application onto the shoots strongly activates JA biosynthesis and signaling genes in the roots. All data provided in this study point to the JA pathway to play a pivotal role in rice defense against root knot nematodes. The expression of defense-related genes was monitored in root galls caused by M. graminicola. Different analyzed defense genes were attenuated in root galls caused by the nematode at early time points after infection. However, when the exogenous defense inducers ethephon and methyl jasmonate were supplied to the plant, the nematode was less effective in counteracting root defense pathways, hence making the plant more resistant to nematode infection. PMID:21715672

  11. Top 10 plant-parasitic nematodes in molecular plant pathology.

    PubMed

    Jones, John T; Haegeman, Annelies; Danchin, Etienne G J; Gaur, Hari S; Helder, Johannes; Jones, Michael G K; Kikuchi, Taisei; Manzanilla-López, Rosa; Palomares-Rius, Juan E; Wesemael, Wim M L; Perry, Roland N

    2013-12-01

    The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly. PMID:23809086

  12. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS

  13. Loss of the insulator protein CTCF during nematode evolution

    PubMed Central

    Heger, Peter; Marin, Birger; Schierenberg, Einhard

    2009-01-01

    Background The zinc finger (ZF) protein CTCF (CCCTC-binding factor) is highly conserved in Drosophila and vertebrates where it has been shown to mediate chromatin insulation at a genomewide level. A mode of genetic regulation that involves insulators and insulator binding proteins to establish independent transcriptional units is currently not known in nematodes including Caenorhabditis elegans. We therefore searched in nematodes for orthologs of proteins that are involved in chromatin insulation. Results While orthologs for other insulator proteins were absent in all 35 analysed nematode species, we find orthologs of CTCF in a subset of nematodes. As an example for these we cloned the Trichinella spiralis CTCF-like gene and revealed a genomic structure very similar to the Drosophila counterpart. To investigate the pattern of CTCF occurrence in nematodes, we performed phylogenetic analysis with the ZF protein sets of completely sequenced nematodes. We show that three ZF proteins from three basal nematodes cluster together with known CTCF proteins whereas no zinc finger protein of C. elegans and other derived nematodes does so. Conclusion Our findings show that CTCF and possibly chromatin insulation are present in basal nematodes. We suggest that the insulator protein CTCF has been secondarily lost in derived nematodes like C. elegans. We propose a switch in the regulation of gene expression during nematode evolution, from the common vertebrate and insect type involving distantly acting regulatory elements and chromatin insulation to a so far poorly characterised mode present in more derived nematodes. Here, all or some of these components are missing. Instead operons, polycistronic transcriptional units common in derived nematodes, seemingly adopted their function. PMID:19712444

  14. Nitrogen Addition Regulates Soil Nematode Community Composition through Ammonium Suppression

    PubMed Central

    Wei, Cunzheng; Zheng, Huifen; Li, Qi; Lü, Xiaotao; Yu, Qiang; Zhang, Haiyang; Chen, Quansheng; He, Nianpeng; Kardol, Paul; Liang, Wenju; Han, Xingguo

    2012-01-01

    Nitrogen (N) enrichment resulting from anthropogenic activities has greatly changed the composition and functioning of soil communities. Nematodes are one of the most abundant and diverse groups of soil organisms, and they occupy key trophic positions in the soil detritus food web. Nematodes have therefore been proposed as useful indicators for shifts in soil ecosystem functioning under N enrichment. Here, we monitored temporal dynamics of the soil nematode community using a multi-level N addition experiment in an Inner Mongolia grassland. Measurements were made three years after the start of the experiment. We used structural equation modeling (SEM) to explore the mechanisms regulating nematode responses to N enrichment. Across the N enrichment gradient, significant reductions in total nematode abundance, diversity (H' and taxonomic richness), maturity index (MI), and the abundance of root herbivores, fungivores and omnivores-predators were found in August. Root herbivores recovered in September, contributing to the temporal variation of total nematode abundance across the N gradient. Bacterivores showed a hump-shaped relationship with N addition rate, both in August and September. Ammonium concentration was negatively correlated with the abundance of total and herbivorous nematodes in August, but not in September. Ammonium suppression explained 61% of the variation in nematode richness and 43% of the variation in nematode trophic group composition. Ammonium toxicity may occur when herbivorous nematodes feed on root fluid, providing a possible explanation for the negative relationship between herbivorous nematodes and ammonium concentration in August. We found a significantly positive relationship between fungivores and fungal phospholipid fatty acids (PLFA), suggesting bottom-up control of fungivores. No such relationship was found between bacterivorous nematodes and bacterial PLFA. Our findings contribute to the understanding of effects of N enrichment in

  15. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. PMID:26992100

  16. Characterization of Root-Knot Nematode Resistance in Medicago truncatula

    PubMed Central

    Dhandaydham, Murali; Charles, Lauren; Zhu, Hongyan; Starr, James L.; Huguet, Thierry; Cook, Douglas R.; Prosperi, Jean-Marie; Opperman, Charles

    2008-01-01

    Root knot (Meloidogyne spp.) and cyst (Heterodera and Globodera spp.) nematodes infect all important crop species, and the annual economic loss due to these pathogens exceeds $90 billion. We screened the worldwide accession collection with the root-knot nematodes Meloidogyne incognita, M. arenaria and M. hapla, soybean cyst nematode (SCN-Heterodera glycines), sugar beet cyst nematode (SBCN-Heterodera schachtii) and clover cyst nematode (CLCN-Heterodera trifolii), revealing resistant and susceptible accessions. In the over 100 accessions evaluated, we observed a range of responses to the root-knot nematode species, and a non-host response was observed for SCN and SBCN infection. However, variation was observed with respect to infection by CLCN. While many cultivars including Jemalong A17 were resistant to H. trifolii, cultivar Paraggio was highly susceptible. Identification of M. truncatula as a host for root-knot nematodes and H. trifolii and the differential host response to both RKN and CLCN provide the opportunity to genetically and molecularly characterize genes involved in plant-nematode interaction. Accession DZA045, obtained from an Algerian population, was resistant to all three root-knot nematode species and was used for further studies. The mechanism of resistance in DZA045 appears different from Mi-mediated root-knot nematode resistance in tomato. Temporal analysis of nematode infection showed that there is no difference in nematode penetration between the resistant and susceptible accessions, and no hypersensitive response was observed in the resistant accession even several days after infection. However, less than 5% of the nematode population completed the life cycle as females in the resistant accession. The remainder emigrated from the roots, developed as males, or died inside the roots as undeveloped larvae. Genetic analyses carried out by crossing DZA045 with a susceptible French accession, F83005, suggest that one gene controls resistance in DZA

  17. Cholinergic receptors in the upper respiratory system of the rat.

    PubMed

    Klaassen, A B; Kuijpers, W; Scheres, H M; Rodrigues de Miranda, J F; Beld, A J

    1986-04-01

    Radioligand receptor binding might give more detailed information on the innervation pattern of the nasal mucosa and the character of the various neuroreceptors involved. With respect to the cholinergic receptors, this technique reveals that specific binding of tritiated I-quinuclidinyl benzilate to rat nasal mucosa homogenates occurs to a homogeneous class of binding sites, with a dissociation constant of 0.06 +/- 0.02 nM and a receptor density of 8 +/- 2 pmole/g of tissue. Binding is stereoselectively inhibited by benzetimide hydrochloride enantiomers. Pirenzepine displacement (inhibition constant = 0.5 X 10(-6) M) classifies tritiated I-quinuclidinyl benzilate binding sites as M2-muscarinic receptors. Methylfurthrethonium inhibits tritiated I-quinuclidinyl benzilate binding at high concentrations, pointing to the presence of low-affinity agonist binding sites, probably admixed with a small proportion of high-affinity agonist binding sites. These data obtained in the rat open new perspectives for studying muscarinic receptors in the human nose to elucidate the supposed disturbance of autonomic nerve regulation in nasal hyperreactivity. PMID:3511926

  18. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic

    PubMed Central

    Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B.; Perrat, Paola N.; Waddell, Scott

    2016-01-01

    Summary Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. PMID:26948892

  19. MESOPONTINE CHOLINERGIC PROJECTIONS TO THE HYPOGLOSSAL MOTOR NUCLEUS

    PubMed Central

    Rukhadze, Irma; Kubin, Leszek

    2007-01-01

    Mesopontine cholinergic (ACh) neurons have increased discharge during wakefulness, rapid eye movement (REM) sleep, or both. Hypoglossal (12) motoneurons, which play an important role in the control of upper airway patency, are postsynaptically excited by stimulation of nicotinic receptors, whereas muscarinic receptors presynaptically inhibit inputs to 12 motoneurons. These data suggest that ACh contributes to sleep/wake-related changes in the activity of 12 motoneurons by acting within the hypoglossal motor nucleus (Mo12), but the origins of ACh projections to Mo12 are not well established. We used retrograde tracers to assess the projections of ACh neurons of the mesopontine pedinculopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei to the Mo12. In six Sprague-Dawley rats, Fluorogold or B subunit of cholera toxin, were pressure injected (5-20 nl) into the Mo12. Retrogradely labeled neurons, identified as ACh using nitric oxide synthase (NOS) immunohistochemistry, were found bilaterally in discrete subregions of both PPT and LDT nuclei. Most retrogradely labeled PPT cells (96%) were located in the PPT pars compacta region adjacent to the ventrolateral tip of the superior cerebellar peduncle. In the LDT, retrogradely labeled neurons were located exclusively in its pars alpha region. Over twice as many ACh neurons projecting to the Mo12 were located in the PPT than LDT. The results demonstrate direct mesopontine ACh projections to the Mo12. These projections may contribute to the characteristic of wakefulness and REM sleep increases, as well as REM sleep-related decrements, of 12 motoneuronal activity. PMID:17174027

  20. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells

    SciTech Connect

    Haycock, J.W.; Browning, M.D.; Greengard, P.

    1988-03-01

    Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with /sup 32/PO/sub 4/, exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a M/sub r/ approx. = 100,000 protein and a M/sub r/ approx. = 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in NaDodSO/sub 4//polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins (100-kDa, 87-kDa, and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. 100-kDa is a M/sub r/ approx. = 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, 87-kDa is a M/sub r/ approx. = 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of M/sub r/ approx. = 74,000 (IIIa) and M/sub r/ approx. = 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects.

  1. Cholinergic traits in rat mandibular processes observed by electron microscopy.

    PubMed

    Tsuzuki, H; Kitamura, H

    1987-01-01

    Cholinergic traits in rat mandibular processes were examined histochemically, under the electron microscope, at early developmental stages (Stages 20 to 23, by Christie's nomenclature). The histochemical reaction for detection of enzymes was performed by the thiocholine method. Nonspecific cholinesterase (EC 3.1.1.8) activity was found in ectomesenchymal cells, vascular endothelial cells, and in some epidermal cells at stages 20 and 21. The enzymatic activity was localized in the perinuclear and endoplasmic reticular cisternae. At stage 22, the number of cells with enzymatic activity decreased gradually, except in the case of the capillary endothelial cells. At stage 23, when the trigeminal nerve fiber was obvious in the mandibular processes, nonspecific cholinesterase activity was restricted to some of the endothelial cells and trigeminal ganglionic cells. In contrast, acetylcholinesterase activity was found on the membrane of trigeminal nerve fiber. Thus, the transient, nonspecific, cholinesterase activity, found in rat mandibular processes, may serve some functions in transmission, lipid metabolism or destruction of toxic cholinesters during the period that precedes organogenesis. PMID:3631533

  2. Mast cell-cholinergic nerve interaction in mouse airways.

    PubMed

    Weigand, Letitia A; Myers, Allen C; Meeker, Sonya; Undem, Bradley J

    2009-07-01

    We addressed the mechanism by which antigen contracts trachea isolated from actively sensitized mice. Trachea were isolated from mice (C57BL/6J) that had been actively sensitized to ovalbumin (OVA). OVA (10 microg ml(-1)) caused histamine release (approximately total tissue content), and smooth muscle contraction that was rapid in onset and short-lived (t(1/2) < 1 min), reaching approximately 25% of the maximum tissue response. OVA contraction was mimicked by 5-HT, and responses to both OVA and 5-HT were sensitive to 10 microm-ketanserin (5-HT(2) receptor antagonist) and strongly inhibited by atropine (1microm). Epithelial denudation had no effect on the OVA-induced contraction. Histological assessment revealed about five mast cells/tracheal section the vast majority of which contained 5-HT. There were virtually no mast cells in the mast cell-deficient (sash -/-) mouse trachea. OVA failed to elicit histamine release or contractile responses in trachea isolated from sensitized mast cell-deficient (sash -/-) mice. Intracellular recordings of the membrane potential of parasympathetic neurons in mouse tracheal ganglia revealed a ketanserin-sensitive 5-HT-induced depolarization and similar depolarization in response to OVA challenge. These data support the hypothesis that antigen-induced contraction of mouse trachea is epithelium-independent, and requires mast cell-derived 5-HT to activate 5-HT(2) receptors on parasympathetic cholinergic neurons. This leads to acetylcholine release from nerve terminals, and airway smooth muscle contraction. PMID:19403609

  3. Dopaminergic and cholinergic learning mechanisms in nicotine addiction.

    PubMed

    Subramaniyan, Manivannan; Dani, John A

    2015-09-01

    Nicotine addiction drives tobacco use by one billion people worldwide, causing nearly six million deaths a year. Nicotine binds to nicotinic acetylcholine receptors that are normally activated by the endogenous neurotransmitter acetylcholine. The widespread expression of nicotinic receptors throughout the nervous system accounts for the diverse physiological effects triggered by nicotine. A crucial influence of nicotine is on the synaptic mechanisms underlying learning that contribute to the addiction process. Here, we focus on the acquisition phase of smoking addiction and review animal model studies on how nicotine modifies dopaminergic and cholinergic signaling in key nodes of the reinforcement circuitry: ventral tegmental area, nucleus accumbens (NAc), amygdala, and hippocampus. Capitalizing on mechanisms that subserve natural rewards, nicotine activates midbrain dopamine neurons directly and indirectly, and nicotine causes dopamine release in very broad target areas throughout the brain, including the NAc, amygdala, and hippocampus. In addition, nicotine orchestrates local changes within those target structures, alters the release of virtually all major neurotransmitters, and primes the nervous system to the influence of other addictive drugs. Hence, understanding how nicotine affects the circuitry for synaptic plasticity and learning may aid in developing reasoned therapies to treat nicotine addiction. PMID:26301866

  4. A cyst nematode effector binds to diverse plant proteins, increases nematode susceptibility and affects root morphology.

    PubMed

    Pogorelko, Gennady; Juvale, Parijat S; Rutter, William B; Hewezi, Tarek; Hussey, Richard; Davis, Eric L; Mitchum, Melissa G; Baum, Thomas J

    2016-08-01

    Cyst nematodes are plant-parasitic roundworms that are of significance in many cropping systems around the world. Cyst nematode infection is facilitated by effector proteins secreted from the nematode into the plant host. The cDNAs of the 25A01-like effector family are novel sequences that were isolated from the oesophageal gland cells of the soybean cyst nematode (Heterodera glycines). To aid functional characterization, we identified an orthologous member of this protein family (Hs25A01) from the closely related sugar beet cyst nematode H. schachtii, which infects Arabidopsis. Constitutive expression of the Hs25A01 CDS in Arabidopsis plants caused a small increase in root length, accompanied by up to a 22% increase in susceptibility to H. schachtii. A plant-expressed RNA interference (RNAi) construct targeting Hs25A01 transcripts in invading nematodes significantly reduced host susceptibility to H. schachtii. These data document that Hs25A01 has physiological functions in planta and a role in cyst nematode parasitism. In vivo and in vitro binding assays confirmed the specific interactions of Hs25A01 with an Arabidopsis F-box-containing protein, a chalcone synthase and the translation initiation factor eIF-2 β subunit (eIF-2bs), making these proteins probable candidates for involvement in the observed changes in plant growth and parasitism. A role of eIF-2bs in the mediation of Hs25A01 virulence function is further supported by the observation that two independent eIF-2bs Arabidopsis knock-out lines were significantly more susceptible to H. schachtii. PMID:26575318

  5. Cholinergic capacity mediates prefrontal engagement during challenges to attention: Evidence from imaging genetics

    PubMed Central

    Berry, Anne S; Blakely, Randy D; Sarter, Martin; Lustig, Cindy

    2015-01-01

    In rodent studies, elevated cholinergic neurotransmission in right prefrontal cortex (PFC) is essential for maintaining attentional performance, especially in challenging conditions. Apparently paralleling the rises in acetylcholine seen in rodent studies, fMRI studies in humans reveal right PFC activation at or near Brodmann’s area 9 (BA 9) increases in response to elevated attentional demand. In the present study, we leveraged human genetic variability in the cholinergic system to test the hypothesis that the cholinergic system contributes to the BA 9 response to attentional demand. Specifically, we scanned (BOLD fMRI) participants with a polymorphism of the choline transporter gene that is thought to limit choline transport capacity (Ile89Val variant of the choline transporter gene SLC5A7, rs1013940) and matched controls while they completed a task previously used to demonstrate demand-related increases in right PFC cholinergic transmission in rats and right PFC activation in humans. As hypothesized, we found that although controls showed the typical pattern of robust BA 9 responses to increased attentional demand, Ile89Val participants did not. Further, pattern analysis of activation within this region significantly predicted participant genotype. Additional exploratory pattern classification analyses suggested that Ile89Val participants differentially recruited orbitofrontal cortex and parahippocampal gyrus to maintain attentional performance to the level of controls. These results contribute to a growing body of translational research clarifying the role of cholinergic signaling in human attention and functional neural measures, and begin to outline the risk and resiliency factors associated with potentially suboptimal cholinergic function with implications for disorders characterized by cholinergic dysregulation. PMID:25536497

  6. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.

    PubMed

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919

  7. Sex differences in brain cholinergic activity in MSG-obese rats submitted to exercise.

    PubMed

    Sagae, Sara Cristina; Grassiolli, Sabrina; Raineki, Charlis; Balbo, Sandra Lucinei; Marques da Silva, Ana Carla

    2011-11-01

    Obesity is an epidemic disease most commonly caused by a combination of increased energy intake and lack of physical activity. The cholinergic system has been shown to be involved in the regulation of food intake and energy expenditure. Moreover, physical exercise promotes a reduction of fat pads and body mass by increasing energy expenditure, but also influences the cholinergic system. The aim of this study is to evaluate the interaction between physical exercise (swimming) and central cholinergic activity in rats treated with monosodium glutamate (MSG, a model for obesity) during infancy. Our results show that MSG treatment is able to induce obesity in male and female rats. Specifically, MSG-treated rats presented a reduced body mass and nasoanal length, and increased perigonadal and retroperitoneal fat pads in relation to the body mass. Physical exercise was able to reduce body mass in both male and female rats, but did not change the fat pads in MSG-treated rats. Increased food intake was only seen in MSG-treated females submitted to exercise. Cholinergic activity was increased in the cortex of MSG-treated females and physical exercise was able to reduce this activity. Thalamic cholinergic activity was higher in sedentary MSG-treated females and exercised MSG-treated males. Hypothalamic cholinergic activity was higher in male and female MSG-treated rats, and was not reduced by exercise in the 2 sexes. Taken together, these results show that MSG treatment and physical exercise have different effects in the cholinergic activity of males and females. PMID:22039988

  8. Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis

    PubMed Central

    Casas, Caty; Herrando-Grabulosa, Mireia; Manzano, Raquel; Mancuso, Renzo; Osta, Rosario; Navarro, Xavier

    2013-01-01

    Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1G93A ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30-day-old SOD1G93A mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC-II)-positive microglia and the accumulation of nuclear Tdp-43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC-I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic-related structures were also revealed with a loss of the presence of sigma-1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis. PMID:23531559

  9. Whole-Brain Mapping of Inputs to Projection Neurons and Cholinergic Interneurons in the Dorsal Striatum

    PubMed Central

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919

  10. NASA 2010 Pharmacology Evidence Review

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2011-01-01

    In 2008, the Institute of Medicine reviewed NASA's Human Research Program Evidence in assessing the Pharmacology risk identified in NASA's Human Research Program Requirements Document (PRD). Since this review there was a major reorganization of the Pharmacology discipline within the HRP, as well as a re-evaluation of the Pharmacology evidence. This panel is being asked to review the latest version of the Pharmacology Evidence Report. Specifically, this panel will: (1) Appraise the descriptions of the human health-related risk in the HRP PRD. (2) Assess the relevance and comprehensiveness of the evidence in identifying potential threats to long-term space missions. (3) Assess the associated gaps in knowledge and identify additional areas for research as necessary.

  11. Teaching Pharmacology by Case Study.

    ERIC Educational Resources Information Center

    Jordan, Sue

    1997-01-01

    Using pharmacology case studies with nursing students encourages theory-practice links and infuses real-life content. Cases provide rich qualitative data for evaluating curriculum. However, they are not a substitute for evidence-based practice. (SK)

  12. [Pharmacology of bone resorption inhibitor].

    PubMed

    Menuki, Kunitaka; Sakai, Akinori

    2015-10-01

    Currently, bone resorption inhibitor is mainly used for osteoporosis. A number of these agents have been developed. These pharmacological action are various. Bisphosphonate inhibit functions of the osteoclasts by inducing apoptosis. On the one hand, RANK-ligand inhibitor and selective estrogen receptor modulator inhibit formation of osteoclasts. It is important to understand these pharmacological action for the selection of the appropriate medicine. PMID:26529923

  13. Positron emission tomographic investigations of central muscarinic cholinergic receptors with three isomers of [76Br]BrQNP.

    PubMed

    Strijckmans, V; Bottlaender, M; Luo, H; Ottaviani, M; McPherson, D W; Loc'h, C; Fuseau, C; Knapp, F F; Mazière, B

    1997-05-01

    We studied the potential of three radiobrominated isomers of BrQNP, (Z(-,-)-[76Br]BrQNP, E(-,-)-[76Br]BrQNP and E(-,+)-[76Br]BrQNP), as suitable radioligands for imaging of central muscarinic cholinergic receptors in the human brain. These radioligands were stereospecifically prepared by electrophilic radiobromodestannylation of the respective tributylstannyl precursors using no-carrier-added [76Br]BrNH4 and peracetic acid. Preliminary pharmacological characterizations were determined by biodistribution, autoradiography, competition, displacement and metabolite studies in rats. The (-,-)-configuration presented important specific uptakes in brain muscarinic cholinergic receptor (mAChR)-rich structures and in heart, low metabolization rates and an apparent M2 selectivity. The (-,+)-configuration revealed more rapid clearance, lower uptake, a higher metabolization rate and an apparent M1 selectivity. Reversibility of the binding was confirmed for the three radiotracers. Positron emission tomography in the living baboon brain revealed high and rapid uptake in the brain and accumulation in the mAChR-rich structures studied. At 30 min p.i., the E(-,-)-radiotracer reached a plateau in cortex, pons and thalamus with concentrations of 29%, 24% and 19% ID/l, respectively. Z(-,-)-[76Br]BrQNP also accumulated in these structures, reaching a maximal uptake (27% ID/l) in the cortex 2 h p.i. At 5 min p.i. a plateau (17% ID/l) was only observed in the cortex for the E(-, +)-[76Br]BrQNP; by contrast, the other structures showed slow washout. After 3 weeks, the (-,-)-radiotracers were studied in the same baboon pretreated with dexetimide (1 mg/kg), a well-known muscarinic antagonist. In all the mAChR structures, the highly reduced uptake observed after this preloading step indicates that these radiotracers specifically bind to muscarinic receptors. Z(-, -)-[76Br]BrQNP, which is displaced in higher amounts from M2 mAChR-enriched structures, reveals an M2 affinity. The two isomers

  14. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    PubMed

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes. PMID:20038822

  15. Rolling Circle Amplification of Complete Nematode Mitochondrial Genomes

    PubMed Central

    Tang, Sha; Hyman, Bradley C.

    2005-01-01

    To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80°C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing. PMID:19262866

  16. RNAi and functional genomics in plant parasitic nematodes.

    PubMed

    Rosso, M N; Jones, J T; Abad, P

    2009-01-01

    Plant nematology is currently undergoing a revolution with the availability of the first genome sequences as well as comprehensive expressed sequence tag (EST) libraries from a range of nematode species. Several strategies are being used to exploit this wealth of information. Comparative genomics is being used to explore the acquisition of novel genes associated with parasitic lifestyles. Functional analyses of nematode genes are moving toward larger scale studies including global transcriptome profiling. RNA interference (RNAi) has been shown to reduce expression of a range of plant parasitic nematode genes and is a powerful tool for functional analysis of nematode genes. RNAi-mediated suppression of genes essential for nematode development, survival, or parasitism is revealing new targets for nematode control. Plant nematology in the genomics era is now facing the challenge to develop RNAi screens adequate for high-throughput functional analyses. PMID:19400649

  17. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    PubMed Central

    Jeong, Jae Hoon; Lee, Dong Kun; Blouet, Clemence; Ruiz, Henry H.; Buettner, Christoph; Chua, Streamson; Schwartz, Gary J.; Jo, Young-Hwan

    2015-01-01

    Objective Brown adipose tissue (BAT) thermogenesis is critical in maintaining body temperature. The dorsomedial hypothalamus (DMH) integrates cutaneous thermosensory signals and regulates adaptive thermogenesis. Here, we study the function and synaptic connectivity of input from DMH cholinergic neurons to sympathetic premotor neurons in the raphe pallidus (Rpa). Methods In order to selectively manipulate DMH cholinergic neuron activity, we generated transgenic mice expressing channelrhodopsin fused to yellow fluorescent protein (YFP) in cholinergic neurons (choline acetyltransferase (ChAT)-Cre::ChR2-YFP) with the Cre-LoxP technique. In addition, we used an adeno-associated virus carrying the Cre recombinase gene to delete the floxed Chat gene in the DMH. Physiological studies in response to optogenetic stimulation of DMH cholinergic neurons were combined with gene expression and immunocytochemical analyses. Results A subset of DMH neurons are ChAT-immunopositive neurons. The activity of these neurons is elevated by warm ambient temperature. A phenotype-specific neuronal tracing shows that DMH cholinergic neurons directly project to serotonergic neurons in the Rpa. Optical stimulation of DMH cholinergic neurons decreases BAT activity, which is associated with reduced body core temperature. Furthermore, elevated DMH cholinergic neuron activity decreases the expression of BAT uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated receptor γ coactivator 1 α (Pgc1α) mRNAs, markers of BAT activity. Injection of M2-selective muscarinic receptor antagonists into the 4th ventricle abolishes the effect of optical stimulation. Single cell qRT-PCR analysis of retrogradely identified BAT-projecting neurons in the Rpa shows that all M2 receptor-expressing neurons contain tryptophan hydroxylase 2. In animals lacking the Chat gene in the DMH, exposure to warm temperature reduces neither BAT Ucp1 nor Pgc1α mRNA expression. Conclusion DMH cholinergic neurons directly

  18. Pharmacological management of anticholinergic delirium - theory, evidence and practice.

    PubMed

    Dawson, Andrew H; Buckley, Nicholas A

    2016-03-01

    The spectrum of anticholinergic delirium is a common complication following drug overdose. Patients with severe toxicity can have significant distress and behavioural problems that often require pharmacological management. Cholinesterase inhibitors, such as physostigmine, are effective but widespread use has been limited by concerns about safety, optimal dosing and variable supply. Case series support efficacy in reversal of anticholinergic delirium. However doses vary widely and higher doses commonly lead to cholinergic toxicity. Seizures are reported in up to 2.5% of patients and occasional cardiotoxic effects are also recorded. This article reviews the serendipitous path whereby physostigmine evolved into the preferred anticholinesterase antidote largely without any research to indicate the optimal dosing strategy. Adverse events observed in case series should be considered in the context of pharmacokinetic/pharmacodynamic studies of physostigmine which suggest a much longer latency before the maximal increase in brain acetylcholine than had been previously assumed. This would favour protocols that use lower doses and longer re-dosing intervals. We propose based on the evidence reviewed that the use of cholinesterase inhibitors should be considered in anticholinergic delirium that has not responded to non-pharmacological delirium management. The optimal risk/benefit would be with a titrated dose of 0.5 to 1 mg physostigmine (0.01-0.02 mg kg(-1) in children) with a minimum delay of 10-15 min before re-dosing. Slower onset and longer acting agents such as rivastigmine would also be logical but more research is needed to guide the appropriate dose in this setting. PMID:26589572

  19. Pharmacologically Stimulated Pupil and Accommodative Changes in Guinea Pigs

    PubMed Central

    Ostrin, Lisa A.; Garcia, Mariana B.; Choh, Vivian; Wildsoet, Christine F.

    2014-01-01

    Purpose. The guinea pig is being used increasingly as a model of human myopia. As accommodation may influence the effects of manipulations used in experimental myopia models, understanding the accommodative ability of guinea pigs is important. Here, nonselective muscarinic agonists were used as pharmacological tools to study guinea pig accommodation. Methods. Measurements were made on 15 pigmented guinea pigs. For in vivo testing, animals were anesthetized and, following baseline measurements, 2% pilocarpine was applied topically. Measurements included A-scan ultrasonography, optical coherence tomography (OCT) imaging, corneal topography, and refraction. In vitro lens scanning experiments were performed using anterior segment preparations, with measurements before and during exposure to carbachol. Anterior segment structures were examined histologically and immunohistochemistry was done to characterize the muscarinic receptor subtypes present. Results. In vivo, pilocarpine induced a myopic shift in refractive error coupled to a small, but consistent decrease in anterior chamber depth (ACD), a smaller and more variable increase in lens thickness, and a decrease in pupil size. Lens thickness increases were short-lived (10 minutes), while ACD and pupil size decreased over 20 minutes. Corneal curvature was not significantly affected. Carbachol tested on anterior segment preparations in vitro was without effect on lens back vertex distance, but did stimulate pupil constriction. Immunohistochemistry indicated the presence of muscarinic receptor subtypes 1 to 5 in the iris and ciliary body. Conclusions. The observed pilocarpine-induced changes in ACD, lens thickness, and refraction are consistent with active accommodation in the guinea pig, through cholinergic muscarinic stimulation. PMID:25097245

  20. Effects of metoclopramide and domperidone on cholinergically mediated contractions of human isolated stomach muscle.

    PubMed

    Sanger, G J

    1985-09-01

    The experiments examine the actions of metoclopramide and domperidone on the responses evoked by electrical field stimulation or by acetylcholine, in longitudinal muscle strips obtained from human stomach. Electrical field stimulation evoked contractions which were predominantly cholinergically mediated; metoclopramide 0.28-28 microM caused a concentration-dependent increase in the height of these contractions. In the presence of atropine and barium chloride, electrical stimulation evoked relaxations of the stomach muscle, probably by stimulating non-adrenergic, non-cholinergic inhibitory nerves; metoclopramide 28 microM had no effect on these relaxations. Metoclopramide 0.003-2.8 microM had no effect on contractions evoked by exogenous acetylcholine, although higher concentrations of the drug increased the contractions. The results suggest that in human isolated stomach, low concentrations of metoclopramide may increase electrically evoked cholinergic activity by increasing the release of neuronal acetylcholine. Stimulation by metoclopramide of cholinergic activity in the gut may therefore be an important mechanism by which the drug increases gastrointestinal motility during therapy. Cholinergically mediated contractions were not increased by domperidone, and other mechanism(s) of action may therefore be important for this drug. PMID:2867191

  1. Layer-specific cholinergic control of human and mouse cortical synaptic plasticity.

    PubMed

    Verhoog, Matthijs B; Obermayer, Joshua; Kortleven, Christian A; Wilbers, René; Wester, Jordi; Baayen, Johannes C; De Kock, Christiaan P J; Meredith, Rhiannon M; Mansvelder, Huibert D

    2016-01-01

    Individual cortical layers have distinct roles in information processing. All layers receive cholinergic inputs from the basal forebrain (BF), which is crucial for cognition. Acetylcholinergic receptors are differentially distributed across cortical layers, and recent evidence suggests that different populations of BF cholinergic neurons may target specific prefrontal cortical (PFC) layers, raising the question of whether cholinergic control of the PFC is layer dependent. Here we address this issue and reveal dendritic mechanisms by which endogenous cholinergic modulation of synaptic plasticity is opposite in superficial and deep layers of both mouse and human neocortex. Our results show that in different cortical layers, spike timing-dependent plasticity is oppositely regulated by the activation of nicotinic acetylcholine receptors (nAChRs) either located on dendrites of principal neurons or on GABAergic interneurons. Thus, layer-specific nAChR expression allows functional layer-specific control of cortical processing and plasticity by the BF cholinergic system, which is evolutionarily conserved from mice to humans. PMID:27604129

  2. Cholinergic and VIPergic effects on thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1985-07-01

    The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose of carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.

  3. Cholinergic signal activated renin angiotensin system associated with cardiovascular changes in the ovine fetus

    PubMed Central

    Geng, Chunsong; Mao, Caiping; Wu, Lei; Cheng, Yu; Liu, Rulu; Chen, Bingxin; Chen, Ling; Zhang, Lubo; Xu, Zhice

    2010-01-01

    Aim Cholinergic regulation is important in the control of cardiovascular and endocrine responses. The mechanisms behind cardiovascular responses induced by cholinergic activation are explored by studying hormonal systems, including renin-angiotensin and vasopressin (VP). Results In chronically prepared fetal sheep, intravenous infusion of the cholinergic agonist carbachol increased fetal systolic, diastolic, and mean arterial pressure accompanied with bradycardia at near-term. Although intravenous administration of carbachol had no effect on plasma VP concentrations, this agonist increased angiotensin I and angiotensin II levels in fetal plasma. Fetal blood values, including sodium, osmolality, nitric oxide, hemoglobin, and hematocrit were unchanged by intravenous carbachol. Conclusion Cholinergic activation by carbachol controls fetal blood pressure and heart rate in utero. An over-activated fetal renin-angiotensin-system (RAS) is associated with changes in vascular pressure following intravenous administration of carbachol, indicating that the cholinergic stimulation-mediated hormonal mechanism in the fetus might play a critical role in the regulation of cardiovascular homeostasis. PMID:19921993

  4. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed Central

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-01-01

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  5. GABAergic Terminals Are a Source of Galanin to Modulate Cholinergic Neuron Development in the Neonatal Forebrain

    PubMed Central

    Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B.; Schnell, Robert; Mulder, Jan; Luiten, Paul G. M.; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor

    2014-01-01

    The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain. PMID:23897649

  6. A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb

    PubMed Central

    Li, Guoshi; Cleland, Thomas A.

    2013-01-01

    Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions including odor discrimination, perceptual learning, and short term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but has little effect on mitral cell firing rates and hence will not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials, and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations. PMID:23407960

  7. Cholinergic hypofunction impairs memory acquisition possibly through hippocampal Arc and BDNF downregulation.

    PubMed

    Gil-Bea, Francisco J; Solas, Maite; Mateos, Laura; Winblad, Bengt; Ramírez, María J; Cedazo-Mínguez, Angel

    2011-09-01

    Recent evidence suggests that activity-regulated cytoskeleton associated protein (Arc) and brain-derived neurotrophic factor (BDNF) are key players in the cellular mechanisms that trigger synaptic changes and memory consolidation. Cholinergic deafferentiation of hippocampus has been largely shown to induce memory impairments in different behavioral tasks. However, the mechanisms underlying cholinergic-induced memory formation remain unclear. The role of hippocampal cholinergic denervation on synaptic consolidation and further acquisition of spatial memory was hereby examined by analyzing Arc and BDNF in standard environment and after behavioral training in Morris water maze (MWM). In standard environment, a cholinergic hypofunction induced by the toxin (192) IgG-saporin led to significant decreases in Arc protein and mRNA as well as in BDNF. Lesioned rats subjected to MWM showed a worse acquisition performance that was reversed after galantamine treatment. Recovery of memory acquisition was accompanied by normalization of Arc and BDNF levels in hippocampus. Stimulation of muscarinic, but not nicotinic receptors, in hippocampal primary neurons caused a rapid induction of Arc production. These data suggest that cholinergic denervation of hippocampus leads to deficits in muscarinic-dependent induction of Arc and a subsequent impairment of spatial memory acquisition. PMID:20865740

  8. Gene regulation in the rat prefrontal cortex after learning with or without cholinergic insult.

    PubMed

    Paban, Véronique; Chambon, Caroline; Farioli, Fernand; Alescio-Lautier, Béatrice

    2011-05-01

    The prefrontal cortex is essential for a wide variety of higher functions, including attention and memory. Cholinergic neurons are thought to be of prime importance in the modulation of these processes. Degeneration of forebrain cholinergic neurons has been linked to several neurological disorders. The present study was designed to identify genes and networks in rat prefrontal cortex that are associated with learning and cholinergic-loss-memory deficit. Affymetrix microarray technology was used to screen gene expression changes in rats submitted or not to 192 IgG-saporin immunolesion of cholinergic basal forebrain and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes, which were organized in several clusters of highly correlated genes and would be involved in biological processes such as intracellular signaling process, transcription regulation, and filament organization and axon guidance. Memory loss following cortical cholinergic deafferentation was associated with significant expression of genes belonging to only one clearly delineated cluster and would be involved in biological processes related to cytoskeleton organization and proliferation, and glial and vascular remodeling, i.e., in processes associated with brain repair after injury. PMID:21345373

  9. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-06-25

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  10. [Tendencies of nematodes communities to recover after soil cover degradation].

    PubMed

    Gruzdeva, L I; Sushchuk, A A

    2010-01-01

    The way nematodes form communities on a new substrate after complete soil and plant cover degradation is studied on a model of industrial dumping. It is revealed that recovery of soil cover after degradation begins with invasion of mainly the upper soil horizon by nematodes. At the early stages, species that are resistant to unfavorable environmental conditions dominate (bacteriophages), next the abundances of carnivores and nematodes that are connected with plants increase, which indicates the process of biocenosis regeneration. PMID:21275095

  11. Biogenic magnetite in the nematode caenorhabditis elegans.

    PubMed Central

    Cranfield, Charles G; Dawe, Adam; Karloukovski, Vassil; Dunin-Borkowski, Rafal E; de Pomerai, David; Dobson, Jon

    2004-01-01

    The nematode Caenorhabditis elegans is widely used as a model system in biological research. Recently, examination of the production of heat-shock proteins in this organism in response to mobile phone-type electromagnetic field exposure produced the most robust demonstration to date of a non-thermal, deleterious biological effect. Though these results appear to be a sound demonstration of non-thermal bioeffects, to our knowledge, no mechanism has been proposed to explain them. We show, apparently for the first time, that biogenic magnetite, a ferrimagnetic iron oxide, is present in C. elegans. Its presence may have confounding effects on experiments involving electromagnetic fields as well as implications for the use of this nematode as a model system for iron biomineralization in multi-cellular organisms. PMID:15801597

  12. Mucocutaneous manifestations of helminth infections: Nematodes.

    PubMed

    Lupi, Omar; Downing, Christopher; Lee, Michael; Pino, Livia; Bravo, Francisco; Giglio, Patricia; Sethi, Aisha; Klaus, Sidney; Sangueza, Omar P; Fuller, Claire; Mendoza, Natalia; Ladizinski, Barry; Woc-Colburn, Laila; Tyring, Stephen K

    2015-12-01

    In the 21st century, despite increased globalization through international travel for business, medical volunteerism, pleasure, and immigration/refugees into the United States, there is little published in the dermatology literature regarding the cutaneous manifestations of helminth infections. Approximately 17% of travelers seek medical care because of cutaneous disorders, many related to infectious etiologies. This review will focus on the cutaneous manifestations of helminth infections and is divided into 2 parts: part I focuses on nematode infections, and part II focuses on trematode and cestode infections. This review highlights the clinical manifestations, transmission, diagnosis, and treatment of helminth infections. Nematodes are roundworms that cause diseases with cutaneous manifestations, such as cutaneous larval migrans, onchocerciasis, filariasis, gnathostomiasis, loiasis, dracunculiasis, strongyloidiasis, ascariasis, streptocerciasis, dirofilariasis, and trichinosis. Tremadotes, also known as flukes, cause schistosomiasis, paragonimiasis, and fascioliasis. Cestodes (tapeworms) are flat, hermaphroditic parasites that cause diseases such as sparganosis, cysticercosis, and echinococcus. PMID:26568337

  13. All the microbiology nematodes can teach us

    PubMed Central

    Bulgheresi, Silvia

    2016-01-01

    Be it their pervasiveness, experimental tractability or their impact on human health and agriculture, nematode–bacterium associations are far-reaching research subjects. Although the omics hype did not spare them and helped reveal mechanisms of communication and exchange between the associated partners, a huge amount of knowledge still awaits to be harvested from their study. Here, I summarize and compare the kind of research that has been already performed on the model nematode Caenorhabditis elegans and on symbiotic nematodes, both marine and entomopathogenic ones. The emerging picture highlights how complementing genetic studies with ecological ones (in the case of well-established genetic model systems such as C. elegans) and vice versa (in the case of the yet uncultured Stilbonematinae) will deepen our understanding of how microbial symbioses evolved and how they impact our environment. PMID:26839382

  14. Caenorhabditis Elegans—Applications to Nematode Genomics

    PubMed Central

    Parkinson, John

    2003-01-01

    The complete genome sequence of the free-living nematode Caenorhabditis elegans was published 4 years ago. Since then, we have seen great strides in technologies that seek to exploit this data. Here we describe the application of some of these techniques and other advances that are helping us to understand about not only the biology of this important model organism but also the entire phylum Nematoda. PMID:18629128

  15. Distribution of entomopathogenic nematodes in Southern Cameroon.

    PubMed

    Kanga, Françoise Ngo; Waeyenberge, Lieven; Hauser, Stefan; Moens, Maurice

    2012-01-01

    A first survey of entomopathogenic nematodes (EPN) was conducted in three agro-ecological zones of Southern Cameroon in 2007 and 2008. Entomopathogenic nematodes were recovered from 26 of 251 soil samples (10.4%). Three species, Heterorhabditis baujardi, Steinernema sp. A and Steinernema sp. B were found. The two steinernematids were considered unidentified species. Among the positive samples, 23 samples contained only H. baujardi (88.5%), two contained Steinernema sp. A co-occurring with H. baujardi (7.7%), and one sample contained Steinernema sp. B (3.9%). H. baujardi was frequent in forest and fruit crop (cocoa and oil palm plantations). Steinernema sp. A was found in a tree plantation of teak, Steinernema sp. B in a forest habitat. Nematodes were mostly present in acidic soils with pH ranging from 3.7 to 7.0. The highest EPN presence was recorded in sandy loam, sandy clay loam, sandy clay and clay soils. EPNs were not recovered in sand, loamy sand and clay loam soils. Using principal component analysis for elucidating the major variation patterns among sampling sites, four factors explaining for 73.64% of the overall variance were extracted. Factors were a combination of geographical (latitude, longitude, altitude), soil (pH, contents of sand, silt and clay, organic carbon, texture), and moisture (wilting point, field capacity) parameters as well as climatic parameters (mean annual rainfall, mean air temperature). Logistic regression and redundancy analyses (RDA) revealed that soil pH, longitude, available water and altitude were associated with presence and absence of EPN. Both logistic regression and RDA indicated that, increasing soil pH and longitude, associated with decreasing altitude, led to higher percentages of samples containing entomopathogenic nematodes. PMID:21983478

  16. Distribution of Soybean Cyst Nematode in Nebraska

    PubMed Central

    Powers, T. O.; Sandall, L. J.; Wysong, D. S.

    1989-01-01

    A survey of 552 soybean fields in 20 counties in Nebraska in 1986-88 revealed 35 fields infested with the soybean cyst nematode (SCN), Heterodera glycines. Identification was confirmed with a greenhouse bioassay, using 'Lee 74' soybean, and by the application of a DNA hybridization probe derived from SCN mitochondrial DNA. Most of the SCN-infested fields were located on the Missouri River floodplain and in the southeastern corner of the state. PMID:19287657

  17. Nematodes Associated with Plants from Naturally Acidic Wetlands Soil

    PubMed Central

    Cox, Robert John; Smart, Grover C.

    1994-01-01

    Four plants, Cyperus ochraceus, Eriocaulon compressum, Lythrum alatum, and Xyris jupicai, growing along the shoreline of an oligotrophic lake in north central Florida were sampled for nematodes. The nematodes recovered were placed in four trophic groups: bacterivores, herbivores, omnivores, and predators. When the nematodes on all plants were considered, 27% were bacterivores, 23% were herbivores, 7% were omnivores, and 43% were predators. Tripyla was the dominant predator and the dominant genus of all nematodes, and Malenchus was the dominant herbivore. Dominance was not clearly pronounced in the other trophic groups. PMID:19279927

  18. Interactions Among Selected Endoparasitic Nematodes and Three Pseudomonads on Alfalfa

    PubMed Central

    Bookbinder, M. G.; Bloom, J. R.; Lukezic, F. L.

    1982-01-01

    Meloidogyne hapla, Pratylenchus penetrans, and Helicotylenchus dihystera, reduced the growth of 'Saranac AR alfalfa seedlings when applied at concentrations of 50 nematodes per plant. All except P. penetrans reduced seedling growth when applied at 25 per seedling. M. hapla reduced growth when applied at 12 per seedling. Nematodes interacted with three pseudomonads to produce greater growth reductions than were obtained with single pathogens, suggesting synergistic relationships. Ditylenchus dipsaci, applied at 25 or 50 nematodes per seedling, reduced plant weight compared with weights of control plants, but did not interact with test bacteria. All of the nematodes except D. dipsaci produced root wounds which were invaded by bacteria. PMID:19295682

  19. Nematode Response to Cool Season Annual Graminaceous Species and Cultivars

    PubMed Central

    Pedersen, J. F.; Rodríguez-Kábana, R.

    1987-01-01

    The response of 29 rye, oat, triticale, and wheat cultivars to selected nematode species was determined in the greenhouse. Variability in nematode root galling and final nematode population densities in root and soil in response to cool season annual graminaceous crops occurred for spiral (Helicotylenchus dihystera), stubby root (Paratrichodorus minor), and root-knot (Meloidogyne incognita) nematodes. Although none of the graminaceous crops supported M. incognita at levels as high as the susceptible 'Davis' soybean control, sufficient variation existed among these to warrant field scale studies. PMID:19290289

  20. Detection and Description of Soils with Specific Nematode Suppressiveness

    PubMed Central

    Westphal, Andreas

    2005-01-01

    Soils with specific suppressiveness to plant-parasitic nematodes are of interest to define the mechanisms that regulate population density. Suppressive soils prevent nematodes from establishing and from causing disease, and they diminish disease severity after initial nematode damage in continuous culturing of a host. A range of non-specific and specific soil treatments, followed by infestation with a target nematode, have been employed to identify nematode-suppressive soils. Biocidal treatments, soil transfer tests, and baiting approaches together with observations of the plant-parasitic nematode in the root zone of susceptible host plants have improved the understanding of nematode-suppressive soils. Techniques to demonstrate specific soil suppressiveness against plant-parasitic nematodes are compared in this review. The overlap of studies on soil suppressiveness with recent advances in soil health and quality is briefly discussed. The emphasis is on methods (or criteria) used to detect and identify soils that maintain specific soil suppressiveness to plant-parasitic nematodes. While biocidal treatments can detect general and specific soil suppressiveness, soil transfer studies, by definition, apply only to specific soil suppressiveness. Finally, potential strategies to exploit suppressive soils are presented. PMID:19262851

  1. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    PubMed

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens. PMID:26527129

  2. Extracting DNA of nematodes communities from Argentine Pampas agricultural soils.

    PubMed

    Mondino, Eduardo A; Covacevich, Fernanda; Studdert, Guillermo A; Pimentel, João P; Berbara, Ricardo L L

    2015-01-01

    We examined four strategies (Tris/EDTA, sodium dodecyl sulfate, Chelex 100 resin and cetyltrimethylammonium bromide -CTAB-) for extracting nucleic acid (DNA) from communities of nematodes. Nematodes were isolated from an agricultural area under different management of long-term crop rotation experiment from Argentina during three seasons. After DNA extraction, Polymerase Chain Reaction-amplifications were performed and considered as indicators of successful DNA extraction. The CTAB combined with proteinase K and phenol-chloroform-isoamyl alcohol was the unique successful method because positive amplifications were obtained by using both eukaryotic and nematode specific primers. This work could contribute to biodiversity studies of nematodes on agroecosystems. PMID:26131632

  3. Engineering natural and synthetic resistance for nematode management.

    PubMed

    Vrain, T C

    1999-12-01

    Bioengineering strategies are being developed that will provide specific and durable resistance against plant-parasitic nematodes in crops. The strategies come under three categories: (i) transfer of natural resistance genes from plants that have them to plants that do not, to mobilize the defense mechanisms in susceptible crops; (ii) interference with the biochemical signals that nematodes exchange with plants during parasitic interactions, especially those resulting in the formation of specialized feeding sites for the sedentary endoparasites-many nematode genes and many plant genes are potential targets for manipulation; and (iii) expression in plant cells of proteins toxic to nematodes. PMID:19270915

  4. Engineering Natural and Synthetic Resistance for Nematode Management

    PubMed Central

    Vrain, Thierry C.

    1999-01-01

    Bioengineering strategies are being developed that will provide specific and durable resistance against plant-parasitic nematodes in crops. The strategies come under three categories: (i) transfer of natural resistance genes from plants that have them to plants that do not, to mobilize the defense mechanisms in susceptible crops; (ii) interference with the biochemical signals that nematodes exchange with plants during parasitic interactions, especially those resulting in the formation of specialized feeding sites for the sedentary endoparasites—many nematode genes and many plant genes are potential targets for manipulation; and (iii) expression in plant cells of proteins toxic to nematodes. PMID:19270915

  5. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  6. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.

    PubMed

    Aráoz, Rómulo; Vilariño, Natalia; Botana, Luis M; Molgó, Jordi

    2010-07-01

    Toxic cyanobacterial blooms are a threat to public health because of the capacity of some cyanobacterial species to produce potent hepatotoxins and neurotoxins. Cyanobacterial neurotoxins are involved in the rapid death of wild and domestic animals by targeting voltage gated sodium channels and cholinergic synapses, including the neuromuscular junction. Anatoxin-a and its methylene homologue homoanatoxin-a are potent agonists of nicotinic acetylcholine receptors. Since the structural determination of anatoxin-a, several mass spectrometry-based methods have been developed for detection of anatoxin-a and, later, homoanatoxin-a. Mass spectrometry-based techniques provide accuracy, precision, selectivity, sensitivity, reproducibility, adequate limit of detection, and structural and quantitative information for analyses of cyanobacterial anatoxins from cultured and environmental cyanobacterial samples. However, these physicochemical techniques will only detect known toxins for which toxin standards are commercially available, and they require highly specialized laboratory personnel and expensive equipment. Receptor-based assays are functional methods that are based on the mechanism of action of a class of toxins and are thus, suitable tools for survey of freshwater reservoirs for cyanobacterial anatoxins. The competition between cyanobacterial anatoxins and a labelled ligand for binding to nicotinic acetylcholine receptors is measured radioactively or non-radioactively providing high-throughput screening formats for routine detection of this class of neurotoxins. The mouse bioassay is the method of choice for marine toxin monitoring, but has to be replaced by fully validated functional methods. In this paper we review the ligand-binding assays developed for detection of cyanobacterial and algal neurotoxins targeting the nicotinic acetylcholine receptors and for high-throughput screening of novel nicotinic agents. PMID:20238109

  7. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport

    SciTech Connect

    Gracz, L.M.; Wang, W.; Parsons, S.M.

    1988-07-12

    Crude cholinergic synaptic vesicles from a homogenate of the electric organ of Torpedo californica were centrifuged to equilibrium in an isosmotic sucrose density gradient. The classical VP/sub 1/ synaptic vesicles banding at 1.055 g/mL actively transported (/sup 3/H)acetylcholine (AcCh). An organelle banding at about 1.071 g/mL transported even more (/sup 3/H)AcCh. Transport by both organelles was inhibited by the known AcCh storage blockers trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol, formerly AH5183) and nigericin. Relative to VP/sub 1/ vesicles the denser organelle was slightly smaller as shown by size-exclusion chromatography. It is concluded that the denser organelle corresponds to the recycling VP/sub 2/ synaptic vesicle originally described in intact Torpedo marmorata electric organ. The properties of the receptor for vesamicol were studied by measuring binding of (/sup 3/H)vesamicol, and the amount of SV2 antigen characteristic of secretory vesicles was assayed with a monoclonal antibody directed against it. Relative to VP/sub 1/ vesicles the VP/sub 2/ vesicles had a ratio of (/sup 3/H)AcCh transport activity to vesamicol receptor concentration that typically was 4-7-fold higher, whereas the ratio of SV2 antigen concentration to vesamicol receptor concentration was about 2-fold higher. The Hill coefficients ..cap alpha../sub H/ and equilibrium dissociation constants K for vesamicol binding to VP/sub 1/ and VP/sub 2/ vesicles were essentially the same. The positive Hill coefficient suggests that the vesamicol receptor exists as a homotropic oligomeric complex. The results demonstrate that VP/sub 1/ and VP/sub 2/ synaptic vesicles exhibit functional differences in the AcCh transport system, presumably as a result of regulatory phenomena.

  8. Assaying environmental nickel toxicity using model nematodes

    USGS Publications Warehouse

    Rudel, David; Douglas, Chandler; Huffnagle, Ian; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 μg Ni/g dry weight of sediment and 50-800 μg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  9. Assaying Environmental Nickel Toxicity Using Model Nematodes

    PubMed Central

    Rudel, David; Douglas, Chandler D.; Huffnagle, Ian M.; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species. PMID:24116204

  10. Nematode locomotion in unconfined and confined fluids

    NASA Astrophysics Data System (ADS)

    Bilbao, Alejandro; Wajnryb, Eligiusz; Vanapalli, Siva A.; Blawzdziewicz, Jerzy

    2013-08-01

    The millimeter-long soil-dwelling nematode Caenorhabditis elegans propels itself by producing undulations that propagate along its body and turns by assuming highly curved shapes. According to our recent study [V. Padmanabhan et al., PLoS ONE 7, e40121 (2012), 10.1371/journal.pone.0040121] all these postures can be accurately described by a piecewise-harmonic-curvature model. We combine this curvature-based description with highly accurate hydrodynamic bead models to evaluate the normalized velocity and turning angles for a worm swimming in an unconfined fluid and in a parallel-wall cell. We find that the worm moves twice as fast and navigates more effectively under a strong confinement, due to the large transverse-to-longitudinal resistance-coefficient ratio resulting from the wall-mediated far-field hydrodynamic coupling between body segments. We also note that the optimal swimming gait is similar to the gait observed for nematodes swimming in high-viscosity fluids. Our bead models allow us to determine the effects of confinement and finite thickness of the body of the nematode on its locomotion. These effects are not accounted for by the classical resistive-force and slender-body theories.

  11. Entomopathogenic Nematode Production and Application Technology

    PubMed Central

    Shapiro-Ilan, David I.; Han, Richou; Dolinksi, Claudia

    2012-01-01

    Production and application technology is critical for the success of entomopathogenic nematodes (EPNs) in biological control. Production approaches include in vivo, and in vitro methods (solid or liquid fermentation). For laboratory use and small scale field experiments, in vivo production of EPNs appears to be the appropriate method. In vivo production is also appropriate for niche markets and small growers where a lack of capital, scientific expertise or infrastructure cannot justify large investments into in vitro culture technology. In vitro technology is used when large scale production is needed at reasonable quality and cost. Infective juveniles of entomopathogenic nematodes are usually applied using various spray equipment and standard irrigation systems. Enhanced efficacy in EPN applications can be facilitated through improved delivery mechanisms (e.g., cadaver application) or optimization of spray equipment. Substantial progress has been made in recent years in developing EPN formulations, particularly for above ground applications, e.g., mixing EPNs with surfactants or polymers or with sprayable gels. Bait formulations and insect host cadavers can enhance EPN persistence and reduce the quantity of nematodes required per unit area. This review provides a summary and analysis of factors that affect production and application of EPNs and offers insights for their future in biological insect suppression. PMID:23482883

  12. Selective Loss of Cholinergic Neurons in the Ventral Striatum of Patients with Alzheimer Disease

    NASA Astrophysics Data System (ADS)

    Lehericy, Stephane; Hirsch, Etienne C.; Cervera, Pascale; Hersh, Louis B.; Hauw, Jean-Jacques; Ruberg, Merle; Agid, Yves

    1989-11-01

    Cholinergic neurons were studied by immunohistochemistry with an antiserum against human choline acetyltransferase in the caudate nucleus, putamen, and ventral striatum (including the nucleus accumbens) of three patients with Alzheimer disease and three control subjects. Immunoreactive cell bodies were mapped and counted. In the ventral striatum of patients with Alzheimer disease, a 60% decrease in the number of cholinergic neurons was observed, whereas in the caudate nucleus and putamen values for control subjects and patients were similar. To determine whether all neurons in the ventral striatum were affected, neuropeptide Y-containing neurons were also immunostained, mapped, and counted. The number of these neurons was the same in control subjects and patients with Alzheimer disease, indicating that neuronal loss is not generalized in the ventral striatum and may be specific to the cholinergic population.

  13. Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology

    PubMed Central

    Unal, Cagri T.; Golowasch, Jorge P.; Zaborszky, Laszlo

    2012-01-01

    We performed whole-cell recordings from basal forebrain (BF) cholinergic neurons in transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the choline acetyltransferase promoter. BF cholinergic neurons can be differentiated into two electrophysiologically identifiable subtypes: early and late firing neurons. Early firing neurons (∼70%) are more excitable, show prominent spike frequency adaptation and are more susceptible to depolarization blockade, a phenomenon characterized by complete silencing of the neuron following initial action potentials. Late firing neurons (∼30%), albeit being less excitable, could maintain a tonic discharge at low frequencies. In voltage clamp analysis, we have shown that early firing neurons have a higher density of low voltage activated (LVA) calcium currents. These two cholinergic cell populations might be involved in distinct functions: the early firing group being more suitable for phasic changes in cortical acetylcholine release associated with attention while the late firing neurons could support general arousal by maintaining tonic acetylcholine levels. PMID:22586380

  14. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  15. Network analyses in systems pharmacology

    PubMed Central

    Berger, Seth I.; Iyengar, Ravi

    2009-01-01

    Systems pharmacology is an emerging area of pharmacology which utilizes network analysis of drug action as one of its approaches. By considering drug actions and side effects in the context of the regulatory networks within which the drug targets and disease gene products function, network analysis promises to greatly increase our knowledge of the mechanisms underlying the multiple actions of drugs. Systems pharmacology can provide new approaches for drug discovery for complex diseases. The integrated approach used in systems pharmacology can allow for drug action to be considered in the context of the whole genome. Network-based studies are becoming an increasingly important tool in understanding the relationships between drug action and disease susceptibility genes. This review discusses how analysis of biological networks has contributed to the genesis of systems pharmacology and how these studies have improved global understanding of drug targets, suggested new targets and approaches for therapeutics, and provided a deeper understanding of the effects of drugs. Taken together, these types of analyses can lead to new therapeutic options while improving the safety and efficacy of existing medications. Contact: ravi.iyengar@mssm.edu PMID:19648136

  16. Muscarinic signaling influences the patterning and phenotype of cholinergic amacrine cells in the developing chick retina

    PubMed Central

    Stanke, Jennifer J; Lehman, Bret; Fischer, Andy J

    2008-01-01

    Background Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT). Results We found that as ChAT-immunoreactive cells differentiate they expressed the homeodomain transcription factors Pax6 and Islet1, and the cell-cycle inhibitor p27kip1. As differentiation proceeds, type-II cholinergic cells, displaced to the ganglion cell layer, transiently expressed high levels of cellular retinoic acid binding protein (CRABP) and neurofilament, while type-I cells in the inner nuclear layer did not. Although there is a 1:1 ratio of type-I to type-II cells in vivo, in dissociated cell cultures the type-I cells (ChAT-positive and CRABP-negative) out-numbered the type-II cells (ChAT and CRABP-positive cells) by 2:1. The relative abundance of type-I to type-II cells was not influenced by Sonic Hedgehog (Shh), but was affected by compounds that act at muscarinic acetylcholine receptors. In addition, the abundance and mosaic patterning of type-II cholinergic amacrine cells is disrupted by interfering with muscarinic signaling. Conclusion We conclude that: (1) during development type-I and type-II cholinergic amacrine cells are not homotypic, (2) the phenotypic differences between these subtypes of cells is controlled by the local microenvironment, and (3) appropriate levels of muscarinic signaling between the cholinergic amacrine cells are required for proper mosaic patterning. PMID:18254959

  17. Mutual Control of Cholinergic and Low-Threshold Spike Interneurons in the Striatum

    PubMed Central

    Elghaba, Rasha; Vautrelle, Nicolas; Bracci, Enrico

    2016-01-01

    The striatum is the largest nucleus of the basal ganglia and is crucially involved in action selection and reward processing. Cortical and thalamic inputs to the striatum are processed by local networks in which several classes of interneurons play an important, but still poorly understood role. Here we investigated the interactions between cholinergic and low-threshold spike (LTS) interneurons. LTS interneurons were hyperpolarized by co-application of muscarinic and nicotinic receptor antagonists (atropine and mecamylamine, respectively). Mecamylamine alone also caused hyperpolarizations, while atropine alone caused depolarizations and increased firing. LTS interneurons were also under control of tonic GABA, as application of the GABAA receptor antagonist picrotoxin caused depolarizations and increased firing. Frequency of spontaneous GABAergic events in LTS interneurons was increased by co-application of atropine and mecamylamine or by atropine alone, but reduced by mecamylamine alone. In the presence of picrotoxin and tetrodotoxin (TTX), atropine and mecamylamine depolarized the LTS interneurons. We concluded that part of the excitatory effects of tonic acetylcholine (ACh) on LTS interneurons were due to cholinergic modulation of tonic GABA. We then studied the influence of LTS interneurons on cholinergic interneurons. Application of antagonists of somatostatin or neuropeptide Y (NPY) receptors or of an inhibitor of nitric oxide synthase (L-NAME) did not cause detectable effects in cholinergic interneurons. However, prolonged synchronized depolarizations of LTS interneurons (elicited with optogenetics tools) caused slow-onset depolarizations in cholinergic interneurons, which were often accompanied by strong action potential firing and were fully abolished by L-NAME. Thus, a mutual excitatory influence exists between LTS and cholinergic interneurons in the striatum, providing an opportunity for sustained activation of the two cell types. This activation may

  18. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    PubMed

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS. PMID:19960210

  19. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  20. Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei.

    PubMed

    Gould, E; Woolf, N J; Butcher, L L

    1989-01-01

    The cholinergic innervation of the compact and reticular parts of the substantia nigra in the rat was investigated by use of highly sensitive retrograde and anterograde tract-tracing methods in combination with choline acetyltransferase immunohistochemistry. The fluorescent tracers True Blue, propidium iodide, or fluorogold were infused preferentially into either nigral subnucleus. Cells positive for choline acetyltransferase and retrograde tracer were found in both the pedunculopontine and laterodorsal tegmental nuclei, although considerably more double-labeled somata were observed in the former than in the latter component of the pontomesencephalotegmental cholinergic complex. Approximately 2-3 times more cholinergic cells were labeled in the peduculopontine and laterodorsal tegmental nuclei when tracer injections were centered in the compact nigral subdivision than when infusions of about the same size were confined totally to the reticular part. Infusions of the anterogradely transported tracer Phaseolus vulgaris leucoagglutinin into the pontomesencephalotegmental cholinergic complex resulted in uptake and transport of that label to both nigral subnuclei, and some of the Phaseolus vulgaris leucoagglutinin-accumulating somata and proximal processes also demonstrated choline acetyltransferase-like immunoreactivity. The Phaseolus vulgaris agglutinin-labeled entities in the substantia nigra exhibited terminal-like profiles that were reminiscent of the pattern of nigral choline acetyltransferase-positive puncta demonstrated immunohistochemically by use of nickel ammonium sulfate enhancement of the final reaction product in the avidin-biotin procedure. These observations strongly support the contention that the pontomesencephalotegmental cholinergic complex is the major source of cholinergic projections to both the compact and reticular portions of the rat substantia nigra. PMID:2710334

  1. Sox2 Regulates Cholinergic Amacrine Cell Positioning and Dendritic Stratification in the Retina

    PubMed Central

    Whitney, Irene E.; Keeley, Patrick W.; St. John, Ace J.; Kautzman, Amanda G.; Kay, Jeremy N.

    2014-01-01

    The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer. PMID:25057212

  2. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans.

    PubMed

    Vianna, Lauro C; Fadel, Paul J; Secher, Niels H; Fisher, James P

    2015-04-01

    A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response of the muscle is relatively small compared with the onset of leg cycling, where a marked increase in muscle blood flow rapidly occurs as a consequence of multiple redundant mechanisms. We recorded blood pressure (BP; brachial artery), stroke volume (pulse contour analysis), cardiac output, and systemic vascular resistance (SVR) in young healthy males, while performing either 20 s of isometric handgrip contraction at 40% maximum voluntary contraction (protocol 1; n = 9) or 20 s of low-intensity leg cycling exercise (protocol 2; n = 8, 42 ± 8 W). Exercise trials were conducted under control (no drug) conditions and following cholinergic blockade (glycopyrrolate). Under control conditions, isometric handgrip elicited an initial increase in BP (+5 ± 2 mmHg at 3 s and +3 ± 1 mmHg at 10 s, P < 0.05), while SVR dropped after 3 s (-27 ± 6% at 20 s; P < 0.05). Cholinergic blockade abolished the isometric handgrip-induced fall in SVR and, thereby, augmented the pressor response (+13 ± 3 mmHg at 10 s; P < 0.05 vs. control). In contrast, cholinergic blockade had a nonsignificant effect on changes in BP and SVR at the onset of leg cycling exercise. These findings suggest that a cholinergic mechanism is important for the BP and SVR responses at the onset of isometric handgrip exercise in humans. PMID:25589014

  3. Habenula cholinergic neurons regulate anxiety during nicotine withdrawal via nicotinic acetylcholine receptors.

    PubMed

    Pang, Xueyan; Liu, Liwang; Ngolab, Jennifer; Zhao-Shea, Rubing; McIntosh, J Michael; Gardner, Paul D; Tapper, Andrew R

    2016-08-01

    Cholinergic neurons in the medial habenula (MHb) modulate anxiety during nicotine withdrawal although the molecular neuroadaptation(s) within the MHb that induce affective behaviors during nicotine cessation is largely unknown. MHb cholinergic neurons are unique in that they robustly express neuronal nicotinic acetylcholine receptors (nAChRs), although their behavioral role as autoreceptors in these neurons has not been described. To test the hypothesis that nAChR signaling in MHb cholinergic neurons could modulate anxiety, we expressed novel "gain of function" nAChR subunits selectively in MHb cholinergic neurons of adult mice. Mice expressing these mutant nAChRs exhibited increased anxiety-like behavior that was alleviated by blockade with a nAChR antagonist. To test the hypothesis that anxiety induced by nicotine withdrawal may be mediated by increased MHb nicotinic receptor signaling, we infused nAChR subtype selective antagonists into the MHb of nicotine naïve and withdrawn mice. While antagonists had little effect on nicotine naïve mice, blocking α4β2 or α6β2, but not α3β4 nAChRs in the MHb alleviated anxiety in mice undergoing nicotine withdrawal. Consistent with behavioral results, there was increased functional expression of nAChRs containing the α6 subunit in MHb neurons that also expressed the α4 subunit. Together, these data indicate that MHb cholinergic neurons regulate nicotine withdrawal-induced anxiety via increased signaling through nicotinic receptors containing the α6 subunit and point toward nAChRs in MHb cholinergic neurons as molecular targets for smoking cessation therapeutics. PMID:27020042

  4. Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri.

    PubMed

    López, Jesús M; Domínguez, Laura; Morona, Ruth; Northcutt, R Glenn; González, Agustín

    2012-04-01

    Lungfishes (dipnoans) are currently considered the closest living relatives of tetrapods. The organization of the cholinergic systems in the brain has been carefully analyzed in most vertebrate groups, and major shared characteristics have been described, although traits particular to each vertebrate class have also been found. In the present study, we provide the first detailed information on the distribution of cholinergic cell bodies and fibers in the central nervous system in two representative species of lungfishes, the African lungfish (Protopterus dolloi) and the Australian lungfish (Neoceratodus forsteri), as revealed by immunohistochemistry against the enzyme choline acetyltransferase (ChAT). Distinct groups of ChAT immunoreactive (ChAT-ir) cells were observed in the basal telencephalon, habenula, isthmic nucleus, laterodorsal tegmental nucleus, cranial nerve motor nuclei, and the motor column of the spinal cord, and these groups seem to be highly conserved among vertebrates. In lungfishes, the presence of a cholinergic cell group in the thalamus and the absence of ChAT-ir cells in the tectum are variable traits, unique to this group and appearing several times during evolution. Other characters were observed exclusively in Neoceratodus, such as the presence of cholinergic cells in the suprachiasmatic nucleus, the pretectal region and the superior raphe nucleus. Cholinergic fibers were found in the medial pallium, basal telencephalon, thalamus and prethalamus, optic tectum and interpeduncular nucleus. Comparison of these results with those from other classes of vertebrates, including a segmental analysis to correlate cell populations, reveals that the cholinergic systems in lungfishes largely resemble those of amphibians and other tetrapods. PMID:21826455

  5. State dependency of the effects of microinjection of cholinergic drugs into the nucleus pontis oralis.

    PubMed

    López-Rodríguez, F; Kohlmeier, K; Morales, F R; Chase, M H

    1994-06-27

    The microinjection of cholinergic drugs into the pontine reticular formation elicits active sleep-like states that are comprised of the principal physiological patterns of activity that characterize naturally-occurring active sleep, i.e., EEG desynchronization, PGO waves, rapid eye movements and atonia. We have reported that other behavioral states arise even when cholinergic drugs are injected into the exact same reticular location. The present study was conducted to explore the basis for the differences in the drug effect. A combination of acetylcholine and neostigmine was injected by microiontophoresis into the dorsal region of the nucleus pontis oralis in four chronic, unanesthetized cats. The states that were induced by cholinergic drug injection depended on the state of the animal at the time of the injection. When the animal was awake, cholinergic injections resulted in a waking-dissociated state, which was characterized by EEG desynchronization and muscle atonia in a cat that appeared to be awake and was able to track objects in its visual field. If the cat was in quiet sleep at the time of the injection, an active sleep-like state followed that was indistinguishable from naturally-occurring active sleep; on a few occasions following cholinergic injections during quiet sleep there was a quiet sleep-dissociated state, which was characterized by PGO waves and muscle atonia in the cat that by other indices appeared to be in quiet sleep. The results of this study indicate that the state of the animal at the time of drug injection is a critical variable that influences the responses which are induced by cholinergic stimulation of the pontine reticular formation. PMID:7953643

  6. GPR30 is Positioned to Mediate Estrogen Effects on Basal Forebrain Cholinergic Neurons and Cognitive Performance

    PubMed Central

    Hammond, R.; Gibbs, R.B.

    2011-01-01

    Beneficial effects of estrogen therapy on cognitive performance diminish with age and time following the loss of ovarian function. This has led to the ‘Window of Opportunity’ hypothesis, which states that estrogen therapy must be administered within a limited period of time following menopause in order to be effective. Effects of estrogen therapy on cognitive performance are due, at least in part, to effects on cholinergic afferents innervating the hippocampus and cortex, and it has been suggested that the loss of estrogen effect with age and time following menopause is due to a substantial reduction in the function of these projections. The mechanisms that underlie the effects are not clear. GPR30 is a novel G-protein coupled estrogen receptor that is expressed in brain and other tissues. Our recent studies show that GPR30 is expressed in areas of the brain important for spatial learning, memory, and attention. In addition, GPR30 in expressed by the vast majority of cholinergic neurons in the basal forebrain, and appears to be an important regulator of basal forebrain cholinergic function. We hypothesize that GPR30 plays an important role in mediating direct effects of estradiol on basal forebrain cholinergic neurons, with corresponding effects on cognitive performance. Hence, GPR30 may be an important target for developing new therapies that can enhance or restore estrogen effects on cognitive performance in older women. Here we briefly review the cholinergic hypothesis and summarize our findings to date showing effects of a GPR30 agonist and antagonist on basal forebrain cholinergic function and cognitive performance. PMID:21138734

  7. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function.

    PubMed

    Fragkouli, A; Stamatakis, A; Zographos, E; Pachnis, V; Stylianopoulou, F

    2006-01-01

    It has been reported recently that mice lacking both alleles of the LIM-homeobox gene Lhx7, display dramatically reduced number of forebrain cholinergic neurons. In the present study, we investigated whether the Lhx7 mutation affects male and female mice differently, given the fact that gender differences are consistently observed in forebrain cholinergic function. Our results show that in adult male as well as female Lhx7 homozygous mutants there is a dramatic loss of choline acetyltransferase immunoreactive forebrain neurons, both projection and interneurons. The reduction of forebrain choline acetyltransferase immunoreactive neurons in Lhx7 homozygous mutants is accompanied by a decrease of acetylcholinesterase histochemical staining in all forebrain cholinergic neuron target areas of both male and female homozygous mutants. Furthermore, there was an increase of M1-, but not M2-, muscarinic acetylcholine receptor binding site density in the somatosensory cortex and basal ganglia of only the female homozygous mutant mice. Such an increase can be regarded as a mechanism acting to compensate for the dramatically reduced cholinergic input, raising the possibility that the forebrain cholinergic system in female mice may be more plastic and responsive to situations of limited neurotransmitter availability. Finally, our study provides additional data for the sexual dimorphism of the forebrain cholinergic system, as female mice appear to have a lower density of M1-muscarinic acetylcholine receptors in the striatal areas of the basal ganglia and a higher density of M2-muscarinic acetylcholine receptors, in a number of cortical areas, as well as the striatal areas of the basal ganglia. PMID:16338089

  8. Unexpected Variation in Neuroanatomy among Diverse Nematode Species

    PubMed Central

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E.

    2016-01-01

    Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and A. suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapsae, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent than previously assumed and

  9. Unexpected Variation in Neuroanatomy among Diverse Nematode Species.

    PubMed

    Han, Ziduan; Boas, Stephanie; Schroeder, Nathan E

    2015-01-01

    Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and A. suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapsae, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent than previously assumed and

  10. Cholinergic components of nervous system of Schistosoma mansoni and S. haematobium (Digenea: Schistosomatidae).

    PubMed

    Reda, Enayat S; El-Shabasy, Eman A; Said, Ashraf E; Mansour, Mohamed F A; Saleh, Mai A

    2016-08-01

    A comparison has been made for the first time between the cholinergic components of the nervous system of important human digeneans namely Schistosoma mansoni and Schistosoma haematobium from infected hamster (Cricentus auratus) in Egypt. In each parasite, the central nervous system consists of two cerebral ganglia and three pairs of nerve cords (ventral, lateral, and dorsal) linked together by some transverse connectives and numerous ring commissures. Peripheral cholinergic innervation was detected in oral and ventral suckers and in some parts of female reproductive system in both species, but there were some differences. The possible functions of some of these nervous components are discussed. PMID:27130318

  11. Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system.

    PubMed

    Grando, Sergei A; Kawashima, Koichiro; Kirkpatrick, Charles J; Kummer, Wolfgang; Wessler, Ignaz

    2015-11-01

    This special issue of International Immunopharmacology is the proceedings of the Fourth International Symposium on Non-neuronal Acetylcholine that was held on August 28-30, 2014 at the Justus Liebig University of Giessen in Germany. It contains original contributions of meeting participants covering the significant progress in understanding of the biological and medical significance of the non-neuronal cholinergic system extending from exciting insights into molecular mechanisms regulating this system via miRNAs over the discovery of novel cholinergic cellular signaling circuitries to clinical implications in cancer, wound healing, immunity and inflammation, cardiovascular, respiratory and other diseases. PMID:26362206

  12. The Pharmacology of Regenerative Medicine

    PubMed Central

    Saul, Justin M.; Furth, Mark E.; Andersson, Karl-Erik

    2013-01-01

    Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase “regenerative pharmacology” to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is “the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues.” As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all. PMID:23818131

  13. Pharmacological effects of rosa damascena.

    PubMed

    Boskabady, Mohammad Hossein; Shafei, Mohammad Naser; Saberi, Zahra; Amini, Somayeh

    2011-07-01

    Rosa damascena mill L., known as Gole Mohammadi in is one of the most important species of Rosaceae family flowers. R. damascena is an ornamental plant and beside perfuming effect, several pharmacological properties including anti-HIV, antibacterial, antioxidant, antitussive, hypnotic, antidiabetic, and relaxant effect on tracheal chains have been reported for this plant. This article is a comprehensive review on pharmacological effects of R. damascena. Online literature searches were performed using Medline, medex, Scopus, and Google Scholar websites backed to 1972 to identify researches about R. damascena. Searches also were done by going through the author's files and the bibliographies of all located papers. PMID:23493250

  14. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  15. PHARMACOLOGICAL ACTIVITIES OF PROTOCATECHUIC ACID.

    PubMed

    Khan, Abida Kalsoom; Rashid, Rehana; Fatima, Nighat; Mahmood, Sadaf; Mir, Sadullah; Khan, Sara; Jabeen, Nyla; Murtaza, Ghulam

    2015-01-01

    Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a simple phenolic acid. It is found in a large variety of edible plants and possesses various pharmacological activities. This article aims to review the modern trends in phytochemical isolation and extraction of PCA from plants and other natural resources. Moreover, this article also encompasses pharmacological and biological activities of PCA. It is well known to have anti-inflammatory, antioxidant, anti-hyperglycemia, antibacterial, anticancer, anti-ageing, anti-athro- genic, anti-tumoral, anti-asthma, antiulcer, antispasmodic and neurological properties. PMID:26647619

  16. Pharmacological Effects of Rosa Damascena

    PubMed Central

    Boskabady, Mohammad Hossein; Shafei, Mohammad Naser; Saberi, Zahra; Amini, Somayeh

    2011-01-01

    Rosa damascena mill L., known as Gole Mohammadi in is one of the most important species of Rosaceae family flowers. R. damascena is an ornamental plant and beside perfuming effect, several pharmacological properties including anti-HIV, antibacterial, antioxidant, antitussive, hypnotic, antidiabetic, and relaxant effect on tracheal chains have been reported for this plant. This article is a comprehensive review on pharmacological effects of R. damascena. Online literature searches were performed using Medline, medex, Scopus, and Google Scholar websites backed to 1972 to identify researches about R. damascena. Searches also were done by going through the author's files and the bibliographies of all located papers. PMID:23493250

  17. Pharmacological management of acute bronchiolitis

    PubMed Central

    Wright, Melvin; Mullett, Charles J; Piedimonte, Giovanni

    2008-01-01

    This article reviews the current knowledge base related to the pharmacological treatments for acute bronchiolitis. Bronchiolitis is a common lower respiratory illness affecting infants worldwide. The mainstays of therapy include airway support, supplemental oxygen, and support of fluids and nutrition. Frequently tried pharmacological interventions, such as ribavirin, nebulized bronchodilators, and systemic corticosteroids, have not been proven to benefit patients with bronchiolitis. Antibiotics do not improve the clinical course of patients with bronchiolitis, and should be used only in those patients with proven concurrent bacterial infection. Exogenous surfactant and heliox therapy also cannot be recommended for routine use, but surfactant replacement holds promise and should be further studied. PMID:19209271

  18. The interaction between methylene blue and the cholinergic system

    PubMed Central

    Pfaffendorf, M; Bruning, T A; Batink, H D; van Zwieten, P A

    1997-01-01

    The inhibitory effects of methylene blue (MB) on different types of cholinesterases and [3H]-N-methylscopolamine ([3H]-NMS) binding to muscarinic receptors were studied. Human plasma from young healthy male volunteers, purified human pseudocholinesterase and purified bovine true acetylcholinesterase were incubated with acetylcholine and increasing concentrations of MB (0.1–100 μmol l−1) in the presence of the pH-indicator m-nitrophenol for 30 min at 25°C. The amount of acetic acid produced by the enzymatic hydrolysis of acetylcholine was determined photometrically. Rat cardiac left ventricle homogenate was incubated with [3H]-NMS and with increasing concentrations of MB (0.1 nmol l−1–100 μmol l−1) at 37°C for 20 min. The binding of [3H]-NMS to the homogenate was quantified by a standard liquid scintillation technique. MB inhibited the esterase activity of human plasma, human pseudocholinesterase and bovine acetylcholinesterase concentration-dependently with IC50 values of 1.05±0.05 μmol l−1, 5.32±0.36 μmol l−1 and 0.42±0.09 μmol l−1, respectively. MB induced complete inhibition of the esterase activity of human plasma and human pseudocholinesterase, whereas bovine acetylcholinesterase was maximally inhibited by 73±3.3%. MB was able to inhibit specific [3H]-NMS binding to rat cardiac left ventricle homogenate completely with an IC50 value of 0.77±0.03 μmol l−1, which resulted in a Ki value for MB of 0.58±0.02 μmol l−1. In conclusion, MB may be considered as a cholinesterase inhibitor with additional, relevant affinity for muscarinic binding sites at concentrations at which MB is used for investigations into the endothelial system. In our opinion these interactions between MB and the cholinergic system invalidate the use of MB as a tool for the investigation of the L-arginine-NO-pathway, in particular when muscarinic receptor stimulation is involved. PMID:9298533

  19. Influence of symbiotic bacteria on entomopathogenic nematode--host interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are three players in the infection process of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae): the nematodes themselves, the host insect, and the nematode’s mutualistic bacteria (Xenorhabdus and Photorhabdus spp.). As a host infection progresses, all three of these players...

  20. Nematode effector proteins: an emerging paradigm of parasitism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  1. A SURVEY OF CYST NEMATODES (HETERODERA SPP.) IN NORTHERN EGYPT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information concerning the occurrence and distribution of cyst nematodes (Heterodera spp.) in Egypt is important to assess their potential to cause economic damage to crop plants. A nematode survey was conducted in Alexandria and El-Behera Governorates in northern Egypt to identify the species of cy...

  2. Alternatives to methyl bromide for nematode control in ornamental crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematode control options for production of in-ground ornamental crops are extremely limited. Ornamental production has different obstacles to nematode control and chemical application than raised-bed vegetable production. These challenges include a need for flat fumigation, lack of labeled herbicide...

  3. Sex-specific mating pheromones in the nematode Panagrellus redivivus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite advances in medicine and crop genetics, nematodes remain significant human pathogens and agricultural pests. This warrants investigation of alternative strategies for pest control, such as interference with pheromone-mediated reproduction. Because only two nematode species have had their phe...

  4. High Sensitivity NMR and Mixture Analysis for Nematode Behavioral Metabolomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes are the most abundant animal on earth, and they parasitize virtually all plants and animals. Caenorhabditis elegans is a free-living nematode that lives in soil and composting material. We have shown that C. elegans releases at least 40 small molecules into its environment including many...

  5. Directional movement of entomopathogenic nematodes in response to electrical current

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes in the genera Steinernema and Heterorhabditis are important regulating agents of insect populations. The infective juvenile nematodes respond to a variety of stimuli that aid in survival and host finding. Identification of novel cues in the nematodes’ environment can help ...

  6. 76 FR 60357 - Golden Nematode; Removal of Regulated Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... nematode (Globodera rostochiensis) is a destructive pest of potatoes and other solanaceous plants. Potatoes... no longer required. From 1977 until 2010, potato production fields in the townships of Elba and Byron... nematode quarantine. In 2007, there were 13 farms in Genesee County that harvested potatoes. These...

  7. Soybean lines evaluated for resistance to reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seventy-four wild and domestic soybean (Glycine max and G. soja) lines were evaluated for resistance to reniform nematode (Rotylenchulus reniformis) in growth chamber tests with a day length of 16 hours and temperature held constant at 28 C. Several entries for which reactions to reniform nematode w...

  8. Harmful Effects of Mustard Bio-fumigants on Entomopathogenic Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green manures, particularly mustards tilled into the soil preceding potato crops act as bio-fumigants that are toxic to plant parasitic nematodes, providing an alternative to synthetic soil fumigants. It is not known if mustard green manures also kill beneficial entomopathogenic nematodes (EPNs) tha...

  9. Two new species of soil nematodes from Manipur, India.

    PubMed

    Chanu, Loukrakpam Bina; Meitei, N Mohilal; Shah, M Manjur

    2016-09-01

    Survey for soil nematodes associated with mulberry plants in valley districts of Manipur revealed the presence of two new species of soil nematodes of the genus Tylenchus sp. and Telotylenchus sp. The two new species are described and illustrated here. PMID:27605765

  10. Occurrence and distribution of nematodes in Idaho crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surveys were conducted in Idaho during the 2000-2006 cropping seasons to study the occurrence, population density, host association and distribution of plant-parasitic nematodes associated with major crops, grasses and weeds. Eighty-four species and 43 genera of plant-parasitic nematodes were record...

  11. Viability and virulence of entomopathogenic nematodes exposed to ultraviolet radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes can be highly effective biocontrol agents, but their efficacy can be reduced due to exposure environmental stress such as from ultraviolet radiation. Our objective was to compare UV tolerance among a broad array of nematode species. We compared 9 different EPN species and ...

  12. Characterization of reniform nematode genome through shotgun sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reniform nematode (RN), a major agricultural pest particularly on cotton in the United States(U.S.), is among the major plant parasitic nematodes for which limited genomic information exists. In this study, over 380 Mb of sequence data were generated from four pooled adult female RN and assembl...

  13. Book review: Systematics of Cyst Nematodes (Nematoda: Heteroderinae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cyst nematodes are an important group of plant-parasitic nematodes that cause billions of dollars in economic damage to crops every year. This article reviews a recently published, two-volume monograph that describes the morphological and molecular characteristics of these agriculturally signif...

  14. Collective behavior of nematodes in a thin fluid

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Jung, Sunghwan

    2010-11-01

    Many organisms live in a confined fluidic environment such as in a thin fluid layer on dermal tissues, in saturated soil, and others. In this study, we investigate collective behaviors of nematodes in a thin fluid layer. The actively moving nematodes feel various hydrodynamic forces such as surface tension from the top air-liquid interface, viscous stress from the bottom surface, and more. Two or more nematodes in close proximity can be drawn together by the capillary force between bodies. This capillary force also makes it difficult for nematodes to separate. The Strouhal number and a ratio of amplitude to wavelength are measured before and after nematode aggregation and separation. Grouped and separate nematodes have no significant changes of the Strouhal number and the ratio of amplitude to wavelength, which shows that body stroke and kinematic performance do not change while grouped together. This result implies that nematodes gain no mechanical advantage during locomotion when grouped but that the capillary force draws and keeps nematodes joined together.

  15. Development of Reniform Nematode Resistance in Upland Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this review is to assess development of resistance to the reniform nematode (Rotylenchulus reniformis) in Upland Cotton (Gossypium hirsutum). Cotton cultivars with reniform nematode resistance are needed. The development of resistant cultivars appears possible but presents a signifi...

  16. Evaluation of Nematode Resistant Grape Rootstock for Managing Mesocriconema xenoplax

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to better understand the impact of the ring nematode, Mesocriconema xenoplax, on the productivity and physiology of grapevines grafted onto different rootstocks that showed varying resistance to ring nematodes under greenhouse conditions. Pinot noir grapevines (grafted...

  17. Characterization of a New Species of Cyst Nematode Parasitizing Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Examination of soil around unthrifty corn roots in northwestern Tennessee (Obion County) in 2006 revealed high population densities of juvenile nematodes and lemon-shaped cysts. This nematode resembles Cactodera spp. in possessing a circumfenestrate vulva but lacking bullae and an underbridge. These...

  18. Nematode resistance and agronomic performance of LONREN and NEMSTACK lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LONREN lines have resistance to reniform nematodes that was obtained from Gossypium longicalyx. The NEMSTACK lines have the same resistance recombined with the rkn-1 gene for resistance to root knot nematode from 'Acala NemX.' Different LONREN lines vary depending on whether the resistance gene was...

  19. Directional movement of parasitic nematodes in response to electrical current

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steinernematid nematodes are parasites that are important natural regulating agents of insect populations. The infective juvenile nematodes respond to a variety of stimuli that aid in survival and host finding. Host finding strategies among steinernematids differ along a continuum from ambush (sit...

  20. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes, which are ubiquitous in soil and are estimated to cause $100 B of agricultural damage annually, produce novel, highly conserved small sugar-based molecules call ascarosides. Ascarosides play critical roles in nematode development and behavior. We report here that plants recognize these un...

  1. Control of the peachtree borer using beneficial nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The peachtree borer, Synanthedon exitiosa, is a major pest of peaches and other stone fruits. Our research indicates that entomopathogenic nematodes, also known as beneficial nematodes, can be used effectively to control the insect. We conducted replicated experiments in randomized block designs ov...

  2. Soybean Cyst Nematode in North America - 55 Years Later

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode, Heterodera glycines, was first discovered in North America in 1954 in Hanover County, North Carolina, USA, when it was found on soybean in a field that had been planted to Easter lilies obtained from Japan prior to World War II. The nematode is now distributed throughout soybe...

  3. Caspase Dependent Programmed Cell Death in Developing Embryos: A Potential Target for Therapeutic Intervention against Pathogenic Nematodes

    PubMed Central

    Mohapatra, Alok Das; Kumar, Sunil; Satapathy, Ashok Kumar; Ravindran, Balachandran

    2011-01-01

    Background Successful embryogenesis is a critical rate limiting step for the survival and transmission of parasitic worms as well as pathology mediated by them. Hence, blockage of this important process through therapeutic induction of apoptosis in their embryonic stages offers promise for developing effective anti-parasitic measures against these extra cellular parasites. However, unlike in the case of protozoan parasites, induction of apoptosis as a therapeutic approach is yet to be explored against metazoan helminth parasites. Methodology/Principal Findings For the first time, here we developed and evaluated flow cytometry based assays to assess several conserved features of apoptosis in developing embryos of a pathogenic filarial nematode Setaria digitata, in-vitro as well as ex-vivo. We validated programmed cell death in developing embryos by using immuno-fluorescence microscopy and scoring expression profile of nematode specific proteins related to apoptosis [e.g. CED-3, CED-4 and CED-9]. Mechanistically, apoptotic death of embryonic stages was found to be a caspase dependent phenomenon mediated primarily through induction of intracellular ROS. The apoptogenicity of some pharmacological compounds viz. DEC, Chloroquine, Primaquine and Curcumin were also evaluated. Curcumin was found to be the most effective pharmacological agent followed by Primaquine while Chloroquine displayed minimal effect and DEC had no demonstrable effect. Further, demonstration of induction of apoptosis in embryonic stages by lipid peroxidation products [molecules commonly associated with inflammatory responses in filarial disease] and demonstration of in-situ apoptosis of developing embryos in adult parasites in a natural bovine model of filariasis have offered a framework to understand anti-fecundity host immunity operational against parasitic helminths. Conclusions/Significance Our observations have revealed for the first time, that induction of apoptosis in developing embryos can

  4. Survey of nematodes associated with terrestrial slugs in Norway.

    PubMed

    Ross, J L; Ivanova, E S; Hatteland, B A; Brurberg, M B; Haukeland, S

    2016-09-01

    A survey of nematodes associated with terrestrial slugs was conducted for the first time in Norway. A total of 611 terrestrial slugs were collected from 32 sample sites. Slugs were identified by means of morphological examination, dissection of genitalia and molecular analysis using mitochondrial DNA. Twelve slug species were identified, representing four different slug families. Internal nematodes were identified by means of morphological analysis and the sequencing of the 18S rRNA gene. Of the sample sites studied, 62.5% were found to be positive for nematode parasites, with 18.7% of all slugs discovered being infected. Five nematode species were identified in this study: Alloionema appendiculatum, Agfa flexilis, Angiostoma limacis, Angiostoma sp. and Phasmarhabditis hermaphrodita. Of these species, only one nematode was previously undescribed (Angiostoma sp.). This is the first record of the presence of A. appendiculatum, A. flexilis and A. limacis in Norway. PMID:26411747

  5. [Evolution and systematics of nematodes based on molecular investigation].

    PubMed

    Okulewicz, Anna; Perec, Agnieszka

    2004-01-01

    Evolution and systematics of nematodes based on molecular investigation. The use of molecular phylogenetics to examine the interrelationships between animal parasites, free-living nematodes, and plant parasites versus traditional classification based on morphological-ecological characters was discussed and reviewed. Distinct differences were observed between parasitic nematodes and free-living ones. Within the former group, animal parasites turned out to be distinctly different from plant parasites. Using small subunit of ribosomal RNA gene sequence from a wide range of nematodes, there is a possibility to compare animal-parasitic, plant-parasitic and free-living taxa. Nowadays the parasitic nematodes expressed sequence tag (EST) project is currently generating sequence information to provide a new source of data to examine the evolutionary history of this taxonomic group. PMID:16859012

  6. δ-Opioid and Dopaminergic Processes in Accumbens Shell Modulate the Cholinergic Control of Predictive Learning and Choice

    PubMed Central

    Laurent, Vincent; Bertran-Gonzalez, Jesus; Chieng, Billy C.

    2014-01-01

    Decision-making depends on the ability to extract predictive information from the environment to guide future actions. Outcome-specific Pavlovian-instrumental transfer (PIT) provides an animal model of this process in which a stimulus predicting a particular outcome biases choice toward actions earning that outcome. Recent evidence suggests that cellular adaptations of δ-opioid receptors (DORs) on cholinergic interneurons (CINs) in the nucleus accumbens shell (NAc-S) are necessary for PIT. Here we found that modulation of DORs in CINs critically influences D1-receptor (D1R)-expressing projection neurons in the NAc-S to promote PIT. First, we assessed PIT-induced changes in signaling processes in dopamine D1- and D2-receptor-expressing neurons using drd2-eGFP mice, and found that PIT-related signaling was restricted to non-D2R-eGFP-expressing neurons, suggesting major involvement of D1R-neurons. Next we confirmed the role of D1Rs pharmacologically: the D1R antagonist SCH-23390, but not the D2R antagonist raclopride, infused into the NAc-S abolished PIT in rats, an effect that depended on DOR activity. Moreover, asymmetrical infusion of SCH-23390 and the DOR antagonist naltrindole into the NAc-S also abolished PIT. DOR agonists were found to sensitize the firing responses of CINs in brain slices prepared immediately after the PIT test. We confirmed the opioid-acetylcholinergic influence over D1R-neurons by selectively blocking muscarinic M4 receptors in the NAc-S, which tightly regulate the activity of D1Rs, a treatment that rescued the deficit in PIT induced by naltrindole. We describe a model of NAc-S function in which DORs modulate CINs to influence both D1R-neurons and stimulus-guided choice between goal-directed actions. PMID:24453326

  7. Pharmacologic Treatment for Temporomandibular Disorders.

    PubMed

    Dym, Harry; Bowler, Dustin; Zeidan, Joseph

    2016-04-01

    Pharmacologic agents play an integral role in the overall management of temporomandibular joint disorder. The general dentist should be familiar with the different classes of drugs currently in use for dealing with this often complex medical/dental problem. PMID:27040290

  8. Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer.

    PubMed

    Du, Juan; Cieslak, John A; Welsh, Jessemae L; Sibenaller, Zita A; Allen, Bryan G; Wagner, Brett A; Kalen, Amanda L; Doskey, Claire M; Strother, Robert K; Button, Anna M; Mott, Sarah L; Smith, Brian; Tsai, Susan; Mezhir, James; Goswami, Prabhat C; Spitz, Douglas R; Buettner, Garry R; Cullen, Joseph J

    2015-08-15

    The toxicity of pharmacologic ascorbate is mediated by the generation of H2O2 via the oxidation of ascorbate. Because pancreatic cancer cells are sensitive to H2O2 generated by ascorbate, they would also be expected to become sensitized to agents that increase oxidative damage such as ionizing radiation. The current study demonstrates that pharmacologic ascorbate enhances the cytotoxic effects of ionizing radiation as seen by decreased cell viability and clonogenic survival in all pancreatic cancer cell lines examined, but not in nontumorigenic pancreatic ductal epithelial cells. Ascorbate radiosensitization was associated with an increase in oxidative stress-induced DNA damage, which was reversed by catalase. In mice with established heterotopic and orthotopic pancreatic tumor xenografts, pharmacologic ascorbate combined with ionizing radiation decreased tumor growth and increased survival, without damaging the gastrointestinal tract or increasing systemic changes in parameters indicative of oxidative stress. Our results demonstrate the potential clinical utility of pharmacologic ascorbate as a radiosensitizer in the treatment of pancreatic cancer. PMID:26081808

  9. Pharmacology Experiments on the Computer.

    ERIC Educational Resources Information Center

    Keller, Daniel

    1990-01-01

    A computer program that replaces a set of pharmacology and physiology laboratory experiments on live animals or isolated organs is described and illustrated. Five experiments are simulated: dose-effect relationships on smooth muscle, blood pressure and catecholamines, neuromuscular signal transmission, acetylcholine and the circulation, and…

  10. Pharmacology of Marihuana (Cannabis sativa)

    ERIC Educational Resources Information Center

    Maickel, Roger P.

    1973-01-01

    A detailed discussion of marihuana (Cannabis sativa) providing the modes of use, history, chemistry, and physiologic properties of the drug. Cites research results relating to the pharmacologic effects of marihuana. These effects are categorized into five areas: behavioral, cardiovascular-respiratory, central nervous system, toxicity-toxicology,…

  11. The Pharmacological Potential of Mushrooms

    PubMed Central

    2005-01-01

    This review describes pharmacologically active compounds from mushrooms. Compounds and complex substances with antimicrobial, antiviral, antitumor, antiallergic, immunomodulating, anti-inflammatory, antiatherogenic, hypoglycemic, hepatoprotective and central activities are covered, focusing on the review of recent literature. The production of mushrooms or mushroom compounds is discussed briefly. PMID:16136207

  12. The pharmacological activities of (-)-anonaine.

    PubMed

    Li, Hsing-Tan; Wu, Hui-Ming; Chen, Hsin-Liang; Liu, Chi-Ming; Chen, Chung-Yi

    2013-01-01

    Several species of Magnoliaceae and Annonaceae are used in Traditional Chinese Medicine. (-)-Anonaine, isolated from several species of Magnoliaceae and Annonaceae, presents antiplasmodial, antibacterial, antifungal, antioxidation, anticancer, antidepression, and vasorelaxant activity. This article provides an overview of the pharmacological functions of (-)-anonaine. PMID:23857128

  13. Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer

    PubMed Central

    Du, Juan; Cieslak, John A.; Welsh, Jessemae L.; Sibenaller, Zita A.; Allen, Bryan G.; Wagner, Brett A.; Kalen, Amanda L.; Doskey, Claire M.; Strother, Robert K.; Button, Anna M.; Mott, Sarah L.; Smith, Brian; Tsai, Susan; Mezhir, James; Goswami, Prabhat C.; Spitz, Douglas R.; Buettner, Garry R.; Cullen, Joseph J.

    2015-01-01

    The toxicity of pharmacological ascorbate is mediated by the generation of H2O2 via the oxidation of ascorbate. Since pancreatic cancer cells are sensitive to H2O2 generated by ascorbate they would also be expected to become sensitized to agents that increase oxidative damage such as ionizing radiation. The current study demonstrates that pharmacological ascorbate enhances the cytotoxic effects of ionizing radiation as seen by decreased cell viability and clonogenic survival in all pancreatic cancer cell lines examined, but not in non-tumorigenic pancreatic ductal epithelial cells. Ascorbate radiosensitization was associated with an increase in oxidative stress-induced DNA damage, which was reversed by catalase. In mice with established heterotopic and orthotopic pancreatic tumor xenografts, pharmacological ascorbate combined with ionizing radiation decreased tumor growth and increased survival, without damaging the gastrointestinal tract or increasing systemic changes in parameters indicative of oxidative stress. Our results demonstrate the potential clinical utility of pharmacological ascorbate as a radiosensitizer in the treatment of pancreatic cancer. PMID:26081808

  14. Co-adaptation mechanisms in plant-nematode systems.

    PubMed

    Zinovieva, S V

    2014-01-01

    The review is aimed to analyze the biochemical and immune-breaking adaptive mechanisms established in evolution of plant parasitic nematodes. Plant parasitic nematodes are obligate, biotrophic pathogens of numerous plant species. These organisms cause dramatic changes in the morphology and physiology of their hosts. The group of sedentary nematodes which are among the most damaging plant-parasitic nematodes cause the formation of special organs called nematode feeding sites in the root tissue called syncytium (cyst nematodes, CN; Heterodera and Globodera spp.) or giant cells (root-knot nematodes, RKN; Meloidogyne spp.). The most pronounced morphological adaptations of nematodes for plant parasitism include a hollow, protrusible stylet (feeding spear) connected to three esophageal gland cells that express products secreted into plant tissues through the stylet. Several gene products secreted by the nematode during parasitism have been identified. The current battery of candidate parasitism proteins secreted by nematodes to modify plant tissues for parasitism includes cell-wall-modifying enzymes, multiple regulators of host cell cycle and metabolism, proteins that can localize near the plant cell nucleus, potential suppressors of host defense, and mimics of plant molecules. Plants are usually able to recognize and react to parasites by activating various defense responses. When the response of the plant is too weak or too late, a successful infection (compatible interaction) will result. A rapid and strong defense response (e. g. due to the presence of a resistance gene) will result in the resistant (incompatible) reaction. Defense responses include the production of toxic oxygen radicals and systemic signaling compounds as well as the activation of defense genes that lead to the production of structural barriers or other toxins. PMID:25272462

  15. Multifaceted effects of host plants on entomopathogenic nematodes.

    PubMed

    Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn

    2016-03-01

    The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs. PMID:26896698

  16. Digestion of FMRFamide and nematode FMRFamide-like peptides (nematode FLPs) by the soluble fraction from Panagrellus redivivus homogenate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteases in the soluble fraction of homogenates prepared from the free-living nematode Panagrellus redivivus hydrolyzed the amidated invertebrate neuropeptides FMRFa and FLRFa, and nematode FMRFa-like peptides (FLPs) KPNFLRFa (FLP-1), APKPKFIRFa (FLP-5), KNEFIRFa (FLP-8), KPSFVRFa (FLP-9), RNKFEFIR...

  17. Chemical signals from plants previously infected with root knot nematodes affect behavior of infective juvenile root knot nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes are a worldwide problem in agriculture, with losses estimated to $100 billion per year in the US. Damage caused by root-knot nematodes (Meloidogyne spp.) (RKN) disrupts the flow of water and nutrients to the plant and increases the plant’s vulnerability to other pathogens. While studies ...

  18. Expressed sequence tags of the peanut pod nematode Ditylenchus africanus: the first transcriptome analysis of an Anguinid nematode

    PubMed Central

    Haegeman, Annelies; Jacob, Joachim; Vanholme, Bartel; Kyndt, Tina; Mitreva, Makedonka; Gheysen, Godelieve

    2009-01-01

    In this study, 4847 expressed sequenced tags (ESTs) from mixed stages of the migratory plant-parasitic nematode Ditylenchus africanus (peanut pod nematode) were investigated. It is the first molecular survey of a nematode which belongs to the family of the Anguinidae (order Rhabditida, superfamily Sphaerularioidea). The sequences were clustered into 2596 unigenes, of which 43% did not show any homology to known protein, nucleotide, nematode EST or plant-parasitic nematode genome sequences. Gene ontology mapping revealed that most putative proteins are involved in developmental and reproductive processes. In addition unigenes involved in oxidative stress as well as in anhydrobiosis, such as LEA (late embryogenesis abundant protein) and trehalose-6-phosphate synthase were identified. Other tags showed homology to genes previously described as being involved in parasitism (expansin, SEC-2, calreticulin, 14-3-3b and various allergen proteins). In situ hybridization revealed that the expression of a putative expansin and a venom allergen protein was restricted to the gland cell area of the nematode, being in agreement with their presumed role in parasitism. Furthermore, 7 putative novel candidate parasitism genes were identified based on the prediction of a signal peptide in the corresponding protein sequence and homologous ESTs exclusively in parasitic nematodes. These genes are interesting for further research and functional characterization. Finally, 34 unigenes were retained as good target candidates for future RNAi experiments, because of their nematode specific nature and observed lethal phenotypes of Caenorhabditis elegans homologs. PMID:19383517

  19. Entomopathogenic nematodes in the European biocontrol market.

    PubMed

    Ehlers, R U

    2003-01-01

    In Europe total revenues in the biocontrol market have reached approximately 200 million Euros. The sector with the highest turn-over is the market for beneficial invertebrates with a 55% share, followed by microbial agents with approximately 25%. Annual growth rates of up to 20% have been estimated. Besides microbial plant protection products that are currently in the process of re-registration, several microbial products have been registered or are in the process of registration, following the EU directive 91/414. Entomopathogenic nematodes (EPN) are exceptionally safe biocontrol agents. Until today, they are exempted from registration in most European countries, the reason why SMEs were able to offer economically reasonable nematode-based products. The development of technology for mass production in liquid media significantly reduced the product costs and accelerated the introduction of nematode products in tree nurseries, ornamentals, strawberries, mushrooms, citrus and turf. Progress in storage and formulation technology has resulted in high quality products which are more resistant to environmental extremes occurring during transportation to the user. The cooperation between science, industry and extension within the EU COST Action 819 has supported the development of quality control methods. Today four companies produce EPN in liquid culture, offering 8 different nematode species. Problems with soil insects are increasing. Grubs, like Melolontha melolontha and other scarabaeidae cause damage in orchards and turf. Since the introduction of the Western Corn Rootworm Diabrotica virgifera into Serbia in 1992, this pests as spread all over the Balkan Region and has reached Italy, France and Austria. These soil insect pests are potential targets for EPN. The development of insecticide resistance has opened another sector for EPN. Novel adjuvants used to improve formulation of EPN have enabled the foliar application against Western Flower Thrips and Plutella

  20. Clinical pharmacology and vascular risk.

    PubMed

    Silvestrelli, G; Corea, F; Micheli, S; Lanari, A

    2010-01-01

    Pharmacological treatment and several drugs of abuse have been associated with ischemic heart disease (IHD) and cerebrovascular diseases (CVD). However, there is a paucity of data on the independent risk of vascular disease (VD) associated with pharmacological treatment and no controlled trials demonstrating a reduction in risk with abstinence. Information about IHD and CVD-related drug abuse is mainly limited to epidemiological studies focused on urban populations. The potential link between some pharmacological treatments (estrogen, some oncologic drugs and some atypical antipsychotics) and cerebrovascular adverse events was analyzed, but disagreement about an association persists. Drugs of abuse, including cocaine, amphetamines and heroin, have been associated with an increased vascular risk. These drugs can cause abrupt changes in blood pressure, vasculitic-type changes, lead to embolization caused by infective endocarditis, and hemostatic and hematologic abnormalities that can result in increased blood viscosity and platelet aggregation. Long-term treatment strategies based on medication, psychological support, and outreach programs play an important role in treatment of drug dependency. In these last years public interest in risk factors for VD has been constantly increasing and the successful identification and management of pharmacological treatment and drug abuse can be challenging. One of the major public health issues for the future will be to focus more on new vascular risk factor recognition and management. The objective of this chapter is to review the relevance of IHD and CVD associated with various pharmacological treatments and drug abuse with focusing on ischemic disease. This chapter reports the clinical evidence of this association and analyzes the experimental role of new drugs as a growing risk factor of VD with the hypothetical new association. In conclusion, in this chapter great attention is paid to evaluating the scientific and real

  1. Dysautonomia Due to Reduced Cholinergic Neurotransmission Causes Cardiac Remodeling and Heart Failure ▿ ‡

    PubMed Central

    Lara, Aline; Damasceno, Denis D.; Pires, Rita; Gros, Robert; Gomes, Enéas R.; Gavioli, Mariana; Lima, Ricardo F.; Guimarães, Diogo; Lima, Patricia; Bueno, Carlos Roberto; Vasconcelos, Anilton; Roman-Campos, Danilo; Menezes, Cristiane A. S.; Sirvente, Raquel A.; Salemi, Vera M.; Mady, Charles; Caron, Marc G.; Ferreira, Anderson J.; Brum, Patricia C.; Resende, Rodrigo R.; Cruz, Jader S.; Gomez, Marcus Vinicius; Prado, Vania F.; de Almeida, Alvair P.; Prado, Marco A. M.; Guatimosim, Silvia

    2010-01-01

    Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction. PMID:20123977

  2. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus

    PubMed Central

    Teipel, Stefan J.; Flatz, Wilhelm; Ackl, Nibal; Grothe, Michel; Kilimann, Ingo; Bokde, Arun L.W.; Grinberg, Lea; Amaro, Edson; Kljajevic, Vanja; Alho, Eduardo; Knels, Christina; Ebert, Anne; Heinsen, Helmut; Danek, Adrian

    2014-01-01

    Primary progressive aphasia (PPA) is characterized by left hemispheric frontotemporal cortical atrophy. Evidence from anatomical studies suggests that the nucleus subputaminalis (NSP), a subnucleus of the cholinergic basal forebrain, may be involved in the pathological process of PPA. Therefore, we studied the pattern of cortical and basal forebrain atrophy in 10 patients with a clinical diagnosis of PPA and 18 healthy age-matched controls using high-resolution magnetic resonance imaging (MRI). We determined the cholinergic basal forebrain nuclei according to Mesulam’s nomenclature and the NSP in MRI reference space based on histological sections and the MRI scan of a post-mortem brain in cranio. Using voxel-based analysis, we found left hemispheric cortical atrophy in PPA patients compared with controls, including prefrontal, lateral temporal and medial temporal lobe areas. We detected cholinergic basal forebrain atrophy in left predominant localizations of Ch4p, Ch4am, Ch4al, Ch3 and NSP. For the first time, we have described the pattern of basal forebrain atrophy in PPA and confirmed the involvement of NSP that had been predicted based on theoretical considerations. Our findings may enhance understanding of the role of cholinergic degeneration for the regional specificity of the cortical destruction leading to the syndrome of PPA. PMID:24434193

  3. MUSCARINIC CHOLINERGIC RECEPTOR REGULATION AND ACETYLCHOLINESTERASE INHIBITION IN RESPONSE TO INSECTICIDE EXPOSURE DURING DEVELOPMENT

    EPA Science Inventory

    Daily injections of low doses of the organophosphorus pesticide, parathion, into neonatal rats during the rapid phase of cholinergic system development (postnatal days 8-20), resulted in an average 67% inhibition of acetylcholinesterase and a 23% down regulation of muscarinic cho...

  4. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  5. Red Dermographism in Autism Spectrum Disorders: A Clinical Sign of Cholinergic Dysfunction?

    ERIC Educational Resources Information Center

    Lemonnier, E.; Grandgeorge, M.; Jacobzone-Leveque, C.; Bessaguet, C.; Peudenier, S.; Misery, L.

    2013-01-01

    The authors hypothesised that red dermographism--a skin reaction involving the cholinergic system--is more frequent in children with autism spectrum disorders (ASDs) than in children exhibiting typical development. We used a dermatological examination to study red dermographism in this transverse study, which compared forty six children with ASDs…

  6. Cholinergic Stimulation Enhances Bayesian Belief Updating in the Deployment of Spatial Attention

    PubMed Central

    Bauer, Markus; Mathys, Christoph; Adams, Rick A.; Dolan, Raymond J.; Stephan, Klaas E.; Friston, Karl J.

    2014-01-01

    The exact mechanisms whereby the cholinergic neurotransmitter system contributes to attentional processing remain poorly understood. Here, we applied computational modeling to psychophysical data (obtained from a spatial attention task) under a psychopharmacological challenge with the cholinesterase inhibitor galantamine (Reminyl). This allowed us to characterize the cholinergic modulation of selective attention formally, in terms of hierarchical Bayesian inference. In a placebo-controlled, within-subject, crossover design, 16 healthy human subjects performed a modified version of Posner's location-cueing task in which the proportion of validly and invalidly cued targets (percentage of cue validity, % CV) changed over time. Saccadic response speeds were used to estimate the parameters of a hierarchical Bayesian model to test whether cholinergic stimulation affected the trial-wise updating of probabilistic beliefs that underlie the allocation of attention or whether galantamine changed the mapping from those beliefs to subsequent eye movements. Behaviorally, galantamine led to a greater influence of probabilistic context (% CV) on response speed than placebo. Crucially, computational modeling suggested this effect was due to an increase in the rate of belief updating about cue validity (as opposed to the increased sensitivity of behavioral responses to those beliefs). We discuss these findings with respect to cholinergic effects on hierarchical cortical processing and in relation to the encoding of expected uncertainty or precision. PMID:25411501

  7. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  8. SPATIAL LEARNING DEFICITS ARE NOT SOLELY DUE TO CHOLINERGIC DEFICITS FOLLOWING MEDIAL SEPTAL LESIONS WITH COLCHICINE

    EPA Science Inventory

    Colchicinc was infused bilaterally into the cerebrolateral ventricles (3.75 ug/side) or directly into the medial septum (5 ug) of adult, male Fischer-344 rats (n=48) and effects on behavior and cholinergic markers were determined. ats receiving intracerebroventricular (ICV) admin...

  9. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer’s Disease-Like Models

    PubMed Central

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-01-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer’s disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697

  10. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer's Disease-Like Models.

    PubMed

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-05-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697

  11. The Cholinergic Lesion of Alzheimer's Disease: Pivotal Factor or Side Show?

    ERIC Educational Resources Information Center

    Mesulam, Marsel

    2004-01-01

    A profound loss of cortical cholinergic innervation is a nearly invariant feature of advanced Alzheimer's disease (AD). The temporal course of this lesion and its relationship to other aspects of the disease have not yet been fully clarified. Despite assertions to the contrary, a review of the evidence suggests that a perturbation of cholinergic…

  12. Cholinergic Activity as a New Target in Diseases of the Heart

    PubMed Central

    Roy, Ashbeel; Guatimosim, Silvia; Prado, Vania F; Gros, Robert; Prado, Marco A M

    2014-01-01

    The autonomic nervous system is an important modulator of cardiac signaling in both health and disease. In fact, the significance of altered parasympathetic tone in cardiac disease has recently come to the forefront. Both neuronal and nonneuronal cholinergic signaling likely play a physiological role, since modulating acetylcholine (ACh) signaling from neurons or cardiomyocytes appears to have significant consequences in both health and disease. Notably, many of these effects are solely due to changes in cholinergic signaling, without altered sympathetic drive, which is known to have significant adverse effects in disease states. As such, it is likely that enhanced ACh-mediated signaling not only has direct positive effects on cardiomyocytes, but it also offsets the negative effects of hyperadrenergic tone. In this review, we discuss recent studies that implicate ACh as a major regulator of cardiac remodeling and provide support for the notion that enhancing cholinergic signaling in human patients with cardiac disease can reduce morbidity and mortality. These recent results support the idea of developing large clinical trials of strategies to increase cholinergic tone, either by stimulating the vagus or by increased availability of Ach, in heart failure. PMID:25222914

  13. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    SciTech Connect

    Pauly, J.R.; Marks, M.J.; Gross, S.D.; Collins, A.C. )

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the number of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.

  14. A Computational Model of How Cholinergic Interneurons Protect Striatal-Dependent Learning

    ERIC Educational Resources Information Center

    Ashby, F. Gregory; Crossley, Matthew J.

    2011-01-01

    An essential component of skill acquisition is learning the environmental conditions in which that skill is relevant. This article proposes and tests a neurobiologically detailed theory of how such learning is mediated. The theory assumes that a key component of this learning is provided by the cholinergic interneurons in the striatum known as…

  15. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  16. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    ERIC Educational Resources Information Center

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  17. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    PubMed Central

    Yi, Feng; Catudio-Garrett, Elizabeth; Gábriel, Robert; Wilhelm, Marta; Erdelyi, Ferenc; Szabo, Gabor; Deisseroth, Karl; Lawrence, Josh

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlap with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM) exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP) of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-tauGFP and ChAT-Rosa mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations. PMID:25798106

  18. Discovery and initial analysis of novel viral genomes in the soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes are the most abundant multi-cellular animals on earth, yet little is known about their natural viral pathogens and no nematode virus genomes have been published. Consequently, nematode viruses have been overlooked as important biotic factors in the study of nematode ecology. Here we show t...

  19. Interaction between the antioxidant activity of curcumin and cholinergic system on memory retention in adult male Wistar rats

    PubMed Central

    Sarlak, Zeynab; Oryan, Shahrbanoo; Moghaddasi, Mehrnoush

    2015-01-01

    Objective(s): The cholinergic system plays an important role in learning and memory. This study investigated the effects of curcumin (turmeric extract) and the cholinergic system and their interaction on memory retention of passive avoidance learning in adult male Wistar rats. Materials and Methods: At first, an injection cannula was implanted in right ventricles of the animals. One week after the surgery, the animals were trained with a shuttle box set up. Post-training, injections were performed in all experiments. Administration of curcumin increased memory retention. Also administrations of nicotine and pilocarpine, the cholinergic receptor agonists, increased memory retention, while it is decreased by succinylcholine and scopolamine, the cholinergic receptor antagonists. Then co-administration of curcumin and cholinergic drugs were performed. Intraperitoneal and intracerebroventricular injections were applied for the curcumin and cholinergic drugs, respectively. Results: Co-administration of curcumin (45 mg/kg) with a low dose of nicotine (0.1 µg/rat) or pilocarpine (0.5 µg/rat) increased memory retention significantly. Effects of succinylcholine (0.01, 0.1 and 0.5 µg/rat) or scopolamine (0.1, 1 and 5 µg/rat) were attenuated by curcumin markedly (45 mg/kg). Conclusion: The results suggest that curcumin has a close interaction with cholinergic system in memory retention process. PMID:26019804

  20. The Cholinergic Signaling Responsible for the Expression of a Memory-Related Protein in Primary Rat Cortical Neurons.

    PubMed

    Chen, Tsan-Ju; Chen, Shun-Sheng; Wang, Dean-Chuan; Hung, Hui-Shan

    2016-11-01

    Cholinergic dysfunction in the brain is closely related to cognitive impairment including memory loss. In addition to the degeneration of basal forebrain cholinergic neurons, deficits in the cholinergic receptor signaling may also play an important role. In the present study, to examine the cholinergic signaling pathways responsible for the induction of a memory-related postsynaptic protein, a cholinergic agonist carbachol was used to induce the expression of activity-regulated cytoskeleton associated protein (Arc) in primary rat cortical neurons. After pretreating neurons with various antagonists or inhibitors, the levels of carbachol-induced Arc protein expression were detected by Western blot analysis. The results show that carbachol induces Arc protein expression mainly through activating M1 acetylcholine receptors and the downstream phospholipase C pathway, which may lead to the activation of the MAPK/ERK signaling pathway. Importantly, carbachol-mediated M2 receptor activation exerts negative effects on Arc protein expression and thus counteracts the enhanced effects of M1 activation. Furthermore, it is suggested for the first time that M1-mediated enhancement of N-methyl-D-aspartate receptor (NMDAR) responses, leading to Ca(2+) entry through NMDARs, contributes to carbachol-induced Arc protein expression. These findings reveal a more complete cholinergic signaling that is responsible for carbachol-induced Arc protein expression, and thus provide more information for developing treatments that can modulate cholinergic signaling and consequently alleviate cognitive impairment. J. Cell. Physiol. 231: 2428-2438, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895748

  1. Cholinergic Responses and Intrinsic Membrane Properties of Developing Thalamic Parafascicular Neurons

    PubMed Central

    Ye, Meijun; Hayar, Abdallah; Garcia-Rill, Edgar

    2009-01-01

    Parafascicular (Pf) neurons receive cholinergic input from the pedunculopontine nucleus (PPN), which is active during waking and REM sleep. There is a developmental decrease in REM sleep in humans between birth and puberty and 10–30 days in rat. Previous studies have established an increase in muscarinic and 5-HT1 serotonergic receptor–mediated inhibition and a transition from excitatory to inhibitory GABAA responses in the PPN during the developmental decrease in REM sleep. However, no studies have been conducted on the responses of Pf cells to the cholinergic input from the PPN during development, which is a major target of ascending cholinergic projections and may be an important mechanism for the generation of rhythmic oscillations in the cortex. Whole cell patch-clamp recordings were performed in 9- to 20-day-old rat Pf neurons in parasagittal slices, and responses to the cholinergic agonist carbachol (CAR) were determined. Three types of responses were identified: inhibitory (55.3%), excitatory (31.1%), and biphasic (fast inhibitory followed by slow excitatory, 6.8%), whereas 6.8% of cells showed no response. The proportion of CAR-inhibited Pf neurons increased with development. Experiments using cholinergic antagonists showed that M2 receptors mediated the inhibitory response, whereas excitatory modulation involved M1, nicotinic, and probably M3 or M5 receptors, and the biphasic response was caused by the activation of multiple types of muscarinic receptors. Compared with CAR-inhibited cells, CAR-excited Pf cells showed 1) a decreased membrane time constant, 2) higher density of hyperpolarization-activated channels (Ih), 3) lower input resistance (Rin), 4) lower action potential threshold, and 5) shorter half-width duration of action potentials. Some Pf cells exhibited spikelets, and all were excited by CAR. During development, we observed decreases in Ih density, Rin, time constant, and action potential half-width. These results suggest that cholinergic

  2. Cholinergic responses and intrinsic membrane properties of developing thalamic parafascicular neurons.

    PubMed

    Ye, Meijun; Hayar, Abdallah; Garcia-Rill, Edgar

    2009-08-01

    Parafascicular (Pf) neurons receive cholinergic input from the pedunculopontine nucleus (PPN), which is active during waking and REM sleep. There is a developmental decrease in REM sleep in humans between birth and puberty and 10-30 days in rat. Previous studies have established an increase in muscarinic and 5-HT1 serotonergic receptor-mediated inhibition and a transition from excitatory to inhibitory GABA(A) responses in the PPN during the developmental decrease in REM sleep. However, no studies have been conducted on the responses of Pf cells to the cholinergic input from the PPN during development, which is a major target of ascending cholinergic projections and may be an important mechanism for the generation of rhythmic oscillations in the cortex. Whole cell patch-clamp recordings were performed in 9- to 20-day-old rat Pf neurons in parasagittal slices, and responses to the cholinergic agonist carbachol (CAR) were determined. Three types of responses were identified: inhibitory (55.3%), excitatory (31.1%), and biphasic (fast inhibitory followed by slow excitatory, 6.8%), whereas 6.8% of cells showed no response. The proportion of CAR-inhibited Pf neurons increased with development. Experiments using cholinergic antagonists showed that M2 receptors mediated the inhibitory response, whereas excitatory modulation involved M1, nicotinic, and probably M3 or M5 receptors, and the biphasic response was caused by the activation of multiple types of muscarinic receptors. Compared with CAR-inhibited cells, CAR-excited Pf cells showed 1) a decreased membrane time constant, 2) higher density of hyperpolarization-activated channels (I(h)), 3) lower input resistance (R(in)), 4) lower action potential threshold, and 5) shorter half-width duration of action potentials. Some Pf cells exhibited spikelets, and all were excited by CAR. During development, we observed decreases in I(h) density, R(in), time constant, and action potential half-width. These results suggest that

  3. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    PubMed

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity. PMID:25339734

  4. Selective lesions of the cholinergic neurons within the posterior pedunculopontine do not alter operant learning or nicotine sensitization.

    PubMed

    MacLaren, Duncan A A; Wilson, David I G; Winn, Philip

    2016-04-01

    Cholinergic neurons within the pedunculopontine tegmental nucleus have been implicated in a range of functions, including behavioral state control, attention, and modulation of midbrain and basal ganglia systems. Previous experiments with excitotoxic lesions have found persistent learning impairment and altered response to nicotine following lesion of the posterior component of the PPTg (pPPTg). These effects have been attributed to disrupted input to midbrain dopamine systems, particularly the ventral tegmental area. The pPPTg contains a dense collection of cholinergic neurons and also large numbers of glutamatergic and GABAergic neurons. Because these interdigitated populations of neurons are all susceptible to excitotoxins, the effects of such lesions cannot be attributed to one neuronal population. We wished to assess whether the learning impairments and altered responses to nicotine in excitotoxic PPTg-lesioned rats were due to loss of cholinergic neurons within the pPPTg. Selective depletion of cholinergic pPPTg neurons is achievable with the fusion toxin Dtx-UII, which targets UII receptors expressed only by cholinergic neurons in this region. Rats bearing bilateral lesions of cholinergic pPPTg neurons (>90 % ChAT+ neuronal loss) displayed no deficits in the learning or performance of fixed and variable ratio schedules of reinforcement for pellet reward. Separate rats with the same lesions had a normal locomotor response to nicotine and furthermore sensitized to repeated administration of nicotine at the same rate as sham controls. Previously seen changes in these behaviors following excitotoxic pPPTg lesions cannot be attributed solely to loss of cholinergic neurons. These findings indicate that non-cholinergic neurons within the pPPTg are responsible for the learning deficits and altered responses to nicotine seen after excitotoxic lesions. The functions of cholinergic neurons may be related to behavioral state control and attention rather than learning

  5. Effect of nematode-trapping fungi on an entomopathogenic nematode originating from the same field site in California.

    PubMed

    Koppenhöfer, A M; Jaffee, B A; Muldoon, A E; Strong, D R; Kaya, H K

    1996-11-01

    We determined whether nematode-trapping fungi may influence the dynamics of a coastal shrub community. The food chain interactions in the shrub community involve the dominant plant species, its major insect herbivore, and an entomopathogenic nematode, Heterorhabditis hepialus. Of the 12 nematode-trapping fungi previously isolated from soils at the study site, 5 were selected for this study. Arthrobotrys oligospora, Geniculifera paucispora, Monacrosporium eudermatum, and Monacrosporium cionopagum efficiently trapped and colonized H. hepialus on agar; in contrast Nematoctonus concurrens trapped but did not infect or colonize the nematode on agar. To determine whether these fungi can suppress H. hepialus in soil, we added the fungi in the form of fungal-colonized nematodes to pasteurized (2 hr at 62 degrees C) and raw (nontreated) soil from the study site. Suppression was measured by comparing nematode invasion into a wax moth larva in fungus-treated and untreated soil in vials at 20 degrees C. Fungal population density in soil was estimated using dilution plating and most probable number procedures. All fungi suppressed H. hepialus if the wax moth larvae were added 4 days after the nematodes. Suppression ranged between 37 and 54% and did not differ among fungi. Suppression was usually greater in raw than in pasteurized soil. Raw soil contained a constant background of nematode-trapping fungi, and A. oligospora was the most common among these; no background was detected in pasteurized soil. The presence of background fungi in raw soil may explain the higher suppression in raw than in pasteurized soil. Fungal propagule densities in our laboratory experiments were similar to those observed in the field, suggesting that nematode-trapping fungi may influence the dynamics of the plant, insect herbivore, and entomopathogenic nematode in the coastal ecosystem. PMID:8931364

  6. Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology.

    PubMed

    Kaddurah-Daouk, R; Weinshilboum, R M

    2014-02-01

    Metabolomics, the study of metabolism at an "omic" level, has the potential to transform our understanding of mechanisms of drug action and the molecular basis for variation in drug response. It is now possible to define metabolic signatures of drug exposure that can identify pathways involved in both drug efficacy and adverse drug reactions. In addition, the "metabotype," the metabolic "signature" of a patient, is a unique identity that contains information about drug response and disease heterogeneity. The application of metabolomics for the study of drug effects and variation in drug response is creating "pharmacometabolomics," a discipline that will contribute to personalized drug therapy and will complement pharmacogenomics by capturing environmental and microbiome-level influences on response to drug therapy. This field has the potential to transform pharmacology and clinical pharmacology in significant ways and will contribute to efforts for personalized therapy. This overview highlights developments in the new discipline of pharmacometabolomics. PMID:24193171

  7. Dynamic changes in GABAA receptors on basal forebrain cholinergic neurons following sleep deprivation and recovery

    PubMed Central

    Modirrousta, Mandana; Mainville, Lynda; Jones, Barbara E

    2007-01-01

    Background The basal forebrain (BF) cholinergic neurons play an important role in cortical activation and arousal and are active in association with cortical activation of waking and inactive in association with cortical slow wave activity of sleep. In view of findings that GABAA receptors (Rs) and inhibitory transmission undergo dynamic changes as a function of prior activity, we investigated whether the GABAARs on cholinergic cells might undergo such changes as a function of their prior activity during waking vs. sleep. Results In the brains of rats under sleep control (SC), sleep deprivation (SD) or sleep recovery (SR) conditions in the 3 hours prior to sacrifice, we examined immunofluorescent staining for β2–3 subunit GABAARs on choline acetyltransferase (ChAT) immunopositive (+) cells in the magnocellular BF. In sections also stained for c-Fos, β2–3 GABAARs were present on ChAT+ neurons which expressed c-Fos in the SD group alone and were variable or undetectable on other ChAT+ cells across groups. In dual-immunostained sections, the luminance of β2–3 GABAARs over the membrane of ChAT+ cells was found to vary significantly across conditions and to be significantly higher in SD than SC or SR groups. Conclusion We conclude that membrane GABAARs increase on cholinergic cells as a result of activity during sustained waking and reciprocally decrease as a result of inactivity during sleep. These changes in membrane GABAARs would be associated with increased GABA-mediated inhibition of cholinergic cells following prolonged waking and diminished inhibition following sleep and could thus reflect a homeostatic process regulating cholinergic cell activity and thereby indirectly cortical activity across the sleep-waking cycle. PMID:17316437

  8. Stress-induced altered cholinergic-glutamatergic interactions in the mouse hippocampus.

    PubMed

    Pavlovsky, Lev; Bitan, Yifat; Shalev, Hadar; Serlin, Yonatan; Friedman, Alon

    2012-09-01

    Psychological stress may lead to long-lasting brain dysfunction, specifically altered emotional and cognitive capabilities. Previous studies have demonstrated persistent changes in the expression of key cholinergic genes in the neocortex and hippocampus following stress with muscarinic receptor-mediated enhanced excitability. In the present study we examined cholinergic-mediated glutamatergic transmission in the hippocampus of mice after exposure to stress and its potential role in synaptic plasticity and altered behavior. Adult male mice were tested one month after repeated forced swimming test. Non-treated age-matched animals served as controls. Electrophysiological recordings were performed in the acute in-vitro slice preparation. CA1 pyramidal neurons were recorded using whole cell patch configuration. Extracellular recordings were done in response to Shaffer collaterals (SC) or stratum orien (SO) stimulation. Animal behavior in response to inhibition of acetylcholinesterase (AChE) was tested in open field paradigms. In whole cell patch recordings the frequency of excitatory post-synaptic currents (EPSCs) was significantly increased in response to muscarinic activation in stress-exposed animals. This enhanced cholinergic-modulated excitatory transmission is associated with facilitation of long-term potentiation (LTP) in response to tetanic stimulation at the SO but not at the SC. Stress-related behavioral modulation via central cholinergic pathways was enhanced by the central AChE inhibitor, physostigmine, thus further supporting the notion that stress is associated with long lasting hypersensitivity to acetylcholine. Our results revealed a pathway-specific enhancement of cholinergic-dependent glutamatergic transmission in the hippocampus after stress. These changes may underlie specific hippocampal malfunction, including cognitive and emotional disturbances, as observed in patients with post-traumatic stress disorder (PTSD). PMID:22796599

  9. Activated cholinergic signaling provides a target in squamous cell lung carcinoma.

    PubMed

    Song, Pingfang; Sekhon, Harmanjatinder S; Fu, Xiao Wen; Maier, Michelle; Jia, Yibing; Duan, Jie; Proskosil, Becky J; Gravett, Courtney; Lindstrom, Jon; Mark, Gregory P; Saha, Saurabh; Spindel, Eliot R

    2008-06-15

    The binding of exogenous nicotine to nicotinic acetylcholine (ACh) receptors (nAChR) and the binding of endogenous ACh to both nAChR and muscarinic ACh receptors (mAChR) stimulate growth of both small cell and non-small cell lung carcinomas. Understanding how cholinergic signaling is up-regulated in lung cancer may suggest new therapeutic approaches. Analysis of 28 squamous cell lung carcinomas (SCC) showed increased levels of alpha5 and beta3 nAChR mRNA and increased levels of ACh associated with increased levels of choline acetyltransferase mRNA and decreased cholinesterase mRNAs. Lynx1, an allosteric inhibitor of nAChR activity, was also decreased in SCC. Thus, cholinergic signaling is broadly increased in SCC caused by increased levels of receptors, increased levels of ligands, and decreased levels of receptor inhibitors. Partially explaining the cholinergic up-regulation seen in SCC, incubation of the H520 SCC cell line with nicotine increased levels of ACh secretion, increased expression of nAChR, and, as measured by electrophysiologic recording, increased activity of the expressed nAChR. Consistent with these effects, nicotine stimulated proliferation of H520 cells. One approach to blocking proliferative effects of nicotine and ACh on growth of lung cancers may be through M3 mAChR antagonists, which can limit the activation of mitogen-activated protein kinase that is caused by both nicotinic and muscarinic signaling. This was tested with the M3-selective muscarinic antagonist darifenacin. Darifenacin blocked nicotine-stimulated H520 growth in vitro and also blocked H520 growth in nude mice in vivo. Thus, cholinergic signaling is broadly up-regulated in SCC and blocking cholinergic signaling can limit basal and nicotine-stimulated growth of SCC. PMID:18559515

  10. A novel cholinergic epithelial cell with chemosensory traits in the murine conjunctiva.

    PubMed

    Wiederhold, Stephanie; Papadakis, Tamara; Chubanov, Vladimir; Gudermann, Thomas; Krasteva-Christ, Gabriela; Kummer, Wolfgang

    2015-11-01

    We recently identified a specialized cholinergic cell type in tracheal and urethral epithelium that utilizes molecules of the canonical taste transduction signaling cascade to sense potentially harmful substances in the luminal content. Upon stimulation, this cell initiates protective reflexes. Assuming a sentinel role of such cells at mucosal surfaces exposed to bacteria, we hypothesized their occurrence also in ocular mucosal surfaces. Utilizing a mouse strain expressing eGFP under the promoter of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT-eGFP), we observed a cholinergic cell in the murine conjunctiva. Singular cholinergic cells reaching the epithelial surface with slender processes were detected in fornical, but neither in bulbar nor palpebral epithelia. These cells were found neither in the lacrimal canaliculi, nor in the lacrimal sac and the nasolacrimal duct. Cholinergic conjunctival epithelial cells were immunoreactive for components of the canonical taste transduction signaling cascade, i.e. α-gustducin, phospholipase Cβ2 and the monovalent cation channel TRPM5. Calcitonin gene-related peptide- and substance P-immunoreactive sensory nerve fibers were observed extending into the conjunctival epithelium approaching slender ChAT-eGFP-positive cells. In addition, we noted both ChAT-eGFP expression and α-gustducin-immunoreactivity, albeit in different cell populations, in occasionally occurring lymphoid follicles of the nictitating membrane. The data show a previously unidentified cholinergic cell in murine conjunctiva with chemosensory traits that presumably utilizes acetylcholine for signaling. In analogy to similar cells described in the respiratory and urethral epithelium, it might serve to detect bacterial products and to initiate protective reflexes. PMID:26119492

  11. Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats.

    PubMed

    Kamat, Pradeep Kumar; Tota, Santoshkumar; Rai, Shivika; Shukla, Rakesh; Ali, Shakir; Najmi, Abul Kalam; Nath, Chandishwar

    2012-09-01

    Central cholinergic system is involved in regulation of memory and disturbances in these results in memory loss. Previously, we examined the effect of okadaic acid, OKA (200ng, i.c.v.) on memory impairment and mitochondrial dysfunction in rats. In the present study, we investigated effect of OKA (i.c.v) on cholinergic function by observing acetylcholine level (ACh), acetylcholinestrase (AChE) activity, and mRNA expression of acetylcholinestrase and α7nicotinic receptor (α7-nAChR) as a cholinergic markers in brain areas (cerebellum, striatum cortex and hippocampus). In present work OKA, caused a significant decrease in acetylcholine level, acetylcholinestrase activity and mRNA expression of acetylcholinestrase and α7-nicotinic receptor in rat but these changes were mainly observed in cortex and hippocampus. Further, histopathological study by cresyl violet staining showed neuronal loss in cortex and hippocampus after OKA administration indicating neurotoxicity. Pretreatment with anti-dementic drugs donepezil (AChE inhibitor; 5mg/kg, p.o) and memantine (NMDA receptor antagonist; 10mg/kg, p.o) daily for 13 day prevented cholinergic dysfunction and neuronal loss in cortex and hippocampus of OKA treated rat. Daily per se treatment for 13 day with donepezil decreased acetylcholinestrase activity and increased mRNA expression of acetylcholinestrase and α7-nicotinic receptor. Whereas, per se treatment with memantine daily for 13 day did not affect acetylcholinestrase activity, mRNA expression of acetylcholinestrase and α7-nicotinic receptor. Findings of this work shows that OKA (i.c.v.), apart from memory impairment and mitochondrial dysfunction, as our previous study showed, also induced cholinergic dysfunction and neuronal loss, which can be addressed by antidementic drugs like donepezil and memantine. PMID:22749976

  12. EFFECTS OF SUSTAINED PRONGF BLOCKADE ON ATTENTIONAL CAPACITIES IN AGED RATS WITH COMPROMISED CHOLINERGIC SYSTEM

    PubMed Central

    YEGLA, BRITTNEY; PARIKH, VINAY

    2014-01-01

    Disruption in nerve growth factor (NGF) signaling via trkA receptors compromises the integrity of the basal forebrain (BF) cholinergic system, yielding cognitive, specifically attentional, impairments in Alzheimer’s disease (AD). Although normal aging is considered a risk factor for AD, the mechanisms underlying the selective vulnerability of the aging cholinergic system to trkA disruption is not clear. The levels of proNGF, a proneurotrophin that possesses higher affinity for p75 receptors, increase in aging. The present study was designed to test the hypothesis that cholinergic and attentional dysfunction in aged rats with reduced BF trkA receptors occurs due to the overactivation of endogenous proNGF signaling. We employed a viral vector that produced trkA shRNA to suppress trkA receptors in the corticopetal cholinergic neurons of aged rats. BF trkA suppression impaired animals’ performance on signal trials in both the sustained attention task (SAT) and the cognitively-taxing distractor version of SAT (dSAT) and these deficits were normalized by chronic intracerebroventricular administration of proNGF antibody. Moreover, depolarization-evoked ACh release and the density of cortical cholinergic fibers were partially restored in these animals. However, SAT/dSAT scores reflecting overall performance did not improve following proNGF blockade in trkA knockdown rats due to impaired performance in non-signal trials. Sustained proNGF blockade alone did not alter baseline attentional performance but produced moderate impairments during challenging conditions. Collectively, our findings indicate that barring proNGF-p75 signaling may exert some beneficial effects on attentional capacities specifically when BF trkA signaling is abrogated. However, endogenous proNGF may also possess neurotrophic effects and blockade of this proneurotrophin may not completely ameliorate attentional impairments in AD and potentially hinder performance during periods of high cognitive load

  13. Pharmacological Lifespan Extension of Invertebrates

    PubMed Central

    Lucanic, Mark; Lithgow, Gordon J.; Alavez, Silvestre

    2012-01-01

    There is considerable interest in identifying small, drug-like compounds that slow aging in multiple species, particularly in mammals. Such compounds may prove to be useful in treating and retarding age-related disease in humans. Just as invertebrate models have been essential in helping us understand the genetic pathways that control aging, these model organisms are also proving valuable in discovering chemical compounds that influence longevity. The nematode Caenorhabditis elegans (C. elegans) has numerous advantages for such studies including its short lifespan and has been exploited by a number of investigators to find compounds that impact aging. Here, we summarize the progress being made in identifying compounds that extend the lifespan of invertebrates, and introduce the challenges we face in translating this research into human therapies. PMID:22771382

  14. Paradoxical pharmacology: turning our pharmacological models upside down.

    PubMed

    Page, Clive

    2011-04-01

    Paradoxical pharmacology is a term first suggested by Richard Bond to refer to intriguing observations that chronic use of some drug types can have the opposite biological effect(s) to those seen following acute administration of the same drug. A good example of 'paradoxical pharmacology' is the research Richard has pioneered showing that whereas acute administration of β-blockers is contraindicated in the treatment of asthma, chronic use of certain β-blockers can have therapeutic benefit. It would appear that those β-blockers that can act as inverse agonists at the β2 receptor particularly show this paradoxical effect and the findings of Richard's research not only challenge the dogma of the treatment of asthma but also challenge many of the pharmacological principles of ligand/receptor interactions established by Sir James Black and others. In this paper, I discuss Richard's efforts to evaluate the chronic effects of β-blockers in the airways and how this research caught the imagination of Sir James Black. PMID:21458081

  15. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    SciTech Connect

    Guastella, J.; Stretton, A.O. )

    1991-05-22

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, located at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA.

  16. Pack hunting by a common soil amoeba on nematodes.

    PubMed

    Geisen, Stefan; Rosengarten, Jamila; Koller, Robert; Mulder, Christian; Urich, Tim; Bonkowski, Michael

    2015-11-01

    Soils host the most complex communities on Earth, including the most diverse and abundant eukaryotes, i.e. heterotrophic protists. Protists are generally considered as bacterivores, but evidence for negative interactions with nematodes both from laboratory and field studies exist. However, direct impacts of protists on nematodes remain unknown. We isolated the soil-borne testate amoeba Cryptodifflugia operculata and found a highly specialized and effective pack-hunting strategy to prey on bacterivorous nematodes. Enhanced reproduction in presence of prey nematodes suggests a beneficial predatory life history of these omnivorous soil amoebae. Cryptodifflugia operculata appears to selectively impact the nematode community composition as reductions of nematode numbers were species specific. Furthermore, we investigated 12 soil metatranscriptomes from five distinct locations throughout Europe for 18S ribosomal RNA transcripts of C. operculata. The presence of C. operculata transcripts in all samples, representing up to 4% of the active protist community, indicates a potential ecological importance of nematophagy performed by C. operculata in soil food webs. The unique pack-hunting strategy on nematodes that was previously unknown from protists, together with molecular evidence that these pack hunters are likely to be abundant and widespread in soils, imply a considerable importance of the hitherto neglected trophic link 'nematophagous protists' in soil food webs. PMID:26079718

  17. Susceptibility of the Plum Curculio, Conotrachelus nenuphar, to Entomopathogenic Nematodes

    PubMed Central

    Shapiro-Ilan, David I.; Mizell, Russell F.; Campbell, James F.

    2002-01-01

    The plum curculio, Conotrachelus nenuphar, is a major pest of pome and stone fruit. Our objective was to determine virulence and reproductive potential of six commercially available nematode species in C. nenuphar larvae and adults. Nematodes tested were Heterorhabditis bacteriophora (Hb strain), H. marelatus (Point Reyes strains), H. megidis (UK211 strain), Steinernema riobrave (355 strain), S. carpocapsae (All strain), and S. feltiae (SN strain). Survival of C. nenuphar larvae treated with S. feltiae and S. riobrave, and survival of adults treated with S. carpocapsae and S. riobrave, was reduced relative to non-treated insects. Other nematode treatments were not different from the control. Conotrachelus nenuphar larvae were more susceptible to S. feltiae infection than were adults, but for other nematode species there was no significant insect-stage effect. Reproduction in C. nenuphar was greatest for H. marelatus, which produced approximately 10,000 nematodes in larvae and 5,500 in adults. Other nematodes produced approximately 1,000 to 3,700 infective juveniles per C. nenuphar with no significant differences among nematode species or insect stages. We conclude that S. carpocapsae or S. riobrave appears to have the most potential for controlling adults, whereas S. feltiae or S. riobrave appears to have the most potential for larval control. PMID:19265940

  18. Changes in soil nematode communities under the impact of fertilizers

    NASA Astrophysics Data System (ADS)

    Gruzdeva, L. I.; Matveeva, E. M.; Kovalenko, T. E.

    2007-06-01

    Changes taking place in the communities of soil nematodes of an artificially sown meadow under the impact of annually applied mineral fertilizers have been studied in a field experiment for nine years. It is shown that changes in the species composition, trophic structure, and numbers of nematodes from different genera depend on the fertilizer applied and on the competitiveness of the plant species grown. The spectra of nematode genera sensitive to the complete mineral fertilizer (NPK) and to the particular nutrients have been identified with the use of a number of parameters, including the maturity index of nematode communities, the biotope preferences of the particular nematode genera, and the general pattern of nematode habitats. The results obtained in this study can be used to assess the effect of mineral fertilizers on the soil fauna and to suggest optimum application rates of mineral fertilizers ensuring the sustainable development of meadow herbs. The use of the data on the trophic structure of nematode communities for predicting the ways of organic matter decomposition in the soil is discussed.

  19. Resistance of Grape Rootstocks to Plant-parasitic Nematodes

    PubMed Central

    Ferris, H.; Zheng, L.; Walker, M. A.

    2012-01-01

    Candidate grape rootstocks were selected through a rigorous screening program initiated with important sources of resistance to Meloidogyne pathotypes and to Xiphinema index in Muscadinia rotundifolia and Vitis species native to North America. Based on their rooting capability and horticultural characteristics, 200 candidates were selected from 5,000 progeny of multiple crosses between commercial grape rootstocks and wild grape species that exhibited resistance to nematodes. After a 15-year screening process, 13 selections emerged with either almost complete or complete combined resistance to M. incognita Race 3, M. incognita pathotype Harmony C, M. arenaria pathotype Harmony A, and X. index, important nematode pests of grapevines. Durability of this broad resistance was tested by challenging the selections with the target nematodes in combination and with the target nematodes in combinations with species not included in the screening process. Durability of resistance of the candidate rootstocks was also tested by exposure to the nematode communities of infested field soils from different locations. Breadth of resistance was determined on the basis of their host status to non-target nematodes, including Mesocriconema xenoplax, Pratylenchus vulnus, Tylenchulus semipenetrans and Paratylenchus hamatus. After a total of 204 separate trials, the rootstocks were released to the grape industry as UCD GRN1, UCD GRN2, UCD GRN3, UCD GRN4, and UCD GRN5. We provide a compilation of current knowledge of the host status of these five newly released rootstocks and of 27 other rootstock cultivars to plant-parasitic nematodes. PMID:23482972

  20. Microsporidian infection in a free-living marine nematode.

    PubMed

    Ardila-Garcia, A M; Fast, N M

    2012-12-01

    Microsporidia are unicellular fungi that are obligate endoparasites. Although nematodes are one of the most abundant and diverse animal groups, the only confirmed report of microsporidian infection was that of the "nematode killer" (Nematocida parisii). N. parisii was isolated from a wild Caenorhabditis sp. and causes an acute and lethal intestinal infection in a lab strain of Caenorhabditis elegans. We set out to characterize a microsporidian infection in a wild nematode to determine whether the infection pattern of N. parisii in the lab is typical of microsporidian infections in nematodes. We describe a novel microsporidian species named Sporanauta perivermis (marine spore of roundworms) and characterize its infection in its natural host, the free-living marine nematode Odontophora rectangula. S. perivermis is not closely related to N. parisii and differs strikingly in all aspects of infection. Examination by transmission electron microscopy (TEM) revealed that the infection was localized in the hypodermal and muscle tissues only and did not involve the intestines. Fluorescent in situ hybridization (FISH) confirmed infection in the muscle and hypodermis, and surprisingly, it also revealed that the parasite infects O. rectangula eggs, suggesting a vertical mode of transmission. Our observations highlight the importance of studying parasites in their natural hosts and indicate that not all nematode-infecting microsporidia are "nematode killers"; instead, microsporidiosis can be more versatile and chronic in the wild. PMID:23087371