Sample records for neodymium silicates

  1. Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber

    PubMed Central

    Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili

    2015-01-01

    We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850

  2. The neodymium stable isotope composition of the silicate Earth and chondrites

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  3. Color tuning in neodymium doped dicalcium silicate nanostructures prepared via ultrasound method

    NASA Astrophysics Data System (ADS)

    Venkataravanappa, M.; Nagabhushana, H.; Basavaraj, R. B.; Venkatachalaiah, K. N.; Prasad, B. Daruka

    2017-05-01

    Blue light emitting neodymium (Nd) doped dicalcium (Ca2SiO4) silicate nanostructures were prepared for the first time via ultrasound assisted sonochemical synthesis route using cetyltrimethylammonium bromide (CTAB) surfactant. The obtained final product was well characterized. The powder X-ray diffraction (PXRD) profiles confirmed that product was highly crystalline in nature with monoclinic phase. Influence of various reaction parameters such as, the effect of sonication time, concentration of the surfactant and pH of the precursor solution on the morphology was studied in detail. Diffuse reflectance spectroscopy (DRS) was studied to evaluate the band gap energy of the products and the values were found in the range of 5.78 - 6.17 eV. The particle size was estimated by transmission electron microscope (TEM) and it was found in the range of 20-30 nm. Photoluminescence (PL) properties were studied in detail by recording emission spectra of all the Nd doped dicalcium silicate nanostructures at an excitation wavelength of 380 nm. The emission peaks were observed at 469, 520, 545 and 627 nm which corresponds to Nd3+ ion transitions. The 7 mol% Nd3+ doped Ca2SiO4 nanostructures showed maximum intensity. Further photometric measurements were done by evaluating, Commission International De I-Eclairage (CIE) and correlated color temperature (CCT). From CIE it was observed that the color coordinates lies in blue-green region, which slightly shifts to green as the Nd3+ concentration increases. The color purity and quantum efficiency were also estimated and the results indicate that the nanophosphor obtained in this route can be used in preparing light emitting diodes with a blue-green emission as prominent color.

  4. LASERS: Ultimate energy parameters of the radiation emitted from neodymium-glass laser systems

    NASA Astrophysics Data System (ADS)

    Eshmemet'eva, E. V.; Korolev, V. I.; Mesnyankin, E. P.; Serebryakov, V. A.; Shashkin, V. V.; Yashin, V. E.

    1992-09-01

    An experimental investigation was made of the energy conversion efficiency and of the effects of stimulated Brillouin scattering and of optical breakdown, limiting the maximum energy density obtained from several phosphate and silicate neodymium glasses when the duration of the output pulses was 50-150 ns. The experimental results were used to develop a numerical model for calculation of the gain allowing for these processes. A design was developed for an amplifier with ultimate radiation characteristics.

  5. Synthesis, characterization and photocatalytic activity of neodymium carbonate and neodymium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Aghazadeh, Mustafa; Ganjali, Mohammad Reza; Karimi, Meisam Sadeghpour; Norouzi, Parviz

    2017-12-01

    This work focuses on the application of an orthogonal array design to the optimization of the facile direct carbonization reaction for the synthesis of neodymium carbonate nanoparticles, were the product particles are prepared based on the direct precipitation of their ingredients. To optimize the method the influences of the major operating conditions on the dimensions of the neodymium carbonate particles were quantitatively evaluated through the analysis of variance (ANOVA). It was observed that the crystalls of the carbonate salt can be synthesized by controlling neodymium concentration and flow rate, as well as reactor temperature. Based on the results of ANOVA, 0.03 M, 2.5 mL min-1 and 30 °C are the optimum values for the above-mentioend parameters and controlling the parameters at these values yields nanoparticles with the sizes of about of 31 ± 2 nm. The product of this former stage was next used as the feed for a thermal decomposition procedure which yielding neodymium oxide nanoparticles. The products were studied through X-ray diffraction (XRD), SEM, TEM, FT-IR and thermal analysis techniques. In addition, the photocatalytic activity of dyspersium carbonate and dyspersium oxide nanoparticles were investigated using degradation of methyl orange (MO) under ultraviolet light.

  6. Neodymium Magnets.

    ERIC Educational Resources Information Center

    Wida, Sam

    1992-01-01

    Uses extremely strong neodymium magnets to demonstrate several principles of physics including electromagnetic induction, Lenz's Law, domain theory, demagnetization, the Curie point, and magnetic flux lines. (MDH)

  7. Neodymium Isotope Variations in Late Quaternary Carbonate Lake Sediments, Owens Valley, Eastern California.

    NASA Astrophysics Data System (ADS)

    Minervini, J. M.; Stewart, B. W.

    2001-12-01

    Owens Lake is situated in a mostly-closed basin fed by water and sediments derived primarily from the eastern Sierra Nevada range. Chemical and sedimentological variations in USGS Owens Lake Core OL-92, which extends back 800 ka, have been shown to be sensitive tracers of Great Basin paleoclimate. Here we report preliminary neodymium (Nd) isotope data from core OL-92 to investigate sediment provenance, the chemical behavior of rare earth elements (REE) in non-marine systems, and possible climate-related shifts in weathering patterns of the eastern Sierra Nevada during the last glacial-interglacial transition. Neodymium isotopic analyses were carried out on the carbonate fraction of sediment samples ranging in age from 16.8 to 6.9 ka from Owens Lake core OL-92. Samples were treated with ammonium acetate to remove exchangeable cations from coexisting silicate material, and subsequently leached with 8% acetic acid to dissolve carbonate minerals. Based on the mass of sediment leached with acetic acid, the fraction of carbonate (relative to clastic silicate material) increases from 6.6 to 66.5% over the 10 ka period represented by these samples. This increase in carbonate reflects desiccation of the Owens Lake basin; as streamwater flow is reduced, the lake spends a greater proportion of its time saturated in carbonate minerals, and clastic input might also be reduced. Concentrations of Nd in Owens Lake carbonate range from 7 to 170 ppm, values that are 2-1000 times higher than marine planktonic foraminifera (e.g., Vance and Burton, 1999, EPSL 173, 365). In general, high concentrations of Nd in Owens Lake carbonate are associated with older sediment samples with lower carbonate fractions. The decrease in Nd concentration over this time period could be a result of extraction of Nd from lake waters by precipitation of carbonate as desiccation proceeded. Epsilon-Nd values of Owens Lake carbonate range from -5.3 to -6.5, and are consistent with eastern Sierra Nevada

  8. A 6-GW NEODYMIUM GLASS LASER,

    DTIC Science & Technology

    A 6-GW neodymium glass laser with a simple phototropic Q-switch is described. The laser consists of three cylindrical rods in series, each 250 mm...operation (50-80 microsec. repetition frequency), the total output was 200 j. The use of a phototropic liquid switch and large-diameter neodymium glass

  9. Q-Switching in a Neodymium Laser

    ERIC Educational Resources Information Center

    Holgado, Warein; Sola, Inigo J.; Jarque, Enrique Conejero; Jarabo, Sebastian; Roso, Luis

    2012-01-01

    We present a laboratory experiment for advanced undergraduate or graduate laser-related classes to study the performance of a neodymium laser. In the experiment, the student has to build the neodymium laser using an open cavity. After that, the cavity losses are modulated with an optical chopper located inside, so the Q-switching regime is…

  10. Recycling potential of neodymium: the case of computer hard disk drives.

    PubMed

    Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan

    2014-08-19

    Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.

  11. A molten salt process for producing neodymium and neodymium-iron alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Ram A.; Seefurth, Randall N.

    1989-12-01

    The production of low-cost neodymium metal in a stirred tank reactor by the reduction of Nd2O3 with sodium in the presence of CaCl2-KCl-NaCl melts by the overall reaction Nd2O3+3CaCl2+6Na→2Nd+3CaO+6NaCl at ˜750 °C is described. The metal produced is recovered from the salt medium by dissolving it in a Nd-Zn or Nd-Fe alloy pool. In the case of Nd-Zn alloy pools, product yields (percentages of theoretical neodymium produced) in excess of 94 pct are obtained when using salt ratios, i.e., the amounts of salt per gram of neodymium produced, ≥3.5 and excess reductant ≥10 pct. The alloy produced is of high quality, and following vacuum distillation of the zinc, can be used in producing General Motors’ MAGNEQUENCH alloy for permanent magnets. In the case of Nd-Fe pools, the yield is also ˜95 pct with a salt ratio as low as 3.5. The yield is found to depend on the salt composition and salt ratio, and to decrease at salt ratios below 3.25. Stirrer position has little effect on yield, while increasing the temperature and placing fins in the reactor increase the yield. The Nd-Fe alloy produced is of as good quality as that produced using Ca reductant and is suitable for direct use in preparing the MAGNEQUENCH alloy.

  12. Sulfide in the core and the composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    Burton, K. W.

    2015-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive 'chondritic' meteorites. It now appears, however, that the silicate Earth is not 'chondritic', but depleted in incompatible elements, including refractory lithophile and heat-producing elements. Either Earth lost material during planet-building due to collisional erosion or else internal differentiation processes produced a hidden reservoir deep in the early Earth. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [1]. Pioneering work using the short-lived 146Sm-142Nd system strongly suggests that Earth's silicate mantle is non-chondritic [e.g. 2]. The drawback of such radiogenic isotope systems is that it is not possible to distinguish the fractionation of Sm/Nd that occurs during silicate melting from that occurring during the segregation of a sulfide-melt to form the core. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavy values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd Stable isotope

  13. Materials flow analysis of neodymium, status of rare earth metal in the Republic of Korea.

    PubMed

    Swain, Basudev; Kang, Leeseung; Mishra, Chinmayee; Ahn, JoongWoo; Hong, Hyun Seon

    2015-11-01

    Materials flow analysis of neodymium, status of rare earth elements (REEs) in the Republic of Korea has been investigated. Information from various resources like the Korean Ministry of Environment, Korea international trade association, United Nations Commodity Trade Statistics Database and from individual industry were collected and analyzed for materials flow analysis of neodymium. Demand of neodymium in the Republic of Korea for the year 2010 was 409.5 tons out of which the majority of neodymium, i.e., 68.41% was consumed by domestic electronics industry followed by medical appliances manufacturing (13.36%). The Republic Korea is one of the biggest consumer and leading exporter of these industrial products, absolutely depends on import of neodymium, as the country is lacking natural resources. The Republic of Korea has imported 325.9 tons of neodymium permanent magnet and 79.5 tons of neodymium containing equipment parts mainly for electronics, medical appliances, and heavy/light vehicles manufacturing industry. Out of which 95.4 tons of neodymium permanent magnet get exported as an intermediate product and 140.6 tons of neodymium in the form of consumable products get exported. Worldwide the neodymium is at the high end of supply chain critical metal because of increasing demand, scarcity and irreplaceable for technological application. To bring back the neodymium to supply stream the recycling of end of life neodymium-bearing waste can be a feasible option. Out of total domestic consumption, only 21.9 tons of neodymium have been collected and subsequently recycled. From material flow analysis, the requirement for an efficient recycling system and element-wise material flow management for these REEs in the Republic of Korea were realized and recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. NONLINEAR OPTICAL EFFECTS AND FIBER OPTICS: Pulsed neodymium amplifier with phase conjugation and direct amplification

    NASA Astrophysics Data System (ADS)

    Basov, N. G.; Efimkov, V. F.; Zubarev, I. G.; Kolobrodov, V. V.; Pastukhov, S. A.; Smirnov, M. G.; Sobolev, V. B.

    1988-12-01

    A study was made of the characteristics of an amplifier containing neodymium-activated silicate rods, 45 mm in diameter, used in direct amplification and phase conjugation systems. At low output energies the divergence of the output radiation in the presence of a phase-conjugating mirror was half ( ~ 10- 4 rad) that in the case of direct amplification. An increase in the output power caused the divergence to rise more rapidly in the presence of a phase-conjugating mirror, which was tentatively attributed to an earlier manifestation of large-scale self-focusing. Output energies of 130 J in the case of direct amplification and 80 J in the presence of a phase-conjugating mirror were obtained when the output pulse duration was ~ 2 ns and the fraction of the total energy contained within an angle of ~ 10- 4 rad was ~ 0.3.

  15. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2017-01-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  16. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2016-12-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  17. Origin of the Sudbury Complex by meteoritic impact: Neodymium isotopic evidence

    USGS Publications Warehouse

    Faggart, B.E.; Basu, A.R.; Tatsumoto, M.

    1985-01-01

    Samarium-neodymium isotopic data on whole rocks and minerals of the Sudbury Complex in Canada gave an igneous crystallization age of 1840 ?? 21 ?? 106 years. The initial epsilon neodymium values for 15 whole rocks are similar to those for average upper continental crust, falling on the crustal trend of neodymium isotopic evolution as defined by shales. The rare earth element concentration patterns of Sudbury rocks are also similar to upper crustal averages. These data suggest that the Sudbury Complex formed from melts generated in the upper crust and are consistent with a meteoritic impact.

  18. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, Rudolf; Larimer, Kirk T.

    1998-01-01

    A method of producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage.

  19. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, R.; Larimer, K.T.

    1998-09-22

    A method is described for producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage. 4 figs.

  20. Treatment of vitreous floaters with neodymium YAG laser.

    PubMed Central

    Tsai, W F; Chen, Y C; Su, C Y

    1993-01-01

    Fifteen cases of vitreous floaters with serious psychological reactions have been collected. By using a direct ophthalmoscope, causal vitreous opacities were detected. The opacities were photodisrupted with neodymium YAG laser, using energy levels of 5 to 7.1 mJ and total energy 71 to 742.0 mJ. Symptoms completely disappeared immediately after treatment in all 15 cases. There were no intraoperative or postoperative complications noted during a follow up period of at least 1 year. To our knowledge, the use of neodymium YAG laser to treat vitreous floaters has not been previously described. Our initial experience indicates that the treatment is simple, safe, and effective. Images PMID:8025044

  1. Sulfide in the core and the Nd isotopic composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    McCoy-West, A.; Millet, M. A.; Nowell, G. M.; Wohlers, A.; Wood, B. J.; Burton, K. W.

    2016-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive chondritic meteorites. It now appears, however, that the silicate Earth is not chondritic, but depleted in incompatible elements and a resovable 20 ppm excess is observed in 142Nd relative to chondirtes [1, 2]. This anomaly requires a process that occurred within 30 Myr of solar system formation and has been variably ascribed to: a complementary enriched reservoir in the deep Earth [1]; loss to space through collisional erosion [3]; or the inhertence of nucleosynthetic anomalies [4]. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [5]. The drawback of the short-lived 146Sm-142Nd radiogenic isotope system is that it is not possible to distinguish between fractionations of Sm/Nd that occurs during silicate melting or segregation of a sulfide-melt. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites by 0.3 ‰, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavier values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd stable isotope data for

  2. Solar nebula heterogeneity in p-process samarium and neodymium isotopes.

    PubMed

    Andreasen, Rasmus; Sharma, Mukul

    2006-11-03

    Bulk carbonaceous chondrites display a deficit of approximately 100 parts per million (ppm) in 144Sm with respect to other meteorites and terrestrial standards, leading to a decrease in their 142Nd/144Nd ratios by approximately 11 ppm. The data require that samarium and neodymium isotopes produced by the p process associated with photodisintegration reactions in supernovae were heterogeneously distributed in the solar nebula. Other samarium and neodymium isotopes produced by rapid neutron capture (r process) in supernovae and by slow neutron capture (s process) in red giants were homogeneously distributed. The supernovae sources supplying the p- and r-process nuclides to the solar nebula were thus disconnected or only weakly connected.

  3. Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.

    PubMed

    Shi, Weidong; Yu, Jiangbo; Wang, Haishui; Yang, Jianhui; Zhang, Hongjie

    2006-08-01

    A facile soft chemical approach using cetyltrimethylammonium bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)3 nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.

  4. Abundance analysis of neodymium in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Abdelkawy, Ali G. A.; Shaltout, Abdelrazek M. K.; Beheary, M. M.; Bakry, A.

    2017-10-01

    Based on non-local thermodynamical equilibrium (NLTE) calculations, the solar neodymium (Nd) content was found based on a model atom of singly ionized neodymium (Nd II) containing 153 energy levels and 42 line transitions plus the ground state of Nd III. Here, we re-derive the solar Nd abundance using the model of the solar photosphere of Holweger & Müller.We succeed in selecting a good sample line list, relying on 20 Nd II solar lines together with the most accurate transition probabilities measured experimentally and available observational data. With damping parameters obtained from the literature, we find a mean NLTE solar photospheric Nd abundance of log ɛNd(1D) = 1.43 ± 0.16, which is in excellent agreement with the meteoritic value (log ɛNd = 1.45 ± 0.02). For a set of selected Nd II lines, the NLTE abundance correction is found to be +0.01 dex compared with the standard LTE effect. The influence of collisional interactions with electrons and neutral hydrogen atoms is investigated in detail.

  5. Antioxidant protection mechanism of chick hepatic mitochondria exposed to lanthanum chloride & neodymium chloride treatment.

    PubMed

    Ghosh, N; Chattopadhyay, D; Chatterjee, G C

    1991-05-01

    Acute lanthanum chloride (250 mg/kg body wt) and neodymium chloride (200 mg/kg body wt) administrations resulted in significant enhancement of glutathione level in chick hepatic mitochondria. However, glutathione-s-transferase activity was depressed. There was no alteration in the activity of glutathione reductase. Activity of glucose-6-phosphate dehydrogenase was not altered under lanthanum and neodymium treatment. There was a significant enhancement of intramitochondrial glutathione peroxidase and superoxide dismutase. Lipid peroxidation remains the same as control group of animals.

  6. Neodymium: YAG lasers. An FDA report.

    PubMed

    Stark, W J; Worthen, D; Holladay, J T; Murray, G

    1985-02-01

    Analysis of data from four neodymium:YAG laser manufacturers submitted to the Food and Drug Administration (FDA) on over 17,000 cases indicate the procedure is safe and effective for cutting opaque posterior lens capsules. A successful opening in the pupillary membrane was achieved in 98% of the cases, and vision improved in 84% of the cases. Clinically significant risks include: a rise in intraocular pressure two to four hours after treatment, damage to the intraocular lens, and rupture of the anterior hyaloid face.

  7. Neodymium:YAG laser cutting of intraocular lens haptics.

    PubMed

    Gorn, R A; Steinert, R F

    1985-11-01

    Neodymium:YAG laser cutting of polymethylmethacrylate and polypropylene anterior chamber and posterior chamber intraocular lens haptics was studied in terms of ease of transection and physical structure of the cut areas as seen by scanning electron microscopy. A marked difference was discovered, with the polymethylmethacrylate cutting easily along transverse planes, whereas the polypropylene resisted cutting along longitudinal fibers. Clinical guidelines are presented.

  8. Isotope enrichment by frequency-tripled temperature tuned neodymium laser photolysis of formaldehyde

    DOEpatents

    Marling, John B.

    1977-01-01

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation provided by a frequency-tripled, temperature tuned neodymium laser.

  9. Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosal, Blanca del; Pérez-Delgado, Alberto; Rocha, Ueslen

    2015-10-14

    The spectroscopic properties of different infrared-emitting neodymium-doped nanoparticles (LaF{sub 3}:Nd{sup 3+}, SrF{sub 2}:Nd{sup 3+}, NaGdF{sub 4}: Nd{sup 3+}, NaYF{sub 4}: Nd{sup 3+}, KYF{sub 4}: Nd{sup 3+}, GdVO{sub 4}: Nd{sup 3+}, and Nd:YAG) have been systematically analyzed. A comparison of the spectral shapes of both emission and absorption spectra is presented, from which the relevant role played by the host matrix is evidenced. The lack of a “universal” optimum system for infrared bioimaging is discussed, as the specific bioimaging application and the experimental setup for infrared imaging determine the neodymium-doped nanoparticle to be preferentially used in each case.

  10. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    PubMed

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  11. Constraints on cosmic silicates

    NASA Astrophysics Data System (ADS)

    Ossenkopf, V.; Henning, Th.; Mathis, J. S.

    1992-08-01

    Observational determinations of opacities of circumstellar silicates, relative to the peak value near 10 microns, are used to estimate the optical constants n and k, the real and imaginary parts of the index of refraction. Circumstellar dust is modified by processing within the interstellar medium. This leads to higher band strengths and a somewhat larger ratio of the opacities at the 18 and 10-micron peaks, compared with circumstellar silicates. By using an effective-medium theory, we calculate the effects of small spherical inclusions of various materials (various oxides, sulfides, carbides, amorphous carbon, and metallic iron) upon silicate opacities. Some of these can increase the absorption coefficient k in the 2-8 micron region appreciably, as is needed to reconcile laboratory silicate opacities with observations of both the interstellar medium and envelopes around late-type stars. We give tables of two sets of optical constants for warm oxygen-deficient and cool oxygen-rich silicates, representative for circumstellar and interstellar silicates. The required opacity in the 2-8 micron region is provided by iron and magnetite.

  12. Nanostructured silicon ferromagnet collected by a permanent neodymium magnet.

    PubMed

    Okuno, Takahisa; Thürmer, Stephan; Kanoh, Hirofumi

    2017-11-30

    Nanostructured silicon (N-Si) was prepared by anodic electroetching of p-type silicon wafers. The obtained magnetic particles were separated by a permanent neodymium magnet as a magnetic nanostructured silicon (mN-Si). The N-Si and mN-Si exhibited different magnetic properties: the N-Si exhibited ferromagnetic-like behaviour, whereas the mN-Si exhibited superparamagnetic-like behaviour.

  13. Microscale Demonstration of the Paramagnetism of Liquid Oxygen with a Neodymium Magnet

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2007-01-01

    A microscale classroom demonstration of the paramagnetic behavior of various samples of liquid oxygen with neodymium magnet is being presented. The experiment should be done with extreme caution, as liquid oxygen reacts violently with organic matters.

  14. Demonstrating and Measuring Relative Molar Magnetic Susceptibility Using a Neodymium Magnet

    ERIC Educational Resources Information Center

    Malerich, Charles; Ruff, Patricia K.; Bird, Aubrey

    2004-01-01

    An easy-to-see method for demonstrating and measuring the magnetic force between paramagnetic substance and a rare earth magnet is presented. The readily available trapezoid-shaped neodymium magnet and a low cost, easy-to-set-up, portable apparatus are used in the experiments.

  15. Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Domanik, K.; Drake, M. J.

    2005-01-01

    The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

  16. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  17. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  18. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  19. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  20. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used in food in accordance with the...

  1. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  2. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogerty, S.; Forrest, W.; Watson, D. M.

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth alongmore » lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.« less

  3. [Neodymium magnet injury causing nasal fracture: a case report].

    PubMed

    Aykan, Andaç; Güzey, Serbülent; Avşar, Sedat; Öztürk, Serdar

    2015-05-01

    In parallel with technological developments, small size but strong magnets are commonly used in modern devices. In terms of foreign body injuries, magnet injuries are quite rare. However, due to their unique characteristics, there are some difficulties in their management. The magnetic field generated by the magnet affects the surgical instruments and make treatment difficult. In this case report, a nasal injury due to neodymium magnet and our alternative approach for its management was reported.

  4. Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, temperature, and silicate composition

    NASA Astrophysics Data System (ADS)

    Holzheid, A.; Lodders, K.

    2001-06-01

    The solubility of Cu in silicate melts coexisting with liquid Cu(Fe) metal and liquid Cu(Fe) sulfide was determined experimentally at oxygen fugacities ranging from 10 -9.1 to 10 -13.6 bar and sulfur fugacities ranging from 10 -2.5 to 10 -6.3 bar at 1300°C. An iron oxide-free silicate of anorthite-diopside eutectic composition and a synthetic MgO-rich basaltic silicate (FeO-bearing) were used in the partitioning experiments. In S-containing systems, some of the metal reacted to metal sulfide. The silicates in the four systems investigated (Fe-free and S-free; Fe-containing and S-free; Fe-free and S-containing; Fe-containing and S-containing) had different colors depending on the dissolved Cu species and the presence of iron and/or sulfur. Irrespective of the presence of sulfur, the solubility of Cu in the silicate increases with increasing oxygen fugacity and metal/silicate partition coefficients for Cu decrease. Increasing the temperature from 1300°C to 1514°C increases the Cu solubility (decreases the metal/silicate partition coefficient) at an oxygen fugacity 0.5 log units below the iron-wüstite (IW) equilibrium in the Fe-free, S-free and Fe-containing, S-free systems. We infer the presence of monovalent Cu + ("CuO 0.5") in the silicate melt on the basis of the solubility of Cu as function of oxygen fugacity. Experiments containing iron yield a formal valence of ˜0.5 for Cu at very low oxygen fugacities, which is not observed in Fe-free systems. The low formal valence is explained by redox reactions between iron and copper in the silicate melts. There is no evidence for sulfidic dissolution of Cu in the silicates but sulfur has indirect effects on Cu partitioning. Iron metal/silicate partition coefficients depend on oxygen fugacity and on sulfur fugacity. Sulfidic dissolution of iron and oxide-sulfide exchange reactions with Cu cause a small increase in Cu metal/silicate partition coefficients. We derive an activity coefficient (γ CuO 0.5) of 10 ± 1 for

  5. X-ray emission from a plasma mirror of a neodymium glass laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalal, M.; Pina, L.; Vrbova, M.

    1984-11-01

    An investigation was made of the optical and x-ray characteristics of the radiation emitted by a plasma mirror in a neodymium glass laser. The optical reflection coefficient of the mirror was found to be nonlinear and the plasma temperature was about 300 eV.

  6. Lattice thermal expansion and solubility limits of neodymium-doped ceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinhua, E-mail: jhzhang1212@126.com; State Key laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074; Ke, Changming

    2016-11-15

    Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders were prepared by reverse coprecipitation-calcination method and characterized by XRD. The crystal structure of product powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value. An empirical equation simulating the lattice parameter of neodymium doped ceria was established based on the experimental data. The lattice parameters of the fluorite structure solid solutions increased with extensive adoption of Nd{sup 3+}, and the heating temperature going up. The average thermal expansion coefficients of neodymium doped ceria with fluorite structure are highermore » than 13.5×10{sup −6} °C{sup −1} from room temperature to 1200 °C. - Graphical abstract: The crystal structure of Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value.« less

  7. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  8. A green separation strategy for neodymium (III) from cobalt (II) and nickel (II) using an ionic liquid-based aqueous two-phase system.

    PubMed

    Chen, Yuehua; Wang, Huiyong; Pei, Yuanchao; Wang, Jianji

    2018-05-15

    It is significant to develop sustainable strategies for the selective separation of rare earth from transition metals from fundamental and practical viewpoint. In this work, an environmentally friendly solvent extraction approach has been developed to selectively separate neodymium (III) from cobalt (II) and nickel (II) by using an ionic liquid-based aqueous two phase system (IL-ATPS). For this purpose, a hydrophilic ionic liquid (IL) tetrabutylphosphonate nitrate ([P 4444 ][NO 3 ]) was prepared and used for the formation of an ATPS with NaNO 3 . Binodal curves of the ATPSs have been determined for the design of extraction process. The extraction parameters such as contact time, aqueous phase pH, content of phase-formation components of NaNO 3 and the ionic liquid have been investigated systematically. It is shown that under optimal conditions, the extraction efficiency of neodymium (III) is as high as 99.7%, and neodymium (III) can be selectively separated from cobalt (II) and nickel (II) with a separation factor of 10 3 . After extraction, neodymium (III) can be stripped from the IL-rich phase by using dilute aqueous sodium oxalate, and the ILs can be quantitatively recovered and reused in the next extraction process. Since [P 4444 ][NO 3 ] works as one of the components of the ATPS and the extractant for the neodymium, no organic diluent, extra etractant and fluorinated ILs are used in the separation process. Thus, the strategy described here shows potential in green separation of neodymium from cobalt and nickel by using simple IL-based aqueous two-phase system. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Calcium silicate-based drug delivery systems.

    PubMed

    Zhu, Ying-Jie; Guo, Xiao-Xuan; Sham, Tsun-Kong

    2017-02-01

    Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery. Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy. Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed.

  10. Polysilicate binding for silicate paints

    NASA Astrophysics Data System (ADS)

    Ivanovna, Loganina Valentina; Nikolaevna, Kislitsyna Svetlana; Bisengalievich, Mazhitov Yerkebulan

    2018-06-01

    It was suggested, that the polysilicate solutions obtained by mixing liquid glass and silicic acid sol as a binder in the manufacture of silicate paints. Information is provided on the structure and a property of the sodium polysilicate binder is presented. It has been found that the addition of silica powder to a liquid glass causes gelling in the course of time. It has been established that the introduction of the sol (increasing the silicate module) contributes to an increase in the fraction of high-polymer fractions of silicic anion, with the increase in the sol content of the polymer form of silica increasing. The research results the structure of sols and polysilicate solutions by the method of violation of total internal reflection. By the method of IR spectroscopy, the molybdate method established the presence of silica in the polysilicate binder polymeric varieties, which provides an increase in the stability of silicate coatings.

  11. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  12. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  13. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  14. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  15. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  16. High surface area neodymium phosphate nano particles by modified aqueous sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, Sasidharan; Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in; Komban, Rajesh

    2011-12-15

    Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventionalmore » solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be

  17. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  18. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  19. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  20. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions...

  1. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  2. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  3. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  4. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  5. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium silicate...

  6. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  7. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  8. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  9. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  10. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...

  11. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy.

    PubMed

    Jurkić, Lela Munjas; Cepanec, Ivica; Pavelić, Sandra Kraljević; Pavelić, Krešimir

    2013-01-08

    Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  12. Phospho-silicate and silicate layers modified by hydroxyapatite particles

    NASA Astrophysics Data System (ADS)

    Rokita, M.; Brożek, A.; Handke, M.

    2005-06-01

    Common used metal materials do not ensure good connection between an implant and biological neighbourhood. Covering implants by thin silicate or phosphate layers enable to improve biological properties of implants and create conditions for producing the non-concrete bonding between the implant and tissue. The project includes preparing silicate sols of different concentrations and proper (powder) fraction of synthetic as well as natural ox hydroxyapatite, depositing the sol mixed with hydroxyapatite onto the base material (metal, ceramic carbon) and heat treatment. Our work includes also preparation of phospho-silicate layers deposited onto different base materials using sol-gel method. Deposited sols were prepared regarding composition, concentration and layer heat treatment conditions. The prepared layers are examined to determine their phase composition (XRD, IR spectroscopy methods), density and continuity (scanning microscopy with EDX methods). Biological activity of layers was evaluated by means of estimation of their corrosive resistance in synthetic body fluids ('in vitro' method) and of bone cells growth on the layers surface. Introducing hydroxyapatite to the layer sol should improve connection between tissue and implant as well as limit the disadvantageous, corrosive influence of implant material (metal) on the tissue.

  13. Regularities in Low-Temperature Phosphatization of Silicates

    NASA Astrophysics Data System (ADS)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  14. Neodymium:yttrium-aluminum-garnet laser fusion of endarterectomy flaps.

    PubMed

    Humphrey, P W; Slocum, M M; Loy, T S; Silver, D

    1995-07-01

    This study evaluated the efficacy of neodymium:yttrium-aluminum-garnet laser welding of flaps in canine arteries and in securing the distal flap during human carotid endarterectomy. Endarterectomy flaps were created in both common carotid and both common femoral arteries in 12 dogs. The flaps were repaired with either the neodymium:yttrium-aluminum-garnet laser or with 6-0 polypropylene sutures. The arteries were removed after duplex scanning at either 7 or 28 days. Eighteen high carotid endarterectomy flaps in 16 patients have been subsequently secured with the laser welding technique. Laser repairs (125 +/- 19 joule) of the canine arteries were completed more quickly than suture repairs (mean 25 seconds vs 135 seconds, respectively; p < 0.04). Duplex ultrasonography revealed no discernable differences between the two groups of arteries. Arteries studied at 7 days revealed three microscopic flaps (two suture, one laser), more subintimal fibroblastic proliferation in suture than laser-repaired carotid arteries (3: 1, p = 0.0530), and similar amounts of inflammation in suture- and laser-repaired arteries. Arteries studied at 28 days revealed one microscopic intimal flap (suture-repaired); equal fibroblastic and inflammatory responses in suture- and laser-repaired vessels; and no evidence of laser thermal injury. Eighteen carotid endarterectomy flaps have been successfully fused with no immediate or long-term complications in 16 patients (follow-up of 0 to 24 months). Laser fusion appears to be a safe and effective method for securing distal carotid endarterectomy flaps.

  15. Silicate-catalyzed chemical grouting compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1972-09-28

    Chemical grouting compositions for stabilizing earth, sand, and other porous particulate formations or agglomerates of solids are described. The composition for producing a chemically grouting structure consists of an aqueous base solution of: (1) vegetative polyphenolic material consisting of condensed type tannins, and an aqueous catalyst solution of (2) a water-soluble alkali metal silicate. The polyphenolic material is present in an amount from 5% to 40% based on the weight of the base solution, and the water- soluble alkali metal silicate is present in an amount to provide from 1% to 15% SiOD2U in the silicate compound based on themore » weight of the polyphenolic material. These grouting compositions are completely safe to operating personnel and to surrounding environment, since the potassium or sodium silicate catalysts are nontoxic. (15 claims)« less

  16. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  17. A review of bioactive silicate ceramics.

    PubMed

    Wu, Chengtie; Chang, Jiang

    2013-06-01

    Silicate bioceramics, as a new family of biomaterials, have received significant attention in their application to hard tissue regeneration. Some silicate bioceramics have shown excellent apatite mineralization in simulated body fluids and their ionic products have been shown to enhance the proliferation, osteogenic differentiation and gene expression of stem cells. In this paper, we review the advances in the research of silicate system bioceramics, including preparation methods, mechanical strength, apatite mineralization, dissolution and in vitro and in vivo biological properties. The biological properties and the corresponding mechanism have been highlighted. A look forward to the application of silicate bioceramics to bone regeneration is further suggested.

  18. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum calcium silicate. 182.2122 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This...

  19. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  20. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  1. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  2. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  3. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  4. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  5. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  6. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  7. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  8. Tableting properties of silica aerogel and other silicates.

    PubMed

    Hentzschel, C M; Alnaief, M; Smirnova, I; Sakmann, A; Leopold, C S

    2012-04-01

    In solid oral dosage forms silicates are commonly used as glidants in low concentration. However, due to their large specific surface area, silicates may also be used as carrier materials for drugs. Moreover, silicates allow amorphisation of drugs by co-grinding or processing with supercritical fluids. The aim of this study was to investigate the physical and the tableting properties of Silica Aerogel (special type of silica with an extremely large specific surface area), Neusilin(®) US2 (magnesium aluminometasilicate), Florite(®) (calcium silicate) and Aerosil(®) 200 (colloidal silica). Powder blends of Avicel(®) PH102 (microcrystalline cellulose) and different amounts of the respective silicate were compacted and analyzed for their tabletability (tensile strength vs. compaction pressure) as well as their Heckel plot. With Neusilin(®) the tabletability appeared to be independent of the silicate concentration, whereas with Florite(®) an increasing silicate concentration led to a higher tensile strength. In contrast, the addition of Silica Aerogel and Aerosil(®) resulted in a decrease of the tensile strength. With Aerosil(®) a maximum tolerable concentration of 20% [w/w] was determined. Plastic deformation of all powder blends decreased with increasing silicate concentration. This effect was most pronounced with Aerosil(®) and least with Florite(®). Tablets with acceptable tensile strength were obtained with all plain silicates except for Aerosil(®). Therefore, these silicates may be used in tablet formulations, e.g. as carrier materials for liquid or amorphous drugs.

  9. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  10. The efficacy of facial skin cancer treatment with high-energy pulsed neodymium and Nd:YAG lasers.

    PubMed

    Moskalik, Konstantin; Kozlov, Alexander; Demin, Eugeny; Boiko, Ernest

    2009-04-01

    The aim of this study was to assess the curative and cosmetic efficacy of treatment for facial skin cancer using neodymium laser irradiation. Due to the complex anatomy of the area, therapy for facial skin cancer is difficult. Laser irradiation was used for the treatment of 3461 patients with 3624 facial skin cancer lesions of stages T(1-2)N(0)M(0:) 3346 basal cell skin cancers, 188 limited basal cell skin cancer recurrences, and 90 squamous cell skin cancers. Pulsed neodymium (Nd) and Nd:YAG lasers were used as the energy sources. The patients were followed-up from 3 mo to 5 y or more. Patients with basal cell skin cancer treated by irradiation with the Nd laser developed recurrences in 1.8% of cases, and patients treated with the Nd:YAG laser had a recurrence rate of 2.5%. Recurrences following treatment for basal cell skin cancer, and those of squamous cell skin cancer, after irradiation with the Nd laser appeared in 3.7% and 4.4% of patients, respectively. Overall, the frequency of facial skin cancer recurrences after treatment with laser irradiation was 2.1% of all the irradiated tumors. Neodymium laser irradiation is an effective method to treat facial skin cancer of stages T(1-2)N(0)M(0), and results in acceptable cosmetic results.

  11. Battery components employing a silicate binder

    DOEpatents

    Delnick, Frank M [Albuquerque, NM; Reinhardt, Frederick W [Albuquerque, NM; Odinek, Judy G [Rio Rancho, NM

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  12. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    DOE PAGES

    Bae, Sungchul; Taylor, Rae; Kilcoyne, David; ...

    2017-02-04

    This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C 3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C 3S hydration was significantly extended, the degree of hydration of C 3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C 3S in the C 3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the puremore » C 3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C 3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C 3S-HVFA system and presented results consistent with previous literature.« less

  13. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    PubMed Central

    Bae, Sungchul; Taylor, Rae; Kilcoyne, David; Moon, Juhyuk; Monteiro, Paulo J. M.

    2017-01-01

    This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C3S hydration was significantly extended, the degree of hydration of C3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C3S in the C3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the pure C3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C3S-HVFA system and presented results consistent with previous literature. PMID:28772490

  14. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Sungchul; Taylor, Rae; Kilcoyne, David

    This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C 3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C 3S hydration was significantly extended, the degree of hydration of C 3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C 3S in the C 3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the puremore » C 3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C 3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C 3S-HVFA system and presented results consistent with previous literature.« less

  15. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  16. Effect of silicate ions on electrode overvoltage

    NASA Technical Reports Server (NTRS)

    Gras, J. M.; Seite, C.

    1979-01-01

    The influence of the addition of a silicate to a caustic solution (KOH) is studied in order to determine the degree to which silicates inhibit the corrosion of chrysotile under conditions of electrolysis at working temperatures of 100 C and above. In an alkaline solution containing various silicate concentrations, current density was increased and electrode overvoltage was measured. Results show that silicate ion concentrations in the electrolyte increase with temperature without effecting electrochemical performance up to 115 C at 700 MA/sqcm. At this point the concentration is about 0.5 g Si/100 g KOH. Beyond this limit, electrolytic performance rapidly degenerates due to severe oxidation of the electrodes.

  17. Neodymium doped hydroxyapatite theranostic nanoplatforms for colon specific drug delivery applications.

    PubMed

    Victor, Sunita Prem; Paul, Willi; Vineeth, V M; Komeri, Remya; Jayabalan, Muthu; Sharma, Chandra P

    2016-09-01

    Theranostic nanoplatforms integrate therapeutic payloads with diagnostic agents, and help monitor therapeutic response. In this regard, stimuli responsive nanoplatforms further favour combinatorial therapeutic approach that can considerably improve efficacy and specificity of treatment. Herein, we present the engineering of a smart theranostic nanoplatform based on neodymium doped hydroxyapatite (HAN). The presence of neodymium endows the HAN nanoplatforms with near-infrared fluorescence capability. These HAN nanoparticles were then subsequently modified with alginic acid (HANA) to confer pH responsiveness to the synthesized nanoplatforms delivering them to the colon after oral administration. These nanoplatforms possessing optimum size, needle shaped morphology and negative zeta potential, are conducive to cellular internalization. On excitation at 410nm they exhibit near infrared emission at 670nm unraveling their theranostic capabilities. Cytotoxic effects systematically assessed using MTT and live dead assays reveal excellent viability. Raman microscopic imaging technique used to visualize uptake in HeLa cells demonstrate increased uptake from 4 to 16h, with growing cluster size and localization in the cytoplasm. Moreover the concomitant presence of alginic acid manifested advantages of augmented loading and pH dependent release profiles of the model drug, 4 acetyl salicylic acid (4ASA). We could thus establish a theranostic system for early tumour detection, targeted tumour therapy and monitoring of colon cancer that can be administered via the oral route. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Silicate calculi, a rare cause of kidney stones in children.

    PubMed

    Taşdemir, Mehmet; Fuçucuoğlu, Dilara; Özman, Oktay; Sever, Lale; Önal, Bülent; Bilge, Ilmay

    2017-02-01

    Urinary silicate calculi in humans are extremely rare. Reported cases of silicate calculi are mostly documented in adults and are commonly related to an excessive intake of magnesium trisilicate in food or drugs. Published studies on the presence of silicate calculi in children are scarce. Three cases of silicate kidney stones without prior silicate intake are reported. Two patients underwent surgical treatment, and the third patient was treated using conservative methods. Urinalysis revealed no underlying metabolic abnormalities. Analyses revealed that silicate was the major component of the stones. Siliceous deposits in urinary stones may be more common than anticipated, and the underlying pathophysiology remains to be clarified.

  19. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  20. Metal/Silicate Partitioning of W, Ge, Ga and Ni: Dependence on Silicate Melt Composition

    NASA Astrophysics Data System (ADS)

    Singletary, S.; Drake, M. J.

    2004-12-01

    Metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle (Drake and Righter, 2002; Jones and Drake, 1986; Righter et al. 1997). The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. In this work, we investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid. Experiments were performed in the Experimental Geochemistry Laboratory at the University of Arizona utilizing a non-end loaded piston cylinder apparatus with a barium carbonate pressure medium. Starting materials were created by combining the mafic and silicic compositions of Jaeger and Drake (2000) with Fe powder (~25 wt% of the total mixture) to achieve metal saturation. Small amounts of W, Ge, Ga2O3 and NiO powder (less than 2 wt% each) were also added to the starting compositions. The experiments were contained in a graphite capsule and performed with temperature and pressure fixed at 1400ºC and 1.5 GPa. Experimental run products were analyzed with the University of Arizona Cameca SX50 electron microprobe with four wavelength dispersive spectrometers and a PAP ZAF correction program. All experiments in our set are saturated with metal and silicate liquid, indicating that oxygen fugacity is below IW. Several of the runs also contain a gallium-rich spinel as an additional saturating phase. Quench phases are also present in the silicate liquid in all runs. The experimentally produced liquids have nbo/t values (calculated using the method of Mills, 1993) that range from 1.10 to 2.97. These values are higher than those calculated for the liquids in the Jaeger and Drake (2000) study. The higher nbo/t values are due to uptake of Fe by the melt. The initial silicate

  1. Interpreting the 10 micron Astronomical Silicate Feature

    NASA Astrophysics Data System (ADS)

    Bowey, Janet E.

    1998-11-01

    10micron spectra of silicate dust in the diffuse medium towards Cyg OB2 no. 12 and towards field and embedded objects in the Taurus Molecular Cloud (TMC) were obtained with CGS3 at the United Kingdom Infrared Telescope (UKIRT). Cold molecular-cloud silicates are sampled in quiescent lines of sight towards the field stars Taurus-Elias 16 and Elias 13, whilst observations of the embedded young stellar objects HL Tau, Taurus-Elias 7 (Haro6-10) and Elias 18 also include emission from heated dust. To obtain the foreground silicate absorption profiles, featureless continua are estimated using smoothed astronomical and laboratory silicate emissivities. TMC field stars and Cyg OB2 no. 12 are modelled as photospheres reddened by foreground continuum and silicate extinction. Dust emission in the non-photospheric continua of HL Tau and Elias 7 (Haro6-10) is distinguished from foreground silicate absorption using a 10micron disk model, based on the IR-submm model of T Tauri stars by Adams, Lada & Shu (1988), with terms added to represent the foreground continuum and silicate extinction. The absorption profiles of HL Tau and Elias 7 are similar to that of the field star Elias 16. Fitted temperature indices of 0.43 (HL Tau) and 0.33 (Elias 7) agree with Boss' (1996) theoretical models of the 200-300K region, but are lower than those of IR-submm disks (0.5-0.61; Mannings & Emerson 1994); the modelled 10micron emission of HL Tau is optically thin, that of Elias 7 is optically thick. A preliminary arcsecond-resolution determination of the 10micron emissivity near θ1 Ori D in the Trapezium region of Orion and a range of emission temperatures (225-310K) are derived from observations by T. L. Hayward; this Ney-Allen emissivity is 0.6micron narrower than the Trapezium emissivity obtained by Forrest et al. (1975) with a large aperture. Published interstellar grain models, elemental abundances and laboratory studies of Solar System silicates (IDPs, GEMS and meteorites), the 10micron

  2. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product. Magnesium...

  3. Genesis of IIICD Iron Meteorites: Evidence From Silicate Inclusions

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Keil, K.; Scott, E. R. D.; Haack, H.

    1992-07-01

    The IAB and IIICD iron meteorite groups exhibit much larger ranges in siderophile concentrations than other groups and commonly contain silicate inclusions. Extensive studies of metal in both groups and silicates in IAB irons have led to a variety of ideas to explain the genesis of these groups. Wasson et al. (1980) envision each meteorite forming in a separate impact melt pool. Kracher (1982, 1985) suggested that the siderophile trends might result from fractional crystallization of both metal and troilite in a S-saturated magma. A role for oxidation-reduction in these groups has been proposed by Scott and Bild (1974). Similarities in siderophile elemental trends indicate that IIICD metal has a similar origin, although data on silicate inclusions in IIICD irons are scarce (Ramdohr, 1973; Scott and Bild, 1974; Kracher and Kurat, 1977; Prinz et al., 1982; Clayton et al., 1983). We report the first detailed study of silicate inclusions in IIICD iron meteorites in an attempt to elucidate their history. We have studied the only silicate-bearing IIICD irons - Carlton, Dayton, and the recently reported Maltahohe. Silicate-graphite-phosphate inclusions comprise at most a few percent of the bulk meteorite, and silicates comprise <25 vol% of the inclusion. Silicate mineralogy and chemistry vary systematically with increasing M content of the metal. Maltahohe (10.7 wt% Ni) and Carlton (13.0%) contain olivine, pyroxene, and plagioclase, whereas Dayton (17.0%) contains pyroxene, plagioclase, and SiO2. Pyroxene becomes more FeO-rich from Maltahohe (FS(sub)7.8) to Carlton (Fs(sub)9.7) to Dayton (Fs(sub)11.6). Inverse FeO zoning in silicates and lower Fa than Fs indicate reduction in all three meteorites. Plagioclase compositions in IIICD (An(sub)1.1-4.9) are lower than IAB (An(sub)9.2-2l.5) and uncorrelated with Ni content. The abundances of associated phases also vary. Graphite comprises ~25 vol% of Maltahohe silicate inclusions, but only a few percent in Carlton, and is absent

  4. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-01-01

    Silicate inclusions in iron meteorites display an astonishing chemical and mineralogical variety, ranging from chondritic to highly fractionated, silica- and alkali-rich assemblages. In spite of this, their origin is commonly considered to be a simple one: mixing of silicates, fractionated or unfractionated, with metal. The latter had to be liquid in order to accommodate the former in a pore-free way which all models accomplish by assuming shock melting. II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions, including some chemically strongly fractionated ones. They also pose a formidable conundrum: young silicates are enclosed by very old metal. This and many other incompatibilities between models and reality forced the formulation of an alternative genetic model for irons. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  5. Reagentless and calibrationless silicate measurement in oceanic waters.

    PubMed

    Giraud, William; Lesven, Ludovic; Jońca, Justyna; Barus, Carole; Gourdal, Margaux; Thouron, Danièle; Garçon, Véronique; Comtat, Maurice

    2012-08-15

    Determination of silicate concentration in seawater without addition of liquid reagents was the key prerequisite for developing an autonomous in situ electrochemical silicate sensor (Lacombe et al., 2007) [11]. The present challenge is to address the issue of calibrationless determination. To achieve such an objective, we chose chronoamperometry performed successively on planar microelectrode (ME) and ultramicroelectrode (UME) among the various possibilities. This analytical method allows estimating simultaneously the diffusion coefficient and the concentration of the studied species. Results obtained with ferrocyanide are in excellent agreement with values of the imposed concentration and diffusion coefficient found in the literature. For the silicate reagentless method, successive chronoamperometric measurements have been performed using a pair of gold disk electrodes for both UME and ME. Our calibrationless method was tested with different concentrations of silicate in artificial seawater from 55 to 140×10(-6) mol L(-1). The average value obtained for the diffusion coefficient of the silicomolybdic complex is 2.2±0.4×10(-6) cm(2) s(-1), consistent with diffusion coefficient values of molecules in liquid media. Good results were observed when comparing known concentration of silicate with experimentally derived ones. Further work is underway to explore silicate determination within the lower range of oceanic silicate concentration, down to 0.1×10(-6) mol L(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  6. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    iron-containing soda lime silicate glass, opal (a hydrated silicate glass), ROBAX glass ceramic, and others were single crystal (α-quartz) and...10 2.6. Opal (hydrated amorphous silica...Raman spectrum as a function of stress for opal (hydrated silica) glass. ................... 29 4.9. Raman spectrum as a function of stress for

  7. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    quartz, Starphire soda lime silicate glass, hydrated Starphire, BOROFLOAT borosilicate glass, an iron-containing soda lime silicate glass, opal (a hydrated... Opal (hydrated amorphous silica). .............................................................................. 10 2.7. ROBAX glass ceramic...spectrum as a function of stress for BOROFLOAT borosilicate glass. .......... 29 4.8. Raman spectrum as a function of stress for opal (hydrated

  8. Tracking Hadean processes in modern basalts with 142-Neodymium

    NASA Astrophysics Data System (ADS)

    Horan, M. F.; Carlson, R. W.; Walker, R. J.; Jackson, M.; Garçon, M.; Norman, M.

    2018-02-01

    The short-lived 146Sm→142 Nd isotope system (t1/2 = 103 Ma) provides constraints on the timing and processes of terrestrial silicate fractionation during the early Hadean. Although some Archean terranes preserve variability in 142Nd/144Nd, no anomalies have been resolved previously in young rocks. This study provides high precision 142Nd/144Nd data on a suite of ocean island basalts from Samoa and Hawaii previously shown to have variable depletions in 182W/184W that are inversely correlated with 3He/4He ratios. Improved analytical techniques and multiple replicate analyses of Nd show a variation in μ142 Nd values between -1.3 and +2.7 in the suite, relative to the JNdi standard. Given the reproducibility of the standard (±2.9 ppm, 2 SD), two Samoan samples exhibit resolved variability in their 142Nd/144Nd ratios outside of their 95% confidence intervals, suggesting minor variability in the Samoan hotspot. One sample from Samoa has a higher μ142 Nd of +2.7, outside the 95% confidence interval (±1.0 ppm) of the average of the JNdi standard. Limited, but resolved, variation in 142Nd/144Nd within the suite suggests the preservation of early Hadean silicate differentiation in the sources of at least some basalts from Samoa. Larger variations of 182W/184W and 3He/4He ratios in the same samples suggest that metal-silicate separation and mantle outgassing left a more persistent imprint on the accessible mantle compared to 142Nd/144Nd ratios which are impacted by early silicate differentiation.

  9. Silicate Emission in the TW Hydrae Association

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Lynch, David K.; Russell, Ray W.

    2000-11-01

    The TW Hydrae association is the nearest young stellar association. Among its members are HD 98800, HR 4796A, and TW Hydrae itself, the nearest known classical T Tauri star. We have observed these three stars spectroscopically between 3 and 13 μm. In TW Hya, the spectrum shows a silicate emission feature that is similar to many other young stars' with protostellar disks. The 11.2 μm feature indicative of significant amounts of crystalline olivine is not as strong as in some young stars and solar system comets. In HR 4796A, the thermal emission in the silicate feature is very weak, suggesting little in the way of (small silicate) grains near the star. The silicate band of HD 98800 (observed by us, but also reported by Sylvester & Skinner) is intermediate in strength between TW Hya and HR 4796A.

  10. Effect of silicate module of water glass on rheological parameters of poly(sodium acrylate)/sodium silicate hydrogels

    NASA Astrophysics Data System (ADS)

    Mastalska-Popiawska, J.; Izak, P.

    2017-01-01

    The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.

  11. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  12. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  13. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  14. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  15. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...

  16. Electrochemical extraction of neodymium by co-reduction with aluminum in LiCl-KCl molten salt

    NASA Astrophysics Data System (ADS)

    Yan, Yong-De; Xu, Yan-Lu; Zhang, Mi-Lin; Xue, Yun; Han, Wei; Huang, Ying; Chen, Qiong; Zhang, Zhi-Jian

    2013-02-01

    The electrochemical behavior of Nd(III) ions in LiCl-KCl and LiCl-KCl-AlCl3 melts on a Mo electrode at 723 K was studied by various electrochemical techniques. The results showed that Nd(III) ions are reduced to Nd(0) through two consecutive steps, and the underpotential deposition of neodymium on pre-deposited Al electrode formed two kinds of Al-Nd intermetallic compounds in LiCl-KCl-AlCl3 solutions. The electrochemical extraction of neodymium was carried out in LiCl-KCl-AlCl3 melts on a Mo electrode at 873 K by potentiostatic and galvanostatic electrolysis. The extraction efficiency was 99.25% after potentiostatic electrolysis for 30 h. Al-Li-Nd bulk alloy was obtained by galvanostatic electrolysis. X-ray diffraction (XRD) suggested that Al2Nd and Al3Nd phases were formed in Al-Li-Nd alloy. The microstructure and micro-zone chemical analysis of Al-Li-Nd alloy were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), respectively.

  17. Twenty-Eight-Day Repeated Inhalation Toxicity Study of Nano-Sized Neodymium Oxide in Male Sprague-Dawley Rats

    PubMed Central

    Kim, Yong-Soon; Lim, Cheol-Hong; Shin, Seo-Ho; Kim, Jong-Choon

    2017-01-01

    Neodymium is a future-oriented material due to its unique properties, and its use is increasing in various industrial fields worldwide. However, the toxicity caused by repeated exposure to this metal has not been studied in detail thus far. The present study was carried out to investigate the potential inhalation toxicity of nano-sized neodymium oxide (Nd2O3) following a 28-day repeated inhalation exposure in male Sprague-Dawley rats. Male rats were exposed to nano-sized Nd2O3-containing aerosols via a nose-only inhalation system at doses of 0 mg/m3, 0.5 mg/m3, 2.5 mg/m3, and 10 mg/m3 for 6 hr/day, 5 days/week over a 28-day period, followed by a 28-day recovery period. During the experimental period, clinical signs, body weight, hematologic parameters, serum biochemical parameters, necropsy findings, organ weight, and histopathological findings were examined; neodymium distribution in the major organs and blood, bronchoalveolar lavage fluid (BALF), and oxidative stress in lung tissues were analyzed. Most of the neodymium was found to be deposited in lung tissues, showing a dose-dependent relationship. Infiltration of inflammatory cells and pulmonary alveolar proteinosis (PAP) were the main observations of lung histopathology. Infiltration of inflammatory cells was observed in the 2.5 mg/m3 and higher dose treatment groups. PAP was observed in all treatment groups accompanied by an increase in lung weight, but was observed to a lesser extent in the 0.5 mg/m3 treatment group. In BALF analysis, total cell counts, including macrophages and neutrophils, lactate dehydrogenase, albumin, interleukin-6, and tumor necrosis factor-alpha, increased significantly in all treatment groups. After a 4-week recovery period, these changes were generally reversed in the 0.5 mg/m3 group, but were exacerbated in the 10 mg/m3 group. The lowest-observed-adverse-effect concentration of nano-sized Nd2O3 was determined to be 0.5 mg/m3, and the target organ was determined to be the lung

  18. Metal/Silicate Partitioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition

    NASA Technical Reports Server (NTRS)

    Bailey, Edward; Drake, Michael J.

    2004-01-01

    The distinctive pattern of element concentrations in the upper mantle provides essential evidence in our attempts to understand the accretion and differentiation of the Earth (e.g., Drake and Righter, 2002; Jones and Drake, 1986; Righter et al., 1997; Wanke 1981). Core formation is best investigated through use of metal/silicate partition coefficients for siderophile elements. The variables influencing partition coefficients are temperature, pressure, the major element compositions of the silicate and metal phases, and oxygen fugacity. Examples of studies investigating the effects of these variables on partitioning behavior are: composition of the metal phase by Capobianco et al. (1999) and Righter et al. (1997); silicate melt composition by Watson (1976), Walter and Thibault (1995), Hillgren et al. (1996), Jana and Walker (1997), and Jaeger and Drake (2000); and oxygen fugacity by Capobianco et al. (1999), and Walter and Thibault (1995). Here we address the relative influences of silicate melt composition, pressure and temperature.

  19. Lattice thermal conductivity of silicate glasses at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  20. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar

  1. [The first experience with the concurrent effect of YAG-neodymium and YAG-erbium laser on experimental animal tissues and the possibility of its use in surgery].

    PubMed

    Roshal', L M; Gorbatova, N E; Livshits, Iu L; Parkhomenko, Iu G; Osiko, V V; Danileĭko, Iu K; Sidorin, A V; Tylaĭkova, T B; Ivanov, A D

    1991-08-01

    To guarantee the necessary rate of cutting live tissues with adequate hemostasis along the line of the incision, the authors studied isolated and joint effect of radiations of AIG-neodymium and AIG-erbium lasers on the tissues of laboratory animals. The possibility of accomplishing intraoperative hemostasis on the parenchymal organs was studied in experiments with AIG-neodymium laser. A good dissection effect in cutting various tissues was produced in the second series of experiments with AIG-erbium laser. The simultaneous action of AIG-neodymium and AIG-erbium beams converged at one point on the surface of the biological object was studied in the third series of experiments. It was found that the effect ensures a good dissection of tissues with sufficient hemostasis. The results of dynamic morphological studies are shown. The possibility of using the device in surgery is discussed.

  2. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  3. Synthesis of non-siliceous mesoporous oxides.

    PubMed

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  4. Neodymium oxide: A new thermoluminescent material for gamma dosimetry

    NASA Astrophysics Data System (ADS)

    Soliman, C.

    2006-10-01

    In the present study thermoluminescence (TL) glow curves of commercial and gamma (0.001 Gy to 100 kGy) exposed neodymium oxide (Nd 2O 3) have been investigated. The commercial glow curve is simple with TL peaks at 310, 350 and 385 °C. The TL sensitivity was enhanced to ˜4.7 times the original value when the investigated material was subject to pre-heating treatment at 800 °C for 1 h. The effect of storage time at room temperature has been monitored for different γ-doses. The combination of good γ-dose response and high stability of defects offer the possibility of applying the investigated material to γ-ray dosimetry in radiotherapy and experimental radiology range.

  5. Neodymium cobalt oxide as a chemical sensor

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, I. A.; Rahman, Mohammed M.; Khan, Sher Bahadar

    2018-03-01

    Chemical sensing and electrical transport properties of neodymium coblate, NdCoO3, was investigated in this work. It was prepared by using co-precipitation method. Pure neodymium chloride and cobalt chloride were mixing in the presence of sodium hydroxide and the obtained co-precipitated powder was calcined at 850 and 1000 °C. The synthesized composites, as-grown (NdCoO3-I), calcined at 850 °C (NdCoO3-II), and calcined at 1000 °C (NdCoO3-III) were studied in details in terms of their morphological and structural properties. The X-ray analysis confirmed that the synthesized products are well crystalline possessing single phase orthorhombic crystal system of space group Pbnm(62). The crystallite size of NdCoO3-I, NdCoO3-II, and NdCoO3-III is 22, 111, and 338 nm, respectively which reflect that crystallite size is increasing with increase in firing temperature. The DC resistivity was measured as a function of temperature in the temperature range from room temperature up to 200 °C. All NdCoO3 are semiconductor in this range of temperature but showed different activation energy which strongly depends on the crystallite size of the products. The activation energy decreased with increase in crystallite size, 0.798, 0.414 and 0.371 eV for NdCoO3-I, NdCoO3-II, and NdCoO3-III, respectively. Thus resistivity increases with increase in crystallite size of NdCoO3. All NdCoO3 products were tested as chemical sensor for acetone by electrochemical approaches and showed excellent sensitivity. Among the NdCoO3 samples, NdCoO3-III showed the highest sensitivity (3.4722 μAcm-2 mM-1) compared to other compositions and gradually decreased to 3.2407 μAcm-2 mM-1 with decreasing the crystallite size of NdCoO3-II. It is also observed that the sensitivity drastically decreased to 0.76253 μAcm-2 mM-1 in the case of NdCoO3-I. It is introduced an efficient route for the detection of environmental unsafe chemicals by electrochemical approach for the safety of healthcare and environmental

  6. Barrier Properties of Layered-Silicate Reinforced Ethylenepropylenediene Monomer/Chloroprene Rubber Nanorubbers.

    PubMed

    Wu, Chang Mou; Hsieh, Wen Yen; Cheng, Kuo Bin; Lai, Chiu-Chun; Lee, Kuei Chi

    2018-05-09

    The triacetin and nitroglycerin barrier properties of layered-silicate reinforced ethylenepropylenediene monomer/chloroprene rubber (EPDM/CR) nanorubbers were investigated as rocket-propellant inhibitors. EPDM/CR nanorubbers with intercalated structures were formulated and prepared by the melt-compounding method. The triacetin permeability and nitroglycerin absorption were observed to decrease with increasing layered-silicate content. The layered silicates also improved the flame retardancies of the nanorubbers by forming silicate reinforced carbonaceous chars. Layered-silicate reinforced EPDM/CR nanorubbers are potentially effective rocket propellant-inhibiting materials.

  7. Water in silicate melts

    NASA Astrophysics Data System (ADS)

    McMillan, Paul; Stolper, Edward

    Water is one of the more important volatile species in magmas, both in terms of its abundance and its influence on the properties of a given magma. Many workers in the geological sciences have measured, modeled, and speculated on the interaction of water with silicate melts as a function of pressure. At the same time, glass and materials scientists have collected a considerable body of data on the effect of water on the properties of liquid and glassy silicates at 1 atmosphere (1.01325×105 N m-2) and below. A special session on “Solubility and Transport Properties of Water in Silicate Melts” was held during the 1983 AGU Spring Meeting, May 30-June 3, in Baltimore. The session had three main objectives: (1) review the present data base and discuss the status of current models in order to identify areas where further work is needed; (2) introduce interested geologists to the large body of work being carried out in the glass and materials sciences; and (3) consider static properties, such as thermodynamic relations, structure of hydrous melts, and dynamic properties including diffusion and viscosity. This report summarizes the major topics discussed. More detailed information may be found in the published abstracts (Eos, May 3, 1983, pp. 338-343).

  8. Microfabrics in Siliceous Hotsprings: Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.; Westall, F.

    2001-01-01

    Microfabrics shed light on the mechanisms governing siliceous sinter precipitation, the profound effects of microorganisms, as well as a conventional facies model for siliceous hotsprings. Additional information is contained in the original extended abstract.

  9. Barrier Properties of Layered-Silicate Reinforced Ethylenepropylenediene Monomer/Chloroprene Rubber Nanorubbers

    PubMed Central

    Hsieh, Wen Yen; Cheng, Kuo Bin; Lai, Chiu-Chun; Lee, Kuei Chi

    2018-01-01

    The triacetin and nitroglycerin barrier properties of layered-silicate reinforced ethylenepropylenediene monomer/chloroprene rubber (EPDM/CR) nanorubbers were investigated as rocket-propellant inhibitors. EPDM/CR nanorubbers with intercalated structures were formulated and prepared by the melt-compounding method. The triacetin permeability and nitroglycerin absorption were observed to decrease with increasing layered-silicate content. The layered silicates also improved the flame retardancies of the nanorubbers by forming silicate reinforced carbonaceous chars. Layered-silicate reinforced EPDM/CR nanorubbers are potentially effective rocket propellant-inhibiting materials. PMID:29747427

  10. The nature, fabrication, and applications of photosensitive, bulk, germano-silicate glass

    NASA Astrophysics Data System (ADS)

    Heaney, Alan Douglas

    2000-08-01

    The photosensitive nature of germano-silicate glass is widely used to create fiber-optic devices. This thesis examines the cause of photosensitivity in germano- silicate glass. The results of this research elucidate the role that germanium oxygen deficient defects play in the photosensitivity of hydrogen-loaded, germano-silicate glass. We find that defects are not vital to the photosensitivity of hydrogen-loaded, germano-silicate glass but they do enhance the effect. Quantitative measurements show that germanium oxygen deficient defects promote the formation of OH, GeH, and GeH2 when hydrogen-loaded, germano-silicate glass is exposed to ultraviolet light. A sol-gel process for fabricating germano-silicate glass in bulk samples has been developed. The sol-gel process produces high-quality, germano-silicate glass which can be tailored to contain defects or be relatively free of defects. Control over the glass defect concentration allows us to use sol-gel derived glass for comparative studies of the photosensitive process and for device applications. The unique properties of germano-silicate glass make it a likely choice for use in optical applications. To prove the feasibility of bulk devices, chirped-pulse amplification is demonstrated using gratings written in bulk germano-silicate glass.

  11. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (I.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ˜1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ˜ 270 K, the ˜5-8 μm continuum emission is mostly from carbon dust of T ˜ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  12. Cometary crystalline silicate before and after perihelion passage II

    NASA Astrophysics Data System (ADS)

    Ootsubo, Takafumi

    2014-01-01

    Crystalline silicate is often observed in comets as an 11.3-micron resonant emission feature, and may be used for probing the early solar nebula. Because the formation of the crystalline silicate requires high temperature, they are thought to have been born from amorphous silicate at the inner region, and then transported toward the outer regions where comets were born. This transportation can produce the difference in the crystalline fraction in the cometary silicate dust between two dynamical types of comets, Oort-cloud comets (OCs) and Ecliptic comets (ECs), due to the different heliocentric distances of their birth places. The study of peak wavelengths in crystalline features is important to investigate the conditions of the crystalline silicate formation as well. Thus far, we don't have enough observational samples of OCs. Fortunately, we can observe comet C/2012 K1 (PanSTARRS) along with C/2013 A1 (Siding Spring) in this semester. In particular, the comet C/2012 K1 (PanSTARRS) is a bright and good target for this silicate peak feature study. Observations at pre- and post-perihelion provide us precious information on the dust evolution of the comet.

  13. Comment on "The shape and composition of interstellar silicate grains"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J P; Ishii, H

    2007-09-27

    In the paper entitled 'The shape and composition of interstellar silicate grains' (A & A, 462, 667-676 (2007)), Min et al. explore non-spherical grain shape and composition in modeling the interstellar 10 and 20 {micro}m extinction features. This progression towards more realistic models is vitally important to enabling valid comparisons between dust observations and laboratory measurements. Min et al. proceed to compare their model results with GEMS (glass with embedded metals and sulfides) from IDPs (interplanetary dust particles) and to discuss the nature and origin of GEMS. Specifically, they evaluate the hypothesis of Bradley (1994) that GEMS are interstellar (IS)more » amorphous silicates. From a comparison of the mineralogy, chemical compositions, and infrared (IR) spectral properties of GEMS with their modeling results, Min et al. conclude: 'GEMS are, in general, not unprocessed leftovers from the diffuse ISM'. This conclusion is based, however, on erroneous and incomplete GEMS data. It is important to clarify first that Bradley (1994) never proposed that GEMS are unprocessed leftovers from the diffuse ISM, nor did he suggest that individual subnanogram mass GEMS are a representative sampling of the enormous mass of silicates in the diffuse ISM. Bradley (1994) simply showed that GEMS properties are consistent with those of IS amorphous silicates. It is widely accepted that circumstellar outflows are important sources of IS silicates, and whether GEMS are processed or not, the circumstellar heritage of some has been rigorously confirmed through measurements of non-solar oxygen (O) isotope abundances (Messenger et al., 2003; Floss et al., 2006). Keller et al. (2000) assert that even GEMS without detectable O isotope anomalies are probably also extrasolar IS silicates because they are embedded in carbonaceous material with non-solar D/H isotopic composition. (Much of the silicate dust in the ISM may be isotopically homogenized (Zhukovska et al., 2007

  14. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hu, Rong; Piotrowski, Alexander M.; Bostock, Helen C.; Crowhurst, Simon; Rennie, Victoria

    2016-08-01

    The deep Pacific Ocean holds the largest oceanic reservoir of carbon which may interchange with the atmosphere on climatologically important timescales. The circulation of the deep Pacific during the Last Glacial Maximum (LGM), however, is not well understood. Neodymium (Nd) isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera are a valuable proxy for deep ocean water mass reconstruction in paleoceanography. In this study, we present Nd isotope compositions (εNd) of planktonic foraminifera for the Holocene and the LGM obtained from 55 new sites widely distributed in the Pacific Ocean. The Holocene planktonic foraminiferal εNd results agree with the proximal seawater data, indicating that they provide a reliable record of modern bottom water Nd isotopes in the deep Pacific. There is a good correlation between foraminiferal εNd and seawater phosphate concentrations (R2 = 0.80), but poorer correlation with silicate (R2 = 0.37). Our interpretation is that the radiogenic Nd isotope is added to the deep open Pacific through particle release from the upper ocean during deep water mass advection and aging. The data thus also imply the Nd isotopes in the Pacific are not likely to be controlled by silicate cycling. In the North Pacific, the glacial Nd isotopic compositions are similar to the Holocene values, indicating that the Nd isotope composition of North Pacific Deep Water (NPDW) remained constant (-3.5 to -4). During the LGM, the southwest Pacific cores throughout the water column show higher εNd corroborating previous studies which suggested a reduced inflow of North Atlantic Deep Water to the Pacific. However, the western equatorial Pacific deep water does not record a corresponding radiogenic excursion, implying reduced radiogenic boundary inputs during the LGM probably due to a shorter duration of seawater-particle interaction in a stronger glacial deep boundary current. A significant negative glacial εNd excursion is evident in

  15. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  16. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  17. Watt-level single-frequency tunable neodymium MOPA fiber laser operating at 915-937 nm

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Gouhier, B.; Laroche, M.; Zhao, J.; Canuel, B.; Bertoldi, A.; Bouyer, P.; Traynor, N.; Cadier, B.; Robin, T.; Santarelli, G.

    2018-02-01

    We have developed a Watt-level single-frequency tunable fiber laser in the 915-937 nm spectral window. The laser is based on a neodymium-doped fiber master oscillator power amplifier architecture, with two amplification stages using a 20 mW extended cavity diode laser as seed. The system output power is higher than 2 W from 921 to 933 nm, with a stability better than 1.4% and a low relative intensity noise.

  18. UV and fluorescence spectral changes induced by neodymium binding of N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] and N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N' diacetic acid.

    PubMed

    Wang, Zhijun; Yang, Binsheng

    2006-11-01

    In 0.01 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes), pH 7.4 and room temperature, the binding of neodymium to N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] (EHPG), or N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N' diacetic acid (HBED) had been studied from 210 to 330 nm by means of difference UV spectra. Two peaks at 240 and 292 nm appear in difference UV spectra after neodymium binding to EHPG or HBED. The 1:1 stable complex can be confirmed from spectral titration curves. The molar extinction coefficient of Nd-EHPG and Nd-HBED complexes are Deltaepsilon(Nd-EHPG)=(12.93+/-0.21) x 10(3)cm(-1)M(-1), Deltaepsilon(Nd-HBED)=(14.45+/-0.51) x 10(5)cm(-1)M(-1) at 240 nm, respectively. Using EDTA as a competitor, the conditional equilibrium constants of the complexes are logK(Nd-EHPG)=11.89+/-0.09 and logK(Nd-HBED)=12.19+/-0.15, respectively. At the same conditions, fluorescence measurements show that neodymium binding to EHPG leads to a quenching of the fluorescence of EHPG at near 310 nm. However, there is no obvious fluorescence change of HBED at 318 nm with the binding of neodymium to HBED.

  19. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  20. High chloride content calcium silicate glasses.

    PubMed

    Chen, Xiaojing; Karpukhina, Natalia; Brauer, Delia S; Hill, Robert G

    2017-03-08

    Chloride is known to volatilize from silicate glass melts and until now, only a limited number of studies on oxychloride silicate glasses have been reported. In this paper we have synthesized silicate glasses that retain large amounts of CaCl 2 . The CaCl 2 has been added to the calcium metasilicate composition (CaO·SiO 2 ). Glasses were produced via a melt quench route and an average of 70% of the chloride was retained after melting. Up to 31.6 mol% CaCl 2 has been successfully incorporated into these silicate glasses without the occurrence of crystallization. 29 Si MAS-NMR spectra showed the silicon being present mainly as a Q 2 silicate species. This suggests that chloride formed Cl-Ca(n) species, rather than Si-Cl bonds. Upon increasing the CaCl 2 content, the T g reduced markedly from 782 °C to 370 °C. Glass density and glass crystallization temperature decreased linearly with an increase in the CaCl 2 content. However, both linear regressions revealed a breakpoint at a CaCl 2 content just below 20 mol%. This might be attributed to a significant change in the structure and is also correlated with the nature of the crystallizing phases formed upon heat treatment. The glasses with less than 19.2 mol% CaCl 2 crystallized to wollastonite, whilst the compositions with CaCl 2 content equal to or greater than 19.2 mol% are thought to crystallize to CaCl 2 . In practice, the crystallization of CaCl 2 could not occur until the crystallization temperature fell below the melting point of CaCl 2 . The implications of the results along with the high chloride retention are discussed.

  1. Properties of Tricalcium Silicate Sealers.

    PubMed

    Khalil, Issam; Naaman, Alfred; Camilleri, Josette

    2016-10-01

    Sealers based on tricalcium silicate cement aim at an interaction of the sealer with the root canal wall, alkalinity with potential antimicrobial activity, and the ability to set in a wet field. The aim of this study was to characterize and investigate the properties of a new tricalcium silicate-based sealer and verify its compliance to ISO 6876 (2012). A new tricalcium silicate-based sealer (Bio MM; St Joseph University, Beirut, Lebanon), BioRoot RCS (Septodont, St Maure de Fosses, France), and AH Plus (Dentsply, DeTrey, Konstanz, Germany) were investigated. Characterization using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis was performed. Furthermore, sealer setting time, flow, film thickness, and radiopacity were performed following ISO specifications. pH and ion leaching in solution were assessed by pH analysis and inductively coupled plasma. Bio MM and BioRoot RCS were both composed of tricalcium silicate and tantalum oxide in Bio MM and zirconium oxide in BioRoot RCS. In addition, the Bio MM contained calcium carbonate and a phosphate phase. The inorganic components of AH Plus were calcium tungstate and zirconium oxide. AH Plus complied with the ISO norms for both flow and film thickness. BioRoot RCS and Bio MM exhibited a lower flow and a higher film thickness than that specified for sealer cements in ISO 6876. All test sealers exhibited adequate radiopacity. Bio MM interacted with physiologic solution, thus showing potential for bioactivity. Sealer properties were acceptable and comparable with other sealers available clinically. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Characterization of iron-phosphate-silicate chemical garden structures.

    PubMed

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life. © 2011 American Chemical Society

  3. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.

    PubMed

    Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping

    2012-06-15

    We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.

  4. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates

    USGS Publications Warehouse

    Roger, Jennifer Roberts; Bennett, Philip C.

    2004-01-01

    Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to

  5. Equation of state of silicate liquids

    NASA Astrophysics Data System (ADS)

    Jing, Zhicheng

    Equation of state of silicate liquids is crucial to our understanding of melting processes such as the generation and differentiation of silicate melts in Earth and hence to explore the geophysical and geochemical consequences of melting. A comparison of compressional properties reveals fundamental differences in compressional mechanisms between silicate liquids and solids. Due to a liquid's ability to change structures, the compression of liquids is largely controlled by the entropic contribution to the free energy in addition to the internal energy contribution that is available to solids. In order to account for the entropic contribution, a new equation of state of silicate liquids is proposed based on the theory of hard-sphere mixtures. The equation of state is calibrated for SiO2-Al 2O3-FeO-MgO-CaO liquids and other systems. The new equation of state provides a unified explanation for the experimental observations on compressional properties of liquids including the bulk moduli of silicate liquids as well as the pressure dependence of Gruneisen parameter. The effect of chemical composition on melt density can be studied by the equation of state. Results show that FeO and H2O are the most important components in melts that control the melt density at high pressure due to their very different mean atomic masses from other melt components. Adding SiO2 can make a melt more compressible at high pressure due to its continuous change of coordination from 4-fold to 6-fold. The effect of 1-120 on melt density is further investigated by high-pressure experiments at the conditions of 9 to 15 GPa (corresponding to the depths of 300-500 km in the Earth) and 1900 °C to 2200 °C. The density of three dry melts and four hydrous melts with 2-7 wt% H2O was determined. Density data are analyzed by both the Birch-Mumaghan equation of state and the hard sphere equation of state. The partial molar volume of H2O is determined to be 8.8 cm3/mol at 14 GPa and 2173 K. The hypothesis

  6. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  7. FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.

    2011-01-01

    Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.

  8. Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system

    NASA Astrophysics Data System (ADS)

    Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.

    2018-05-01

    Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.

  9. Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.

    NASA Astrophysics Data System (ADS)

    Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.

    2003-03-01

    Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.

  10. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; hide

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  11. History of Nebular Processing Traced by Silicate Stardust in IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Keller, L. P.; Nakamura-Messenger, K.

    2010-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is

  12. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  13. Silicon K-edge XANES spectra of silicate minerals

    NASA Astrophysics Data System (ADS)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  14. Femtosecond diode-pumped mode-locked neodymium lasers

    NASA Astrophysics Data System (ADS)

    Kubeček, Václav; Jelínek, Michal; Čech, Miroslav; Vyhlídal, David; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Qian, Xiaobo; Wang, Jingya; Xu, Jun

    2016-12-01

    Fluoride-type crystals (CaF2, SrF2) doped with neodymium Nd3+ and codoped with buffer ions for breaking clusters of active ions and increasing fluorescence efficiency, present interesting alternative as laser active media for the diode-pumped mode-locked lasers. In comparison with widely used materials as Nd:YAG or Nd:YVO4, they have broad emission spectra as well as longer fluorescence lifetime, in comparison with Nd:glass, SrF2 and CaF2 have better thermal conductivity. In spite of the fact, that this thermal conductivity decreases with Nd3+ doping concentration, these crystals are alternative for the Nd:glass in subpicosecond mode-locked laser systems. In this paper we review the basic results reported recently on these active materials and in the second part we present our results achieved in low power diode pumped passively mode locked lasers with Nd,La:CaF2 and Nd,Y:SrF2 crystals. The pulses as short as 258 fs at wavelength of 1057 nm were obtained in the first case, while 5 ps long pulses at 1065 nm were generated from the second laser system.

  15. SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS

    EPA Science Inventory

    Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...

  16. EFFECT OF SILICATE ON GRAM STAINING AND VIABILITY OF PNEUMOCOCCI AND OTHER BACTERIA

    PubMed Central

    MacLeod, Colin M.; Roe, Amy S.

    1956-01-01

    Application of silicate solutions to living or heat-killed pneumococci and to certain "viridans" streptococci causes their conversion from a Gram-positive to a Gram-negative state. The original staining properties can be restored by suspending the silicate-treated bacteria in alkaline solutions of various salts but not by simple washing in water. Living pneumococci and the strains of streptococci whose staining properties are similarly affected are killed when suspended in silicate solutions. In other Gram-positive species silicate causes conversion to Gram negativity but restoration to positivity occurs upon washing in water. In a third group of Gram-positive organisms silicate has no effect on the Gram reaction. The viability of organisms in these two groups is unaffected by silicate under the conditions employed. No effect on staining or viability of Gram-negative bacteria has been observed. The effects of silicate on staining and viability are inhibited by nutrient broth or whole serum but not by purified serum albumin. Lecithin, choline, and other substituted ammonium compounds also inhibit the effects of silicate on pneumococci. PMID:13306854

  17. Hydrothermal Synthesis of Dicalcium Silicate Based Cement

    NASA Astrophysics Data System (ADS)

    Dutta, N.; Chatterjee, A.

    2017-06-01

    It is imperative to develop low energy alternative binders considering the large amounts of energy consumed as well as carbon dioxide emissions involved in the manufacturing of ordinary Portland cement. This study is on the synthesis of a dicalcium silicate based binder using a low temperature hydrothermal route.The process consists of synthesizing an intermediate product consisting of a calcium silicate hydrate phase with a Ca:Si ratio of 2:1 and further thermal treatment to produce the β-Ca2SiO4 (C2S) phase.Effect of various synthesis parameters like water to solid ratio, dwell time and temperature on the formation of the desired calcium silicate hydrate phase is reported along with effect of heating conditions for formation of the β-C2S phase. Around 77.45% of β-C2S phase was synthesized by thermal treatment of the intermediate phase at 820°C.

  18. Carbonation of metal silicates for long-term CO2 sequestration

    DOEpatents

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  19. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  20. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.

    PubMed

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Shigetomi, Yosuke; Suh, Sangwon

    2015-02-17

    Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 10(3) t for neodymium, 9.4 × 10(3) t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 10(3) t, 1.3 × 10(5) t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10(-2) points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade

  1. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  2. MG Isotopic Measurement of FIB-Isolated Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Nguyen, A.; Ito, M.; Rahman, Z.

    2010-01-01

    The majority of presolar oxide and silicate grains are ascribed to origins in low-mass red giant and asymptotic giant branch (AGB) stars based on their O isotopic ratios. However, a minor population of these grains (< 10%) has O isotopic ratios incompatible with these sources. Two principle alternative sources are higher-than-solar metallicity (Z) stars or, more likely, supernovae (SN) [1-3]. These rare (Group 4) grains [3] are characterized by enrichments in O-18, and typically also enrichments in O-17. An even rarer subset of grains with extremely large enrichments in O-17 and smaller depletions in O-18 were suggested to come from binary star systems [2]. To establish the origins of these isotopically unusual grains, it is necessary to examine isotopic systems in addition to O. Presolar silicates offer several elements diagnostic of their stellar sources and nuclear processes, including O, Si, Mg, Fe and Ca. However, the database for minor element isotopic compositions in silicates is seriously lacking. To date only two silicate grains have been analyzed for Mg [4] or Fe [5]. One major complicating factor is their small size (average 230 nm), which greatly limits the number of measurements that can be performed on any one grain and makes it more difficult to obtain statistically relevant data. This problem is compounded because the grains are identified among isotopically solar silicates, which contribute a diluting signal in isotopic measurements [1]. Thus, relatively small isotopic anomalies are missed due to this dilution effect. By applying focused ion beam (FIB) milling, we obtain undiluted Mg isotopic ratios of isolated rare presolar silicate grains to investigate their sources.

  3. Prometheus Silicates/Sulfur dioxide/NIMS

    NASA Image and Video Library

    2000-05-18

    The Prometheus region of Jupiter moon Io was imaged by NASA Galileo spacecraft in 1999. The maps made from spectrometer data show the interplay between hot silicates on the surface and sulfur dioxide frost.

  4. The effect of thermal and organic additive in morphology of ceramic based silicate

    NASA Astrophysics Data System (ADS)

    Ginting, J.; Bangun, N.; Sembiring, H. Br; Putri, N. K.

    2017-04-01

    M-Silicate (M = Mg, Ca) has been prepared by exchange metal reaction from M-Chloride salts and sodium silicate. The resulting white solid of chloride salts then heated at 700, 800, 900 and 1000 °C. Due to increase the porosity of M-Silicate, 1,2-propanediol, oleic acid and glycerol were added, then formed M-silicates were heated at 800 °C. Then, obtained white solid M-Silicates were characterized by Scanning Electron Microscopy (SEM). SEM images show the variance of surface morphology when the temperature increases. The addition of organic compounds is involved in surface modification.

  5. Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala

    USGS Publications Warehouse

    Rose, William I.; Newhall, Christopher G.; Bornhorst, Theodore J.; Self, Stephen

    1987-01-01

    Atitlán caldera has been the site of several silicic eruptions within the last 150,000 years, following a period of basalt/andesite volcanism. The silicic volcanism began with 5–10 km3 of rhyodacites, erupted as plinian fall and pyroclastic flows, about 126,000 yr. B.P. At 85,000 yr. B.P. 270–280 km3 of compositionally distinct rhyolite was erupted in the Los Chocoyos event which produced widely dispersed, plinian fall deposits and widespread, mobile pyroclastic flows. In the latter parts of this eruption rhyodacite and minor dacite were erupted which compositionally resembled the earliest silicic magmas of the Atitlán center. As a result of this major eruption, the modern Atitlán (III) caldera formed. Following this event, rhyodacites were again erupted in smaller (5–13 km3) volumes, partly through the lake, and mafic volcanism resumed, forming three composite volcanoes within the caldera. The bimodal mafic/silicic Atitlán volcanism is similar to that which has occurred elsewhere in the Guatemalan Highlands, but is significantly more voluminous. Mafic lavas are thought to originate in the mantle, but rise, intrude and underplate the lower crust and partly escape to the surface. Eventually, silicic melts form in the crust, possibly partly derived from underplated basaltic material, rise, crystallize and erupt. The renewed mafic volcanism could reflect either regional magmato-tectonic adjustment after the large silicic eruption or the onset of a new cycle.

  6. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.

    PubMed

    Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank

    2015-01-01

    Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Identification of an Extremely 180-Rich Presolar Silicate Grain in Acfer 094

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.

    2009-01-01

    Presolar silicate grains have been abundantly identified since their first discovery less than a decade ago [1,2,3]. The O isotopic compositions of both silicate and oxide stardust indicate the vast majority (>90%) condensed around Orich asymptotic giant branch (AGB) stars. Though both presolar phases have average sizes of 300 nm, grains larger than 1 m are extremely uncommon for presolar silicates. Thus, while numerous isotopic systems have been measured in presolar oxide grains [4], very few isotopic analyses for presolar silicates exist outside of O and Si [2,5]. And still, these measurements suffer from isotopic dilution with surrounding matrix material [6]. We conduct a search for presolar silicates in the primitive carbonaceous chondrite Acfer 094 and in some cases obtain high spatial resolution, high precision isotopic ratios.

  8. On the Relation of Silicates and SiO Maser in Evolved Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiaming; Jiang, Biwei, E-mail: bjiang@bnu.edu.cn

    2017-04-01

    The SiO molecule is one of the candidates for the seed of silicate dust in the circumstellar envelope of evolved stars, but this opinion is challenged. In this work we investigate the relation of the SiO maser emission power and the silicate dust emission power. With both our own observation by using the PMO/Delingha 13.7 m telescope and archive data, a sample is assembled of 21 SiO v  = 1, J  = 2 − 1 sources and 28 SiO v  = 1, J  = 1 − 0 sources that exhibit silicate emission features in the ISO /SWS spectrum as well. The analysis of their SiO maser and silicatemore » emission power indicates a clear correlation, which is not against the hypothesis that the SiO molecules are the seed nuclei of silicate dust. On the other hand, no correlation is found between SiO maser and silicate crystallinity, which may imply that silicate crystallinity does not correlate with mass-loss rate.« less

  9. Low-temperature crystallization of silicate dust in circumstellar disks.

    PubMed

    Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C

    1999-10-07

    Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.

  10. Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate

    NASA Technical Reports Server (NTRS)

    Abdel-Fattah, Tarek; Siochi, Mia; Crooks, Roy

    2005-01-01

    Multiwall carbon nanotubes were synthesized from sucrose by a pyrolytic technique using mesoporous MCM-41 silicate templates without transition metal catalysts. The Nanotubes were examined in the carbon/silicate composite and after dissolution of the silicate. High resolution transmission electron microscopy study of the multiwall nanotubes showed them to be 15 nm in diameter, 200 nm in length and close-ended. There was variation in crystallinity with some nanotubes showing disordered wall structures.

  11. 77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction..., reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction with poly(oxypropylene)-poly... from the requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with...

  12. IN SITU INFRARED MEASUREMENTS OF FREE-FLYING SILICATE DURING CONDENSATION IN THE LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishizuka, Shinnosuke; Kimura, Yuki; Sakon, Itsuki

    2015-04-20

    We developed a new experimental system for infrared (IR) measurements on free-flying nucleating nanoparticles in situ and applied it to studies on silicate particles. We monitored the condensation of magnesium-bearing silicate nanoparticles from thermally evaporated magnesium and silicon monoxide vapor under an atmosphere of oxygen and argon. The IR spectrum of newly condensed particles showed a spectral feature for non-crystalline magnesium-bearing silicate that is remarkably consistent with the IR spectrum of astronomically observed non-crystalline silicate around oxygen-rich evolved stars. The silicate crystallized at <500 K and eventually developed a high crystallinity. Because of the size effects of nanoparticles, the silicatemore » would be expected to be like a liquid at least during the initial stages of nucleation and growth. Our experimental results therefore suggest decreasing the possible formation temperature of crystalline silicates in dust formation environments with relatively higher pressure.« less

  13. Search for Large Presolar Silicate Grains in the QUE 99177 CR Chondrite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.

    2012-01-01

    Silicates are among the most abundant pre-solar grain type, and their diverse chemical and isotopic compos-tions preserve detailed constraints on their stellar origins, condensation conditions, and nucleosynthetic and interstellar processes. Yet, owing to their small sizes, relatively few grains have been measured for isotopic compositions besides O and Si, and their mineralogy is poorly characterized. The average grain size (approx 270 nm) limits the number of analyses that can be conducted on a given grain, and their identification among solar system silicates introduces contaminating signal. These difficulties can be overcome by identifying large presolar silicate grains. However, such grains are very rare and only two approx 1 micron grains have been discovered. We are conducting a dedicated search for large presolar silicates in size-separated QUE 99177 matrix material. This primitive meteorite has among the highest abundance of presolar silicates

  14. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to producemore » a carbonate of the metal formerly contained in the metal silicate of step (a).« less

  15. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOEpatents

    Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  16. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    NASA Astrophysics Data System (ADS)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  17. Multiscale understanding of tricalcium silicate hydration reactions.

    PubMed

    Cuesta, Ana; Zea-Garcia, Jesus D; Londono-Zuluaga, Diana; De la Torre, Angeles G; Santacruz, Isabel; Vallcorba, Oriol; Dapiaggi, Monica; Sanfélix, Susana G; Aranda, Miguel A G

    2018-06-04

    Tricalcium silicate, the main constituent of Portland cement, hydrates to produce crystalline calcium hydroxide and calcium-silicate-hydrates (C-S-H) nanocrystalline gel. This hydration reaction is poorly understood at the nanoscale. The understanding of atomic arrangement in nanocrystalline phases is intrinsically complicated and this challenge is exacerbated by the presence of additional crystalline phase(s). Here, we use calorimetry and synchrotron X-ray powder diffraction to quantitatively follow tricalcium silicate hydration process: i) its dissolution, ii) portlandite crystallization and iii) C-S-H gel precipitation. Chiefly, synchrotron pair distribution function (PDF) allows to identify a defective clinotobermorite, Ca 11 Si 9 O 28 (OH) 2 . 8.5H 2 O, as the nanocrystalline component of C-S-H. Furthermore, PDF analysis also indicates that C-S-H gel contains monolayer calcium hydroxide which is stretched as recently predicted by first principles calculations. These outcomes, plus additional laboratory characterization, yielded a multiscale picture for C-S-H nanocomposite gel which explains the observed densities and Ca/Si atomic ratios at the nano- and meso- scales.

  18. A design of spectrophotometric microfluidic chip sensor for analyzing silicate in seawater

    NASA Astrophysics Data System (ADS)

    Cao, X.; Zhang, S. W.; Chu, D. Z.; Wu, N.; Ma, H. K.; Liu, Y.

    2017-08-01

    High quality and continuous in situ silicate data are required to investigate the mechanism of the biogeochemical cycles and the formation of red tide. There is an urgently growing need for autonomous in situ silicate instruments that perform determination on various platforms. However, due to the high reagents and power consumption, as well as high system complexity leading to low reliability and robustness, the performance of the commercially available silicate sensors is not satisfactory. With these problems, here we present a new generation of microfluidic continuous flow analysis silicate sensor with sufficient analytical performance and robustness, for in situ determination of soluble silicate in seawater. The reaction mechanism of this sensor is based on the reaction of silicate with ammonium molybdate to form a yellow silicomolybdate complex and further reduction to silicomoIybdenum blue by ascorbic acid. The minimum limit of detection was 45.1 nmol L-1, and the linear determination range of the sensor is 0-400 μmol L-1. The recovery rate of the actual water is between 98.1%-104.0%, and the analyzing cycle of the sensor is about 5 minutes. This sensor has the advantages of high accuracy, high integration, low water consumption, and strong anti-interference ability. It has been successfully applied to measuring the silicate in seawater in Jiaozhou Bay.

  19. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified...

  20. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethyl silicate, reaction products with... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified...

  1. PREFACE: 5th Baltic Conference on Silicate Materials

    NASA Astrophysics Data System (ADS)

    Mezinskis, G.; Bragina, L.; Colombo, P.; Frischat, G. H.; Grabis, J.; Greil, P.; Deja, J.; Kaminskas, R.; Kliava, J.; Medvids, A.; Nowak, I.; Siauciunas, R.; Valancius, Z.; Zalite, I.

    2011-12-01

    Logo This Volume of IOP Conference Series: Materials Science and Engineering presents a selection of the contributions to the 5th Baltic Conference on Silicate Materials (BaltSilica2011) held at Riga Technical University, Riga, Latvia from 23-25 May 2011. The conference was organized by Riga Technical University (Latvia) and Kaunas University of Technology (Lithuania). The series of Baltic conferences on silicate materials was started since 2004: the first conference was held in Riga, Latvia, 2004; the second conference was held in Kaunas, Lithuania 2005; the third was held again in Riga, Latvia, 2007, and the fourth was held in Kaunas, Lithuania 2009. BaltSilica 2011 was attended by around 50 participants from Latvia, Lithuania, Estonia, Germany, Poland, Italy, France, Ukraine and Russia. In comparison with previous silicate materials conferences, the broadening of participating countries is an indication of the interest of scientists, engineers and students to exchange research ideas, latest results, and to find new research topics for cooperation in the fields of silicate, high temperature materials, and inorganic nanomaterials. The scientific programme included 8 invited plenary lectures 23 oral presentations and 25 posters [1]. Scientific themes covered in the conference and in this special issue: Natural and Artificial Stone Materials; Traditional and New Ceramic and Glass-Like Materials; Nanoparticles and Nanomaterials. This volume consists of 23 selected proceeding papers. The Editor of this special issue is grateful to all the contributors to BaltSilica 2011. I am also very grateful to the scientific committee, the local organizing committee, the session chairs, the referees who refereed the submitted articles to this issue, and to students from the Department of Silicate, High Temperature and Inorganic Nanomaterials Technology of the Riga Technical University who ensured the smooth running of the conference. Particular thanks goes to eight plenary

  2. Leakage conduction behavior in electron-beam-cured nanoporous silicate films

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Tsai, T. M.; Chang, T. C.

    2005-05-01

    This letter explores the application of electron-beam curing on nanoporous silicate films. The electrical conduction mechanism for the nanoporous silicate film cured by electron-beam radiation has been studied with metal-insulator-semiconductor capacitors. Electrical analyses over a varying temperature range from room temperature to 150°C provide evidence for space-charge-limited conduction in the electron-beam-cured thin film, while Schottky-emission-type leaky behavior is seen in the counterpart typically cured by a thermal furnace. A physical model consistent with electrical analyses is also proposed to deduce the origin of conduction behavior in the nanoporous silicate thin film.

  3. Q-Speciation and Network Structure Evolution in Invert Calcium Silicate Glasses.

    PubMed

    Kaseman, Derrick C; Retsinas, A; Kalampounias, A G; Papatheodorou, G N; Sen, S

    2015-07-02

    Binary silicate glasses in the system CaO-SiO2 are synthesized over an extended composition range (42 mol % ≤ CaO ≤ 61 mol %), using container-less aerodynamic levitation techniques and CO2-laser heating. The compositional evolution of Q speciation in these glasses is quantified using (29)Si and (17)O magic angle spinning nuclear magnetic resonance spectroscopy. The results indicate progressive depolymerization of the silicate network upon addition of CaO and significant deviation of the Q speciation from the binary model. The equilibrium constants for the various Q species disproportionation reactions for these glasses are found to be similar to (much smaller than) those characteristic of Li (Mg)-silicate glasses, consistent with the corresponding trends in the field strengths of these modifier cations. Increasing CaO concentration results in an increase in the packing density and structural rigidity of these glasses and consequently in their glass transition temperature Tg. This apparent role reversal of conventional network-modifying cations in invert alkaline-earth silicate glasses are compared and contrasted with that in their alkali silicate counterparts.

  4. Redox equilibria of multivalent ions in silicate glasses

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Morris, R. V.

    1977-01-01

    Experimental studies were made on the compositional dependence of the redox equilibrium of Eu in synthetic silicate liquids, together with an empirical model describing the observed compositional dependence. Electron paramagnetic resonance (EPR) was used to measure the concentration ratio of Eu(2+) to Eu(3+) in various glasses formed by rapidly quenching silicate liquids. The compositional field studied comprised mixtures of SiO2, TiO2, Al2O3, CaO, MgO, and Na2O. The proposed model describes the Eu(2+)/Eu(3+) ratio over the entire compositional field in terms of parameters easily related to each glass composition. The general applicability and utility of the model is further demonstrated by its application to the Fe(2+)-Fe(3+), Ce(3+)-Ce(4+), and Cr(3+)-Cr(6+) redox reactions in binary alkali oxide silicate glasses of Li, Na, and K.

  5. Porphyrin-Embedded Silicate Materials for Detection of Hydrocarbon Solvents

    DTIC Science & Technology

    2011-01-14

    Sensors 2011, 11, 886-904; doi:10.3390/s110100886 sensors ISSN 1424-8220 www.mdpi.com/journal/ sensors Article Porphyrin-Embedded Silicate...Prescribed by ANSI Std Z39-18 Sensors 2011, 11 887 1. Introduction Mesoporous silicates have been widely described in sensing...absorption spectroscopy, quartz crystal microbalance ( QCM ), and FTIR have been utilized for aromatic hydrocarbon sensing applications based on these

  6. Silicate dust in a Vega-excess system

    NASA Technical Reports Server (NTRS)

    Skinner, C. J.; Barlow, M. J.; Justtanont, K.

    1992-01-01

    The 10-micron spectrum of the K5V star SAO 179815 (= HD 98800) is presented, and conclusively demonstrates the presence of small silicate dust grains around this star. The 9.7-micron silicate dust feature is unusually broad and shallow in this system. This, together with the slow fall-off of flux at longer wavelengths, constrains the size and density distributions of dust grains in models of the disk. It is found that there must be a significant population of small grains, as well as a population of large grains in order to explain all the observed properties of the disk.

  7. Iron and boron removal from sodium silicate using complexation methods

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Suharty, N. S.; Pramono, E.; Ramelan, A. H.; Sasongko, B.; Dewi, A. O. T.; Hidayat, R.; Sulistyono, E.; Handayani, M.; Firdiyono, F.

    2018-05-01

    Silica purification of other materials is needed to improve the purity of silica that suitable for solar cells requirement. The silica is obtained from roasting of sand minerals in sodium silicate form. Iron (Fe) and boron (B) are an impurity that must be separated to obtain high pure silica. Separation of Fe and B used complexation methods. Chitosan-EDTA is used to remove Fe component and curcumin is used to remove B component. The elemental analysis with Atomic Absorption Spectrophotometer (AAS) showed the amount of Fe in sodium silicate decreased after binding to Chitosan EDTA. The contact duration between sodium silicate and chitosan-EDTA at baseline did not affect the results. Then the removal of B from sodium silicate using curcumin was done under basic conditions. B-Curcumin complexes were known from the wavelength number shifts of O-H, C-O, and C = O vibrational in the IR spectrum. The results showed that the optimum concentration of curcumin for removal B was 2 × 10-7 M.

  8. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  9. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.

    PubMed

    Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

    2013-10-21

    The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity.

  10. Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol-gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.

  11. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long as...

  12. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long as...

  13. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long as...

  14. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long as...

  15. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long as...

  16. Carbonate-silicate liquid immiscibility upon impact melting, Ries Crater, Germany

    NASA Astrophysics Data System (ADS)

    Graup, Guenther

    1999-05-01

    The 24-km-diameter Ries impact crater in southern Germany is one of the most studied impact structures on Earth. The Ries impactor struck a Triassic to Upper Jurassic sedimentary sequence overlying Hercynian crystalline basement. At the time of impact (14.87 +/- 0.36 Ma; Storzer et al., 1995), the 350 m thick Malm limestone was present only to the S and E of the impact site. To the N and W, the Malm had been eroded away, exposing the underlying Dogger and Lias. The largest proportion of shocked target material is in the impact melt-bearing breccia suevite. The suevite had been believed to be derived entirely from the crystalline basement. Calcite in the suevite has been interpreted as a post-impact hydrothermal deposit. From optical inspection of 540 thin sections of suevite from 32 sites, I find that calcite in the suevite shows textural evidence of liquid immiscibility with the silicate impact melt. Textural evidence of liquid immiscibility between silicate and carbonate melt in the Ries suevite includes: carbonate globules within silicate glass, silicate globules embedded in carbonate, deformable and coalescing carbonate spheres within silicate glass, sharp menisci or cusps and budding between silicate and carbonate melt, fluidal textures and gas vesicles in carbonate schlieren, a quench crystallization sequence of the carbonate, spinifex textured quenched carbonate, separate carbonate spherules in the suevite mineral-fragment-matrix, and inclusions of mineral fragments suspended in carbonate blebs. Given this evidence of liquid immiscibility, the carbonate in the suevite has, therefore, like the silicate melt a primary origin by impact shock melting. Evidence of carbonate-silicate liquid immiscibility is abundant in the suevites to the SW to E of the Ries crater. The rarer suevites to the W to NE of the crater are nearly devoid of carbonate melts. This correspondence between the occurrence of outcropping limestones at the target surface and the formation of

  17. Metal-silicate interaction in quenched shock-induced melt of the Tenham L6-chondrite

    NASA Astrophysics Data System (ADS)

    Leroux, Hugues; Doukhan, Jean-Claude; Guyot, François

    2000-07-01

    The metal-silicate microstructures in the shock-induced melt pockets of the Tenham (L6) chondrite have been investigated by analytical transmission electron microscopy. The melt areas, formed under high-pressure, high-temperature dynamic shock conditions, consist of spherical Fe-Ni metal/iron sulfide globules embedded in a silicate glass matrix, showing that the melt was quenched at high cooling rate. The Fe-Ni fraction in the globules is two-phase, composed of a bcc phase (˜5 wt% Ni) and an fcc phase (˜49 wt% Ni), indicating that fractional crystallisation of the metal occurred during the fast cooling. The metal fraction also contains appreciable amounts of non-siderophile elements (mostly Si, Mg and O) suggesting that these elements were trapped in the metal, either as alloying components or as tiny silicate or oxide inclusions. In the iron sulfide fraction, the Na content is high (>3 wt%), suggesting chalcophile behaviour for Na during the shock event. The composition of the silicate glass reflects non-equilibrium melting of several silicate phases (olivine, pyroxene and plagioclase). Moreover, the FeO content is high compared to the FeO contents of the unmelted silicates. Some Fe redistribution took place between metal and silicate liquids during the shock event. The silicate glass also contains tiny iron sulfide precipitates which most probably originated by exsolution during quench, suggesting that the molten silicate retained significant amounts of S, dissolved at high temperature and high pressure. Based on these observations, we suggest that non-equilibrium phenomena may be important in determining the compositions of metal and silicate reservoirs during their differentiation.

  18. Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars

    NASA Astrophysics Data System (ADS)

    Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.

    2014-07-01

    Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.

  19. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  20. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  1. SOFT X-RAY IRRADIATION OF SILICATES: IMPLICATIONS FOR DUST EVOLUTION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciaravella, A.; Cecchi-Pestellini, C.; Jiménez-Escobar, A.

    2016-09-01

    The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg{sub 2}SiO{sub 4} stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may havemore » relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.« less

  2. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite

    PubMed Central

    Friederichs, Robert J.; Chappell, Helen F.; Shepherd, David V.; Best, Serena M.

    2015-01-01

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100°C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. PMID:26040597

  3. Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite.

    PubMed

    Friederichs, Robert J; Chappell, Helen F; Shepherd, David V; Best, Serena M

    2015-07-06

    Experimental chemistry and atomic modelling studies were performed here to investigate a novel ionic co-substitution in hydroxyapatite (HA). Zinc, silicate co-substituted HA (ZnSiHA) remained phase pure after heating to 1100 °C with Zn and Si amounts of 0.6 wt% and 1.2 wt%, respectively. Unique lattice expansions in ZnSiHA, silicate Fourier transform infrared peaks and changes to the hydroxyl IR stretching region suggested Zn and silicate co-substitution in ZnSiHA. Zn and silicate insertion into HA was modelled using density functional theory (DFT). Different scenarios were considered where Zn substituted for different calcium sites or at a 2b site along the c-axis, which was suspected in singly substituted ZnHA. The most energetically favourable site in ZnSiHA was Zn positioned at a previously unreported interstitial site just off the c-axis near a silicate tetrahedron sitting on a phosphate site. A combination of experimental chemistry and DFT modelling provided insight into these complex co-substituted calcium phosphates that could find biomedical application as a synthetic bone mineral substitute. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Power scaling of diode-pumped neodymium yttrium aluminum borate laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1991-01-01

    Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.

  5. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    PubMed

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  6. Effect of Silicate Slag Application on Wheat Grown Under Two Nitrogen Rates

    PubMed Central

    White, Brandon; Tubana, Brenda S.; Babu, Tapasya; Mascagni, Henry; Agostinho, Flavia; Datnoff, Lawrence E.; Harrison, Steve

    2017-01-01

    Field studies were established on the alluvial floodplain soils in Louisiana, from 2013 to 2015, to evaluate the effect of silicate slag applications on productivity of wheat (Triticum aestivum), under sufficient and high nitrogen (N) application rates. Treatments were arranged in a randomized complete block design, with four replications consisting of twelve treatments: a factorial combination of two N (101 and 145 kg N ha−1) and five silicate slag rates (0, 1, 2, 4.5, and 9 Mg ha−1), and two control plots (with and without lime). Nitrogen had a greater impact on wheat productivity than silicate slag application. Wheat grain yield reached over 7000 kg ha−1 with applications of 145 kg N, and 9 Mg silicate slag per ha for soil having Si level <20 mg kg−1. Yield increases due to N or Si were attributed to the increase in number of spike m−2 and grain number spike−1. Silicate slag application effectively raised soil pH, and availability of several plant-essential nutrients, including plant-available N (nitrate, NO3−), demonstrating the benefits of slag application are beyond increasing plant-available Si. The benefits of silicate slag application were clearly observed in wheat supplied with high N, and on soil with low plant-available Si. PMID:29019922

  7. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development,more » and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.« less

  8. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    PubMed

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  9. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    DOE PAGES

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; ...

    2016-12-06

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development,more » and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.« less

  10. Tip-induced nanoreactor for silicate

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin

    2015-09-01

    Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales.

  11. Tip-induced nanoreactor for silicate.

    PubMed

    Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin

    2015-09-14

    Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales.

  12. Nanoscale zinc silicate from phytoliths

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Gorzkowski, E. P.; Rath, B. B.; Feng, C. R.; Amarasinghe, R.; Freitas, J. A.; Culbertson, J. C.; Wollmershauser, J. A.

    2017-10-01

    We report a faster, less expensive method of producing zinc silicate nanoparticles. Such particles are used in high volume to make phosphors and anti-corrosion coatings. The approach makes use of phytoliths (plant rocks), which are microscopic, amorphous, and largely silicate particles embedded in plants, that lend themselves to being easily broken down into nanoparticles. Nanoparticles of Zn2SiO4 were produced in a two stage process. In the refinement stage, plant residue, mixed with an appropriate amount of ZnO, was heated in an argon atmosphere to a temperature exceeding 1400 °C for four to six hours and then heated in air at 650 °C to remove excess carbon. TEM shows 50-100 nm nanoparticles. Raman scattering indicates that only the -Zn2SiO4 crystalline phase was present. X-ray analysis indicated pure rhombohedral R 3 bar phase results from using rice/wheat husks. Both samples luminesced predominantly at 523 nm when illuminated with X-rays or UV laser light.

  13. Tip-induced nanoreactor for silicate

    PubMed Central

    Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin

    2015-01-01

    Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales. PMID:26364882

  14. Petrogenesis of Western Cascades Silicic Volcanics Near Sweet Home, Oregon

    NASA Astrophysics Data System (ADS)

    Cook, G. W.; White, C. M.

    2002-12-01

    Silicic lavas in the Menagerie Wilderness east of Sweet Home, Oregon are Oligocene to Miocene in age and range in composition from dacite (low K) to trachydacite (high K) and rhyolite (medium K). Three distinct silicic centers have been distinguished through a combination of field observation, chemistry and petrography. Phenocryst assemblages in rocks of the centers are plagioclase-hornblende-magnetite (Rooster Rock rhyolite), plagioclase-quartz-magnetite (Soda Fork rhyolite) and quartz-plagioclase-biotite-hornblende-magnetite (Moose Mt. rhyolite). The silicic volcanics in the study area are similar in terms of mineral content and overall chemical composition. Despite this, chemical evidence suggests that the three centers are petrologically unrelated. REE variations and least squares modeling of major element compositions are consistent with fractionation of plagioclase and hornblende. The rhyolites have moderate Eu anomalies and have flat MREE and HREE signatures. Least squares models and bivariate plots of major and trace elements also suggest fractionation of the aforementioned phases for both the andesite to dacite, and dacite to rhyolite steps. Comparisons with similar silicic centers show the Menagerie rocks share affinities with High Cascades rocks thought to have been derived through fractional crystallization (Crater Lake and South Sister). Plots of ratios of incompatible trace elements were utilized to determine if assimilation played some role alongside fractional crystallization in differentiation. Plots of Ba/La vs. Ba, Rb/Zr vs. Rb and Rb/Th vs. Rb show systematic positive increases in the ratios between a plausible parent magma (icelandite) and the rhyolites. These increases are not easily explained by fractional crystallization but can be modeled by assimilation of silicic crust. Overall, it seems likely that the three centers evolved independently through similar petrogenetic processes from an andesitic parent. The most plausible petrogenetic

  15. Water diffusion in silicate glasses: the effect of glass structure

    NASA Astrophysics Data System (ADS)

    Kuroda, M.; Tachibana, S.

    2016-12-01

    Water diffusion in silicate melts (glasses) is one of the main controlling factors of magmatism in a volcanic system. Water diffusivity in silicate glasses depends on its own concentration. However, the mechanism causing those dependences has not been fully understood yet. In order to construct a general model for water diffusion in various silicate glasses, we performed water diffusion experiments in silica glass and proposed a new water diffusion model [Kuroda et al., 2015]. In the model, water diffusivity is controlled by the concentration of both main diffusion species (i.e. molecular water) and diffusion pathways, which are determined by the concentrations of hydroxyl groups and network modifier cations. The model well explains the water diffusivity in various silicate glasses from silica glass to basalt glass. However, pre-exponential factors of water diffusivity in various glasses show five orders of magnitude variations although the pre-exponential factor should ideally represent the jump frequency and the jump distance of molecular water and show a much smaller variation. Here, we attribute the large variation of pre-exponential factors to a glass structure dependence of activation energy for molecular water diffusion. It has been known that the activation energy depends on the water concentration [Nowak and Behrens, 1997]. The concentration of hydroxyls, which cut Si-O-Si network in the glass structure, increases with water concentration, resulting in lowering the activation energy for water diffusion probably due to more fragmented structure. Network modifier cations are likely to play the same role as water. With taking the effect of glass structure into account, we found that the variation of pre-exponential factors of water diffusivity in silicate glasses can be much smaller than the five orders of magnitude, implying that the diffusion of molecular water in silicate glasses is controlled by the same atomic process.

  16. Annealing of Silicate Dust by Nebular Shocks at 10 AU

    NASA Technical Reports Server (NTRS)

    Harker, David E.; Desch, Steven J.; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Silicate dust grains in the interstellar medium are known to be mostly amorphous, yet crystalline silicate grains have been observed in many long-period comets and in protoplanetary disks. Annealing of amorphous silicate grains into crystalline grains requires temperatures greater than or approximately equal to 1000 K, but exposure of dust grains in comets to such high temperatures is apparently incompatible with the generally low temperatures experienced by comets. This has led to the proposal of models in which dust grains were thermally processed near the protoSun, then underwent considerable radial transport until they reached the gas giant planet region where the long-period comets originated. We hypothesize instead that silicate dust grains were annealed in situ, by shock waves triggered by gravitational instabilities. We assume a shock speed of 5 km/s, a plausible value for shocks driven by gravitational instabilities. We calculate the peak temperatures of pyroxene grains under conditions typical in protoplanetary disks at 5-10 AU. We show that in situ annealing of micron-sized dust grains can occur, obviating the need for large-scale radial transport.

  17. Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.

    PubMed

    Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo

    2014-06-01

    To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (p<0.05). In the protection study, the intrinsic rate constant for calcium loss from enamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (p<0.0001). Calcium silicate can transform into HAP and can be deposited on acid eroded and sound enamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.

  18. Silicate Crystal Formation in the Disk of an Erupting Star Artist Concept

    NASA Image and Video Library

    2009-05-13

    This artist's concept illustrates how silicate crystals like those found in comets can be created by an outburst from a growing star. The image shows a young sun-like star encircled by its planet-forming disk of gas and dust. The silicate that makes up most of the dust would have begun as non-crystallized, amorphous particles. Streams of material are seen spiraling from the disk onto the star increasing its mass and causing the star to brighten and heat up dramatically. The outburst causes temperatures to rise in the star's surrounding disk. The animation (figure 1) zooms into the disk to show close-ups of silicate particles. When the disk warms from the star's outburst, the amorphous particles of silicate melt. As they cool off, they transform into forsterite (figure 2), a type of silicate crystal often found in comets in our solar system. In April 2008, NASA's Spitzer Space Telescope detected evidence of this process taking place on the disk of a young sun-like star called EX Lupi. http://photojournal.jpl.nasa.gov/catalog/PIA12008

  19. Silicate Phases on the Surfaces of Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2017-10-01

    Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt

  20. Electrochemistry and the mechanisms of nucleation and growth of neodymium during electroreduction from LiCl-KCl eutectic salts on Mo substrate

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Pesic, Batric

    2015-03-01

    The electrochemical behavior of NdCl3 was studied on a Mo electrode in molten LiCl-KCl eutectic salts. The electroreduction of Nd(III)/Nd(0) involved two reaction steps, as confirmed by three different electrochemical techniques. In the first reaction step, Nd(III) is converted into soluble Nd(II), which undergoes further reduction into metallic Nd(0) in the second reaction step. The standard reaction rate constants for each reaction step were determined by Nicholson method. The rate constant values were used in Matsuda-Ayabe's criteria for testing the electrochemical reversibility. Accordingly, both reaction steps were quasi-reversible redox reactions. The nucleation mechanisms of neodymium metal deposited on a Mo substrate were predicted by using Scharifker-Hill model, and tested for the first time by scanning electron microscopy (SEM) studies of the electrode surface. The SEM studies confirmed that for the low initial concentration of NdCl3, neodymium nucleates and grows progressively, while for higher NdCl3 concentrations, the related mechanism is instantaneous. Both are governed by the aggregative growth mechanisms based on surface mobility of formed nanoclusters.

  1. Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performance

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-11-01

    Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively. Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance.

  2. Developing a Magnetic Circular Dichroism Apparatus Equipped with Neodymium Magnet for Students to Investigate the Electronic Structures of Transition Metals and Lanthanoids

    ERIC Educational Resources Information Center

    Yakubu, Abdallah; Suzuki, Takayoshi; Kita, Masakazu

    2017-01-01

    This paper describes the development of a simple magnetic circular dichroism (MCD) apparatus from a wood base and neodymium magnets and its configuration in the Faraday alignment. The applicability and effectiveness of the apparatus for MCD spectra measurements have been examined. The apparatus was used by undergraduate students to conduct MCD…

  3. Textural constraints on effusive silicic volcanism - Beyond the permeable foam model

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Anderson, Steven W.; Manley, Curtis R.

    1992-01-01

    The paper reports textural observations and presents isotopic evidence from active and recent silicic lava flows which show that at least some vesiculation occurs during surface advance of extrusions, after magma has reached the earth's surface. This view is in contrast to the widely promoted 'permeable foam' model, which states that all volatiles escape during ascent of the magma, and that all dense glassy material in lava flows forms from the collapse of pumiceous lava, i.e., that silicic lavas emerge as highly inflated foam flows. The permeable foam model also implies the unlikely requirement that explosive-to-effusive transitions be associated with an increase in the eruption rate. A more comprehensive model for the emplacement of silicic extrusions that allows for early gas loss during ascent, as well as late-stage vesiculation, is presented. The way in which the redistribution of volatiles during surface flow can increase explosive hazards from silicic lavas days, weeks, or months after the lava emerges from the event is discussed.

  4. Molybdenum Valence in Basaltic Silicate Melts: Effects of Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Choi, Y.; Pando, K.

    2011-01-01

    The metal-silicate partitioning behavior of molybdenum has been used as a test for equilibrium core formation hypotheses [for example, 1-6]. However, current models that apply experimental data to equilibrium core-mantle differentiation infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Molybdenum, a multi-valent element with a valence transition near the fO2 of interest for core formation (approx.IW-2) will be sensitive to changes in fO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo(6+) can be either octahedrally or tetrahedrally coordinated. Here we present X-ray absorption near edge structure (XANES) measurements of Mo valence in basaltic run products at a range of P, T, and fO2 and further quantify the valence transition of Mo.

  5. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to <1400 °C, while variable Fe-oxide contents were used to vary oxygen fugacity in graphite and MgO capsules. Isotopic analyses were performed using a double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  6. Synthesis and characterization of Fe(III)-silicate precipitation tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmar, K.; Pramanik, A.K.; Bandyopadhya, N.R.

    2010-09-15

    Fe(III)-silicate precipitation tubes synthesized through 'silica garden' route have been characterized using a number of analytical techniques including X-ray diffraction, infrared spectroscopy, atomic force microscopy, scanning and transmission electron microscopy. These tubes are brittle and amorphous and are hierarchically built from smaller tubes of 5-10 nm diameters. They remain amorphous at least up to 650 {sup o}C. Crystobalite and hematite are the major phases present in Fe(III)-silicate tubes heated at 850 {sup o}C. Morphology and chemical compositions at the external and internal walls of these tubes are remarkably different. These tubes are porous with high BET surface area of 291.2more » m{sup 2}/g. Fe(III)-silicate tubes contain significant amount of physically and chemically bound moisture. They show promise as an adsorbent for Pb(II), Zn(II), and Cr(III) in aqueous medium.« less

  7. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation.

    PubMed

    Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong

    2017-11-15

    This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Silicate release from glass for pharmaceutical preparations.

    PubMed

    Bohrer, Denise; Bortoluzzi, Fabiana; Nascimento, Paulo Cícero; Carvalho, Leandro Machado; Ramirez, Adrian Gustavo

    2008-05-01

    Glass is made of polymeric silica and other minor components, which are necessary for turning the silica into a material more easily moldable and resistant to temperature changes. Glass containers for pharmaceutical usage are classified according to their resistance to a chemical attack, a test carried out in the presence of water and heat. The test is designed to show the released alkalinity, a variable dependent on the amount of sodium oxide, one of the minor components added to the glass mass. In this work, the release of silica from glass by action of constituents from pharmaceutical formulations was investigated. The study included products used in large volumes and usually stored in glass containers. Solutions of amino acids, electrolytes, glucose, oligoelements and others such as heparin and sodium bicarbonate were individually stored in glass containers and heated at 121 degrees C for 30min, as in the water attack test. The test was also carried out only with water, where the pH varied from 2 to 12. The released silicate was measured either by photometry or atomic absorption spectrometry, depending on the nature of the sample. The results showed that silicate is released during the heating cycle even if the contact is with pure water only. The pH exerts a considerable influence on the release, being that the higher the pH, the higher the silica dissolved. An elevated pH, however, is not the only factor responsible for silica dissolution. While in the solutions of NaCl, KCl, Mg Cl2 and ZnSO4 and in most of the amino acids, the concentration of silicate was as high as in pure water (0.1-1.0mg Si/L). In the solutions of sodium acetate, bicarbonate and gluconate, its concentration was much higher, over 30mg Si/L. These results were confirmed by the analysis of commercial products, where in solutions of amino acids the level of silicate ranged from 0.14 to 0.19mg Si/L. On the other hand, calcium gluconate, sodium bicarbonate and potassium phosphate presented

  9. Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.

    2012-02-01

    We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.

  10. Are All Active Galactic Nuclei Born Equal? The Silicate Dust Mineralogy Perspective

    NASA Astrophysics Data System (ADS)

    Li, Aigen

    Dust is the cornerstone of the unification theory of active galactic nuclei (AGNs). This theory proposes that all AGNs are essentially the same object or "born equal" but viewed from different lines of sight; much of the observed diversity arises from different viewing angles toward the central engine and a dusty toroidal structure around it. When the dusty torus is viewed face-on, both the central engine and the broad-line regions can be seen directly causing objects to appear as type 1 AGNs; when the dusty torus is viewed edge- on, the anisotropic obscuration created by the torus causes objects to appear as type 2 AGNs. It is this crucial role played by dust in the unified model of AGNs that makes understanding dust properties very important in understanding AGNs. Little is known about the dust in the circumnuclear torus of AGNs. There is evidence suggesting that the size and composition of the dust in AGNs may differ substantially from that of the Galactic interstellar dust, as reflected by the flat or "gray" extinction, and the anomalous silicate emission or absorption features observed respectively in type 1 and type 2 AGNs. The silicate feature profiles of AGNs are rather diverse in peak wavelengths, widths, strengths, and band ratios of the 18 micrometer O--Si--O feature to the 9.7 micrometer Si--O feature, suggesting that the AGN silicate grains are diverse in composition and size (or probably not "born equal"). We propose a two-year project to study the size and composition of the dust in AGNs, with special attention paid to the silicate mineralogy. We will obtain constraints on the silicate composition and size by modeling the Spitzer IRS spectra of >100 AGNs of various types. We will examine whether (and how) the silicate composition and size properties vary with the properties of an AGN (e.g. type, luminosity). This research will improve our understanding of the physical properties of the dust torus and the origin of the observed silicate emission

  11. Inhibition and enhancement of microbial surface colonization: the role of silicate composition

    USGS Publications Warehouse

    Roberts, Jennifer A.

    2004-01-01

    Classical treatment of cell attachment by models of filtration or coulombic attraction assumes that attachment of cells to mineral surfaces would be controlled by factors such as response to predation, collision efficiency, or coulombic attraction between the charged groups at the mineral and cell surfaces. In the study reported here, the passive model of attachment was investigated using a native microbial consortium and a variety of Al- and Fe-bearing silicates and oxides to determine if other controls, such as mineral composition, also influence the interaction between cells and surfaces. Results from in situ colonization studies in an anaerobic groundwater at pH 6.8 combined with most probable number analyses (MPN) of surface-adherent cells demonstrate that electrostatic effects dominate microbial colonization on positively charged oxide surfaces regardless of mineral composition. In contrast, on negatively charged silicate minerals and glasses, the solid phase composition is a factor in determining the extent of microbial colonization, as well as the diversity of the attached community. In particular, silicates containing more than 1.2% Al exhibit less biomass than Al-poor silicates and MPN suggests a shift in community diversity, possibly indicating Al toxicity on these surfaces. When Fe is present in the silicate, however, this trend is reversed and abundant colonization of the surface is observed. Here, microorganisms preferentially colonize those silicate surfaces that offer beneficial nutrients and avoid those that contain potentially toxic elements.

  12. JPRS Report, Science & Technology USSR: Chemistry

    DTIC Science & Technology

    1991-08-12

    KH1M1CHESKIKHNAUK No 1 , Jan-Feb 91] 18 Synthesis of Neodymium Silicates and Glass Prepared From Them by Laser Irradiation of Co-Precipitated...KHIMICHESKIY ZHURNAL No 1 , Jan-Feb 91] 28 Synthesis and Investigation of Antiarrhythmic Activity of Alkoxyaminoalcohol Salts of Cyclohexane Series [N.S...Catalysts in Organic Synthesis . Communication 25. Synthesis of Polymer Supported Tetrazols 917M0091D Riga LATVIYSKIY KHIMICHESKIY ZHURNAL in Russian No 1

  13. Concentrations and isotopic compositions of neodymium in the eastern Indian Ocean and Indonesian straits

    NASA Astrophysics Data System (ADS)

    Jeandel, Catherine; Thouron, Danièle; Fieux, Michèle

    1998-08-01

    Four profiles of Nd concentration and isotopic composition were determined at two stations in the eastern Indian Ocean along a north/south section between Bali and Port-Hedland and at two others in the Timor and Sumba straits. Neodymium concentrations increase with depth, between 7.2 pmol/L at the surface to 41.7 pmol/L close to the bottom. The ɛ Nd of the different water masses along the section are -7.2 ± 0.2 for the Indian Bottom Waters and -6.1 ± 0.2 for the Indian Deep Waters. The intermediate and thermocline waters are less radiogenic at st-10 than at st-20 (-5.3 ± 0.3 and -3.6 ± 0.2, respectively). In the Timor Passage and Sumba Strait, ɛ Nd of the Indonesian waters is -4.1 ± 0.2 and that of the North Indian Intermediate Waters is -2.6 ± 0.3. These distinct isotopic signals constrain the origins of the different water masses sampled in the eastern Indian Ocean. They fix the limit of the nonradiogenic Antarctic and Indian contributions to the southern part of the section whereas the northern part is influenced by radiogenic Indonesian flows. In addition, the neodymium isotopic composition suggests that in the north, deep waters are influenced by a radiogenic component originating from the Sunda Arch Slope flowing deeper than 1200 m, which was not documented previously. Mixing calculations assess the conservativity of ɛ Nd on the scale of an oceanic basin. The origin of the surprising radiogenic signal of the NIIW is discussed and could result from a remobilization of Nd sediment-hosted on the Java shelf, requiring important dissolved/particulate exchange processes. Such processes, occurring in specific areas, could play an important role in the world ocean Nd budget.

  14. Methylated silicates may explain the release of chlorinated methane from Martian soil

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai

    2016-01-01

    The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.

  15. Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Réunion hotspot source

    NASA Astrophysics Data System (ADS)

    Peters, Bradley J.; Carlson, Richard W.; Day, James M. D.; Horan, Mary F.

    2018-03-01

    Active volcanic hotspots can tap into domains in Earth’s deep interior that were formed more than two billion years ago. High-precision data on variability in tungsten isotopes have shown that some of these domains resulted from differentiation events that occurred within the first fifty million years of Earth history. However, it has not proved easy to resolve analogous variability in neodymium isotope compositions that would track regions of Earth’s interior whose composition was established by events occurring within roughly the first five hundred million years of Earth history. Here we report 142Nd/144Nd ratios for Réunion Island igneous rocks, some of which are resolvably either higher or lower than the ratios in modern upper-mantle domains. We also find that Réunion 142Nd/144Nd ratios correlate with helium-isotope ratios (3He/4He), suggesting parallel behaviour of these isotopic systems during very early silicate differentiation, perhaps as early as 4.39 billion years ago. The range of 142Nd/144Nd ratios in Réunion basalts is inconsistent with a single-stage differentiation process, and instead requires mixing of a conjugate melt and residue formed in at least one melting event during the Hadean eon, 4.56 billion to 4 billion years ago. Efficient post-Hadean mixing nearly erased the ancient, anomalous 142Nd/144Nd signatures, and produced the relatively homogeneous 143Nd/144Nd composition that is characteristic of Réunion basalts. Our results show that Réunion magmas tap into a particularly ancient, primitive source compared with other volcanic hotspots, offering insight into the formation and preservation of ancient heterogeneities in Earth’s interior.

  16. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  17. Standards for electron probe microanalysis of silicates prepared by convenient method

    NASA Technical Reports Server (NTRS)

    Walter, L. S.

    1966-01-01

    Standard compositions suitable for electron probe microanalysis of various silicates are prepared by coprecipitation of specified salts with colloidal silica to form a gel which is decomposed into a powdered oxide mixture and compressed into thin pellets. These pellets of predetermined standard are compared with a silicate sample to determine its composition.

  18. Calc-silicate mineralization in active geothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, D.K.; Schiffman, P.; Elders, W.A.

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+}more » rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.« less

  19. Neodymium in the oceans: a global database, a regional comparison and implications for palaeoceanographic research

    PubMed Central

    Griffiths, Alexander M.; Lambelet, Myriam; Little, Susan H.; Stichel, Torben; Wilson, David J.

    2016-01-01

    The neodymium (Nd) isotopic composition of seawater has been used extensively to reconstruct ocean circulation on a variety of time scales. However, dissolved neodymium concentrations and isotopes do not always behave conservatively, and quantitative deconvolution of this non-conservative component can be used to detect trace metal inputs and isotopic exchange at ocean–sediment interfaces. In order to facilitate such comparisons for historical datasets, we here provide an extended global database for Nd isotopes and concentrations in the context of hydrography and nutrients. Since 2010, combined datasets for a large range of trace elements and isotopes are collected on international GEOTRACES section cruises, alongside classical nutrient and hydrography measurements. Here, we take a first step towards exploiting these datasets by comparing high-resolution Nd sections for the western and eastern North Atlantic in the context of hydrography, nutrients and aluminium (Al) concentrations. Evaluating those data in tracer–tracer space reveals that North Atlantic seawater Nd isotopes and concentrations generally follow the patterns of advection, as do Al concentrations. Deviations from water mass mixing are observed locally, associated with the addition or removal of trace metals in benthic nepheloid layers, exchange with ocean margins (i.e. boundary exchange) and/or exchange with particulate phases (i.e. reversible scavenging). We emphasize that the complexity of some of the new datasets cautions against a quantitative interpretation of individual palaeo Nd isotope records, and indicates the importance of spatial reconstructions for a more balanced approach to deciphering past ocean changes. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035258

  20. Remineralisation effect of a dual-phase calcium silicate/phosphate gel combined with calcium silicate/phosphate toothpaste on acid-challenged enamel in situ.

    PubMed

    Joiner, Andrew; Schäfer, Fred; Naeeni, Mojgan M; Gupta, Ashok K; Zero, Domenick T

    2014-06-01

    To test if a novel dual-phase gel system (calcium silicate and phosphate with 1450 ppmF, as NaF/MFP; TG) combined with a toothpaste (calcium silicate and sodium phosphate with 1450 ppmF, as MFP; TG) was able to re-harden previously acid-challenged enamel to a greater extent than other toothpastes. The study consisted of a double-blind, randomised, cross-over design with four 7-day treatment legs. In each leg, subjects wearing a partial denture holding four demineralised enamel specimens (25 min in 0.3% citric acid, pH3.8) used either the test regimen (TG+TP) or one of the three controls. (placebo TG+TP; Positive Control - placebo TG+marketed 1450 ppmF toothpaste; Negative Control - placebo TG+placebo TP). Enamel specimens were removed after 1, 2, 3 and 7 days. The gel systems were applied once per day for the first three days during which subjects also brushed with the corresponding toothpaste; this was followed by four days use of the toothpastes only. Toothpastes were used in the conventional way brushing twice per day throughout the seven days. The outcome variable was %Surface Microhardness Recovery calculated after three and seven days of in situ treatment. The results showed a statistically significant (p<0.001) re-hardening effect for all treatments compared to pre-treatment hardness. After three days and after seven days of in situ treatment significantly greater hardening (p<0.05) was found in the samples treated with calcium silicate/phosphate gel system plus calcium silicate/phosphate toothpaste than in the control groups. It is concluded that the test regimen based on the novel dual-phase gel system combined with toothpaste was able to re-harden acid-challenged tooth enamel to a greater extent than a normal fluoride toothpaste. The novel oral care products containing calcium silicate, sodium phosphate salts and fluoride is a new approach to the repair of demineralised enamel. © 2014 Elsevier Ltd. All rights reserved.

  1. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  2. Effect Of Neodymium Substitution In Structural Characteristics Of Magnesium Ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thankachan, Smitha; Binu, P. J.; Xavier, Sheena

    2011-10-20

    The effect of Nd{sup 3+} substitution on the structural properties of Magnesium ferrite was studied in the series MgNd{sub x}Fe{sub 2-x}O{sub 4}, where x = 0 to 0.3 in steps of 0.05. The series was prepared by sol-gel technique which is one of the novel technique to prepare nanosized samples. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. XRD analysis reveals the prepared samples are single phasic till x = 0.2. From x0 = .25, a secondary phase of iron neodymium oxide appears along with the spinel phase. Particle size calculation shows the prepared samples aremore » in the 9nm to 11 nm regime. Lattice parameter was found to increase with concentration of Nd. XRD and FTIR analysis confirmed spinel structure of the prepared samples. XRF result shows the expected composition of prepared samples. The frequency dependence of the dielectric constant in the range 100 Hz--120MHz was also studied« less

  3. Field and Experimental Constraints on the Dynamics of Replenished Silicic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Bain, A. A.; Jellinek, M.

    2008-12-01

    The underlying causes of catastrophic caldera-forming volcanic eruptions remain poorly understood. However, the occurrence of magma mixing within bimodal systems has become increasingly linked with such eruptions. In particular, buoyancy effects related to unstable density contrasts arising as a result of silicic- basaltic magma interactions may play an important role in the growth, differentiation and catastrophic eruption of silicic magma chambers. Evidence of such magmatic interactions can be found in layered intrusions from the Coastal Maine Magmatic Province (USA), where well-exposed cross-sections reveal hundreds of laterally-extensive basaltic sheets, apparently injected as intrusive lava flows onto the growing floors of silicic magma chambers. Interfaces between mafic and silicic layers are commonly sharply defined and exhibit deformation parallel to the inferred direction of palaeo-gravity. Our field observations suggest that the cooling, settling and buckling of gravitationally-unstable mafic replenishments may have driven large-scale (basalt layer depth) and small- scale (crystal diameter) upwelling and/or overturning of underlying buoyant silicic cumulate material. In order to characterize the full range of buoyancy effects, we carried out extensive spectral analysis of high- resolution digital field measurements from the Pleasant Bay and Mount Desert Island intrusions. In many cases, Rayleigh-Taylor theory and the longest measured wavelength of deformation indicate that a large and potentially-quantifiable fraction of the original, pre-replenishment silicic cumulate thickness may be missing, implying that vertical mass transfer has occurred. In addition, the shortest wavelengths of deformation are generally consistent with observed length-scales of crystals and clumps of crystals at these localities. With the aim of understanding the initial conditions that gave rise to these field observations, we conduct a series of laboratory experiments in which we

  4. Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.

    2006-01-01

    Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.

  5. Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum.

    PubMed

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Suh, Sangwon; Shigetomi, Yosuke; Oshita, Yuko

    2014-01-01

    This study, encompassing 231 countries and regions, quantifies the global transfer of three critical metals (neodymium, cobalt, and platinum) considered vital for low-carbon technologies by means of material flow analysis (MFA), using trade data (BACI) and the metal contents of trade commodities, resolving the optimization problem to ensure the material balance of the metals within each country and region. The study shows that in 2005 international trade led to global flows of 18.6 kt of neodymium, 154 kt of cobalt, and 402 t of platinum and identifies the main commodities and top 50 bilateral trade links embodying these metals. To explore the issue of consumption efficiency, the flows were characterized according to the technological level of each country or region and divided into three types: green ("efficient use"), yellow ("moderately efficient use"), and red ("inefficient use"). On this basis, the shares of green, yellow, and red flows in the aggregate global flow of Nd were found to be 1.2%, 98%, and 1.2%, respectively. For Co, the respective figures are 53%, 28%, and 19%, and for Pt 15%, 84%, and 0.87%. Furthermore, a simple indicator focusing on the composition of the three colored flows for each commodity was developed to identify trade commodities that should be prioritized for urgent technical improvement to reduce wasteful use of the metals. Based on the indicator, we discuss logical, strategic identification of the responsibilities and roles of the countries involved in the global flows.

  6. Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser.

    PubMed

    Yu, Haohai; Wang, Shuxian; Han, Shuo; Wu, Kui; Su, Liangbi; Zhang, Huaijin; Wang, Zhengping; Xu, Jun; Wang, Jiyang

    2014-03-15

    We report a laser-diode pumped continuous-wave (cw) and passively Q-switched eye-safe laser at about 1.42 μm with the neodymium-doped yttrium gallium garnet (Nd:YGG) crystal for the first time to our knowledge. The composite Nd:YGG crystal was developed originally. A systematic comparison of laser performance between the homogeneously doped and composite Nd:YGG crystal was made, which showed that the composite Nd:YGG manifested less thermally induced effects. Cw output power of 2.06 W was obtained with the slope efficiency of 20.7%. With a V:YAG as a saturable absorber, the passive Q-switching at 1.42 μm was gotten with the pulse width, pulse energy, and peak power of 34 ns, 46.7 μJ, and 1.4 kW, respectively. The present work should provide a potential candidate for the generation of eye-safe lasers.

  7. Sulfur Solubility In Silicate Melts: A Thermochemical Model

    NASA Astrophysics Data System (ADS)

    Moretti, R.; Ottonello, G.

    A termochemical model for calculating sulfur solubility of simple and complex silicate melts has been developed in the framework of the Toop-Samis polymeric approach combined with a Flood - Grjotheim theoretical treatment of silicate slags [1,2]. The model allows one to compute sulfide and sulfate content of silicate melts whenever fugacity of gaseous sulphur is provided. "Electrically equivalent ion fractions" are needed to weigh the contribution of the various disproportion reactions of the type: MOmelt + 1/2S2 ,gas MSmelt+1/2O2 ,gas (1) MOmelt + 1/2S2 ,gas + 3/2O2 ,gas MSO4 ,melt (2) Eqs. 1 and 2 account for the oxide-sulfide and the oxide-sulfate disproportiona- tion in silicate melt. Electrically equivalent ion fractions are computed, in a fused salt Temkin notation, over the appropriate matrixes (anionic and cationic). The extension of such matrixes is calculated in the framework of a polymeric model previously developed [1,2,3] and based on a parameterization of acid-base properties of melts. No adjustable parameters are used and model activities follow the raoultian behavior implicit in the ion matrix solution of the Temkin notation. The model is based on a huge amount of data available in literature and displays a high heuristic capability with virtually no compositional limits, as long as the structural role assigned to each oxide holds. REFERENCES: [1] Ottonello G., Moretti R., Marini L. and Vetuschi Zuccolini M. (2001), Chem. Geol., 174, 157-179. [2] Moretti R. (2002) PhD Thesis, University of Pisa. [3] Ottonello G. (2001) J. Non-Cryst. Solids, 282, 72-85.

  8. Emission, fate and effects of soluble silicates (waterglass) in the aquatic environment.

    PubMed

    van Dokkum, Henno P; Hulskotte, Ian H J; Kramer, Kees J M; Wilmot, Joël

    2004-01-15

    Soluble silicates, commercially known as waterglass, are among the largest volume synthetic chemicals in the world. Silicon from waterglass is rapidly transformed to the biologically active orthosilicic acid (referred to as dissolved silicate). This paper aims to assess the impact of waterglass on the aquatic environment in Western Europe. The emission to surface waters from the four most relevant application areas, household detergents, pulp and paper production, water and wastewater treatment, and soil stabilization, is estimated to be ca. 88-121 kton of SiO2 per year. This is a small fraction (<2%) of the estimated total amount of dissolved silicate transported by rivers to the oceans. Locally, increases in dissolved silicate concentration will decrease the ratios of N:Si and P:Si, which could influence phytoplankton species composition and favor the growth of diatoms over other groups of algae. Significant adverse effects in aquatic ecosystems are not expected.

  9. Mid-infrared spectra of cometary dust: the evasion of its silicate mineralogy

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Chigai, T.; Yamamoto, T.

    2008-04-01

    Infrared spectra of dust in cometary comae provide a way to identify its silicate constituents, and this is crucial for correctly understanding the condition under which our planetary system is formed. Recent studies assign a newly detected peak at a wavelength of 9.3 μm to pyroxenes and regard them as the most abundant silicate minerals in comets. Here we dispense with this pyroxene hypothesis to numerically reproduce the infrared features of cometary dust in the framework of our interstellar dust models. Presolar interstellar dust in a comet is modeled as fluffy aggregates consisting of submicrometer-sized organic grains with an amorphous-silicate core that undergoes nonthermal crystallization in a coma. We assert that forsterite (Mg2SiO4) is the carrier of all the observed features, including the 9.3 μm peak and that the major phase of iron is sulfides rather than iron-rich silicates.

  10. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  11. The effects of sulfide composition on the solubility of sulfur in coexisting silicate melts

    NASA Astrophysics Data System (ADS)

    Smythe, Duane; Wood, Bernard; Kiseeva, Ekaterina

    2016-04-01

    The extent to which sulfur dissolves in silicate melts saturated in an immiscible sulfide phase is a fundamental question in igneous petrology and plays a primary role in the generation of magmatic ore deposits, volcanic degassing and planetary differentiation. Terrestrial sulfide melts often contain over 20 weight percent Ni + Cu, however, most experimental studies investigating sulfur solubility in silicate melt have been primarily concerned with the effects of silicate melt composition, and pure FeS has been use as the immiscible sulfide melt (O'Neill and Mavrogenes, 2002; Li and Ripley, 2005). To investigation of the effects of sulfide composition, in addition to those of temperature, pressure and silicate melt composition, on sulfur solubility in silicate melts, we have carried out a series of experiments done at pressures between 1.5 and 3 GPa and temperatures from 1400 to 1800C over a range of compositions of both the silicate and sulfide melt. We find that the solubility of sulfur in silicate melts drops significantly with the substitution of Ni and Cu for Fe in the immiscible sulfide melt, decreasing by approximately 40% at mole fractions of NiS + Cu2S of 0.4. Combining our results with those from the previous studies investigating sulfur solubility in silicate melts we have also found that solubility increases with increasing temperature and decreases pressure. These results show that without considering the composition of the immiscible sulfide phase the sulfur content of silicate melts can be significantly overestimated. This may serve to explain the relatively low sulfur concentrations in MORB melts, which previous models predict to be undersaturated in a sulfide phase despite showing chemical and textural evidence for sulfide saturation. Li, C. & Ripley, E. M. (2005). Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineralium Deposita 40, 218-230. O'Neill, H. S. C

  12. Premixed calcium silicate cement for endodontic applications

    PubMed Central

    Persson, Cecilia; Engqvist, Håkan

    2011-01-01

    Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and amount of calcium sulfate (added to control the setting time) were screened using a statistical model. In the second part of the study, the liquid-to-powder ratio was optimized for cements containing three different amounts of radiopacifier. Finally, the effect of using glycerol rather than water was evaluated in terms of radiopacity. The setting time was found to increase with the amount of radiopacifier when the liquid-to-powder ratio was fixed. This was likely due to the higher density of the radiopacifier in comparison to the calcium silicate, which gave a higher liquid-to-powder ratio in terms of volume. Using glycerol rather than water to mix the cements led to a decrease in radiopacity of the cement. In conclusion, we were able to produce premixed calcium silicate cements with acceptable properties for use in endodontic applications. PMID:23507729

  13. Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins

    NASA Technical Reports Server (NTRS)

    Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko

    2016-01-01

    Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.

  14. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruentmore » dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). In conclusion, our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.« less

  15. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.

    PubMed

    Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F

    2011-05-31

    Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.

  16. Polymer Layered Silicate Nanocomposites: A Review

    PubMed Central

    Mittal, Vikas

    2009-01-01

    This review aims to present recent advances in the synthesis and structure characterization as well as the properties of polymer layered silicate nanocomposites. The advent of polymer layered silicate nanocomposites has revolutionized research into polymer composite materials. Nanocomposites are organic-inorganic hybrid materials in which at least one dimension of the filler is less than 100 nm. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or pre-polymers from solution, in-situ polymerization, melt intercalation etc. The nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modifications, exhibit significant improvement in the composite properties, which include enhanced mechanical strength, gas barrier, thermal stability, flame retardancy etc. Only a small amount of filler is generally required for the enhancement in the properties, which helps the composite materials retain transparency and low density.

  17. Models for the Immediate Environment of Ions in Aqueous Solutions of Neodymium Chloride

    NASA Astrophysics Data System (ADS)

    Smirnov, P. R.; Grechin, O. V.

    2018-01-01

    Radial distribution functions of neodymium chloride aqueous solutions in a wide range of concentrations under ambient conditions are calculated from experimental data obtained earlier via X-ray diffraction analysis. Different models of the structural organization of the system are developed. The optimum versions are determined by calculating theoretical functions for each model and comparing their fit to the experimental functions. Such quantitative characteristics of the immediate environment of Nd3+ and Cl- ions as coordination numbers, interparticle distances, and varieties of ion pairs are determined. It is shown that the average number of water molecules in the first coordination sphere of the cation falls from 9 to 6.2 as the concentration rises. The structure of the systems over the whole range of concentrations is determined by ion associates of the noncontact type.

  18. Neodymium:YAG laser cutting of intraocular lens haptics in vitro and in vivo.

    PubMed

    Feder, J M; Rosenberg, M A; Farber, M D

    1989-09-01

    Various complications following intraocular lens (IOL) surgery result in explantation of the lenses. Haptic fibrosis may necessitate cutting the IOL haptics prior to removal. In this study we used the neodymium: YAG (Nd:YAG) laser to cut polypropylene and poly(methyl methacrylate) (PMMA) haptics in vitro and in rabbit eyes. In vitro we were able to cut 100% of both haptic types successfully (28 PMMA and 30 polypropylene haptics). In rabbit eyes we were able to cut 50% of the PMMA haptics and 43% of the polypropylene haptics. Poly(methyl methacrylate) haptics were easier to cut in vitro and in vivo than polypropylene haptics, requiring fewer shots for transection. Complications of Nd:YAG laser use frequently interfered with haptic transections in rabbit eyes. Haptic transection may be more easily accomplished in human eyes.

  19. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions

    NASA Astrophysics Data System (ADS)

    Izak, Piotr; Ogłaza, Longin; Mozgawa, Włodzimierz; Mastalska-Popławska, Joanna; Stempkowska, Agata

    2018-05-01

    To avoid agglomeration and sedimentation of grains, ceramic slurries should be modified by stabilizers in order to increase the electrostatic interactions between the dispersed particles. In this study we present the spectral analysis of aqueous sodium silicates obtained by different synthesis methods and their influence on the rheological properties of kaolin based slurries. Infrared and Raman spectra can be used to describe the structure of silicate structural units present in aqueous sodium silicates. It was confirmed that the best stabilization results possess aqueous sodium silicates of the silicate moduli of about 2 and the optimal concentration of the used fluidizer is 0.3 wt% to the kaolin clay dry mass. One of the most important conclusions is that the synthesis method of the fluidizer has no significant effect on its stabilization properties but used medium does create adequate stabilization mechanism depending on the silicate structures present in the sodium silicate solution.

  20. Method 366.0 Determination of Dissolved Silicate in Estuarine and Coastal Watersby Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of dissolved silicate concentration in estuarine and coastal waters. The dissolved silicate is mainly in the form of silicic acid, H SiO , in estuarine and 4 4 coastal waters. All soluble silicate, including colloidal silici...

  1. Evaluating United States and world consumption of neodymium, dysprosium, terbium, and praseodymium in final products

    NASA Astrophysics Data System (ADS)

    Hart, Matthew

    This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short

  2. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  3. Experimental determination of the Mo isotope fractionation factor between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, R. C.; Burkhardt, C.; Schmidt, M. W.; Bourdon, B.

    2011-12-01

    The conditions and chemical consequences of core formation have mainly been reconstructed from experimentally determined element partition coefficients between metal and silicate liquids. However, first order questions such as the mode of core formation or the nature of the light element(s) in the Earth's core are still debated [1]. In addition, the geocentric design of most experimental studies leaves the conditions of core formation on other terrestrial planets and asteroids even more uncertain than for Earth. Through mass spectrometry, records of mass-dependent stable isotope fractionation during high-temperature processes such as metal-silicate segregation are detectable. Stable isotope fractionation may thus yield additional constrains on core formation conditions and its consequences for the chemical evolution of planetary objects. Experimental investigations of equilibrium mass-dependent stable isotope fractionation have shown that Si isotopes fractionate between metal and silicate liquids at temperatures of 1800°C and pressures of 1 GPa, while Fe isotopes leave no resolvable traces of core formation processes [2,3]. Molybdenum is a refractory and siderophile trace element in the Earth, and thus much less prone to complications arising from mass balancing core and mantle and from potential volatile behaviour than other elements. To determine equilibrium mass-dependent Mo isotope fractionation during metal-silicate segregation, we have designed piston cylinder experiments with a basaltic silicate composition and an iron based metal with ~8 wt% Mo, using both graphite and MgO capsules. Metal and silicate phases are completely segregated by the use of a centrifuging piston cylinder at ETH Zurich, thus preventing analysis of mixed metal and silicate signatures. Molybdenum isotope compositions were measured using a Nu Instruments 1700 MC-ICP-MS at ETH Zurich. To ensure an accurate correction of analytical mass fractionation a 100Mo-97Mo double spike was admixed

  4. Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.

    PubMed

    Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K

    2009-01-01

    Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.

  5. The unique radar scattering properties of silicic lava flows and domes

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Stofan, Ellen R.; Anderson, Steven W.; Crown, David A.

    1995-01-01

    Silicic (silica-rich) lava flows, such as rhyolite, rhyodacite, and dacite, possess unique physical properties primarily because of the relatively high viscosity of the molten lava. Silicic flows tend to be thicker than basaltic flows, and the resulting large-scale morphology is typically a steep-sided dome or flow lobe, with aspect ratios (height/length) sometimes approaching unity. The upper surfaces of silicic domes and flows are normally emplaced as relatively cool, brittle slabs that fracture as they are extruded from the central vent areas, and are then rafted away toward the flow margin as a brittle carapace above a more ductile interior layer. This mode of emplacement results in a surface with unique roughness characteristics, which can be well-characterized by multiparameter synthetic aperture radar (SAR) observations. In this paper, we examine the scattering properties of several silicic domes in the Inyo volcanic chain in the Eastern Sierra of California, using AIRSAR and TOPSAR data. Field measurements of intermediate-scale (cm to tens of m) surface topography and block size are used to assess the mechanisms of the scattering process, and to quantify the unique roughness characteristics of the flow surfaces.

  6. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive...

  7. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive...

  8. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive...

  9. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive...

  10. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive...

  11. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite

    NASA Astrophysics Data System (ADS)

    Tauler, Esperança; Lewis, John F.; Villanova-de-Benavent, Cristina; Aiglsperger, Thomas; Proenza, Joaquín A.; Domènech, Cristina; Gallardo, Tamara; Longo, Francisco; Galí, Salvador

    2017-10-01

    Hydrous Mg silicate-type Ni-laterite deposits, like those in the Falcondo district, Dominican Republic, are dominated by Ni-enriched serpentine and garnierite. Recently, abundant Ni-smectite in the saprolite zone have been discovered in Loma Ortega, one of the nine Ni-laterite deposits in Falcondo. A first detailed study on these Ni-smectites has been performed (μXRD, SEM, EPMA), in addition to a geochemical and mineralogical characterisation of the Loma Ortega profile (XRF, ICP-MS, XRD). Unlike other smectite occurrences in laterite profiles worldwide, the Loma Ortega smectites are trioctahedral and exhibit high Ni contents never reported before. These Ni-smectites may be formed from weathering of pyroxene and olivine, and their composition can be explained by the mineralogy and the composition of the Al-depleted, olivine-rich parent ultramafic rock. Our study shows that Ni-laterites are mineralogically complex, and that a hydrous Mg silicate ore and a clay silicate ore can be confined to the same horizon in the weathering profile, which has significant implications from a recovery perspective. In accordance, the classification of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite deposit for Loma Ortega would be more appropriate.

  12. The characterisation and application of a pulsed neodymium YAG laser DGV system to a time-varying high-speed flow

    NASA Astrophysics Data System (ADS)

    Thorpe, S. J.; Quinlan, N.; Ainsworth, R. W.

    2000-10-01

    Doppler Global Velocimetry (DGV) is a whole-field measurement technique which has attracted significant interest from the fluid-flow research community since its introduction in 1991. Practical implementations of the methodology have focused on two principal laser light sources: the argon ion laser, applied to steady state or slowly varying flows; and the pulsed neodymium YAG laser for the measurement of instantaneous velocity fields. However, the emphasis in the published literature has been very much on research using the argon laser. This paper reports the application of a Q-switched, injection-seeded neodymium YAG laser to the proven Oxford DGV system, and the use of this combination in a short duration unsteady high-speed flow. The pertinent characteristics of the apparatus are described, and the impact of these on the integrity of the resulting velocity measurements is presented. Adaptations to the commercial laser system that make it suitable for application to the measurement of transient high-speed flows are described. Finally, the application of this system to a short duration unsteady flow is described. This application is based on the flow found in a new type of transdermal drug delivery device, where particles of the drug material are projected at high speed through the skin. Whole-field velocities are recorded, and values as high as 800 m/ s are evident.

  13. A Review: Fundamental Aspects of Silicate Mesoporous Materials

    PubMed Central

    ALOthman, Zeid A.

    2012-01-01

    Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes. Over time a constant demand has developed for larger pores with well-defined pore structures. Silicate materials, with well-defined pore sizes of about 2.0–10.0 nm, surpass the pore-size constraint (<2.0 nm) of microporous zeolites. They also possess extremely high surface areas (>700 m2 g−1) and narrow pore size distributions. Instead of using small organic molecules as templating compounds, as in the case of zeolites, long chain surfactant molecules were employed as the structure-directing agent during the synthesis of these highly ordered materials. The structure, composition, and pore size of these materials can be tailored during synthesis by variation of the reactant stoichiometry, the nature of the surfactant molecule, the auxiliary chemicals, the reaction conditions, or by post-synthesis functionalization techniques. This review focuses mainly on a concise overview of silicate mesoporous materials together with their applications. Perusal of the review will enable researchers to obtain succinct information about microporous and mesoporous materials.

  14. Laboratory and clinical experience with neodymium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1991, we have undertaken extensive laboratory and clinical studies of the Neodymium:YAG (Nd:YAG) laser for surgical treatment of bladder outlet obstruction due to prostatic enlargement or benign prostatic hyperplasia (BPH). Side-firing optical fibers which emit a divergent, relatively low energy density Nd:YAG laser beam produce coagulation necrosis of obstructing periurethral prostate tissue, followed by gradual dissolution and slough in the urinary stream. Laser-tissue interactions and Nd:YAG laser dosimetry for prostatectomy have been studied in canine and human prostate model systems, enhancing clinical application. Ongoing studies examine comparative Nd:YAG laser dosimetry for various beam configurations produced by available side-firing optical fibers and continue to refine operative technique. We have documented clinical outcomes of Nd:YAG laser prostatectomy in 230 consecutive patients treated with the UrolaseTM side-firing optical fiber. Nd:YAG laser coagulation the prostate produces a remarkably low acute morbidity profile, with no significant bleeding or fluid absorption. No postoperative incontinence has been produced. Serial assessments of voiding outcomes over more than 3 years of followup show objective and symptomatic improvement following Nd:YAG laser prostatectomy which is comparable to older but more morbid electrosurgical approaches. Nd:YAG laser prostatectomy is a safe, efficacious, durable and cost-effective treatment for BPH.

  15. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  16. Simulated Lunar Environment Spectra of Silicic Volcanic Rocks: Application to Lunar Domes

    NASA Astrophysics Data System (ADS)

    Glotch, T. D.; Shirley, K.; Greenhagen, B. T.

    2016-12-01

    Lunar volcanism was dominated by flood-style basaltic volcanism associated with the lunar mare. However, since the Apollo era it has been suggested that some regions, termed "red spots," are the result of non-basaltic volcanic activity. These early suggestions of non-mare volcanism were based on interpretations of rugged geomorphology resulting from viscous lava flows and relatively featureless, red-sloped VNIR spectra. Mid-infrared data from the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter have confirmed that many of the red spot features, including Hansteen Alpha, the Gruithuisen Domes, the Mairan Domes, Lassell Massif, and Compton Belkovich are silicic volcanic domes. Additional detections of silicic material in the Aristarchus central peak and ejecta suggest excavation of a subsurface silicic pluton. Other red spots, including the Helmet and Copernicus have relatively low Diviner Christiansen feature positions, but they are not as felsic as the features listed above. To date, the SiO2 content of the silicic dome features has been difficult to quantitatively determine due to the limited spectral resolution of Diviner and lack of terrestrial analog spectra acquired in an appropriate environment. Based on spectra of pure mineral and glass separates, preliminary estimates suggest that the rocks comprising the lunar silicic domes are > 65 wt.% SiO2. In an effort to better constrain this value, we have acquired spectra of andesite, dacite, rhyolite, pumice, and obsidian rock samples under a simulated lunar environment in the Planetary and Asteroid Regolith Spectroscopy Environmental Chamber (PARSEC) at the Center for Planetary Exploration at Stony Brook University. This presentation will discuss the spectra of these materials and how they relate to the Diviner measurements of the lunar silicic dome features.

  17. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geo- chemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth surface.

  18. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Sliverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geochemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth's surface.

  19. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering

    PubMed Central

    Quirk, Joe; Beerling, David J.; Banwart, Steve A.; Kakonyi, Gabriella; Romero-Gonzalez, Maria E.; Leake, Jonathan R.

    2012-01-01

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to ‘trenching’ of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO2 and climate history. PMID:22859556

  20. Calcium silicate-based cements and functional impacts of various constituents

    PubMed Central

    SAGHIRI, Mohammad Ali; ORANGI, Jafar; ASATOURIAN, Armen; GUTMANN, James L.; Garcia-Godoy, Franklin; LOTFI, Mehrdad; SHEIBANI, Nader

    2016-01-01

    Calcium silicate-based cements have superior sealing ability, bioactivity, and marginal adaptation, which make them suitable for different dental treatment applications. However, they exhibit some drawbacks such as long setting time and poor handling characteristics. To overcome these limitations calcium silicates are engineered with various constituents to improve specific characteristics of the base material, and are the focus of this review. An electronic search of the PubMed, MEDLINE, and EMBASE via OVID databases using appropriate terms and keywords related to the use, application, and properties of calcium silicate-based cements was conducted. Two independent reviewers obtained and analyzed the full texts of the selected articles. Although the effects of various constituents and additives to the base Portland cement-like materials have been investigated, there is no one particular ingredient that stands out as being most important. Applying nanotechnology and new synthesis methods for powders most positively affected the cement properties. PMID:27773894

  1. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.

    PubMed

    Quirk, Joe; Beerling, David J; Banwart, Steve A; Kakonyi, Gabriella; Romero-Gonzalez, Maria E; Leake, Jonathan R

    2012-12-23

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history.

  2. Crystal Structure and Chemical Composition of a Presolar Silicate from the Queen Elizabeth Range 99177 Meteorite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.

    2013-01-01

    Mineral characterization of presolar silicate grains, the most abundant stardust phase, has provided valuable information about the formation conditions in circumstellar environments and in super-nova (SN) outflows. Spectroscopic observations of dust around evolved stars suggest a majority of amor-phous, Mg-rich olivine grains, but crystalline silicates, most of which are pyroxene, have also been observed [1]. The chemical compositions of hundreds of presolar silicates have been determined by Auger spectroscopy and reveal high Fe contents and nonstoichiometric compositions intermediate to olivine and pyroxene [2-6]. The unexpectedly high Fe contents can partly be attributed to secondary alteration on the meteorite parent bodies, as some grains have Fe isotopic anomalies from their parent stellar source [7]. Only about 35 presolar silicates have been studied for their mineral structures and chemical compositions by transmission electron microscopy (TEM). These grains display a wide range of compositions and structures, including crystalline forsterite, crystalline pyroxene, nanocrystalline grains, and a majority of amorphous nonstoichiometric grains. Most of these grains were identified in the primitive Acfer 094 meteorite. Presolar silicates from this meteorite show a wide range of Fe-contents, suggestive of secondary processing on the meteorite parent body. The CR chondrite QUE 99177 has not suffered as much alteration [8] and displays the highest presolar silicate abundance to date among carbonaceous chondrites [3, 6]. However, no mineralogical studies of presolar silicates from this meteorite have been performed. Here we examine the mineralogy of a presolar silicate from QUE 99177.

  3. Nature of very small grains - PAH molecules or silicates?. [Polycyclic Aromatic Hydrocarbon in interstellar dust

    NASA Technical Reports Server (NTRS)

    Desert, F. X.; Leger, A.; Puget, J. L.; Boulanger, F.; Sellgren, K.

    1986-01-01

    The predictions of the model of Puget et al. (1985) for the emission from Very Small Grains (VSGs) including both graphitic and silicate components are compared with published 8-13-micron observations of astronomical sources. The VSGs are found to be mainly graphitic and an upper limit is placed on the relative mass of silicates based on lack of the 9.7-micron silicate emission feature on M 82 and NGC 2023. This dissymetry in the composition of VSGs supports the suggestion that they are formed in grain-grain collisions where the behaviors of graphite and silicate grains are expected to be quite different.

  4. Mineralogical Characterization of Fe-Bearing AGB and Supernova Silicate Grains From the Queen Alexandra Range 99177 Meteorite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Messenger, S.; Rahman, Z.

    2017-01-01

    Spectroscopic observations of the circumstellar envelopes of evolved O-rich stars indicate the dust is mostly amorphous silicate with olivine-like compositions. Spectral modeling suggests these grains are Fe-rich [Mg/(Mg+Fe) 0.5], but it is not known whether the Fe is distributed within the silicate matrix or exists as metal inclusions. In contrast, the crystalline silicates are inferred to be extremely Mg-rich [Mg/(Mg+Fe) > 0.95]. The mineralogies and chemical compositions of dust in supernova (SN) remnants are not as well constrained, but abundant silicates of olivine-like and enstatite-like compositions have been fit to the infrared emission features. Silicates in the interstellar medium (ISM) are >99% amor-phous and Fe-bearing. The dearth of crystalline silicates in the ISM requires that some amorphization or destruction mechanisms process these grains.

  5. Pt, Au, Pd and Ru Partitioning Between Mineral and Silicate Melts: The Role of Metal Nanonuggets

    NASA Technical Reports Server (NTRS)

    Malavergne, V.; Charon, E.; Jones, J.; Agranier, A.; Campbell, A.

    2012-01-01

    The partition coefficients of Pt and other Pt Group Elements (PGE) between metal and silicate D(sub Metal-Silicate) and also between silicate minerals and silicate melts D(sub Metal-Silicate) are among the most challenging coefficients to obtain precisely. The PGE are highly siderophile elements (HSE) with D(sub Metal-Silicate) >10(exp 3) due to the fact that their concentrations in silicates are very low (ppb to ppt range). Therefore, the analytical difficulty is increased by the possible presence of HSE-rich-nuggets in reduced silicate melts during experiments). These tiny HSE nuggets complicate the interpretation of measured HSE concentrations. If the HSE micro-nuggets are just sample artifacts, then their contributions should be removed before calculations of the final concentration. On the other hand, if they are produced during the quench, then they should be included in the analysis. We still don't understand the mechanism of nugget formation well. Are they formed during the quench by precipitation from precursor species dissolved homogeneously in the melts, or are they precipitated in situ at high temperature due to oversaturation? As these elements are important tracers of early planetary processes such as core formation, it is important to take up this analytical and experimental challenge. In the case of the Earth for example, chondritic relative abundances of the HSE in some mantle xenoliths have led to the concept of the "late veneer" as a source of volatiles (such as water) and siderophiles in the silicate Earth. Silicate crystal/liquid fractionation is responsible for most, if not all, the HSE variation in the martian meteorite suites (SNC) and Pt is the element least affected by these fractionations. Therefore, in terms of reconstructing mantle HSE abundances for Mars, Pt becomes a very important player. In the present study, we have performed high temperature experiments under various redox conditions in order to determine the abundances of Pt, Au

  6. Neodymium glass laser with a phase conjugate mirror producing 220 J pulses at 0.02 Hz repetition rate.

    PubMed

    Kuzmin, A A; Khazanov, E A; Kulagin, O V; Shaykin, A A

    2014-08-25

    For pumping multipetawatt Ti:sapphire laser facilities we developed a compact repetitively pulsed laser based on neodymium phosphate glass with pulse energy of 220 J, pulse repetition rate of 0.02 Hz, beam diameter of 43 mm, aperture fill factor of 0.8, and FWHM pulse duration of 30 ns. The phase distortions of laser radiation were compensated by optical phase conjugation via stimulated Brillouin scattering. The depolarization was reduced to 0.4% using linear compensation methods. The beam quality was 2.5 x diffraction limit (150 µrad).

  7. Gadolinium and didymium (praseodymium/neodymium) cations as capture agents in lightmicroscopical histochemistry of acid and alkaline phosphatase.

    PubMed

    Halbhuber, K J; Zimmermann, N

    1987-01-01

    In previous papers, cerium and lanthanum based methods for light-microscopical detection of acid and alkaline phosphatase activity were proposed. In this paper, the usefulness of other lanthanide cations such as gadolinium and praseodymium/neodymium cations as capture agents in phosphatase histochemistry is tested. It is evident that phosphate ions were sufficiently trapped by these cations. According to the lead and silver multistep procedures earlier described it is possible to visualize alkaline phosphatase activity in the brush borders of the intestine or kidney as well as acid phosphatase activity in the lysosomes. These methods can be recommended.

  8. Physical processes affecting availability of dissolved silicate for diatom production in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Young, David K.; Kindle, John C.

    1994-01-01

    A passive tracer to represent dissolved silicate concentrations, with biologically realistic uptake kinetics, is successfully incorporated into a three-dimensional, eddy-resolving, ocean circulation model of the Indian Ocean. Hypotheses are tested to evaluate physical processes which potentially affect the availability of silicate for diatom production in the Arabian Sea. An alternative mechanism is offered to the idea that open ocean upwelling is primarily responsible for the high, vertical nutrient flux and consequent large-scale phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon. Model results show that dissolved silicate in surface waters available for uptake by diatoms is primarily influenced by the intensity of nearshore upwelling from soutwest monsoonal wind forcing and by the offshore advective transport of surface waters. The upwelling, which in the model occurs within 200 +/- 50 km of the coast, appears to be a result of a combination of coastal upwelling, Elkman pumping, and divergence of the coastal flow as it turns offshore. Localized intensifications of silicate concentrations appear to be hydrodynamically driven and geographically correlated to coastal topographic features. The absence of diatoms in sediments of the eastern Arabian Basin is consistent with modeled distributional patterns of dissolved silicate resulting from limited westward advection of upwelled coastal waters from the western continental margin of India and rapid uptake of available silicate by diatoms. Concentrations of modeled silicate become sufficiently low to become unavailable for diatom production in the eastern Arabian Sea, a region between 61 deg E and 70 deg E at 8 deg N on the south, with the east and west boundaries converging on the north at approximately 67 deg E, 20 deg N.

  9. A new solid-state, frequency-doubled neodymium-YAG photocoagulation system.

    PubMed

    Jalkh, A E; Pflibsen, K; Pomerantzeff, O; Trempe, C L; Schepens, C L

    1988-06-01

    We have developed a solid-state laser system that produces a continuous green monochromatic laser beam of 532 nm by doubling the frequency of a neodymium-YAG laser wavelength of 1064 nm with a potassium-titamyl-phosphate crystal. Photocoagulation burns of equal size and intensity were placed in two rabbit eyes with the solid-state laser system and the regular green argon laser system, respectively, using the same slit-lamp mode of delivery. Histologic findings of lesion sections revealed no important differences between the two systems. In theory, the longer wavelength of the solid-state laser offers the advantages of less scattering in ocular media, higher absorption by oxyhemoglobin, and less absorption by macular xanthophyll than the 514-nm wavelength of the regular green argon laser. The solid-state laser has impressive technical advantages: it contains no argon-ion gas tube that wears out and is expensive to replace; it is much more power efficient, and thus considerably smaller and compact; it is sturdier and easily movable; it does not require external cooling; it uses a 220-V monophasic alternating current; and it requires little maintenance.

  10. Laser cutting of sodium silicate glasses

    NASA Astrophysics Data System (ADS)

    Buchanov, V. V.; Kazarian, M. A.; Kustov, M. E.; Mashir, Yu. I.; Murav'ev, E. N.; Revenko, V. I.; Solinov, E. F.

    2018-04-01

    The problems of through laser cutting of sodium silicate glasses by laser-controlled thermal cleavage are considered. A wide variety of obtained end face shapes is demonstrated. It is shown that the strength of glass samples cut by the laser is about two times higher than that of samples cut by a glass cutter.

  11. Experimentally determined sulfur isotope fractionation between metal and silicate and implications for planetary differentiation

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Shahar, A.; Le Losq, C.; Hillgren, V. J.; Mysen, B. O.; Farquhar, J.

    2016-02-01

    The Earth's mantle displays a subchondritic 34S/32S ratio. Sulfur is a moderately siderophile element (i.e. iron-loving), and its partitioning into the Earth's core may have left such a distinctive isotope composition on the terrestrial mantle. In order to constrain the sulfur isotope fractionation occurring during core-mantle differentiation, high-pressure and temperature experiments were conducted with synthetic mixtures of metal and silicate melts. With the purpose to identify the mechanism(s) responsible for the S isotope fractionations, we performed our experiments in different capsules - namely, graphite and boron nitride capsules - and thus at different fO2, with varying major element chemistry of the silicate and metal fractions. The S isotope fractionations Δ34Smetal-silicate of equilibrated metal alloys versus silicate melts is +0.2 ± 0.1‰ in a boron-free and aluminum-poor system quenched at 1-1.5 GPa and 1650 °C. The isotope fractionation increases linearly with increasing boron and aluminum content, up to +1.4 ± 0.2‰, and is observed to be independent of the silicon abundance as well as of the fO2 over ∼3.5 log units of variations explored here. The isotope fractionations are also independent of the graphite or nitride saturation of the metal. Only the melt structural changes associated with aluminum and boron concentration in silicate melts have been observed to affect the strength of sulfur bonding. These results establish that the structure of silicate melts has a direct influence on the S2- average bonding strengths. These results can be interpreted in the context of planetary differentiation. Indeed, the structural environments of silicate evolve strongly with pressure. For example, the aluminum, iron or silicon coordination numbers increase under the effect of pressure. Consequently, based on our observations, the sulfur-bonding environment is likely to be affected. In this scheme, we tentatively hypothesize that S isotope fractionations

  12. Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Steven A.; Boitnott, Ginger E.; Korhonen, Charles J.

    2006-04-15

    Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changesmore » in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature.« less

  13. Shock recovery of a magnesium-silicate spinelloid

    NASA Astrophysics Data System (ADS)

    Tschauner, O. D.; Asimow, P. D.; Ahrens, T. J.; Kostandova, N.

    2009-12-01

    Previously it was believed that some high pressure polymorphs (e.g. of framework silicates) form under shock via growth from shock-induced precursor microscopic melt zones. Since diffusion in the melt was assumed to control crystallization rates, absence of shock recovery of any of those minerals was attributed to the short duration of laboratory shock (0.1 to 1 microsecond) experiments. In contrast to laboratory experiments, grains of high pressure polymorphs of 1 - 100 micrometer diameter have been found in melt veins of shocked meteorites and were widely believed to have formed via diffusion-controlled growth that occurred over seconds to minute time scales. Recently we reported formation of wadsleyite from a shock-generated melt in a laboratory shock experiment by analysis of the recovery products [1]. The growth rate of wadsleyite crystals at the experimental temperature of 2000 to 3000 K was estimated to be several m/s suggesting that diffusion was not the dominant factor in this ultra-rapid crystal growth. Consequently, S6 shock events in chondrites may not always be related to long shock duration and large impactors. Here we report formation of another high-pressure magnesium silicate polymorph in a shock experiment. The starting materials for this 30 GPa shot was single-crystal synthetic forsterite in a NIST 1157 tool-steel chamber. The recovered material was analyzed by micro-Raman spectroscopy and by synchrotron-based micro-X ray diffraction. Diffraction experiments were conducted in Gandolfi-geometry at station B2, CHESS, using a MAR345 image plate detector and a primary beam of 25 keV energy. Melted regions of the sample contained a spinelloid isotypic to a magnesium-gallium germanate spinelloid synthesized at ambient pressure [2]. As in the previous study [1] we observe oxidation of iron from melted metal of the recovery chamber wall entrained by the silicate melt while silicon is partially reduced. The new high-pressure silicate may have formed at

  14. Experimental constraints on mantle metasomatism caused by silicate and carbonate melts

    NASA Astrophysics Data System (ADS)

    Gervasoni, Fernanda; Klemme, Stephan; Rohrbach, Arno; Grützner, Tobias; Berndt, Jasper

    2017-06-01

    Metasomatic processes are responsible for many of the heterogeneities found in the upper mantle. To better understand the metasomatism in the lithospheric mantle and to illustrate the differences between metasomatism caused by hydrous silicate and carbonate-rich melts, we performed various interaction experiments: (1) Reactions between hydrous eclogite-derived melts and peridotite at 2.2-2.5 GPa and 900-1000 °C reproduce the metasomatism in the mantle wedge above subduction zones. (2) Reactions between carbonate-rich melts and peridotite at 2.5 GPa and 1050-1000 °C, and at 6 GPa and 1200-1250 °C simulate metasomatism of carbonatite and ultramafic silicate-carbonate melts in different regions of cratonic lithosphere. Our experimental results show that partial melting of hydrous eclogite produces hydrous Si- and Al-rich melts that react with peridotite and form bi-mineralic assemblages of Al-rich orthopyroxene and Mg-rich amphibole. We also found that carbonate-rich melts with different compositions react with peridotite and form new metasomatic wehrlitic mineral assemblages. Metasomatic reactions caused by Ca-rich carbonatite melt consume the primary peridotite and produce large amounts of metasomatic clinopyroxene; on the other hand, metasomatism caused by ultramafic silicate-carbonate melts produces less clinopyroxene. Furthermore, our experiments show that ultramafic silicate-carbonate melts react strongly with peridotite and cause crystallization of large amounts of metasomatic Fe-Ti oxides. The reactions of metasomatic melts with peridotite also change the melt composition. For instance, if the carbonatite melt is not entirely consumed during the metasomatic reactions, its melt composition may change dramatically, generating an alkali-rich carbonated silicate melt that is similar in composition to type I kimberlites.

  15. Understanding Vesuvius magmatic processes: Evidence from primitive silicate-melt inclusions in medieval scoria clinopyroxenes (Terzigno formation)

    USGS Publications Warehouse

    Lima, A.; Belkin, H.E.; Torok, K.

    1999-01-01

    Microthermometric investigations of silicate-melt inclusions and electron microprobe analyses were conducted on experimentally homogenized silicate-melt inclusions and on the host clinopyroxenes from 4 scoria samples of different layers from the Mt. Somma-Vesuvius medieval eruption (Formazione di Terzigno, 893 A.D.). The temperature of homogenization, considered the minimum trapping temperature, ranges from 1190 to 1260??5 ??C for all clinopyroxene-hosted silicate melt inclusions. The major and minor-element compositional trends shown by Terzigno scoria and matrix glass chemical analysis are largely compatible with fractional crystallization of clinopyroxene and Fe-Ti oxides. Sulfur contents of the homogenized silicate-melt inclusions in clinopyroxene phenocrysts compared with that in the host scoria show that S has been significantly degassed in the erupted products; whereas, Cl has about the same abundance in the inclusions and in host scoria. Fluorine is low (infrequently up to 800 ppm) in the silicate-melt inclusions compared to 2400 ppm in the bulk scoria. Electron microprobe analyses of silicate-melt inclusions show that they have primitive magma compositions (Mg# = 75-91). The composition of the host clinopyroxene phenocrysts varies from typical plinian-related (Mg#???85) to non-plinian related (Mg#???85). The mixed source of the host clinopyroxenes and primitive nature of the silicate-melt inclusions implies that these phenocrysts, in part, may be residual and/or have a polygenetic origin. The similar variation trends of major and minor-elements between homogenized silicate-melt inclusions from the Terzigno scoria, and silicate-melt inclusions in olivine and diopside phenocrysts from plinian eruptions (Marianelli et al., 1995) suggest that the trapped inclusions represent melts similar to those that supplied the plinian and sub-plinian magma chambers. These geochemical characteristics suggest that the Vesuvius magmatic system retained a vestige of the most

  16. Structural Evolution and Mechanical Properties of PMR-15/Layered Silicate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi (Technical Monitor); Dean, Derrick; Abdalla, Mohamed; Green, Keith; Small, Sharee

    2003-01-01

    In the first year of this research, we successfully synthesized and characterized Polymer/ Layered Silicate nanocomposite using the polyimide PMR-15 as the polymer and several layered silicate nanoparticles. We have scaled up the process to allow fabrication of monoliths using these nanocomposites. The morphology of these systems was found to evolve during processing to an exfoliated structure for one system and intercalated for the rest. Correlation with Transmission Electron Microscopy studies is underway. Dynamic mechanical analysis (DMA) results showed a significant increase in the thermomechanical properties (E' and E'') of 2.5 wt.% clay loaded nanocomposites in comparison to the neat polyimide. Increasing the clay loading to 5 wt.% decreased these properties. Higher glass transition temperatures were observed for 2.5 wt.% nanocomposites compared to the neat polyimide. A lower coefficient of thermal expansion was observed only for the PGV/PMR-15 nanocomposite. An improvement in the flexural properties (modulus, strength and elongation) was observed for the 2.5 wt.% nanocomposite but not for the 5 wt.% nanocomposites. The improved barrier properties polymer/ silicate nanocomposites suggest that moisture uptake should be decreased for PMR-15 nanocomposites. The results of some recent experiments to examine delineate the ability of the silicate nanoparticles in improving the hydrolytic degradation of PMR-15 will be discussed.

  17. Scenario of Growing Crops on Silicates in Lunar Gargens

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N.; Kovalchuk, M.; Negutska, V.; Lar, O.; Korniichuk, O.; Alpatov, A.; Rogutskiy, I.; Kordyum, V.; Foing, B.

    Self-perpetuating gardens will be a practical necessity for humans, living in permanently manned lunar bases. A lunar garden has to supplement less appetizing packaged food brought from the Earth, and the ornamental plants have to serve as valuable means for emotional relaxation of crews in a hostile lunar environment. The plants are less prone to the inevitable pests and diseases when they are in optimum condition, however, in lunar greenhouses there is a threat for plants to be hosts for pests and predators. Although the lunar rocks are microorganism free, there will be a problem with the acquired infection (pathogens brought from the Earth) in the substrate used for the plant growing. On the Moon pests can be removed by total fumigation, including seed fumigation. However, such a treatment is not required when probiotics (biocontrol bacteria) for seed inoculation are used. A consortium of bacteria, controlling plant diseases, provides the production of an acceptable harvest under growth limiting factors and a threatening infection. To model lunar conditions we have used terrestrial alumino-silicate mineral anorthosite (Malyn, Ukraine) which served us as a lunar mineral analog for a substrate composition. With the idea to provide a plant with some essential growth elements siliceous bacterium Paenibacillus sp. has been isolated from alumino-silicate mineral, and a mineral leaching has been simulated in laboratory condition. The combination of mineral anorthosite and siliceous bacteria, on one hand, and a consortium of beneficial bacteria for biocontrol of plant diseases, on the other hand, are currently used in model experiments to examine the wheat and potato growth and production in cultivating chambers under controlled conditions.

  18. Neodymium doped fluoroindogallate glasses as highly-sensitive luminescent non-contact thermometers

    NASA Astrophysics Data System (ADS)

    Nunes, Luiz A. O.; Souza, Adelmo S.; Carlos, Luís D.; Malta, Oscar L.

    2017-01-01

    Trivalent neodymium (Nd3+) can be used as high performance temperature luminescent ion sensor, namely in the near infrared spectral region. The disadvantage presented in the use of this ion is that transitions from thermally coupled levels show very different emission intensities. In order to solve this critical problem we propose to use Nd3+-doped fluoroindogallate glasses with low phonon cutoff energy (500 cm-1) as the active medium. By using a dopant concentration that minimizes losses due to cross relaxation processes and detecting the emissions of the thermally coupled levels with a R928 photomultiplier, without correction response for the wavelength dependence of the intensity, we have succeeded in getting the highest relative thermal sensitivities so far observed, 2.5%ṡK-1 and 7.4%ṡK-1, for the 4F5/2 → 4I9/2/4F3/2 → 4I9/2 and 4F7/2 → 4I9/2/4F3/2 → 4I9/2 intensity ratios, respectively at 288 K.

  19. Spinodal decomposition in amorphous metal-silicate thin films: Phase diagram analysis and interface effects on kinetics

    NASA Astrophysics Data System (ADS)

    Kim, H.; McIntyre, P. C.

    2002-11-01

    Among several metal silicate candidates for high permittivity gate dielectric applications, the mixing thermodynamics of the ZrO2-SiO2 system were analyzed, based on previously published experimental phase diagrams. The driving force for spinodal decomposition was investigated in an amorphous silicate that was treated as a supercooled liquid solution. A subregular model was used for the excess free energy of mixing of the liquid, and measured invariant points were adopted for the calculations. The resulting simulated ZrO2-SiO2 phase diagram matched the experimental results reasonably well and indicated that a driving force exists for amorphous Zr-silicate compositions between approx40 mol % and approx90 mol % SiO2 to decompose into a ZrO2-rich phase (approx20 mol % SiO2) and SiO2-rich phase (>98 mol % SiO2) through diffusional phase separation at a temperature of 900 degC. These predictions are consistent with recent experimental reports of phase separation in amorphous Zr-silicate thin films. Other metal-silicate systems were also investigated and composition ranges for phase separation in amorphous Hf, La, and Y silicates were identified from the published bulk phase diagrams. The kinetics of one-dimensional spinodal decomposition normal to the plane of the film were simulated for an initially homogeneous Zr-silicate dielectric layer. We examined the effects that local stresses and the capillary driving force for component segregation to the interface have on the rate of spinodal decomposition in amorphous metal-silicate thin films.

  20. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    NASA Astrophysics Data System (ADS)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  1. Modeling Nanomechanical Behavior of Calcium-Silicate-Hydrate

    DTIC Science & Technology

    2012-08-01

    applicability to hardened pastes of tricalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag , metakaolin, or silica...Hydrated Nanocomposites: Concrete, Bone, and Shale. J. Am. Ceram . Soc., 90(9): 2677-2692. Wu, Jianzhong. and John M. Prausnitz. 2002. Generalizations for

  2. SINTERING AND SULFATION OF CALCIUM SILICATE-ALUMINATE

    EPA Science Inventory

    The effect of sintering on the reactivity of solids at high temperature was studied. The nature of the interaction was studied with calcium silicate-aluminate reacting with SO2 between 665 and 800 C. The kinetics of the sintering and sulfation processes were measured independentl...

  3. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-liang; Wang, Yue; Zhu, Qi-feng; Lü, Peng; Li, Wei-nan; Liu, Chun-xiao

    2018-03-01

    The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

  4. Determining the Metal/Silicate Partition Coefficient of Germanium: Implications for Core and Mantle Differentiation.

    NASA Technical Reports Server (NTRS)

    King, C.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2010-01-01

    Currently there are several hypotheses for the thermal state of the early Earth. Some hypothesize a shallow magma ocean, or deep magma ocean, or heterogeneous accretion which requires no magma ocean at all. Previous models are unable to account for Ge depletion in Earth's mantle relative to CI chondrites. In this study, the element Ge is used to observe the way siderophile elements partition into the metallic core. The purpose of this research is to provide new data for Ge and to further test these models for Earth's early stages. The partition coefficients (D(sub Ge) = c(sub metal)/c(sub silicate), where D = partition coefficient of Ge and c = concentration of Ge in the metal and silicate, respectively) of siderophile elements were studied by performing series of high pressure, high temperature experiments. They are also dependent on oxygen fugacity, and metal and silicate composition. Ge is a moderately siderophile element found in both the mantle and core, and has yet to be studied systematically at high temperatures. Moreover, previous work has been limited by the low solubility of Ge in silicate melts (less than 100 ppm and close to detection limits for electron microprobe analysis). Reported here are results from 14 experiments studying the partitioning of Ge between silicate and metallic liquids. The Ge concentrations were then analyzed using Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) which is sensitive enough to detect ppm levels of Ge in the silicate melt.

  5. Composites of cationic nanofibrillated cellulose and layered silicates: water vapor barrier and mechanical properties.

    PubMed

    Ho, Thao T T; Zimmermann, Tanja; Ohr, Steffen; Caseri, Walter R

    2012-09-26

    Composites of trimethylammonium-modified nanofibrillated cellulose and layered silicates (TMA-NFC/LS) were prepared by high-shear homogenization followed by pressure filtration and vacuum hot-pressing, which gave rise to particularly homogeneous dispersion of the silicate particles. Thirteen different clays and micas were employed. Water vapor barrier and mechanical properties (tensile strength, E-modulus, strain at break) of the composite films were investigated, considering the effects of layered silicate types and their concentration (in the range of 0 to 85 wt %). Good interactions between TMA-NFC and LS were obtained due to electrostatic attraction between cationic fibrils and anionic silicate layers, and even favored by high-shear homogenization process. Furthermore, oriented TMA-NFC/LS composite structure was achieved. Layered silicates exerted a pronounced influence on the water vapor barrier and mechanical properties; however, there was no common trend reflecting their types. The transport of water molecules through TMA-NFC/LS composites was studied considering both diffusion and adsorption mechanisms. As a result, diffusion pathways were proposed based on two new and one well-known models: the "native network", "covered fiber composite", and "fiber-brick composite" models. Importantly, it was found that the insertion of layered silicate particles did not improve automatically the barrier properties as indicated by the commonly used "fiber-brick composite" model. Mica R120 at a 50 wt % loading in composites with TMA-NFC matrix showed 30-fold improved water vapor permeability and 5-fold higher E-modulus compared to commercially used base paper.

  6. Sputtering analysis of silicates by XY-TOF-SIMS: Astrophysical applications

    NASA Astrophysics Data System (ADS)

    Martinez, Rafael; Langlinay, Thomas; Ponciano, Cassia; da Silveira, Enio F.; Palumbo, Maria Elisabetta; Strazzulla, Giovanni; Brucato, John R.; Hijazi, Hussein; Boduch, Philippe; Cassimi, Amine; Domaracka, Alicja; Ropars, Frédéric; Rothard, Hermann

    2015-08-01

    Silicates are the dominant material of many objects in the Solar System, e.g. asteroids, the Moon, the planet Mercury and meteorites. Ion bombardment by cosmic rays and solar wind may alter the reflectance spectra of irradiated silicates by inducing physico-chemical changes known as “space weathering”. Furthermore, sputtered particles contribute to the composition of the exosphere of planets or moons. Mercury’s complex particle environment surrounding the planet is composed by thermal and directional neutral atoms (exosphere) originating via surface release and charge-exchange processes, and by ionized particles originated through photo-ionization and again by surface release processes such as ion induced sputtering.As a laboratory approach to understand the evolution of the silicate surfaces and the Na vapor (as well as, in lower concentration, K and Ca) discovered on the solar facing side of Mercury, we measured sputtering yields, velocity spectra and angular distributions of secondary ions from terrestrial silicate analogs. Experiments were performed using highly charged MeV/u and keV/u ions at GANIL in a new UHV set-up (under well controlled surface conditions) [1]. Other experiments were conducted at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio) by using Cf fission fragments (~ 1 MeV/u). Nepheline, an aluminosilicate containing Na and K, evaporated on Si substrates (wafers) was used as model for silicates present in Solar System objects. Production yields, measured as a function of the projectile fluence, allow to study the possible surface stoichiometry changes during irradiation. In addition, from the energy distributions N(E) of sputtered particles it is possible to estimate the fraction of particles that can escape from the gravitational field of Mercury, and those that fall back to the surface and contribute to populate the atmosphere (exosphere) of the planet.The CAPES-COFECUB French-Brazilian exchange program, a CNPq postdoctoral

  7. Lithotripsy of gallstones by means of a quality-switched giant-pulse neodymium:yttrium-aluminum-garnet laser. Basic in vitro studies using a highly flexible fiber system.

    PubMed

    Hochberger, J; Gruber, E; Wirtz, P; Dürr, U; Kolb, A; Zanger, U; Hahn, E G; Ell, C

    1991-11-01

    The quality-switched neodymium:yttrium-aluminum-garnet laser represents a new instrument for athermal fragmentation of gallstones by transformation of optical energy into mechanical energy in the form of shock waves via local plasma formation. A highly flexible 300-micron fiber transmission system was used in basic investigations to determine the influence of varying pulse repetition rates (5-30 Hz) and pulse energies (15 and 20 mJ) on shock wave intensity and stone fragmentation in vitro for 105 biliary calculi of known size and chemical composition. After performance of 1200 shock wave pressure measurements using polyvinylidenefluoride hydrophones, stone fragmentation was analyzed by determination of fragment removal rates (volume of fragments removed per fragmentation time), ablation rates (mean volume removed per laser pulse), and median fragment sizes for each laser setting. With the quality-switched neodymium:yttrium-aluminum-garnet laser system, all concrements could be reliably disintegrated into small fragments (median diameter, 0.7-1.7 mm). Compared with pure cholesterol stones, a significantly higher fragment removal rate was achieved in cholesterol stones containing 30% calcium phosphate (P = 0.039), in cholesterol stones containing 20% pigment (P = 0.015), and in pure pigment stones (P = 0.007). Fragment removal rates, local shock wave pressures, and median grain sizes were significantly higher at a pulse energy of 20 mJ than with 15 mJ. Shock wave pressures showed a distinct dependence on pulse repetition rates at 20 mJ, yet not at 15 mJ. Because there is no evident hazard of thermal damage to tissue using the quality-switched neodymium:yttrium-aluminum-garnet laser, it appears to be a promising device for nonsurgical biliary stone therapy.

  8. The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Barnes, S. J.

    1986-01-01

    The Cr distributions for a synthetic silicate melt equilibrated with bronzitic orthopyroxene and chromite spinel between 1334 and 1151 C over a range of oxygen fugacities between the nickel-nickel oxide and iron-wuestite buffers are studied. The occurrence, chemical composition, and structure of the orthopyroxene-silicate melt and the spinel-silicate melt are described. It is observed that the Cr content between bronzite and the melt increases with falling temperature along a given oxygen buffer and decreases with falling oxygen fugacity at a given temperature; however, the Cr content of the melt in equilibrium with spinel decreases with falling temperature and increases with lower oxygen fugacity.

  9. Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser.

    PubMed

    Meyn, J P; Huber, G

    1994-09-15

    Neodymium-doped lanthanum scandium borate [Nd:LaSc(3)(BO(3))(4)] is a new material for efficient and compact diode-pumped solid-state lasers. A simple plane-plane 3-mm-long resonator is formed by a coated Nd(10%):LaSc(3)(BO(3))(4) crystal and a coated potassium titanyl phosphate (KTP) crystal. The second-harmonic output power at 531 nm is 522 mW at 2.05-W incident pump power of the diode laser. The corresponding optical efficiency is 25%, and the conversion efficiency from the fundamental to the second harmonic is 55%. The wellknown chaotic power fluctuations of intracavity frequency-doubled lasers (green problem) are avoided by use of a short KTP crystal, between 0.5 and 2 mm in length.

  10. Effect of Borates and Silicates on Wearing Properties of Mao Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Yan-Wei; Xiang, Nan; Song, Ren-Guo

    In the present study, microarc oxidation (MAO) coatings were formed on ZL101A aluminum alloy in an electrolytic bath containing 3g/L KOH + 2g/L Na2WO4+ 4g/L KF. The morphology and wearing behavior were investigated. In both electrolytes, the additives were borates (Na2B4O718g/L) and silicates (Na2SiO3 18g/L), respectively. It was found that the coating formed in borates-containing electrolyte was of compact and smooth structure than that of the one formed in silicates-containing electrolyte at the optimum treatment time. It was found that all the coatings were composed of á-Al2O3 and ã-Al2O3. The microhardness and wear tests proved that the coating formed in borates-containing electrolyte was having better mechanical properties than those of the coating formed in silicates-containing electrolyte.

  11. Residual stresses and phase transformations in Ytterbium silicate environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Fabian

    Due to their high melting temperature, low density, and good thermomechanical stability, silicon-based ceramics (SiC, Si3N4) are some of the most promising materials systems for high temperature structural applications in gas turbine engines. However, their silica surface layer reacts with water vapor contained in combustion environments. The resulting hydroxide layer volatilizes, leading to component recession. Environmental barrier coatings (EBCs) have been developed to shield the substrate from degradation. Next generation coatings for silicon-based ceramics based on ytterbium silicates have shown a promising combination of very low and good thermomechanical properties. The focus of this thesis is threefold: In the first part, phase transformations in plasma sprayed ytterbium silicates were investigated. Plasma sprayed materials are known to contain large amounts of amorphous material. Phase changes during the conversion from amorphous to crystalline materials were investigated as they have been known to lead to failure in many coatings. The second part of this work focused on measuring residual stresses in multilayer EBCs using synchrotron X-ray diffraction (XRD). Strains were resolved spatially, with probe sizes as small as 20 um. Stresses were calculated using mechanical properties of ytterbium silicates, determined with in-situ loading and heating experiments. In-situ and ex-situ heating experiments allowed for the study of changes in stress states that occur in these EBC materials during heating and cooling cycles. Lastly, the interaction of ytterbium silicates with low-melting environmental calcium-magnesium-aluminosilicate (CMAS) glasses was studied. Synchrotron XRD was used to study the influence of CMAS on the stress state in the coating, X-ray computed tomography was used to provide 3D images of coatings, and EDS and TEM analysis were used to study the interactions at the CMAS/ytterbium silicate interface in detail.

  12. Stabilization of Lithium Transition Metal Silicates in the Olivine Structure

    DOE PAGES

    Sun, Xiaoqi; Tripathi, Rajesh; Popov, Guerman; ...

    2017-07-28

    While olivine LiFePO 4 shows amongst the best electrochemical properties of Li-ion positive electrodes with respect to rate behavior owing to facile Li + migration pathways in the framework, replacing the [PO 4] 3- polyanion with a silicate [SO 4] 4- moitie in olivine is desirable. This would allow additional balancing alkali content and hence electron transfer, and increase the capacity. We demonstrate the first stabilization of a lithium transition-metal silicate (as a pure silicate) in the olivine structure type. Using LiInSiO 4 and LiScSiO 4 as the parent materials, transition metal (Mn, Fe, Co) substitutions on the In/Sc sitemore » were investigated by computational modelling via atomic scale simulation. Transition metal substitution was found to be only favourable for Co, a finding confirmed by the successful solid state synthesis of olivine LixInyCo 2-x-ySiO 4. Finally, the stabilization of the structure was achieved by entropy provided by cation disorder.« less

  13. Anterior capsule relaxing incisions with neodymium:YAG laser for patients at high-risk for anterior capsule contraction.

    PubMed

    Hayashi, Ken; Yoshida, Motoaki; Hirata, Akira; Hayashi, Hideyuki

    2011-01-01

    To examine the effect of anterior capsule relaxing incisions created with a neodymium:YAG (Nd:YAG) laser on prevention of anterior capsule contraction after cataract surgery in high-risk patients. Hayashi Eye Hospital, Fukuoka, Japan. Randomized masked clinical trials. Patients at high risk for anterior capsule contraction had anterior capsule relaxing incisions in either eye 3 days postoperatively. The anterior capsule opening was measured using a Scheimpflug videophotography system (EAS-1000) immediately and 1, 3, and 6 months after capsulotomy, and the percentage reduction in area was calculated. The degree of intraocular lens (IOL) decentration and tilt, posterior capsule opacification (PCO), and other complications were also assessed. Of the 84 patients included, 30 had primary angle closure, 28 had pseudoexfoliation, and 26 had diabetic retinopathy. There was no significant difference in the mean opening area between fellow eyes at baseline. In patients with primary angle closure, the area was significantly greater and the percentage reduction in area was significantly less in the capsulotomy group than in the no-capsulotomy group (P≤.0428). In patients with pseudoexfoliation or diabetic retinopathy, the percentage reduction was significantly less in the capsulotomy group than in the no-capsulotomy group (P≤.0493), although there was no significant difference in area. No significant difference was found in IOL decentration or tilt, PCO, or incidence of other complications. Neodymium:YAG laser anterior capsule relaxing incisions in the early period after cataract surgery were effective in preventing anterior capsule contraction in high-risk patients and had no adverse effects. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    DOE PAGES

    Bae, Sungchul; Kanematsu, Manabu; Hernandez-Cruz, Daniel; ...

    2016-12-01

    The understanding and control of early hydration of tricalcium silicate (C 3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C 3S at an early stage of hydration. In situ C 3S hydration in a wet cell, beginning with induction (~1 h) and acceleration (~4 h) periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period aftermore » 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C 3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H). The formation of C–S–H nanoseeds in the C 3S solution and the development of a fibrillar C–S–H morphology on the C 3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.« less

  15. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    PubMed Central

    Bae, Sungchul; Kanematsu, Manabu; Hernández-Cruz, Daniel; Moon, Juhyuk; Kilcoyne, David; Monteiro, Paulo J. M.

    2016-01-01

    The understanding and control of early hydration of tricalcium silicate (C3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h) and acceleration (~4 h) periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H). The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H. PMID:28774096

  16. IDENTIFICATION OF NEODYMIUM IN THE APOGEE H -BAND SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasselquist, Sten; Holtzman, Jon; Chojnowski, Drew

    2016-12-10

    We present the detection of 10 lines of singly ionized neodymium (Nd ii, Z  = 60) in H -band spectra using observations from the SDSS-III Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. These lines were detected in a metal-poor ([Fe/H] ∼ −1.5), neutron-capture element-enhanced star recently discovered in the APOGEE sample. Using an optical high-resolution spectrum, we derive a Nd abundance for this star using Nd ii lines with precise, laboratory-derived gf values. This optical abundance is used to derive log( gf ) values for the H -band lines. We use these lines to rederive Nd ii abundances for two more metal-rich, s -process enhancedmore » stars observed by APOGEE and find that these lines yield consistent Nd ii abundances, confirming the Nd enhancement of these stars. We explore the region of parameter space in the APOGEE sample over which these lines can be used to measure Nd ii abundances. We find that Nd abundances can be reliably derived for ∼18% of the red giants observed by APOGEE. This will result in ∼50,000 Milky Way stars with Nd ii abundances following the conclusion of APOGEE-2, allowing for studies of neutron-capture element abundance distributions across the entire Milky Way.« less

  17. The stripping of penetration 85-100 asphalt from silicate aggregate rocks : a laboratory study.

    DOT National Transportation Integrated Search

    1972-01-01

    In Virginia stripping has occurred when certain of the acidic silicate rocks have been used as aggregate in bituminous paving. The purpose of this project was to discover which kinds of silicate aggregate would be most apt to remain well bonded in bi...

  18. Analysis of the Barrier Properties of Polyimide-Silicate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Johnston, J. Chris; Inghram, Linda; McCorkle, Linda; Silverman, Edward

    2003-01-01

    Montmorillonite clay was organically modified and dispersed into a thermoplastic (BPADA-BAPP) and a thermosetting (PMR-15) polyimide matrix. The barrier properties of the neat resins and the nanocomposites were evaluated. Reductions in gas permeability and water absorption were observed in thermoplastic polyimide nanocomposites. The thermosetting polyimide showed a reduction in weight loss during isothermal aging at 288 C. Carbon fabric (T650-35, 8 HS, 8 ply) composites were prepared using both the BPADE-BAPP and PMR-15 based nanocomposites. Dispersion of the layered silicate in the BPADA-BAPP matrix reduced helium permeability by up to 70 percent. The PMR-15/ silicate nanocomposite matrix had an increase in thermal oxidative stability of up to 25 percent.

  19. Metal/Silicate Partitioning, Melt Speciation, Accretion, and Core Formation in the Earth

    NASA Astrophysics Data System (ADS)

    Drake, M. J.; Hillgren, V. J.; Dearo, J. A.; Capobianco, C. J.

    1993-07-01

    Core formation in terrestrial planets was concomitant with accretion. Siderophile and chalcophile element signatures in the mantles of planets are the result of these processes. For Earth, abundances of most siderophile and chalcophile elements are elevated relative to predictions from simple metal/silicate equilibria at low pressures [1]. This observation has led to three hypotheses for how these abundances were established: heterogeneous accretion [2], inefficient core formation [3], and metal/silicate equilibria at magma ocean pressures and temperatures [4]. Knowledge of speciation of siderophile elements in silicate melts in equilibrium with metal may help distinguish between these hypotheses. But there is some uncertainty regarding speciation. For example, Ni and Co have been reported to be present as 1+ or zero valence species in silicate melts at redox states appropriate to planetary accretion, rather than the expected 2+ state [5-7]. Independent metal/silicate partitioning experiments by three members of this group using two different experimental designs on both synthetic and natural compositions do not show evidence for Ni and Co in valence states other than 2+ over a wide range of redox states. For example, solid metal/silicate melt partition coefficients for Ni at 1260 degrees C obtained by VJH from experiments investigating the partitioning of Ni, Co, Mo, W, and P are indistinguishable from those obtained by JAD in similar experiments investigating the partitioning of Ni, Ge, and Sn. Both datasets define a line with the equation: log D(Ni) = - 0.54log fO2 - 3.14 with r^2 > 0.995. (Note that fO2 was calculated in both studies from thermodynamic data and phase compositions. A small, systematic offset from the true fO2 as measured by a solid electrolyte cell affects both equations similarly, but does not diminish their close agreement.) The valence of Ni in the silicate melt is obtained by multiplying the slope of the line by -4, indicating divalent Ni in

  20. Chemical evidence for differentiation, evaporation and recondensation from silicate clasts in Gujba

    NASA Astrophysics Data System (ADS)

    Oulton, Jonathan; Humayun, Munir; Fedkin, Alexei; Grossman, Lawrence

    2016-03-01

    The silicate and metal clasts in CB chondrites have been inferred to form as condensates from an impact-generated vapor plume between a metal-rich body and a silicate body. A detailed study of the condensation of impact-generated vapor plumes showed that the range of CB silicate clast compositions could not be successfully explained without invoking a chemically differentiated target. Here, we report the most comprehensive elemental study yet performed on CB silicates with 32 silicate clasts from nine slices of Gujba analyzed by laser ablation inductively coupled plasma mass spectrometry for 53 elements. Like in other studies of CBs, the silicate clasts are either barred olivine (BO) or cryptocrystalline (CC) in texture. In major elements, the Gujba silicate clasts ranged from chondritic to refractory enriched. Refractory element abundances ranged from 2 to 10 × CI, with notable anomalies in Ba, Ce, Eu, and U abundances. The two most refractory-enriched BO clasts exhibited negative Ce anomalies and were depleted in U relative to Th, characteristic of volatilization residues, while other BO clasts and the CC clasts exhibited positive Ce anomalies with excess U (1-3 × CI), and Ba (1-6 × CI) anomalies indicating re-condensation of ultra-refractory element depleted vapor. The Rare Earth Elements (REE) also exhibit light REE (LREE) enrichment or depletion in several clasts with a range of (La/Sm)CI of 0.9-1.8. This variation in the LREE is essentially impossible to accomplish by processes involving vapor-liquid or vapor-solid exchange of REE, and appears to have been inherited from a differentiated target. The most distinctive evidence for inherited chemical differentiation is observed in highly refractory element (Sc, Zr, Nb, Hf, Ta, Th) systematics. The Gujba clasts exhibit fractionations in Nb/Ta that correlate positively with Zr/Hf and span the range known from lunar and Martian basalts, and exceed the range in Zr/Hf variation known from eucrites. Variations of

  1. The relation between magnetite and silicate fabric in granitoids of the Adamello Batholith

    NASA Astrophysics Data System (ADS)

    Schöpa, A.; Floess, D.; de Saint Blanquat, M.; Annen, C.; Launeau, P.

    2015-02-01

    The link between the macroscopic silicate fabric and the magnetite-controlled AMS (anisotropy of magnetic susceptibility) fabric in ferromagnetic rocks was investigated through a comprehensive comparison between different fabric measurement techniques. Sample lithologies include tonalites and granodiorites from the Lago della Vacca Complex, Adamello Batholith, Italy. The datasets used to assess the link between subfabrics and the coherence between methods include: 1) macroscopic silicate fabric measured directly in the field; 2) macroscopic silicate fabric derived from image analysis (IA) of outcrop pictures and sample pictures; 3) shape-preferred orientations (SPO) of mafic silicates, 4) SPO of magnetite, and 5) calculated distribution of magnetite grains from computer-assisted high-resolution X-ray tomography (X-ray CT) images; 6) fabrics derived from the AMS. Macroscopic mineral fabrics measured in the field agree with the IA results and with the SPO of mafic silicates obtained from the X-ray CT imaging. The X-ray CT results show that the SPO of the magnetite grains are consistent with the AMS data whereas the spatial distribution of the magnetite grains is less compatible with the AMS fabric. This implies that the AMS signal is mainly controlled by the shape of the magnetic carrier mineral rather than by the spatial arrangement of the magnetite grains. An exception is the presence of magnetite clusters. Furthermore, the SPO of mafic silicates and the SPO of the magnetite grains are consistent with the AMS data. Another finding of this study is that the magnetic susceptibility correlates linearly with the amount of magnetite in the samples. The coherent results obtained from a variety of methods reinforce the application of both AMS measurements and IA as robust tools to analyse fabrics in granitic intrusions.

  2. Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films

    DOE PAGES

    Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; ...

    2015-06-30

    Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O 2 pressures (10 -5–10 mbar) and temperatures (450–923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O 2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. Also, the silicate layer does howevermore » strongly passivate the Ru surface towards RuO 2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. Lastly, the results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.« less

  3. Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft, suggest that Vesta resembles H chondrites in bulk chemical composition, possibly with about 25% of a CM-chondrite like composition added in. For this model, the core is 15% by mass (or 8 volume %) of the asteroid. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. Melting in the Fe-Ni-S system begins at a cotectic temperature of 940 deg. C. Only about 40% of the total metal phase, or 3-4 volume % of Vesta, melts prior to the onset of silicate melting. Liquid iron in solid silicate initially forms isolated pockets of melt; connected melt channels, which are necessary if the metal is to segregate from the silicate, are only possible when the metal phase exceeds about 5 volume %. Thus, metal segregation to form a core does not occur prior to the onset of silicate melting.

  4. [Flotation and extraction spectrophotometric determination of trace silicate in water].

    PubMed

    Di, J; Liu, Q; Li, W

    2000-12-01

    In HCl solution, silicate reacted with molybdate ammonium to produce silicomolibdic, then a yellow compound which was produced from the oxidation of TMB was simultaneously isolated to benzene phase by flotation and then isolated to dimethylsulfoxideformic acid by extraction. The compound gives a high absorption at 458 nm. The apparent molar absorptivity is 1.26 x 10(5) L.mol-1.cm-1. In the range of 0.02-1 mg.L-1 Si obeys Beer's law. The proposed method which combines with enrichment and measurement is simple, rapid, selective and convenient to determine silicate in water with satisfied results.

  5. Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements.

    PubMed

    Widbiller, M; Lindner, S R; Buchalla, W; Eidt, A; Hiller, K-A; Schmalz, G; Galler, K M

    2016-03-01

    Calcium silicate cements are biocompatible dental materials applicable in contact with vital tissue. The novel tricalcium silicate cement Biodentine™ offers properties superior to commonly used mineral trioxide aggregate (MTA). Objective of this study was to evaluate its cytocompatibility and ability to induce differentiation and mineralization in three-dimensional cultures of dental pulp stem cells after direct contact with the material. Test materials included a new tricalcium silicate (Biodentine™, Septodont, Saint-Maur-des-Fossés, France), MTA (ProRoot® MTA, DENSPLY Tulsa Dental Specialities, Johnson City, TN, USA), glass ionomer (Ketac™ Molar Aplicap™, 3M ESPE, Seefeld, Germany), human dentin disks and polystyrene. Magnetic activated cell sorting for to the surface antigen STRO-1 was performed to gain a fraction enriched with mesenchymal stem cells. Samples were allowed to set and dental pulp stem cells in collagen carriers were placed on top. Scanning electron microscopy of tricalcium silicate cement surfaces with and without cells was conducted. Cell viability was measured for 14 days by MTT assay. Alkaline phosphatase activity was evaluated (days 3, 7, and 14) and expression of mineralization-associated genes (COL1A1, ALP, DSPP, and RUNX2) was quantified by real-time quantitative PCR. Nonparametric statistical analysis for cell viability and alkaline phosphatase data was performed to compare different materials as well as time points (Mann-Whitney U test, α = 0.05). Cell viability was highest on tricalcium silicate cement, followed by MTA. Viability on glass ionomer cement and dentin disks was significantly lower. Alkaline phosphatase activity was lower in cells on new tricalcium silicate cement compared to MTA, whereas expression patterns of marker genes were alike. Increased cell viability and similar levels of mineralization-associated gene expression in three-dimensional cell cultures on the novel tricalcium silicate cement and mineral

  6. The thermodynamic activity of ZnO in silicate melts

    NASA Astrophysics Data System (ADS)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  7. Amorphous Silicate Smokes as Catalysts for the Production of Complex Organic Species in the Primitive Solar Nebula

    NASA Technical Reports Server (NTRS)

    Nuth, J. A., III; Hill, H. G. M.

    2002-01-01

    Amorphous Mg-silicates are excellent Fischer-Tropsch catalysts that convert H2 and CO into hydrocarbons almost as well as Fe-silicates. Mg-silicates do not catalyze formation of ammonia. N is incorporated into the organics if CO, N2 and H2 are used. Additional information is contained in the original extended abstract.

  8. Raman study of potassium silicate glasses containing Rb +, Sr 2+, Y 3+ and Zr 4+: Implications for cation solution mechanisms in multicomponent silicate liquids

    NASA Astrophysics Data System (ADS)

    Ellison, Adam J. G.; Hess, Paul C.

    1994-04-01

    The parallel- and perpendicular-polarized Raman spectra of (1 - x)K 2O · xM 2/zz+O · 4SiO 2e glasses are presented, where M is one of the Period V cations Rb +, Sr 2+, Y 3+ or Zr 4+. These compositions represent the equal-oxygen substitution of a Period V cation for K +, which preserves the ratio of non-bridging oxygen (NBO) to Si atoms but not, in general, the ratio of all oxygen to all cations. Rb + and K + occupy very similar sites and appear to share the same NBO with virtually no energetic penalty. As the valence of the Period V cation increases, so does the tendency of the cation to form silicate species that are depolymerized relative to the species dominating the structure of the bulk glass. The tendency to form regions comparatively rich in Si-O-Si bonds increases in the same sense. The dominant silicate species are those with 0 or 1 NBO in all glasses. The spectra indicate that K+ shares NBO with Rb + or Sr 2+, that there is relatively little sharing of NBO by K + and Y 3+, and that K + and Zr 4+ share the same NBO in what appears to be a nearly fixed bulk stoichiometric K:Zr ratio of 2:1. The latter provides a mechanism for the substantial increase in ZrO 2 solubility seen in peralkaline liquids. A novel means of expressing homogeneous equilibria in silicate liquids is presented, whereby it is possible to make concrete predictions about the coordination numbers of cations in silicate liquids and to predict how they might be affected by the presence of other cations.

  9. Pockels effect of silicate glass-ceramics: Observation of optical modulation in Mach–Zehnder system

    PubMed Central

    Yamaoka, Kazuki; Takahashi, Yoshihiro; Yamazaki, Yoshiki; Terakado, Nobuaki; Miyazaki, Takamichi; Fujiwara, Takumi

    2015-01-01

    Silicate glass has been used for long time because of its advantages from material’s viewpoint. In this paper, we report the observation of Pockels effect by Mach–Zehnder interferometer in polycrystalline ceramics made from a ternary silicate glass via crystallization due to heat-treatment, i.e., glass-ceramics. Since the silicate system is employed as the precursor, merits of glass material are fully utilized to fabricate the optical device component, in addition to that of functional crystalline material, leading us to provide an electro-optic device, which is introducible into glass-fiber network. PMID:26184722

  10. Experimental, in-situ carbon solution mechanisms and isotope fractionation in and between (C-O-H)-saturated silicate melt and silicate-saturated (C-O-H) fluid to upper mantle temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn

    2017-02-01

    Our understanding of materials transport processes in the Earth relies on characterizing the behavior of fluid and melt in silicate-(C-O-H) systems at high temperature and pressure. Here, Raman spectroscopy was employed to determine structure of and carbon isotope partitioning between melts and fluids in alkali aluminosilicate-C-O-H systems. The experimental data were recorded in-situ while the samples were at equilibrium in a hydrothermal diamond anvil cell at temperatures and pressures to 825 °C and >1300 MPa, respectively. The carbon solution equilibrium in both (C-O-H)-saturated melt and coexisting, silicate-saturated (C-O-H) fluid is 2CO3 + H2O + 2Qn + 1 = 2HCO3 + 2Qn. In the Qn-notation, the superscript, n, is the number of bridging oxygen in silicate structural units. At least one oxygen in CO3 and HCO3 groups likely is shared with silicate tetrahedra. The structural behavior of volatile components described with this equilibrium governs carbon isotope fractionation factors between melt and fluid. For example, the ΔH equals 3.2 ± 0.7 kJ/mol for the bulk 13C/12C exchange equilibrium between fluid and melt. From these experimental data, it is suggested that at deep crustal and upper mantle temperatures and pressures, the δ13C-differences between coexisting silicate-saturated (C-O-H) fluid and (C-O-H)-saturated silicate melts may change by more than 100‰ as a function of temperature in the range of magmatic processes. Absent information on temperature and pressure, the use of carbon isotopes of mantle-derived magma to derive isotopic composition of magma source regions in the Earth's interior, therefore, should be exercised with care.

  11. A vaporization model for iron/silicate fractionation in the Mercury protoplanet

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Cameron, A. G. W.

    1987-01-01

    A study has been carried out on the vaporization of a totally molten silicate magma of chondritic composition heated into the range 2500-3500 K. The motivation for this was to determine the changes in the composition of the mantle that would occur in the Mercury protoplanet should that body have been subjected to the high-temperature phase in the evolution of the primitive solar nebula, but the results are of more general interest. An empirical model based on ideal mixing of complex components was used to describe the nonideal magma. It is found that vaporization of about 70-80 percent of the original amount of silicate from a chondritic planet is required to produce an iron-rich body with a mean uncompressed density equal to that deduced for Mercury. At this point the silicate is depleted in the alkalis, FeO, and SiO2, and enriched in CaO, MgO, Al2O3, and TiO2 relative to chondritic material.

  12. Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between metal and silicate melt as a function of temperature and silicate melt composition

    NASA Astrophysics Data System (ADS)

    Righter, K.; Pando, K. M.; Danielson, L.; Lee, Cin-Ty

    2010-03-01

    Metal-silicate partition coefficients can provide information about the earliest differentiation histories of terrestrial planets and asteroids. Systematic studies of the effects of key parameters such as temperature and melt composition are lacking for many elements. In particular, data for Mo is scarce, but given its refractory nature, is of great value in interpreting metal-silicate equilibrium. Two series of experiments have been carried out to study Mo and P partitioning between Fe metallic liquid and basaltic to peridotitic silicate melt, at 1 GPa and temperatures between 1500 and 1900 °C. Because the silicate melt utilized was natural basalt, there are also measurable quantities of 9 other siderophile elements (Ni, Co, W, Sn, Cu, Mn, V, Cr, Ga and Zn). The Ni and Co data can be used to assess consistency with previous studies. In addition, the new data also allow a first systematic look at the temperature dependence of Cu, Ga, Sn, Cr, Mn V and W for basaltic to peridotitic melts. Many elements exhibit an increase in siderophile behavior at higher temperature, contrary to popular belief, but consistent with predictions from thermodynamics. Using these new data we examine DMomet/sil and DPmet/sil in detail and show that increasing temperature causes a decrease in the former and an increase in the latter, whereas both increase with MgO content of the silicate melt. The depletions of Mo and P in the mantle of the Earth can be explained by metal-silicate equilibrium at magma ocean conditions — both elements are satisfied at PT conditions of an intermediate depth magma ocean for the Earth 22.5 GPa and 2400 °C.

  13. (Energetics of silicate melts from thermal diffusion studies)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Research during the past year has been concentrated in four major areas. We are continuing work initiated during the first two years on modelling thermal diffusion on multicomponent silicate liquids. We have derived appropriate relations for ternary and quaternary systems and reanalyzed experimental thermal diffusion data for the ternary system fayalite-leucite-silica. In our manuscript entitled Thermal Diffusion in Petrology'', to be published in Adv. in Phy. Geochem., we show that these model results independently recover the compositional extent and temperature of liquid immiscibility in this system. Such retrieval provides a rigorous test of our theoretical predictions and simplified treatment ofmore » complex silicate liquids reported in Geochimica Cosmochimica Acta in 1986. The usefulness of our Soret research in providing mixing energies of silicate liquids has been recently confirmed by Ghiorso (1987, Cont. Min. Pet.). This demonstration provides a strategy for incorporating Soret data into the calibration of phase equilibrium-based solution models such as the one developed by Ghiorso. During the past year we also have resumed our studies of thermal diffusion in borosilicate glasses which also exhibit liquid immiscibility. Our objectives in studying these systems are (1) to further test of our multicomponent thermal diffusion model and (2) to provide quantitative constraints on the mixing properties of these glass-forming systems which are important for evaluating their suitability for storage of high-level nuclear waste. 16 refs.« less

  14. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    NASA Astrophysics Data System (ADS)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  15. Asteroid (16) Psyche: Evidence for a silicate regolith from spitzer space telescope spectroscopy

    NASA Astrophysics Data System (ADS)

    Landsman, Zoe A.; Emery, Joshua P.; Campins, Humberto; Hanuš, Josef; Lim, Lucy F.; Cruikshank, Dale P.

    2018-04-01

    Asteroid (16) Psyche is a unique, metal-rich object belonging to the "M" taxonomic class. It may be a remnant protoplanet that has been stripped of most silicates by a hit-and-run collision. Because Psyche offers insight into the planetary formation process, it is the target of NASA's Psyche mission, set to launch in 2023. In order to constrain Psyche's surface properties, we have carried out a mid-infrared (5-14 μm) spectroscopic study using data collected with the Spitzer Space Telescope's Infrared Spectrograph. Our study includes two observations covering different rotational phases. Using thermophysical modeling, we find that Psyche's surface is smooth and likely has a thermal inertia Γ = 5-25 J/m2/K/s1/2 and bolometric emissivity ɛ = 0.9, although a scenario with ɛ = 0.7 and thermal inertia up to 95 J/m2/K/s1/2 is possible if Psyche is somewhat larger than previously determined. The smooth surface is consistent with the presence of a metallic bedrock, which would be more ductile than silicate bedrock, and thus may not readily form boulders upon impact events. From comparisons with laboratory spectra of silicate and meteorite powders, Psyche's 7-14 μm emissivity spectrum is consistent with the presence of fine-grained (< 75 μm) silicates on Psyche's surface. We conclude that Psyche is likely covered in a fine silicate regolith, which may also contain iron grains, overlying an iron-rich bedrock.

  16. Preliminary results of sulfide melt/silicate wetting experiments in a partially melted ordinary chondrite

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1994-01-01

    Recently, mechanisms for core formation in planetary bodies have received considerable attention. Most current theories emphasize the need for large degrees of silicate partial melting to facilitate the coalescence and sinking of sulfide-metal liquid blebs through a low strength semi-crystalline silicate mush. This scenario is based upon observations that sulfide-metal liquid tends to form circular blebs in partially molten meteorites during laboratory experiments. However, recent experimental work by Herpfer and Larimer indicates that some sulfide-Fe liquids have wetting angles at and slightly below 60 deg in an olivine aggregate, implying an interconnected melt structure at any melt fraction. Such melt interconnectivity provides a means for gravitational compaction and extraction of the majority of a sulfide liquid phase in small planetary bodies without invoking large degrees of silicate partial melting. Because of the important ramifications of these results, we conducted a series of experiments using H-chondrite starting material in order to evaluate sulfide-liquid/silicate wetting behavior in a more complex natural system.

  17. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    PubMed

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  18. The importance of the Maillard-metal complexes and their silicates in astrobiology

    NASA Astrophysics Data System (ADS)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  19. Effects of atmospheric composition on apparent activation energy of silicate weathering: I. Model formulation

    NASA Astrophysics Data System (ADS)

    Kanzaki, Yoshiki; Murakami, Takashi

    2018-07-01

    We have developed a weathering model to comprehensively understand the determining factors of the apparent activation energy of silicate weathering in order to better estimate the silicate-weathering flux in the Precambrian. The model formulates the reaction rate of a mineral as a basis, then the elemental loss by summing the reaction rates of whole minerals, and finally the weathering flux from a given weathering profile by integrating the elemental losses along the depth of the profile. The rate expressions are formulated with physicochemical parameters relevant to weathering, including solution and atmospheric compositions. The apparent activation energies of silicate weathering are then represented by the temperature dependences of the physicochemical parameters based on the rate expressions. It was found that the interactions between individual mineral-reactions and the compositions of solution and atmosphere are necessarily accompanied by those of temperature-dependence counterparts. Indeed, the model calculates the apparent activation energy of silicate weathering as a function of the temperature dependence of atmospheric CO2 (Δ HCO2‧) . The dependence of the apparent activation energy of silicate weathering on Δ HCO2‧ may explain the empirical dependence of silicate weathering on the atmospheric composition. We further introduce a compensation law between the apparent activation energy and the pre-exponential factor to obtain the relationship between the silicate-weathering flux (FCO2), temperature and the apparent activation energy. The model calculation and the compensation law enable us to predict FCO2 as a function of temperature, once Δ HCO2‧ is given. The validity of the model is supported by agreements between the model prediction and observations of the apparent activation energy and FCO2 in the modern weathering systems. The present weathering model will be useful for the estimation of FCO2 in the Precambrian, for which Δ HCO2‧ can be

  20. Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method

    PubMed Central

    2014-01-01

    The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864

  1. Thermochemistry of Rare Earth Silicates for Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    Rare earth silicates are promising candidates as environmental protective coatings (EBCs) for silica-forming ceramics and composites in combustion environments since they are predicted to have lower reactivity with the water vapor combustion products. The reactivity of rare earth silicates is assessed by the thermodynamic activity of the silica component which is best measured by Knudsen effusion mass spectrometry (KEMS). Here, we discuss a novel method based on a reducing agent to increase the partial pressure of SiO(g) which is then used to calculate thermodynamic activity of silica in Y2O3-SiO2 and Yb2O3-SiO2 systems. After the KEMS measurements, samples were probed by X-ray diffraction and their phase content was calculated from Rietveld refinement.

  2. Rapid neodymium release to marine waters from lithogenic sediments in the Amazon estuary

    PubMed Central

    Rousseau, Tristan C. C.; Sonke, Jeroen E.; Chmeleff, Jérôme; van Beek, Pieter; Souhaut, Marc; Boaventura, Geraldo; Seyler, Patrick; Jeandel, Catherine

    2015-01-01

    Rare earth element (REE) concentrations and neodymium isotopic composition (ɛNd) are tracers for ocean circulation and biogeochemistry. Although models suggest that REE release from lithogenic sediment in river discharge may dominate all other REE inputs to the oceans, the occurrence, mechanisms and magnitude of such a source are still debated. Here we present the first simultaneous observations of dissolved (<0.45 μm), colloidal and particulate REE and ɛNd in the Amazon estuary. A sharp drop in dissolved REE in the low-salinity zone is driven by coagulation of colloidal matter. At mid-salinities, total dissolved REE levels slightly increase, while ɛNd values are shifted from the dissolved Nd river endmember (−8.9) to values typical of river suspended matter (−10.6). Combining a Nd isotope mass balance with apparent radium isotope ages of estuarine waters suggests a rapid (3 weeks) and globally significant Nd release by dissolution of lithogenic suspended sediments. PMID:26158849

  3. Silicic central volcanoes as precursors to rift propagation: the Afar case

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Gillot, Pierre-Yves; Courtillot, Vincent

    2003-02-01

    The Afar depression is a triple junction characterised by thinned continental crust, where three rift systems meet (Red Sea, Gulf of Aden and East African Rift). About 100 recent K-Ar ages obtained on Plio-Pleistocene lavas [Lahitte et al., J. Geophys. Res. (2002) in press; Kidane et al., J. Geophys. Res. (2002) in press], complemented by new geomorphological interpretations, allow better understanding of the volcano-tectonic activity linked to rift propagation. In Central Afar, a significant spatial and temporal correlation is observed between the occurrence of silicic central volcanoes and the initiation of the successive phases of on-land propagation of the Red Sea and Aden rifts. Inside the Afar depression, at the scale of both a whole ridge and a small rift segment, silicic lavas are systematically erupted close to the location of a future rift segment and prior to the main extensive phase associated with fissural basaltic activity. Central silicic volcanoes therefore appear to be precursor features, and their locations underline the preferred direction of future rift propagation. Evolved volcanoes (and associated magma chambers) form zones of localised lithospheric weakness, which concentrate stress and guide the development of fractures in which fissural magmatism is next emplaced. Differentiated silicic lavas are erupted first. Then, as extension increases, basaltic magma directly erupts to the surface. This composite style of rifting, with volcanic and tectonic components, is a scaled-down equivalent of the continental break-up process at the largest scale.

  4. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining.

    PubMed

    Annenkov, Vadim V; Danilovtseva, Elena N

    2016-04-01

    Siliceous sponges are the most primitive multicellular animals whose skeleton consists of spicules - needle-like constructions from silicon dioxide surrounding organic axial filaments. Mechanisms of spicule formation have been intensively studied due to the high ecological importance of sponges and their interest to materials science. Light and electron microscopy are not appropriate enough to display the process from silicon-enriched cells to mature spicules because of composite structure of the sponge tissues. In this article, spiculogenesis in the siliceous sponge has been studied for the first time with the use of fluorescent microscopy. Fluorescent vital dye NBD-N2 was applied to stain growing siliceous structures in the sponge and primmorph cell system. The main stages of spicule growth in the fresh-water sponge Lubomirskia baicalensis (Pallas, 1773) were visualized: silicon accumulation in sclerocytes; formation of an organic filament protruding from the cell; further elongation of the filament and growth of the spicule in a spindle-like form with enlargement in the center; merger with new sclerocytes and formation of the mature spicule. Fluorescent microscopy combined with SEM allows us to overcome the virtual differentiation between intra- and extracellular mechanisms of spicule growth. The growing spicule can capture silicic acid from the extracellular space and merge with new silicon-enriched cells. Visualization of the growing spicules with the fluorescent dye allows us to monitor sponge viability in ecological or toxicological experiments and to apply genomic, proteomic and biochemical techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Discrete dipole approximation models of chrystalline forsterite: Applications to cometary crystalline silicates

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean Stephen

    The shape, size, and composition of crystalline silicates observed in comet comae and external proto-planetary disks are indicative of the formation and evolution of the dust grains during the processes of planetary formation. In this dissertation, I present the 3 -- 40 mum absorption efficiencies( Qabs) of irregularly shaped forsterite crystals computed with the discrete dipole approximation (DDA) code DDSCAT developed by Draine and Flatau and run on the NASA Advanced Supercomputing facility Pleiades. An investigation of grain shapes ranging from spheroidal to irregular indicate that the strong spectral features from forsterite are sensitive to grain shape and are potentially degenerate with the effects of crystal solid state composition (Mg-content). The 10, 11, 18, 23, and 33.5 mum features are found to be the most crystal shape sensitive and should be avoided in determining Mg-content. The distinct spectral features for the three shape classes are connected with crystal formation environment using a condensation experiment by (Kobatake et al., 2008). The condensation experiment demonstrates that condensed forsterite crystal shapes are dependent on the condensation environmental temperature. I generate DDSCAT target analog shapes to the condensed crystal shapes. These analog shapes are represented by the three shape classes: 1) equant, 2) a, c-columns, and 3) b-shortened platelets. Each of these shape classes exhibit distinct spectral features that can be used to interpret grain shape characteristics from 8 --- 40 mum spectroscopy of astronomical objects containing crystalline silicates. Synthetic spectral energy distributions (SEDs) of the coma of Hale-Bopp at rh = 2.8 AU are generated by thermally modeling the flux contributions of 5 mineral species present in comets. The synthetic SEDs are constrained using a chi2- minimization technique. The mineral species are amorphous carbon, amorphous pyroxene, amorphous olivine, crystalline enstatite, and crystalline

  6. [Effect of phosphate on the exchangeable form and the bioavailability of exogenous neodymium in soil].

    PubMed

    Xu, Z; Li, D; Yang, J; Peng, A

    2001-05-01

    Effects of phosphate on the exchangeable form and the bioavailability of exogenous neodymium (Nd) in soil were studied with 147Nd isotopic tracer. Exchangeable Nd was extracted with solution (pH8.2) of NaAc. The results indicated that Nd beyond 99.5% was adsorbed by soil whether phosphate exists in soil or not. Phosphate can precipitate dramatically Nd3+. And the Nd phosphate precipitates may set limits on the concentration of exchangeable Nd observed in soil. KH2PO4 ranging from 0.3 g.kg-1 to 1.5 g.kg-1 make a uniform impact on the exchangeable form of Nd. In addition, phosphate in soil can inhibit wheat seedling to absorb Nd. The concentration of exchangeable Nd is correlated significantly with the content of Nd in wheat seedling.

  7. Analysis of a 10 megawatt space-based solar-pumped neodymium laser system

    NASA Technical Reports Server (NTRS)

    Kurweg, U. H.

    1984-01-01

    A ten megawatt solar-pumped continuous liquid laser system for space applications is examined. It is found that a single inflatable mirror of 434 m diameter used in conjunction with a conical secondary concentrator is sufficient to side pump a liquid neodymium lasant in an annular tube of 6 m length and 1 m outer and 0.8 m inner diameter. About one fourth of intercepted radiation converging on the laser tube is absorbed and one fifth of this radiation is effective in populating the upper levels. The liquid lasant is flowed through the annular laser cavity at 1.9 m/s and is cooled via a heat exchanger and a large radiator surface comparable in size to the concentrating mirror. The power density of incident light within the lasant of approximately 68 watt/cu cm required for cw operation is exceeded in the present annular configuration. Total system weight corresponds to 20,500 kg and is thus capable of being transported to near Earth orbit by a single shuttle flight.

  8. Space Weathering of Silicate Asteroids: An Observational Investigation

    NASA Astrophysics Data System (ADS)

    MacLennan, Eric M.; Emery, Joshua; Lindsay, Sean S.

    2017-10-01

    Solar wind exposure and micrometeoroid bombardment are known to cause mineralogical changes in the upper few microns of silicate grains (by forming amorphous “composition” rims with embedded nano-phase Fe0). These processes, jointly called space weathering (SW), affect the light-scattering properties and subsequently the geometric albedo and spectral parameters (spectral slope and band depth). Earth’s Moon exhibits the well known “lunar-style” of SW: albedo decrease, spectral slope increase, and absorption band suppression. However, space mission images of (243) Ida and (433) Eros suggest that different SW “styles” exist among the silicate-bearing (olivine and pyroxene) S-complex asteroids, which exhibit diagnostic absorption features near 1 & 2 μm. While Eros generally shows only albedo differences between younger and older locations, Ida’s surface only shows changes in spectral slope and band depth. It is not clear if these SW styles are unique to Ida and Eros or if they can be observed throughout the entire asteroid population.We hypothesize that the SW styles seen on Eros and Ida also exist on other asteroid surfaces. Additionally, we hypothesize that increased solar wind exposure, smaller regolith particles, higher olivine abundance, and older asteroid surfaces will increase the observed degree of SW. Our dataset includes publicly available Visible (0.4-0.8 μm) and Near Infrared (~0.7-2.5 μm) reflectance spectra of silicate-bearing asteroids (those with 1 & 2 μm bands) from the PDS and the SMASS, S3OS2 and MIT-UH-IRTF spectral surveys. We have also conducted a spectral survey with the IRTF/SpeX targeting 52 silicate asteroids for which we have constraints for regolith grain sizes from interpretation of thermal-IR data. The relevant band parameters to SW and to interpreting mineralogical properties are calculated using the band analysis code, SARA. Geometric albedos are calculated using thermal-IR data from WISE/NEOWISE. Using these derived

  9. A SYSTEMATIC SEARCH FOR THE SPECTRA WITH FEATURES OF CRYSTALLINE SILICATES IN THE SPITZER IRS ENHANCED PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rui; Luo, Ali; Liu, Jiaming

    2016-06-01

    The crystalline silicate features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicate features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicates. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST)/DR2. Themore » average spectrum of young stellar objects shows a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB, and planetary nebulae. They are identified optically as early-type stars, evolved stars, galaxies and so on. In addition, the strength of spectral features in typical silicate complexes is calculated. The results are available through CDS for the astronomical community to further study crystalline silicates.« less

  10. New poly(butylene succinate)/layered silicate nanocomposites: preparation and mechanical properties.

    PubMed

    Ray, Suprakas Sinha; Okamoto, Kazuaki; Maiti, Pralay; Okamoto, Masami

    2002-04-01

    New poly(butylene succinate) (PBS)/layered silicate nanocomposites have been successfully prepared by simple melt extrusion of PBS and octadecylammonium modified montmorillonite (C18-mmt) at 150 degrees C. The d-spacing of both C18-mmt and intercalated nanocomposites was investigated by wide-angle X-ray diffraction analysis. Bright-field transmission electron microscopic study showed several stacked silicate layers with random orientation in the PBS matrix. The intercalated nanocomposites exhibited remarkable improvement of mechanical properties in both solid and melt states as compared with that of PBS matrix without clay.

  11. THE METABOLISM OF SILICON IN THE RAT AND ITS RELATION TO THE FORMATION OF ARTIFICIAL SILICEOUS CALCULI

    PubMed Central

    Keeler, Richard F.; Lovelace, Stuart A.

    1959-01-01

    The urinary excretion of silicon in the rat was found to be enhanced beyond normal levels by the administration of various chemical forms of silicon. The excretion was enhanced to a much greater degree by the administration of ethyl silicate than by magnesium trisilicate, sodium metasilicate, or water glass. The tolerance level of rats to sustained daily doses of ethyl silicate fed via stomach tube was approximately 15 to 30 mg. of silicon per rat per day. Urinary silicon excretion was found to be a straight line function of the concentration of ethyl silicate administered, via stomach tube, with approximately 18 per cent of the administered silicon appearing in the urine at all levels tested. Using sustained dietary additions of ethyl silicate as a means of enhancing urine silicon levels, artificial siliceous urinary calculi were consistently produced on zinc pellets implanted in the bladders of rats. PMID:13654631

  12. Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE

    USGS Publications Warehouse

    Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.

    1997-01-01

    The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.

  13. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    PubMed

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  14. Effect of neodymium:YAG laser capsulotomy on visual function in patients with posterior capsule opacification and good visual acuity.

    PubMed

    Yotsukura, Erisa; Torii, Hidemasa; Saiki, Megumi; Negishi, Kazuno; Tsubota, Kazuo

    2016-03-01

    To evaluate the effect of neodymium:YAG (Nd:YAG) laser capsulotomy on the visual function in patients with posterior capsule opacification (PCO) and good visual acuity. Keio University Hospital, Tokyo, Japan. Observational case series. Eyes were evaluated that had previous cataract surgery with a clinical diagnosis of PCO requiring Nd:YAG laser capsulotomy regardless of a good corrected distance visual acuity (CDVA) (at least 20/20). The CDVA, 10% low contrast visual acuity (LCVA), wavefront aberrations from the 3rd to 6th order, and retinal straylight were measured before and after Nd:YAG laser capsulotomy. The study included 16 eyes of 16 patients (10 men, 6 women; mean age 69.5 years ± 9.3 [SD]). The mean CDVA, LCVA, and straylight after Nd:YAG laser capsulotomy improved significantly (P < .05). The root mean square (RMS) of the 3rd Zernike coefficients (S3) and the RMS of the total higher-order aberrations (HOAs) from the 3rd to 6th order decreased significantly after capsulotomy (P < .05). The straylight correlated significantly with the total HOAs (r = 0.727, P = .002) and S3 (r = 0.748, P = .001) before capsulotomy. Subjective symptoms resolved after capsulotomy in all cases. Neodymium:YAG laser capsulotomy enabled a significant improvement in visual function even in patients with PCO with good visual acuity. Straylight measurements might be useful to determine the indications for Nd:YAG laser capsulotomy when patients report visual disturbances without decreased visual acuity. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. A novel multifunctional pharmaceutical excipient: modification of the permeability of starch by processing with magnesium silicate.

    PubMed

    Rashid, Iyad; Al-Remawi, Mayyas; Leharne, Stephen A; Chowdhry, Babur Z; Badwan, Adnan

    2011-06-15

    A directly compressible excipient has been developed by co-processing starch with magnesium silicate. The foregoing was achieved either by co-precipitation of magnesium silicate onto different types of starch or by dry granulation of maize starch with magnesium silicate. A variety of techniques (permeability, water retention/swelling, compression analysis, scanning electron microscopy, tensile strength and disintegration/dissolution studies) were used to characterize these systems. The permeability of the formulations produced using the two methods was evaluated experimentally using Darcy's permeability law. Magnesium silicate, as an anti-adhering agent, increases the permeability of both maize and partially pregelatinized starch, resulting in compacts of high mechanical strength, short disintegration time and low lubricant sensitivity. Such advantages are evident when the properties of the physical mixture of maize starch with magnesium silicate are compared with the co-precipitation and dry granulation techniques. Formulation with this novel excipient system, using paracetamol as a model drug, indicated its suitability as a single multifunctional excipient. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for hypertrophic port-wine stains on the lips.

    PubMed

    Kono, Taro; Frederick Groff, William; Chan, Henry H; Sakurai, Hiroyuki; Yamaki, Takashi

    2009-03-01

    Pulsed dye laser (PDL) treatment of hypertrophic port-wine stains (PWSs) on the lips has demonstrated poor efficacy and a potential risk of dyspigmentation. PDL-resistant hypertrophic PWS may require treatment with deeper penetrating lasers such as a 1064-nm neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. The objective of this clinical study was to evaluate the efficacy and safety of a Nd:YAG laser for the treatment of hypertrophic PWSs on the lips. Ten patients (four were male and six were female) with hypertrophic PWSs on the lips were recruited in this study. Eight patients showed good to excellent improvement without complications. In conclusion, the Nd:YAG laser is safe and effective for treating hypertrophic PWSs on the lips.

  17. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    PubMed

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (P<0.001). On the other hand, VS glass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (P<0.05). VS demonstrated a homogeneous fine crystalline structure while, IC revealed a structure with needle-shaped fine-grained crystals embedded in a glassy matrix. The VS glass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Experimental Investigation of the Viscosity of Iron-rich Silicate Melts under Pressure

    NASA Astrophysics Data System (ADS)

    Edwards, P. M.; Lesher, C. E.; Pommier, A.; O'Dwyer Brown, L.

    2017-12-01

    The transport properties of silicate melts govern diffusive flow of momentum, heat, and mass in the interior of terrestrial planets. In particular, constraining melt viscosity is critical for dynamic modeling of igneous processes and is thus key to our understanding of magma convection and mixing, melt migration in the mantle, and crystal-liquid fractionation. Among the different constituents of silicate melts, iron is of significant importance as it highly influences some of their properties, such as surface tension, compressibility, and density. We present an experimental study of the viscosity of natural and synthetic iron-rich silicate melts under pressure. In situ falling-sphere measurements of viscosity have been conducted on hedenbergite (CaFeSi2O6) and iron-rich peridotite melts from 1 to 7 GPa and at temperatures between 1750 and 2100 K, using the multi-anvil apparatus at the GSECARS beamline at the Advanced Photon Source, Argonne National Lab. We used double reservoir capsules, with the bottom reservoir containing the sample, while a more refractory material is placed in the upper reservoir (e.g., diopside, enstatite, forsterite). This configuration allows the fall of two rhenium spheres across the sample at different temperatures. Melt viscosity is calculated using Stokes' law and the terminal velocity of the spheres. We observe that melt viscosity slightly decreases with increasing temperature and increasing pressure: for instance, the viscosity of the hedenbergite melt decreases from 1.26 Pa•s to 0.43 Pa•s over the 1 - 3.5 GPa pressure range and between 1820 and 1930 K. Our experimental data are used to develop a viscosity model of iron-rich silicate melts under pressure. Results will be compared with previous viscosity works on iron-free and iron-bearing silicate liquids in order to discuss the effect of iron on melt viscosity and structure at pressure and temperature conditions relevant to terrestrial mantles.

  19. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  20. Optimization of diode-pumped doubly QML laser with neodymium-doped vanadate crystals at 1.34 μm

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Jiao, Zhiyong

    2018-05-01

    We present a theoretical model for a diode-pumped, 1.34 μm V3+:YAG laser that is equipped with an acoustic-optic modulator. The model includes the loss introduced by the acoustic-optic modulator combined with the physical properties of the laser resonator, the neodymium-doped vanadate crystals and the output coupler. The parameters are adjusted within a reasonable range to optimize the pulse output characteristics. A typical Q-switched and mode-locked Nd:Lu0.15Y0.85VO4 laser at 1.34 μm with acoustic-optic modulator and V3+:YAG is set up, and the experimental output characteristics are consistent with the theoretical simulation results.

  1. Spectroscopic investigations of neodymium doped barium bismuth fluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Mariselvam, K.; Arun Kumar, R.; Manasa, P.

    2018-06-01

    A new series of neodymium doped barium bismuth fluoroborate glasses with the chemical composition of (70-x)H3BO3 + 5Bi2O3 + 10BaCO3 + 7.5CaF2 + 7.5ZnO + xNd2O3 (where x = 0.05, 0.1, 0.25, 0.5, 1, 2 (in wt.%) have been prepared by the conventional melt quenching method. The powder X-ray diffraction pattern confirms the amorphous nature of the prepared glasses. The Urbach energy reveals the minimum disorderness of the glass samples. Judd-Ofelt intensity parameters (Ωλ = 2, 4 and 6) were derived from the absorption spectrum and were used to calculate the emission properties. The near infrared emission spectra recorded with 808 nm laser diode excitation for different concentrations of Nd3+ ions and the emission for the 4F3/2 → 4I11/2 transition at 1060 nm found to be high intense. The measured decay curves for 4F3/2 fluorescent level exhibit single exponential nature with shortening of lifetime with increase in concentration. The laser parameters such as stimulated emission cross-section, branching ratios, gain band width and optical gain values are found to be high for BBFB:Nd3+ (0.5 wt%) glass. Hence, the results suggested that the present BBFB:Nd3+ (0.5 wt%) glass could be used as an efficient infrared laser source around 1.06 μm region.

  2. Exploring Iron Silicate Precursors of Ancient Iron Formations through Rock Record, Laboratory and Field Analogue Investigations

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Rasmussen, B.; Muhling, J.; Benzerara, K.; Jezequel, D.; Cosmidis, J.; Templeton, A. S.

    2016-12-01

    In direct contrast to today's oceans, iron-rich chemical precipitates dominate the deep marine sedimentary record > 2.3 billion years ago. The deposition of these minerals resulted in massive iron formations and indicate that the ocean was previously ferruginous and largely anoxic. To precipitate and concentrate iron in the sediments, many hypotheses have centered on the oxidation of soluble Fe(II) to solid Fe(III)-oxyhydroxides; these ideas have stimulated extensive research using iron-oxidizing bacteria to produce Fe(III)-oxides and trace metal sorption experiments on Fe(III)-oxides, leading to inferences of trace metal availability and implications for enzymatic and microbial evolution as well as pO2 levels and seawater chemistry. However, recent discoveries of disseminated iron-silicate nanoparticles in early-silicifying chert indicate that iron-silicates may have instead been the primary precipitates from these Archean ferruginous oceans (Rasmussen et al, 2015). Considering the significant paradigm shift this discovery implies for interpretations of Archean elemental cycling, redox state and potential microbial metabolisms, we investigated these iron-silicate inclusions and their implications for ancient seawater chemistry in a multi-faceted approach using spectroscopic- and diffraction-based techniques. The crystal structure, Fe oxidation state and Fe coordination environment of iron-silicate nanoparticles have been interrogated using microscale X-ray absorption spectroscopy, TEM and nanoscale scanning transmission X-ray microscopy. To further explore the chemical and potential biological controls on iron-silicate formation, we have also performed laboratory experiments to mimic Archean seawater and precipitate iron-bearing silicate minerals under abiotic conditions and in the presence of iron-oxidizing bacteria. In a complementary study, sediments from a natural Archean analogue system were sampled to determine if iron-silicate minerals form in Mexican

  3. The contact neodymium-yttrium aluminum garnet laser. A new approach to arthroscopic laser surgery.

    PubMed

    O'Brien, S J; Miller, D V

    1990-03-01

    Arthroscopic treatment of meniscal lesions has been modified as technological advances have occurred. However, alternatives to conventional arthroscopic cutting tools, including electrocautery and CO2 lasers, have thus far met with limited success. The recent development of a sapphire tip has enabled the use of the neodymium-yttrium aluminum garnet (Nd-YAG) laser in a contact mode in a saline medium. This study compares the biology of the Nd-YAG laser to that of electrocautery and scalpel techniques with respect to its effects on articular cartilage and the meniscus. The contact Nd-YAG laser has advantages over both scalpel and electrocautery with regard to its effects on articular cartilage. It also has significant biologic advantages over electrocautery for meniscal lesions. Although in its infancy in the clinical setting, the contact Nd-YAG laser represents the possible beginning of a new era for application of laser energy in arthroscopy.

  4. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; An, Yongling; Zhai, Wei

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviationmore » in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.« less

  5. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A

    2012-01-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in contextmore » to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.« less

  6. Silicate Esters of Paclitaxel and Docetaxel: Synthesis, Hydrophobicity, Hydrolytic Stability, Cytotoxicity, and Prodrug Potential

    PubMed Central

    2015-01-01

    We report here the synthesis and selected properties of various silicate ester derivatives (tetraalkoxysilanes) of the taxanes paclitaxel (PTX) and docetaxel (DTX) [i.e., PTX-OSi(OR)3 and DTX-OSi(OR)3]. Both the hydrophobicity and hydrolytic lability of these silicates can be (independently) controlled by choice of the alkyl group (R). The synthesis, structural characterization, hydrolytic reactivity, and in vitro cytotoxicity against the MDA-MB-231 breast cancer cell line of most of these derivatives are described. We envision that the greater hydrophobicity of these silicates (vis-à-vis PTX or DTX itself) should be advantageous from the perspective of preparation of stable aqueous dispersions of amphiphilic block-copolymer-based nanoparticle formulations. PMID:24564494

  7. Cooked GEMS - Insights into the Hot Origins of Crystalline Silicates in Circumstellar Disks and the Cold Origins of GEMS

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Matrajt, G.; Wooden, D. H.

    2005-01-01

    The comparison of interstellar, circumstellar and primitive solar nebula silicates has led to a significant conundrum in the understanding of the nature of solid materials that begin the planet forming processes. Crystalline silicates are found in circumstellar regions around young stars and also evolved stars ejecting particles into the interstellar medium (ISM) but they are not seen in the interstellar medium itself, the source material for star and planet formation. Crystalline silicates are minor to major components of all known early solar system materials that have been examined as meteorites or interplanetary dust samples. The strong presence of Mg-rich crystalline silicates in Oort cloud comets and their minor presence in some Kuiper belt comets is also indicated by 11.2 m peak in approx. 10 microns "silicate" infrared feature. This evidence strongly indicates that Mg-rich crystalline silicates were abundant components of the solar nebula disk out to at least 10 AU, and present out to 30 AU.

  8. Silicate and Carbonatite Melts in the Mantle: Adding CO2 to the pMELTS Thermodynamic Model of Silicate Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Antoshechkina, P. M.; Shorttle, O.

    2016-12-01

    The current rhyolite-MELTS algorithm includes a mixed H2O-CO2 vapor phase, and a self-consistent speciation model for CO2 and CaCO3 in the silicate liquid (Ghiorso & Gualda 2012; 2015). Although intended primarily to model crustal differentiation and degassing, GG15 captures much of the experimentally-observed melting behavior of CO2-rich mafic lithologies, including generation of small-degree carbonatite melts, a miscibility gap between carbonatite and silicate liquids at low P and a smooth transition to a single carbonated-silicate melt at high P (e.g. Dasgupta et al. 2007). However, solid and liquid carbonate phases were not used in calibration of GG15, and it is suitable only for P < 3 GPa. We present a preliminary model, based on pMELTS (Ghiorso et al. 2002), for melting of nominally-anhydrous carbonated peridotite and pyroxenite. In Antoshechkina et al. (2015; and references therein) we developed a scheme for calibration of molar volumes that directly interfaces with a MySQL database, adapted from LEPR (Hirschmann et al. 2008). Here, we further extend our database, e.g. to include multiple carbonate phases, and combine the calibration scheme with the libalphaMELTS interface to the rhyolite-MELTS, pMELTS, and H2O-CO2 fluid thermodynamic models (see magmasource.caltech.edu/alphamelts). We use a Monte-Carlo type calibration approach to fit the observed phases and compositions, though stop short of a fully Bayesian formulation. The CO2-fluid experimental database has been updated to include more recent and higher P studies, adding approximately 40 pure fluid plus liquid constraints that conform to the selection criteria used in GG15. To further expand the database, we plan to use some or all of: solid carbonate-bearing experiments; coexisting silicate and carbonatite liquids; phase-present, and phase-absent constraints. As a first approximation, we include four carbonate phases: pure calcite and aragonite, and binary solutions for dolomite-ankerite and magnesite

  9. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    USGS Publications Warehouse

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  10. Comparison of light harmonic generation in Al and Ge consisted silicate materials

    NASA Astrophysics Data System (ADS)

    Smirnov, Vitaly A.; Vostrikova, Liubov I.

    2018-04-01

    The silicate materials are perspective for different areas of laser physics and photonics. In this paper the comparison of the nonlinear conversion with the generation of the light harmonic in Al- and Ge-containing silicate materials is presented. The peculiarities of the processes of the light harmonic generation in dependence on the concentrations of the chemical components are discussed and the influences of the additional small inclusion of the elements of fifth group and the rare-earth elements are estimated.

  11. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  12. Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Smith, Dorian G. W.; Lambert, Richard St. J.; Gaffey, Michael J.

    1990-01-01

    The reflectance spectra of combinations of olivine, orthopyroxene, and iron meteorite metal are experimentally studied, and the obtained variations in spectral properties are used to constrain the physical and chemical properties of the assemblages. The presence of metal most noticeably affects band area ratios, peak-to-peak and peak-to-minimum reflectance ratios, and band widths. Band width and band areas are useful for determining metal abundance in olivine and metal and orthopyroxene and metal assemblages, respectively. Mafic silicate grain size variations are best determined using band depth criteria. Band centers are most useful for determining mafic silicate composition. An application of these parameters to the S-class asteroid Flora is presented.

  13. Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels

    PubMed Central

    Sinkó, Katalin

    2010-01-01

    Silica or various silicate aerogels can be characterized by highly porous, open cell, low density structures. The synthesis parameters influence the three-dimensional porous structures by modifying the kinetics and mechanism of hydrolysis and condensation processes. Numerous investigations have shown that the structure of porous materials can be tailored by variations in synthesis conditions (e.g., the type of precursors, catalyst, and surfactants; the ratio of water/precursor; the concentrations; the medium pH; and the solvent). The objectives of this review are to summarize and elucidate the effects of chemical conditions on the nanoporous structure of sol-gel derived silicate aerogels.

  14. High-performance polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the

  15. On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Jones, O. C.; Kemper, F.; Sargent, B. A.; McDonald, I.; Gielen, C.; Woods, Paul M.; Sloan, G. C.; Boyer, M. L.; Zijlstra, A. A.; Clayton, G. C.; Kraemer, K. E.; Srinivasan, S.; Ruffle, P. M. E.

    2012-12-01

    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer spectra of 217 oxygen-rich asymptotic giant branch and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 μm. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ˜10-9 M⊙ yr-1. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-μm feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-μm band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.

  16. Mg-perovskite/silicate melt and magnesiowuestite/silicate melt partition coefficients for KLB-1 at 250 Kbars

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Rubie, David C.; Mcfarlane, Elisabeth A.

    1992-01-01

    The partitioning of elements amongst lower mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. Because of the technical difficulty in carrying out such measurements, only one direct set of measurements was reported previously, and these results as well as interpretations based on them have generated controversy. Here we report what are to our knowledge only the second set of directly measured trace element partition coefficients for a natural system (KLB-1).

  17. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  18. The 8-13 micron spectra of comets and the composition of silicate grains

    NASA Technical Reports Server (NTRS)

    Hanner, Martha S.; Lynch, David K.; Russell, Ray W.

    1994-01-01

    We have analyzed the existing spectra of seven comets which show an emission feature at 7.8-13 micrometers. Most have been converted to a common calibration, taking into account the SiO feature in late-type standard stars. The spectra are compared with spectra of the Trapezium, interplanetary dust particles (IDPs), laboratory mineral samples, and small particle emission models. The emission spectra show a variety of shapes; there is no unique 'cometary silicate'. A peak at 11.20-11.25 micrometers, indicative of small crystalline olivine particles, is seen in only three comets of this sample, P/Halley, Bradfield 1987 XXIX, and Levy 1990 XX. The widths of the emission features range from 2.6 to 4.1 micrometers (FWHM). To explain the differing widths and the broad 9.8 micrometers maximum, glassy silicate particles, including both pyroxene and olivine compositions, are the most plausible candidates. Calculations of emission models confirm that small grains of glassy silicate well mixed with carbonaceous material are plausible cometary constituents. No single class of chondritic aggregate IDPs exhibits spectra closely matching the comet spectra. A mixture of IDP spectra, particularly the glass-rich aggregates, approximately matches the spectra of comets P/Halley, Levy, and Bradfield 1987 XXIX. Yet, if comets are simply a mix of IDP types, it is puzzling that the classes of IDPs are so distinct. None of the comet spectra match the spectrum of the Trapezium. Thus, the mineralogy of the cometary silicates is not the same as that of the interstellar medium. The presence of a component of crystalline silicates in comets may be evidence of mixing between high- and low-temperature regions in the solar nebula.

  19. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria—A Challenge for Life on Mars

    PubMed Central

    Bak, Ebbe N.; Larsen, Michael G.; Moeller, Ralf; Nissen, Silas B.; Jensen, Lasse R.; Nørnberg, Per; Jensen, Svend J. K.; Finster, Kai

    2017-01-01

    The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis, and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats. PMID:28955310

  20. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria-A Challenge for Life on Mars.

    PubMed

    Bak, Ebbe N; Larsen, Michael G; Moeller, Ralf; Nissen, Silas B; Jensen, Lasse R; Nørnberg, Per; Jensen, Svend J K; Finster, Kai

    2017-01-01

    The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis , and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats.

  1. Depletion of Vandium in Planetary Mantles: Controlled by Metal, Oxide, or Silicate?

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2006-01-01

    Vanadium concentrations in planetary mantles can provide information about the conditions during early accretion and differentiation. Because V is a slightly siderophile element, it is usually assumed that any depletion would be due to core formation and metal-silicate equilibrium. However, V is typically more compatible in phases such as spinel, magnesiowuestite and garnet. Fractionation of all of these phases would cause depletions more marked than those from metal. In this paper consideration of depletions due to metal, oxide and silicate are critically evaluated.

  2. Proton tunneling in low dimensional cesium silicate LDS-1

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-01

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm-1 are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm-1, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm-1 are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm-1) and asymmetric mode (155 and 1220 cm-1). The broad absorption at 100-600 cm-1 reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs+ but also with the proton oscillation relevant to the second excited state (n = 2).

  3. The solubility of gold in silicate melts: First results

    NASA Technical Reports Server (NTRS)

    Borisov, A.; Palme, H.; Spettel, B.

    1993-01-01

    The effects of oxygen fugacity and temperature on the solubility of Au in silicate melts were determined. Pd-Au alloys were equilibrated with silicate of anorthite-diopside eutectic composition at different T-fO2 conditions. The behavior of Au was found to be similar to that of Pd reported recently. Au solubilities for alloys with 30 to 40 at. percent Au decrease at 1400 C from 12 ppm in air to 160 ppb at a log fO2 = -8.7. The slope of the log(Me-solubility) vs. log(fO2) curve is close to 1/4 for Au and the simultaneously determined Pd suggesting a formal valence of Au and Pd of 1+. Near the IW buffer Pd and Au solubilities become even less dependent on fO2 perhaps reflecting the presence of some metallic Au and Pd.

  4. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant

    PubMed Central

    Mohammadi, Hossein; Sepantafar, Mohammadmajid

    2016-01-01

    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated. PMID:26979401

  5. Robustness of fossil fish teeth for seawater neodymium isotope reconstructions under variable redox conditions in an ancient shallow marine setting

    NASA Astrophysics Data System (ADS)

    Huck, Claire E.; van de Flierdt, Tina; Jiménez-Espejo, Francisco J.; Bohaty, Steven M.; Röhl, Ursula; Hammond, Samantha J.

    2016-03-01

    Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth, and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources.

  6. Evidence for seismogenic fracture of silicic magma.

    PubMed

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  7. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  8. 30Ar-40Ar Ages of Silicates from IIE Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Garrison, D. H.; Bogard, D. D.

    1995-09-01

    Several IIE iron meteorites contain small silicate inclusions, dispersed within metal, which suggest formation by a common process involving different degrees of heating and silicate fractionation from a chondrite-like parent (see discussion and references in McCoy [1]). The isotope chronology of IIE meteorites addresses two major questions concerning their origin. How many formation events are required, and do the isotopic ages also represent the times of silicate differentiation in some meteorites, or do they represent later impact heating events? We have determined ^39Ar-^40Ar ages of whole silicate samples of Watson, Techado, and Miles [1]. Although each meteorite gives a complex Ar age spectrum, each spectrum gives a well-defined age plateau over a significant (55-65%) portion of the total ^39Ar release. The ^39Ar-^40Ar degassing ages derived are 3.656 +/-0.005 Ga for Watson, 4.482 +/-0.025 Ga for Techado, and 4.408 +/-0.011 Ga for Miles (one-sigma errors). Absolute ages have an additional ^-0.5% uncertainty arising from the hornblende age monitor used. None of our Ar-Ar spectra show any significant evidence for an age older than those given, and only Miles shows modest evidence for recent diffusive loss of ^40Ar (affecting ^-10% of the ^39Ar release). Previous studies of Kodaikanal gave these ages: Rb-Sr = 3.7 +/-0.1 Ga [2], Pb-Pb = 3.676 +/-0.003 Ga [3], and K-^40Ar = 3.5 Ga [4]. Netschaevo gave a ^39Ar-^40Ar age of 3.74 Ga +/-0.03 Ga [5], and Watson gave a K-^40Ar age of 3.5 Ga [6]. (Some ages have been adjusted for changes in decay and irradiation constants.) All three meteorites suggest a common formation age of ^-3.70 +/-0.05 Ga. The ^39Ar-^40Ar age for Techado is identical to a ^39Ar-^40Ar age of 4.49 +/-0.03 Ga reported for Weekeroo Station [5] and to a Rb-Sr age of 4.51 Ga for Colomera [7]. These ages resemble ^39Ar-^40Ar ages of unshocked ordinary chondrites, and suggest that metal-silicate mixing and cooling to closure for Ar diffusion occurred

  9. On the 10 μm Silicate Feature in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Elitzur, Moshe; Lacy, Mark

    2009-12-01

    The 10 μm silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 μm silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r -1.5 and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual ~60-80. The source bolometric luminosity is ~3 × 1012 Lsun. Our modeling suggests that lsim35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 μm emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 μm silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed distribution, and the feature

  10. A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.

    PubMed

    Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan

    2014-02-17

    Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Making Earth's earliest continental crust - an analogue from voluminous Neogene silicic volcanism in NE-Iceland

    NASA Astrophysics Data System (ADS)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Riishuus, Morten S.; Deegan, Frances M.; Harris, Chris; Whitehouse, Martin J.; Gústafsson, Ludvik E.

    2014-05-01

    Borgarfjörður Eystri in NE-Iceland represents the second-most voluminous exposure of silicic eruptive rocks in Iceland and is a superb example of bimodal volcanism (Bunsen-Daly gap), which represents a long-standing controversy that touches on the problem of crustal growth in early Earth. The silicic rocks in NE-Iceland approach 25 % of the exposed rock mass in the region (Gústafsson et al., 1989), thus they significantly exceed the usual ≤ 12 % in Iceland as a whole (e.g. Walker, 1966; Jonasson, 2007). The origin, significance, and duration of the voluminous (> 300 km3) and dominantly explosive silicic activity in Borgarfjörður Eystri is not yet constrained (c.f. Gústafsson, 1992), leaving us unclear as to what causes silicic volcanism in otherwise basaltic provinces. Here we report SIMS zircon U-Pb ages and δ18O values from the region, which record the commencement of silicic igneous activity with rhyolite lavas at 13.5 to 12.8 Ma, closely followed by large caldera-forming ignimbrite eruptions from the Breiðavik and Dyrfjöll central volcanoes (12.4 Ma). Silicic activity ended abruptly with dacite lava at 12.1 Ma, defining a ≤ 1 Myr long window of silicic volcanism. Magma δ18O values estimated from zircon range from 3.1 to 5.5 (± 0.3; n = 170) and indicate up to 45 % assimilation of a low-δ18O component (e.g. typically δ18O = 0 ‰, Bindeman et al., 2012). A Neogene rift relocation (Martin et al., 2011) or the birth of an off-rift zone to the east of the mature rift associated with a thermal/chemical pulse in the Iceland plume (Óskarsson & Riishuus, 2013), likely brought mantle-derived magma into contact with fertile hydrothermally-altered basaltic crust. The resulting interaction triggered large-scale crustal melting and generated mixed-origin silicic melts. Such rapid formation of silicic magmas from sustained basaltic volcanism may serve as an analogue for generating continental crust in a subduction-free early Earth (e.g. ≥ 3 Ga, Kamber et

  12. PMR-15/Layered Silicate Nanocomposites For Improved Thermal Stability And Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Scheiman, Daniel; Faile, Michael; Papadopoulos, Demetrios; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Montmorillonite clay was organically modified by co-exchange of an aromatic diamine and a primary alkyl amine. The clay was dispersed into a PMR (Polymerization of Monomer Reactants)-15 matrix and the glass transition temperature and thermal oxidative stability of the resulting nanocomposites were evaluated. PMR-15/ silicate nanocomposites were also investigated as a matrix material for carbon fabric reinforced composites. Dispersion of the organically modified silicate into the PMR-15 matrix enhanced the thermal oxidative stability, the flexural strength, flexural modulus, and interlaminar shear strength of the polymer matrix composite.

  13. Aqueous silicates in biological sol-gel applications: new perspectives for old precursors.

    PubMed

    Coradin, Thibaud; Livage, Jacques

    2007-09-01

    Identification of silica sol-gel chemistry with silicon alkoxide hydrolysis and condensation processes is common in modern materials science. However, aqueous silicates exhibit several features indicating that they may be more suitable precursors for specific fields of research and applications related to biology and medicine. In this Account, we illustrate the potentialities of such aqueous precursors for biomimetic studies, bio-hybrid material design, and bioencapsulation routes. We emphasize that the natural relevance, the biocompatibility, and the low ecological impact of silicate chemistry may balance its lack of diversity, flexibility, and processability.

  14. Laser treatment of a neodymium magnet and analysis of surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Rizwan, M.; Kassas, M.

    2016-08-01

    Laser treatment of neodymium magnet (Nd2Fe14B) surface is carried out under the high pressure nitrogen assisting gas. A thin carbon film containing 12% WC carbide particles with 400 nm sizes are formed at the surface prior to the laser treatment process. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools. The corrosion resistance of the laser treated surface is analyzed incorporating the potentiodynamic tests carried out in 0.05 M NaCl+0.1 M H2SO4 solution. The friction coefficient of the laser treated surface is measured using the micro-scratch tester. The wetting characteristics of the treated surface are assessed incorporating the sessile water drop measurements. It is found that a dense layer consisting of fine size grains and WC particles is formed in the surface region of the laser treated layer. Corrosion resistance of the surface improves significantly after the laser treatment process. Friction coefficient of laser treated surface is lower than that of the as received surface. Laser treatment results in superhydrophobic characteristics at the substrate surface. The formation of hematite and grain size variation in the treated layer slightly lowers the magnetic strength of the laser treated workpiece.

  15. Rhenium-osmium and samarium-neodymium isotopic systematics of the stillwater complex

    USGS Publications Warehouse

    Lambert, D.D.; Morgan, J.W.; Walker, R.J.; Shirey, S.B.; Carlson, R.W.; Zientek, M.L.; Koski, M.S.

    1989-01-01

    Isotopic data for the Stillwater Complex, Montana , which formed about 2700 Ma (million years ago), were obtained to evaluate the role of magma mixing in the formation of strategic platinum-group element (PGE) ore deposits. Neodymium and osmium isotopic data indicate that the intrusion formed from at least two geochemically distinct magmas. Ultramafic affinity (U-type) magmas had initial ??Nd of -0.8 to -3.2 and a chondritic initial 187Os/186Os ratio of ???0.88, whereas anorthositic affinity (A-type) magmas had ??Nd of -0.7 to +1.7 and an initial 187Os/186Os ratio of ???1.13. These data suggest that U-type magmas were derived from a lithospheric mantle source containing recycled crustal materials whereas A-type magmas originated either by crustal contamination of basaltic magmas or by partial melting of basalt in the lower crust. The Nd and Os isotopic data also suggest that Os, and probably the other PGEs in ore horizons such as the J-M Reef, was derived from A-type magmas. The Nd and Os isotopic heterogeneity observed in rocks below the J-M Reef also suggests that A-type magmas were injected into the Stillwater U-type magma chamber at several stages during the development of the Ultramafic series.

  16. Pulsed deposition of silicate films

    NASA Astrophysics Data System (ADS)

    He, W.; Solanki, R.; Conley, J. F.; Ono, Y.

    2003-09-01

    A sequential pulsed process is utilized for deposition of nonstoichiometric silicate films without employing an oxidizing agent. The metal precursors were HfCl4, AlCl3, and ZrCl4, as well as Hf(NO3)4 and the silicon source was tris(tert-butoxy)silanol. Unlike atomic layer deposition, the growth per cycle was several monolayers thick, where the enhancement in growth was due to a catalytic reaction. The bulk and electrical properties of these films are similar to those of silicon dioxide. Silicon carbide devices coated with these films show good insulating characteristics.

  17. The viscosity of magmatic silicate liquids: A model for calculation

    NASA Technical Reports Server (NTRS)

    Bottinga, Y.; Weill, D. F.

    1971-01-01

    A simple model has been designed to allow reasonably accurate calculations of viscosity as a function of temperature and composition. The problem of predicting viscosities of anhydrous silicate liquids has been investigated since such viscosity numbers are applicable to many extrusive melts and to nearly dry magmatic liquids in general. The fluidizing action of water dissolved in silicate melts is well recognized and it is now possible to predict the effect of water content on viscosity in a semiquantitative way. Water was not incorporated directly into the model. Viscosities of anhydrous compositions were calculated, and, where necessary, the effect of added water and estimated. The model can be easily modified to incorporate the effect of water whenever sufficient additional data are accumulated.

  18. Silicate Weathering and Pervasive Authigenic Carbonate Precipitation Coupled to Methanogenesis in the Krishna-Godavari Basin, Offshore India

    NASA Astrophysics Data System (ADS)

    Solomon, E. A.; Spivack, A. J.; Kastner, M.; Torres, M. E.

    2014-12-01

    The cycling of methane in marine sediments has been actively studied for the past several decades, but less attention has been paid to the cycling of CO2 produced in methanogenic sediments. The National Gas Hydrate Program Expedition 01 cored 10 sites with the Joides Resolution drillship in the Krishna-Godavari basin, located on the southeastern margin of India. A comprehensive suite of pore water solute concentrations and isotope ratios were analyzed to investigate the distribution and concentration of gas hydrate along the margin, in situ diagenetic and metabolic reactions, fluid migration and flow pathways, and fluid and gas sources. This represents one of the most comprehensive pore water geochemical datasets collected at a continental margin to date, and provides the necessary tracers to better understand the processes and sinks controlling CO2 in margin sediments. Our results show that the CO2 produced through net microbial methanogenesis is effectively neutralized through silicate weathering throughout the sediment column drilled at each site (~100-300 m), buffering the pH of the sedimentary pore water and generating excess alkalinity through the same reaction sequence as continental silicate weathering. Most of the excess alkalinity produced through silicate weathering in the Krishna-Godavari basin is sequestered in Ca- and Fe-carbonates as a result of ubiquitous calcium release from weathering detrital silicates and Fe-reduction within the methanogenic sediments. Formation of secondary hydrous silicates (e.g. smectite) related to incongruent primary silicate dissolution acts as a significant sink for pore water Mg, K, Li, Rb, and B. The consumption of methane through anaerobic oxidation of methane, sequestration of methane in gas hydrate, and sequestration of dissolved inorganic carbon in authigenic carbonates keeps methanogenesis as a thermodynamically feasible catabolic pathway. Our results combined with previous indications of silicate weathering in

  19. Oxygen from the lunar soil by molten silicate electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1992-01-01

    Accepting that oxygen, rather than gigantic gems or gold, is likely to make the Moon's Klondike, the extraction of oxygen from the lunar soil by molten silicate electrolysis has chosen to be investigated. Process theory and proposed lunar factory are addressed.

  20. Phosphate-Silicate Inclusions in Chaunskij: How Diverse are They?

    NASA Astrophysics Data System (ADS)

    Petaev, M. I.; Clarke, R. S., Jr.; Jarosewich, E.; Lipschutz, M. E.; Wang, M.-S.; Davis, A. M.; Steele, I. M.; Olsen, E. J.; Wood, J. A.

    1993-07-01

    The Chaunskij meteorite was found in 1985 and was recently classified as the most highly metamorphosed, shock-modified, and metal-rich mesosiderite [1]. It contains ~10 vol% mono- and polymineralic troilite-phosphate-silicate inclusions, micrometers to centimeters in size. Metal in Chaunskij displays a mesosiderite structure and is described in some detail in an accompanying paper [2]. Here we present new data on polymineralic inclusions that shed additional light on their origin. Two dominant silicate lithologies have been found in the inclusions. One, making up the largest inclusion (2.2 x 1.7 cm), consists of a fine-grained (20-30 micrometers) aggregate of anhedral pyroxene, subhedral plagioclase laths, and silica, with larger poikilitic grains of the first two minerals. Whitlockite is minor. Textures vary from microophitic to xenoblastic. This lithology, called "igneous," also contains rare primary clasts enriched in pyroxene, whose boundaries are almost unresolvable from the ground mass in transmitted light. The second, "metamorphic" lithology occurs as separate small inclusions and as larger areas in intimate contact with the "igneous" lithology in the largest inclusion. This lithology is a fine-grained (typically 30-50 micrometers) xenoblastic intergrowth of low-Ca pyroxene, whitlockite, and cordierite, with rare larger porphyritic grains of the first two minerals. Porphyritic pyroxene grain edges are generally irregular, indicative of reaction with the ground mass. Plagioclase is present only as a rare accessory mineral. Minor minerals in both lithologies are silica, kamacite, taenite, troilite, chromite, ilmenite, and rutile. Rare grains of pyrophanite, zircon, alabandite, stanfieldite, and a graftonite-farringtonite mineral are also present in the inclusions. Mineral compositions of small inclusions are more diverse than those characteristic of the "igneous" and "metamorphic" lithologies. Many of them consist of cordierite, pyroxene, and whitlockite

  1. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    Context. Protoplanetary disks, interstellar clouds, and active galactic nuclei contain X-ray-dominated regions. X-rays interact with the dust and gas present in such environments. While a few laboratory X-ray irradiation experiments have been performed on ices, X-ray irradiation experiments on bare cosmic dust analogs have been scarce up to now. Aims: Our goal is to study the effects of hard X-rays on cosmic dust analogs via in situ X-ray diffraction. By using a hard X-ray synchrotron nanobeam, we seek to simulate cumulative X-ray exposure on dust grains during their lifetime in these astrophysical environments and provide an upper limit on the effect of hard X-rays on dust grain structure. Methods: We prepared enstatite (MgSiO3) nanograins, which are analogs to cosmic silicates, via the melting-quenching technique. These amorphous grains were then annealed to obtain polycrystalline grains. These were characterized via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) before irradiation. Powder samples were prepared in X-ray transparent substrates and were irradiated with hard X-rays nanobeams (29.4 keV) provided by beamline ID16B of the European Synchrotron Radiation Facility (Grenoble). X-ray diffraction images were recorded in transmission mode, and the ensuing diffractograms were analyzed as a function of the total X-ray exposure time. Results: We detected the amorphization of polycrystalline silicates embedded in an organic matrix after an accumulated X-ray exposure of 6.4 × 1027 eV cm-2. Pure crystalline silicate grains (without resin) do not exhibit amorphization. None of the amorphous silicate samples (pure and embedded in resin) underwent crystallization. We analyze the evolution of the polycrystalline sample embedded in an organic matrix as a function of X-ray exposure. Conclusions: Loss of diffraction peak intensity, peak broadening, and the disappearance of discrete spots and arcs reveal the amorphization

  2. Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.

    2001-01-01

    The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures.

  3. Interaction of water vapor with silicate glass surfaces: Mass-spectrometric investigations

    NASA Astrophysics Data System (ADS)

    Kudriavtsev, Yu.; Asomoza-Palacio, R.; Manzanilla-Naim, L.

    2017-05-01

    The secondary ion mass-spectroscopy technique was used to study the results of hydration of borosilicate, aluminosilicate, and soda-lime silicate glasses in 1H2 18O water vapor containing 97% of the isotope 18O. It is shown that hydration of the surface of the soda-lime silicate glass occurs as a result of the ion-exchange reaction with alkali metals. In the case of borosilicate and aluminosilicate glasses, water molecules decompose on the glass surface, with the observed formation of hydrogenated layer in the glass being the result of a solid-state chemical reaction—presumably, with the formation of hydroxides from aluminum and boron oxides.

  4. Silicate garnet studies at high pressures: A view into the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Conrad, Pamela Gales

    Silicate garnets are an abundant component in the Earth's upper mantle and transition zone. Therefore, an understanding of garnet behavior under the pressure and temperature conditions of the mantle is critical to the development of models for mantle mineralogy and dynamics. Work from three projects is presented in this report. Each investigation explores an aspect of silicate garnet behavior under high pressures. Moreover, each investigation was made possible by state-of-the-art methods that have previously been unavailable. Brillouin scattering was used to determine the elastic constants and aggregate elastic moduli of three end-member garnets at high pressures in a diamond anvil cell. These are the first high-pressure measurements of the elastic constants of end-member silicate garnets by direct measurement of acoustic velocities. The results indicate that the pressure dependence of silicate garnet elastic constants varies with composition. Therefore, extrapolation from measurements on mixed composition garnets is not possible. A new method of laser heating minerals in a diamond anvil cell has made possible the determination of the high-pressure and high-temperature stability of almandine garnet. This garnet does not transform to a silicate perovskite phase as does pyrope garnet, but it decomposes to its constituent oxides: FeO, Alsb2Osb3, and SiOsb2. These results disprove an earlier prediction that ferrous iron may expand the stability field of garnet to the lower mantle. The present results demonstrate that this is not the case. The third topic is a presentation of the results of a new technique for studying inclusions in mantle xenoliths with synchrotron X-ray microdiffraction. The results demonstrate the importance of obtaining structural as well as chemical information on inclusions within diamonds and other high-pressure minerals. An unusual phase with garnet composition is investigated and several other phases are identified from a suite of natural

  5. Solution-processed high-mobility neodymium-substituted indium oxide thin-film transistors formed by facile patterning based on aqueous precursors

    NASA Astrophysics Data System (ADS)

    Lin, Zhenguo; Lan, Linfeng; Sun, Sheng; Li, Yuzhi; Song, Wei; Gao, Peixiong; Song, Erlong; Zhang, Peng; Li, Meiling; Wang, Lei; Peng, Junbiao

    2017-03-01

    Solution-processed neodymium-substituted indium oxide (InNdO) thin-film transistors (TFTs) based on gel-like aqueous precursors were fabricated with a surface-selective deposition technique associated with ultraviolet irradiation. The Nd concentration can be easily tuned by changing the ratio of Nd2O3 to In2O3 precursors. It was found that Nd played roles of suppressing grain growth, suppressing oxygen vacancy formation, and increasing the electrical stability of TFTs. The InNdO TFT with a Nd:In ratio of 0.02:1 exhibited a mobility of as high as 15.6 cm2 V-1 s-1 with improved stability under gate-bias stress.

  6. Interstellar silicate dust in the z = 0.685 absorber toward TXS 0218+357

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aller, Monique C.; Kulkarni, Varsha P.; Liger, Nicholas

    2014-04-10

    We report the detection of interstellar silicate dust in the z {sub abs} = 0.685 absorber along the sightline toward the gravitationally lensed blazar TXS 0218+357. Using Spitzer Space Telescope Infrared Spectrograph data, we detect the 10 μm silicate absorption feature with a detection significance of 10.7σ. We fit laboratory-derived silicate dust profile templates obtained from the literature to the observed 10 μm absorption feature and find that the best single-mineral fit is obtained using an amorphous olivine template with a measured peak optical depth of τ{sub 10} = 0.49 ± 0.02, which rises to τ{sub 10} ∼ 0.67 ±more » 0.04 if the covering factor is taken into account. We also detected the 18 μm silicate absorption feature in our data with a >3σ significance. Due to the proximity of the 18 μm absorption feature to the edge of our covered spectral range, and associated uncertainty about the shape of the quasar continuum normalization near 18 μm, we do not independently fit this feature. We find, however, that the shape and depth of the 18 μm silicate absorption are well matched to the amorphous olivine template prediction, given the optical depth inferred for the 10 μm feature. The measured 10 μm peak optical depth in this absorber is significantly higher than those found in previously studied quasar absorption systems. However, the reddening, 21 cm absorption, and velocity spread of Mg II are not outliers relative to other studied absorption systems. This high optical depth may be evidence for variations in dust grain properties in the interstellar medium between this and the previously studied high redshift galaxies.« less

  7. Preparation and characterization of polystyrene/neodymium hydroxide (PS/Nd(OH)3) nano-composites

    NASA Astrophysics Data System (ADS)

    Alsewailem, Fares D.; Bagabas, Abdulaziz A.; Binkhodor, Yazeed A.

    2018-03-01

    Composites of polystyrene and Neodymium hydroxide nanrods (PS/Nd(OH)3) were formulated and characterized in this study. Cetyl (1-hexadccyl) trimethyl ammonium bromide (CTAB) was used as dispersion agent for the Nd(OH)3 rods in the PS matrix. PS/Nd(OH)3 composites were prepared by solution and melt compounding. Morphological, thermal, and mechanical properties of the prepared composites were investigated. CTAB was found to be more effective as dispersion agent in composites prepared by solution compounding in comparison with those prepared by melt compounding, and that was due to the mild conditions used in solution compounding. Nonetheless, impact strength of the composite at 0.5 wt% Nd(OH)3 was drastically reduced in the absence of CTAB. Both tensile and impact strengths were found to greatly decreased at higher loading of Nd(OH)3, e.g. 5 wt%, even with the use of CTAB. Thermal stability of the PS/Nd(OH)3 composites was noticeably increased at relatively low loading of Nd(OH)3, e.g. 0.5 wt%.

  8. The Sm-Nd systematics of silicate inclusions in iron meteorites: Results from Caddo (IAB)

    NASA Technical Reports Server (NTRS)

    Stewart, Brian W.; Papanastassiou, D. A.; Wasserburg, G. J.

    1993-01-01

    The timing of events leading to the formation of silicate-rich and metal-rich regions in planetesimals remains an important problem in the study of planetary formation and differentiation in the early solar system. The IAB irons are especially important as they are considered to represent a magmatic differentiation series. Iron meteorites present a particular challenge for chronological studies, due to the relative paucity of phases serving as hosts for radioactive parent-daughter nuclides. Recent work using the Re-Os system, following on the pioneering work by Herr et al. and Luck and Allegre, appears promising, but investigators up to now have concentrated on whole rock isochrons. Silicate clasts enclosed within iron meteorites can provide information about the chronology and thermal history of irons. Extensive work on Rb-Sr, K-Ar, and I-Xe has been reported on silicate inclusions in iron meteorites. We report the initial results from our Sm-Nd study of an inclusion with the Caddo IAB iron, the first Sm-Nd isotopic study of a silicate clast embedded within an iron meteorite. Our results include measurements of the standard long-lived Sm-147/Nd-143 (tau = 152 AE) system, as well as the shorter-lived SM-146/Nd-142 (tau = 0.149 AE) system, which has been shown to be very useful in deciphering the history of the early solar system. The Caddo silicate clast was described by Palme et al., who kindly provided us with a major part of the inclusion. The inclusion is coarse-grained consisting predominantly of olivine, clinopyroxene, and plagioclase, with lesser amounts of orthopyroxene, Fe-Ni metal, sulfide, and phosphate. The relatively large grain size (up to 3 mm) and 120 degree grain boundaries suggest extensive metamorphism at high temperatures. Based on study of a thin section, there is evidence for metal invading along grain boundaries in some regions of the inclusion, suggesting that the Fe-Ni metal was molten when the silicate clast was incorporated. Metamorphic

  9. Scalable waveguide design for three-level operation in Neodymium doped fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pax, Paul H.; Khitrov, Victor V.; Drachenberg, Derrek R.

    We have constructed a double clad neodymium doped fiber laser operating on the three-level 4F 3/2 → 4I 9/2 transition. The laser has produced 11.5 W at 925 nm with 55% slope efficiency when pumped at 808 nm, comparable to the best previous results for a double-clad fiber configuration on this transition. Higher power pumping with both 808 nm and 880 nm sources resulted in an output of 27 W, albeit at lower slope efficiency. In both cases, output power was limited by available pump, indicating the potential for further power scaling. To suppress the stronger four-level 4F 3/2 →more » 4I 11/2 transition we developed a waveguide that provides spectral filtering distributed along the length of the fiber, based on an all-solid micro-structured optical fiber design, with resonant inclusions creating a leakage path to the cladding. Furthermore, the waveguide supports large mode areas and provides strong suppression at selectable wavelength bands, thus easing the restrictions on core and cladding sizes that limited power scaling of previous approaches.« less

  10. Scalable waveguide design for three-level operation in Neodymium doped fiber laser

    DOE PAGES

    Pax, Paul H.; Khitrov, Victor V.; Drachenberg, Derrek R.; ...

    2016-12-12

    We have constructed a double clad neodymium doped fiber laser operating on the three-level 4F 3/2 → 4I 9/2 transition. The laser has produced 11.5 W at 925 nm with 55% slope efficiency when pumped at 808 nm, comparable to the best previous results for a double-clad fiber configuration on this transition. Higher power pumping with both 808 nm and 880 nm sources resulted in an output of 27 W, albeit at lower slope efficiency. In both cases, output power was limited by available pump, indicating the potential for further power scaling. To suppress the stronger four-level 4F 3/2 →more » 4I 11/2 transition we developed a waveguide that provides spectral filtering distributed along the length of the fiber, based on an all-solid micro-structured optical fiber design, with resonant inclusions creating a leakage path to the cladding. Furthermore, the waveguide supports large mode areas and provides strong suppression at selectable wavelength bands, thus easing the restrictions on core and cladding sizes that limited power scaling of previous approaches.« less

  11. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.

    2006-09-01

    Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.

  12. Synthesis of the Tube Silicate Litidionite and Structural Relationships between It and Some Other Silicates.

    DTIC Science & Technology

    1982-02-17

    CuSi4015 Others are agrellite, NaCa2Si4O0oF, 1 6 narsarsukite, Na2TiSi4O 1 7 miserite, KCa5 i2 07 Si601 5 (OH)F,18 and probably canasite , Na4K2Ca 5...and canasite are rare. Litidionite is apparently very rare, the only reported occurrence of it being in the crater of Mt. Vesuvius. Both litidionite1...narsarsukite, miserite, and probably canasite contain, like 13-19 lititionite, tube silicate ions. The first three contain ions that are the same as that in

  13. TECHNOLOGY EVALUATION REPORT: SILICATE TECHNOLOGY CORPORATION - SOLIDIFICATION/STABILIZATION OF PCP AND INORGANIC CONTAMINANTS IN SOILS - SELMA, CA

    EPA Science Inventory

    This Technolgy Evaluation Report evaluates the solidification/stabilization process of Silicate Technology Corporation (STC) for the on-site treatment of contaminated soil The STC immobilization technology uses a proprietary product (FMS Silicate) to chemically stabilize and ...

  14. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  15. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  16. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  17. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  18. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  19. [Studies on the role of silicic acid in the development of higher plants].

    PubMed

    Werner, D

    1967-03-01

    Germanium acid, a specific inhibitor of the silicic acid metabolism in diatoms, inhibits the growth of Sinapis alba, Lemna minor, Wolffia arrhiza, Nicotiana tabacum, Tradescantia spec, Zinnia elegans, and Secale cereale when applied in the same concentrations as those used in the case of diatoms (15-75 μg GeO2/ml medium). The growth of Aspergillus niger, Phycomyces blakesleanus, Escherichia coli K 12, Euglena gracilis and Pandorina morum is not influenced by these and higher concentrations of Germanium acid. By application of high concentrations of silicic acid, the growth inhibition produced by germanium acid in Lemna minor is partially reduced. Plants of Lemna minor which have been inhibited by germanium acid are essentially smaller than plants grown in a normal medium; their chlorophyll content is significantly decreased. The growth of the roots in Lemna is particularly inhibited. Isolated growing roots of Lycopersicon pimpinellifolium MILL. are inhibited by small concentrations of Ge(OH)4 (ca. 1,5×10(-4) M/l). In contrast to the growth of older plants, the germination of Secale cereale and Sinapis alba is not influenced by Ge(OH)4. The effects of germanium acid are discussed in relation to the physiological role of silicic acid. The results suggest that the element silicon, in the form of silicic acid, is generally essential for the normal development of higher plants.

  20. Size determination of gold nanoparticles in silicate glasses by UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Ali, Shahid; Khan, Younas; Iqbal, Yaseen; Hayat, Khizar; Ali, Muhammad

    2017-01-01

    A relatively easier and more accurate method for the determination of average size of metal nanoparticles/aggregates in silicate glasses based on ultraviolet visible (UV-Vis) spectra fitted with the Mie and Mie-Gans models was reported. Gold ions were diffused into sodalime silicate and borosilicate glasses by field-assisted solid-state ion-exchange technique using the same experimental parameters for both glasses. Transmission electron microscopy was performed to directly investigate the morphology and distribution of the dopant nanoparticles. UV-Vis spectra of the doped glasses showed broad surface plasmon resonance peaks in their fingerprint regions, i.e., at 525 and 500 nm for sodalime silicate and borosilicate glass matrices, respectively. These spectra were fitted with the Mie model for spherical nanoparticles and the Mie-Gans model for spheroidal nanoparticles. Although both the models were developed for colloidal nanoparticles, the size of the nanoparticles/aggregates calculated was accurate to within ˜10% in both the glass matrices in comparison to the size measured directly from the transmission electron microscope images.

  1. Conduction mechanism in bismuth silicate glasses containing titanium

    NASA Astrophysics Data System (ADS)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  2. Compositional effects on Si–OH bond length in hydrous silicates with implications for trends in the SiOH acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarubin, Dmitri P., E-mail: dmitri.zarubin@mtu-net.ru

    2014-04-01

    Theoretical calculations of the structure and Brønsted acidity of SiOH groups in silica clusters have never addressed the question if these vary with the degree of SiOH deprotonation. In this connection, a statistical analysis is presented of Si–OH bond lengths in crystalline hydrogen silicates with well-determined structures with a special emphasis placed on effects of the silicate composition. It is found that among hydrogen silicates of large cations with low charges the Si–OH bonds are always longer than terminal Si–O bonds in the same anion and correlate in length with the anionic charge per tetrahedron. The findings are explained bymore » steric limitations on charge balancing at oxygen atoms by hydrogen bonds and/or cations. It is suggested that similar limitations and imbalances may underlie the well-known trends in the Brønsted acidity of silicic acids and silicas in aqueous media: decreased acidity with increased SiOH deprotonation and increased acidity with increased tetrahedra connectivity. - Graphical abstract: Si–OH bonds in crystalline silicates lengthen with the anionic charge per tetrahedron, which is in parallel with the well-known trend of decreased acidity of silicic acids and silicas in solution with increased degree of deprotonation. - Highlights: • Si–OH bonds in alkali hydrogen silicates are always longer than terminal Si–O bonds. • Si–OH bonds in silicates lengthen with the anionic charge per tetrahedron. • The Si–OH bond elongation results from inherent underbonding of terminal O atoms. • The longer the Si–OH bond, the less acidic the OH group is.« less

  3. Sealing of cracks in cement using microencapsulated sodium silicate

    NASA Astrophysics Data System (ADS)

    Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.

    2016-08-01

    Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.

  4. Composition of the core from gallium metal–silicate partitioning experiments

    DOE PAGES

    Blanchard, I.; Badro, J.; Siebert, J.; ...

    2015-07-24

    We present gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, however, have shown that gallium is a moderately siderophile element and should be therefore depleted in the mantle by core formation. Moreover, gallium concentrations in the mantle (4 ppm) are too high to be only brought by the late veneer; and neither pressure, nor temperature, nor silicate composition has a large enough effect on gallium partitioning to make it lithophile. Wemore » therefore systematically investigated the effect of core composition (light element content) on the partitioning of gallium by carrying out metal–silicate partitioning experiments in a piston–cylinder press at 2 GPa between 1673 K and 2073 K. Four light elements (Si, O, S, C) were considered, and their effect was found to be sufficiently strong to make gallium lithophile. The partitioning of gallium was then modeled and parameterized as a function of pressure, temperature, redox and core composition. A continuous core formation model was used to track the evolution of gallium partitioning during core formation, for various magma ocean depths, geotherms, core light element contents, and magma ocean composition (redox) during accretion. The only model for which the final gallium concentration in the silicate Earth matched the observed value is the one involving a light-element rich core equilibrating in a FeO-rich deep magma ocean (>1300 km) with a final pressure of at least 50 GPa. More specifically, the incorporation of S and C in the core provided successful models only for concentrations that lie far beyond their allowable cosmochemical or geophysical limits, whereas realistic O and Si amounts (less than 5 wt.%) in the core provided successful models for magma oceans deeper that 1300 km. In conclusion, these results

  5. The Evolution of Land Plants and the Silicate Weathering Feedback

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Caves Rugenstein, J. K.; Bachan, A.; Baresch, A.; Lau, K. V.; Thomas, D.; Lee, J. E.; Boyce, C. K.; Chamberlain, C. P.

    2017-12-01

    It has long been recognized that the advent of vascular plants in the Paleozoic must have changed silicate weathering and fundamentally altered the long-term carbon cycle. Efforts to quantify these effects have been formulated in carbon cycle models that are, in part, calibrated by weathering studies of modern plant communities. In models of the long-term carbon cycle, plants play a key role in controlling atmospheric CO2, particularly in the late Paleozoic. We test the impact of some established and recent theories regarding plant-enhanced weathering by coupling a one-dimensional vapor transport model to a reactive transport model of silicate weathering. In this coupled model, we evaluate consequences of plant evolutionary innovation that have not been mechanistically incorporated into most existing models: 1) the role of evolutionary shifts in plant transpiration in enhancing silicate weathering by increasing downwind transport and recycling of water vapor to continental interiors; 2) the importance of deeply-rooted plants and their associated microbial communities in increasing soil CO2 and weathering zone length scales; and, 3) the cumulative effect of these processes. Our modeling approach is framed by energy/supply constraints calibrated for minimally vegetated-, vascular plant forested-, and angiosperm-worlds. We find that the emergence of widespread transpiration and associated inland vapor recycling approximately doubles weathering solute concentrations when deep-rooted vascular plants (Devonian-Carboniferous) fully replace a minimally vegetated (pre-Devonian) world. The later evolution of angiosperms (Cretaceous and Cenozoic) and subsequent increase in transpiration fluxes increase weathering solute concentrations by approximately an additional 20%. Our estimates of the changes in weatherability caused by land plant evolution are of a similar magnitude, but explained with new process-based mechanisms, than those used in existing carbon cycle models. We

  6. Immobilized lipase from Candida sp. 99-125 on hydrophobic silicate: characterization and applications.

    PubMed

    Zhao, Bin; Liu, Xinlong; Jiang, Yanjun; Zhou, Liya; He, Ying; Gao, Jing

    2014-08-01

    Lipase Candida sp. 99-125 has been proved to be quite effective in catalyzing organic synthesis reactions and is much cheaper than commercial lipases. Mesoporous silicates are attractive materials for the immobilization of enzymes due to their unique structures. The present research designed a hydrophobic silicate with uniform pore size suitable for the comfort of lipase Candida sp. 99-125 for improving its activity and stability. The resulting immobilized lipase (LP@PMO) by adsorption was employed to catalyze hydrolysis, esterification, and transesterification reactions, and the performances were compared with the lipase immobilized on hydrophilic silicate (LP@PMS) and native lipase. The LP@PMO showed as high activity as that of native lipase in hydrolysis and much increased catalytic activity and reusability in the reactions for biodiesel production. Besides, LP@PMO also possessed better organic stability. Such results demonstrate that immobilization of lipase onto hydrophobic supports is a promising strategy to fabricate highly active and stable biocatalysts for applications.

  7. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  8. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    PubMed

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, Ming-Shing; Chen, James M.; Yang, Ralph T.

    1982-01-01

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  10. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  11. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins

    USGS Publications Warehouse

    Murchey, B.L.; Jones, D.L.

    1992-01-01

    Radiolarian and conodont of Permian siliceous rocks from twenty-three areas in teh the circum-Pacific and Mediterranean regions reveal a widespread Permian Chert Event during the middle Leonardian to Wordian. Radiolarian- and (or) sponge spicule-rich siliceous sediments accumulated beneath high productivity zones in coastal, island arc and oceanic basins. Most of these deposits now crop out in fault-bounded accreted terranes. Biogenic siliceous sediments did not accumulate in terranes lying beneath infertile waters including the marine sequences in terranes of northern and central Alaska. The Permian Chert Event is coeval with major phosphorite deposition along the western margin of Pangea (Phosphoria Formation and related deposits). A well-known analogue for this event is middle Miocene deposition of biogenic siliceous sediments beneath high productivity zones in many parts of the Pacific and concurrent deposition of phosphatic as well as siliceous sediments in basins along the coast of California. Interrelated factors associated with both the Miocene and Permian depositional events include plate reorientations, small sea-level rises and cool polar waters. ?? 1992.

  12. Relations between aliphatics and silicate components in 12 stratospheric particles deduced from vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merouane, S.; Djouadi, Z.; Le Sergeant d'Hendecourt, L., E-mail: sihane.merouane@ias.u-psud.fr

    2014-01-10

    Interplanetary dust particles (IDPs) are among the most pristine extraterrestrial samples available in the laboratory for analyses with moderate to high spatial- and spectral-resolution spectroscopic techniques. Their composition can provide precious information on the early stages of the solar nebula as well as on the processes on the surfaces of different small bodies in the solar system from which IDPs originate. In this work, we have analyzed six anhydrous IDPs and six stratospheric particles possibly of cosmic origin through infrared (IR) and Raman micro-spectroscopy to study and investigate their silicate and organic components. We find that the length/ramification of themore » aliphatic organics given by the CH{sub 2}/CH{sub 3} ratios in the IDPs is closely linked to the silicate family (pyroxene or olivine) present in the samples. Both IR and Raman data suggest that this relation is not correlated with either aqueous (as evidenced by the absence of aqueous related minerals) or thermal processes (as deduced from Raman measurements). Therefore, this observation might be related to the initial path of formation of the organics on the silicate surfaces, thus tracing a possible catalytic role that silicates would play in the formation and/or ramification of organic matter in the primitive nebula.« less

  13. Polymer-Layered Silicate Nanocomposites for Cryotank Applications

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Meador, Michael A.

    2007-01-01

    Previous composite cryotank designs have relied on the use of conventional composite materials to reduce microcracking and permeability. However, revolutionary advances in nanotechnology derived materials may enable the production of ultra-lightweight cryotanks with significantly enhanced durability and damage tolerance, as well as reduced propellant permeability. Layered silicate nanocomposites are especially attractive in cryogenic storage tanks based on results that have been reported for epoxy nanocomposite systems. These materials often exhibit an order of magnitude reduction in gas permeability when compared to the base resin. In addition, polymer-silicate nanocomposites have been shown to yield improved dimensional stability, strength, and toughness. The enhancement in material performance of these systems occurs without property trade-offs which are often observed in conventionally filled polymer composites. Research efforts at NASA Glenn Research Center have led to the development of epoxy-clay nanocomposites with 70% lower hydrogen permeability than the base epoxy resin. Filament wound carbon fiber reinforced tanks made with this nanocomposite had a five-fold lower helium leak rate than the corresponding tanks made without clay. The pronounced reduction observed with the tank may be due to flow induced alignment of the clay layers during processing. Additionally, the nanocomposites showed CTE reductions of up to 30%, as well as a 100% increase in toughness.

  14. An iridium-rich iron micrometeorite with silicate inclusions from the Moon

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Korotev, Randy L.; Haskin, Larry A.

    1993-01-01

    We have found a 0.1 mg iron micrometeorite containing meteoritic silicate inclusions in an agglutinate from 2-2.5 cm deep in regolith core 60014. The metal is 93 percent iron, 6.5 percent nickel, 0.5 percent cobalt, approximately 150 ppm iridium, and less than 2 ppm gold. Although the Ir concentration is higher than that reported previously for any iron meteorite group, it lies on the extrapolation to low Ni and high Ir concentrations of several meteorite groups on Ni,Ir plots (groups 2C,D,E, and 3AB,E,F). Tiny, subrounded silicate inclusions comprise low-Ca pyroxene (En83), olivine (FO80), and albitic and potassic feldspars, as mixtures of minerals or glasses. Minor phases include oldhamite (CaS) and, tentatively, hercynite (FeAl2O4). The inclusions have pyroxene FeO/MnO of approximately 25 and olivine FeO/MnO of 40-60. In comparison with known iron meteorites, the inclusions are most similar to those in type 2E, e.g., Weekeroo Station, Colomera, and Kodaikanal. As far as we know, this is the first observation of an iron meteorite with silicate inclusions from a lunar sample. No metal fragments with meteoritic, nonmetallic inclusions were reported in several previous, exhaustive studies of soil particles.

  15. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  16. Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis.

    PubMed

    Zhang, Shouwei; Gao, Huihui; Li, Jiaxing; Huang, Yongshun; Alsaedi, Ahmed; Hayat, Tasawar; Xu, Xijin; Wang, Xiangke

    2017-01-05

    Metal silicates have attracted extensive interests due to their unique structure and promising properties in adsorption and catalysis. However, their applications were hampered by the complex and expensive synthesis. In this paper, three-dimensional (3D) hierarchical flower-like metal silicate, including magnesium silicate, zinc silicate, nickel silicate and cobalt silicate, were for the first time prepared by using rice husks as a sustainable silicon source. The flower-like morphology, interconnected ultrathin nanosheets structure and high specific surface area endowed them with versatile applications. Magnesium silicate was used as an adsorbent with the maximum adsorption capacities of 557.9, 381.3, and 482.8mg/g for Pb 2+ , tetracycline (TC), and UO 2 2+ , respectively. Ni nanoparticles/silica (Ni NPs/SiO 2 ) exhibited high catalytic activity and good stability for 4-nitrophenol (4-NP) reduction within only ∼160s, which can be attributed to the ultra-small particle size (∼6.8nm), good dispersion and high loading capacity of Ni NPs. Considering the abundance and renewability of rice husks, metal silicate with complex architecture can be easily produced at a large scale and become a sustainable and reliable resource for multifunctional applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Thermochemistry of dense hydrous magnesium silicates

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  18. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya

    USGS Publications Warehouse

    Eugster, H.P.; Jones, B.F.

    1968-01-01

    Sodium-aluminum silicate gels are found in surftcial deposits as thick as 5 centimeters in the Magadi area of Kenya. Chemical data indicate they are formed by the interaction of hot alkaline springwaters (67?? to 82??C; pH, about 9) with alkali trachyte flows and their detritus, rather than by direct precipitation. In the process, Na2O is added from and silica is released to the saline waters of the springs. Algal mats protect the gels from erosion and act as thermal insulators. The gels are probably yearly accumulates that are washed into the lakes during floods. Crystallization of these gels in the laboratory yields analcite; this fact suggests that some analcite beds in lacustrine deposits may have formed from gels. Textural evidence indicates that cherts of rocks of the Pleistocene chert series in the Magadi area may have formed from soft sodium silicate gels. Similar gels may have acted as substrates for the accumulation and preservation of prebiological organic matter during the Precambrian.

  19. Cobalt silicate hierarchical hollow spheres for lithium-ion batteries.

    PubMed

    Yang, Jun; Guo, Yuanyuan; Zhang, Yufei; Sun, Chencheng; Yan, Qingyu; Dong, Xiaochen

    2016-09-09

    In this paper, the synthesis of cobalt silicate novel hierarchical hollow spheres via a facile hydrothermal method is presented. With a unique hollow structure, the Co2SiO4 provides a large surface area, which can shorten the lithium ions diffusion length and effectively accommodate the volumetic variation during the lithiation/de-lithiation process. Serving as an anode material in lithium-ion battery application, the Co2SiO4 electrode demonstrates a high reversible specific capacity (first-cycle charge capacity of 948.6 mAh g(-1) at 100 mA g(-1)), a cycling durability (specific capacity of 791.4 mAh g(-1) after 100 cycles at 100 mA g(-1)), and a good rate capability (specific capacity of 349.4 mAh g(-1) at 10 A g(-1)). The results indicate that the cobalt silicate hierarchical hollow sphere holds the potential applications in energy storage electrodes.

  20. Lunar and Planetary Science XXXV: Terrestrial Planets: Building Blocks and Differentiation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Terrestrial Planets: Building Blocks and Differentiation: included the following topics:Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS; Meteoritic Constraints on Collision Rates in the Primordial Asteroid Belt and Its Origin; New Constraints on the Origin of the Highly Siderophile Elements in the Earth's Upper Mantle; Further Lu-Hf and Sm-Nd Isotopic Data on Planetary Materials and Consequences for Planetary Differentiation; A Deep Lunar Magma Ocean Based on Neodymium, Strontium and Hafnium Isotope Mass Balance Partial Resetting on Hf-W System by Giant Impacts; On the Problem of Metal-Silicate Equilibration During Planet Formation: Significance for Hf-W Chronometry ; Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon; Siderophile Element Abundances in Fe-S-Ni-O Melts Segregated from Partially Molten Ordinary Chondrite Under Dynamic Conditions; Activity Coefficients of Silicon in Iron-Nickel Alloys: Experimental Determination and Relevance for Planetary Differentiation; Reinvestigation of the Ni and Co Metal-Silicate Partitioning; Metal/Silicate Paritioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition; and Closure of the Fe-S-Si Liquid Miscibility Gap at High Pressure and Its Implications for Planetary Core Formation.

  1. Absorption spectra of 4f electron transitions of neodymium and erbium with 8-hydroxyquinoline-5-sulphonic acid and diethylamine systems and its analytical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Naixing; Qi Ping

    1992-06-01

    In this paper the absorption spectra of 4f electron transitions of the systems of neodymium and erbium with 8-hydroxyquinoline-5-sulphonic acid and diethylamine have been studied by normal and third-derivative spectrophotometry. Their molar absorptivities are 80 1.mol{sup {minus}1}.cm{sup {minus}1} for neodymium and 65 1.mol{sup {minus}1}.cm{sup {minus}1} for erbium. Use of the third-derivative spectra, eliminates the interference by other rare earths and increases the sensitivity for Nd and Er. The derivative molar absorptivities are 390 1.mol{sup {minus}1}.cm{sup {minus}1} for Nd and 367 1.mol{sup {minus}1}.cm{sup {minus}1} for Er. The calibration graphs were linear up to 11.8 {mu}g/ml of Nd and 12.3 {mu}g/ml ofmore » Er, respectively. The relative standard deviations evaluated from eleven independent determinations of 7.2 {mu}g/ml (for Nd) and 8.3 {mu}g/ml (for Er) are 1.3% and 1.4%, respectively. The detection limits are 0.2 {mu}g/ml for Nd and 0.3 {mu}g/ml for Er. The method has been developed for determining those two elements in mixture of lanthanides by means of the third-derivative spectra and the analytical results obtained are satisfactory.« less

  2. Origin of silicic crust by rifting and bimodal plume volcanism in the Afar Depression

    NASA Astrophysics Data System (ADS)

    Ghatak, A.; Basu, A. R.; Ebinger, C. J.

    2010-12-01

    The youngest mantle plume province worldwide occurs at the seismically and volcanically active East African - Red Sea - Gulf of Aden (Afar) triple junction, where one or more upwellings has impinged the thick cratonic lithosphere since ~45 Ma. A spectacular example of magmatism in the Afar depression is seen in the present to < 2 Ma old bimodal fissural mafic and peralkaline silicic eruptions in the ~60 km-long Dabbahu-Manda Hararo (DMH) Rift. In this study we report major, trace elements, and Nd-Sr-Pb isotopes in recent basaltic and silicic rocks originating from the center of the DMH rift segment, exposed along the rift axis and flanks of this segment. The rare earth element (REE) patterns of the silicic rocks and basalts are different in two significant ways: (1) the silicic rocks show a prominent positive Ce-anomaly that is extremely rare in volcanic rocks; and (2) this positive Ce-anomaly is accompanied by a strong negative Eu-anomaly. These anomalies are absent in the basaltic rocks. The positive Ce-anomaly is probably due to interaction in a magma chamber, similar in composition to the basalts, with deep saline aquifer or brines that typically show positive Ce-anomaly. The REE patterns of the two lava groups are interpreted to be due to fractional crystallization of plagioclase in a magma chamber similar in REE composition as the basalts that erupted in the DMH segments. We interpret the silicic rocks to be residues after ~20% fractional crystallization of plagioclase in the DMH basalts. The Nd-Pb isotopic composition of the basalts and rhyolites of the DMH are similar to the Ethiopian plume as defined by the ~30 Ma old Ethiopian flood basalts. Based on their high 3He/4He ratios (R/RA ~30) and Nd-Sr-Pb isotopic data, the source of the Ethiopian plume is generally believed to be in the lower mantle. Therefore, the similarity of the Nd-Pb and Pb-Pb isotopic variations between the Ethiopian plume and the DMH lavas indicates that these lavas were sourced from

  3. Black silicate paints: Formulation and performance data on OSO-H

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.; Shai, C. M.

    1973-01-01

    Formulations and general procedures are given for making and applying space environmentally, as well as atmospherically stable black silicate paints. Compositions are given which meet spacecraft self-contamination requirements, have excellent heat resistance, and are strongly semiconductive.

  4. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  5. The Effect of Specific Surface Area of Chitin-Metal Silicate Coprocessed Excipient on the Chemical Decomposition of Cefotaxime Sodium.

    PubMed

    Al-Nimry, Suhair S; Alkhamis, Khouloud A; Alzarieni, Kawthar Z

    2017-02-01

    Chitin-metal silicates are multifunctional excipients used in tablets. Previously, a correlation between the surface acidity of chitin-calcium and chitin-magnesium silicate and the chemical decomposition of cefotaxime sodium was found but not with chitin-aluminum silicate. This lack of correlation could be due to the catalytic effect of silica alumina or the difference in surface area of the excipients. The objective of this study was to investigate the effect of the specific surface area of the excipient on the chemical decomposition of cefotaxime sodium in the solid state. Chitin was purified and coprocessed with different metal silicates to prepare the excipients. The specific surface area was determined using gas adsorption. The chemical decomposition was studied at constant temperature and relative humidity. Also, the degradation in solution was studied. A correlation was found between the degradation rate constant and the surface area of chitin-aluminum and chitin-calcium silicate but not with chitin-magnesium silicate. This was due to the small average pore diameter of this excipient. Also, the degradation in solution was slower than in solid state. In conclusion, the stability of cefotaxime sodium was dependent on the surface area of the excipient in contact with the drug. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water.

    PubMed

    Wang, Wenbo; Tian, Guangyan; Zong, Li; Zhou, Yanmin; Kang, Yuru; Wang, Qin; Wang, Aiqin

    2017-01-01

    A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m 2 /g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O - groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC. Copyright © 2016. Published by Elsevier B.V.

  7. Measuring DAC metal-silicate partitioning experiments by electron microprobe: Thickness, fluorescence, and oxide spheres

    NASA Astrophysics Data System (ADS)

    Jennings, E. S.; Wade, J.; Laurenz, V.; Kearns, S.; Buse, B.; Rubie, D. C.

    2017-12-01

    The process by which the Earth's core segregated, and its resulting composition, can be inferred from the composition of the bulk silicate Earth if the partitioning of various elements into metal at relevant conditions is known. As such, partitioning experiments between liquid metal and liquid silicate over a wide range of pressures and temperatures are frequently performed to constrain the partitioning behaviour of many elements. The use of diamond anvil cell experiments to access more extreme conditions than those achievable by larger volume presses is becoming increasingly common. With a volume several orders of magnitude smaller than conventional samples, these experiments present unique analytical challenges. Typically, sample preparation is performed by FIB as a 2 mm thick slice, containing a small iron ball surrounded by a layer of silicate melt. This implies that analyses made by EPMA will be made near boundaries where fluoresced X-rays from the neighbouring phase may be significant. By measuring and simulating synthetic samples, we investigate thickness and fluorescence limitations. We find that for typical sample geometries, a thickness of 2 μm contains the entire analytical volume for standard 15kV analyses of metals. Fluoresced X-rays from light elements into the metal are below detection limits if there is no direct electron interaction with the silicate. Continuum fluorescence from higher atomic number elements from the metal into silicate poses significant difficulties [1]. This can cause metal-silicate partition coefficients of siderophile elements to be underestimated. Finally, we examine the origin and analytical consequences of oxide-rich exsolutions that are frequently found in the metal phase of such experiments. These are spherical with diameters of 100 nm and can be sparsely to densely packed. They appear to be carbon-rich and result in low analytical totals by violating the assumption of homogeneity in matrix corrections (e.g. φρz), which

  8. COHESION OF AMORPHOUS SILICA SPHERES: TOWARD A BETTER UNDERSTANDING OF THE COAGULATION GROWTH OF SILICATE DUST AGGREGATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Hiroshi; Wada, Koji; Senshu, Hiroki

    2015-10-10

    Adhesion forces between submicrometer-sized silicate grains play a crucial role in the formation of silicate dust agglomerates, rocky planetesimals, and terrestrial planets. The surface energy of silicate dust particles is the key to their adhesion and rolling forces in a theoretical model based on contact mechanics. Here we revisit the cohesion of amorphous silica spheres by compiling available data on the surface energy for hydrophilic amorphous silica in various circumstances. It turned out that the surface energy for hydrophilic amorphous silica in a vacuum is a factor of 10 higher than previously assumed. Therefore, the previous theoretical models underestimated themore » critical velocity for the sticking of amorphous silica spheres, as well as the rolling friction forces between them. With the most plausible value of the surface energy for amorphous silica spheres, theoretical models based on the contact mechanics are in harmony with laboratory experiments. Consequently, we conclude that silicate grains with a radius of 0.1 μm could grow to planetesimals via coagulation in a protoplanetary disk. We argue that the coagulation growth of silicate grains in a molecular cloud is advanced either by organic mantles rather than icy mantles or, if there are no mantles, by nanometer-sized grain radius.« less

  9. Non-Chondritic Ni Isotope Composition of the Bulk Silicate Earth

    NASA Astrophysics Data System (ADS)

    Klaver, M.; Elliott, T.

    2018-05-01

    We present high-precision Ni isotope data of chondritic meteorites and carefully selected mantle peridotites. These data show that the Bulk Silicate Earth is ca. 90 ppm lighter than chondritic meteorites, possibly as the result of core formation.

  10. Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopcak, T., E-mail: tsopcak@imr.saske.sk; Medvecky, L.; Giretova, M.

    The composite cement mixtures were prepared by mixing brushite (B) with, the amorphous hydrated calcium silicate phosphate (CSPH) or annealed calcium silicate phosphate (CSP composed of Si-saturated hydroxyapatite, wollastonite and silica) phases and water as liquid component. The contents of the silicate-phosphate phase in composites were 10.30 and 50 wt%. The significant effect of both the Ca/P ratio and different solubility of calcium silicate phosphate component in starting cement systems on setting time and phase composition of the final composite cements was demonstrated. The compressive strength of the set cements increased with the filler addition and the highest value (~more » 48 MPa) exhibited the 50CSP/B cement composite. The final setting times of the composite cements decreased with the CSPH addition from about 25 to 17 min in 50CSHP/B and setting time of CSP/B composites was around 30 min. The higher content of silica in cements caused the precipitation of fine hydroxyapatite particles in the form of nanoneedles or thin plates perpendicularly oriented to sample surface. The analysis of in vitro cement cytotoxicity demonstrated the strong reduction in cytotoxicity of 10CSPH/B composite with time of cultivation (a low cytotoxicity after 9 days of culture) contrary to cements with higher calcium silicate-phosphate content. These results were attributed to the different surface topography of composite substrates and possible stimulation of cell proliferation by the slow continuously release of ions from 10CSPH/B cement. - Highlights: • Ca/P ratio and solubility of calcium silicate-phosphate components affect the self-setting properties of cements. • Strong relationship between the composite in vitro cytotoxicity and surface microtopography was demonstrated. • Plate-like morphology of coarser particles allowed cells to better adhere and proliferate as compared with nanoneedles.« less

  11. A search for the 10-micron silicate feature in periodic Comet Grigg-Skjellerup

    NASA Technical Reports Server (NTRS)

    Hanner, M.; Aitken, D.; Roche, P.; Whitmore, B.

    1984-01-01

    A 10-micron spectrum of periodic Comet Grigg-Skjellerup was obtained on 22 June 1982 with the UCL array spectrometer at the United Kingdom Infrared Telescope, Mauna Kea. No emission feature is obvious in the spectrum. The observed spectrum can be fit equally well by a model of small hot absorbing grains or by a composite model with less than or equal to 30 percent (3sigma) warm, 'dirty' silicate grains. The latter model is consistent with the silicate abundance in Comet Kohoutek, which did display an emission feature at 10 microns.

  12. Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate).

    PubMed

    Lendvai, László; Apostolov, Anton; Karger-Kocsis, József

    2017-10-01

    A two-step melt blending procedure was used to produce binary systems composed of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT). To improve the properties of the blends, two different layered silicates, viz. bentonite (BT) and organically modified montmorillonite (oMMT) were incorporated. First, TPS and its layered silicate nanocomposites were prepared via extrusion compounding during which starch was plasticized with glycerol and water. In the second step, PBAT was added to TPS/layered silicate to produce blends in a batch-type mixer. Mechanical and thermal properties were determined. The blends showed acceptable ductility over 50wt.% PBAT content, although at the cost of strength and stiffness. By contrast to oMMT the BT became intercalated in TPS and TPS/PBAT blends. The reinforcing effect of BT and oMMT was most prominent for the glassy states of both TPS and TPS/PBAT blends. Thermal, and thermooxidative properties were not significantly affected by the presence of layered silicates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Phosphorus Elimination at Sodium Silicate from Quartz Sand Roasted with Complexation using Chitosan-EDTA

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Suharty, N. S.; Handayani, M.; Firdiyono, F.; Sulistiyono, E.; Munawaroh, H.; Sari, P. P.; Kristiawan, Y. R.

    2018-03-01

    A phosphorus elimination from sodium silicate solution has been studied. Phosphorus elimination was performed by adding chitosan-EDTA to remove cation phosphorus. Characterization of chitosan-EDTA material was performed using FT-IR, while the decreasing level of phosphorus content was analyzed by quantitative analysis using spectrophotometer UV-Vis refers to SNI 06-6989-2004. The results showed that the content of the sodium silicate can be reduced up to 67.1% through Chitosan-EDTA complexation with phosphorus.

  14. SILICATES ON IAPETUS FROM CASSINI’S COMPOSITE INFRARED SPECTROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Cindy L.; Wray, James J.; Clark, Roger N.

    We present the first spectral features obtained from Cassini’s Composite Infrared Spectrometer (CIRS) for any icy moon. The spectral region covered by CIRS focal planes (FP) 3 and 4 is rich in emissivity features, but previous studies at these wavelengths have been limited by low signal-to-noise ratios (S/Ns) for individual spectra. Our approach is to average CIRS FP3 spectra to increase the S/N and use emissivity spectra to constrain the composition of the dark material on Iapetus. We find an emissivity feature at ∼855 cm{sup −1} and a possible doublet at 660 and 690 cm{sup −1} that do not correspondmore » to any known instrument artifacts. We attribute the 855 cm{sup −1} feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths. Silicates on the dark terrains of Saturn’s icy moons have been suspected for decades, but there have been no definitive detections until now. Serpentines reported in the literature at ambient temperature and pressure have features near 855 and 660 cm{sup −1}. However, peaks can shift depending on temperature and pressure, so measurements at Iapetus-like conditions are necessary for more positive feature identifications. As a first investigation, we measured muscovite at 125 K in a vacuum and found that this spectrum does match the emissivity feature near 855 cm{sup −1} and the location of the doublet. Further measurements are needed to robustly identify a specific silicate, which would provide clues regarding the origin and implications of the dark material.« less

  15. The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body

    NASA Astrophysics Data System (ADS)

    Steenstra, E. S.; Sitabi, A. B.; Lin, Y. H.; Rai, N.; Knibbe, J. S.; Berndt, J.; Matveev, S.; van Westrenen, W.

    2017-09-01

    We present 275 new metal-silicate partition coefficients for P, S, V, Cr, Mn, Co, Ni, Ge, Mo, and W obtained at moderate P (1.5 GPa) and high T (1683-1883 K). We investigate the effect of silicate melt composition using four end member silicate melt compositions. We identify possible silicate melt dependencies of the metal-silicate partitioning of lower valence elements Ni, Ge and V, elements that are usually assumed to remain unaffected by changes in silicate melt composition. Results for the other elements are consistent with the dependence of their metal-silicate partition coefficients on the individual major oxide components of the silicate melt composition suggested by recently reported parameterizations and theoretical considerations. Using multiple linear regression, we parameterize compiled metal-silicate partitioning results including our new data and report revised expressions that predict their metal-silicate partitioning behavior as a function of P-T-X-fO2. We apply these results to constrain the conditions that prevailed during core formation in the angrite parent body (APB). Our results suggest the siderophile element depletions in angrite meteorites are consistent with a CV bulk composition and constrain APB core formation to have occurred at mildly reducing conditions of 1.4 ± 0.5 log units below the iron-wüstite buffer (ΔIW), corresponding to a APB core mass of 18 ± 11%. The core mass range is constrained to 21 ± 8 mass% if light elements (S and/or C) are assumed to reside in the APB core. Incorporation of light elements in the APB core does not yield significantly different redox states for APB core-mantle differentiation. The inferred redox state is in excellent agreement with independent fO2 estimates recorded by pyroxene and olivine in angrites.

  16. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  17. Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids

    NASA Astrophysics Data System (ADS)

    Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna

    2011-05-01

    Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.

  18. A Non-Arrhenian Viscosity Model for Natural Silicate Melts with Applications to Volcanology

    NASA Astrophysics Data System (ADS)

    Russell, J. K.; Giordano, D.; Dingwell, D. B.

    2005-12-01

    Silicate melt viscosity is the most important physical property in volcanic systems. It governs styles and rates of flow, velocity distributions in flowing magma, rates of vesiculation, and, ultimately, sets limits on coherent(vs. fragmented or disrupted) flow. The prediction of melt viscosity over the range of conditions found on terrestrial planets remains a challenge. However, the extraordinary increase in number and quality of published measurements of melt viscosity suggests the possibility of new models. Here we review the attributes of previous models for silicate melt viscosity and, then, present a new predictive model natural silicate melts. The importance of silicate melt viscosity was recognized early [1] and culminated in 2 models for predicting silicate melt viscosity [2,3]. These models used an Arrhenian T-dependence; they were limited by a limited experimental database dominated by high-T measurements. Subsequent models have aimed to: i) extend the compositional range of Arrhenian T-dependent models [4,5]; ii) to develop non-Arrhenian models for limited ranges of composition [6,7,8], iii) to develop new strategies for modelling the composition and T-dependence of viscosity [9,10,11], and, finally, to create chemical models for the non-Arrhenian T-dependence of natural melts [12]. We present a multicomponent model for the compositional and T dependence of silicate melt viscosity based on data spanning a wide range of anhydrous melt compositions. The experimental data include micropenetration and concentric cylinder viscometry measurements covering a viscosity range of 10-1 to 1012 Pa s and a T-range from 700 to 1650°C. These published data provide a high- quality database comprising ~ 800 experimental data on 44 well-characterized melt compositions. Our model uses the Adam-Gibbs equation to capture T-dependence: log η = A + B/[T · log (T/C)] where A, B, and C are adjustable parameters that vary for different melt compositions. We assume that all

  19. 57Fe Mössbauer study of the asbestiform silicates balangeroite and carlosturanite

    NASA Astrophysics Data System (ADS)

    Deriu, Antonio; Ferraris, Giovanni; Belluso, Elena

    1994-08-01

    57FeMössbauer spectra of the two silicate minerals balangeroite (BAL) and carlosturanite (CST) have been collected at 80 and 295 K under normal and magic angle geometry. For both minerals the spectra have been fitted with two ferrous and two ferric doublets; Fe2+ accounts for 80 and 62% of Fetot in Bal and CST, respectively. The number of doublets used to fit the spectra supports the hypotheses that: (i) in the serpentine-like structure of CST iron occupies only octahedra which lie between the tetrahedral silicate strips; (ii) the octahedral framework of BAL (actually monoclinic) is satisfactorily described with an orthorhombic sub-cell.

  20. Enhancing Photovoltaic Performance Using Broadband Luminescent Down-Shifting by Combining Multiple Species of Eu-Doped Silicate Phosphors

    PubMed Central

    Shen, Yu-Tang; Liu, Jheng-Jie; You, Bang-Jin; Ho, Chun-Hung

    2017-01-01

    This paper demonstrates the application of a broadband luminescent downshifting (LDS) layer with multiple species of europium (Eu)-doped silicate phosphors using spin-on film technique to enhance the photovoltaic efficiency of crystalline silicon solar cells. The surface morphology of the deposited layer was examined using a scanning electron microscope (SEM). The chemical composition of the Eu-doped silicate phosphors was analyzed using energy-dispersive X-ray spectroscopy (EDS). The fluorescence emission of the Eu-doped silicate phosphors was characterized using photoluminescence (PL) measurements at room temperature. We also compared the optical reflectance and external quantum efficiency (EQE) response of cells with combinations of various Eu-doped phosphors species. The cell coated with two species of Eu-doped phosphors achieved a conversion efficiency enhancement (∆η) of 19.39%, far exceeding the ∆η = 15.08% of the cell with one species of Eu-doped phosphors and the ∆η = 8.51% of the reference cell with the same silicate layer without Eu-doped phosphors. PMID:29065487

  1. Enhancing Photovoltaic Performance Using Broadband Luminescent Down-Shifting by Combining Multiple Species of Eu-Doped Silicate Phosphors.

    PubMed

    Ho, Wen-Jeng; Shen, Yu-Tang; Liu, Jheng-Jie; You, Bang-Jin; Ho, Chun-Hung

    2017-10-21

    This paper demonstrates the application of a broadband luminescent downshifting (LDS) layer with multiple species of europium (Eu)-doped silicate phosphors using spin-on film technique to enhance the photovoltaic efficiency of crystalline silicon solar cells. The surface morphology of the deposited layer was examined using a scanning electron microscope (SEM). The chemical composition of the Eu-doped silicate phosphors was analyzed using energy-dispersive X-ray spectroscopy (EDS). The fluorescence emission of the Eu-doped silicate phosphors was characterized using photoluminescence (PL) measurements at room temperature. We also compared the optical reflectance and external quantum efficiency (EQE) response of cells with combinations of various Eu-doped phosphors species. The cell coated with two species of Eu-doped phosphors achieved a conversion efficiency enhancement (∆ η ) of 19.39%, far exceeding the ∆ η = 15.08% of the cell with one species of Eu-doped phosphors and the ∆ η = 8.51% of the reference cell with the same silicate layer without Eu-doped phosphors.

  2. Deglacial diatom production in the tropical North Atlantic driven by enhanced silicic acid supply

    NASA Astrophysics Data System (ADS)

    Hendry, Katharine R.; Gong, Xun; Knorr, Gregor; Pike, Jennifer; Hall, Ian R.

    2016-03-01

    Major shifts in ocean circulation are thought to be responsible for abrupt changes in temperature and atmospheric CO2 during the last deglaciation, linked to variability in meridional heat transport and deep ocean carbon storage. There is also widespread evidence for shifts in biological production during these times of deglacial CO2 rise, including enhanced diatom production in regions such as the tropical Atlantic. However, it remains unclear as to whether this diatom production was driven by enhanced wind-driven upwelling or density-driven vertical mixing, or by elevated thermocline concentrations of silicic acid supplied to the surface at a constant rate. Here, we demonstrate that silicic acid supply at depth in the NE Atlantic was enhanced during the abrupt climate events of the deglaciation. We use marine sediment archives to show that an increase in diatom production during abrupt climate shifts could only occur in regions of the NE Atlantic where the deep supply of silicic acid could reach the surface. The associated changes are indicative of enhanced regional wind-driven upwelling and/or weakened stratification due to circulation changes during phases of weakened Atlantic meridional overturning. Globally near-synchronous pulses of diatom production and enhanced thermocline concentrations of silicic acid suggest that widespread deglacial surface-driven breakdown of stratification, linked to changes in atmospheric circulation, had major consequences for biological productivity and carbon cycling.

  3. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus

    2014-11-01

    A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. High-resolution separation of neodymium and dysprosium ions utilizing extractant-impregnated graft-type particles.

    PubMed

    Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi

    2018-01-19

    An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Emodin-Loaded Magnesium Silicate Hollow Nanocarriers for Anti-Angiogenesis Treatment through Inhibiting VEGF

    PubMed Central

    Ren, Hua; Zhu, Chao; Li, Zhaohui; Yang, Wei; Song, E

    2014-01-01

    The applications of anti-VEGF (vascular endothelial growth factor) treatment in ophthalmic fields to inhibit angiogenesis have been widely documented in recent years. However, the hydrophobic nature of many agents makes its delivery difficult in practice. Therefore, the aim of the present study was to introduce a new kind of hydrophobic drug carrier by employing nanoparticles with a hollow structure inside. Followed by the synthesis and characterization of magnesium silicate hollow spheres, cytotoxicity was evaluated in retina capillary endothelial cells. The loading and releasing capacity were tested by employing emodin, and the effect on VEGF expression was performed at the gene and protein level. Finally, an investigation on angiogenesis was carried on fertilized chicken eggs. The results indicated that the magnesium silicate nanoparticles had low toxicity. Emodin–MgSiO3 can inhibit the expression of both VEGF gene and protein effectively. Angiogenesis of eggs was also reduced significantly. Based on the above results, we concluded that magnesium silicate hollow spheres were good candidates as drug carriers with enough safety. PMID:25250911

  6. Dehydroxylated clay silicates on Mars: Riddles about the Martian regolith solved with ferrian saponites

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Clay silicates, resulting from the chemical weathering of volcanic glasses and basaltic rocks of Mars, are generally believed to be major constituents of the martian regolith and atmospheric dust. Because little attention has been given to the role, if any, of Mg-bearing clay silicates on the martian surface, the crystal chemistry, stability, and reactivity of Mg-Fe smectites are examined. Partially dehydroxylated ferrian saponites are suggested to be major constituents of the surface of Mars, regulating several properties of the regolith.

  7. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material

    NASA Astrophysics Data System (ADS)

    Elalaily, Nagia A.; Abou-Hussien, Eman M.; Saad, Ebtisam A.

    2016-12-01

    Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting-annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.

  8. A comparative study of the continuum and emission characteristics of comet dust. 1: Are the silicates in Comet Halley and Kohoutek amorphous or crystalline

    NASA Technical Reports Server (NTRS)

    Nansheng, Zhao; Greenberg, J. Mayo; Hage, J. I.

    1989-01-01

    A continuum emission was subtracted from the 10 micron emission observed towards comets Halley and Kohoutek. The 10 micron excess emissions were compared with BN absorption and laboratory amorphous silicates. The results show that cometary silicates are predominantly amorphous which is consistent with the interstellar dust model of comets. It is concluded that cometary silicates are predominantly similar to interstellar silicates. For a periodic comet like Comet Halley, it is to be expected that some of the silicate may have been heated enough to convert to crystalline form. But apparently, this is only a small fraction of the total. A comparison of Comet Halley silicates with a combination of the crystalline forms observed in interplanetary dust particles (IPDs) seemed reasonable at first sight (Walker 1988, Brownlee 1988). But, if true, it would imply that the total silicate mass in Comet Halley dust is lower than that given by mass spectrometry data of Kissel and Krueger (1987). They estimated m sub org/m sub sil = 0.5 while using crystalline silicate to produce the 10 micron emission would give m sub org/m sub sil = 5 (Greenberg et al. 1988). This is a factor of 10 too high.

  9. Optical characteristics of novel bulk and nanoengineered laser host materials

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (<100 0C), several techniques for crystal growth have been developed. The hexagonal apatite structure (space group P63/m) is characteristic of several compounds, some of which have extremely interesting and useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  10. The quality of geological information derivable from high resolution reflectance spectra - Results for mafic silicates

    NASA Technical Reports Server (NTRS)

    Cloutis, E. A.; Lambert, J.; Smith, D. G. W.; Gaffey, M. J.

    1987-01-01

    High-resolution visible and near-infrared diffuse reflectance spectra of mafic silicates can be deconvolved to yield quantitative information concerning mineral mixture properties, and the results can be directly applied to remotely sensed data. Spectral reflectance measurements of laboratory mixtures of olivine, orthophyroxene, and clinopyroxene with known chemistries, phase abundances, and particle size distributions have been utilized to develop correlations between spectral properties and the physicochemical parameters of the samples. A large number of mafic silicate spectra were measured and examined for systematic variations in spectral properties as a function of chemistry, phase abundance, and particle size. Three classes of spectral parameters (ratioed, absolute, and wavelength) were examined for any correlations. Each class is sensitive to particular mafic silicate properties. Spectral deconvolution techniques have been developed for quantifying, with varying degrees of accuracy, the assemblage properties (chemistry, phase abundance, and particle size).

  11. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    PubMed

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  12. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    PubMed

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (<5 V) pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  13. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus

    PubMed Central

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra. PMID:29584745

  14. Insights into the interfacial strengthening mechanisms of calcium-silicate-hydrate/polymer nanocomposites.

    PubMed

    Zhou, Yang; Hou, Dongshuai; Geng, Guoqing; Feng, Pan; Yu, Jiao; Jiang, Jinyang

    2018-03-28

    The mechanical properties of organic/inorganic composites can be highly dependent on the interfacial interactions. In this work, with organic polymers intercalated into the interlayer of inorganic calcium silicate hydrate (C-S-H), the primary binding phase of Portland cement, great ductility improvement is obtained for the nanocomposites. Employing reactive molecular dynamics, the simulation results indicate that strong interfacial interactions between the polymers and the substrate contribute greatly to strengthening the materials, when C-S-H/poly ethylene glycol (PEG), C-S-H/poly acrylic acid (PAA), and C-S-H/poly vinyl alcohol (PVA) were subject to uniaxial tension along different lattice directions. In the x and z direction tensile processes, the Si-OCa bonds of the C-S-H gel, which were elongated and broken to form Si-OH and Ca-OH, play a critical role in loading resistance, while the incorporation of polymers bridged the neighboring silicate sheets, and activated more the hydrolytic reactions at the interfaces to avoid strain localization, thus increasing the tensile strength and postponing the fracture. On the other hand, Si-O-Si bonds of C-S-H mainly take the load when tension was applied along the y direction. During the post-yield stage, rearrangements of silicate tetrahedra occurred to prevent rapid damage. The polymer intercalation further elongates this post-yield period by forming interfacial Si-O-C bonds, which promote rearrangements and improve the connectivity of the defective silicate morphology, significantly improving the ductility. Among the polymers, PEG exhibits the strongest interaction with C-S-H, and thus C-S-H/PEG possesses the highest ductility. We expect that the molecular-scale mechanisms interpreted here will shed new light on the stress-activated chemical interactions at the organic/inorganic interfaces, and help eliminate the brittleness of cement-based materials on a genetic level.

  15. Interactions between tectonics, silicate weathering, and climate explored with carbon cycle modeling

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Caves Rugenstein, J. K.; Ibarra, D. E.; Winnick, M.

    2017-12-01

    Earth's long-term carbon cycle is thought to benefit from a stabilizing negative feedback in the form of CO2 consumption by the chemical weathering of silicate minerals: during periods of elevated atmospheric pCO2, chemical weathering rates increase, thus consuming more atmospheric CO2 and cooling global climate, whereas during periods of low pCO2, weathering rates decrease, allowing buildup of CO2 in the atmosphere and warming. At equilibrium, CO2 consumption by silicate weathering balances volcanic CO2 degassing at a specific atmospheric pCO2 dictated by the relationship between total silicate weathering rate and pCO2: Earth's "weathering curve." We use numerical carbon cycle modeling to demonstrate that the shape and slope of the weathering curve is crucial to understanding proposed tectonic controls on pCO2 and climate. First, the shape of the weathering curve dictates the equilibrium response of the carbon cycle to changes in the rate of background volcanic/solid Earth CO2 degassing, which has been suggested to vary significantly with plate tectonic reorganizations over geologic timescales. Second, we demonstrate that if tectonic events can significantly change the weathering curve, this can act as an effective driver of pCO2 and climate on tectonic timescales by changing the atmospheric pCO2 at which silicate weathering balances a constant volcanic/solid Earth degassing rate. Finally, we review the complex interplay of environmental factors that affect modern weathering rates in the field and highlight how the resulting uncertainty surrounding the shape of Earth's weathering curve significantly hampers our ability to quantitatively predict the response of pCO2 and climate to tectonic forcing, and thus represents a substantial knowledge gap in Earth science. We conclude with strategies for closing this knowledge gap by using precise paleoclimatic reconstructions of intervals with known tectonic forcings.

  16. Recent Progress in the Development of Neodymium Doped Ceramic Yttria

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Edwards, Chris; Trivedi, Sudhir B.; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra; Kear, Bernard

    2007-01-01

    Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium doped yttria (Nd:Y2O3) is considered to be an attractive material due to its possible lasing wavelengths of aprrox.914 nm and approx.946 nm for ozone profiling. These wavelengths when frequency tripled can generate UV light at approx.305 nm and approx.315 nm, which is particularly useful for ozone sensing using differential absorption lidar technique. For practical realization of space based UV transmitter technology, ceramic Nd:Y2O3 material is considered to possess great potential. A plasma melting and quenching method has been developed to produce Nd3+ doped powders for consolidation into Nd:Y2O3 ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises of two main steps: (a) plasma melting and quenching to generate dense, and homogeneous doped metastable powders, (b) pressure assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several 1" x 1" ceramic cylinders have been produced. The infrared transmission of undoped Y2O3 ceramics was as high as approx.75% without anti-reflection coating. In the case of Nd:Y2O3 ceramics infrared transmission values of approx.50% were achieved. Furthermore, Nd:Y2O3 samples with dopant concentrations of up to approx.2 at. % were prepared without significant emission quenching.

  17. Experimental investigations of influence of pressure on the solubility of sulfur in silicate melts.

    NASA Astrophysics Data System (ADS)

    Kostyuk, Anastasia; Gorbachev, Nikolay

    2010-05-01

    Sulfide-silicate demixing of silicate melts on immiscible silicate and sulfide liquids occurs at magma sulfur saturation. This type of liquation plays an important role in geochemistry of mantle magmas, in processes of magmatic differentiation, and in ore deposit formation. The major parameter defining sulfide-silicate stratification of silicate melts is solubility of sulfur in magmas. It is considered that «solubility of sulfur» is concentration of sulfur in silicate melts. The previous researches have established positive dependence of solubility of sulphur on temperature [1, 2], melt composition [3, 4], oxidation-reduction conditions [5, 6] and our experimental data confirm it. However, available data does not give a simple answer about dependence of solubility of sulfur from pressure in modelling and natural "dry" sulfide-saturated silicate melts. The reason of difference in experiments remains not clear and further work is needed on this topic. In this paper, we report our findings on the influence of pressure on the solubility of sulfur in hydrous magnesian melts. This melts are represent by olivine basalt - picrite, coexisting with Fe-Cu-Ni sulfide melt and harzburgite (Ol+Opx) and it was investigated in a temperature range from 1200 to 1350°С and a pressure range from 0.2 to 2.5 GPa. Experiments were carried out on the piston-cylinder at Р=1-2.5GPa and in an internal-heated pressure vessels at P=0.2-0.6 GPa by a quenching technique. Our findings disagree with all previous studies demonstrating the positive [7] or negative [8, 9] influence of pressure on the solubility of sulfur in silicate melts. Our researches have shown complicated influence of pressure. Concentration of sulfur in glasses increases with increase in pressure from 0.2 to 0.6 GPa in experiments where andesite was used as a starting material. The sulfur concentration increases from 0.09 wt.% at 0.2 GPa to 0.4 wt.% at 0.6 GPa and Т=1200°С. In hydrous magnesian basalts (12-18 % MgO), we

  18. Micro-PIXE analysis of silicate reference standards

    USGS Publications Warehouse

    Czamanske, G.K.; Sisson, T.W.; Campbell, J.L.; Teesdale, W.J.

    1993-01-01

    The accuracy and precision of the University of Guelph proton microprobe have been evaluated through trace-element analysis of well-characterized silicate glasses and minerals, including BHVO-1 glass, Kakanui augite and hornblende, and ten other natural samples of volcanic glass, amphibole, pyroxene, and garnet. Using the 2.39 wt% Mo in a NIST steel as the standard, excellent precision and agreement between reported and analyzed abundances were obtained for Fe, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, and Nb. -from Authors

  19. Conductimetric determination of decomposition of silicate melts

    NASA Technical Reports Server (NTRS)

    Kroeger, C.; Lieck, K.

    1986-01-01

    A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.

  20. Venusian pancake domes: Insights from terrestrial voluminous silicic lavas and thermal modeling

    NASA Technical Reports Server (NTRS)

    Manley, Curtis R.

    1993-01-01

    The so-called 'pancake' domes, and several other volcanoes on Venus, appear to represent large extrusions of silicic lava. Similar voluminous rhyolite lava flows, often associated with mantle plumes, are known on Earth. Venus' high ambient temperature, and insulation by the dome's brecciated carapace, both act to prolong cooling of a dome's interior, allowing for episodic lava input over an extended period of time. Field relations and aspect ratios of terrestrial voluminous rhyolite lavas imply continuous, non-episodic growth, reflecting tapping of a large volume of dry, anatectic silicic magma. Petrogenetically, the venusian domes may be analogous to chains of small domes on Earth, which represent 'leakage' of evolved material from magma bodies fractionating from much more mafic liquids.

  1. Polyethylenimine-magadiite layered silicate sorbent for CO2 capture.

    PubMed

    Vieira, Rômulo B; Pastore, Heloise O

    2014-02-18

    This paper describes the preparation of a Layered Silicate Sorbent (LSS) for CO2 capture using the layered silicate magadiite and organo-magadiite modified with polyethylenimine (PEI). The sorbents were characterized and revealed the presence of PEI as well as its interaction with CO2 at low temperatures. The thermal stability of sorbents was confirmed by thermogravimetry experiments, and the adsorption capacity was evaluated by CO2-TPD experiments. Two kinds of PEI are present in the sorbent, one exposed PEI layer that is responsible for higher CO2 adsorption because its sites are external and another one, bulky PEI, capable of low CO2 adsorption due to the internal position of sites. The contribution of the exposed PEI layer may be increased by a previous exchange of CTA(+), but the presence of the surfactant decreased the total adsorption capacity. MAG-PEI25 reached a maximum adsorption capacity of 6.11 mmol g(-1) at 75 °C for 3 h of adsorption and showed a kinetic desorption of around 15 min at 150 °C.

  2. Premixed calcium silicate cement for endodontic applications: injectability, setting time and radiopacity.

    PubMed

    Persson, Cecilia; Engqvist, Håkan

    2011-01-01

    Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and amount of calcium sulfate (added to control the setting time) were screened using a statistical model. In the second part of the study, the liquid-to-powder ratio was optimized for cements containing three different amounts of radiopacifier. Finally, the effect of using glycerol rather than water was evaluated in terms of radiopacity. The setting time was found to increase with the amount of radiopacifier when the liquid-to-powder ratio was fixed. This was likely due to the higher density of the radiopacifier in comparison to the calcium silicate, which gave a higher liquid-to-powder ratio in terms of volume. Using glycerol rather than water to mix the cements led to a decrease in radiopacity of the cement. In conclusion, we were able to produce premixed calcium silicate cements with acceptable properties for use in endodontic applications.

  3. Identification of the man-made barium copper silicate pigments among some ancient Chinese artifacts through spectroscopic analysis.

    PubMed

    Li, Q H; Yang, J C; Li, L; Dong, J Q; Zhao, H X; Liu, S

    2015-03-05

    This article describes the complementary application of non-invasive micro-Raman spectroscopy and energy dispersive X-ray fluorescence spectrometry to the characterization of some ancient Chinese silicate artifacts. A total of 28 samples dated from fourth century BC to third century AD were analyzed. The results of chemical analysis showed that the vitreous PbO-BaO-SiO2 material was used to sinter these silicate artifacts. The barium copper silicate pigments including BaCuSi4O10, BaCuSi2O6 and BaCu2Si2O7 were widely identified from colorful areas of the samples by Raman spectroscopy. In addition, other crystalline phases such as Fe2O3, BaSi2O5, BaSO4, PbCO3 and quartz were also identified. The present study provides very valuable information to trace the technical evolution of man-made barium copper silicate pigments and their close relationship with the making of ancient PbO-BaO-SiO2 glaze and glass. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Identification of the man-made barium copper silicate pigments among some ancient Chinese artifacts through spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Li, Q. H.; Yang, J. C.; Li, L.; Dong, J. Q.; Zhao, H. X.; Liu, S.

    2015-03-01

    This article describes the complementary application of non-invasive micro-Raman spectroscopy and energy dispersive X-ray fluorescence spectrometry to the characterization of some ancient Chinese silicate artifacts. A total of 28 samples dated from fourth century BC to third century AD were analyzed. The results of chemical analysis showed that the vitreous PbO-BaO-SiO2 material was used to sinter these silicate artifacts. The barium copper silicate pigments including BaCuSi4O10, BaCuSi2O6 and BaCu2Si2O7 were widely identified from colorful areas of the samples by Raman spectroscopy. In addition, other crystalline phases such as Fe2O3, BaSi2O5, BaSO4, PbCO3 and quartz were also identified. The present study provides very valuable information to trace the technical evolution of man-made barium copper silicate pigments and their close relationship with the making of ancient PbO-BaO-SiO2 glaze and glass.

  5. Computational and experimental studies of iron-bearing carbonates and silicate glasses at lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Jackson, J. M.; Asimow, P. D.; Sturhahn, W.; Rossman, G. R.; Roskosz, M.

    2017-12-01

    Decomposition of carbonates may be responsible for creating silicate melts within the lower mantle by lowering the melting temperature of surrounding rock. Identifying and characterizing the stability of carbonates is therefore a necessary step towards understanding the transport of carbon in Earth's interior. Dolomite is one of the major mineral forms in which carbon is subducted into the Earth's mantle. Although iron-free dolomite is expected to break down upon compression, high-pressure polymorphs of iron-bearing dolomite may resist decomposition. Using a genetic algorithm that predicts crystal structures, we found a monoclinic phase with space group C2/c that has a lower energy than all previously reported dolomite structures at pressures above 15 GPa, where the substitution of iron for magnesium stabilizes monoclinic dolomite at certain pressures of the lower mantle. Thus, an iron-bearing dolomite polymorph may be an important carbon carrier in regions of Earth's lower mantle. The depth at which carbonates will decompose is dependent on the age, temperature and density of subducting slabs. Decarbonation reactions may lower the melting temperature of surrounding rocks to produce silicate melts. In regions of the mantle where silicate melts may exist, it is important to understand the physical properties and dynamic behavior of the melts because they affect the chemical and thermal evolution of its interior. Composition, degree of polymerization, and iron's spin state affect such properties. The behavior of iron in silicate melts is poorly understood but, in some cases, may be approximated by iron-bearing glasses. We measured the hyperfine parameters of iron-bearing rhyolitic and basaltic glasses up to 120 GPa and 100 GPa, respectively, in a neon pressure medium using time-domain synchrotron Mössbauer spectroscopy. The spectra for rhyolitic and basaltic glasses are well explained by three high-spin Fe2+-like sites with distinct quadrupole splittings, reflecting

  6. Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai

    2017-09-01

    The results of the Labeled Release and the Gas Exchange experiments conducted on Mars by the Viking Landers show that compounds in the Martian soil can cause oxidation of organics and a release of oxygen in the presence of water. Several sources have been proposed for the oxidizing compounds, but none has been validated in situ and the cause of the observed oxidation has not been resolved. In this study, laboratory simulations of saltation were conducted to examine if and under which conditions wind abrasion of silicates, a process that is common on the Martian surface, can give rise to oxidants in the form of hydrogen peroxide (H2O2) and hydroxyl radicals (ṡOH). We found that silicate samples abraded in simulated Martian atmospheres gave rise to a significant production of H2O2 and ṡOH upon contact with water. Our experiments demonstrated that abraded silicates could lead to a production of H2O2 facilitated by atmospheric O2 and inhibited by carbon dioxide. Furthermore, during simulated saltation the silicate particles became triboelectrically charged and at pressures similar to the Martian surface pressure we observed glow discharges. Electrical discharges can cause dissociation of CO2 and through subsequent reactions lead to a production of H2O2. These results indicate that the reactions linked to electrical discharges are the dominant source of H2O2 during saltation of silicates in a simulated Martian atmosphere, given the low pressure and the relatively high concentration of CO2. Our experiments provide evidence that wind driven abrasion could enhance the reactivity of the Martian soil and thereby could have contributed to the oxidation of organic compounds and the O2 release observed in the Labeled Release and the Gas Exchange experiments. Furthermore, the release of H2O2 and ṡOH from abraded silicates could have a negative effect on the persistence of organic compounds in the Martian soil and the habitability of the Martian surface.

  7. Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen

    NASA Astrophysics Data System (ADS)

    Peate, Ingrid Ukstins; Baker, Joel A.; Al-Kadasi, Mohamed; Al-Subbary, Abdulkarim; Knight, Kim B.; Riisager, Peter; Thirlwall, Matthew F.; Peate, David W.; Renne, Paul R.; Menzies, Martin A.

    2005-12-01

    A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ˜850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small

  8. Optical properties of silicates in the far ultraviolet

    NASA Technical Reports Server (NTRS)

    Lamy, P. L.

    1978-01-01

    Near-normal incidence reflectance measurements in the interval 1026-1640 A were performed on four silicates already studied in the visible and infrared. A Kramers-Kronig analysis of these data is used to calculate the complex index of refraction m = n - ik. New transmission measurements improve the determination of k in the interval 2500-4500 A, except for andesite, which is more opaque than had been previously observed.

  9. VARIATIONS OF THE 10 mum SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F., E-mail: jbary@colgate.ed, E-mail: jml2u@virginia.ed, E-mail: mfs4n@virginia.ed

    2009-11-20

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 mum silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolutionmore » coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.« less

  10. Properties of zirconium silicate and zirconium-silicon oxynitride high-k dielectric alloys for advanced microelectronic applications: Chemical and electrical characterizations

    NASA Astrophysics Data System (ADS)

    Ju, Byongsun

    2005-11-01

    As the microelectronic devices are aggressively scaled down to the 1999 International Technology Roadmap, the advanced complementary metal oxide semiconductor (CMOS) is required to increase packing density of ultra-large scale integrated circuits (ULSI). High-k alternative dielectrics can provide the required levels of EOT for device scaling at larger physical thickness, thereby providing a materials pathway for reducing the tunneling current. Zr silicates and its end members (SiO2 and ZrO2) and Zr-Si oxynitride films, (ZrO2)x(Si3N 4)y(SiO2)z, have been deposited using a remote plasma-enhanced chemical vapor deposition (RPECVD) system. After deposition of Zr silicate, the films were exposed to He/N2 plasma to incorporate nitrogen atoms into the surface of films. The amount of incorporated nitrogen atoms was measured by on-line Auger electron spectrometry (AES) as a function of silicate composition and showed its local minimum around the 30% silicate. The effect of nitrogen atoms on capacitance-voltage (C-V) and leakage-voltage (J-V) were also investigated by fabricating metal-oxide-semiconductor (MOS) capacitors. Results suggested that incorporating nitrogen into silicate decreased the leakage current in SiO2-rich silicate, whereas the leakage increased in the middle range of silicate. Zr-Si oxynitride was a pseudo-ternary alloy and no phase separation was detected by x-ray photoelectron spectroscopy (XPS) analysis up to 1100°C annealing. The leakage current of Zr-Si oxynitride films showed two different temperature dependent activation energies, 0.02 eV for low temperature and 0.3 eV for high temperature. Poole-Frenkel emission was the dominant leakage mechanism. Zr silicate alloys with no Si3N4 phase were chemically separated into the SiO2 and ZrO2 phase as annealed above 900°C. While chemical phase separation in Zr silicate films with Si 3N4 phase (Zr-Si oxynitride) were suppressed as increasing the amount of Si3N4 phase due to the narrow bonding network m Si3

  11. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Ziegler, Karen; Young, Edward D.; Ricolleau, Angele; Schauble, Edwin A.; Fei, Yingwei

    2009-10-01

    Stable isotope fractionation amongst phases comprising terrestrial planets and asteroids can be used to elucidate planet-forming processes. To date, the composition of the Earth's core remains largely unknown though cosmochemical and geophysical evidence indicates that elements lighter than iron and nickel must reside there. Silicon is often cited as a light element that could explain the seismic properties of the core. The amount of silicon in the core, if any, can be deduced from the difference in 30Si/ 28Si between meteorites and terrestrial rocks if the Si isotope fractionation between silicate and Fe-rich metal is known. Recent studies (e.g., [Georg R.B., Halliday A.N., Schauble E.A., Reynolds B.C., 2007. Silicon in the Earth's core. Nature 447 (31), 1102-1106.]; [Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., Reynolds, B. C., 2009. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth Planet. Sci. Lett. 287, 77-85.]) showing (sometimes subtle) differences between 30Si/ 28Si in meteorites and terrestrial rocks suggest that Si missing from terrestrial rocks might be in the core. However, any conclusion based on Earth-meteorite comparisons depends on the veracity of the 30Si/ 28Si fractionation factor between silicates and metals at appropriate conditions. Here we present the first direct experimental evidence that silicon isotopes are not distributed uniformly between iron metal and rock when equilibrated at high temperatures. High-precision measurements of the silicon isotope ratios in iron-silicon alloy and silicate equilibrated at 1 GPa and 1800 °C show that Si in silicate has higher 30Si/ 28Si than Si in metal, by at least 2.0‰. These findings provide an experimental foundation for using isotope ratios of silicon as indicators of terrestrial planet formation processes. They imply that if Si isotope equilibrium existed during segregation of Earth

  12. Chronology and Petrology of Silicates From IIE Iron Meteorites: Evidence of a Complex Parent Body Evolution

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Garrison, Daniel H.; McCoy, Timothy J.

    1999-01-01

    IIE iron meteorites contain silicate inclusions whose characteristics suggest a parent body similar to that of H-chondrites. However, these silicates show a wide range of alteration, ranging from Netschadvo and Techado, whose inclusions are little altered. to highly differentiated silicates like-those in Kodaikanal, Weekeroo Station and Colomera, which have lost metal and sulfur and are enriched in feldspar. We find these inclusions to show varying degrees of shock alteration. Because only a limited amount of data on - isotopic ages of HE silicates were available, we made Ar-39 - Ar-40 age determinations of Watson, Techado, miles Colomera, and Sombrerete. Watson has an Ar-Ar age of 3.653 +/- 0.012 Gyr, similar to previously reported ages for Kodaikanal and Netschadvo. We suggest that the various determined radiometric ages of these three meteorites were probably reset by a common impact event. The space exposure ages for these three meteorites are also similar to each other and are considerably younger than exposure ages of other IIEs. Ar-39 - Ar-40 ages inferred for the other four meteorites analyzed are considerably older than Watson and are: Techado =4.49 +/- 0.01 Gyr, Miles =4.412 +/- 0.016 Gyr, Colomera =4.469 +/- 0.012 Gyr, and Sombrerete =4.535 +/- 0.005 Gyr. These ages are in fair agreement with previously reported Rb-Sr isochron ages for Colomera and Weekeroo Station. Although several mechanisms to form HE meteorites previously were suggested, it is not obvious that a single mechanism could produce a suite of meteorites with very different degrees of silicate differentiation and with isotopic ages that differ by >0.8 Gyr. We suggest that those IIEs with older isotopic ages are a product of partial melting and differentiation within the parent body, followed by mixing of silicate and metal while both were relatively hot. Netschadvo and Watson may have formed by this same process or by impact mixing about 4.5 Gyr ago, but their isotopic ages were

  13. The opportunity of silicate product manufacturing with simultaneous pig iron reduction from slag technogenic formations

    NASA Astrophysics Data System (ADS)

    Sheshukov, O. Yu.; Lobanov, D. A.; Mikheenkov, M. A.; Nekrasov, I. V.; Egiazaryan, D. K.

    2017-09-01

    There are two main kinds of slag in modern steelmaking industry: the electric arc furnace slag (EAF slag) and ladle furnace slag (LF slag). The all known slag processing schemes provide the iron-containing component reduction while silicate component stays unprocessed. On the contrary, the silicate processing schemes doesn't provide the utilization of the iron-containing component. The present-day situation doesn't solve the problem of total slag utilization. The aim of this work is to investigate the opportunity of silicate product obtaining with simultaneous pig iron reduction from EAF and LF slags. The tests are conducted by the method of simplex-lattice design. The test samples are heated and melted under reductive conditions, slowly cooled and then analyzed by XRD methods. The experiment results prove the opportunity: the Portland clinker and pig iron can be simultaneously produced on the basis of these slags with a limestone addition.

  14. Silicic acid competes for dimethylarsinic acid (DMA) immobilization by the iron hydroxide plaque mineral goethite.

    PubMed

    Kersten, Michael; Daus, Birgit

    2015-03-01

    A surface complexation modeling approach was used to extend the knowledge about processes that affect the availability of dimethylarsinic acid (DMA) in the soil rhizosphere in presence of a strong sorbent, e.g., Fe plaques on rice roots. Published spectroscopic and molecular modeling information suggest for the organoarsenical agent to form bidentate-binuclear inner-sphere surface complexes with Fe hydroxides similar to the inorganic As oxyanions. However, since also the ubiquitous silicic acid oxyanion form the same bidentate binuclear surface complexes, our hypothesis was that it may have an effect on the adsorption of DMA by Fe hydroxides in soil. Our experimental batch equilibrium data show that DMA is strongly adsorbed in the acidic pH range, with a steep adsorption edge in the circumneutral pH region between the DMA acidity constant (pKa=6.3) and the point of zero charge value of the goethite adsorbent (pHpzc=8.6). A 1-pK CD-MUSIC surface complexation model was chosen to fit the experimental adsorption vs. pH data. The same was done for silicic acid batch equilibrium data with our goethite adsorbent. Both model parameters for individual DMA and silicic acid adsorption were then merged into one CD-MUSIC model to predict the binary DMA+Si adsorption behavior. Silicic acid (500 μM) was thus predicted by the model to strongly compete for DMA with up to 60% mobilization of the latter at a pH6. This model result could be verified subsequently by experimental batch equilibrium data with zero adjustable parameters. The thus quantified antagonistic relation between DMA and silicic acid is discussed as one of factors to explain the increase of the DMA proportion in rice grains as observed upon silica fertilization of rice fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The Origin of Silicic Arc Crust - Insights from the Northern Pacific Volcanic Arcs through Space and Time

    NASA Astrophysics Data System (ADS)

    Straub, S. M.; Kelemen, P. B.

    2016-12-01

    The remarkable compositional similarities of andesitic crust at modern convergent margins and the continental crust has long evoked the hypothesis of similar origins. Key to understanding either genesis is understanding the mode of silica enrichment. Silicic crust cannot be directly extracted from the upper mantle. Hence, in modern arcs, numerous studies - observant of the pervasive and irrefutable evidence of melt mixing - proposed that arc andesites formed by mixing of mantle-derived basaltic melts and fusible silicic material from the overlying crust. Mass balance requires the amount of silicic crust in such hybrid andesites to be on the order to tens of percent, implying that their composition to be perceptibly influenced by the various crustal basements. In order to test this hypothesis, major and trace element compositions of mafic and silicic arc magmas with arc-typical low Ce/Pb< 10 of Northern Pacific arcs (Marianas through Mexico) were combined with Pb isotope ratios. Pb isotope ratios are considered highly sensitive to crustal contamination, and hence should reflect the variable composition of the oceanic and continental basement on which these arcs are constructed. In particular, in thick-crust continental arcs where the basement is isotopically different from the mantle and crustal assimilation thought to be most prevalent, silicic magmas must be expected to be distinct from those of the associated mafic melts. However, in a given arc, the Pb isotope ratios are constant with increasing melt silica regardless of the nature of the basement. This observation argues against a melt origin of silicic melts from the crustal basement and suggest them to be controlled by the same slab flux as their co-eval mafic counterparts. This inference is validated by the spatial and temporal pattern of arc Pb isotope ratios along the Northern Pacific margins and throughout the 50 million years of Cenozoic evolution of the Izu Bonin Mariana arc/trench system that are can

  16. UV irradiation-induced Raman spectra changes in lead silicate glasses

    NASA Astrophysics Data System (ADS)

    Jia, Hongzhi; Chen, Guanghui; Wang, Wencheng

    2006-12-01

    The Raman spectra for a series of lead silicate glasses with different PbO content before and after irradiation with different energy density by the frequency-quadrupled output of a Q-switched YAG laser (266 nm, 10 Hz repetition rate) were measured. The intensity of Pb-O band near 140 cm -1 in the Raman spectra decreases after UV irradiation and no new band appears in the Raman spectra. Exposed to the UV beam with high energy density (150 mJ/cm 2), although the total dose is smaller than the dose with low energy density (50 mJ/cm 2), the intensity of the 140 cm -1 band drops heavilier than exposed to the UV beam with low energy density. This shows that the UV irradiation can cause the broken of Pb-O bond in lead silicate glasses and the broken of Pb-O bond is related to the energy density of UV beam.

  17. Reprobing the mechanism of negative thermal expansion in siliceous faujasite

    DOE PAGES

    Attfield, Martin P.; Feygenson, Mikhail; Neuefeind, Joerg C.; ...

    2016-02-11

    A combination of Rietveld refinement and PDF analysis of total neutron scattering data are used to provide further insight into the negative thermal expansion mechanism of siliceous faujasite. The negative thermal expansion mechanism of siliceous faujasite is attributed to the transverse vibrations of bridging oxygen atoms resulting in the coupled librations of the SiO 4 tetrahedra. The constituent SiO 4 tetrahedra are revealed to expand in size with temperature which is a behaviour that has not been determined directly previously and they are also shown to undergo some distortion as temperature is increased. However, these distortions are not distinct enoughmore » in any geometric manner for the average behaviour of the SiO 4 tetrahedra not to be considered as that of a rigid units. The work further displays the benefits of using total scattering experiments to unveil the finer details of dynamic thermomechanical processes within crystalline materials.« less

  18. Plasma-Sprayed Fine-grained Zirconium Silicate and Its Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Pala, Z.; Nevrlá, B.; Neufuss, K.

    2017-05-01

    The article is focused on selected dielectric and electrical properties of ZrSiO4, which was plasma sprayed by a water-stabilized plasma system. A combination of two feeding distances and three spray distances was utilized for spraying and the structure and properties of samples evaluated. The coatings were tested in alternating electric field to determine capacity and loss factor with the frequency from 100 Hz to 100 kHz. Relative permittivity was calculated from the capacity. Volume resistivity and dielectric strength of ZrSiO4 were measured in a direct current regime. The aim was to test electrically this natural silicate material in the form of plasma-sprayed deposits. Microstructure was characterized by relatively large and non-globular pores. Crystallites were very small, about 10-20 nm. Dielectric losses were small, resistivity as well as strength relatively high. This silicate ceramic was recognized to be prospective for electrical engineering.

  19. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samplesmore » that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.« less

  20. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder