Science.gov

Sample records for neodymium silicates

  1. Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Majerus, O.; Loiseau, P.; Bardez, I.; Baffier, N.; Dussossoy, J. L.

    2006-08-01

    Glass-ceramics containing neodymium-rich crystalline phases can be obtained by crystallization of silicate glasses (nucleation + crystal growth heat treatments) or by controlled cooling of melts. Such materials could be envisaged as durable matrices for conditioning minor actinides- and Pu-rich nuclear wastes if the partitioning ratio of the wastes between crystalline phase and residual glass is high (principle of double containment barrier). In radioactive waste forms, Nd would be partially substituted by actinides and neutron absorbers (Gd). In this work, two silicate glass compositions leading to efficient nucleation and crystallization of either zirconolite (Ca 1- xNd xZrTi 2- xAl xO 7, x < 1) or apatite (Ca 2Nd 8Si 6O 26) in their bulk were studied as potential waste forms. The effect of the method used to prepare glass-ceramics (controlled cooling from the melt or nucleation + crystal growth from the glass) on both the microstructure and the structure of the neodymium-rich crystalline phase was studied. The highest number of zirconolite or apatite crystals in the bulk was obtained using the nucleation + crystal growth method. However, the percentage of neodymium incorporated in zirconolite crystals remained too small to make realistic the use of such materials for the conditioning of actinides in comparison with more durable bulk ceramics.

  2. Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber

    PubMed Central

    Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili

    2015-01-01

    We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850

  3. Interstitial Oxide Ion Distribution and Transport Mechanism in Aluminum-Doped Neodymium Silicate Apatite Electrolytes.

    PubMed

    An, Tao; Baikie, Tom; Orera, Alodia; Piltz, Ross O; Meven, Martin; Slater, Peter R; Wei, Jun; Sanjuán, María L; White, T J

    2016-04-01

    Rare earth silicate apatites are one-dimensional channel structures that show potential as electrolytes for solid oxide fuel cells (SOFC) due to their high ionic conductivity at intermediate temperatures (500-700 °C). This advantageous property can be attributed to the presence of both interstitial oxygen and cation vacancies, that create diffusion paths which computational studies suggest are less tortuous and have lower activation energies for migration than in stoichiometric compounds. In this work, neutron diffraction of Nd(28+x)/3AlxSi6-xO26 (0 ≤ x ≤ 1.5) single crystals identified the locations of oxygen interstitials, and allowed the deduction of a dual-path conduction mechanism that is a natural extension of the single-path sinusoidal channel trajectory arrived at through computation. This discovery provides the most thorough understanding of the O(2-) transport mechanism along the channels to date, clarifies the mode of interchannel motion, and presents a complete picture of O(2-) percolation through apatite. Previously reported crystallographic and conductivity measurements are re-examined in the light of these new findings. PMID:27015162

  4. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  5. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands: Strontium, neodymium, lead, and oxygen isotopic evidence

    SciTech Connect

    Cousens, B.L. ); Spera, F.J. ); Dobson, P.F. )

    1993-02-01

    Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from Gran Canaria, Canary Islands, provide evidence for posteruptive mobility of Rb, Sr, and O. Calculated initial [sup 87]Sr/[sup 86]Sr ratios in whole-rock samples from basaltic lavas and feldspar mineral separates from ignimbrites define a magmatic trend in the stratigraphic section, from ratios of 0.70340 at the base of the Mogan Formation to 0.70305 in the lower Fataga Formation. However, calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios in hydrated vitrophyre and devitrified matrix separates range from 0.7035 to 0.7090. [delta][sup 18]O ratios in basalts and feldspars vary little, from +5.7 to +6.1, yet range from +6.5 to +15.0 in the ignimbrite matrices. In contrast to the Sr and O isotope ratios, Pb and Nd isotope ratios are identical within analytical error in feldspars and their silicic ignimbrite matrices. Sequential leaching experiments and the oxygen data suggest that low-temperature, posteruptive interaction with meteoric water, perhaps containing a small seawater component, has modified Rb and Sr concentrations in the matrices, such that calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios are not those of the magmas when they were erupted. Mobilization of Rb and Sr must occur significantly after eurption. Nd and Pb isotope systems appear to be unaffected by this process. Therefore, [sup 87]Sr/[sup 86]Sr ratios determined by whole rock analysis of silicic rocks from hotspot-type oceanic islands are suspect and should not be incorporated into mantle tracer studies, although analysis of phenocrysts may produce useful data. 40 refs., 5 figs., 3 tabs.

  6. Neodymium Magnets.

    ERIC Educational Resources Information Center

    Wida, Sam

    1992-01-01

    Uses extremely strong neodymium magnets to demonstrate several principles of physics including electromagnetic induction, Lenz's Law, domain theory, demagnetization, the Curie point, and magnetic flux lines. (MDH)

  7. Neodymium-doped glasses for waveguide lasers

    NASA Astrophysics Data System (ADS)

    Church, Kenneth H.; Zanoni, Raymond; Sapak, David L.; Hayden, Joseph S.

    1994-10-01

    We report recent results from our work on the fabrication of neodymium waveguide lasers. Several neodymium doped glasses. APG-1, LG-680, BK 7 and S 3 made by Schott Glass Technologies, Inc. were studied as candidates for use as waveguide lasers. It was found that S 3, a standard ophthalmic glass, had the best ion-exchange properties of any of the glasses studied. A waveguide laser was successfully made using the neodymium doped S 3 glass.

  8. Q-Switching in a Neodymium Laser

    ERIC Educational Resources Information Center

    Holgado, Warein; Sola, Inigo J.; Jarque, Enrique Conejero; Jarabo, Sebastian; Roso, Luis

    2012-01-01

    We present a laboratory experiment for advanced undergraduate or graduate laser-related classes to study the performance of a neodymium laser. In the experiment, the student has to build the neodymium laser using an open cavity. After that, the cavity losses are modulated with an optical chopper located inside, so the Q-switching regime is…

  9. Electrolysis of neodymium oxide. Final report for the period August 19, 1991 through February 28, 1997

    SciTech Connect

    Keller, R.; Larimer, K.T.

    1997-05-01

    The objective of this research was to develop an electrolytic process for the continuous and economic production of neodymium alloys from neodymium oxide. The electrolysis of neodymium oxide continued to show promise for implementation as a low-cost process to produce high- quality neodymium or neodymium-iron alloy.

  10. Radio-Purification of Neodymium Chloride

    SciTech Connect

    Hans, S.; Yeh, M.; Cumming, J. B.; Hahn, R. L.

    2011-04-27

    Organometallic liquid scintillator becomes one of the man detection mediums for neutrino experiment. Liquid-liquid extraction is the method of choice for loading metallic ions of interest into the organic solvents at BNL. High purity of all starting materials is essential for the optimization of synthesis. A newly developed 'self-scavenging' technique was applied to purify undesired radioisotopes from the starting metal compound and found to effectively remove thorium and such containments from the neodymium chloride for SNO+.

  11. Quenching of neodymium fluorescence by molecular hydrogen

    SciTech Connect

    Prohaska, J.D.; Machewirth, D.P.; Snitzer, E.

    1995-04-01

    We show that the hydrogen-loading technique used to enhance a fiber`s ultraviolet photosensitivity for writing Bragg gratings can lead to quenching of the lasing ion`s fluorescence. The neodymium fluorescence and radiative lifetimes are measured for the untreated fiber, the hydrogen-loaded fiber, and the postannealed fiber. We show that postannealing can be used to remove the unreacted hydrogen molecules from the fiber laser and restore the radiative lifetime to near that of its original value.

  12. Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Banner, Jay L.

    1996-11-01

    Neodymium and strontium isotopic compositions and Sm/Nd ratios are used to constrain the sources of silicate-rich soils developed on uplifted Pleistocene coral-reef limestones on Barbados, West Indies. The geographic and geologic setting of Barbados facilitates the application of these tracers to the evaluation of the following soil sources: (1) Pleistocene reef limestone regolith, (2) Tertiary carbonate rocks, sandstones, and mudstones that are exposed in northeastern Barbados, (3) volcanic ash erupted from the Lesser Antilles arc, (4) Saharan dust transported by trade winds, and (5) fertilizer. The soils have ɛNd values that range from -6.6 to -1.9, 87Sr /86Sr values of 0.70890 to 0.71067, and Sm/Nd ratios of 0.223-0.260. The Pleistocene limestone component is the most significant source of Sr in the soils and a negligible source of Nd. Comparison of Sm and Nd concentrations and neodymium isotopic compositions of soil samples that are weathered to varying extents indicates that Sm and Nd are relatively unfractionated and retained in the soils during weathering. ɛNd and Sm/Nd variations in the soils, therefore, primarily reflect the compositions and proportions of the silicate sources. Mass balance calculations based on SmNd systematics require that the silicate soil components contain between 30-85% volcanic ash, with the remaining silicate fraction comprised of old, continentally-derived sediment. In contrast to Sm and Nd, Sr is mobilized and removed from the soils during weathering. Strontium from volcanic and carbonate sources is preferentially removed relative to continental silicate sources. The strontium isotopic compositions of the soils, therefore, reflect the combined effects of the degree of weathering and the compositions and proportions of the soil sources. Mass balance calculations indicate that at least 35-60% of the initial Sr in the soils has been removed by weathering. These results illustrate (1) the utility of radiogenic isotopes in

  13. Holmium laser pumped with a neodymium laser

    SciTech Connect

    Bowman, S.R.; Rabinovich, W.S.

    1991-07-30

    This patent describes a solid-state laser device. It comprises a holmium laser having a first host material doped with an amount of holmium ions sufficient to produce an output laser emission at about 3 {mu}m when the holmium ions in the holmium laser are pumped by a pump beam at a wavelength of about 1.1 {mu}m; and neodymium laser pump source means for supplying a pump beam to pump the holmium ions in the holmium laser at a wavelength of about 1.1 {mu}m.

  14. Neodymium-142 evidence for Hadean mafic crust.

    PubMed

    O'Neil, Jonathan; Carlson, Richard W; Francis, Don; Stevenson, Ross K

    2008-09-26

    Neodymium-142 data for rocks from the Nuvvuagittuq greenstone belt in northern Quebec, Canada, show that some rock types have lower 142Nd/144Nd ratios than the terrestrial standard (epsilon142Nd = -0.07 to -0.15). Within a mafic amphibolite unit, 142Nd/144Nd ratios correlate positively with Sm/Nd ratios and produce a 146Sm-142Nd isochron with an age of 4280(-81)(+53) million years. These rocks thus sample incompatible-element-enriched material formed shortly after Earth formation and may represent the oldest preserved crustal section on Earth. PMID:18818357

  15. Embedded of neodymium oxide nanoclusters in silica

    NASA Astrophysics Data System (ADS)

    Duhan, S.; Aghamkar, P.; Singh, M.; Kishore, N.

    2007-06-01

    The solgel process successfully prepared Nd IIO 3 / SiO II nanocomposites. After drying in air at 85°C for three days, samples were heat treated, in air, at 750, 950, 1150 and 1250°C. Characterizations were made by, Infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Mechanisms of neodymium oxide nano clusters formation in the densified silica matrix with respect to thermal treatment are discussed. XRD profiles confirm the crystallinity of the nanoclusters. The size of the nanoclusters was found in the range 15-30nm.

  16. Silicate volcanism on Io

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1986-01-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  17. Luminescence from chromium-neodymium-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Mahpoud, S.; Chamiel, N.; Weiss, A. M.; Rosenbluh, M.; Herman, A.; Shoham, A.; Lipavsky, B.; Rotman, S. R.

    1999-10-01

    Luminescence from chromium-neodymium-doped lithium niobate (LiNbO 3) was experimentally measured to determine the degree of non-radiative energy transfer between chromium and neodymium ions. Evidence is presented for two different time constants for emission from chromium ions in the material, indicating that non-radiative transfer does occur. Differences between quasi-continuous pumping and pulsed excitation are discussed.

  18. Boundary processes traced by neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Jeandel, C.; Lacan, F.

    2003-04-01

    Continental margins have been identified as preferential sites for removing of reactive elements from the ocean, on the base of U-series measurements (more specifically 231Pa/230Th). This process is called boundary scavenging (Bacon, 1988). Five years of neodymium isotopes data in water masses along the ocean margins (Indonesia, Papua New Guinea, Greenland-Scotland ridge and Labrador Sea) suggests that Nd is transferred from the sediments to the ocean but the reverse also occurs via the so-called boundary scavenging. These processes are only detectable by isotopic ratio measurements because they affect the isotopic signature of the water mass coming in contact with the margin, without changing its concentration. They can involve much higher fluxes than net input processes: for example, the modification of the AAIW signature along the Papua New Guinea slope involves exchange processes only (Lacan and Jeandel, 2001). Since we suspect that such processes not only affect the Nd oceanic chemistry but also the chemical fate of other reactive elements in the ocean, we suggest that the concept of boundary scavenging should be extended to "boundary exchange".

  19. Electrolytic production of neodymium metal from a molten chloride electrolyte

    SciTech Connect

    Chambers, M.F.; Murphy, J.E.

    1991-01-01

    This paper reports that the U.S. Bureau of Mines conducted experiments on electrowinning of neodymium metal by using a molten-metal cathode at 650{degrees} C and an electrolyte of 50 mol pet NdCl, (neodymium chloride) and 50 mol pet KCl (potassium chloride). The molten-metal cathodes were alloys of magnesium and zinc or magnesium and cadmium. Current efficiencies were 90 pct with a Mg-Zn cathode and 80 pct with a Mg-Cd cathode. The Mg-Cd cathode was easily separated from the electrolyte. In contrast, the Mg-Zn cathode tended to mix with the electrolyte, making separation difficult. The cathode metals were separated from the neodymium by distillation at 1,100{degrees} C under a vacuum of 10{sup {minus}4} torr. Neodymium metal of 99.9 + purity was recovered from the Mg-Cd alloy cathode after 30 min distillation time. The neodymium recovered from the Mg-Zn system contained almost 2 pct Zn after vacuum distillation. Continuous operation using the Mg-Cd alloy cathode was demonstrated.

  20. New high-strength neodymium phosphate laser glass

    SciTech Connect

    Galagan, B I; Glushchenko, I N; Denker, B I; Kalachev, Yu L; Mikhailov, Viktor A; Sverchkov, S E; Shcherbakov, Ivan A; Kuleshov, N V

    2009-12-31

    A high-strength neodymium laser glass (SNLG) based on an alumoborophosphate composition is developed and synthesised; its physicochemical, spectral, luminescent, and lasing characteristics are studied. It is found that the chemical stability and thermal resistance of the new glass are considerably higher than the corresponding characteristics of known neodymium-doped phosphate laser glasses. Investigations of lasing upon longitudinal diode pumping showed that, due to the higher thermal resistance, the new glass allows one to obtain output powers twice as high as those of industrial GLS22 glass. (active media)

  1. Nanowatt threshold, alumina sensitized neodymium laser integrated on silicon

    PubMed Central

    Maker, Ashley J.; Armani, Andrea M.

    2013-01-01

    Low threshold lasers based on rare-earth elements have enabled numerous scientific discoveries and innovations in industry. However, pushing the threshold into the sub-microwatt regime has been stymied by a fundamental material phenomenon. Specifically, rare earth dopants form clusters which quench emission and reduce efficiency. Here, we fabricate resonant cavity lasers from neodymium-doped silica films containing alumina. The alumina prevents the clustering of the Neodymium, enabling the lasers to achieve thresholds of 530nanoWatts at room temperature. PMID:24216946

  2. Silicate Stardust in Meteorites

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2004-06-01

    One of the most exciting discoveries in cosmochemistry during the past 15 years is the presence of presolar grains in meteorites. They are identified by the unusual abundances of isotopes of oxygen, silicon, and other elements. Presolar grains, also called stardust, are exotic compounds such as diamond, graphite, aluminum oxide, and silicon carbide. Why are there no silicates? Spectroscopic observations of young stars show that silicates are abundant. This means that silicates are abundant in molecular clouds like the one in which the solar system formed. Cosmochemists wondered why do we not find silicates in the most primitive extraterrestrial materials: interplanetary dust particles (IDPs) and primitive chondrites. These materials are the least altered since they formed and if any preserved presolar silicate grains, IDPs and chondrites would. Were they all destroyed as the solar system formed? Or was it that we were looking for stardust in all the wrong places? As we reported previously [see PSRD article A New Type of Stardust], Scott Messenger and colleagues have found silicates in IDPs. Now, researchers report finding presolar silicate grains in primitive chondritic meteorites. Ann Nguyen and Ernst Zinner (Washington University in St. Louis) and Kazuhide Nagashima and Hisayoshi Yurimoto (Tokyo Institute of Technology), with Alexander Krot (University of Hawaii) used advanced instrumentation to image the isotopic compositions of small regions of the Acfer 094 carbonaceous chondrite and found several silicate grains with isotopically anomalous oxygen isotopes, a clear indicator of presolar origin. Nagashima and his colleagues also investigated the primitive CR2 carbonaceous chondrite Northwest Africa 530, finding presolar grains in it as well. The grains will shed (star)light on the histories of the stars in which they formed. The relative abundances of presolar silicates in different types of meteorites will help cosmochemists understand the processes of heating

  3. Efficient wide-aperture neodymium glass rod amplifiers

    SciTech Connect

    Potemkin, A K; Zhurin, K A; Kirsanov, A V; Kopelovich, E A; Kuznetsov, M V; Kuz'min, A A; Flat, F A; Khazanov, Efim A; Shaikin, A A

    2011-06-30

    Amplifiers based on neodymium phosphate glass rods 60 - 100 mm in diameter are experimentally studied. The amplifiers are pumped by INP-16/250 tubular flash lamps placed in a universal pump cavity with a two-section mirror reflector. A compact high-voltage capacitive energy storage with a preionisation circuit was developed to supply the lamps. (lasers)

  4. Purification of cerium, neodymium and gadolinium for low background experiments

    NASA Astrophysics Data System (ADS)

    Boiko, R. S.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

    2014-01-01

    Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search), 136Ce (2β+ candidate with one of the highest Q2β). The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides) was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  5. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  6. Materials flow analysis of neodymium, status of rare earth metal in the Republic of Korea.

    PubMed

    Swain, Basudev; Kang, Leeseung; Mishra, Chinmayee; Ahn, JoongWoo; Hong, Hyun Seon

    2015-11-01

    Materials flow analysis of neodymium, status of rare earth elements (REEs) in the Republic of Korea has been investigated. Information from various resources like the Korean Ministry of Environment, Korea international trade association, United Nations Commodity Trade Statistics Database and from individual industry were collected and analyzed for materials flow analysis of neodymium. Demand of neodymium in the Republic of Korea for the year 2010 was 409.5 tons out of which the majority of neodymium, i.e., 68.41% was consumed by domestic electronics industry followed by medical appliances manufacturing (13.36%). The Republic Korea is one of the biggest consumer and leading exporter of these industrial products, absolutely depends on import of neodymium, as the country is lacking natural resources. The Republic of Korea has imported 325.9 tons of neodymium permanent magnet and 79.5 tons of neodymium containing equipment parts mainly for electronics, medical appliances, and heavy/light vehicles manufacturing industry. Out of which 95.4 tons of neodymium permanent magnet get exported as an intermediate product and 140.6 tons of neodymium in the form of consumable products get exported. Worldwide the neodymium is at the high end of supply chain critical metal because of increasing demand, scarcity and irreplaceable for technological application. To bring back the neodymium to supply stream the recycling of end of life neodymium-bearing waste can be a feasible option. Out of total domestic consumption, only 21.9 tons of neodymium have been collected and subsequently recycled. From material flow analysis, the requirement for an efficient recycling system and element-wise material flow management for these REEs in the Republic of Korea were realized and recommended. PMID:26210233

  7. Neodymium-YAG laser vitreolysis in sickle cell retinopathy

    SciTech Connect

    Hrisomalos, N.F.; Jampol, L.M.; Moriarty, B.J.; Serjeant, G.; Acheson, R.; Goldberg, M.F.

    1987-08-01

    Six patients with proliferative sickle cell retinopathy and vitreous bands were treated with the neodymium-YAG (Nd-YAG) laser to accomplish lysis of avascular traction bands or to clear the media in front of the macula. Transection of bands was possible in five of the six cases but in two of these the effect was only partial. Three cases were satisfactorily treated with the Nd-YAG laser application alone, two eventually required conventional vitreoretinal surgery, and one patient's condition stabilized despite failure of the treatment. Complications from the treatment occurred in three cases and included subretinal (choroidal) hemorrhage, preretinal hemorrhage, microperforation of a retinal vein, and focal areas of damage to the retinal pigment epithelium. Neodymium-YAG vitreolysis may be a useful modality in carefully selected patients with proliferative sickle cell retinopathy, but potentially sight-threatening complications may occur.

  8. Treatment of benign urethral strictures using a sapphire tipped neodymium:YAG laser.

    PubMed

    Smith, J A

    1989-11-01

    Sapphire tips increase the energy density and cutting effect of a neodymium:YAG laser. Sapphire tipped neodymium:YAG laser fibers were used to perform urethrotomy in 24 men with benign urethral strictures. The cutting effect was inadequate in 10 patients. Of the 24 patients 16 (67%) had a recurrent stricture within 1 year. Sapphire tipped neodymium:YAG laser fibers offer no apparent advantage over cold knife urethrotomy for treatment of benign urethral strictures. PMID:2810498

  9. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  10. Additive-pulse modelocking of non-cw neodymium lasers

    NASA Astrophysics Data System (ADS)

    Heinz, P.; Reuther, A.; Laubereau, A.

    1993-03-01

    Passive modelocking of several flash-lamp pumped neodymium lasers with electro-optic amplitude stabilization is demonstrated using a nonlinear Michelson interferometer. Improved performance is reported for the GSGG- YLF- and glass-laser as compared to the nonlinear absorber, with shorter pulse durations and smaller amplitude fluctuations, e.g. 5 μJ pulses for 460 ± 20 fs for Nd:glass. Evidence is obtained for multi-selfstability of the pulse energy.

  11. [Neodymium magnet injury causing nasal fracture: a case report].

    PubMed

    Aykan, Andaç; Güzey, Serbülent; Avşar, Sedat; Öztürk, Serdar

    2015-05-01

    In parallel with technological developments, small size but strong magnets are commonly used in modern devices. In terms of foreign body injuries, magnet injuries are quite rare. However, due to their unique characteristics, there are some difficulties in their management. The magnetic field generated by the magnet affects the surgical instruments and make treatment difficult. In this case report, a nasal injury due to neodymium magnet and our alternative approach for its management was reported. PMID:26033660

  12. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  13. Complexation of di-amides of dipicolinic acid with neodymium

    SciTech Connect

    Lapka, J.L.; Paulenova, A.

    2013-07-01

    Di-amides have undergone significant studies as possible ligands for use in the partitioning of trivalent minor actinides and lanthanides. The binding affinities of three isomeric ligands with neodymium in acetonitrile solution have been investigated. The stability constants of the metal-ligand complexes formed between different isomers of N,N'-diethyl-N,N'- ditolyl-di-picolinamide (EtTDPA) and trivalent neodymium in acetonitrile have been determined by spectrophotometric and calorimetric methods. Each isomer of EtTDPA has been found to be capable of forming three complexes with trivalent neodymium, Nd(EtTDPA), Nd(EtTDPA){sub 2}, and Nd(EtTDPA){sub 3}. Values from spectrophotometric and calorimetric titrations are within reasonable agreement with each other. The order of stability constants for each metal:ligand complex decreases in the order Et(m)TDPA > Et(p)TDPA > Et(o)TDPA. The obtained values are comparable to other di-amidic ligands obtained under similar system conditions and mirror previously obtained solvent extraction data for EtTDPA at low ionic strengths. (authors.

  14. Do foraminifera accurately record seawater neodymium isotope composition?

    NASA Astrophysics Data System (ADS)

    Scrivner, Adam; Skinner, Luke; Vance, Derek

    2010-05-01

    Palaeoclimate studies involving the reconstruction of past Atlantic meridional overturning circulation increasingly employ isotopes of neodymium (Nd), measured on a variety of sample media (Frank, 2002). In the open ocean, Nd isotopes are a conservative tracer of water mass mixing and are unaffected by biological and low-temperature fractionation processes (Piepgras and Wasserburg, 1987; Lacan and Jeandel, 2005). For decades, benthic foraminifera have been widely utilised in stable isotope and geochemical studies, but have only recently begun to be exploited as a widely distributed, high-resolution Nd isotope archive (Klevenz et al., 2008), potentially circumventing the difficulties associated with other methods used to recover past deep-water Nd isotopes (Klevenz et al., 2008; Rutberg et al., 2000; Tachikawa et al., 2004). Thus far, a single pilot study (Klevenz et al., 2008) has indicated that core-top sedimentary benthic foraminifera record a Nd isotope composition in agreement with the nearest available bottom seawater data, and has suggested that this archive is potentially useful on both millennial and million-year timescales. Here we present seawater and proximal core-top foraminifer Nd isotope data for samples recovered during the 2008 "RETRO" cruise of the Marion Dufresne. The foraminifer samples comprise a depth-transect spanning 3000m of the water column in the Angola Basin and permit a direct comparison between high-resolution water column and core-top foraminiferal Nd isotope data. We use these data to assess the reliability of both planktonic and benthic foraminifera as recorders of water column neodymium isotope composition. Frank, M., 2002. Radiogenic isotopes: Tracers of past ocean circulation and erosional input, Rev. Geophys., 40 (1), 1001, doi:10.1029/2000RG000094. Klevenz, V., Vance, D., Schmidt, D.N., and Mezger, K., 2008. Neodymium isotopes in benthic foraminifera: Core-top systematics and a down-core record from the Neogene south Atlantic

  15. Effect of transscleral neodymium: YAG cyclophotocoagulation on intraocular lenses

    SciTech Connect

    Blomquist, P.H.; Gross, R.L.; Koch, D.D. )

    1990-03-01

    A neodymium: YAG laser operating in the thermal mode was used to irradiate isolated intraocular lenses (IOLs) and to perform transscleral cyclophotocoagulation on pseudophakic autopsy eyes to investigate the potential damage to IOL haptics such irradiation may cause. In the isolated IOLs, 70 mJ of energy deformed and partially melted both polymethylmethacrylate (PMMA) and polypropylene haptics. One of the capsular-fixated PC-IOL haptics in an autopsy eye partially melted when irradiated with the maximum energy level (8.8 J), with the aiming beam focused 1 mm posterior to the limbus and maximal posterior focus offset.

  16. Local immunity in treating skin melanoma by neodymium pulsed laser

    NASA Astrophysics Data System (ADS)

    Moskalik, Konstantin G.

    1997-06-01

    The number and correlation of skin stroma cells was studied on mice C57B1 with the subcutaneously transplanted melanoma B16 which was exposed to neodymium pulsed laser radiation. Within 1-5 days after the exposure the total number of the free skin stroma cells was found to increase in the periphery from the radiation epicenter and the number of lymphocytes, macrophages and leucocytes tended to grow. Lymphoid infiltration was also revealed in the preparations of the epithelized wound and cicatrix on the skin melanoma sites in the patients who had undergone pulsed laser radiation therapy.

  17. Urethral strictures treatment with neodymium:YAG laser.

    PubMed

    Silber, N

    1992-04-01

    A total of 14 patients with stricture of the urethra underwent treatment with Nd:YAG (neodymium:YAG) laser irradiation. A new 800-micron hemispherical optical quartz fiber was used in contact technique to produce linear incisions in the scarred tissue. Within 11.2 months, median of follow up, there was improvement in the obstructive voiding symptoms in all the patients. One patient who still had mild stricture in the first follow-up cystoscopy was managed successfully with second treatment. Endoscopic application of laser energy in the contact mode facilitates the immediate vaporization and disintegration of the fibrous area and secondary reepithelization of the urethra without scarring. PMID:10171965

  18. Incorporation of Cerium and Neodymium in Uranyl Phases

    SciTech Connect

    Kim, C W.; Wronkiewicz, David J.; Finch, R J.; Buck, Edgar C.

    2006-07-15

    The potential for incorporating rare earth elements (REE) into/onto crystalline compounds has been evaluated by precipitating uranyl phases from aqueous solutions containing either cerium or neodymium. These REEs serve both as monitors for evaluating the potential repository behavior of REE radionuclides, and as surrogate elements for actinides (e.g., Ce4 and Nd3 for Pu4 and Am3, respectively). The present experiments examined the behavior of REE in the presence of ianthinite Formula Not Shown, becquerelite (Ca(UO2)6O4(OH)6(H2O)8), and other uranyl hydroxide compounds commonly noted as alteration products during the corrosion of UO2, spent nuclear fuel, and naturally occurring uraninite. The results of these experiments demonstrate that significant quantities of both cerium (Kd=1020) and neodymium (Kd=840) are incorporated within the uranium alteration phases and suggest that ionic substitution and/or adsorption to the uranyl phases can play a key role in the limiting the mobility of REE (and by analogy, actinide elements) in a nuclear waste repository.

  19. Recycling potential of neodymium: the case of computer hard disk drives.

    PubMed

    Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan

    2014-08-19

    Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium. PMID:25029356

  20. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, Rudolf; Larimer, Kirk T.

    1998-01-01

    A method of producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage.

  1. Origin of the Sudbury Complex by meteoritic impact: Neodymium isotopic evidence

    USGS Publications Warehouse

    Faggart, B.E., Jr.; Basu, A.R.; Tatsumoto, M.

    1985-01-01

    Samarium-neodymium isotopic data on whole rocks and minerals of the Sudbury Complex in Canada gave an igneous crystallization age of 1840 ?? 21 ?? 106 years. The initial epsilon neodymium values for 15 whole rocks are similar to those for average upper continental crust, falling on the crustal trend of neodymium isotopic evolution as defined by shales. The rare earth element concentration patterns of Sudbury rocks are also similar to upper crustal averages. These data suggest that the Sudbury Complex formed from melts generated in the upper crust and are consistent with a meteoritic impact.

  2. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  3. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  4. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  5. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  6. THE BIOCOMPATIBILITY OF MESOPOROUS SILICATES

    PubMed Central

    Hudson, Sarah; Padera, Robert F.; Langer, Robert; Kohane, Daniel S.

    2008-01-01

    Micro- and nano- mesoporous silicate particles are considered potential drug delivery systems because of their ordered pore structures, large surface areas and the ease with which they can be chemically modified. However, few cytotoxicity or biocompatibility studies have been reported, especially when silicates are administered in the quantities necessary to deliver low-potency drugs. The biocompatibility of mesoporous silicates of particle sizes ~ 150 nm, ~ 800 nm and ~ 4 µm and pore sizes of 3 nm, 7 nm and 16 nm respectively are examined here. In vitro, mesoporous silicates showed a significant degree of toxicity at high concentrations with mesothelial cells. Following subcutaneous injection of silicates in rats, the amount of residual material decreased progressively over three months, with good biocompatibility on histology at all time points. In contrast, intra peritoneal and intra venous injections in mice resulted in death or euthanasia. No toxicity was seen with subcutaneous injection of the same particles in mice. Microscopic analysis of the lung tissue of the mice indicates that death may be due to thrombosis. Although local tissue reaction to mesoporous silicates was benign, they caused severe systemic toxicity. This toxicity could be mitigated by modification of the materials. PMID:18675454

  7. A new contact neodymium: YAG laser for cyclophotocoagulation

    SciTech Connect

    Iwach, A.G.; Drake, M.V.; Hoskins, H.D. Jr.; Schuster, B.L.; Vassiliadis, A.; Crawford, J.B.; Hennings, D.R. )

    1991-06-01

    A newly developed compact (40 kg), self-contained contact Neodymium:YAG laser produces high-peak, high-energy (800 mJ/pulse), short (1.0 millisecond) pulses with 1 to 3 pulses/exposure. Energy is delivered via a 320-microns cleaved quartz fiber optic probe. Cyclophotocoagulation was performed in five eyes of three medium-sized Dutch-pigmented rabbits. The eyes received exposures of 1 to 3 pulses/exposure. Energy delivered ranged from 100 to 800 mJ/pulse. Histopathology revealed ciliary body disruption and hemorrhage with no damage to overlying sclera. When used for transscleral cyclodiathermy in the rabbit, the laser created significant ciliary body disruption with minimal scleral injury.

  8. Segmental irradiation of the bladder with neodymium YAG laser irradiation

    SciTech Connect

    McPhee, M.S.; Mador, D.R.; Tulip, J.; Ritchie, B.; Moore, R.; Lakey, W.H.

    1982-11-01

    The Neodymium YAG laser energy source can be readily adapted for cystoscopic use by some simple modifications of existing urologic equipment. Both the fiberoptic resectoscope and a deflecting cystourethroscope have been adapted for this purpose. Fixation of the fiber tip 1 cm. from the target and use of a divergent beam of 36 degrees allows the delivery of standardized dosage to a relatively large bladder tissue volume. Animal experiments involving 35 mongrel dogs established that repetitive overlapping doses of 200 joules ech can successfully treat a large area of bladder resulting in a full thickness bladder wall injury. This technique has been used in 4 high risk patients with infiltrating bladder cancer without adverse sequelae. The ability to reliably produce a full thickness lesion may give this modality a therapeutic advantage over conventional cautery techniques especially for the treatment of residual infiltrative carcinoma.

  9. Neodymium isotope evidence for a chondritic composition of the Moon.

    PubMed

    Rankenburg, K; Brandon, A D; Neal, C R

    2006-06-01

    Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle. PMID:16741118

  10. α-uranium phase in compressed neodymium metal

    NASA Astrophysics Data System (ADS)

    Chesnut, Gary N.; Vohra, Yogesh K.

    2000-02-01

    The light rare-earth metal, neodymium, has been studied up to 155 GPa in a diamond-anvil cell using energy dispersive x-ray diffraction with a synchrotron source. The pressures were calibrated using copper as an internal x-ray pressure standard. A phase transformation from a monoclinic phase (C2/m, 4 atoms/cell) to an orthorhombic α-U phase (Cmcm, 4 atoms/cell) was observed at 113+/-6 GPa without any observable volume collapse. The observation of α-U phase in Nd and, previously, in cerium and praseodymium clearly establishes this phase in light rare-earth metals. Our equation of state measurements suggest that delocalization of the f shell in Nd occurs without any volume collapse unlike Ce and Pr.

  11. Isotope enrichment by frequency-tripled temperature tuned neodymium laser photolysis of formaldehyde

    DOEpatents

    Marling, John B.

    1977-01-01

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation provided by a frequency-tripled, temperature tuned neodymium laser.

  12. Microscale Demonstration of the Paramagnetism of Liquid Oxygen with a Neodymium Magnet

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2007-01-01

    A microscale classroom demonstration of the paramagnetic behavior of various samples of liquid oxygen with neodymium magnet is being presented. The experiment should be done with extreme caution, as liquid oxygen reacts violently with organic matters.

  13. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  14. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  15. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    NASA Astrophysics Data System (ADS)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  16. Description of the traction characteristics of the neodymium compensators of the automatic vibration isolations

    NASA Astrophysics Data System (ADS)

    Gurova, E. G.; Panchenko, Y. V.; Gurov, M. G.

    2016-04-01

    In this paper the method of calculation of neodymium magnets was presented. The calculation of the neodymium magnets characteristics and stiffness correctors of the vibration isolator according to the requirements for vibration isolation devices with stiffness compensators was performed. This research has been performed with the support of the President scholarship for young scientists, order No. 184 of Ministry of education and science of the Russian Federation of the 10th of March 2015.

  17. Comparative pathology of silicate pneumoconiosis.

    PubMed Central

    Brambilla, C.; Abraham, J.; Brambilla, E.; Benirschke, K.; Bloor, C.

    1979-01-01

    A simple pneumoconiosis with lamellar birefringent crystals was observed in animals dying in the San Diego Zoo. We studied 100 autopsies from 11 mammalian and eight avian species. In mammals, mild pulmonary lesions comprised crystal-laden macrophages in alveoli and lymphatics. Interstitial fibrosis was present in 20% of cases. There were no nodules. In birds, dust retention produced large granulomas around tertiary bronchi without fibrosis. Mineralogic analysis using scanning and transmission electron microscopy showed most of the crystals to be silicates. Ninety percent were complex silicates, with aluminum-potassium silicates comprising 70% of the analyzed particles. Electron and x-ray diffraction showed the silicates to be muscovite mica and its hydrothermal degradation product, ie, illite clay. This mica was also present on filtration membranes of atmospheric air samples obtained from the San Diego Zoo. The amount of dust retention was related to the animal's age, anatomic or ecologic variances, and length of stay in the San Diego Zoo. Its semidesert atmosphere is rich in silicates, which are inhaled and deposited in the lungs. Similar mica-induced lesions are found in humans living in this region or the Southwest of the USA. This simple pneumoconiosis is likely to be widespread in human populations living in desert or semidesert climates. Images Figure 9 Figure 10 Figure 7 Figure 8 Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:223447

  18. Stardust silicates from primitive meteorites.

    PubMed

    Nagashima, Kazuhide; Krot, Alexander N; Yurimoto, Hisayoshi

    2004-04-29

    Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula. PMID:15118720

  19. Rare earth elements and neodymium isotopes in world river sediments revisited

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Toucanne, S.; Skonieczny, C.; André, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T.; Germain, Y.; Jorry, S. J.; Ménot, G.; Monin, L.; Ponzevera, E.; Rouget, M.-L.; Tachikawa, K.; Barrat, J. A.

    2015-12-01

    Over the past decades, rare earth elements (REE) and their radioactive isotopes have received tremendous attention in sedimentary geochemistry, as tracers for the geological history of the continental crust and provenance studies. In this study, we report on elemental concentrations and neodymium (Nd) isotopic compositions for a large number of sediments collected near the mouth of rivers worldwide, including some of the world's major rivers. Sediments were leached for removal of non-detrital components, and both clay and silt fractions were retained for separate geochemical analyses. Our aim was to re-examine, at the scale of a large systematic survey, whether or not REE and Nd isotopes could be fractionated during Earth surface processes. Our results confirmed earlier assumptions that river sediments do not generally exhibit any significant grain-size dependent Nd isotopic variability. Most sediments from rivers draining old cratonic areas, sedimentary systems and volcanic provinces displayed similar Nd isotopic signatures in both clay and silt fractions, with ΔεNd(clay-silt) < |1|. A subtle decoupling of Nd isotopes between clays and silts was identified however in a few major river systems (e.g. Nile, Mississippi, Fraser), with clays being systematically shifted towards more radiogenic values. This observation suggests that preferential weathering of volcanic and/or sedimentary rocks relative to more resistant lithologies may occur in river basins, possibly leading locally to Nd isotopic decoupling between different size fractions. Except for volcanogenic sediments, silt fractions generally displayed homogeneous REE concentrations, exhibiting relatively flat shale-normalized patterns. However, clay fractions were almost systematically characterized by a progressive enrichment from the heavy to the light REE and a positive europium (Eu) anomaly. In agreement with results from previous soil investigations, the observed REE fractionation between clays and silts

  20. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    PubMed

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers <5 microm were not classified as to their carcinogenicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin

  1. Battery components employing a silicate binder

    DOEpatents

    Delnick, Frank M.; Reinhardt, Frederick W.; Odinek, Judy G.

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  2. Microwave emission from granular silicates

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1973-01-01

    Experimental finding is that mass absorption coefficient is independent of frequency but highly dependent on moisture content; effective conductivity increases with frequency, and low tangent is independent of frequency. Computed values of electrical properties are in rough numerical agreement with extrapolated laboratory values on other silicate materials.

  3. Circumstellar Crystalline Silicates: Evolved Stars

    NASA Astrophysics Data System (ADS)

    Tartar, Josh; Speck, A. K.

    2008-05-01

    One of the most exciting developments in astronomy in the last 15 years was the discovery of crystalline silicate stardust by the Short Wavelength Spectrometer (SWS) on board of ISO; discovery of the crystalline grains was indeed one of the biggest surprises of the ISO mission. Initially discovered around AGB stars (evolved stars in the range of 0.8 > M/M¤>8) at far-infrared (IR) wavelengths, crystalline silicates have since been seen in many astrophysical environments including young stellar objects (T Tauri and Herbig Ae/Be), comets and Ultra Luminous Infrared Galaxies. Low and intermediate mass stars (LIMS) comprise 95% of the contributors to the ISM, so study of the formation of crystalline silicates is critical to our understanding of the ISM, which is thought to be primarily amorphous (one would expect an almost exact match between the composition of AGB dust shells and the dust in the ISM). Whether the crystalline dust is merely undetectable or amorphized remains a mystery. The FORCAST instrument on SOFIA as well as the PACS instrument on Herschel will provide exciting observing opportunities for the further study of crystalline silicates.

  4. Silicates in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Sirocky, M. M.; Levenson, N. A.; Elitzur, M.; Spoon, H. W. W.; Armus, L.

    2008-05-01

    We analyze the mid-infrared (MIR) spectra of ultraluminous infrared galaxies (ULIRGs) observed with the Spitzer Space Telescope's Infrared Spectrograph. Dust emission dominates the MIR spectra of ULIRGs, and the reprocessed radiation that emerges is independent of the underlying heating spectrum. Instead, the resulting emission depends sensitively on the geometric distribution of the dust, which we diagnose with comparisons of numerical simulations of radiative transfer. Quantifying the silicate emission and absorption features that appear near 10 and 18 μm requires a reliable determination of the continuum, and we demonstrate that including a measurement of the continuum at intermediate wavelength (between the features) produces accurate results at all optical depths. With high-quality spectra, we successfully use the silicate features to constrain the dust chemistry. The observations of the ULIRGs and local sight lines require dust that has a relatively high 18 μm/10 μm absorption ratio of the silicate features (around 0.5). Specifically, the cold dust of Ossenkopf et al. is consistent with the observations, while other dust models are not. We use the silicate feature strengths to identify two families of ULIRGs, in which the dust distributions are fundamentally different. Optical spectral classifications are related to these families. In ULIRGs that harbor an active galactic nucleus, the spectrally broad lines are detected only when the nuclear surroundings are clumpy. In contrast, the sources of lower ionization optical spectra are deeply embedded in smooth distributions of optically thick dust.

  5. Amended Silicated for Mercury Control

    SciTech Connect

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly

  6. Effect Of Neodymium Substitution In Structural Characteristics Of Magnesium Ferrite

    SciTech Connect

    Thankachan, Smitha; Binu, P. J.; Xavier, Sheena; Mohammed, E. M.

    2011-10-20

    The effect of Nd{sup 3+} substitution on the structural properties of Magnesium ferrite was studied in the series MgNd{sub x}Fe{sub 2-x}O{sub 4}, where x = 0 to 0.3 in steps of 0.05. The series was prepared by sol-gel technique which is one of the novel technique to prepare nanosized samples. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. XRD analysis reveals the prepared samples are single phasic till x = 0.2. From x0 = .25, a secondary phase of iron neodymium oxide appears along with the spinel phase. Particle size calculation shows the prepared samples are in the 9nm to 11 nm regime. Lattice parameter was found to increase with concentration of Nd. XRD and FTIR analysis confirmed spinel structure of the prepared samples. XRF result shows the expected composition of prepared samples. The frequency dependence of the dielectric constant in the range 100 Hz--120MHz was also studied

  7. Power neodymium-glass amplifier of a repetitively pulsed laser

    SciTech Connect

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  8. Laser self-doubling in neodymium yttrium aluminum borate

    NASA Astrophysics Data System (ADS)

    Lu, Bao-Sheng; Wang, Jun; Pan, Heng-Fu; Jiang, Min-Hua; Liu, En-Quan

    1989-12-01

    The nonlinear effects of neodymium yttrium aluminum borate Nd(x)Y(1-x)Al3(BO3)4 (NYAB) crystal powder samples with different Nd(3+) mole percentages are reported. The optimum X values for the growth of NYAB crystals with high optical homogeneity has been determined. The performance of laser self-frequency doubling from 1.06-0.53 micron has been realized, for the first time, in a 5 x 3 x 3 cu mm NYAB crystal. The Nd(3+) ions in crystal show weak absorption at 0.53 micron. The threshold energy is measured to be less than 2 mJ; the output energy of green light at 0.53 micron is more than 5 mJ and the conversion efficiency is over 10 percent. The experiments show that the performance is improved if the optical path length is increased and the cavity design is improved. The refractive indices n(0) and n(e) of the crystal have been measured by the prism method at different wavelengths. The phase-matching angles of Types I and II have been obtained by solving equations for the phase-matching angles. The results are in good agreement with the experimental values. The nonlinear coefficient d(11) of the NYAB crystal has been measured to be 4 x 10 to the-9th esu.

  9. LASERS: Efficient neodymium-doped gadolinium gallium garnet crystal laser

    NASA Astrophysics Data System (ADS)

    Doroshenko, Maxim E.; Osiko, Vyacheslav V.; Sigachev, V. B.; Timoshechkin, M. I.

    1991-07-01

    An investigation was made of the stimulated emission parameters of a laser utilizing a gadolinium gallium garnet crystal doped with neodymium ions (YAG:Nd) at the 1.062 μm wavelength. The free-running efficiency was the highest so far achieved for flashlamp-pumped lasers utilizing unsensitized garnets. For an active element 8 mm in diameter and 120 mm long the absolute efficiency was 5.4% and the differential efficiency was 5.9%. The average free-running power was 170 W. A comparison was made of the optical powers of thermal lenses in cylindrical GGG:Nd and YAG:Nd active elements and this was found to be 2.4 times higher for a GGG:Nd crystal at the same pump powers. It was shown that by using traditional methods of compensating for the thermal lens in cylindrical active elements, it is possible to develop pulsed GGG:Nd crystal lasers having an average output power higher than 100 W, an efficiency of ~ 4%, and an angular divergence of less than 10 mrad.

  10. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  11. Laboratory and clinical experience with neodymium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1991, we have undertaken extensive laboratory and clinical studies of the Neodymium:YAG (Nd:YAG) laser for surgical treatment of bladder outlet obstruction due to prostatic enlargement or benign prostatic hyperplasia (BPH). Side-firing optical fibers which emit a divergent, relatively low energy density Nd:YAG laser beam produce coagulation necrosis of obstructing periurethral prostate tissue, followed by gradual dissolution and slough in the urinary stream. Laser-tissue interactions and Nd:YAG laser dosimetry for prostatectomy have been studied in canine and human prostate model systems, enhancing clinical application. Ongoing studies examine comparative Nd:YAG laser dosimetry for various beam configurations produced by available side-firing optical fibers and continue to refine operative technique. We have documented clinical outcomes of Nd:YAG laser prostatectomy in 230 consecutive patients treated with the UrolaseTM side-firing optical fiber. Nd:YAG laser coagulation the prostate produces a remarkably low acute morbidity profile, with no significant bleeding or fluid absorption. No postoperative incontinence has been produced. Serial assessments of voiding outcomes over more than 3 years of followup show objective and symptomatic improvement following Nd:YAG laser prostatectomy which is comparable to older but more morbid electrosurgical approaches. Nd:YAG laser prostatectomy is a safe, efficacious, durable and cost-effective treatment for BPH.

  12. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  13. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  14. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  15. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  16. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  17. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  18. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  19. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  20. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  1. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  2. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Tricalcium silicate. 582.2906 Section 582.2906 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c)...

  3. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tricalcium silicate. 182.2906 Section 182.2906 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c)...

  4. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  5. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tricalcium silicate. 182.2906 Section 182.2906 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c)...

  6. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Tricalcium silicate. 582.2906 Section 582.2906 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c)...

  7. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  8. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  9. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  10. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  11. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  12. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  13. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  14. Electrolytic production of neodymium metal from a molten chloride electrolyte. Rept. of Investigations/1991

    SciTech Connect

    Chambers, M.F.; Murphy, J.E.

    1991-01-01

    Electrowinning of neodymium metal was accomplished by using a molten-metal cathode at 650 C and an electrolyte of 50 mol pct neodymium chloride-50 mol pct potassium chloride. The molten-metal cathodes were alloys of magnesium and zinc or magnesium and cadmium. Current efficiencies were 90 pct with a Mg/Zn cathode and 80 pct with a Mg-Cd cathode. The Mg-Cd cathode was easily separated from the electrolyte. In contrast, the Mg-Zn cathode tended to mix with the electrolyte, making separation difficult. The cathode metals were separated from the neodymium by distillation at 1,100 C under a vacuum of 10 to the -3rd power torr. Neodymium metal of 99.9+ purity was recovered from the Mg-Cd alloy cathode after 30 min distillation time. The neodymium recovered from the Mg-Zn system contained almost 2 pct Zn after vacuum distillation. Continuous operation using the Mg-Cd alloy cathode was demonstrated.

  15. Effects of ionization on silicate glasses. [Silicate glasses

    SciTech Connect

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures.

  16. Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases

    DOEpatents

    Keller, R.; Larimer, K.T.

    1998-09-22

    A method is described for producing neodymium in an electrolytic cell without formation of perfluorinated carbon gases (PFCs), the method comprising the steps of providing an electrolyte in the electrolytic cell and providing an anode in an anode region of the electrolyte and providing a cathode in a cathode region of the electrolytic cell. Dissolving an oxygen-containing neodymium compound in the electrolyte in the anode region and maintaining a more intense electrolyte circulation in the anode region than in the cathode region. Passing an electrolytic current between said anode and said cathode and depositing neodymium metal at the cathode, preventing the formation of perfluorinated carbon gases by limiting anode over voltage. 4 figs.

  17. Electrowinning of neodymium from a molten oxide-fluoride electrolyte. Report of investigations/1994

    SciTech Connect

    Dysinger, D.K.; Murphy, J.E.

    1994-01-01

    Neodymium metal of 99.8 percent purity was prepared by electrolysis of Nd2O3 salts dissolved in a molten fluoride electrolyte. The metal was electrowon in a molten state at current efficiencies of 50 to 60 percent. Oxygen and carbon were the major impurities detected in the product. During operation of the small scale laboratory cell, a number of technical problems including anode effect, low oxide solubility in the electrolyte, high neodymium metal solubility, reactivity of the metal with the cell materials, and back reaction of the metal with the anode gases were encountered. Approaches to improve cell operation and prospects for commercial adoption of the electrolytic production of neodymium metal are discussed.

  18. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  19. Hafnium and Neodymium Isotopes in Atlantic Ocean Waters

    NASA Astrophysics Data System (ADS)

    Rickli, J.; Frank, M.; Halliday, A.

    2007-12-01

    Neodymium isotopic compositions (ICs) have been established as a tracer of water masses in the present and past oceans since the late 1970s. Hafnium isotopes share the capability of tracing water masses and in combination with Nd isotopes provide information on continental weathering regimes. Whereas Nd released during weathering reflects the bulk Nd IC of the weathered lithology, the released Hf is more radiogenic than the weathered lithology. This effect is due to highly variable Lu/Hf--ratios in rock--forming minerals ("zircon effect") and as a consequence physical weathering apparently leads to more congruent weathering of Hf than chemical weathering does. Our understanding of the Hf IC of seawater to date has been derived (with the exception of some as yet unpublished data from the Arctic and Pacific oceans (Zimmermann et al., in prep.)) from ferromanganese crusts and nodules, since Hf concentrations in seawater are low and have until recently hampered direct measurements of Hf IC of seawater. We present IC for the dissolved Hf and Nd in Atlantic seawater. Samples were taken mainly on a transect from the Bay of Biscay to Cape Town (RV Polarstern cruise ANT XXIII/1 in 2005). A few additional samples are from the Labrador Sea and the Drake Passage. Hafnium and Nd were pre--concentrated by iron co--precipitation from 60 to 140 liters of filtered (0.45 μm) seawater. Separation of Hf and Nd followed previously established ion chromatographic procedures. Hafnium and Nd ICs were measured by MC--ICPMS (Nu Plasma) with a 2σ external reproducibility of 0.65 and 0.3 ǎrepsilon--units, respectively. Sample sizes varied but were in most cases larger than 3ng of Hf. Surface seawater as well as deep water samples extending to ~5,000 m, plot on the "seawater array" defined previously from measurements of ferromanganese crusts and nodules. Surface seawater ICs are quite uniform for Hf ranging from ǎrepsilonHf = 0 to +2 at most sampling sites on the Atlantic transect. In the

  20. Recent Progress in the Development of Neodymium Doped Ceramic Yttria

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Edwards, Chris; Trivedi, Sudhir B.; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra; Kear, Bernard

    2007-01-01

    Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium doped yttria (Nd:Y2O3) is considered to be an attractive material due to its possible lasing wavelengths of aprrox.914 nm and approx.946 nm for ozone profiling. These wavelengths when frequency tripled can generate UV light at approx.305 nm and approx.315 nm, which is particularly useful for ozone sensing using differential absorption lidar technique. For practical realization of space based UV transmitter technology, ceramic Nd:Y2O3 material is considered to possess great potential. A plasma melting and quenching method has been developed to produce Nd3+ doped powders for consolidation into Nd:Y2O3 ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises of two main steps: (a) plasma melting and quenching to generate dense, and homogeneous doped metastable powders, (b) pressure assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several 1" x 1" ceramic cylinders have been produced. The infrared transmission of undoped Y2O3 ceramics was as high as approx.75% without anti-reflection coating. In the case of Nd:Y2O3 ceramics infrared transmission values of approx.50% were achieved. Furthermore, Nd:Y2O3 samples with dopant concentrations of up to approx.2 at. % were prepared without significant emission quenching.

  1. Treatment of urethral diseases with neodymium:YAG laser.

    PubMed

    Bloiso, G; Warner, R; Cohen, M

    1988-08-01

    Over a thirty-month period, a wide variety of common urethral problems were treated on an ambulatory basis, with the neodymium:yttrium-aluminum garnet (Nd:YAG) laser. When used discriminately, laser treatment appears to be an effective modality for the management of selected urethral strictures. Thus far, excellent results have been obtained in 30 of 31 cases of short strictures where laser urethrotomy was performed as the first stricture procedure (average follow-up 10 months). Furthermore, in a series of 36 cases of secondary bladder neck contractures, all of the evaluated patients responded well (average follow-up 7 months). Good results were obtained in only 11 of 48 complicated strictures (average follow-up 14 months). However, while most of these extensive strictures were not eradicated, laser therapy generally produced a documented clinical improvement, comparable to urethrotomy or dilatation, in 15 of these cases. A series of 24 condylomata involving the urethra were treated satisfactorily, with no recurrences (average follow-up 13 months). Laser treatment also has been used successfully for the management of several urethral caruncles, urethral polyps, two meatal hemangiomas, one urethral carcinoma, and a distal duplicated urethra. Recently, the Nd:YAG laser has been applied to the prostatic urethra with vaporization of obstructing median bar hyperplasia. Favorable results have been achieved in 5 of 6 cases treated with a newly developed technique that utilizes direct laser contact. Retrograde ejaculation has not been encountered in these patients (average follow-up 6 months). All of these procedures have been accomplished in the office, largely without urethral catheterization. Lidocaine jelly occasionally supplemented with intravenous sedation provided satisfactory anesthesia. PMID:3400132

  2. Effect of fulvic acid on neodymium uptake by goethite.

    PubMed

    Armstrong, Christopher R; Wood, Scott A

    2012-12-01

    Experimental studies of the interaction of aqueous neodymium (Nd), Suwannee River fulvic acid (FA), and solid phase goethite were conducted. Results from blank systems (individual Nd and FA), binary systems (Nd-goethite, FA-goethite, and Nd-FA), and ternary systems (Nd-FA-goethite) at 0.1 mol/kg and 25°C are reported. In the binary Nd-goethite system a classic sorption edge is observed, whereby virtually all Nd is removed from solution above the goethite point of zero charge (PZC). Similarly, the binary FA-goethite system exhibits strong FA sorption; However in this system near complete removal of FA from solution is observed below the goethite PZC. In the binary Nd-FA system, both aqueous Nd and FA feature a sharp decrease in concentration at ca. pH 9. Various experiments in the ternary system were conducted. For all concentrations, FA enhanced Nd sorption below the goethite PZC, attributed to the formation of a Type B ternary surface complex (mineral-ligand-metal ion). Notably, the 100 ppm FA ternary system showed anomalously high dissolved Nd in solution above the PZC (i.e., Nd sorption suppression) and a concomitant increase in goethite dissolution (∼9 ppm total Fe(3+) observed above circa pH 9.5). Our results suggest that Nd-FA complexation plays a key role in Nd uptake by goethite, and that this process is largely governed by pH: Whereas at pHs below the goethite PZC, Nd-FA complexation facilitates Nd sorption, above the PZC, and particularly at elevated FA concentrations, the formation of aqueous Nd-FA complexes suppresses Nd removal. Moreover, under these conditions, goethite dissolution may also play a role in mitigating Nd uptake by goethite. PMID:22958855

  3. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  4. Samarium-neodymium systematics in kimberlites and in the minerals of garnet lherzolite inclusions

    USGS Publications Warehouse

    Basu, A.R.; Tatsumoto, M.

    1979-01-01

    The initial ratios of neodymium-143 to neodymium-144 in kimberlites ranging in age between 90 ?? 106 to 1300 ?? 106 years from South Africa, India, and the United States are different from the corresponding ratios in the minerals of peridotite inclusions in the kimberlites but are identical to the ratios in the basaltic achondrite Juvinas at the times of emplacement of the respective kimberlite pipes. This correlation between the kimberlites and Juvinas, which represents the bulk chondritic earth in rare-earth elements, strongly indicates that the kimberlite's source in the mantle is chondritic in rare-earth elements and relatively primeval in composition. Copyright ?? 1979 AAAS.

  5. Samarium-neodymium systematics in kimberlites and in the minerals of garnet lherzolite inclusions.

    PubMed

    Basu, A R; Tatsumoto, M

    1979-07-27

    The initial ratios of neodymium-143 to neodymium-144 in kimberlites ranging in age between 90 x 10(6) to 1300 x 10(6) years from South Africa, India, and the United States are different from the corresponding ratios in the minerals of peridotite inclusions in the kimberlites but are identical to the ratios in the basaltic achondrite Juvinas at the times of emplacement of the respective kimberlite pipes. This correlation between the kimberlites and Juvinas, which represents the bulk chondritic earth in rare-earth elements, strongly indicates that the kimberlite's source in the mantle is chondritic in rare-earth elements and relatively primeval in composition. PMID:17790851

  6. Equilibrium distribution of lanthanum, neodymium, and thorium between lithium chloride melt and liquid bismuth

    NASA Astrophysics Data System (ADS)

    Zagnit'ko, A. V.; Ignat'ev, V. V.

    2013-04-01

    The distribution of lanthanum, neodymium, and thorium between a lithium chloride melt and liquid bismuth with additions of lithium as a reducing agent are investigated at 650°C. Equilibrium values of their distribution constants are measured. It is shown that in contrast to neodymium and lanthanum, thorium cannot be extracted from bismuth into lithium chloride. This allows us to propose an efficient scheme for separating lanthanides and thorium in a system for the extraction of fuel salts in molten-salt nuclear reactors.

  7. Epitaxial neodymium-doped sapphire films, a new active medium for waveguide lasers.

    PubMed

    Kumaran, Raveen; Webster, Scott E; Penson, Shawn; Li, Wei; Tiedje, Thomas; Wei, Peng; Schiettekatte, Francois

    2009-11-01

    Epitaxial films of neodymium-doped sapphire have been grown by molecular beam epitaxy on R-, A-, and M-plane sapphire substrates. The emission spectrum features sharp lines consistent with single-site doping of the Nd(3+) ion into the host crystal. This material is believed to be a nonequilibrium phase, inaccessible by conventional high-temperature growth methods. Neodymium-doped sapphire has a promising lasing line at 1096 nm with an emission cross section of 11.9x10(-19) cm(2), similar to the 1064 nm line of Nd:YVO(4). PMID:19881593

  8. Variability of neodymium isotopes associated with planktonic foraminifera in the Pacific Ocean during the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hu, Rong; Piotrowski, Alexander M.; Bostock, Helen C.; Crowhurst, Simon; Rennie, Victoria

    2016-08-01

    The deep Pacific Ocean holds the largest oceanic reservoir of carbon which may interchange with the atmosphere on climatologically important timescales. The circulation of the deep Pacific during the Last Glacial Maximum (LGM), however, is not well understood. Neodymium (Nd) isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera are a valuable proxy for deep ocean water mass reconstruction in paleoceanography. In this study, we present Nd isotope compositions (εNd) of planktonic foraminifera for the Holocene and the LGM obtained from 55 new sites widely distributed in the Pacific Ocean. The Holocene planktonic foraminiferal εNd results agree with the proximal seawater data, indicating that they provide a reliable record of modern bottom water Nd isotopes in the deep Pacific. There is a good correlation between foraminiferal εNd and seawater phosphate concentrations (R2 = 0.80), but poorer correlation with silicate (R2 = 0.37). Our interpretation is that the radiogenic Nd isotope is added to the deep open Pacific through particle release from the upper ocean during deep water mass advection and aging. The data thus also imply the Nd isotopes in the Pacific are not likely to be controlled by silicate cycling. In the North Pacific, the glacial Nd isotopic compositions are similar to the Holocene values, indicating that the Nd isotope composition of North Pacific Deep Water (NPDW) remained constant (-3.5 to -4). During the LGM, the southwest Pacific cores throughout the water column show higher εNd corroborating previous studies which suggested a reduced inflow of North Atlantic Deep Water to the Pacific. However, the western equatorial Pacific deep water does not record a corresponding radiogenic excursion, implying reduced radiogenic boundary inputs during the LGM probably due to a shorter duration of seawater-particle interaction in a stronger glacial deep boundary current. A significant negative glacial εNd excursion is evident in

  9. Sulfide in the core and the composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    Burton, K. W.

    2015-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive 'chondritic' meteorites. It now appears, however, that the silicate Earth is not 'chondritic', but depleted in incompatible elements, including refractory lithophile and heat-producing elements. Either Earth lost material during planet-building due to collisional erosion or else internal differentiation processes produced a hidden reservoir deep in the early Earth. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [1]. Pioneering work using the short-lived 146Sm-142Nd system strongly suggests that Earth's silicate mantle is non-chondritic [e.g. 2]. The drawback of such radiogenic isotope systems is that it is not possible to distinguish the fractionation of Sm/Nd that occurs during silicate melting from that occurring during the segregation of a sulfide-melt to form the core. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavy values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd Stable isotope

  10. Adsorption kinetics of silicic acid on akaganeite.

    PubMed

    Naren, Gaowa; Ohashi, Hironori; Okaue, Yoshihiro; Yokoyama, Takushi

    2013-06-01

    As part of a series of studies on the interaction between ferric ions and silicic acid in the hydrosphere, the adsorption of silicic acid on akaganeite was investigated kinetically at various pH values. The adsorption of silicic acid increased with increasing pH over an initial pH range of 4-11.5. In the kinetic experiment, the Cl(-) was released from akaganeite much faster than silicic acid was adsorbed. From this result, we concluded that chloride ions bound on the surface of akaganeite are released and Fe-OH or Fe-O(-) sites are formed, which then acts as an adsorption site for silicic acid. The uptake mechanism of silicic acid by akaganeite is significantly different from that by schwertmannite, despite the presence of the same tunnel structure. PMID:23538050

  11. Magnetoresistance and magnetic ordering in praseodymium and neodymium hexaborides

    SciTech Connect

    Anisimov, M. A.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Samarin, N. A.; Filipov, V. B.; Shitsevalova, N. Yu.; Kuznetsov, A. V.; Sluchanko, N. E.

    2009-11-15

    The magnetoresistance {Delta}{rho}/{rho} of single-crystal samples of praseodymium and neodymium hexaborides (PrB{sub 6} and NdB{sub 6}) has been measured at temperatures ranging from 2 to 20 K in a magnetic field of up to 80 kOe. The results obtained have revealed a crossover of the regime from a small negative magnetoresistance in the paramagnetic state to a large positive magnetoresistive effect in magnetically ordered phases of the PrB{sub 6} and NdB{sub 6} compounds. An analysis of the dependences {Delta}{rho}(H)/{rho} has made it possible to separate three contributions to the magnetoresistance for the compounds under investigation. In addition to the main negative contribution, which is quadratic in the magnetic field (-{Delta}{rho}/{rho} {proportional_to} H{sup 2}), a linear positive contribution ({Delta}{rho}/{rho} {proportional_to} H) and a nonlinear ferromagnetic contribution have been found. Upon transition to a magnetically ordered state, the linear positive component in the magnetoresistance of the PrB{sub 6} and NdB{sub 6} compounds becomes dominant, whereas the quadratic contribution to the negative magnetoresistance is completely suppressed in the commensurate magnetic phase of these compounds. The presence of several components in the magnetoresistance has been explained by assuming that, in the antiferromagnetic phases of PrB{sub 6} and NdB{sub 6}, ferromagnetic nanoregions (ferrons) are formed in the 5d band in the vicinity of the rareearth ions. The origin of the quadratic contribution to the negative magnetoresistance is interpreted in terms of the Yosida model, which takes into account scattering of conduction electrons by localized magnetic moments of rare-earth ions. Within the approach used, the local magnetic susceptibility {chi}{sub loc} has been estimated. It has been demonstrated that, in the temperature range T{sub N} < T < 20 K, the behavior of the local magnetic susceptibility {chi}{sub loc} for the compounds under investigation can

  12. Silicate stabilization studies in propylene glycol

    SciTech Connect

    Schwartz, S.A.

    1999-08-01

    In most North American and many European coolant formulations, the corrosion inhibition of heat-rejecting aluminum surfaces is provided by alkali metal silicates. But, their tendency towards polymerization, leading to gelation and/or precipitation, can reduce the effectiveness of a coolant. This paper presents the results of experiments which illustrate formulation-dependent behavior of inorganic silicate in propylene glycol compositions. Specific examples of the effects of glycol matrix, stabilizer type, and hard water on silicate stabilization are provided.

  13. Cumulate Fragments in Silicic Ignimbrites

    NASA Astrophysics Data System (ADS)

    Bachmann, O.; Ellis, B. S.; Wolff, J.

    2014-12-01

    Increasingly, studies are concluding that silicic ignimbrites are the result of the amalgamation of multiple discrete magma batches. Yet the existence of discrete batches presents a conundrum for magma generation and storage; if silicic magma batches are not generated nearly in situ in the upper crust, they must traverse, and reside within, a thermally hostile environment with large temperature gradients, resulting in low survivability in their shallow magmatic hearths. The Snake River Plain (Idaho, USA) is a type example of this 'multi-batch' assembly with ignimbrites containing multiple populations of pyroxene crystals, glass shards, and crystal aggregates. The ubiquitous crystal aggregates hint at a mechanism to facilitate the existence of multiple, relatively small batches of rhyolite in the upper crust. These aggregates contain the same plagioclase, pyroxene, and oxide mineral compositions as single phenocrysts of the same minerals in their host rocks, but they have significantly less silicic bulk compositions and lack quartz and sanidine, which occur as single phenocrysts in the deposits. This implies significant crystallization followed by melt extraction from mushy reservoir margins. The extracted melt then continues to evolve (crystallizing sanidine and quartz) while the melt-depleted margins provide an increasingly rigid and refractory network segregating the crystal-poor batches of magma. The hot, refractory, margins insulate the crystal-poor lenses, allowing (1) extended residence in the upper crust, and (2) preservation of chemical heterogeneities among batches. In contrast, systems that produce cumulates richer in low-temperature phases (quartz, K-feldspars, and/or biotite) favour remelting upon recharge, leading to less segregation of eruptible melt pockets and the formation of gradationally zoned ignimbrites. The occurrence of similar crystal aggregates from a variety of magmatic lineages suggests the generality of this process.

  14. Demonstrating and Measuring Relative Molar Magnetic Susceptibility Using a Neodymium Magnet

    ERIC Educational Resources Information Center

    Malerich, Charles; Ruff, Patricia K.; Bird, Aubrey

    2004-01-01

    An easy-to-see method for demonstrating and measuring the magnetic force between paramagnetic substance and a rare earth magnet is presented. The readily available trapezoid-shaped neodymium magnet and a low cost, easy-to-set-up, portable apparatus are used in the experiments.

  15. Neodymium YAG lasers. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    Various aspects of neodymium yag lasers are discussed in approximately 267 citations. Laser materials and outputs, laser mode locking; crystal, fiber, and nonlinear optics, optical pumping communications, energy conversion efficiency, and laser applications are covered. Pulsed, continuous wave, solid state, Q switched, infrared, and dye lasers are included.

  16. Measurement of the gain in a disk amplification stage with neodymium phosphate glass active elements

    SciTech Connect

    Voronich, Ivan N; Galakhov, I V; Garanin, Sergey G; Eroshenko, V A; Zaretskii, Aleksei I; Zimalin, B G; Ignat'ev, Ivan V; Kirdyashkin, M Yu; Kirillov, G A; Osin, Vladimir A; Rukavishnikov, N N; Sukharev, Stanislav A; Sharov, Oleg A; Charukhchev, Aleksandr V

    2003-06-30

    The measuring technique is described and time-resolved measurements of the small-signal gain as a function of the pump energy in a disk amplification stage with neodymium phosphate glass active elements in the 'Luch' facility are presented. The distribution of the gain over the amplifier aperture in the horizontal plane is measured. (lasers)

  17. Attainment of a high gain in a disk amplifying stage with neodymium phosphate glass elements

    SciTech Connect

    Voronich, Ivan N; Garanin, Sergey G; Zaretskii, Aleksei I; Ignat'ev, Ivan V; Kirillov, G A; Murugov, Vasilii M; Osin, Vladimir A; Sukharev, Stanislav A; Charukhchev, Aleksandr V

    2004-06-30

    An efficient reflecting coating made of a MIRO foil with an oxide layer is fabricated, which enhances the reflection of radiation of pump lamps in the head of a high-power neodymium laser and allows a gain g{sub 0}=5x10{sup -2} cm{sup -1} to be achieved. (lasers)

  18. Effect of silicate ions on electrode overvoltage

    NASA Technical Reports Server (NTRS)

    Gras, J. M.; Seite, C.

    1979-01-01

    The influence of the addition of a silicate to a caustic solution (KOH) is studied in order to determine the degree to which silicates inhibit the corrosion of chrysotile under conditions of electrolysis at working temperatures of 100 C and above. In an alkaline solution containing various silicate concentrations, current density was increased and electrode overvoltage was measured. Results show that silicate ion concentrations in the electrolyte increase with temperature without effecting electrochemical performance up to 115 C at 700 MA/sqcm. At this point the concentration is about 0.5 g Si/100 g KOH. Beyond this limit, electrolytic performance rapidly degenerates due to severe oxidation of the electrodes.

  19. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  20. Praseodymium Nitrate and Neodymium Complexation with Organophosphorus Reagents in Supercritical Carbon Dioxide Solvent

    SciTech Connect

    Robert V. Fox; R. Duane Ball; Peter de B. Harrington; Harry W. Rollins; John G. Jolley; Chien M. Wai

    2004-11-01

    Complex formation reactions of praseodymium nitrate hexahydrate, and neodymium nitrate hexahydrate salts with tri-n-butyl phosphate (TBP) and several other neutral organophosphorus reagents were investigated in supercritical carbon dioxide. The concentration of the metal complexes in the supercritical fluid (SCF) phase was determined using UV-Vis and luminescence spectroscopies. The stoichiometry of the complexes was determined using the mole-ratio method. Extraction equilibrium constants were calculated from the spectral data using least-squares regression and hard-equilibria models. UV-Vis absorbance data indicate that praseodymium nitrate and neodymium nitrate both form 1:4 lanthanide–tributyl phosphate complexes in supercritical carbon dioxide at 308 K. The conditional extraction coefficients for those two systems were calculated to be log Kex=7.45±0.06 for the praseodymium system and log Kex=7.52±0.03 for the neodymium system. For comparison, neodymium nitrate complexation reactions with tri-n-butyl phosphate and tributyl phosphite (TBPO3) were studied in hexane under ambient conditions. UV-Vis data indicate that a 1:4 neodymium–tributyl phosphate complex is formed in hexane with a conditional extraction coefficient of log Kex=3.4±0.2. Tributyl phosphite forms a 1:8 complex with neodymium in hexane with a conditional extraction coefficient of log Kex=11.0±0.1. Neodymium nitrate was titrated with other organophosphorus reagents, tributyl phosphite and tributyl phosphine oxide (TBPO), in supercritical carbon dioxide to investigate differences between neutral oxygen donor ligands and neutral phosphorus donor ligands. UV-Vis and luminescence data indicate that neodymium nitrate forms a 1:8 complex with tributyl phosphite and a 1:5 complex with tributyl phosphine oxide, compared to a 1:4 complex with tri-n-butyl phosphate. The conditional extraction coefficient for the 1:8 neodymium–tributyl phosphite system was calculated as log Kex=21.4±0.2 from UV

  1. Passive mode locking of a diode-pumped hybrid neodymium:glass and neodymium:yttrium orthovanadate lasers

    NASA Astrophysics Data System (ADS)

    Tachatraiphop, Sukanya

    In this thesis, I present the first experimental results of the passive mode locking of diode pumped hybrid Nd:glass and Nd:YVO4 lasers with weakly and strongly inhomogeneously broadened laser media: Nd:phosphate glass or Nd:silicate glass, respectively. The spectral and temporal characteristics of the mode-locked hybrid lasers are studied in term of the pump ratio and the gain peak separation of the two hybrid laser media. The mode-locked hybrid laser performance and behavior can be explained by using unsaturated and saturated gain profile in the free running state. The gain profile of the hybrid laser is controlled by the Nd:YVO4 gain via gain combination and cross saturated gain. To verify the accuracy of the numerical results, the cw hybrid laser experiment is conducted. Both simulation and experimental results show that, in both free running state and mode locking state, the spectral component of a hybrid laser is controlled by the Nd:YVO4 gain. With a proper pump of Nd:YVO4, the saturated gain profile of the hybrid laser is wider than that of Nd:glass laser. Un-smooth and narrower gain profile results by an excessive pump at Nd:YVO4. The gain narrowing effect is magnified when gain peaks of hybrid laser are overlap. Un-smooth and narrow gain profile increase mode locking instability and produce longer pulses. In the picosecond regime, the pulse duration is limited by recovery time of the saturable absorber. In the picosecond regime, the hybrid Nd:phosphate glass and Nd:YVO4 laser can mode lock at either 1054 nm or 1064 nm. Because of the soliton mechanism, the pulses can be generated in the femtosecond regime. With a strong soliton force, the wider and flatter gain profile of the hybrid laser can be utilized. The improvement of the hybrid laser performance is enhanced with a smaller negative GVD and strong pump power of Nd:glass media. In the femtosecond regime, the hybrid Nd:silicate glass and Nd:YVO 4 laser generates a shorter pulse duration and better

  2. Mechanisms of magma generation beneath hawaii and mid-ocean ridges: uranium/thorium and samarium/neodymium isotopic evidence.

    PubMed

    Sims, K W; Depaolo, D J; Murrell, M T; Baldridge, W S; Goldstein, S J; Clague, D A

    1995-01-27

    Measurements of uranium/thorium and samarium/neodymium isotopes and concentrations in a suite of Hawaiian basalts show that uranium/thorium fractionation varies systematically with samarium/neodymium fractionation and major-element composition; these correlations can be understood in terms of simple batch melting models with a garnet-bearing peridotite magma source and melt fractions of 0.25 to 6.5 percent. Midocean ridge basalts shows a systematic but much different relation between uranium/thorium fractionation and samarium/neodymium fractionation, which, although broadly consistent with melting of a garnet-bearing peridotite source, requires a more complex melting model. PMID:17788786

  3. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  4. Silicate minerals and the interferon system

    SciTech Connect

    Hahon, N.; Booth, J.A.

    1987-08-01

    Natural-occurring minerals representative of six silicate classes were examined for their influence on interferon induction by influenza virus in Rhesus monkey kidney (LLC-MK/sub 2/) cell monolayers. Minerals within the classes nesosilicate, sorosilicate, cyclosilicate, and inosilicate exhibited either little or marked (50% or greater) inhibition of interferon induction. Within the inosilicate class, however, minerals of the pyroxenoid group (wollastonite, pectolite, and rhodonite) all significantly showed a two- to threefold increase in interferon production. Silicate materials in the phyllosilicate and tectosilicate classes all showed inhibitory activity for the induction process. When silicate minerals were coated with the polymer poly(4-vinylpyridine-N-oxide), the inhibitory activity of silicates on viral interferon induction was counteracted. Of nine randomly selected silicate minerals, which inhibited viral interferon induction, none adversely affected the ability of exogenous interferon to confer antiviral cellular resistance. Increased levels of influenza virus multiplication concomitant with decreased levels of interferon occurred in cell monolayers pretreated with silicates. The findings of this study demonstrate the diverse effects of minerals representative of different silicate classes on the interferon system and indicate that certain silicates in comprising the viral interferon induction process may increase susceptibility to viral infection.

  5. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product....

  6. Mesoporous Silicate Materials in Sensing

    PubMed Central

    Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.

    2008-01-01

    Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  7. Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host

    SciTech Connect

    Rosal, Blanca del; Pérez-Delgado, Alberto; Rocha, Ueslen; Martín Rodríguez, Emma; Jaque, Daniel; Misiak, Małgorzata; Bednarkiewicz, Artur; Vanetsev, Alexander S.; Orlovskii, Yurii; Jovanović, Dragana J.; Dramićanin, Miroslav D.; Upendra Kumar, K.; Jacinto, Carlos; Navarro, Elizabeth; and others

    2015-10-14

    The spectroscopic properties of different infrared-emitting neodymium-doped nanoparticles (LaF{sub 3}:Nd{sup 3+}, SrF{sub 2}:Nd{sup 3+}, NaGdF{sub 4}: Nd{sup 3+}, NaYF{sub 4}: Nd{sup 3+}, KYF{sub 4}: Nd{sup 3+}, GdVO{sub 4}: Nd{sup 3+}, and Nd:YAG) have been systematically analyzed. A comparison of the spectral shapes of both emission and absorption spectra is presented, from which the relevant role played by the host matrix is evidenced. The lack of a “universal” optimum system for infrared bioimaging is discussed, as the specific bioimaging application and the experimental setup for infrared imaging determine the neodymium-doped nanoparticle to be preferentially used in each case.

  8. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  9. Optical and microhardness measurement of lead silicate

    NASA Astrophysics Data System (ADS)

    Jogad, Rashmi M.; Kumar, Rakesh; Krishna, P. S. R.; Jogad, M. S.; Kothiyal, G. P.; Mathad, R. D.

    2013-02-01

    Lead silicate glasses, PbO-SiO2, are interesting because these glasses exhibit thermal, optical, and mechanical properties different than other silicate glasses, and they form a thermally and chemically stable glass over a wide composition range. They are also interesting as PbO acts as glass modifier and as glass former depending on the concentration. In the present work we have prepared lead silicate glasses (xPbO-(1-x).SiO2) by melt quenching. We measured UV absorbance, Vickers hardness, and glass transition for these samples. It is found that band gap is proportional to glass transition.

  10. Neodymium-doped barium borate glasses as fluorescent concentrators for the infrared spectral range

    NASA Astrophysics Data System (ADS)

    Dyrba, Marcel; Wiegand, Marie-Christin; Ahrens, Bernd; Schweizer, Stefan

    2012-06-01

    Neodymium-doped barium borate glasses are investigated for their potential as fluorescent concentrators for the near infrared spectral range. Additional doping of the glasses with silver oxide and subsequent heat treatment leads to a reduction of the doped silver ions and to the formation of metallic silver nanoparticles. The formation of the silver nanoparticles is indicated by a broad surface plasmon-related extinction band at approximately 410 nm. The influence of the silver nanoparticles on the fluorescence properties is investigated.

  11. Long-Pulsed Neodymium-Doped Yttrium Aluminum Garnet Laser for Glomuvenous Malformations in Adolescents.

    PubMed

    Trost, Jaren; Buckley, Colin; Smidt, Aimee C

    2015-01-01

    Currently there exist few reported cases where lasers are used successfully to treat glomuvenous malformations in adolescents. In the two cases described here, we provide evidence that the long-pulsed neodymium-doped yttrium aluminum garnet laser is an effective and safe alternative treatment for these lesions. Our case series is unique because it focuses on adolescents, the population that most often seeks treatment for this dermatologic condition. PMID:26138991

  12. Neodymium(III) Complexation by Amino-Carbohydrates via a Ligand-Controlled Hydrolysis Mechanism

    SciTech Connect

    Levitskaia, Tatiana G.; Chen, Yongsheng; Fulton, John L.; Sinkov, Sergey I.

    2011-07-28

    Chelation of neodymium-III Nd(III) by D-glucosamine (DGA) and chitosan was investigated in solution at near-physiological pH and ionic strength. This research demonstrates the first example of the lanthanide ion heteroleptic hydroxo-carbohydrate complex in solution. It was demonstrated that DGA and chitosan suppressed formation of polynuclear Nd(III) species at elevated pH.

  13. Neodymium isotopic composition and concentration in the western North Atlantic Ocean: Results from the GEOTRACES GA02 section

    NASA Astrophysics Data System (ADS)

    Lambelet, Myriam; van de Flierdt, Tina; Crocket, Kirsty; Rehkämper, Mark; Kreissig, Katharina; Coles, Barry; Rijkenberg, Micha J. A.; Gerringa, Loes J. A.; de Baar, Hein J. W.; Steinfeldt, Reiner

    2016-03-01

    The neodymium (Nd) isotopic composition of seawater is commonly used as a proxy to study past changes in the thermohaline circulation. The modern database for such reconstructions is however poor and the understanding of the underlying processes is incomplete. Here we present new observational data for Nd isotopes and concentrations from twelve seawater depth profiles, which follow the flow path of North Atlantic Deep Water (NADW) from its formation region in the North Atlantic to the northern equatorial Atlantic. Samples were collected during two cruises constituting the northern part of the Dutch GEOTRACES transect GA02 in 2010. The results show that the different water masses in the subpolar North Atlantic Ocean, which ultimately constitute NADW, have the following Nd isotope characteristics: Upper Labrador Sea Water (ULSW), εNd = -14.2 ± 0.3; Labrador Sea Water (LSW), εNd = -13.7 ± 0.9; Northeast Atlantic Deep Water (NEADW), εNd = -12.5 ± 0.6; Northwest Atlantic Bottom Water (NWABW), εNd = -11.8 ± 1.4. In the subtropics, where these source water masses have mixed to form NADW, which is exported to the global ocean, upper-NADW is characterised by εNd values of -13.2 ± 1.0 (2sd) and lower-NADW exhibits values of εNd = -12.4 ± 0.4 (2sd). While both signatures overlap within error, the signature for lower-NADW is significantly more radiogenic than the traditionally used value for NADW (εNd = -13.5) due to the dominance of source waters from the Nordic Seas (NWABW and NEADW). Comparison between the concentration profiles and the corresponding Nd isotope profiles with other water mass properties such as salinity, silicate concentrations, neutral densities and chlorofluorocarbon (CFC) concentration provides novel insights into the geochemical cycle of Nd and reveals that different processes are necessary to account for the observed Nd characteristics in the subpolar and subtropical gyres and throughout the vertical water column. While our data set

  14. Structural and optical properties of calcium neodymium hexaaluminates single crystals, potential laser materials

    NASA Astrophysics Data System (ADS)

    Alablanche, S.; Kahn-Harari, A.; Thery, J.; Viana, B.; Vivien, D.; Dexpert-Ghys, J.; Faucher, M.

    1992-05-01

    The structural and optical properties of calcium-neodymium hexaaluminates crystals Ca 1- xNd xMg x Al 12- xO 19 (labeled Ca 1- xNd x) with a magnetoplumbite (MP) structure are investigated. The floating zone method is used to grow single crystals in the composition range 0.1 ≤ x ≤ 0.7, although for high calcium content, the melting of the compounds is no longer congruent. The X-ray structural determination, optical absorption at 4 K, and ESR investigation agree in the localization of Nd 3+ at the regular large cations site of the MP structure with axial ( D3 h) symmetry. A set of crystal field and free ion parameters which fits the absorption spectrum of Nd 3+ in this site is calculated. When x increases, Nd 3+ ions tend to occupy also a second site with lower symmetry. Moreover some anomalous behavior observed in the absorption and ESR spectra at high neodymium concentration may be related to Nd 3+-Nd 3+ ion pairing. Fluorescence intensity and lifetime measurements as a function of the x value are reported. There is evidence of strong cross-relaxation between neighboring neodymium ions for high x values. The results obtained for the Ca 1- xNd x compounds can be extended to other series in which Nd 3+ is replaced by another lanthanide ion. Preliminary investigations have been performed with Pr 3+ and are also reported.

  15. Single crystal growth and characterization of lanthanum-neodymium oxalate octahydrate

    NASA Astrophysics Data System (ADS)

    Want, Basharat

    2011-11-01

    Single crystals of mixed lanthanum-neodymium oxalates are grown by gel diffusion method using agar gel as a medium of growth. The crystals grow in the agar gel with hexagonal morphology having (001), (110) and (010) as habit faces. Single crystal X-ray diffraction results show that the crystals belong to monoclinic system with cell parameters; a=10.344(2) Å, b=9.643(6) Å, c=11.721(2) Å, β=118.7 (2)° , bearing the space group P2/c. Fourier transform infrared spectrum of the crystals indicates the presence of water and other functional groups associated with the oxalate ions. Thermogravimetric and differential thermal analysis support the presence of 8H 2O molecules attached to the lanthanum-neodymium crystal lattice. The thermal decomposition in the nitrogen atmosphere leads to the formation of mixed lanthanum-neodymium oxide as the final product. Energy dispersive analysis of X-rays along with elemental analysis suggests the stoichiometry of the gel grown crystals to be La 1.5Nd 0.5(C 2O 4) 3·8H 2O.

  16. Early Contributions To Silicate Magnetism

    NASA Astrophysics Data System (ADS)

    Evans, Ted

    I have been asked to describe the early work concerning the palaeomagnetic signifi- cance of silicates. In his classic papers published half a century ago, Louis Néel put forward an elegant single-domain (SD) theory to explain the strength and enormous stability of remanent magnetization in rocks. The difficulty was that the predicted size for SD behaviour in magnetite was less than the wavelength of light. This led to the application of electron microscopy to this problem, the first images being obtained in 1969. As it happened, these involved tiny inclusions of magnetite in the pyroxene crystals of a Precambrian gabbro. The technique used in these early investigations was a metallurgical one wherein a carbon film replica of the polished and etched surface of the rock sample is prepared. This provides high spatial resolution but not much com- positional information. Furthermore, the experimental procedures involved are suffi- ciently labour-intensive that this type of work never achieved much popularity. Never- theless, Ssilicate inclusionS remanence has been identified in a variety of oceanic and ´ continental igneous rocks involving ShostS crystals of olivine, pyroxene and feldspar. ´ As far as this session is concerned, the so-called Scloudy feldsparsS found in basic ´ dykes are particularly relevant.

  17. Highly silicic compositions on the Moon.

    PubMed

    Glotch, Timothy D; Lucey, Paul G; Bandfield, Joshua L; Greenhagen, Benjamin T; Thomas, Ian R; Elphic, Richard C; Bowles, Neil; Wyatt, Michael B; Allen, Carlton C; Donaldson Hanna, Kerri; Paige, David A

    2010-09-17

    Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies. PMID:20847267

  18. Siliceous microfossil extraction from altered Monterey rocks

    SciTech Connect

    Nelson, C.O.; Casey, R.E.

    1986-04-01

    Samples of altered Monterey rocks of differing lithologies were processed by various methods to develop new techniques for extracting siliceous microfossils. The preliminary use of thin sections made from the same rocks reduced the number of probable samples (samples worth further processing) by about one-third. Most of the siliceous microfossils contained in altered Monterey rocks appear to be highly recrystallized and are extremely fragile; however, some contained silicified and silica-infilled radiolarians and planktonic and benthonic foraminifera, which are very tough. In general the most useful techniques were gently hydrochloric acid, hydrogen peroxide, formic acid, monosodium glutamate, and regular siliceous microfossil extraction techniques. Unsuccessful techniques and a new siliceous microfossil flotation technique are also documented.

  19. Silicate production and availability for mineral carbonation.

    PubMed

    Renforth, P; Washbourne, C-L; Taylder, J; Manning, D A C

    2011-03-15

    Atmospheric carbon dioxide sequestered as carbonates through the accelerated weathering of silicate minerals is proposed as a climate change mitigation technology with the potential to capture billions of tonnes of carbon per year. Although these materials can be mined expressly for carbonation, they are also produced by human activities (cement, iron and steel making, coal combustion, etc.). Despite their potential, there is poor global accounting of silicates produced in this way. This paper presents production estimates (by proxy) of various silicate materials including aggregate and mine waste, cement kiln dust, construction and demolition waste, iron and steel slag, and fuel ash. Approximately 7-17 billion tonnes are produced globally each year with an approximate annual sequestration potential of 190-332 million tonnes C. These estimates provide justification for additional research to accurately quantify the contemporary production of silicate minerals and to determine the location and carbon capture potential of historic material accumulations. PMID:21332128

  20. Peralkaline silicic volcanic rocks in northwestern nevada.

    PubMed

    Noble, D C; Chipman, D W; Giles, D L

    1968-06-21

    Late Tertiary silicic ashflow tuffs and lavas peralkaline in chemical character (atomic Na + K greater than Al), mainly comendites, occur over wide areas in northwestern Nevada and appear to be widespread in southeastern Oregon. Such peralkaline rocks-which are not uncommon in the western United States-and other chemically unusual silicic rocks are found near the margins rather than toward the center of the Great Basin. PMID:17800671

  1. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  2. Silicate complexes of sugars in aqueous solution.

    PubMed

    Lambert, Joseph B; Lu, Gang; Singer, Stephanie R; Kolb, Vera M

    2004-08-11

    Certain sugars react readily with basic silicic acid to form soluble 2/1 (sugar/silicic acid) silicate complexes. Failure of monohydroxy compounds to give soluble products under these conditions indicates that the sugar silicates are chelates: five-membered diolato rings. Only furanose forms react. Pyranose sugars are stable under these conditions. Because all glycosides fail to react with silicic acid under these conditions, reaction appears to involve the anomeric position (C1 in aldoses, C2 in ketoses), which has a more acidic hydroxy group. Reaction is completed only when the anomeric hydroxy group is cis to an adjacent hydroxy group. The appropriate furanose form must have sufficient natural abundance and solubility to provide an observable product, as measured by (29)Si and (13)C NMR spectroscopy. These structural and practical constraints rationalize the successful reaction of the monosaccharides ribose, xylose, lyxose, talose, psicose, fructose, sorbose, and tagatose and the disaccharides lactulose, maltulose, and palatinose. Glucose, mannose, galactose, and sucrose, among others, failed to form complexes. This high selectivity for formation of sugar silicates may have ramifications in prebiotic chemistry. PMID:15291565

  3. Steps toward interstellar silicate dust mineralogy

    NASA Technical Reports Server (NTRS)

    Dorschner, J.; Guertler, J.; Henning, TH.

    1989-01-01

    One of the most certain facts on interstellar dust is that it contains grains with silicon oxygen tetrahedra (SOT), the internal vibrations of which cause the well known silicate bands at 10 and 18 microns. The broad and almost structureless appearance of them demonstrates lack of translation symmetry in these solids that must be considered amorphous or glassy silicates. There is no direct information on the cations in these interstellar silicates and on the number of bridging oxygens per tetrahedron (NBO). Comparing experimental results gained on amorphous silicates, e.g., silicate glasses, of cosmically most abundant metals (Mg, Fe, Ca, Al) with the observations is the only way to investigate interstellar silicate dust mineralogy (cf, Dorschner and Henning, 1986). At Jena University Observatory IR spectra of submicrometer-sized grains of pyroxene glasses (SSG) were studied. Pyroxenes are common minerals in asteroids, meteorites, interplanetary, and supposedly also cometary dust particles. Pyroxenes consist of linearly connected SOT (NBO=2). In the vitreous state reached by quenching melted minerals, the SOT remain nearly undistorted (Si-O bond length unchanged); the Si-O-Si angles at the bridging oxygens of pyroxenes, however, scatter statistically. Therefore, the original cation oxygen symmetry of the crystal (octahedral and hexahedral coordination by O) is completely lost. The blended bands at 10 and 18 microns lose their diagnostic differences and become broad and structureless. This illustrates best the basic problem of interstellar silicate mineral diagnostics. Optical data of glasses of enstatite, bronzite, hypersthene, diopside, salite, and hedenbergite have been derived. Results of enstatite (E), bronzite (B), and hypersthene (H) show very good agreement with the observed silicate features in the IR spectra of evolutionarily young objects that show P-type silicate signature according to the classification by Gurtler and Henning (1986). Compositional

  4. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  5. Improving of the operation efficiency of the vehicle due to using of the neodymium magnets inside the vibration isolation devices

    NASA Astrophysics Data System (ADS)

    Gurova, E. G.

    2015-09-01

    In this paper the isolation suspension with stiffness compensator based on neodymium magnets is suggested. It was found that the passive vibration isolators not completely sufficient of modern requirement of the vibration isolation. It was determined that the neodymium magnets with the same initial parameters are most effective in comparison with DC current electromagnets. The mathematical model of the vibration isolation suspension has been developed. In this research the traction characteristics for given magnets are presented. Also the design of the vibration isolation suspension with compensator of the stiffness based on neodymium magnets has been developed. This research has been performed under support of the President scholarship for young scientists under the order of Russian Federation Ministry of the education and science No 184 from 10th of March 2015.

  6. Combination of Silicon and Neodymium Isotopes for a better understanding of past changes in bioproductivity and water mass mixing in the upwelling area off Peru

    NASA Astrophysics Data System (ADS)

    Grasse, P.; Ehlert, C.; Frank, M.; Stramma, L.

    2010-12-01

    The Peru coastal upwelling area is characterized by one of the most pronounced Oxygen Minimum Zones (OMZ). Oxygen concentrations are controlled by consumption through decomposition of organic matter versus ventilation via ocean circulation. Surface productivity is a function of both nutrient supply and upwelling intensity. The isotopic composition of Neodymium (Nd) is a powerful proxy for the reconstruction of past ocean circulation due to its intermediate oceanic residence time and the fact that it is independent of biological fractionation. This is in contrast to Silicon (Si) isotopes, which are fractionated during utilization in a way that the lighter Si isotopes are preferentially incorporated into the diatom frustules. The upwelling area off Peru is mainly influenced by water masses from the Central Pacific, which show more radiogenic values (ɛNd = -2), than water masses from the Northern Pacific (ɛNd = -5 to -3) or water masses from the south, which carry an unradiogenic Nd isotope signature originating from the Southern Ocean (ɛNd = -8 to -9). Upwelled Waters on the shelf are mainly supplied from the Equatorial Under Current (EUC) a strong southward flowing water mass originating in the western pacific. Therefore the δ30Si signal of diatoms is mainly influenced by the isotopic signal of the EUC. Past changes in the hydrography therefore would also influence the Si isotopic signal of this productivity proxy independent of silicic acid utilization. For a better understanding of the influence of water mass mixing on the isotopic signatures in the coastal upwelling area and the OMZ, we directly compare the Nd isotope signatures with dissolved stable Silicon isotope data. The information obtained from the unique combination of the biologically influenced Si isotopes and the Nd isotopes will lead to a better understanding of reconstruction of past ocean circulation and productivity.

  7. CONTROL OF LASER RADIATION PARAMETERS: New nanosecond polymer passive switch for neodymium lasers

    NASA Astrophysics Data System (ADS)

    Bezrodnyi, V. I.; Vovk, L. V.; Derevyanko, Nadezhda A.; Ishchenko, Aleksandr A.; Karabanova, L. V.; Mushkalo, I. L.

    1995-03-01

    A new nanosecond passive switch for neodymium lasers was developed on the basis of a highly elastic polyurethane matrix with an optical strength of 1200 MW cm-2, containing a photostable organic dye NOK. The switch was investigated under various Q-switching conditions in YAG, GSGG : Cr : Nd, and yttrium aluminate crystal lasers. Nanosecond single giant pulses and bursts of pulses were generated. The service life was 2×106 pulses at a single point of the switch. The energy of giant single pulses was 0.9 J. Repetition of single pulses at 50 Hz was possible.

  8. Laser amplifier based on a neodymium glass rod 150 mm in diameter

    SciTech Connect

    Shaykin, A A; Fokin, A P; Soloviev, A A; Kuzmin, A A; Shaikin, I A; Burdonov, K F; Khazanov, E A; Charukhchev, A V

    2014-05-30

    A unique large-aperture neodymium glass rod amplifier is experimentally studied. The small-signal gain distribution is measured at different pump energies. The aperture-averaged gain is found to be 2.3. The stored energy (500 J), the maximum possible pump pulse repetition rate, and the depolarisation in a single pulse and in a series of pulses with a repetition rate of one pulse per five minutes are calculated based on the investigations performed. It is shown that the use of this amplifier at the exit of the existing laser can increase the output pulse energy from 300 to 600 J. (lasers)

  9. Neodymium and lead isotope evidence for enriched early Archean crust in North America

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Housh, Todd B.; Isachsen, Clark E.; Podosek, Frank A.; King, Janet E.

    1989-01-01

    Neodymium and lead isotope measurements and uranium-lead zircon geochronology from Archaean gneisses of the Slave Province in the Northwest Territories of Canada are reported. The gneisses contain zircons with cores older than 3.842 Gyr and an epsilon(Nd) (3.7 Gyr) of - 4.8. This is the oldest reported chondritic model age for a terrestrial sample and provides evidence for strongly enriched pre-3.8-Gyr crust, a reservoir complementary to the depleted mantle already in existence by 3.8 Gyr before the present.

  10. Neodymium neutron transmission and capture measurements and development of a new transmission detector

    NASA Astrophysics Data System (ADS)

    Barry, Devin P.

    Neodymium is a 235U fission product and is important in reactor neutronic calculations. The aim of this thesis is to improve upon the existing neutron cross section data of neodymium. Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Institute LINAC using metallic neodymium samples. The capture measurements were made at the 25-m flight station with a 16-segment Nal multiplicity detector, and the transmission measurements were performed at 15-m and 25-m flight stations, respectively, with 6Li glass scintillation detectors. After the data were collected and reduced, resonance parameters were determined by simultaneously fitting the transmission and capture data with the multilevel R-matrix Bayesian code SAMMY. The resonance parameters for all naturally occurring neodymium isotopes were deduced within the energy range of 1.0 eV to 500 eV. The resulting resonance parameters were used to calculate the capture resonance integral with this energy region and were compared to calculations obtained when using the resonance parameters from ENDF-B/VI. The RPI parameters gave a resonance integral value of 32 +/- 1 barns that is approximately 7% lower than that obtained with the ENDF-B/VI parameters. The current measurements significantly reduce the statistical uncertainties on the resonance parameters when compared with previously published parameters. This thesis also explains the resolution function in detail and discusses its importance when fitting experimental data to extract resonance parameters. More accurate resolution function parameters were determined for epithermal transmission and capture measurements by fitting well known resonances in Uranium-238. Improved transmission bare-bounce target in-beam photomultiplier tube (PMT) resolution function parameters were found and compared to those used previously at the RPI LINAC and a marked improvement in the quality of the fits is shown. In addition

  11. Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Gomez, Virginia; Bear, Joseph C.; McNaughter, Paul D.; McGettrick, James D.; Watson, Trystan; Charbonneau, Cecile; O'Brien, Paul; Barron, Andrew R.; Dunnill, Charles W.

    2015-10-01

    Bi-phasic or multi-phasic composite nanoparticles for use in photocatalysis have been produced by a new synthetic approach. Sol-gel methods are used to deposit multiple layers of active material onto soluble substrates. In this work, a layer of rutile (TiO2) was deposited onto sodium chloride pellets followed by an annealing step and a layer of anatase. After dissolving the substrate, bi-phasic nanoparticles containing half anatase and half rutile TiO2; with ``Janus-like'' characteristics are obtained. Nitrogen and neodymium doping of the materials were observed to enhance the photocatalytic properties both under UV and white light irradiation. The unique advantage of this synthetic method is the ability to systematically dope separate sides of the nanoparticles. Nitrogen doping was found to be most effective on the anatase side of the nanoparticle while neodymium was found to be most effective on the rutile side. Rhodamine B dye was effectively photodegraded by co-doped particles under white light.Bi-phasic or multi-phasic composite nanoparticles for use in photocatalysis have been produced by a new synthetic approach. Sol-gel methods are used to deposit multiple layers of active material onto soluble substrates. In this work, a layer of rutile (TiO2) was deposited onto sodium chloride pellets followed by an annealing step and a layer of anatase. After dissolving the substrate, bi-phasic nanoparticles containing half anatase and half rutile TiO2; with ``Janus-like'' characteristics are obtained. Nitrogen and neodymium doping of the materials were observed to enhance the photocatalytic properties both under UV and white light irradiation. The unique advantage of this synthetic method is the ability to systematically dope separate sides of the nanoparticles. Nitrogen doping was found to be most effective on the anatase side of the nanoparticle while neodymium was found to be most effective on the rutile side. Rhodamine B dye was effectively photodegraded by co

  12. Retinal detachment as a complication of neodymium: yttrium aluminum garnet laser cyclophotocoagulation.

    PubMed

    Geyer, O; Neudorfer, M; Lazar, M

    1993-05-01

    We report a traction retinal detachment that developed within one month of transscleral neodymium: yttrium aluminum garnet (Nd:YAG) laser cyclophotocoagulation, a previously unreported complication of the new cyclodestructive procedure. A 17-year-old boy was referred to our department with uncontrolled aphakic glaucoma OD after having undergone cyclocryotherapy twice. Three treatments with transscleral Nd:YAG cyclophotocoagulation were done over nine months to lower his intraocular pressure. Hypotony and traction retinal detachment occurred after the third laser treatment and was managed successfully by vitrectomy with a fluid-gas exchange. Thus, the possibility of this additional complication should be remembered when doing transscleral Nd:YAG cyclophotocoagulation. PMID:8517586

  13. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  14. Silicic magma generation at Askja volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  15. Anodic behavior of alloys in the systems aluminum-scandium(yttrium, praseodymium, neodymium) in a neutral medium

    SciTech Connect

    Ganiev, I.N.; Yunusov, I.; Krasnoyarskii, V.V.

    1988-03-10

    The authors investigated the influence of scandium, yttrium, praseodymium, and neodymium on the anodic behavior of aluminum in a 3% sodium chloride solution by a potentiodynamic method which provided information over a time interval during which the state of the electrode surface and the composition of the solution remained essentially unchanged. Data were derived for electrochemical and pitting corrosion for different alloy contents and compositions. Results were analyzed for aluminum-scandium, aluminum-yttrium, aluminum-praseodymium, and aluminum-neodymium binary systems.

  16. Core formation in silicate bodies

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; O'Brien, D. P.; Kleine, T.

    2008-12-01

    Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core formation happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core formation; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system formation, respectively [4]. These formation times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core formation [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re

  17. Mafic silicates in the Orgueil carbonaceous meteorite

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Macdougall, J. D.

    1976-01-01

    Iron-bearing olivines and pyroxenes occurring in Orgueil may represent a separate population distinct from the magnesian varieties previously reported. Compositions of these iron-bearing silicates are inconsistent with an origin by direct equilibrium condensation in the nebula. Such an origin is more plausible for the magnesian silicates, but lacks conclusive evidence. An extra-solar system origin for either mafic population is possible, though similarly lacking in evidence. About 15% of the olivines, randomly distributed with respect to iron content, retain particle track evidence of a precompaction irradiation.

  18. Microfabrics in Siliceous Hotsprings: Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.; Westall, F.

    2001-01-01

    Microfabrics shed light on the mechanisms governing siliceous sinter precipitation, the profound effects of microorganisms, as well as a conventional facies model for siliceous hotsprings. Additional information is contained in the original extended abstract.

  19. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Astrophysics Data System (ADS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-03-01

    II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions including some chemically strongly fractionated ones. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  20. Optical properties of a binuclear neodymium complex in phosphorus oxychloride for liquid laser

    NASA Astrophysics Data System (ADS)

    Zhang, Guofang; She, Jiangbo; Han, Kai; Nie, Rongzhi; Li, Dongdong; Peng, Bo

    2015-11-01

    A novel binuclear neodymium complex Nd(CF3COO)3·(Ph3PO)2 (Ph3PO: triphenylphosphine oxide) with high stimulated emission cross-section was presented. The molecular structure of the complex was characterized by single-crystal X-ray diffraction. The optical properties of the complex in liquid medium were studied. From the absorption and luminescence spectra, the Judd-Ofelt parameters of Nd(CF3COO)3·(Ph3PO)2 in phosphorus oxychloride were obtained. Based on the crystal structure, the effects of crystal field and bonding valence properties on three intensity parameters Ωt(t = 2, 4, 6) and emission cross-section were analyzed in detail. The emission cross-section of 4F3/2 → 4I11/2 fluorescence transition (2.78 × 10-20 cm2) of the new neodymium compound was higher than those of other Nd(III) complexes and even comparable with some laser glasses.

  1. Neodymium doped hydroxyapatite theranostic nanoplatforms for colon specific drug delivery applications.

    PubMed

    Victor, Sunita Prem; Paul, Willi; Vineeth, V M; Komeri, Remya; Jayabalan, Muthu; Sharma, Chandra P

    2016-09-01

    Theranostic nanoplatforms integrate therapeutic payloads with diagnostic agents, and help monitor therapeutic response. In this regard, stimuli responsive nanoplatforms further favour combinatorial therapeutic approach that can considerably improve efficacy and specificity of treatment. Herein, we present the engineering of a smart theranostic nanoplatform based on neodymium doped hydroxyapatite (HAN). The presence of neodymium endows the HAN nanoplatforms with near-infrared fluorescence capability. These HAN nanoparticles were then subsequently modified with alginic acid (HANA) to confer pH responsiveness to the synthesized nanoplatforms delivering them to the colon after oral administration. These nanoplatforms possessing optimum size, needle shaped morphology and negative zeta potential, are conducive to cellular internalization. On excitation at 410nm they exhibit near infrared emission at 670nm unraveling their theranostic capabilities. Cytotoxic effects systematically assessed using MTT and live dead assays reveal excellent viability. Raman microscopic imaging technique used to visualize uptake in HeLa cells demonstrate increased uptake from 4 to 16h, with growing cluster size and localization in the cytoplasm. Moreover the concomitant presence of alginic acid manifested advantages of augmented loading and pH dependent release profiles of the model drug, 4 acetyl salicylic acid (4ASA). We could thus establish a theranostic system for early tumour detection, targeted tumour therapy and monitoring of colon cancer that can be administered via the oral route. PMID:27281239

  2. Preparation of carbon nanotube-neodymium oxide composite and research on its catalytic performance

    SciTech Connect

    Zhao Lei; Wang Zhihua; Han Dongmei; Tao Dongliang; Guo Guangsheng

    2009-05-06

    Carbon Nanotube-Neodymium Oxide (CNT-Nd{sub 2}O{sub 3}) composite was prepared by using acid treated carbon nanotubes (CNTs) and neodymium nitrate in the presence of sodium dodecyl sulfate and ammonia liquid. Techniques of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and differential thermal analysis (DTA) are used to characterize the morphology, structure, composition and catalytic property of the CNT-Nd{sub 2}O{sub 3} composite. The experimental results show that the Nd{sub 2}O{sub 3} nanoparticles, which have an average diameter of about 30-40 nm, are loaded on the surface of carbon nanotube. Compared with pure Nd{sub 2}O{sub 3} nanorods, the CNT-Nd{sub 2}O{sub 3} composite can catalyze the thermal decomposition of ammonium perchlorate more effectively. The sampling methods of the experimental samples made a difference on the catalytic experiment results, and the best catalytic result was obtained when de-ionized water served as the solvent of ammonium perchlorate.

  3. First clinical experience with a Q-switched neodymium:YAG laser for urinary calculi.

    PubMed

    Hofmann, R; Hartung, R; Schmidt-Kloiber, H; Reichel, E

    1989-02-01

    Animal studies using a high intensity nanosecond pulsed neodymium:YAG laser did not reveal any serious tissue damage. Following these investigations patient treatment was begun in June 1987. Laser energy of a neodymium:YAG laser with an 8 nsec. pulse duration and a repetition rate of up to 50 Hz. was coupled into a flexible 600 resp. 400 micron. quartz fiber. Laser-induced breakdown was created with 35 to 50 mJ. at the fiber tip, resulting in a shock wave that disintegrated the calculus into tiny fragments. A total of 56 patients with 58 calculi (54 ureteral and 4 kidney stones) was treated from June 1987 to March 1988. Of the calculi 48 could be fragmented completely, while 6 others were reduced to a size small enough to be removed with forceps. Four stones composed of calcium oxalate monohydrate could not be disintegrated. The combination of laser stone disintegration with flexible ureterorenoscopy implies the possibility of an atraumatic, 1-step procedure for fragmentation of ureteral and kidney calculi. PMID:2563297

  4. Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Cui, Xiufang; Liu, Zhe; Lin, Lili; Jin, Guo; Wang, Haidou; Xu, Binshi

    2015-01-01

    The new carboxylic acid-neodymium anhydrous conversion films were successfully prepared and applied on the AZ91D magnesium alloy surface by taking absolute ethyl alcohol as solvent and four kinds of soluble carboxylic acid as activators. The corrosion resistance of the coating was measured by potentiodynamic polarization test in 3.5 wt.% NaCl solution in pH 7.0. The morphology, structure, and constituents of the coating were observed by scanning electron microscope, energy dispersivespectrum, x-ray photoelectron spectrum, and Fourier infrared spectrometer. Results show that corrosion resistance properties of samples coated with four different anhydrous conversion films were improved obviously. The corrosion potential increased, corrosion current density decreased, and polarization resistance increased. Among these four kinds of conversion films the one added with phytic exhibits the best corrosion resistant property. The mechanism of anhydrous-neodymium conversion film formation is also analyzed in this paper. It reveals that the gadolinium conversion coating is mainly composed of stable Nd2O3, MgO, Mg(OH)2, and carboxylate of Nd. And that the sample surface is rich in organic functional groups.

  5. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  6. Synthesis of non-siliceous mesoporous oxides.

    PubMed

    Gu, Dong; Schüth, Ferdi

    2014-01-01

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed. PMID:23942521

  7. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  8. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  9. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  10. Lithium Manganese Silicate Positive Electrode Material

    NASA Astrophysics Data System (ADS)

    Yang, Qiong

    As the fast development of the electronic portable devices and drastic fading of fossil energy sources. The need for portable secondary energy sources is increasingly urgent. As a result, lithium ion batteries are being investigated intensely to meet the performance requirements. Among various electrode materials, the most expensive and capacity limiting component is the positive materials. Based on this, researches have been mostly focused on the development of novel cathode materials with high capacity and energy density and the lithium transition metal orthosilicates have been identified as possible high performance cathodes. Here in, we report the synthesis of a kind of lithium transition metal orthosilicates electrode lithium manganese silicate. Lithium manganese silicate has the advantage of high theoretical capacity, low cost raw material and safety. In this thesis, lithium manganese silicate are prepared using different silicon sources. The structure of silicon sources preferred are examined. Nonionic block copolymers surfactant, P123, is tried as carbon source and mophology directing agent. Lithium manganese silicate's performances are improved by adding P123.

  11. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  12. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  13. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  14. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  15. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  16. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  17. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  18. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  19. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  20. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  1. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  2. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum calcium silicate. 182.2122 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation....

  3. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  4. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  5. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  6. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  7. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  8. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  9. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  10. Mineralogy of amphiboles and 1:1 layer silicates

    SciTech Connect

    Veblen, D.R.; Wylie, A.G.

    1993-12-31

    This article reviews briefly the ways in which mineralogists and crystal chemist represent complex silicate structures: the basic nomenclature for amphiboles, and the 1:1 layer silicates; the geological occurrences of these minerals; their crystal structures and defect structures; the various morphologies, or habits, of amphibole and 1:1 layer silicate crystals; and the potentially active surface sites and dissolution kinetics of such particles. Also included is a discussion of how 1:1 layer silicates, amphiboles, and other chain silicates related to amphiboles are identified in the laboratory. 225 refs., 28 figs.

  11. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  12. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  13. Silicate Feature Variation in LPV Stars

    NASA Astrophysics Data System (ADS)

    Creech-Eakman, M. J.

    1997-08-01

    Silicate dust, found around oxygen-rich stars, produces a hallmark mid-infrared spectral feature resulting from the bend or stretch in the SiO_4 tetrahedron. Long Period Variable (LPV) stars on the Asymptotic Giant Branch produce copious quantities of silicate dust over this short stage of their stellar evolution. A study of 31 oxygen-rich LPVs was conducted over a sixteen month period using the University of Denver's TNTCAM. The study has been supplemented with spectral data from UKIRT CGS3 service observations and IRAS LRS archives. Observations of the silicate features in the circumstellar environment indicate a possible evolutionary sequence for the stars, inferred from the changes of the dust spectra. These new observations suggest a relationship between the dust spectral signature and the stage of the dust formation process. There is evidence that acoustic shocks from the LPV are a catalyst in the dust formation process. Follow-on work is already occuring in the form of ISO SWS data on a selected subgroup of LPVs. To enhance this study, a mid-infrared, cross-dispersed spectrometer, TGIRS, was built. TGIRS covers a wavelength range of 7 to 14 microns at a resolving power of 750. The instrument utilizes a Boeing-Rockwell Si:As BIB HFPA as its detector. It is cooled using a two-stage Gifford-McMahon cryocooler, eliminating the need for liquid cryogens. All of the optics in the system are aluminum, permitting ambient alignment and focusing with a laser. A description of the design and building phases of TGIRS is presented. Brief descriptions concerning the evolution of LPVs, theories of dust formation, and the signatures of the silicate dust are given. Data acquisition and reduction are described, including a new method for removing telluric attenuation from the data. Spectral energy distributions are shown, including graphs of the silicate features with respect to stellar phase. Finally, results of the statistical analysis of the sample and conclusions are drawn

  14. Photoacoustic spectroscopy study of neodymium complexes with alanine, valine, phenylalanine and tryptophan.

    PubMed

    Yang, Yuetao; Zhang, Shuyi

    2003-04-01

    Neodymium complexes with amino acids: Nd(Ala)(3)Cl(3).3H(2)O, Nd(Val)(3)Cl(3).3H(2)O, Nd(Phe)Cl(3).5H(2)O and Nd(Trp)(3)Cl(3).3H(2)O (Ala: L-alanine, Val: L-valine, Phe: L-phenylalanine, Trp: L-tryptophan) are synthesized and their photoacoustic (PA) spectra are reported. The nephelauxetic ratio beta, bonding parameter b(1/2) and Sinha parameter delta are calculated based on their PA spectra. The variation of these parameters and correlation of them with the nature of metal-ligand bonding are discussed. The PA intensity analysis of the f-f transitions of neodymium ion is carried out by calculating the intensity branching vector. The environmental effect on the f-f transitions of neodymium ion is also studied. The branching vectors of the f-f transitions of Nd(Ala)(3)Cl(3).3H(2)O and Nd(Val)(3)Cl(3).3H(2)O are similar, which indicates the perturbation of the two ligand fields is similar. The branching vectors of energy levels 4G(5/2)+(2)G(7/2) of Nd(Phe)Cl(3).5H(2)O and Nd(Trp)(3)Cl(3).3H(2)O increase remarkably compared with those of Nd(Ala)(3)Cl(3).3H(2)O and Nd(Val)(3)Cl(3).3H(2)O. As the degree of covalency increases, the oscillator strength of the hypersensitive transition exhibits a corresponding increase. The relaxation process of Nd(Ala)(3)Cl(3).3H(2)O is established through its PA and electron absorption spectroscopy (EAS). A method used to resolve the PA amplitude spectrum is suggested. With the phase spectrum, PA absorption bands of Nd(Trp)(3)Cl(3).3H(2)O are resolved well in the region of ligand absorption. PMID:12659889

  15. Aggregation of Calcium Silicate Hydrate Nanoplatelets.

    PubMed

    Delhorme, Maxime; Labbez, Christophe; Turesson, Martin; Lesniewska, Eric; Woodward, Cliff E; Jönsson, Bo

    2016-03-01

    We study the aggregation of calcium silicate hydrate nanoplatelets on a surface by means of Monte Carlo and molecular dynamics simulations at thermodynamic equilibrium. Calcium silicate hydrate (C-S-H) is the main component formed in cement and is responsible for the strength of the material. The hydrate is formed in early cement paste and grows to form platelets on the nanoscale, which aggregate either on dissolving cement particles or on auxiliary particles. The general result is that the experimentally observed variations in these dynamic processes generically called growth can be rationalized from interaction free energies, that is, from pure thermodynamic arguments. We further show that the surface charge density of the particles determines the aggregate structures formed by C-S-H and thus their growth modes. PMID:26859614

  16. Conductimetric determination of decomposition of silicate melts

    NASA Technical Reports Server (NTRS)

    Kroeger, C.; Lieck, K.

    1986-01-01

    A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.

  17. Extraction chromatography of neodymium by an organophosphorous extractant supported on various polymeric resins

    SciTech Connect

    Takigawa, D.Y.

    1993-04-01

    Fifteen resins coated with dihexyl-N,N-diethylcarbamoylmethyl phosphonate (CMP) were studied for their extraction of neodymium (Nd) in 4.0 and 7.0 M nitric acid. Resin properties, such as chemical composition and physical morphology, which can influence Nd extraction as well as subsequent resin regeneration (Nd stripping), were identified. Hydrophilic or polar resins coated with CMP efficiently extracted the Nd. Resins initially washed free of residual monomer and solvent before CMP coating outperformed their untreated counterparts. The macroporous styrene-divinylbenzene hydrophobic resins that were high in surface area were less effective supports compared with hydrophilic microporous Aurorez, polybenzimidazole (PBI) and macroporous Amberlite polyacrylic resins. Only one resin, Duolite C-467, showed no measurable improvement in Nd extraction with CMP coating. CMP-coated Aurorez PBI, a microporous and hydrophilic polymeric resin with an average surface area, showed the best overall efficiency for Nd removal and resin regeneration.

  18. Detection of Neodymium in APOGEE H-band Spectra and its Application to Chemical Tagging

    NASA Astrophysics Data System (ADS)

    Hasselquist, Sten; Shetrone, Matthew D.; Smith, Verne V.; Holtzman, Jon A.; Lawler, James E.; Ivans, Inese I.; Majewski, Steven R.; Schiavon, Ricardo P.; Zasowski, Gail; Nidever, David L.; Hearty, Fred; Allende-Prieto, Carlos; Beers, Timothy C.; García Pérez, Ana; Sobeck, Jennifer; Apogee Team

    2015-01-01

    We report the successful detection of the rare earth element Neodymium (Nd) in the high-resolution, H-band spectra from the SDSS III Apache Point Observatory Galactic Evolution Experiment (APOGEE). Using the Nd II transition at 16058.014 angstroms, we have detected significant Nd enhancements in all stars observed by APOGEE belonging to the Sagittarius (Sgr) Dwarf Spheroidal (dSph) galaxy. Because Sgr is known to be enhanced in heavy s-process elements such as Nd, we can use this feature to identify and chemically tag Sgr stream members that have been observed in the Galactic halo by APOGEE. We also use this feature to characterize rare earth element abundance variations in clusters observed by APOGEE.

  19. Vacuum Ultraviolet Field Emission Lamp Consisting of Neodymium Ion Doped Lutetium Fluoride Thin Film as Phosphor

    PubMed Central

    Yanagihara, Masahiro; Tsuji, Takayuki; Yusop, Mohd Zamri; Tanemura, Masaki; Nagami, Tomohito; Fukuda, Kentaro; Suyama, Toshihisa; Yokota, Yuui; Yanagida, Takayuki; Yoshikawa, Akira

    2014-01-01

    A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd3+ : LuF3) thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd3+ : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region. PMID:25302320

  20. Current status and future outlook for bonded neodymium permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Croat, J. J.

    1997-04-01

    Bonded neodymium magnets can provide significant size and weight reduction and/or performance enhancement over sintered and, particularly, bonded ferrite permanent magnets and, moreover, provide these benefits at reasonable cost. Primarily for these reasons, these bonded magnets are now used in a wide and growing range of computer peripheral, office automation, and consumer electronic applications and now constitute the fastest growing segment of the permanent magnet market. The current status of these materials will be reviewed. Included is a brief overview of the manufacture of these magnetically isotropic magnets and a discussion of their unique properties and features from the perspective of both bonded magnet producer and user. Major applications are discussed as are some of the factors that will drive the market for these materials in the future. New technical developments, including the status and outlook for anisotropic bonded materials, high remanance isotropic materials and high temperature bonded magnets will also be discussed.

  1. Spectroscopic Properties of Neodymium-Doped Yttrium Orthovanadate Single Crystals with High-Resolution Measurement

    NASA Astrophysics Data System (ADS)

    Sato, Yoichi; Taira, Takunori

    2002-10-01

    The absorption and fluorescence spectra of the neodymium-doped yttrium orthovanadate (Nd:YVO4) single crystal were investigated carefully. For the 808.8-nm absorption cross section, the published values varied between 18.4 and 25.6 × 10-20 cm2 for π-polarization. The authors evaluated this spectroscopic parameter with high resolution at 0.5 nm, and discovered 48.4 cm-1 at 808.8 nm even for the absorption of 1 at.% Nd3+-ion-doped YVO4 single crystal. This value is 1.3 times larger than the well-known value, and confirms that Nd:YVO4 is very suitable for microchip lasers, and that certain laser characteristics of Nd:YVO4 of previous works should be re-evaluated.

  2. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-01

    Gallium oxide and more particularly β-Ga2O3 matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  3. Influence of neodymium concentration on excitation and emission properties of Nd doped gallium oxide nanocrystalline films

    SciTech Connect

    Podhorodecki, A.; Banski, M.; Misiewicz, J.; Lecerf, C.; Marie, P.; Cardin, J.; Portier, X.

    2010-09-15

    Gallium oxide and more particularly {beta}-Ga{sub 2}O{sub 3} matrix is an excellent material for new generation of devices electrically or optically driven as it is known as the widest band gap transparent conductive oxide. In this paper, the optical properties of neodymium doped gallium oxide films grown by magnetron sputtering have been analyzed. The influence of the Nd ions concentration on the excitation/emission mechanisms of Nd ions and the role of gallium oxide matrix have been investigated. The grain size reduction into gallium oxide films have been observed when concentration of Nd increases. It has been found for all samples that the charge transfer is the main excitation mechanism for Nd ions where defect states play an important role as intermediate states. As a consequence Nd emission efficiency increases with temperature giving rise to most intensive emission at 1087 nm at room temperature.

  4. Structure and properties of ITQ-8: a hydrous layer silicate with microporous silicate layers.

    PubMed

    Marler, Bernd; Müller, Melanie; Gies, Hermann

    2016-06-21

    ITQ-8 is a new hydrous layer silicate (HLS) with a chemical composition of [C4H8(C7H13N)2]8 [Si64O128(OH)16]·48H2O per unit cell. The synthesis of ITQ-8 was first described in 2002 by Díaz-Cabañas et al., the structure of this material, however, remained unsolved at that time. Physico-chemical characterization using solid-state NMR spectroscopy, SEM, TG-DTA, and FTIR spectroscopy confirmed that ITQ-8 is a layer silicate. The XRD powder pattern was indexed in the monoclinic system with lattice parameters of a0 = 35.5168(5) Å, b0 = 13.3989(2) Å, c0 = 16.0351(2) Å, β = 106.74(2)°. The crystal structure was solved by simulated annealing. Rietveld refinement of the structure in space group C2/c converged to residual values of RBragg = 0.023, RF = 0.022 and chi(2) = 2.3 confirming the structure model. The structure of ITQ-8 contains silicate layers with a topology that resembles a (11-1) section of the framework of zeolite levyne. So far, this layer topology is unique among layer silicates. The layer can be regarded as made up of 4-, 6-, double-six and 8-rings which are interconnected to form cup-like "half-cages". Unlike other HLSs, which possess impermeable silicate layers, ITQ-8 contains 8-rings pores with a free diameter of 3.5 Å × 3.4 Å and can be regarded as a "small-pore layer silicate". In the crystal structure, the organic cations, 1,4-diquiniclidiniumbutane, used as structure directing agents during synthesis are intercalated between the silicate layers. Clusters (bands) of water molecules which are hydrogen bonded to each other and to the terminal Si-OH/Si-O(-) groups are located between the organic cations and interconnect the silicate layers. ITQ-8 is a very interesting material as precursor for the synthesis of microporous framework silicates by topotactic condensation or interlayer expansion reactions leading to 3D micro-pore systems which may be useful in applications as e.g. catalysts, catalyst supports and adsorbents of for separation. PMID

  5. Isotopic zonations in silicic magma chambers

    SciTech Connect

    Johnson, C.M. )

    1989-12-01

    Many ash-flow tuffs are zoned in radiogenic isotope ratios, indicating that roofward assimilation of crust occurs in ash-flow magma chambers prior to eruption. Cases where relatively well constrained calculations may be made regarding the percentage of assimilation in the roof zone indicate that the percentage of assimilation often exceeds the percentage of phenocrysts in the tuffs. This relation, in addition to the fact that assimilation gradients are opposite to that of the percentage of phenocrysts, suggests that assimilation and crystallization in the silicic roof zones of crustal magma chambers are separated in time and space, and that these processes are best modeled as two-component mixing; true assimilation-fractional crystallization is probably restricted to the lower mafic parts. Most phenocrysts in the silicic upper parts of magma chambers crystallized after assimilation, providing minimum estimates of time between assimilation and eruption (1-100 yr). Preservation of monotonic isotopic gradients suggests that convection is minor in the upper parts of silicic magma chambers during the late stages of evolution.

  6. Lead-silicate glass optical microbubble resonator

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald; Chormaic, Síle Nic

    2015-02-01

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 105 (single-stem) and 7 × 106 (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  7. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1‧-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  8. Lead-silicate glass optical microbubble resonator

    SciTech Connect

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  9. Anisotropy of Silicate-Hosted Magnetite Inclusions

    NASA Astrophysics Data System (ADS)

    Scott, G. R.; Feinberg, J. M.; Renne, P. R.

    2004-12-01

    Anisotropy of magnetic properties is a hallmark of silicate crystals with oriented iron-oxide inclusions. Strongly magnetic magnetite-bearing silicates (10-1 A m-1) are common components of gabbros and layered intrusions, contributing to local and regional magnetic anomalies. Additionally, these iron-oxide silicates hold the promise of being exceptional paleomagnetic recorders owing to their features of: physical/chemical isolation from altering fluids, chemical equilibrium with their silicate host, and long relaxation times (enhanced coercivity). However, anisotropy of remanence must be understood before these advantageous features can be utilized. Measurements of single crystals of clinopyroxene and plagioclase (10-4 g) show anisotropy in direction and intensity that directly reflect the crystallography of the silicate host. The host controls both the crystallographic orientation of the magnetite (magnetocrystalline anisotropy) and the elongation direction of the magnetite inclusion (shape anisotropy). We have found another source of anisotropy that involves an internal exsolution of ulvöspinel within titanomagnetite inclusions. This also reflects a host control as this second exsolution occurs along the magnetite \\{100\\}. This fixed wall shape anisotropy creates an array of interacting single domain magnetite parallelepipeds, parallel to \\{100\\}. Each of these anisotropies contributes to enhanced coercivity of remanence, which significantly exceeds the IRM saturation magnetization for magnetite (300 mT). The anisotropy of IRM (aIRM@ 1.1 T) of magnetite-bearing clinopyroxene and plagioclase shows clustering of directions, reflecting the mixture of variables that include: inclusion elongation direction and abundance, orientation of magnetite easy axes relative to the applied field, inclusion aspect ratio and diameter, and pre-existing magnetic domain structure. For pyroxene (monoclinic) with two arrays of needle-shaped magnetite inclusions, the aIRM is

  10. Diseases associated with exposure to silica and nonfibrous silicate minerals. Silicosis and Silicate Disease Committee

    SciTech Connect

    Not Available

    1988-07-01

    Silicosis, a disease of historical importance, continues to occur cryptically today. Its pathogenesis is under ongoing study as new concepts of pathobiology evolve. In this article, the gross and microscopic features of the disease in the lungs and the lesions in lymph nodes and other viscera are described. These tissue changes are then discussed in the context of clinical disease and other possible or established complications of silica exposure (ie, scleroderma and rheumatoid arthritis, glomerulonephritis, and bronchogenic carcinoma). Silicates are members of a large family of common minerals, some of which have commercial importance. Silicates are less fibrogenic than silica when inhaled into the lungs, but cause characteristic lesions after heavy prolonged exposure. The features of these disease conditions are described herein. Various aspects of the mineralogy and tissue diagnosis of silicosis and lung disease due to silicates are reviewed. An overview of contemporary regulatory considerations is provided.204 references.

  11. An Evaluation of Ethyl Silicate-Based Grouts for Weathered Silicate Stones

    NASA Astrophysics Data System (ADS)

    Dolph, Brittany Helen

    Culturally significant monuments made of weathered siliceous stone often display sub-surface condition issues such as cracks and voids. These issues require grouts that are ideally compatible with the composition and properties of the substrate. Based on the successful application of ethyl silicates as consolidants in recent literature, this study examines possible formulation pathways for the development of a grout incorporating ethyl silicate. Tetraethylorthosilicate (TEOS), dibutyltin dilaurate (DBTL) as a catalyst, silicone oil (PDMS), various grades of ground quartz, sepiolite, and hollow glass spheres were used in differing concentrations to create samples. These were visually and physically assessed on workability, separation, shrinkage, cracking, strength, and flexibility. Quantitative analysis was performed on selected formulations using UV-Vis-NIR reflectance spectroscopy in coordination with a weight loss experiment to investigate kinetics, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Successful formulations tended to include oligomeric TEOS, crushed quartz of mixed grades, sepiolite powder, and PDMS, and show promise for future investigations.

  12. Novel inorganic ion exchange materials based on silicates; synthesis, structure and analytical applications of magneso-silicate and magnesium alumino-silicate sorbents.

    PubMed

    El-Naggar, Ibrahim M; Abou-Mesalam, Mamdouh M

    2007-11-19

    Two novel inorganic ion exchange materials magneso-silicate and magnesium alumino-silicate have been synthesized under identical conditions. The structure of these materials was established by chemical analysis, X-ray diffraction, thermogravemetric and differential thermal analyses, Fourier transform infrared spectroscopy and X-ray fluorescence analysis. Magneso-silicate and magnesium alumino-silicate were found to have the formulas MgSi(5.59)O(12.18).5.93H(2)O and MgAl(2.32)Si(5.2)O(14.88).18.23H(2)O, respectively. The structure of both sorbents was arranged and predict according to the ChemDraw Ultra program. The ion exchange capacities of these materials for some radionuclides and heavy metals Cs(+), Co(2+), Cd(2+), Zn(2+) and Cu(2+) were investigated and the data obtained showed that magnesium alumino-silicate has a higher capacity for these cations compared to magneso-silicate. Distribution coefficients in nitric acid medium have been evaluated to explore the separation potentiality of magneso-silicate and magnesium alumino-silicate for Cs(+), Co(2+), Cd(2+), Cu(2+), Zn(2+) and Fe(3+) ions. Sorption isotherms for all cations were investigated and the data showed the applicability of Freundlich isotherm for all cases. PMID:17532565

  13. Adsorption of β-carotene on modified magnesium silicate

    NASA Astrophysics Data System (ADS)

    Sun, Shanshan; Guo, Ning; Fu, Yongfeng

    2016-02-01

    Modified flocculation magnesium silicate is prepared by a hydrothermal process at 120°C for 18 h after adding Al2(SO4)3 into the magnesium silicate gel. Compared with standard magnesium silicate with 328.116 m2 g-1 surface area, this modified magnesium silicate has a bigger BET surface area of 536.803 m2 g-1 and a lower interlayer water content. Modified magnesium silicate exhibits high β-carotene adsorption with a maximum adsorption capacity of 364.96 mg g-1. It is shown that when suspended in organic solvent, this material can be used effectively for carotenoid separation. Furthermore, our results suggest that modified magnesium silicate may be a promising candidate as an absorbent in the decoloring of oil.

  14. Compact, efficient, scalable neodymium laser co-doped with activator ions and pumped by visible laser diodes

    NASA Astrophysics Data System (ADS)

    Scheps, Richard

    1994-02-01

    Efficient, low threshold laser emission from a laser crystal doped with chromium and neodymium ions is obtained when pumped by visible laser diodes in the range of 610 nm to 680 nm. A typical laser Cr,Nd:GSGG crystal having an extraordinarily broad absorption bandwidth allows high pump efficiencies when using visible laser diodes, particularly in comparison to the Nd:YAG laser. The broad absorption bandwidth tolerance of the Cr,Nd:GSGG crystal to the pumping wavelengths allows visible diode pumping of the neodymium transition without regard to the wavelength of the visible diodes. Longitudinal or end-pumping to take advantage of the emission properties of the visible laser diodes, a nearly hemispherical laser resonator configuration and other co-doped Cr,Nd laser host materials are disclosed.

  15. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  16. Experiments of Water Formation on Warm Silicates

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco

    2014-06-01

    When dust grains have a higher temperature than they would have in dense clouds, and when H, H2, and O2 have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O3 layer on an amorphous silicate surface at 50 K. The values of the cross-sections, σH = 1.6 ± 0.27 Å2 and σD = 0.94 ± 0.09 Å2, respectively, are smaller than the size of an O3 molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.

  17. Experiments of water formation on warm silicates

    SciTech Connect

    He, Jiao; Vidali, Gianfranco

    2014-06-10

    When dust grains have a higher temperature than they would have in dense clouds, and when H, H{sub 2}, and O{sub 2} have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O{sub 3} layer on an amorphous silicate surface at 50 K. The values of the cross-sections, σ{sub H} = 1.6 ± 0.27 Å{sup 2} and σ{sub D} = 0.94 ± 0.09 Å{sup 2}, respectively, are smaller than the size of an O{sub 3} molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.

  18. Variations in the neodymium and strontium isotopic composition and REE content of molluscan shells from the Cretaceous Western Interior seaway

    SciTech Connect

    Whittaker, S.G.; Kyser, T.K. )

    1993-08-01

    Rare earth element concentrations, [epsilon][sub ND](T) values, and strontium isotopic compositions of mollusc shells were used to trace variations in the neodymium and strontium isotopic composition of the epicontinental Late Cretaceous Western Interior seaway of North America. Rare earth element patterns are different in aragonite and calcite produced by the molluscs endemic to the seaway, indicating that either mineralogical control or possibly scavenging by organic films associated with the different phases of biogenic carbonate resulted in differential partitioning of the REEs from seawater during shell formation. The biogenic carbonate also may contain REEs associated with Fe-flocs trapped in the shells during growth, but these flocs cannot result in different REE patterns of aragonite and calcite produced by the molluscs. The neodymium isotopic composition of the Western Interior seaway is inferred to have varied 13 [epsilon]-units over 20 My as a result of incursions of seawater from the Arctic Ocean and Gulf of Mexico, river influx from tectonically active terranes, benthic diagenetic fluxes, and volcanic ash falls. Ash from a variety of volcanic centers in western North America was significant in producing rapid and marked changes in [sup 143]Nd/[sup 144]Nd ratios of the seaway, and abrupt regional variations in neodymium isotopic composition of the seaway make the construction of an accurate neodymium isotope evolution curve difficult for this basin. Strontium isotopic compositions of the mollusc shells indicate the [sup 87]Sr/[sup 86]Sr ratio of the Western Interior seaway was generally similar to contemporaneous oceans, although, periodically, the basin had strontium isotopic compositions distinct from contemporaneous seawater. 58 refs., 7 figs., 3 tabs.

  19. Neodymium glass laser with a pulse energy of 220 J and a pulse repetition rate of 0.02 Hz

    SciTech Connect

    Kuzmin, A A; Kulagin, O V; Khazanov, Efim A; Shaykin, A A

    2013-07-31

    A compact neodymium glass laser with a pulse energy of 220 J and a record-high pulse repetition rate of 0.02 Hz (pulse duration 30 ns) is developed. Thermally induced phase distortions are compensated using wave phase conjugation. The integral depolarisation of radiation is decreased to 0.4% by using linear compensation schemes. The second harmonic of laser radiation can be used for pumping Ti : sapphire multipetawatt complexes. (letters)

  20. Lithium metaborate flux in silicate analysis

    USGS Publications Warehouse

    Ingamells, C.O.

    1970-01-01

    Lithium metaborate is an effective flux for silicates and other rock-forming minerals. The glass resulting from fusion is mechanically strong, reasonably nonhygroscopic, and is readily soluble in dilute acids. These characteristics lead to its use in X-ray spectrography and in methods which require whole-rock solutions, such as atomic absorption and emission spectrometry. Difficulties have been encountered in the use of such techniques : a high-quality reagent has been difficult to obtain ; fusion conditions must be rather closely controlled; graphite crucibles used in the fusions need special treatment. Methods for overcoming these difficulties are outlined. Selected procedures for various instrumental methods of analysis are described. ?? 1970.

  1. Determination of chlorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  2. Microbial dissolution of silicate materials. Final report

    SciTech Connect

    Schwartzman, D.

    1996-03-26

    The objective of this research was to better understand the role of selected thermophilic bacteria in the colonization and dissolution of silicate minerals, with potential applications to the HDR Project. The demonstration of enhanced dissolution from microbial effects is critically dependent on providing a mineral bait within a media deficient in the critical nutrient found in the mineral (e.g., Fe). Reproducible experimental conditions in batch experiments require agitation to expose mineral powders, as well as nearly similar initial conditions for both inoculated cultures and controls. It is difficult, but not impossible to ensure reproducible conditions with microbes favoring filamentous growth habits.

  3. Noble gas diffusion in silicate liquids

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Burnard, P.; Laporte, D.

    2013-12-01

    Fractionated noble gas relative abundances (Ne/Ar, Kr/Ar and Xe/Ar) and isotopic compositions (40Ar/36Ar, 38Ar/36Ar, 20Ne/22Ne, 21Ne/22Ne) are found in volcanic materials, notably in pumices (1-3). This has generally been interpreted as fractionation resulting from diffusion. However, there is some disagreement as to whether this fractionation occurs during high temperature magmatic processes (3) or due to diffusion of air into solidified pyroclastic deposits (2). We show that differences in relative noble gas diffusivities (e.g. D4He vs D40Ar, where D is the diffusivity) and isotopic diffusivities (e.g. D40Ar vs D36Ar) reduce at high temperatures (Fig). These results predict minimal fractionation of noble gases during magmatic processes. However, it is important to note that these diffusivities were measured in silicate glasses; the relative noble diffusivities in silicate liquids are poorly known. We have developed a new experimental protocol which will to determine the diffusivities of the noble gases and their isotopes in the liquid state. A graphite crucible c. 0.3 mm diameter and c. 20mm deep is filled with powdered glass of the desired composition, heated to 1773 K for 15 minutes and quenched to form a glass cylinder within the crucible. The crucible is then placed in a low pressure (1 bar) controlled atmosphere vertical furnace and heated at high temperatures (1673-1773K) for 2 hours in a pure N2 atmosphere. At this point noble gases (He and Ar) are introduced into the furnace and allowed to diffuse into the cylinder of liquid for durations of between 30 and 90. After quenching, the glass cylinder, preserving its' diffusion profile, is sawed into c. 1mm thick discs which are measured by conventional noble gas mass spectrometry for noble gas abundances (He, Ar) and isotopes (40,38,36Ar). The results will be presented at the conference. References 1 Kaneoka, I. Earth Planet Sci Letts 48, 284-292 (1980). 2 Pinti, D. L., Wada, N. & Matsuda, J. J. Volcan

  4. Activity composition relationships in silicate melts

    SciTech Connect

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  5. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, Ming-Shing; Chen, James M.; Yang, Ralph T.

    1982-01-01

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  6. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  7. Evaluating United States and world consumption of neodymium, dysprosium, terbium, and praseodymium in final products

    NASA Astrophysics Data System (ADS)

    Hart, Matthew

    This paper develops scenarios of future rare-earth-magnet metal (neodymium, dysprosium, terbium, and praseodymium) consumption in the permanent magnets used in wind turbines and hybrid electric vehicles. The scenarios start with naive base-case scenarios for growth in wind-turbine and hybrid-electric-vehicle sales over the period 2011 to 2020, using historical data for each good. These naive scenarios assume that future growth follows time trends in historical data and does not depend on any exogenous variable. Specifically, growth of each technological market follows historical time trends, and the amount of rare earths used per unit of technology remains fixed. The chosen reference year is 2010. Implied consumptions of the rare earth magnet metals are calculated from these scenarios. Assumptions are made for the material composition of permanent magnets, the market share of permanent-magnet wind turbines and vehicles, and magnet weight per unit of technology. Different scenarios estimate how changes in factors like the material composition of magnets, growth of the economy, and the price of a substitute could affect future consumption. Each scenario presents a different method for reducing rare earth consumption and could be interpreted as potential policy choices. In 2010, the consumption (metric tons, rare-earth-oxide equivalent) of each rare-earth-magnet metal was as follows. Total neodymium consumption in the world for both technologies was 995 tons; dysprosium consumption was 133 tons; terbium consumption was 50 tons; praseodymium consumption was zero tons. The base scenario for wind turbines shows there could be strong, exponential growth in the global wind turbine market. New U.S. sales of hybrid vehicles would decline (in line with the current economic recession) while non-U.S. sales increase through 2020. There would be an overall increase in the total amount of magnetic rare earths consumed in the world. Total consumption of each rare earth in the short

  8. The interplay between particulate and dissolved neodymium in the Western North Atlantic: First insights and interpretations

    NASA Astrophysics Data System (ADS)

    Stichel, T.; Kretschmer, S.; Lambelet, M.; van de Flierdt, T.; Rutgers van der Loeff, M.; Rijkenberg, M. J. A.; Gerringa, L. J.; De Baar, H. J. W.

    2014-12-01

    Dissolved neodymium (Nd) isotopes (expressed as ɛNd) have been widely used as a water mass tracer to reconstruct paleo ocean circulation. However, the marine geochemical cycle of Nd is not well understood. Unclear input mechanisms, scarcity of available data, and observed decoupling between dissolved ɛNd and Nd concentration patterns ([Nd]) are only a few of the unresolved issues. The latter is often referred to as the Nd paradox(e.g. Goldstein and Hemming 2003). Here we revisit this paradox with an unprecedented data set on particulate Nd isotope and concentration data from five stations along the Dutch GEOTRACES transect GA02 in the western North and equatorial Atlantic Ocean (cruises 64PE319 and 64PE321 from April to July 2010). Particulates were collected with in-situ pumps on 0.8 µm Supor filters and subjected to a total digestion procedure in the home laboratory. The particulates collected farthest north (Irminger Sea and Labrador Sea) show a strong affinity to the nearby land masses in their Nd isotope composition: Very negative values (ɛNd ≈-20) are observed in the Labrador Sea, which is surrounded by old continental rocks. More positive values of up to ɛNd ≈-4 are found east of Greenland probably derived from the Nansen Fjord Formation's basaltic rocks. In these two areas the particulate ɛNd is offset from dissolved Nd isotopes by up to 7.7 ɛ-units, but reveals a similar vertical distribution. Further downstream of the flow path of the North Atlantic Deep Water, dissolved and particulate Nd isotopic compositions in the water column seem to merge and become indistinguishable from one another south of Bermuda (BATS station). This seems to indicate that particulate and dissolved fractions exchange with increasing distance from source regions and age of water masses. Neodymium concentrations in particulates [pNd] are low (KD<5%) and invariant. However, most stations show a significant increase in [pNd] close to the seafloor, where [pNd] nearly

  9. Neodymium isotopes in Archean seawater and implications for the marine Nd cycle in Earth's early oceans

    NASA Astrophysics Data System (ADS)

    Alexander, Brian W.; Bau, Michael; Andersson, Per

    2009-06-01

    Published neodymium (Nd) isotopic data for Archean iron-formations (IF) suggest that, overall, seawater throughout the Archean typically displayed 143Nd/ 144Nd close to bulk Earth values, with ЄNd( t) between - 1.5 and + 2.5. Neodymium isotopic ratios in seawater during deposition of the ~ 3.8 Isua (Greenland) IF likely displayed positive ЄNd(3.8 Ga) of + 2.5, as suggested by IF-G, an Isua reference IF that is considered the best archive for Early Archean seawater. Seawater 143Nd/ 144Nd ratios dominated by radiogenic Nd (positive ЄNd( t)) seem to have persisted for much of the Archean, as IF from the Pietersburg greenstone belt, South Africa, suggest seawater ЄNd(2.95 Ga) ≥ + 1. However, similarly aged (~ 2.9 Ga) IFs from South Africa indicate that significant variations in seawater 143Nd/ 144Nd occurred, and clearly show influences from isotopically distinct crustal sources. These variations are apparently related to depositional environment, with cratonic margin, shallow-water IFs possessing a continental ЄNd( t) of - 3, while IFs associated with sub-aqueous mafic volcanics display more radiogenic, positive ЄNd( t) values. Such variation in seawater 143Nd/ 144Nd is not possible in an isotopically well-mixed ocean, and similar to today, it appears that marine Nd cycling in the Archean produced water masses with distinct Nd isotopic ratios. Since the presence of banded iron-formations requires a reducing Archean ocean capable of transporting Fe, metal-oxide precipitation and scavenging processes near deep sea hydrothermal vent systems would not have scavenged mantle Nd, i.e., Nd sourced from alteration of oceanic crust. We propose that bulk anoxic seawater prior to 2.7 Ga possessed relatively constant positive ЄNd( t) of + 1 to + 2, whereas local shallow-water masses associated with exposed evolved crust could possess distinctly different, lower ЄNd( t).

  10. Evidence for seismogenic fracture of silicic magma.

    PubMed

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting. PMID:18497823

  11. Research drilling in young silicic volcanoes

    SciTech Connect

    Eichelberger, J.C.

    1989-06-30

    Magmatic activity, and particularly silicic magmatic activity, is the fundamental process by which continental crust forms and evolves. The transport of magma from deep crustal reservoirs to the surface is a neglected but important aspect of magmatic phenomena. It encompasses problems of eruptive behavior, hydrothermal circulation, and ore deposition, and must be understood in order to properly interpret deeper processes. Drilling provides a means for determining the relationship of shallow intrusive processes to eruption processes at young volcanoes where eruptions are best understood. Drilling also provides a means for directly observing the processes of heat and mass transfer by which recently emplaced intrusions approach equilibrium with their new environment. Drilling in the Inyo Chain, a 600-year-old chain of volcanic vents in California, has shown the close relationship of silicic eruption to shallow dike emplacement, the control of eruptive style by shallow porous-flow degassing, the origin of obsidian by welding, the development of igneous zonation by viscosity segregation, and the character and size of conduits in relation to well-understood magmatic and phreatic eruptions. 36 refs., 9 figs.

  12. SPM nanolithography of hydroxy-silicates.

    PubMed

    Valdrè, G; Moro, D; Hounsome, C M; Antognozzi, M

    2012-09-28

    Bio-nanopatterning of surfaces is becoming a crucial technique with applications ranging from molecular and cell biology to medicine. Scanning probe microscopy (SPM) is one of the most useful tools for nanopatterning of flat surfaces. However, these patterns are usually built on homogeneous surfaces and require chemical functionalization to ensure specific affinity. Layered magnesium-aluminum hydroxide-silicates have already shown unique self-assembly properties on DNA molecules, due to their peculiar crystal chemistry based on alternating positive and negative crystal layers. However, patterns on these surfaces tend to be randomly organized. Here we show etching and oxidation at the nanometer scale of magnesium-aluminum hydroxide-silicates using the same SPM probe for the creation of organized nanopatterns. In particular, it is possible to produce three-dimensional structures in a reproducible way, with a depth resolution of 0.4 nm, lateral resolution of tens of nm, and a speed of about 10 μm s(-1). We report, as an example, the construction of an atomically flat charged pattern, designed to guide DNA deposition along predetermined directions without the need of any chemical functionalization of the surface. PMID:22948182

  13. Tip-induced nanoreactor for silicate

    PubMed Central

    Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin

    2015-01-01

    Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales. PMID:26364882

  14. Crystalline-amorphous transition in silicate perovskites

    SciTech Connect

    Hemmati, M.; Chizmeshya, A.; Wolf, G.H.; Poole, P.H.; Shao, J.; Angell, C.A.

    1995-06-01

    CaSiO{sub 3} and MgSiO{sub 3} perovskites are known to undergo solid-state crystal to amorphous transitions near ambient pressure when decompressed from their high-pressure stability fields. In order to elucidate the mechanistic aspects of this transition we have performed detailed molecular-dynamics simulations and lattice-dynamical calculations on model silicate perovskite systems using empirical rigid-ion pair potentials. In the simulations at low temperatures, the model perovskite systems transform under tension to a low-density glass composed of corner shared chains of tetrahedral silicon. The amorphization is initiated by a thermally activated step involving a soft polar optic mode in the perovskite phase at the Brillouin zone center. Progression of the system along this reaction coordinate triggers, in succession, multiple barrierless modes of instability ultimately producing a catastrophic decohesion of the lattice. An important intermediary along the reaction path is a crystalline phase where silicon is in a five-coordinate site and the alkaline-earth metal atom is in eightfold coordination. At the onset pressure, this transitory phase is itself dynamically unstable to a number of additional vibrational modes, the most relevant being those which result in transformation to a variety of tetrahedral chain silicate motifs. These results support the conjecture that stress-induced amorphization arises from the near simultaneous accessibility of multiple modes of instability in the highly metastable parent crystalline phase.

  15. Thermochemistry of dense hydrous magnesium silicates

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  16. The infrared characteristics of circumstellar silicate grains

    NASA Technical Reports Server (NTRS)

    Schutte, W.; Tielens, A. G. G. M.

    1985-01-01

    A theoretical study of the infrared emission from circumstellar shells around late-type giants is made, with the aim of deriving the infrared characteristics of the silicate grains condensing in these shells. A large grid of models has been compared with observations of optically visible Miras, IRC sources and OH/IR stars. From fitting the observed relation between the color temperature and the strength of the 10-micron feature, it is concluded that the ratio of the 3.5 to 10-micron absorption efficiencies of the dust is about 0.25, a factor of 2 less than a previous determination. Detailed modeling of the 2 to 13-micron spectrum of OH 26.5 + 0.6, IRC + 10011 and R Cas yielded a similar ratio. These detailed models also show that the shape of the 10-micron feature, particularly around 8 and 13 microns, varies from source to source. The derived 10-micron feature is narrower for larger dust column densities. These observed differences in the intrinsic shape of the 10-micron feature are not due to differences in size of the condensing particles. Probably they are related to structural or compositional differences in the condensing silicates.

  17. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  18. SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS

    EPA Science Inventory

    Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...

  19. A new solid-state, frequency-doubled neodymium-YAG photocoagulation system.

    PubMed

    Jalkh, A E; Pflibsen, K; Pomerantzeff, O; Trempe, C L; Schepens, C L

    1988-06-01

    We have developed a solid-state laser system that produces a continuous green monochromatic laser beam of 532 nm by doubling the frequency of a neodymium-YAG laser wavelength of 1064 nm with a potassium-titamyl-phosphate crystal. Photocoagulation burns of equal size and intensity were placed in two rabbit eyes with the solid-state laser system and the regular green argon laser system, respectively, using the same slit-lamp mode of delivery. Histologic findings of lesion sections revealed no important differences between the two systems. In theory, the longer wavelength of the solid-state laser offers the advantages of less scattering in ocular media, higher absorption by oxyhemoglobin, and less absorption by macular xanthophyll than the 514-nm wavelength of the regular green argon laser. The solid-state laser has impressive technical advantages: it contains no argon-ion gas tube that wears out and is expensive to replace; it is much more power efficient, and thus considerably smaller and compact; it is sturdier and easily movable; it does not require external cooling; it uses a 220-V monophasic alternating current; and it requires little maintenance. PMID:3370017

  20. Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions

    NASA Astrophysics Data System (ADS)

    Lacan, Francois; Jeandel, Catherine

    2004-01-01

    Seawater neodymium isotopic composition ( ɛNd) and rare earth element (REE) concentrations were measured along four hydrologic sections within the East Greenland Current (EGC), between the Fram and the Denmark Straits, during summer 1999. EGC intermediate waters, between 77°N and 70°N, displaying similar hydrological characteristics as Denmark Strait Overflow Water (DSOW), had very constant REE characteristics and ɛNd value of -10.9. This constancy reveals the absence of lithogenic input, from the East Greenland margin, into intermediate waters in this area, corroborating previous dissolved aluminum data. The DSOW was characterized by ɛNd=-8.4±1.4. This value can be explained by the imprint of lithogenic formations, mainly basaltic, bordering the Denmark Strait on the intermediate waters described above. However, granitic Precambrian formations seem to contribute, although more slightly, to defining the DSOW Nd signature. This double influence could explain the heterogeneity of the Denmark Strait waters. These results provide a better understanding of the DSOW Nd signature, allowing a better use of this tracer in the study of present and past North Atlantic Deep Water dynamics. Atlantic Water was present at a station located at the mouth of Nansen Fjord, on the western side of Denmark Strait. We suggest that this water reaches the fjord intermittently as isolated water lenses or eddies detached from the northward flowing branch of the Irminger current.

  1. Rapid neodymium release to marine waters from lithogenic sediments in the Amazon estuary

    PubMed Central

    Rousseau, Tristan C. C.; Sonke, Jeroen E.; Chmeleff, Jérôme; van Beek, Pieter; Souhaut, Marc; Boaventura, Geraldo; Seyler, Patrick; Jeandel, Catherine

    2015-01-01

    Rare earth element (REE) concentrations and neodymium isotopic composition (ɛNd) are tracers for ocean circulation and biogeochemistry. Although models suggest that REE release from lithogenic sediment in river discharge may dominate all other REE inputs to the oceans, the occurrence, mechanisms and magnitude of such a source are still debated. Here we present the first simultaneous observations of dissolved (<0.45 μm), colloidal and particulate REE and ɛNd in the Amazon estuary. A sharp drop in dissolved REE in the low-salinity zone is driven by coagulation of colloidal matter. At mid-salinities, total dissolved REE levels slightly increase, while ɛNd values are shifted from the dissolved Nd river endmember (−8.9) to values typical of river suspended matter (−10.6). Combining a Nd isotope mass balance with apparent radium isotope ages of estuarine waters suggests a rapid (3 weeks) and globally significant Nd release by dissolution of lithogenic suspended sediments. PMID:26158849

  2. Rapid neodymium release to marine waters from lithogenic sediments in the Amazon estuary.

    PubMed

    Rousseau, Tristan C C; Sonke, Jeroen E; Chmeleff, Jérôme; van Beek, Pieter; Souhaut, Marc; Boaventura, Geraldo; Seyler, Patrick; Jeandel, Catherine

    2015-01-01

    Rare earth element (REE) concentrations and neodymium isotopic composition (ɛNd) are tracers for ocean circulation and biogeochemistry. Although models suggest that REE release from lithogenic sediment in river discharge may dominate all other REE inputs to the oceans, the occurrence, mechanisms and magnitude of such a source are still debated. Here we present the first simultaneous observations of dissolved (<0.45 μm), colloidal and particulate REE and ɛNd in the Amazon estuary. A sharp drop in dissolved REE in the low-salinity zone is driven by coagulation of colloidal matter. At mid-salinities, total dissolved REE levels slightly increase, while ɛNd values are shifted from the dissolved Nd river endmember (-8.9) to values typical of river suspended matter (-10.6). Combining a Nd isotope mass balance with apparent radium isotope ages of estuarine waters suggests a rapid (3 weeks) and globally significant Nd release by dissolution of lithogenic suspended sediments. PMID:26158849

  3. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios

    PubMed

    Rutberg; Hemming; Goldstein

    2000-06-22

    The global circulation of the oceans and the atmosphere transports heat around the Earth. Broecker and Denton suggested that changes in the global ocean circulation might have triggered or enhanced the glacial-interglacial cycles. But proxy data for past circulation taken from sediment cores in the South Atlantic Ocean have yielded conflicting interpretations of ocean circulation in glacial times--delta13C variations in benthic foraminifera support the idea of a glacial weakening or shutdown of North Atlantic Deep Water production, whereas other proxies, such as Cd/Ca, Ba/Ca and 231Pa/230Th ratios, show little change from the Last Glacial Maximum to the Holocene epoch. Here we report neodymium isotope ratios from the dispersed Fe-Mn oxide component of two southeast Atlantic sediment cores. Both cores show variations that tend towards North Atlantic signatures during the warm marine isotope stages 1 and 3, whereas for the full glacial stages 2 and 4 they are closer to Pacific Ocean signatures. We conclude that the export of North Atlantic Deep Water to the Southern Ocean has resembled present-day conditions during the warm climate intervals, but was reduced during the cold stages. An increase in biological productivity may explain the various proxy data during the times of reduced North Atlantic Deep Water export. PMID:10879531

  4. Neodymium(III) Complexes of Dialkylphosphoric and Dialkylphosphonic Acids Relevant to Liquid-Liquid Extraction Systems.

    PubMed

    Lumetta, Gregg J; Sinkov, Sergey I; Krause, Jeanette A; Sweet, Lucas E

    2016-02-15

    The complexes formed during the extraction of neodymium(III) into hydrophobic solvents containing acidic organophosphorus extractants were probed by single-crystal X-ray diffractometry, visible spectrophotometry, and Fourier-transform infrared spectroscopy. The crystal structure of the compound Nd(DMP)3 (1, DMP = dimethyl phosphate) revealed a polymeric arrangement in which each Nd(III) center is surrounded by six DMP oxygen atoms in a pseudo-octahedral environment. Adjacent Nd(III) ions are bridged by (MeO)2POO(-) anions, forming the polymeric network. The diffuse reflectance visible spectrum of 1 is nearly identical to that of the solid that is formed when an n-dodecane solution of di(2-ethylhexyl)phosphoric acid (HA) is saturated with Nd(III), indicating a similar coordination environment around the Nd center in the NdA3 solid. The visible spectrum of the HA solution fully loaded with Nd(III) is very similar to that of the NdA3 material, both displaying hypersensitive bands characteristic of an pseudo-octahedral coordination environment around Nd. These spectral characteristics persisted across a wide range of organic Nd concentrations, suggesting that the pseudo-octahedral coordination environment is maintained from dilute to saturated conditions. PMID:26815878

  5. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications.

    PubMed

    Zacchia, Nicholas A; Valentine, Megan T

    2015-05-01

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy. PMID:26026529

  6. Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources

    USGS Publications Warehouse

    Horan, M.F.; Walker, R.J.; Fedorenko, V.A.; Czamanske, G.K.

    1995-01-01

    Picrites from the Gudchikhinsky suite, the oldest rocks examined, have ??Os of +5.3 to +6.1 and ??Nd of +3.7 to +4.0. The osmium and neodymium isotopic compositions of these rocks are similar to some modern ocean-island basalts (OIB), consistent with their derivation from an mantle plume. Picrites from the stratigraphically higher Tuklonsky suite have similar ??Os of +3.4 to +6.5, but ??Nd of -0.9 to -2.6. The similar ??Os, but lower ??Nd , suggest that some magmas from the same OIB-type, mantle source were contaminated by lithospheric components. A differentiated ankaramite flow, associated with the top of the stratigraphically higher Morongovsky suite, has ??Os of +9.8 to +10.2 and ??Nd of +1.3 to +1.4. The higher ??Os may indicate that the plume source was heterogeneous with respect to osmium isotopic composition, consistent with osmium isotopic measurements in rocks from other plume sources. Mg-rich, alkaline rocks (meymechites) from the Guli area that erupted much nearer the end of the flood-basalt event have ??Os of -1.2 to -2.6 and ??Nd of +3.7 to +4.9. These rocks were probably produced by low degrees of partial melting of mantle after the main stages of flood-basalt production. -from Authors

  7. Rhenium-osmium and samarium-neodymium isotopic systematics of the stillwater complex

    USGS Publications Warehouse

    Lambert, D.D.; Morgan, J.W.; Walker, R.J.; Shirey, S.B.; Carlson, R.W.; Zientek, M.L.; Koski, M.S.

    1989-01-01

    Isotopic data for the Stillwater Complex, Montana , which formed about 2700 Ma (million years ago), were obtained to evaluate the role of magma mixing in the formation of strategic platinum-group element (PGE) ore deposits. Neodymium and osmium isotopic data indicate that the intrusion formed from at least two geochemically distinct magmas. Ultramafic affinity (U-type) magmas had initial ??Nd of -0.8 to -3.2 and a chondritic initial 187Os/186Os ratio of ???0.88, whereas anorthositic affinity (A-type) magmas had ??Nd of -0.7 to +1.7 and an initial 187Os/186Os ratio of ???1.13. These data suggest that U-type magmas were derived from a lithospheric mantle source containing recycled crustal materials whereas A-type magmas originated either by crustal contamination of basaltic magmas or by partial melting of basalt in the lower crust. The Nd and Os isotopic data also suggest that Os, and probably the other PGEs in ore horizons such as the J-M Reef, was derived from A-type magmas. The Nd and Os isotopic heterogeneity observed in rocks below the J-M Reef also suggests that A-type magmas were injected into the Stillwater U-type magma chamber at several stages during the development of the Ultramafic series.

  8. Neodymium:yttrium-aluminium-garnet laser for excision of pulmonary nodules: an institutional review.

    PubMed

    Moghissi, Keyvan; Dixon, Kate

    2009-03-01

    Eighty patients amongst 850 undergoing pulmonary surgery with the use of neodymium:yttrium-aluminium-garnet (Nd:YAG) laser had a solitary pulmonary nodule (< or = 50 mm) on chest radiography, which was confirmed or suspected pre-operatively to be primary lung cancer. All patients had a mini-thoracotomy to expose the lesion. They then had Nd:YAG laser to excise the nodule locally. There was no hospital mortality. Six patients had non-fatal post-operative complications. Pathologically, 46 patients had primary lung cancer and ten had secondary lung cancer. Twenty-four others had benign lesions. Mean hospital stay was 5.5 days. Post-operative reduction of forced vital capacity (FVC) and forced expiratory volume in one second (FEV(1)) was 14% and 13% (mean), respectively. Thirty-seven patients with primary lung cancer were followed up for between 12 months and 60 months. Mean survival time of these patients was 39 months (s.d. 13 months). It was concluded that Nd:YAG laser for pulmonary nodular lesions should be considered for a selected group of patients unsuitable for standard resection. PMID:18214573

  9. Clinical comparison of semiconductor diode versus neodymium: YAG non-contact cyclo photocoagulation.

    PubMed Central

    Ulbig, M W; McHugh, D A; McNaught, A I; Hamilton, A M

    1995-01-01

    AIMS--The advent of diode lasers has allowed their use in transscleral cyclo photocoagulation for refractory glaucoma. A trial was performed to compare the ocular hypotensive and inflammatory effects of cyclo photocoagulation using a continuous wave diode (810 nm) and a free running neodymium:yttrium aluminium garnet (Nd:YAG) laser (1064 nm). METHODS--Forty patients with refractory glaucoma were randomised to receive either diode or Nd:YAG therapy. The intraocular pressure (IOP) and inflammatory response to treatment were monitored over 3 months. RESULTS--There was no significant laser related difference in the effect on IOP after one treatment. There was, however, a difference in effect in retreatments with the IOP lowering effect significantly less, but equally sustained in diode retreatment patients. Severe postoperative complications such as hyphaema or fibrinous anterior uveitis only occurred in the Nd:YAG group. CONCLUSION--The degree and duration of the ocular hypotensive response to cyclo photocoagulation appears to be related to the available power output of the system used, and the extent of tissue damage. Images PMID:7626573

  10. Neodymium:YAG laser treatment of lower leg telangiectasia: a new minimally invasive approach.

    PubMed

    Iannitti, Tommaso; Lonardi, Roberto; Rottigni, Valentina; Palmieri, Beniamino

    2012-09-01

    The aim of this study was to validate the safety and effectiveness of a new therapeutic procedure for the treatment of lower leg telangiectasia without clinical vein insufficiency. A group of 20 healthy women aged between 24 and 47 years (mean±sem 37.05 ± 1.47) with lower leg telangiectasia without clinical vein insufficiency, previously investigated by echo colour Doppler sonography, were recruited and were treated with neodymium:YAG laser (mean±sem 2.5 ± 0.11 sessions). Good or excellent results were obtained in 16 patients and the improvements were statistically significant (p < 0.01). Out of the 20 patients, 16 were satisfied with the procedure. We strongly support laser treatment of lower leg telangiectasia since it allows injection of chemicals to be avoided, and changes the stromal microarchitecture rearranging the fibroblast network into a more resistant pattern reducing the likelihood of relapse. PMID:22205469

  11. Analysis of a 10 megawatt space-based solar-pumped neodymium laser system

    NASA Technical Reports Server (NTRS)

    Kurweg, U. H.

    1984-01-01

    A ten megawatt solar-pumped continuous liquid laser system for space applications is examined. It is found that a single inflatable mirror of 434 m diameter used in conjunction with a conical secondary concentrator is sufficient to side pump a liquid neodymium lasant in an annular tube of 6 m length and 1 m outer and 0.8 m inner diameter. About one fourth of intercepted radiation converging on the laser tube is absorbed and one fifth of this radiation is effective in populating the upper levels. The liquid lasant is flowed through the annular laser cavity at 1.9 m/s and is cooled via a heat exchanger and a large radiator surface comparable in size to the concentrating mirror. The power density of incident light within the lasant of approximately 68 watt/cu cm required for cw operation is exceeded in the present annular configuration. Total system weight corresponds to 20,500 kg and is thus capable of being transported to near Earth orbit by a single shuttle flight.

  12. High-mobility thin film transistors with neodymium-substituted indium oxide active layer

    SciTech Connect

    Lin, Zhenguo; Lan, Linfeng Xiao, Peng; Sun, Sheng; Li, Yuzhi; Song, Wei; Gao, Peixiong; Wang, Lei; Ning, Honglong; Peng, Junbiao

    2015-09-14

    Thin-film transistors (TFTs) with neodymium-substituted indium oxide (InNdO) channel layer were demonstrated. The structural properties of the InNdO films as a function of annealing temperature have been analyzed using X-ray diffraction and transmission electron microscopy. The InNdO thin films showed polycrystalline nature when annealed at 450 °C with a lattice parameter (cubic cell) of 10.255 Å, which is larger than the cubic In{sub 2}O{sub 3} film (10.117 Å). The high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy showed that no Nd{sub 2}O{sub 3} clusters were found in the InNdO film, implying that Nd was incorporated into the In{sub 2}O{sub 3} lattice. The InNdO TFTs annealed at 450 °C exhibited more excellent electrical properties with a high mobility of 20.4 cm{sup 2} V{sup −1} s{sup −1} and better electric bias stability compared to those annealed at 300 °C, which was attributed to the reduction of the scattering centers and/or charge traps due to the decrease of the |Nd3d{sub 5/2}{sup 5}4f{sup 4}O2p{sup −1}〉 electron configuration.

  13. Near-infrared electroluminescence at room temperature from neodymium-doped gallium nitride thin films

    SciTech Connect

    Kim, Joo Han; Holloway, Paul H.

    2004-09-06

    Strong near-infrared (NIR) electroluminescence (EL) at room temperature from neodymium (Nd)-doped gallium nitride (GaN) thin films is reported. The Nd-doped GaN films were grown by radio-frequency planar magnetron cosputtering of separate GaN and metallic Nd targets in a pure nitrogen ambient. X-ray diffraction data did not identify the presence of any secondary phases and revealed that the Nd-doped GaN films had a highly textured wurtzite crystal structure with the c-axis normal to the surface of the film. The EL devices were fabricated with a thin-film multilayered structure of Al/Nd-doped GaN/Al{sub 2}O{sub 3}-TiO{sub 2}/indium-tin oxide and tested at room temperate. Three distinct NIR EL emission peaks were observed from the devices at 905, 1082, and 1364 nm, arising from the radiative relaxation of the {sup 4}F{sub 3sol2} excited-state energy level to the {sup 4}I{sub 9sol2}, {sup 4}I{sub 11sol2}, and {sup 4}I{sub 13sol2} levels of the Nd{sup 3+} ion, respectively. The threshold voltage for all the three emission peaks was {approx}150 V. The external power efficiency of the fabricated EL devices was {approx}1x10{sup -5} measured at 40 V above the threshold voltage.

  14. Endoscopic management of post-traumatic prostatic and supraprostatic strictures using Neodymium-YAG laser.

    PubMed

    Nabi, Ghulam; Dogra, Prem Nath

    2002-12-01

    We assessed the feasibility, efficacy and long-term results of endoscopic management using Neodymium-YAG (Nd-YAG) laser as a day care procedure in patients with post-traumatic supraprostatic and prostatic strictures. Three patients with post-traumatic prostatic and supraprostatic obliterative strictures underwent Nd-YAG laser core through urethrotomy as a day care procedure. Patient age ranged between 12 and 14 years. Mean duration of injury was 16 months. The length of stricture was assessed by bi-directional endoscopy prior to the procedure in all cases. Core through procedure was carried out using Nd-YAG laser under the guidance of a cystoscope placed antegradely. Patients were discharged on the same day with urethral catheter. Foley catheters were removed at 6 weeks. Nd-YAG laser core through procedure was carried out successfully in all cases with negligible blood loss in a mean time of 48 min. There were no intraoperative or postoperative complications. Patients were discharged on the same day. Follow-up cystogram was conducted at 6 weeks and urethroscopy at months. At a mean follow-up of 23 months, patients were asymptomatic and voiding well. Nd-YAG laser core through urethrotomy is a safe and effective procedure. It is a less invasive alternative to more complex urethroplasty procedures for patients with post-traumatic prostatic and supraprostatic strictures. It can be carried out as a day care procedure in carefully selected patients and has no complications. PMID:12492959

  15. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    SciTech Connect

    Zacchia, Nicholas A.; Valentine, Megan T.

    2015-05-15

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  16. Optical properties of Lead bismuth borate glasses doped with neodymium oxide.

    PubMed

    Farouk, M; Abd El-Maboud, A; Ibrahim, M; Ratep, A; Kashif, I

    2015-10-01

    Neodymium doped Lead bismuth borate glasses with the composition of 25PbO-25Bi2O3-50B2O3:xNd2O3, where x=0.5, 1, 1.5 and 2 mol%, have been prepared by melt quenching technique. The behavior of the density and molar volume allows concluding that, addition of Nd2O3 leads to the formation of non-bridging oxygen. Rare earth ion parameters have been calculated and studied. The optical band gap (Eg), and band tails (Ee) were determined. Judd-Ofelt theory for the intensity analysis of induced electric dipole transitions has been applied to the measured oscillator strengths of the absorption bands to determine the three phenomenological intensity parameters Ω2, Ω4 and Ω6 for glass. It was observed that the deviation parameters, rms, was found to be 0.56:0.58(×10(-6)). The estimated Judd-Ofelt parameters were found to be Nd2O3concentration dependent. The hypersensitive transition, (4)I9/2→(4)G5/2+(2)G7/2, is closely related to Ω2 parameter. PMID:25965518

  17. Crystal and Electronic Study of Neodymium-Substituted CuFeO2 Oxide

    NASA Astrophysics Data System (ADS)

    Ozkendir, Osman Murat

    2016-06-01

    Neodymium-substituted CuFeO2 samples were investigated according to their crystal and electronic properties via the general formula Nd x Cu1- x FeO2. The crystal structure analysis results revealed polycrystalline formations in the sample and a change in crystalline sizes with the substituted heavy fermion "Nd." Increasing the Nd amount in the sample was determined to cause a disturbance on the Cu-Fe planes that supports the formation of crystal structures with low crystal symmetries such as monoclinic or triclinic geometries. To obtain the background mechanisms of the crystal properties, the X-ray absorption fine structure spectroscopy technique was used to study the electronic properties of the samples. Prominent changes in the crystal structures due to 4 f electrons' contributions from the substituted Nd atoms as the main "role player" in the phase transitions were determined. The Nd atoms were observed as the key element guiding the entire phenomenon as a result of their large size and narrow 4 f levels. Also, magnetic properties of the samples were tested at room temperature and without an applied magnetic field by X-ray magnetic circular dichroism study due to previous studies that reported the parent oxide CuFeO2 to have magnetic ordering at T N = 11 K (-262 °C). Except the sample for x = 1.0 (NdFeO3), no magnetic ordering was observed at room temperature; i.e., all of the samples showed paramagnetic behaviors.

  18. Optical radiation hazards of laser welding processes. Part 1: Neodymium-YAG laser.

    PubMed

    Rockwell, R J; Moss, C E

    1983-08-01

    High power laser devices are being used for numerous metalworking processes such as welding, cutting and heat treating. Such laser devices are totally enclosed either by the manufacturer or the end-user. When this is done, the total laser system is usually certified by the manufacturer following the federal requirements of the Code of Federal Regulations (CFR) 1040.10 and 10.40.11 as a Class I laser system. Similarly, the end-user may also reclassify an enclosed high-power laser into the Class I category following the requirements of the American National Standards Institute (ANSI) Z-136.1 (1980) standard. There are, however, numerous industrial laser applications where Class IV systems are required to be used in an unenclosed manner. In such applications, there is concern for both ocular and skin hazards caused by direct and scattered laser radiation, as well as potential hazards caused by the optical radiation created by the laser beam's interaction with the metal (i.e. the plume radiation). Radiant energy measurements are reported for both the scattered laser radiation and the resultant plume radiations which were produced during typical unenclosed Class IV Neodymium-YAG laser welding processes. Evaluation of the plume radiation was done with both radiometric and spectroradiometric measurement equipment. The data obtained were compared to applicable safety standards. PMID:6688700

  19. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin

    2016-04-01

    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.

  20. Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation

    NASA Astrophysics Data System (ADS)

    Chun-Xiao, Liu; Meng, Chen; Li-Li, Fu; Rui-Lin, Zheng; Hai-Tao, Guo; Zhi-Guang, Zhou; Wei-Nan, Li; She-Bao, Lin; Wei, Wei

    2016-04-01

    In this work, the fabrication and optical properties of a planar waveguide in a neodymium-doped calcium niobium gallium garnet (Nd:CNGG) crystal are reported. The waveguide is produced by proton (H+) implantation at 480 keV and a fluence of 1.0×1017 ions/cm2. The prism-coupling measurement is performed to obtain the dark mode of the waveguide at a wavelength of 632.8 nm. The reflectivity calculation method (RCM) is used to reconstruct the refractive index profile. The finite-difference beam propagation method (FD-BPM) is employed to calculate the guided mode profile of the waveguide. The stopping and range of ions in matter 2010 (SRIM 2010) code is used to simulate the damage profile induced by the ion implantation. The experimental and theoretical results indicate that the waveguide can confine the light propagation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 61405240, 61077070, 61177086, 51002181, and 61177084), the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY214159), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0401).

  1. Laser treatment of a neodymium magnet and analysis of surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Rizwan, M.; Kassas, M.

    2016-08-01

    Laser treatment of neodymium magnet (Nd2Fe14B) surface is carried out under the high pressure nitrogen assisting gas. A thin carbon film containing 12% WC carbide particles with 400 nm sizes are formed at the surface prior to the laser treatment process. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools. The corrosion resistance of the laser treated surface is analyzed incorporating the potentiodynamic tests carried out in 0.05 M NaCl+0.1 M H2SO4 solution. The friction coefficient of the laser treated surface is measured using the micro-scratch tester. The wetting characteristics of the treated surface are assessed incorporating the sessile water drop measurements. It is found that a dense layer consisting of fine size grains and WC particles is formed in the surface region of the laser treated layer. Corrosion resistance of the surface improves significantly after the laser treatment process. Friction coefficient of laser treated surface is lower than that of the as received surface. Laser treatment results in superhydrophobic characteristics at the substrate surface. The formation of hematite and grain size variation in the treated layer slightly lowers the magnetic strength of the laser treated workpiece.

  2. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, A. N.; Haley, B. A.; Tripati, A. K.; Frank, M.

    2015-06-01

    Global warming during the Paleocene Eocene Thermal Maximum (PETM) ~55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role for changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites and comparing data with published data from fossil fish debris to reconstruct past deep ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for global recovery of the ocean-atmosphere system after the PETM.

  3. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites.

    PubMed

    Salters, Vincent J M; Dick, Henry J B

    2002-07-01

    Inferring the melting process at mid-ocean ridges, and the physical conditions under which melting takes place, usually relies on the assumption of compositional similarity between all mid-ocean-ridge basalt sources. Models of mantle melting therefore tend to be restricted to those that consider the presence of only one lithology in the mantle, peridotite. Evidence from xenoliths and peridotite massifs show that after peridotite, pyroxenite and eclogite are the most abundant rock types in the mantle. But at mid-ocean ridges, where most of the melting takes place, and in ophiolites, pyroxenite is rarely found. Here we present neodymium isotopic compositions of abyssal peridotites to investigate whether peridotite can indeed be the sole source for mid-ocean-ridge basalts. By comparing the isotopic compositions of basalts and peridotites at two segments of the southwest Indian ridge, we show that a component other than peridotite is required to explain the low end of the (143)Nd/(144)Nd variations of the basalts. This component is likely to have a lower melting temperature than peridotite, such as pyroxenite or eclogite, which could explain why it is not observed at mid-ocean ridges. PMID:12097907

  4. Highly efficient neodymium:yttrium aluminum garnet laser end pumped by a semiconductor laser array

    NASA Technical Reports Server (NTRS)

    Sipes, D. L.

    1985-01-01

    In recent experiments, 80-mW CW power in a single mode has been achieved from a neodymium:yttrium aluminum garnet (Nd:YAG) laser with only 1 W of electrical power input to a single semiconductor laser array pump. This corresponds to an overall efficiency of 8 percent, the highest reported CW efficiency for a Nd:YAG laser. A tightly focused semiconductor laser end pump configuration is used to achieve high pumping intensities (on the order of 1 kW/sq cm), which in turn causes the photon to photon conversion efficiency to approach the quantum efficiency (76 percent for Nd:YAG at 1.06 microns pumped at 0.810 micron). This is achieved despite the dual-lobed nature of the pump. Through the use of simple beam-combining schemes (e.g., polarization coupling and multireflection point pumping), output powers over 1 W and overall electrical to optical efficiencies as high as 10 percent are expected.

  5. Power scaling of diode-pumped neodymium yttrium aluminum borate laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1991-01-01

    Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.

  6. The pulse of large silicic magmatic systems

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Schmitt, A. K.

    2008-12-01

    Large silicic volcanic fields (LSVFs) are considered windows into the tops of upper crustal batholiths that are the foundations of the continental crust. The space-time-volume records of volcanism in LSVFs are therefore assumed to mirror the accumulation record of the associated upper crustal batholith. However, key questions about the link between the volcanic and plutonic realms remain to be addressed if this view is to be substantiated. Among these are: 1) What does the surface pattern of volcanism really tell us about the development of the plutonic system below? Do these eruptions represent evacuation from a distinct batch of magma that formed just prior to eruption or do they represent the periodic tapping of a long lived regional magma body? 2) What does the cyclicity of the large caldera systems and the regional concordance of eruptions tell us about the development of the magmatic systems beneath? Does the repose period represent the time scale of development of the next magma batch or does the erupted magma develop in a timescale much shorter than the repose period? 3) What does the self-organization of single batholithic scale magmatic systems, for instance the development of a zoned system, tell us about the dynamics and time scales over which these systems differentiate and evolve? We are addressing some of these questions in the Altiplano-Puna Volcanic Complex of the Central Andes. Here, time scales of assembly and organization of batholith-scale silicic magma systems investigated using 40Ar/39Ar and U-Pb in zircon connote: 1) Supereruptions in the APVC evacuated distinct magma batches that accumulated within a few hundred thousand years prior to eruption 2) The repose period of cyclic supervolcanic systems is considerably longer than the time scale to develop the next eruptible magma batch 3) Batholith scale-silicic magma chambers can develop significant zonations in time scales of a few hundred thousand years. Additionally, our data suggest quasi

  7. On the Filling Process Forming Silicic Segregations

    NASA Astrophysics Data System (ADS)

    Zavala, K.; Marsh, B. D.

    2001-05-01

    Interdigitating silicic lenses are particularly well developed and well exposed in the Ferrar Dolerites of the McMurdo Dry Valleys, Antarctica. Silicic segregations are texturally splotchy, have sharp upper contacts, and diffuse lower contacts that grade into normal dolerite. What is unusual about these 1- 2 m lenses is that the background sill shows very little compositional variation and yet the silicic segregations show wide compositional variation. In particular, silica content varies between 47 and 68%, and thus produces for the sill overall a bimodal composition. We have analyzed over 100 segregation samples in order to investigate the nature of the filling process. Previous work (Zavala & Marsh, 1999) has shown that segregations have compositions that correspond to interstitial liquid present at crystallinities between 59 and 63 % and temperatures between 1135° and 1115° . Additionally, it was noted that the large segregation lenses are not homogeneous and exhibit cyclic variations in silica content. This observation lead to the current study, in which new samples from the Peneplain Sill (235 to 241) show remarkable correlations between segregation texture, stratigraphic position and silica enrichment. Incompatibles like Zr indicate relatively low 35 to 40% concentrations of melt at the point of segregation extraction, which supports the notion that segregations formed by withdrawal of interstitial melt into tears as the solidification front (SF) became gravitationally unstable. The details of the filling process can also be gauged using chemical profiles normalized to segregation thickness. One group shows distinct multiple smaller cycles of silica enrichment versus depth, which suggests successive stages of opening. The other group shows a strong enrichment in silica followed by a steady decay to the base. The general form of this latter pattern measures the gradient in melt composition immediately below the segregation at the time of infilling. From

  8. Optical Properties of Astronomical Silicates in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A,; Benford, Dominic J.; Dwek, Eli; Henry, Ross M.; Nuth, Joseph A., III; Silverberg, Robert f.; Wollack, Edward J.

    2008-01-01

    Correct interpretation of a vast array of astronomical data relies heavily on understanding the properties of silicate dust as a function of wavelength, temperature, and crystallinity. We introduce the QPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project to address the need for high fidelity optical characterization data on the various forms of astronomical dust. We use two spectrometers to provide extinction data for silicate samples across a wide wavelength range (from the near infrared to the millimeter). New experiments are in development that will provide complementary information on the emissivity of our samples, allowing us to complete the optical characterization of these dust materials. In this paper, we present initial results from several materials including amorphous iron silicate, magnesium silicate and silica smokes, over a wide range of temperatures, and discuss the design and operation of our new experiments.

  9. The identification of crystalline olivine in cometary silicates

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; Ryan, Eileen V.

    1989-01-01

    An intermediate-resolution spectrum of the 8-13 micron region in comet Halley is obtained which shows a prominent silicate emission feature with structure not observed before in other comets or in interstellar silicates. The presence of a strong 11.3 micron peak reported by Bregman and coworkers is confirmed, and evidence is found for additional structure in the band. By comparison with spectra of interplanetary dust particles and laboratory silicates, it is concluded that small crystalline olivine particles are a major component of the silicates in this comet; other silicates (e.g., amorphous or hydrated) must also be present. The identification of crystalline olivine in this part of the spectrum is supported by the observation of four peaks in 20-50 micron airborne spectra of this comet which have also been attributed to olivine.

  10. Surface charge and wetting characteristics of layered silicate minerals.

    PubMed

    Yin, Xihui; Gupta, Vishal; Du, Hao; Wang, Xuming; Miller, Jan D

    2012-11-01

    The surface characteristics, including surface charge and wettability, of layered silicates are reviewed based on experimental results and molecular dynamics simulation (MDS) results. The surface charge features of important layered silicates including mica, talc, and kaolinite are described from atomic force microscopy (AFM) measurements, electrophoresis measurements, and/or results from potentiometric titration. In addition, the wetting characteristics of the silica tetrahedral surface which is common to all layered silicates are examined with different experimental techniques and results are discussed. The wettability of trilayer silicates and bilayer silicates is discussed, particularly the wettability of the silica tetrahedral face and alumina octahedral face of kaolinite based on MDS results as well as recent AFM results. PMID:22809732

  11. The identification of crystalline olivine in cometary silicates

    NASA Astrophysics Data System (ADS)

    Campins, H.; Ryan, E. V.

    1989-06-01

    An intermediate-resolution spectrum of the 8-13 micron region in comet Halley is obtained which shows a prominent silicate emission feature with structure not observed before in other comets or in interstellar silicates. The presence of a strong 11.3 micron peak reported by Bregman and coworkers is confirmed, and evidence is found for additional structure in the band. By comparison with spectra of interplanetary dust particles and laboratory silicates, it is concluded that small crystalline olivine particles are a major component of the silicates in this comet; other silicates (e.g., amorphous or hydrated) must also be present. The identification of crystalline olivine in this part of the spectrum is supported by the observation of four peaks in 20-50 micron airborne spectra of this comet which have also been attributed to olivine.

  12. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-01-01

    Silicate inclusions in iron meteorites display an astonishing chemical and mineralogical variety, ranging from chondritic to highly fractionated, silica- and alkali-rich assemblages. In spite of this, their origin is commonly considered to be a simple one: mixing of silicates, fractionated or unfractionated, with metal. The latter had to be liquid in order to accommodate the former in a pore-free way which all models accomplish by assuming shock melting. II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions, including some chemically strongly fractionated ones. They also pose a formidable conundrum: young silicates are enclosed by very old metal. This and many other incompatibilities between models and reality forced the formulation of an alternative genetic model for irons. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  13. Ion-implantation damage in silicate glasses

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.

    Ion implantation is a rapid technique for simulating damage induced by alpha recoil nuclei in nuclear waste forms. The simulation has been found to be quite good in TEM comparisons with natural alpha decay damage in minerals, but leach rate differences have been observed in glass studies and were attributed to dose rate differences. The similarities between ion implantation and recoil nuclei as a means of producing damage suggest that insights into the long term behavior of glass waste forms can be obtained by examination of what is known about ion implantation damage in silicate glasses. This paper briefly reviews these effects and shows that leaching results in certain nuclear waste glasses can be understood as resulting from plastic flow and track overlap. Phase separation is also seen to be a possible consequence of damage induced compositional changes.

  14. Raman spectra of rings in silicate material

    SciTech Connect

    Tallant, D.R.; Bunker, B.C.; Brinker, C.J.; Balfe, C.A.

    1986-01-01

    Raman spectroscopic studies on gel-derived silicates have confirmed that narrow bands near 607 cm-1 and 492 cm-1, first observed in the Raman spectrum of fused silica, are associated with three- and four-fold siloxane rings. Using these results, we have identified three- and four-fold siloxane rings in other high-surface-area silica materials, including leached glasses and Cab-O-Sil. This Raman spectroscopic evidence not only shows that small siloxane rings are a common characteristic of a number of silica materials but also suggests that they form preferentially at silica surfaces. This paper reviews the Raman spectroscopic evidence that led to the identification of the vibrational frequencies of the small siloxane rings and presents the results of Raman experiments on high-surface-area silica materials in which the concentration of small siloxane rings is enhanced compared to fused silica.

  15. Organics Synthesized Using Iron-Grain Silicates

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Cody, G. D.; Nuth, J. A., III

    2003-01-01

    We use Fischer-Tropsch type (FTT) synthesis to produce hydrocarbons by hydrogenating carbon monoxide via catalytic reactions. The products of these reactions have been studied using 'natural' catalysts and calculations of the efficiency of FTT synthesis in the Solar Nebula suggest that these types of reactions could make significant contributions to the composition of material near three AU. We coat Fe-silicate grains with organic material using FTT synthesis to simulate the chemistry in the early Solar Nebula. In our experimental setup, we roughly model a nebular environment where grains are successively transported from hot to cold regions of the nebula. In other words, the starting gases and FTT products are continuously circulated through the grains at high temperature with intervals of cooling. Organics generated in this manner could represent the carbonaceous material incorporated in comets and meteorites. We analyze the resulting organics and present the results.

  16. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  17. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  18. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  19. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  20. A water-ethanol mixed-solution hydrothermal route to silicates nanowires

    SciTech Connect

    Wang Xun . E-mail: wangxun@mail.tsinghua.edu.cn; Zhuang Jing; Peng Qing; Li Yadong . E-mail: ydli@mail.tsinghua.edu.cn

    2005-07-15

    In this manuscript, series of silicates nanowires, such as calcium silicate, strontium silicate, barium silicate, zinc silicate and cadmium silicate, etc., have been successfully prepared from a water-ethanol mixed solution system through a hydrothermal synthetic way. The formation process of these silicates nanowires has been studied in detail. Due to their rich sources and possible novel properties from reduced dimensionalities, we believe that the synthesis of these silicates nanowires may bring some new opportunity in the solid state chemistry and nanoscience and technology fields, etc.

  1. DISORDERED SILICATES IN SPACE: A STUDY OF LABORATORY SPECTRA OF 'AMORPHOUS' SILICATES

    SciTech Connect

    Speck, Angela K.; Whittington, Alan G.; Hofmeister, Anne M.

    2011-10-20

    We present a laboratory study of silicate glasses of astrophysically relevant compositions including olivines, pyroxenes, and melilites. With emphasis on the classic Si-O stretching feature near 10 {mu}m, we compare infrared spectra of our new samples with laboratory spectra on ostensibly similar compositions, and also with synthetic silicate spectral data commonly used in dust modeling. Several different factors affect spectral features including sample chemistry (e.g., polymerization, Mg/Fe ratio, oxidation state, and Al-content) whereas different sample preparation techniques lead to variations in porosity, density, and water content. The convolution of chemical and physical effects makes it difficult to attribute changes in spectral parameters to any given variable. It is important that detailed chemical and structural characterization be provided along with laboratory spectra. In addition to composition and density, we measured the glass transition temperatures for the samples which place upper limits on the formation and/or processing temperatures of these solids in space. Popular synthetically generated optical functions do not have spectral features that match any of our glass samples. However, the {approx}10 {mu}m feature generated by the synthetic data rarely exactly matches the shape and peak position of astronomically observed silicate features. Our comparison with the synthetic spectra allows astronomers to determine likely candidates among our glass samples for matching astronomical observations.

  2. INTERSTELLAR SILICATE DUST IN THE z = 0.89 ABSORBER TOWARD PKS 1830-211: CRYSTALLINE SILICATES AT HIGH REDSHIFT?

    SciTech Connect

    Aller, Monique C.; Kulkarni, Varsha P.; Som, Debopam; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni

    2012-03-20

    We present evidence of a >10{sigma} detection of the 10 {mu}m silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of {tau}{sub 10} = 0.27 {+-} 0.05. The fit is slightly improved upon by including small contributions from additional materials, such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources with such a high degree of silicate crystallinity, we also explore the possibility that the observed spectral features are produced by amorphous silicates in combination with other molecular or atomic transitions, or by foreground source contamination. While we cannot rule out these latter possibilities, they lead to much poorer profile fits than for the crystalline olivine templates. If the presence of crystalline interstellar silicates in this distant galaxy is real, it would be highly unusual, given that the Milky Way interstellar matter contains essentially only amorphous silicates. It is possible that the z = 0.886 absorber toward PKS 1830-211, well known for its high molecular content, has a unique star-forming environment that enables crystalline silicates to form and prevail.

  3. Lattice thermal conductivity of dense silicate glass at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2015-12-01

    The layered structure of the Earth's interior is generally believed to develop through the magma ocean differentiation in the early Earth. Previous seismic studies revealed the existence of ultra low velocity zones above the core mantle boundary (CMB) which was inferred to be associated with the remnant of a deep magma ocean. The heat flux through the core mantle boundary therefore would strongly depend on the thermal conductivity, both lattice (klat) and radiative (krad) of dense silicate melts and major constituent minerals of the lower mantle. Recent experimental results on the radiative thermal conductivity of dense silicate glasses and lower-mantle minerals suggest that krad of dense silicate glasses could be remarkably lower than krad of the surrounding solid mantle phases. In this case, the dense silicate melts will act as a trap for heat from the Earth's outer core. However, this conclusion remains uncertain because of the lack of direct measurements on lattice thermal conductivities of silicate glasses/melts under lower mantle pressures up to date. Here we report experimental results on lattice thermal conductivities of dense silicate glass with basaltic composition under pressures relevant to the Earth's lower mantle in a diamond-anvil cell using time-domain thermoreflectance method. The study will assist the comprehension of thermal transport properties of silicate melts in the Earth's deep interior and is crucial for understanding the dynamic and thermal evolution of the Earth's internal structure.

  4. Layer silicates in a chondritic porous interplanetary dust particle

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.; MacKinnon, I. D. R.

    1985-11-01

    Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300 C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25 C) after aggregate formation.

  5. Characterization of chitin-metal silicates as binding superdisintegrants.

    PubMed

    Rashid, Iyad; Daraghmeh, Nidal; Al-Remawi, Mayyas; Leharne, Stephen A; Chowdhry, Babur Z; Badwan, Adnan

    2009-12-01

    When chitin is used in pharmaceutical formulations, processing of chitin with metal silicates is advantageous, from both an industrial and pharmaceutical perspective, compared to processing using silicon dioxide. Unlike the use of acidic and basic reagents for the industrial preparation of chitin-silica particles, coprecipitation of metal silicates is dependent upon a simple replacement reaction between sodium silicate and metal chlorides. When coprecipitated onto chitin particles, aluminum, magnesium, or calcium silicates result in nonhygroscopic, highly compactable/disintegrable compacts. Disintegration and hardness parameters for coprocessed chitin compacts were investigated and found to be independent of the particle size. Capillary action appears to be the major contributor to both water uptake and the driving force for disintegration of compacts. The good compaction and compression properties shown by the chitin-metal silicates were found to be strongly dependent upon the type of metal silicate coprecipitated onto chitin. In addition, the inherent binding and disintegration abilities of chitin-metal silicates are useful in pharmaceutical applications when poorly compressible and/or highly nonpolar drugs need to be formulated. PMID:19691098

  6. Steps toward interstellar silicate mineralogy. 1: Laboratory results of a silicate glass of mean cosmic composition

    NASA Astrophysics Data System (ADS)

    Jaeger, C.; Mutschke, H.; Begemann, B.; Dorschner, J.; Henning, Th.

    1994-12-01

    Although extrasolar silicates were detected more than 25 years ago, important questions concerning chemical composition, material properties, and grain structure are still without reliable answers. The most important of these questions are listed at the beginning of this paper because they play decisive roles as guide-posts for the silicate research program of the Jena laboratory astrophysics group. This paper communicates the first results of this program aimed at a closer mineralogical characterization of the interstellar/circumstellar silicates that have been observed in different types of objects. In this first approach, pyroxene glass samples, the cation content of which reflects mean cosmic proportions of the four most abundant metals, have been prepared and analytically characterized. They are expected to be good candidates for matching the silicate spectra of star-forming regions and young stellar objects (YSOs). For the pyroxene glass, optical constants from 250 nm to 500 micrometers have been determined. Particles having sizes within the Rayleigh limit show broad bands peaking at 9.5 and 18.8 micrometers. For the sake of comparison, a crystalline sample of the same composition was also measured. Its narrow bands are positioned at 9.4, 10.5, 11.1, 13.7, 15.6, 18.1, 19.5, 26.5, 29.5, 37.5, and 49 micrometers in agreement with expectations for a chemical composition corresponding to hypersthene. In addition to the vibration bands weak crystal field bands at 1 and 2 micrometers due to Fe(2+) have also been detected for the pyroxene glass. If these bands were detectable in interstellar and circumstellar sources they would offer a unique possibility of discriminating the pyroxene-type from the olivine-type silicates. The FIR absorption coefficient measured for the glass sample turned out to be proportional to lambda-2. The centroids of the 10 and 19 micrometer bands of the pyroxene glass satisfactorily match those observed in the Orion Trapezium and massive

  7. Holocene fluctuations of neodymium isotope ratios in eastern Fram Strait sediments - An indication for deepwater variability?

    NASA Astrophysics Data System (ADS)

    Werner, K.; Frank, M.; Teschner, C.; Zieringer, M.; Spielhagen, R. F.

    2012-04-01

    The Fram Strait as the only deep water connection of the world's oceans to the Arctic plays a substantial role for the heat influx to the Arctic Ocean and controls freshening of the Nordic Seas through Arctic sea ice export. Large amounts of warm and saline Atlantic Water derived from the North Atlantic Drift transport most of the heat through eastern Fram Strait to the Arctic basin, resulting in year-round ice-free conditions. Arctic sea ice and cold and fresh waters exit the western part of the strait southward along the Greenland shelf. However, little is still known about the water mass transport at intermediate and bottom water depths in the Fram Strait. High-resolution Holocene sediment sequences from the Western Svalbard margin have been investigated for its neodymium isotope ratios stored in ferromanganese oxyhydroxide coatings of the sediment to derive information on the source of bottom seawater passing the site. The radiogenic isotope data are compared to a multitude of proxy indicators for the climatic and oceanographic variability in the eastern Fram Strait during the past 8,500 years. In order to obtain a calibration of the Nd isotope compositions extracted from sediments to modern bottom water mass signatures in the area, a set of core top and water samples from different water depths in the Fram Strait was additionally investigated for its present-day Nd isotope signatures. A significantly higher inflow of deepwater produced in the Nordic Seas to the core site is inferred for the earlier periods of the Holocene. Cooler surface water conditions and increased sea ice abundances during the late Holocene coincide with more radiogenic Nd isotope ratios likely resembling the neoglacial trend of the northern North Atlantic.

  8. How Well Do Neodymium Isotopes Trace AMOC Mixing? A Test in the Southwest Atlantic

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Goldstein, S. L.; Pena, L.; Hartman, A. E.; Rijkenberg, M. J. A.; De Baar, H. J. W.

    2014-12-01

    Neodymium (Nd) isotope ratios are used to trace past AMOC circulation, based on observations that seawater Nd isotope ratios effectively "fingerprint" water masses, and that over long water mass transport distances in deep seawater they reflect values expected from water mass mixing. Over the past several years, studies have increasingly focused on the potential of external addition of Nd along water mass transport paths (for example through "boundary exchange" with particulates or addition from groundwaters), thus challenging the idea that Nd isotopes behave "quasi-conservatively" in the oceans. The SW Atlantic, with the major water masses involved in the AMOC (southward flowing NADW, northward flowing AAIW and AABW), is arguably the best place on Earth to evaluate how well Nd isotopes trace water mass mixing, in order to clarify its value for following the AMOC through time. We will report Nd isotope ratios of seawater collected on the SW Atlantic meridional transect of the NIOZ West Atlantic GEOTRACES Cruise Leg 3 (RRS James Cook 057), which sampled seawater profiles and the sediment surface at 18 stations between 0-50°S. Most stations are sampled in the open ocean, providing a test of whether Nd isotopes show quasi-conservative mixing systematics away from continental margins. The cruise section also provides several opportunities to test the potential effects of external Nd input. For example, it transects the continental shelf in the far south, the Rio Grande Rise, volcanic seamounts, and the major geological age boundaries of South America. It also crosses the major Southern Hemisphere wind zones, allowing us to test the impacts of aeolian input, and inputs from major rivers (Parana-Paraguay, Sao Francisco, Amazon). All of these features have the potential to modify the seawater Nd isotope ratios, allowing us to determine if they add significant external Nd.

  9. Development of an empirical kinetic model for sonocatalytic process using neodymium doped zinc oxide nanoparticles.

    PubMed

    Khataee, Alireza; Vahid, Behrouz; Saadi, Shabnam; Joo, Sang Woo

    2016-03-01

    The degradation of Acid Blue 92 (AB92) solution was investigated using a sonocatalytic process with pure and neodymium (Nd)-doped ZnO nanoparticles. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The 1% Nd-doped ZnO nanoparticles demonstrated the highest sonocatalytic activity for the treatment of AB92 (10 mg/L) with a degradation efficiency (DE%) of 86.20% compared to pure ZnO (62.92%) and sonication (45.73%) after 150 min. The results reveal that the sonocatalytic degradation followed pseudo-first order kinetics. An empirical kinetic model was developed using nonlinear regression analysis to estimate the pseudo-first-order rate constant (kapp) as a function of the operational parameters, including the initial dye concentration (5-25 mg/L), doped-catalyst dosage (0.25-1 g/L), ultrasonic power (150-400 W), and dopant content (1-6% mol). The results from the kinetic model were consistent with the experimental results (R(2)=0.990). Moreover, DE% increases with addition of potassium periodate, peroxydisulfate, and hydrogen peroxide as radical enhancers by generating more free radicals. However, the addition of chloride, carbonate, sulfate, and t-butanol as radical scavengers declines DE%. Suitable reusability of the doped sonocatalyst was proven for several consecutive runs. Some of the produced intermediates were also detected by GC-MS analysis. The phytotoxicity test using Lemna minor (L. minor) plant confirmed the considerable toxicity removal of the AB92 solution after treatment process. PMID:26584992

  10. Effect of neodymium substitution on structural and ferroelectric properties of BNT ceramics

    SciTech Connect

    Pal, Vijayeta; Dwivedi, R.K.; Thakur, O.P.

    2014-03-01

    Graphical abstract: - Highlights: • First time, we synthesized (Bi{sub 1−x}Nd{sub x}){sub 0.5}Na{sub 0.5}TiO{sub 3} system by semi wet technique. • Grain size reduced with doping and Nd acts as an inhibitor in the grain growth. • Specimen with x = 0.02 exhibits excellent ferroelectric properties at RT. • P–E loops show the co-existence of polar and non polar regions around ‘T{sub d}’. - Abstract: Polycrystalline specimens of (Bi{sub 1−x}Nd{sub x}){sub 0.5}Na{sub 0.5}TiO{sub 3} (BNNT) ceramic system with compositions x ≤ 0.04 were synthesized by semi-wet technique using ethylene glycol precursor. Structural and electrical properties were investigated in detail to observe the effect of neodymium (Nd) substitution in BNT system. XRD patterns for all the specimens showed single phase formation with rhombohedral structure. Field emission scanning electron micrographs (FE-SEM) revealed that the grain growth was inhibited significantly with Nd content. The temperature dependence behaviour of dielectric constant revealed that the depolarisation temperature ‘T{sub d}’ decreases whereas temperature of maximum dielectric constant ‘T{sub m}’ increases with Nd concentration. The piezoelectric charge coefficient (d{sub 33}) showed maxima at x = 0.02 and well defined ferroelectric behaviour was observed for all the samples.

  11. Microscale neodymium distribution in sedimentary planktonic foraminiferal tests and associated mineral phases

    NASA Astrophysics Data System (ADS)

    Tachikawa, Kazuyo; Toyofuku, Takashi; Basile-Doelsch, Isabelle; Delhaye, Thomas

    2013-01-01

    Neodymium isotopic ratios recorded in calcareous foraminiferal tests (shells) and associated authigenic minerals were used to trace past water masses, although the origin of preserved Nd signals is still a matter of debate. We determined, for the first time, the microscale Nd distribution in two planktonic foraminifera species (Globigerinoides ruber and Neogloboquadrina dutertrei) and coexisting authigenic minerals from two selected time slices (15.6 and 129 kyr) of a marine sediment core in the Panama Basin. Elemental mapping of Nd, Ca, Fe, Mn, and Si was performed using NanoSIMS ion probe and electron probe microanalysis (EPMA) on uncleaned tests together with scanning electron microscopy (SEM) imagery. EPMA and SEM images revealed the presence of Fe-rich framboidal minerals inside test pores and inner chambers, particularly in the old samples. The young sample presented Fe- and Mn-rich patches on the inner test wall. The Nd intensity in Fe-Mn-rich patches and in some framboids was much higher than in foraminiferal calcite, where the Nd distribution was randomly heterogeneous with no systematic features such as an ontogenic Nd-rich layer or species-specific differences. The relationship between Nd, Fe, and Mn confirmed a significant role of Fe-Mn oxides as a Nd carrier. The high Nd enrichment in some framboids could be explained by Nd adsorption onto oxidized surface of Fe sulfides particles rather than direct incorporation. Since the authigenic precipitates are major Nd carrier phases, the Nd isotopic signals in sedimentary foraminiferal tests likely reflect bottom/pore water values rather than surface water ones.

  12. Past Hydrological Variability in the Congo Basin inferred from Neodymium Isotopes

    NASA Astrophysics Data System (ADS)

    Bayon, G.

    2015-12-01

    Major events of vegetation changes and soil erosion occurred in Central Africa during the last few millennia, at a time when the first farmers settled in the rainforest. The palaeoclimatic context in which these environmental changes took place still remains poorly constrained. Improving our knowledge on the drivers of past hydrological variability in Central Africa is important to further evaluate the relative role of climate versus humans in shaping late Holocene African landscapes. In this study, we have used neodymium (Nd) isotopes in a marine sediment core to reconstruct the composition of the sediment load exported from the Congo Basin during the Holocene. Core KZR23 was recovered at 2200 m water depth from within the Congo submarine canyon and is characterized by high sedimentation rates (about 2m/kyr), thereby allowing reconstruction of past river sediment discharge at an unprecedented high temporal resolution. A suite of river particulate samples collected from the main tributaries within the Congo watershed was analyzed in order to tag each major sub-basin with the characteristic geochemical and Nd isotopic signatures of its source region. In parallel, an annual series of suspended particles sampled on a monthly basis at the Congo River ORE-HYBAM station (Brazzaville) was also analyzed to characterize the seasonality of sediment provenance in relation with present hydrological cycle. Using Nd isotopes as tracers for sediment provenance together and other proxy data for past erosion, vegetation and rainfall patterns (i.e. bulk sediment radiocarbon data, pollens, biomarkers, compound-specific isotope analyses), we will provide a more comprehensive picture of past hydrological variability in the Congo Basin for the Holocene period.

  13. High resolution neodymium characterization along the Mediterranean Sea margins: implications for ɛNd modeling.

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Dutay, Jean-claude; Arsouze, Thomas; Jeandel, Catherine; Revillon, Sidonie

    2016-04-01

    An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (ɛNd) was realized in order to establish a new database and a map (using a high resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. Data were extracted from different kinds of samples: river solid discharge deposited on the shelf, sedimentary material collected on the margin or geological material outcropping above or close to a margin. Additional analyses of surface sediments were done, in order to improve this dataset in key areas (e.g Sicilian strait). The Mediterranean margin Nd isotopic signatures vary from non-radiogenic values around the Gulf of Lions, (ɛNd values -11) to radiogenic values around the Aegean and the Levantine sub-basins up to +6. Using a high resolution regional oceanic model (1/12° of horizontal resolution), ɛNd distribution was simulated for the first time in the Mediterranean Sea. The high resolution of the model provides the opportunity to study in more details the processes governing the Nd isotope distribution in the marine environment. This work highlights that a significant interannual variability of ɛNd distribution in seawater could occur. In particular, important hydrological events such as the Eastern Mediterranean Transient (EMT), associated with deep water formed in the Aegean sub-basin, could induce a shift in Nd IC at intermediate depths that could be noticeable in the Western part of the basin. This highlights that the temporal and geographical variations of ɛNd could represent an interesting insight of Nd as a quasi-conservative tracer of water masses in the Mediterranean Sea, in particular in the context of paleo-oceanographic applications, i.e. to explore if EMT-type signatures occurred in the past (Roether et al., 2014, Gacic et al., 2011).

  14. Silicate nephrolithiasis after ingestion of supplements containing silica dioxide.

    PubMed

    Flythe, Jennifer E; Rueda, Jose F; Riscoe, Michael K; Watnick, Suzanne

    2009-07-01

    Silicate calculi are common in some mammals, such as dogs and sheep, but extremely rare in humans. We report a case of silicate calculi in a woman using oral over-the-counter Uncaria tomentosa, Digestive Advantage and FlexProtex supplements. All 3 contained the excipient silica dioxide. Stone analysis showed composition of 100% silicate. The nephrolithiasis promptly abated after discontinuation of the products containing silica, then returned when the patient restarted her supplements. This case emphasizes the importance of stone analysis when obvious causes of nephrolithiasis are unclear and highlights the concerns of using over-the-counter supplements without substantial oversight. PMID:19100669

  15. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  16. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar

  17. Homogeneous liquid-liquid extraction of neodymium(III) by choline hexafluoroacetylacetonate in the ionic liquid choline bis(trifluoromethylsulfonyl)imide.

    PubMed

    Onghena, Bieke; Jacobs, Jeroen; Van Meervelt, Luc; Binnemans, Koen

    2014-08-14

    The ionic liquid choline bis(trifluoromethylsulfonyl)imide, [Chol][Tf2N], was used for the extraction of neodymium(III), in combination with choline hexafluoroacetylacetonate, [Chol][hfac], as the extractant. The binary mixture of [Chol][Tf2N] and water shows temperature-dependent phase behavior, with an upper critical solution temperature of 72 °C. A novel extraction technique, homogeneous liquid-liquid extraction (HLLE), was applied to this solvent system. HLLE is based on the use of thermomorphic solvent mixtures and has the advantage of forming a homogeneous phase during mixing. Extraction is not kinetically hindered by an interface and the extraction equilibrium is reached faster than in the case of heterogeneous mixing in conventional solvent extraction. Several extraction parameters were studied for the extraction of neodymium(III) with [Chol][hfac]: temperature, pH, extractant concentration and loading of the ionic liquid phase. A speciation study was performed to determine the stoichiometry of the extracted neodymium(III) complex and a plausible extraction mechanism is proposed. Neodymium is extracted as a tetrakis hexafluoroacetylacetonate complex with one choline cation as counter ion. The crystal structure of the extracted complex showed the presence of a coordination bond between the choline counter ion and the neodymium(III) center, resulting in a coordination number of nine. The stripping of the loaded neodymium and the influence of acid and extractant concentrations on the phase behavior of the [Chol][Tf2N]-H2O system were investigated. PMID:24938933

  18. Diode pumped neodymium doped ASL (Sr1-xLax-yNdyMgxAl12-xO19) laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Loiseau, Pascal; Aka, Gérard

    2013-07-01

    Blue laser based on Neodymium doped strontium lanthanum magnesium aluminoxide (Sr1-xLax-yNdyMgxAl12-xO19) single crystal were constructed by second harmonic generation. Output power of 1.72 W at 900nm was obtained under 792nm laser diode pump. Intra cavity second harmonic generation were performed with non linear crystal LBO leading to output power of 76.6 mW at 450nm with absorbed power of 13.7 W and average absorption efficiency of 61% in Nd:ASL crystal.

  19. Morphologic and histologic changes in canine temporomandibular joint tissues following arthroscopic guided neodymium:YAG laser exposure

    SciTech Connect

    Bradrick, J.P.; Eckhauser, M.L.; Indresano, A.T. )

    1989-11-01

    A neodymium:yttrium aluminum garnet (Nd:YAG) laser beam was introduced by a quartz fiber passed arthroscopically into the superior joint space of the temporomandibular joints (TMJ) of five mongrel dogs, with one joint serving as a control without laser wounds. Immediate postoperative death and examination of the disc grossly and histologically revealed different patterns for contact and noncontact burn wounds. The wounds exhibited signs of thermal coagulation necrosis similar to those reported in other tissues. The potential implications of the adaptation of the Nd:YAG laser to TMJ arthroscopic surgery are discussed.

  20. Chemistry of the subalkalic silicic obsidians

    USGS Publications Warehouse

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    Nonhydrated obsidians are quenched magmatic liquids that record in their chemical compositions details of the tectonic environment of formation and of the differentiation mechanisms that affected their subsequent evolution. This study attempts to analyze, in terms of geologic processes, the compositional variations in the subalkalic silicic obsidians (Si02≥70 percent by weight, molecular (Na2O+K20)>Al2O3). New major- and trace-element determinations of 241 samples and a compilation of 130 published major-element analyses are reported and interpreted. Obsidians from five different tectonic settings are recognized: (1) primitive island arcs, (2) mature island arcs, (3) continental margins, (4) continental interiors, and (5) oceanic extensional zones. Tectonomagmatic discrimination between these groups is successfully made on Nb-Ta, Nb-FeOt and Th-Hf-Ta plots, and compositional ranges and averages for each group are presented. The chemical differences between groups are related to the type of crust in which magmas were generated. With increasingly sialic (continental type) crust, the obsidians show overall enrichment in F, Be, Li, Mo, Nb, Rb, Sn, Ta, U, W, Zn, and the rare-earth elements, and depletion in Mg, Ca, Ba, Co, Sc, Sr, and Zr. They become more potassic, have higher Fe/Mg and F/Cl ratios, and lower Zr/Hf, Nb/Ta, and Th/U ratios. Higher values of total rare-earth elements are accompanied by light rare-earth-element enrichment and pronounced negative Eu anomalies. An attempt is made to link obsidian chemistry to genetic mechanlism. Two broad groups of rocks are distinguished: one generated where crystal-liquid processes dominated (CLPD types), which are the products of crustal anatexis, possibly under conditions of low halogen fugacity, ± crystal fractionation ± magma mixing; and a second group represented by rocks formed in the upper parts of large magma chambers by interplays of crystal fractionation, volatile transfer, magma mixing, and possibly various

  1. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    SciTech Connect

    Sabri, T.; Jäger, C.; Gavilan, L.; Lemaire, J. L.; Vidali, G.; Henning, T.

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  2. Molecular aggregation of rhodamine dyes in dispersions of layered silicates: influence of dye molecular structure and silicate properties.

    PubMed

    Bujdák, Juraj; Iyi, Nobuo

    2006-02-01

    The molecular aggregation of six rhodamine dyes (rhodamine 560, B, 3B, 19, 6G, 123) in layered silicate (saponite and fluorohectorite) dispersions was investigated by using visible (vis) spectroscopy. The dye molecular aggregation was influenced by the properties of both the silicates and the dyes themselves. The layer charge of the silicates enhanced the molecular aggregation of the hydrophilic, cationic dyes. The presence of a carboxyl acid group in the dye molecules inhibited adsorption of the dyes on the surface of fluorohectorite, a silicate with a high charge density. A lower or no adsorption could be observed by vis spectroscopy. Strong association of the dyes to the silicate surface led to remarkable changes in the dye spectra, mainly due to the molecular aggregation. Dye assemblies initially formed after mixing the dye solutions with silicate dispersions were unstable. Decomposition of the dye molecular assemblies, and the formation of new species or molecular aggregate rearrangements, were studied on the bases of time-difference spectra. The reaction pathways were specific, not only for the dyes, depending upon their molecular structure and properties, but also on the silicate substrates. PMID:16471802

  3. Interstellar Silicate Dust: Modeling and Grain Alignment

    NASA Astrophysics Data System (ADS)

    Das, Indrajit

    We examine some aspects of the alignment of silicate dust grains with respect to the interstellar magnetic field. First, we consider possible observational constraints on the magnetic properties of the grains. Second, we investigate the role of collisions with gas atoms and the production of H2 molecules on the grain surface in the alignment process when the grain is drifting in the gaseous medium. Paramagnetism associated with Fe content in the dust is thought to play a critical role in alignment. Min et al (2007) claimed that the Fe content of the silicate dust can be constrained by the shape of the 10 μm extinction feature. They found low Fe abundances, potentially posing problems for grain alignment theories. We revisit this analysis modeling the grains with irregularly shaped Gaussian Random Sphere (GRS). We give a comprehensive review of all the relevant constraints researchers apply and discuss their effects on the inferred mineralogy. Also, we extend this analysis to examine whether constraints can be placed on the presence of Fe-rich inclusions which could yield "super-paramagnetism". This possibility has long been speculated, but so far observational constraints are lacking. Every time a gas atom collides with a grain, the grain's angular momentum is slightly modified. Likewise when an H2 molecule forms on the surface and is ejected. Here also we model the grain with GRS shape and considered various scenarios about how the colliding gas particles depart the grain. We develop theoretical and computational tools to estimate the torques associated with these aforementioned events for a range of grain drift speeds---from low subsonic to high supersonic speeds. Code results were verified with spherical grain for which analytical results were available. Finally, the above torque results were used to study the grain rotational dynamics. Solving dynamical equations we examine how these torques influence the grain alignment process. Our analysis suggests that

  4. A Silicic Shield Volcano in Bolivia

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Greeley, R.

    1985-01-01

    Volcan Quemado and its environs provides an excellent site to study the radar signature of a silicic volcanic construct. This feature differs from basaltic terrains primarily by the evidence of explosive eruptions associated with silica-rich magmas. These explosions produced a complex of distinctive craters that are visible on radar because of their steep inner walls and exposed bedrock units. Explosive events also generated surface deposits of fine (1 mm to 10 cm) material that mantles the region around the volcano to a distance of 20 to 30 km from its center. These features are very different from those observed on basaltic flows, which typically lack violet, explosive events. In these terrains, the surface is dominated by radar-rough flows with steep, lobate flow fronts. Craters are less common, although maars are found in some regions. These comparisons suggest that spaceborne radar may be able to distinguish surface characteristics that can be used to identify volcanic eruptive styles on Venus, Mars, and other solar-system bodies.

  5. Lithologic mapping of silicate rocks using TIMS

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.

    1986-01-01

    Common rock-forming minerals have thermal infrared spectral features that are measured in the laboratory to infer composition. An airborne Daedalus scanner (TIMS) that collects six channels of thermal infrared radiance data (8 to 12 microns), may be used to measure these same features for rock identification. Previously, false-color composite pictures made from channels 1, 3, and 5 and emittance spectra for small areas on these images were used to make lithologic maps. Central wavelength, standard deviation, and amplitude of normal curves regressed on the emittance spectra are related to compositional information for crystalline igneous silicate rocks. As expected, the central wavelength varies systematically with silica content and with modal quartz content. Standard deviation is less sensitive to compositional changes, but large values may result from mixed admixture of vegetation. Compression of the six TIMS channels to three image channels made from the regressed parameters may be effective in improving geologic mapping from TIMS data, and these synthetic images may form a basis for the remote assessment of rock composition.

  6. Selective silicate-directed motility in diatoms.

    PubMed

    Bondoc, Karen Grace V; Heuschele, Jan; Gillard, Jeroen; Vyverman, Wim; Pohnert, Georg

    2016-01-01

    Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 10(12) mol Si per year, which makes them the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under dSi-limited conditions in a chemokinetic response and, if gradients of this resource are present, increased directionality of cell movement promotes chemotaxis. The ability to exploit local and short-lived dSi hotspots using a specific search behaviour likely contributes to micro-scale patch dynamics in biofilm communities. On a global scale this behaviour might affect sediment-water dSi fluxes and biogeochemical cycling. PMID:26842428

  7. Selective silicate-directed motility in diatoms

    PubMed Central

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen; Vyverman, Wim; Pohnert, Georg

    2016-01-01

    Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 1012 mol Si per year, which makes them the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under dSi-limited conditions in a chemokinetic response and, if gradients of this resource are present, increased directionality of cell movement promotes chemotaxis. The ability to exploit local and short-lived dSi hotspots using a specific search behaviour likely contributes to micro-scale patch dynamics in biofilm communities. On a global scale this behaviour might affect sediment–water dSi fluxes and biogeochemical cycling. PMID:26842428

  8. Metal-Silicate Segregation in Asteroidal Meteorites

    NASA Technical Reports Server (NTRS)

    Herrin, Jason S.; Mittlefehldt, D. W.

    2006-01-01

    A fundamental process of planetary differentiation is the segregation of metal-sulfide and silicate phases, leading eventually to the formation of a metallic core. Asteroidal meteorites provide a glimpse of this process frozen in time from the early solar system. While chondrites represent starting materials, iron meteorites provide an end product where metal has been completely concentrated in a region of the parent asteroid. A complimentary end product is seen in metal-poor achondrites that have undergone significant igneous processing, such as angrites, HED's and the majority of aubrites. Metal-rich achondrites such as acapulcoite/lodranites, winonaites, ureilites, and metal-rich aubrites may represent intermediate stages in the metal segregation process. Among these, acapulcoite-lodranites and ureilites are examples of primary metal-bearing mantle restites, and therefore provide an opportunity to observe the metal segregation process that was captured in progress. In this study we use bulk trace element compositions of acapulcoites-lodranites and ureilites for this purpose.

  9. Study of thermal effects of silicate-containing hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Zaits, A. V.; Berdinskaya, N. V.; Mylnikova, T. S.

    2016-02-01

    The possibility of modifications of hydroxyapatite silicate ions, from the extracellular fluid prototype solution under near-physiological conditions has been studied. Formation of silicon-structured hydroxyapatite with different extent of substitution of phosphate groups in the silicate group has been established through chemical and X-ray diffraction analyses, FTIR spectroscopy and optical microscopy. The results obtained are in agreement and suggest the possibility of substitution of phosphate groups for silicate groups in the hydroxyapatite structure when introducing different sources of silica, tetraethoxysilane and sodium silicate, in the reaction mixture. Growth in the amount of silicon in Si-HA results in the increase in the thermal stability of the samples. The greatest mass loss occurs at temperatures in the range of 25-400 0C that is caused by the removal of the crystallization and adsorption water and volatile impurities. It is shown that the modified apatites are of imperfect structure and crystallize in a nanocrystalline state.

  10. Silicic Volcanism Identified by the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Glotch, T. D.; Greenhagen, B. T.; Hagerty, J. J.; Jolliff, B. L.; Ashley, J. W.; Williams, J.-P.; Petro, N. E.

    2016-05-01

    The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter has mapped and characterized a number of silicic volcanic constructs on the lunar surface. Here, we summarize Diviner's contributions to our understanding of these features.

  11. History of Nebular Processing Traced by Silicate Stardust in IDPs

    NASA Astrophysics Data System (ADS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A.

    2010-03-01

    We have identified two presolar silicate grains as polycrystalline assemblages, or equilibrated aggregates. These grains occur in a stardust-rich interplanetary dust particle (IDP). We propose these grains were annealed in the solar nebula.

  12. History of Nebular Processing Traced by Silicate Stardust in IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Keller, L. P.; Nakamura-Messenger, K.

    2010-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is

  13. H-Bond interactions between silicates and water during zeolite pre-nucleation.

    PubMed

    Mora-Fonz, Miguel J; Catlow, C Richard A; Lewis, Dewi W

    2008-11-21

    The relative strength of water-water, water-silicate and silicate-silicate interactions are studied, in order to explain the low solubility of the monomer (Si(OH)(4)), and determine the degree of dispersion of silicate clusters in solution during the hydrothermal synthesis of zeolites. We will show how the hydrogen bond interactions between water and monomeric silicate species are similar to that in pure water, whilst monomer-monomer interactions are stronger. However, when larger silicate species are also considered we find the relative hydrogen-bonding strength to follow: water-water < silicate-water < silicate-silicate. The effects of pH are also considered. The implications of the relative strength of these interactions on the formation of larger silicate species, leading to zeolite pre-nucleation, are discussed. PMID:18979042

  14. LOW-TEMPERATURE CRYSTALLIZATION OF AMORPHOUS SILICATE IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Kimura, Hiroshi

    2010-07-01

    We construct a theoretical model for low-temperature crystallization of amorphous silicate grains induced by exothermic chemical reactions. As a first step, the model is applied to the annealing experiments, in which the samples are (1) amorphous silicate grains and (2) amorphous silicate grains covered with an amorphous carbon layer. We derive the activation energies of crystallization for amorphous silicate and amorphous carbon from the analysis of the experiments. Furthermore, we apply the model to the experiment of low-temperature crystallization of an amorphous silicate core covered with an amorphous carbon layer containing reactive molecules. We clarify the conditions of low-temperature crystallization due to exothermic chemical reactions. Next, we formulate the crystallization conditions so as to be applicable to astrophysical environments. We show that the present crystallization mechanism is characterized by two quantities: the stored energy density Q in a grain and the duration of the chemical reactions {tau}. The crystallization conditions are given by Q>Q{sub min} and {tau} < {tau}{sub cool} regardless of details of the reactions and grain structure, where {tau}{sub cool} is the cooling timescale of the grains heated by exothermic reactions, and Q{sub min} is minimum stored energy density determined by the activation energy of crystallization. Our results suggest that silicate crystallization occurs in wider astrophysical conditions than hitherto considered.

  15. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  16. Silicate-melt inclusions in magmatic rocks: applications to petrology

    NASA Astrophysics Data System (ADS)

    Frezzotti, Maria-Luce

    2001-01-01

    Silicate-melt inclusions in igneous rocks provide important information on the composition and evolution of magmatic systems. Such inclusions represent accidentally trapped silicate melt (±immiscible H 2O and/or CO 2 fluids) that allow one to follow the evolution of magmas through snapshots, corresponding to specific evolution steps. This information is available on condition that they remained isolated from the enclosing magma after their entrapment. The following steps of investigation are discussed: (a) detailed petrographic studies to characterise silicate-melt inclusion primary characters and posttrapping evolution, including melt crystallisation; (b) high temperature studies to rehomogenise the inclusion content and select chemically representative inclusions: chemical compositions should be compared to relevant phase diagrams. Silicate-melt inclusion studies allow us to concentrate on specific topics; inclusion studies in early crystallising phases allow the characterisation of primary magmas, while in more differentiated rocks, they unravel the subsequent chemical evolution. The distribution of volatile species (i.e., H 2O, CO 2, S, Cl) in inclusion glass can provide information on the degassing processes and on recycling of subducted material. In intrusive rocks, silicate melt inclusions may preserve direct evidence of magmatic stage evolution (e.g., immiscibility phenomena). Melt inclusions in mantle xenoliths indicate that high-silica melts can coexist with mantle peridotites and give information on the presence of carbonate melt within the upper mantle. Thus, combining silicate-melt inclusion data with conventional petrological and geochemical information and experimental petrology can increase our ability to model magmatic processes.

  17. The application of silicon and silicates in dentistry: a review.

    PubMed

    Lührs, A-K; Geurtsen, Werner

    2009-01-01

    Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials. PMID:19198786

  18. Electrochemical extraction of neodymium by co-reduction with aluminum in LiCl-KCl molten salt

    NASA Astrophysics Data System (ADS)

    Yan, Yong-De; Xu, Yan-Lu; Zhang, Mi-Lin; Xue, Yun; Han, Wei; Huang, Ying; Chen, Qiong; Zhang, Zhi-Jian

    2013-02-01

    The electrochemical behavior of Nd(III) ions in LiCl-KCl and LiCl-KCl-AlCl3 melts on a Mo electrode at 723 K was studied by various electrochemical techniques. The results showed that Nd(III) ions are reduced to Nd(0) through two consecutive steps, and the underpotential deposition of neodymium on pre-deposited Al electrode formed two kinds of Al-Nd intermetallic compounds in LiCl-KCl-AlCl3 solutions. The electrochemical extraction of neodymium was carried out in LiCl-KCl-AlCl3 melts on a Mo electrode at 873 K by potentiostatic and galvanostatic electrolysis. The extraction efficiency was 99.25% after potentiostatic electrolysis for 30 h. Al-Li-Nd bulk alloy was obtained by galvanostatic electrolysis. X-ray diffraction (XRD) suggested that Al2Nd and Al3Nd phases were formed in Al-Li-Nd alloy. The microstructure and micro-zone chemical analysis of Al-Li-Nd alloy were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), respectively.

  19. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.

    PubMed

    Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank

    2015-01-01

    Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates. PMID:25278442

  20. Synthesis and thermal stability studies of a series of metastable Dion–Jacobson double-layered neodymium-niobate perovskites

    SciTech Connect

    Josepha, Elisha A.; Farooq, Sara; Mitchell, Cinnamon M.; Wiley, John B.

    2014-08-15

    The Dion–Jacobson double-layered perovskite, RbNdNb{sub 2}O{sub 7}, is used as a precursor to synthesize the series ANdNb{sub 2}O{sub 7} (A=H, Li, Na, K, NH{sub 4}, Ag), and (MCl)NdNb{sub 2}O{sub 7} (M=Mn, Fe, Cu) through ion-exchange reactions ≤400 °C. Thermal stability studies indicated that most of these compounds are metastable. A combination of X-ray powder diffraction and differential thermal analysis were used to determine various low temperature decomposition pathways; these pathways were very dependent on the interlayer species. Overall the ANdNb{sub 2}O{sub 7} series was found to be less stable than the corresponding lanthanides, ALaNb{sub 2}O{sub 7}. - Graphical abstract: A new series of topochemically-prepared metastable neodymium-containing layered perovskites are studied. - Highlights: • A series of new layered neodymium containing perovskites were synthesized by ion exchange. • Products were studied by variable temperature X-ray diffraction and thermal analysis. • Most of the series are metastable showing exothermic transitions on decomposition. • The Nd compounds are less stable due to the smaller size of the Nd relative to La.

  1. Cathodic processes of neodymium(iii) in LiF-NdF3-Nd2O3 melts.

    PubMed

    Huang, Chao; Liu, Xiaolong; Gao, Yuan; Liu, Shizhe; Li, Bing

    2016-08-15

    In this paper, cyclic voltammetry and square wave voltammetry are applied to characterize the cathode processes of neodymium ions on a W electrode in LiF-NdF3 melts with or without the metal Nd. The results indicate that neodymium ions in the LiF-NdF3 (2 wt%) melt are reduced in two steps, i.e. Nd(3+) → Nd(2+) and Nd(2+) → Nd(0), corresponding to starting reduction potentials of 0.35 V vs. Li(+)/Li and 0.1 V vs. Li(+)/Li, respectively. The Nd(3+) → Nd(2+) process is controlled by mass transfer and the Nd(2+) → Nd(0) process is controlled by both an interfacial step and mass transfer. But in the LiF-NdF3 melt with excess metal Nd equilibrium, the kinetics of the above two processes are controlled by mass transfer. After potentiostatic electrolysis at 0.35 V in the LiF-NdF3-Nd2O3 melt NdF2 is formed on the Mo cathode, and metallic Nd is obtained by potentiostatic electrolysis at 0.1 V in the LiF-NdF3-Nd2O3-Nd melt, which validates the above electrochemical reduction results. PMID:27197114

  2. Neodymium-YAG laser iridotomy in the treatment and prevention of angle closure glaucoma. A review of 373 eyes.

    PubMed

    Tomey, K F; Traverso, C E; Shammas, I V

    1987-04-01

    The records of 271 consecutive patients (373 eyes) who underwent neodymium-YAG laser iridotomy at our institution over a period of 12 months were reviewed. The majority of eyes (60.5%) were treated for chronic primary angle closure glaucoma, 23.3% had prophylactic iridotomy for occludable angles, 7.8% were treated for acute angle closure glaucoma, 3.2% required iridotomy for the relief of iris bombé secondary to anterior uveitis, and the rest (5.2%) were treated for miscellaneous causes of secondary angle closure. Laser iridotomy, with or without medical treatment, obviated further surgical treatment in most categories of eyes. Visual acuity remained unchanged or improved in the great majority (92%) of cases over the period of follow-up (range, two to 12 months; median, four months). Visual deterioration in 8% of eyes was attributed to the usual causes, such as normal cataract progression, but none was believed to be related to the laser treatment. This article discusses the advantages of the neodymium-YAG laser (over argon) for performing iridotomies. PMID:3566599

  3. Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum.

    PubMed

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Suh, Sangwon; Shigetomi, Yosuke; Oshita, Yuko

    2014-01-01

    This study, encompassing 231 countries and regions, quantifies the global transfer of three critical metals (neodymium, cobalt, and platinum) considered vital for low-carbon technologies by means of material flow analysis (MFA), using trade data (BACI) and the metal contents of trade commodities, resolving the optimization problem to ensure the material balance of the metals within each country and region. The study shows that in 2005 international trade led to global flows of 18.6 kt of neodymium, 154 kt of cobalt, and 402 t of platinum and identifies the main commodities and top 50 bilateral trade links embodying these metals. To explore the issue of consumption efficiency, the flows were characterized according to the technological level of each country or region and divided into three types: green ("efficient use"), yellow ("moderately efficient use"), and red ("inefficient use"). On this basis, the shares of green, yellow, and red flows in the aggregate global flow of Nd were found to be 1.2%, 98%, and 1.2%, respectively. For Co, the respective figures are 53%, 28%, and 19%, and for Pt 15%, 84%, and 0.87%. Furthermore, a simple indicator focusing on the composition of the three colored flows for each commodity was developed to identify trade commodities that should be prioritized for urgent technical improvement to reduce wasteful use of the metals. Based on the indicator, we discuss logical, strategic identification of the responsibilities and roles of the countries involved in the global flows. PMID:24387330

  4. Effects of solvent structure on the distribution of silicate anions in mixed aqueous/organic solutions of alkaline tetramethylammonium silicate

    SciTech Connect

    Hendricks, W.M.; Bell, A.T.; Radke, C.J. )

    1991-11-14

    Interest in the physical-chemical processes occurring during zeolite synthesis has stimulated the study of dissolved silicate oligomers in aqueous alkaline solution and their possible link to zeolite nucleation and crystal growth. Effects of solvent structure on the equilibrium distribution of silicate oligomers in mixed organic/aqueous solutions of tetramethylammonium hydroxide (TMAOH) have been investigated by using {sup 29}Si NMR spectroscopy. The results indicate that the presence of organic molecules leads to condensation of the silicates, particularly to double-ring structures. Equilibrium calculations indicate that the observed extent of silicate condensation exceeds what would be expected from mass action. The variety of organic solvents used allowed elucidation of structure effects due to the following: carbon chain length, carbon chain morphology, functional group, and placement of the functional group. The structural effects of organic solvents can be attributed to the ordering of water around the solvent molecules.

  5. Generation of acoustic waves by focused infrared neodymium-laser radiation

    NASA Astrophysics Data System (ADS)

    Ward, Barry

    1991-02-01

    When the radiation from a sufficiently powerful pulsed laser is focused into the transparent gaseous, liquid or solid media, dielectric breakdown may occur around the beam waist giving rise to a short-lived high-temperature plasma which quickly heats the surrounding material. As a consequence of various energy-coupling mechanisms, this phenomenon causes the emission of one or more high-frequency ultrasonic acoustic waves whose speeds of propagation are dependent upon the physical properties of the host medium. In the high-speed photographic studies described, the 1.06 micron near-infrared radiation from an 8-ns, 10-mJ Q-switched Nd:YAG laser is focused in or onto a variety of fluid and solid materials. The rapid variations in density around the resulting plasma events are visualized using a Mach-Zehnder interferometer with a sub-nanosecond dye-laser light source and a video-imaging system. Calculations of the corresponding transient pressure distributions are then enacted from the digitally-recorded interferograms using a semi-automatic procedure under the control of a personal computer. Measurements of position, displacement, and velocity are also carried out using the same optical apparatus in schlieren and focused shadowgraph high-speed photographic measurements. The experimental work outlined in the following chapters is divided into three broad fields of interest. In the first of these, a study of the laser-generation of spherical shock waves in atmospheric air is carried out. In the second, the neodymium-laser beam is focused onto different solid-fluid interfaces resulting in the formation of bulk longitudinal and shear waves and surface acoustic waves. The interactions of these waves with various obstacles and defects are investigated with reference to their application to non-destructive testing. In the third and most important field, a detailed study of the dynamics of laser-induced cavitation bubbles in water is carried out. With regard to the associated

  6. A boundary exchange influence on deglacial neodymium isotope records from the deep western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Piotrowski, Alexander M.; Galy, Albert; McCave, I. Nicholas

    2012-08-01

    The use of neodymium (Nd) isotopes to reconstruct past water mass mixing relies upon the quasi-conservative behaviour of this tracer, whereas recent studies in the modern oceans have suggested that boundary exchange, involving the addition of Nd from ocean margin sediments, may be an important process in the Nd cycle. Here we suggest that the relative importance of water mass advection versus boundary exchange can be assessed where the deep western boundary current in the Indian Ocean flows past the Madagascan continental margin; a potential source of highly unradiogenic Nd. Foraminiferal coatings and bulk sediment reductive leachates are used to reconstruct bottom water Nd isotopic composition (εNd) in 8 Holocene age coretops, with excellent agreement between the two methods. These data record spatial variability of ∼4 εNd units along the flow path of Circumpolar Deep Water; εNd≈-8.8 in the deep southern inflow upstream of Madagascar, which evolves towards εNd≈-11.5 offshore northern Madagascar, whereas εNd≈-7.3 where deep water re-circulates in the eastern Mascarene Basin. This variability is attributed to boundary exchange and, together with measurements of detrital sediment εNd, an isotope mass balance suggests a deep water residence time for Nd of ≤400 yr along the Madagascan margin. Considering deglacial changes, a core in the deep inflow upstream of Madagascar records εNd changes that agree with previous reconstructions of the Circumpolar Deep Water composition in the Southern Ocean, consistent with a control by water mass advection and perhaps indicating a longer residence time for Nd in the open ocean away from local sediment inputs. In contrast, sites along the Madagascan margin record offset εNd values and reduced glacial-interglacial variability, underlining the importance of detecting boundary exchange before inferring water mass source changes from Nd isotope records. The extent of Madagascan boundary exchange appears to be unchanged

  7. Formation, structural and optical characterization of neodymium doped-zinc soda lime silica based glass

    NASA Astrophysics Data System (ADS)

    Zamratul, M. I. M.; Zaidan, A. W.; Khamirul, A. M.; Nurzilla, M.; Halim, S. A.

    New glass system of neodymium - doped zinc soda lime silica glass has been synthesized for the first time by melt-quenching of glass waste soda lime silica (SLS) with zinc oxide (ZnO) as precursor glass and Nd2O3 as dopant. In order to examine the effect of Nd3+ on the structural and optical properties, the prepared sample of structure [(ZnO)0.5(SLS)0.5](Nd2O3)x (x = 0, 1, 2, 3, 4 and 5 wt%) was characterized through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy (UV-Vis) and the photoluminescence (PL). XRD pattern justifies the amorphous nature of synthesized glasses. FTIR spectroscopy has been used to observe the structural evolution of ZnO4 and SiO4 groups. The UV-Vis-NIR absorption spectra reveals seven peaks centered at excitation of electron from ground state 4I9/2 to 4D3/2 + 4D5/2 (∼360 nm), 2G9/2 + 2D3/2 + 2P3/2(∼470 nm), 2K13/2 + 4G7/2 + 4G9/2 (∼523 nm), 4G5/2 + 2G7/2 (∼583 nm), 4F9/2 (∼678 nm), 4S3/2 + 4F7/2 (∼748 nm) and 4F5/2 + 2H9/2 (∼801 nm). PL spectra under the excitation of 800 nm display four emission bands centered at 531 nm, 598 nm, 637 nm and 671 nm corresponding to 4G7/2 → 4I9/2, (4G7/2 → 4I11/2, 4G5/2 → 4I9/2), (4G5/2 → 4I11/2) and (4G7/2 → 4I13/2, 4G5/2 → 4I11/2) respectively.

  8. Coupled isotopic systematics of surface cerium and neodymium in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tazoe, H.; Obata, H.; Gamo, T.

    2011-04-01

    Trace metals are known to be essential elements in marine ecosystems. Radiogenic isotopes of neodymium (Nd) have been used as tracers in many recent oceanic trace metal studies, although, among rare earth elements, cerium (Ce) isotopes might be an interesting complementary tracer for particle reactive and lithogenic metals such as manganese. This study determined the 138Ce/142Ce ratios in surface waters of the Pacific Ocean and its surrounding marginal seas: the Sulu Sea, the South China Sea, the East China Sea, and the South Australian Basin. The 138Ce/142Ce and 143Nd/144Nd data are discussed in terms of the sources of rare earth elements and elemental fractionation between Ce and Nd in the marine environment. In the Western North Pacific Central Water, East China Sea, and South China Sea, isotopic compositions of Ce (ɛCe = +0.7 to 1.4) are most affected by radiogenic Ce of continental origin. In contrast, less radiogenic isotopic compositions of Ce (ɛCe = -0.4 to +0.3) in the Pacific Equatorial Water were observed locally near volcanic islands such as New Guinea Island, suggesting the influence of mantle-derived Ce. Compared with Nd, the isotopic composition of Ce showed a heterogeneous distribution in a given surface water mass, reflecting the importance of local sources. Variations of isotopic compositions and concentrations of Ce in the western Equatorial Pacific and the East China Sea suggest that lithogenic Ce is supplied and scavenged by particle-dissolved interaction near the margins. Radiogenic Ce in the Western North Pacific Central Water, which is more continental-like than Nd isotopes, suggests direct input by atmospheric dust into the North Pacific Ocean. The isotopic distribution of Ce is sensitive to aeolian supply to the surface waters of the open ocean. This unique feature indicates that the 138Ce/142Ce ratio can be a useful chemical tracer for lithogenic trace elements such as iron and manganese, which have short oceanic residence time.

  9. Extraction of seawater-derived neodymium from different phases of deep sea sediments by selective leaching

    NASA Astrophysics Data System (ADS)

    Blaser, P.; Lippold, J. A.; Frank, N.; Gutjahr, M.; Böhm, E.

    2014-12-01

    In order to deduce reliable information about the interaction of the oceans with the climate system as a whole in the past, the reconstruction of water mass circulation is crucial. The analysis of seawater-derived neodymium isotopes (143Nd/144Nd, expressed as ɛNd) in marine sediments provides a unique proxy for deep water provenance in particular in the Atlantic [1]. The ɛNd signature and thus the mixing proportion of the local bottom water masses is archived in authigenic phases in the sediment. Obtaining seawater ɛNd from authigenic accretions bound to foraminiferal tests has lately become the preferred since most reliable method [2]. Attempts have also been made to extract the Nd-rich authigenic metal fraction by leaching it off the bulk sediment and thereby use this proxy with less effort, in the highest possible resolution and in sediments where foraminifera are not sufficiently present. However, often other sedimentary components are also leached in the process and contaminate the extracted Nd [3,4]. In this project several core-top and older sediments across the Atlantic have been leached in ten consecutive steps with either dilute buffered acetic acid or an acid-reductive solution. The leachates were analysed on their elemental and Nd isotope compositions, as well as rare earth element (REE) distributions. By graduating the total leaching procedure into smaller stages the results display which processes take place in the course of sediment leaching in the laboratory and which components of the sediment are most reactive. Thus, they help to better evaluate the quality of sediment leaches for ɛNd analysis. Clearly, organic calcite acts as a fast reacting buffer and at the point where its amount is sufficiently reduced the leaching of other components commences and the Nd concentration peaks. Corruption of the extracted ɛNd signal by non-authigenic sources in many cases occured early in the leaching sequence, indicating that only very cautious leaching

  10. Europium, Samarium, and Neodymium Isotopic Fractions in Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Lawler, James E.; Sneden, Christopher; Cowan, John J.; Sobeck, Jennifer S.; Pilachowski, Catherine A.

    2008-03-01

    We have derived isotopic fractions of europium (Eu), samarium (Sm), and neodymium (Nd) in two metal-poor giants with differing neutron-capture nucleosynthetic histories. These isotopic fractions were measured from new very high resolution (R~120,000), high signal-to-noise (S/N~160-1000) spectra obtained with the 2dCoudé spectrograph of McDonald Observatory's 2.7 m Smith telescope. Synthetic spectra were generated using recent high-precision laboratory measurements of hyperfine and isotopic subcomponents of several transitions of these elements and matched quantitatively to the observed spectra. We interpret our isotopic fractions by the nucleosynthesis predictions of the stellar model, which models s-process nucleosynthesis in the physical conditions expected in a low-mass, thermally-pulsing star on the AGB, and the classical method, which assumes that s-process nucleosynthesis can be approximated by a steady neutron flux impinging upon Fe-peak seed nuclei. These two approaches predict the relative contributions to the Solar System n-capture abundances from the s- and r-processes and, by extension, the relative contributions of these two process to material in metal-poor stars. Our Eu isotopic fraction in HD 175305 is consistent with an r-process origin by the classical method and is consistent with both an r-process and s-process origin by the stellar model. Our Sm isotopic fraction in HD 175305 is consistent with a predominantly r-process origin by both methods, and our Sm isotopic fraction in HD 196944 is consistent with a pure s-process origin by both methods as well. Our Nd isotopic fractions in both stars are consistent with either r-process and s-process origins by both methods. The Eu and Sm isotopic fraction estimates argue for an r-process origin for the rare-earth elements in HD 175305 and an s-process origin for them in HD 196944, in excellent agreement with previous studies of the elemental abundance distributions in these stars. This study for the

  11. Hafnium and neodymium isotope composition of seawater and filtered particles from the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Stichel, T.; Frank, M.; Haley, B. A.; Rickli, J.; Venchiarutti, C.

    2009-12-01

    Radiogenic hafnium (Hf) and neodymium (Nd) isotopes have been used as tracers for past continental weathering regimes and ocean circulation. To date, however, there are only very few data available on dissolved Hf isotope compositions in present-day seawater and there is a complete lack of particulate data. During expedition ANTXXIV/3 (February to April 2008) we collected particulate samples (> 0.8 µm), which were obtained by filtrations of 270-700 liters of water. The samples were separated from the filters, completely dissolved, and purified for Nd and Hf isotope determination by TIMS and MC-ICPMS, respectively. In addition, we collected filtered (0.45 µm) seawater samples (20-120 liters) to determine the dissolved isotopic composition of Hf and Nd. The Hf isotope composition of the particulate fraction in the Drake Passage ranged from 0 to -28 ɛHf and is thus similar to that observed in core top sediments from the entire Southern Ocean in a previous study. The most unradiogenic and isotopically homogenous Hf isotope compositions in our study were found near the Antarctic Peninsula. Most of the stations north of the Southern Antarctic Circumpolar Front (SACC) show a large variation in ɛHf between 0 and -23 within the water column of one station and between the stations. The locations at which these Hf isotope compositions were measured are mostly far away from the potential source areas. Nd, in contrast, was nearly absent throughout the entire sample set and the only measurable ɛNd data ranged from 0 to -7, which is in good agreement with the sediment data in that area. The dissolved seawater isotopic compositions of both Hf and Nd show only minor variance (ɛHf = 4.2 to 4.7 and ɛNd = -8.8 to -7.6, respectively). These patterns in Hf isotopes and the nearly complete absence of Nd indicates that the particulate fraction does not contain a lot of terrigeneous material but is almost entirely dominated by biogenic opal. The homogenous and relatively radiogenic

  12. From the subtropics to the equator in the Southwest Pacific: Continental material fluxes quantified using neodymium data along modeled thermocline water pathways

    NASA Astrophysics Data System (ADS)

    Grenier, Mélanie; Jeandel, Catherine; Cravatte, Sophie

    2014-06-01

    The southwestern tropical Pacific, part of a major pathway for waters feeding the Equatorial Undercurrent, is a region of important geochemical enrichment through land-ocean boundary exchange. Here we develop an original method based on the coupling between dynamical modeling and geochemical tracer data to identify regions of enrichment along the water pathways from the subtropics to the equator, and to allow a refined quantification of continental material fluxes. Neodymium data are interpreted with the help of modeled Lagrangian trajectories of an Ocean General Circulation Model. We reveal that upper and lower thermocline waters have different pathways together with different geochemical evolutions. The upper thermocline waters entering the Solomon Sea mainly originate from the central subtropical gyre, enter the Coral Sea in the North Vanuatu Jet and likely receive radiogenic neodymium from the basaltic island margins encountered along their route. The lower thermocline waters entering the Solomon Sea mainly originate from northeast of New Zealand and enter the Coral Sea in the North Caledonian Jet. Depletion of their neodymium content likely occurs when flowing along the Australian and Papua coasts. Downstream from the Solomon Sea, waters flowing along the Papua New Guinea margins near the Sepik river mouth become surprisingly depleted in their neodymium content in the upper thermocline while enriched in the lower thermocline. This coupled approach is proposed as strong support to interpret the origin of the equatorial Pacific natural fertilization through a better understanding of the circulation, important objectives of the international GEOTRACES and SPICE programs, respectively.

  13. Comment on "The shape and composition of interstellar silicate grains"

    SciTech Connect

    Bradley, J P; Ishii, H

    2007-09-27

    In the paper entitled 'The shape and composition of interstellar silicate grains' (A & A, 462, 667-676 (2007)), Min et al. explore non-spherical grain shape and composition in modeling the interstellar 10 and 20 {micro}m extinction features. This progression towards more realistic models is vitally important to enabling valid comparisons between dust observations and laboratory measurements. Min et al. proceed to compare their model results with GEMS (glass with embedded metals and sulfides) from IDPs (interplanetary dust particles) and to discuss the nature and origin of GEMS. Specifically, they evaluate the hypothesis of Bradley (1994) that GEMS are interstellar (IS) amorphous silicates. From a comparison of the mineralogy, chemical compositions, and infrared (IR) spectral properties of GEMS with their modeling results, Min et al. conclude: 'GEMS are, in general, not unprocessed leftovers from the diffuse ISM'. This conclusion is based, however, on erroneous and incomplete GEMS data. It is important to clarify first that Bradley (1994) never proposed that GEMS are unprocessed leftovers from the diffuse ISM, nor did he suggest that individual subnanogram mass GEMS are a representative sampling of the enormous mass of silicates in the diffuse ISM. Bradley (1994) simply showed that GEMS properties are consistent with those of IS amorphous silicates. It is widely accepted that circumstellar outflows are important sources of IS silicates, and whether GEMS are processed or not, the circumstellar heritage of some has been rigorously confirmed through measurements of non-solar oxygen (O) isotope abundances (Messenger et al., 2003; Floss et al., 2006). Keller et al. (2000) assert that even GEMS without detectable O isotope anomalies are probably also extrasolar IS silicates because they are embedded in carbonaceous material with non-solar D/H isotopic composition. (Much of the silicate dust in the ISM may be isotopically homogenized (Zhukovska et al., 2007)). Recent

  14. Dynamic intermediate ocean circulation in the North Atlantic during Heinrich Stadial 1: A radiocarbon and neodymium isotope perspective

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Crocket, Kirsty C.; Flierdt, Tina; Robinson, Laura F.; Adkins, Jess F.

    2014-11-01

    The last deglaciation was characterized by a series of millennial-scale climate events that have been linked to deep ocean variability. While often implied in interpretations, few direct constraints exist on circulation changes at mid-depths. Here we provide new constraints on the variability of deglacial mid-depth circulation using combined radiocarbon and neodymium isotopes in 24 North Atlantic deep-sea corals. Their aragonite skeletons have been dated by uranium-series, providing absolute ages and the resolution to record centennial-scale changes, while transects spanning the lifetime of a single coral allow subcentennial tracer reconstruction. Our results reveal that rapid fluctuations of water mass sourcing and radiocarbon affected the mid-depth water column (1.7-2.5 km) on timescales of less than 100 years during the latter half of Heinrich Stadial 1. The neodymium isotopic variability (-14.5 to -11.0) ranges from the composition of the modern northern-sourced waters towards more radiogenic compositions, suggesting the presence of a greater southern-sourced component at some times. However, in detail, simple two-component mixing between well-ventilated northern-sourced and radiocarbon-depleted southern-sourced water masses cannot explain all our data. Instead, corals from ~15.0 ka and ~15.8 ka may record variability between southern-sourced intermediate waters and radiocarbon-depleted northern-sourced waters, unless there was a major shift in the neodymium isotopic composition of the northern end-member. In order to explain the rapid shift towards the most depleted radiocarbon values at ~15.4 ka, we suggest a different mixing scenario involving either radiocarbon-depleted deep water from the Greenland-Iceland-Norwegian Seas or a southern-sourced deep water mass. Since these mid-depth changes preceded the Bolling-Allerod warming and were apparently unaccompanied by changes in the deep Atlantic, they may indicate an important role for the intermediate ocean in

  15. Preparation and Insulation Properties of Epoxy-Layered Silicate Nanocomposite

    NASA Astrophysics Data System (ADS)

    Imai, Takahiro; Sawa, Fumio; Ozaki, Tamon; Nakano, Toshiyuki; Shimizu, Toshio; Yoshimitsu, Tetsuo

    Recent rapid progress in nanotechnology has focused research and development efforts on new high performance materials. Organic-inorganic hybrid materials such as nylon-layered silicate nanocomposites have attracted special interest and various studies continue to be conducted on thermoplastic resins. In this study, we found out the best organic modifier of layered silicate that contributed to an affinity for epoxy resin (thermosetting resin), and succeeded in creating an intercalated-type epoxy-layered silicate nanocomposite. This nanocomposite realized some improvements by the addition of 5 or 6 weight percentage of organically modified layered silicates, which have 20oC higher thermal resistance, 60% higher fracture toughness, 19% higher flexural strength and 10% higher insulation breakdown strength than these of an epoxy resin without layered silicate fillers. An electrical treeing growth was observed in the nanocomposite. The electrical treeing progress with many branches in the nanocomposite seemed to result in an increase in the insulation breakdown strength. These results suggest the possibility of practical use as an insulating material in heavy apparatuses.

  16. Behavior of Np(VII, VI, V) in Silicate Solutions

    SciTech Connect

    Shilov, V P.; Fedoseev, A M.; Yusov, A B.; Delegard, Calvin H.

    2004-11-30

    Spectrophotometric methods were used to investigate the properties of neptunium(VII), (VI), and (V) in silicate solution. The transition of cationic neptunium(VII) to anionic species in non-complexing environments proceeds in the range of ?? 5.5 to 7.5. In the presence of carbonate, this transition occurs at ?? 10.0 to 11.5 and in silicate solutions at ?? 10.5-12.0. These findings show that cationic neptunium(VII) forms complexes with both carbonate and silicate and that the silicate complex is stronger than that of the carbonate. The competition of complex formation reactions for neptunium(VI) with carbonate and silicate and on the known complex stability constant of NpO2(CO3)34- allowed the NpO2SiO3 complex stability constant, log ? = 16.5, to be estimated. Determination of the formation constant of Np(V) complexes with SiO32- was not possible using similar methods.

  17. Source of silicate and carbonate cements during deep burial diagenesis

    SciTech Connect

    Dutta, P.K.

    1986-05-01

    Detrital silicate minerals and silicate cements (formed during shallow burial) of siliciclastic sandstones commonly dissolve during deep burial diagenesis. Quartz, feldspars, mica, and garnet among detrital silicate minerals, and quartz and kaolinite among authigenic silicate minerals show extensive dissolution features during deep burial diagenesis of siliciclastic sandstones of the Gondwana Supergroup, India. No dissolution features were observed in zircon, tourmalene, and rutile among detrital minerals or in chlorite and smectite among early formed authigenic minerals. Dissolution enriched the pore fluids in silica, potassium, sodium, calcium, magnesium, iron, and aluminum. Authigenic cements formed during this stage are illite, quartz, feldspar, iron oxide, and carbonates of calcium, magnesium, and iron. Mass-balance calculations show that the source of all silicate cements formed during deep burial diagenesis was internally derived from the dissolution of both detrital and early formed authigenic cements. However, a considerable gap exists between the amounts of cations (calcium, magnesium, and iron) derived internally and the respective amounts of these cations needed to form the various carbonate cements at this stage. Therefore, an outside source for these cations is needed to explain the formation of carbonate cements. A large mass transfer of cations from outside the sediment source seems remote since ground-water movement, which probably carried cement from an external source, is extremely restricted at great burial depths. Therefore, carbonate cements may have been major constituents during shallow burial diagenesis in Gondwana sandstones. Subsequently, these early formed carbonates were completely dissolved and remobilized as late-stage carbonate cement.

  18. Properties of cometary crystalline silicate before and after perihelion passage

    NASA Astrophysics Data System (ADS)

    Ootsubo, Takafumi

    2013-01-01

    Crystalline silicate is sometimes observed in comets as an 11.3-micron resonant emission feature, and may be used for probing the early solar nebula. Because the formation of the crystalline silicate requires high temperature, they are thought to be born from amorphous silicate at the inner region, and then transported toward the outer regions where comets were born. This transportation can produce the difference in the crystalline fraction in the cometary silicate dust between two dynamical types of comets, Oort-cloud comets (OCs) and Ecliptic comets (ECs), due to the different heliocentric distances of their birth places. The study of peak wavelengths in crystalline features is important to investigate the conditions of the crystalline silicate formation as well. Thus far, we don't have enough OC samples, while we have observed several ECs. Fortunately, we can observe three comets in this semester. In particular, C/2012 S1 (ISON) is a bright sungrazing comet, and we might expect possible splitting and exposing of pristine materials inside the nucleus after its perihelion passage. Observations at pre- and post-perihelion provide us precious information on the dust evolution of the comet. The comet C/2012 S1 (ISON), along with two other comets, is an unparalleled target for this study.

  19. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  20. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    PubMed

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  1. Optical spectroscopy study of neodymium in sodium alumino-borosilicate glasses

    SciTech Connect

    Li, Hong; Li, Liyu; Strachan, Denis M.; Qian, Maoxu

    2004-12-01

    We studied the ultraviolet - visible spectrum of the Nd-O local environment with Na{sub 2}O/(Na{sub 2}O+Al{sub 2}O{sub 3}) in the range from 0 to 1 for the system: 60SiO{sub 2} {center_dot} 15B{sub 2}O{sub 3} {center_dot} xNa{sub 2}O {center_dot} (25-x)Al{sub 2}O{sub 3} {center_dot} yNd{sub 2}O{sub 3} [x from 0 to 25 mol% and y at the solubility limits depending on x/(25-x) or Na{sub 2}O/(Na{sub 2}O+Al{sub 2}O{sub 3})]. By use of the Judd-Ofelt theory, we determined the oscillator strength parameters {Omega}{sub 2} (sensitive to asymmetry and bond covalence) and {Omega}{sub 6} (sensitive to bond covalence) for the electronic transitions of the trivalent lanthanides (Ln). Our previous study showed that Nd-induced micro-phase separation existed over 0.35 < Na{sub 2}O/(Na{sub 2}O+Al{sub 2}O{sub 3}) < 0.65. Outside of this range, a Nd-silicate precipitated without micro-phase formation. The solubility reached a minimum at Na{sub 2}O/(Na{sub 2}O+Al{sub 2}O{sub 3}) = 0.5. On either side of this minimum, the solubility of Ln progressively increased and approached plateaus for 0.2 > Na{sub 2}O/(Na{sub 2}O+Al{sub 2}O{sub 3}) > 0.8. In the current study, a similar trend was found for the {Omega}{sub 2}/{Omega}{sub 6}. Additional tests were performed with the same baseline glasses at a fixed, low Nd{sub 2}O{sub 3} concentration. We found that the corresponding {Omega}{sub 2}/{Omega}{sub 6} was generally lower and remained constant. Based on literature data and our previous results from optical, Raman, and EELS studies of Ln cations (Nd, Gd and La) in similar sodium alumino-borosilicate glasses with Na{sub 2}O/(Na{sub 2}O+Al{sub 2}O{sub 3}) = 0 and 0.75, we expected a stable Ln-metal borate local structure, 1BO4: 1Nd: 2BO3. Accordingly, we expect that the {Omega}{sub 2}/{Omega}{sub 6} trends are consistent with Nd cations partitioning to the borate-rich or silicate-rich environments.

  2. Reactivity of neodymium carriers in deep sea sediments: Implications for boundary exchange and paleoceanography

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Piotrowski, Alexander M.; Galy, Albert; Clegg, Josephine A.

    2013-05-01

    The dissolved neodymium (Nd) isotopic distribution in the deep oceans is determined by continental weathering inputs, water mass advection, and boundary exchange between particulate and dissolved fractions. Reconstructions of past Nd isotopic variability may therefore provide evidence on temporal changes in continental weathering inputs and/or ocean circulation patterns over a range of timescales. However, such an approach is limited by uncertainty in the mechanisms and importance of the boundary exchange process, and the challenge in reliably recovering past seawater Nd isotopic composition (ɛNd) from deep sea sediments. This study addresses these questions by investigating the processes involved in particulate-solution interactions and their impact on Nd isotopes. A better understanding of boundary exchange also has wider implications for the oceanic cycling and budgets of other particle-reactive elements. Sequential acid-reductive leaching experiments at pH ˜2-5 on deep sea sediments from the western Indian Ocean enable us to investigate natural boundary exchange processes over a timescale appropriate to laboratory experiments. We provide evidence that both the dissolution of solid phases and exchange processes influence the ɛNd of leachates, which suggests that both processes may contribute to boundary exchange. We use major element and rare earth element (REE) data to investigate the pools of Nd that are accessed and demonstrate that sediment leachate ɛNd values cannot always be explained by admixture between an authigenic component and the bulk detrital component. For example, in core WIND 24B, acid-reductive leaching generates ɛNd values between -11 and -6 as a function of solution/solid ratios and leaching times, whereas the authigenic components have ɛNd ≈ -11 and the bulk detrital component has ɛNd ≈ -15. We infer that leaching in the Mascarene Basin accesses authigenic components and a minor radiogenic volcanic component that is more reactive

  3. Dating scheelite stages: A strontium, neodymium, lead approach from the Felbertal tungsten deposit, Central Alps, Austria

    NASA Astrophysics Data System (ADS)

    Eichhorn, Roland; Höll, Rudolf; Jagout, Emil; Schärer, Urs

    1997-12-01

    New Sm-Nd, Rb-Sr, and Pb-Pb isotope data of scheelites and their host rocks from the Felbertal scheelite deposit (Central Tauern Window, Eastern Alps, Austria) are presented. The oldest stage 1 scheelites are rarely preserved. They plot together with recrystallized stage 2 scheelite porphyroblasts on a Sm-Nd isochron of 581 ± 105 Ma. This Sm-Nd age is regarded as the time of the primary tungsten mineralization. Our interpretation is enhanced by a (within error limits) similar age of 517 ± 114 Ma derived from a 207Pb/ 206Pb scheelite isochron and a date of 517 ± 130 Ma obtained from two co-genetic relics (a clinopyroxene and a tschermakitic amphibole) within a metapyroxenite. The stage 2 scheelite blastesis was possibly triggered by an still unassured Ordovician "Caledonian" metamorphism and further promoted by a Carboniferous granitoid intrusion and a Variscan metamorphism without an isotopic reset. Both yellowish-fluorescent, Mo-bearing stage 1 and stage 2 scheelites were formed under oxidizing, alkaline conditions, which obviously did not promote REE fractionation and did not disturb the original Sm-Nd isotopic system. This evidently was not the case during younger remobilizations in Late Variscan and Alpine metamorphic times when stage 3 (319 ± 34 Ma) and stage 4 (29 ± 17 Ma) scheelites formed. Both stages consist of bluish-fluorescent, Mopoor to Mo-free scheelites that reveal significant REE depletion and fractionation, probably due to repeated corrosion and re-precipitation under more reducing neutral to slightly acidic conditions. The source and mechanism of deposition of the primary tungsten mineralization are deduced from five facts: (1) the radiogenic strontium isotopic data of stage 1 scheelites ( 87Sr/86Sr = 0.726-0.730 ) occurring together with normal crustal neodymium isotopic compositions ( ɛCHURt + 1 = -3.8 to -7.3), (2) unusually high U concentrations up to 74 ppm in stage 1 scheelites, (3) a sudden 87Sr increase between the formation of

  4. Neodymium and carbon isotopic fingerprints of warm Pliocene circulation throughout the deep Atlantic

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Scher, H. D.; Dowsett, H. J.; Robinson, M. M.

    2013-12-01

    The mid-Piacenzian age of the Pliocene is the most recent interval in Earth's history to sustain global warmth within the range predicted for the 21st century. To understand this interval, the USGS PRISM Project has developed a reconstruction of global conditions at 3.264-3.025 Ma, which includes a significant North Atlantic warm SST anomaly coupled with increased evaporation. Warm anomalies are also detected in the deep ocean as far as 46°S, suggesting that enhanced meridional overturning circulation may have been responsible for more southerly penetration of North Atlantic Deep Water (NADW). However, deep temperature proxies are not diagnostic of water mass, and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy synthesis of Atlantic deep ocean circulation during the PRISM interval, using the neodymium isotopic composition (ɛNd) of fossil fish teeth as a proxy for water mass source and the δ13C of benthic foraminifera as a proxy for water mass age. This reconstruction utilizes both new and previously published data from 11 DSDP and ODP sites in the North Atlantic (Site 610) and along depth transects from equatorial Ceara Rise, southern mid-latitude Walvis Ridge, and south Atlantic Meteor Rise/Agulhas Ridge. Published data from ferromanganese crusts constrain Pliocene Antarctic deep waters at ~ ɛNd = -8, distinct from the less radiogenic ɛNd = -11.5 that characterizes Pliocene northern component water (NCW). These values fingerprint northern and southern sources throughout the Atlantic basin. Pliocene fish teeth from Site 610 (2400 m water depth) and from four Ceara Rise sites (3000-4300 m) preserve distinctly North Atlantic ɛNd. When averaged across the PRISM interval, mean values for these five sites range from ɛNd = -10.97 to -10.25, and the Pliocene depth transect closely mirrors the structure of the modern column, indicating

  5. Carbon and Neodymium Isotopic Fingerprints of Atlantic Deep Ocean Circulation During the Warm Pliocene

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Scher, H.; Robinson, M. M.; Dowsett, H. J.; Bell, D. B.

    2012-12-01

    Earth's future climate may resemble the mid-Piacenzian Age of the Pliocene, a time when global temperatures were sustained within the range predicted for the coming century. Surface and deep water temperature reconstructions and coupled ocean-atmosphere general circulation model simulations by the USGS PRISM (Pliocene Research Interpretation and Synoptic Mapping) Group identify a dramatic North Atlantic warm surface temperature anomaly in the mid-Piacenzian (3.264 - 3.025 Ma), accompanied by increased evaporation. The anomaly is detected in deep waters at 46°S, suggesting enhanced meridional overturning circulation and more southerly penetration of North Atlantic Deep Water (NADW) during the PRISM interval. However deep water temperature proxies are not diagnostic of water mass and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy investigation of Atlantic deep ocean circulation during the warm mid-Piacenzian, using δ13C of benthic foraminifera as a proxy for water mass age and the neodymium isotopic composition of fossil fish teeth (ɛNd) as a proxy for water mass source and mixing. This reconstruction utilizes both new and previously published data from DSDP and ODP cores along equatorial (Ceara Rise), southern mid-latitude (Walvis Ridge), and south Atlantic (Meteor Rise/Agulhas Ridge) depth transects. Additional end-member sites in the regions of modern north Atlantic and Southern Ocean deep water formation provide a Pliocene baseline for comparison. δ13C throughout the Atlantic basin is remarkably homogenous during the PRISM interval. δ13C values of Cibicidoides spp. and C. wuellerstorfi largely range between 0‰ and 1‰ at North Atlantic, shallow equatorial, southern mid-latitude, and south Atlantic sites with water depths from 2000-4700 m; both depth and latitudinal gradients are generally small (~0.3‰). However, equatorial

  6. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.

    PubMed

    Bandara, H M Dhammika; Darcy, Julia W; Apelian, Diran; Emmert, Marion H

    2014-06-17

    In order to facilitate the development of recycling technologies for rare earth magnets from postconsumer products, we present herein an analysis of the neodymium (Nd) content in shredder scrap. This waste stream has been chosen on the basis of current business practices for the recycling of steel, aluminum, and copper from cars and household appliances, which contain significant amounts of rare earth magnets. Using approximations based on literature data, we have calculated the average Nd content in the ferrous shredder product stream to be between 0.13 and 0.29 kg per ton of ferrous scrap. A value analysis considering rare earth metal prices between 2002 and 2013 provides values between $1.32 and $145 per ton of ferrous scrap for this material, if recoverable as pure Nd metal. Furthermore, we present an analysis of the content and value of other rare earths (Pr, Dy, Tb). PMID:24934194

  7. CONTROL OF LASER RADIATION PARAMETERS: Passive Q switching of a neodymium laser by a Cr4+ : YAG crystal switch

    NASA Astrophysics Data System (ADS)

    Il'ichev, Nikolai N.; Gulyamova, E. S.; Pashinin, Pavel P.

    1997-11-01

    Theoretical and experimental investigations were made of passive Q switching of a neodymium laser by a Cr4+ : YAG switch. Analytic expressions were derived for estimating the output energy of the TEM00 mode of a passively Q-switched laser from the known parameters of the Cr4+ : YAG switch, of the active element, and of the cavity. The adopted description makes it possible to cover the range from generation of the first spike of a free-running transient to generation of a giant pulse. An experimental study was made of the dependence of the output energy on the cavity parameters, on the material of the active element (in this investigation it was Nd :YAG and Cr, Nd : GSGG), and on the angle of rotation of the Cr4+ : YAG switch. The experimental results obtained agreed to within 30% with calculations.

  8. From electrocautery, balloon dilatation, neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser to argon plasma coagulation and cryotherapy.

    PubMed

    Sachdeva, Ashutosh; Pickering, Edward M; Lee, Hans J

    2015-12-01

    Over the past decade, there has been significant advancement in the development/application of therapeutics in thoracic diseases. Ablation methods using heat or cold energy in the airway is safe and effective for treating complex airway disorders including malignant and non-malignant central airway obstruction (CAO) without limiting the impact of future definitive therapy. Timely and efficient use of endobronchial ablative therapies combined with mechanical debridement or stent placement results in immediate relief of dyspnea for CAO. Therapeutic modalities reviewed in this article including electrocautery, balloon dilation (BD), neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser, argon plasma coagulation (APC), and cryotherapy are often combined to achieve the desired results. This review aims to provide a clinically oriented review of these technologies in the modern era of interventional pulmonology (IP). PMID:26807284

  9. From electrocautery, balloon dilatation, neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser to argon plasma coagulation and cryotherapy

    PubMed Central

    Pickering, Edward M.; Lee, Hans J.

    2015-01-01

    Over the past decade, there has been significant advancement in the development/application of therapeutics in thoracic diseases. Ablation methods using heat or cold energy in the airway is safe and effective for treating complex airway disorders including malignant and non-malignant central airway obstruction (CAO) without limiting the impact of future definitive therapy. Timely and efficient use of endobronchial ablative therapies combined with mechanical debridement or stent placement results in immediate relief of dyspnea for CAO. Therapeutic modalities reviewed in this article including electrocautery, balloon dilation (BD), neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser, argon plasma coagulation (APC), and cryotherapy are often combined to achieve the desired results. This review aims to provide a clinically oriented review of these technologies in the modern era of interventional pulmonology (IP). PMID:26807284

  10. Comparative studies between theoretical and experimental of elastic properties and irradiation effects of soda lime glasses doped with neodymium oxide

    NASA Astrophysics Data System (ADS)

    Bootjomchai, C.

    2015-05-01

    A comparative studies on the theoretical and experimental values of elastic moduli of (90 - x) RWG -(10)Na2O -(x)Nd2O3 glass system, where RWG is recycled window glass and x is 0.001, 0.01, 0.1 and 1 mol%, was investigated. The radiation effects on structural properties and elastic moduli were evaluated by measuring the ultrasonic velocities. In addition, the FTIR spectra were measured to investigate the effects of irradiation on the structure of the glass. Moreover, the theoretical bond compression model was used to confirm the obtained results from the experiments. The results show that evidently changes in the structure of the glass depend on the concentration of the neodymium oxide and gamma irradiation. Furthermore, the experimental elastic moduli are in good agreement with the theoretical values.

  11. Electric field-induced softening of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    McLaren, C.; Heffner, W.; Tessarollo, R.; Raj, R.; Jain, H.

    2015-11-01

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  12. Origin of silicic magma in Iceland revealed by Th isotopes

    SciTech Connect

    Sigmarsson, O.; Condomines, M. ); Hemond, C. ); Fourcade, S. ); Oskarsson, N. )

    1991-06-01

    Th, Sr, Nd, and O isotopes have been determined in a suite of volcanic rocks from Hekla and in a few samples from Askja and Krafla volcanic centers in Iceland. Although {sup 87}Sr/{sup 86}Sr and {sup 143}Nd/{sup 144}Nd ratios are nearly the same for all compositions at Hekla, the ({sup 230}Th/{sup 232}Th) ratios differ and thus clearly show that the silicic rocks cannot be derived from fractional crystallization of a more primitive magma. Similar results are obtained for the Krafla and Askja volcanic centers, where the {delta}{sup 18}O values are much lower in the silicic magma than in the mafic magma. These data suggest that large volumes of silicic rocks in central volcanoes of the neovolcanic zones in Iceland are produced by partial melting of the underlying crust.

  13. The Elga meteorite - Silicate inclusions and shock metamorphism

    NASA Astrophysics Data System (ADS)

    Osadchii, E. G.; Novikov, G. V.; Baryshnikova, G. V.

    The present investigation is concerned with the silicate inclusions in the Elga meteorite which was found in Yakutia in 1959. Microscopic studies of the silicate inclusions indicate five distinct types with respect to structure, mineralogy, and petrology. Most of the silicate inclusions in the Elga meteorite contain nearly equal amounts of clinopyroxene and K-Na feldspar. The transparent minerals are considered, taking into account K-Na feldspar, alkali glasses, clinopyroxene, orthopyroxene, olivine, whitlockite, fluorapatite, phosphate glasses, tridymite, and rutile. Opaque minerals and alloys found include schreibersite, Fe-Ni-P alloy, Fe-Ni-P-S alloy, troilite, magnetite, and chromite. Structural characteristics related to impact melting are investigated. The mineralogy and structure of the Elga meteorite are found to indicate that it must have had at least two impact events of different intensity early in its history.

  14. FORMATION OF MOLECULAR OXYGEN AND OZONE ON AMORPHOUS SILICATES

    SciTech Connect

    Jing Dapeng; He Jiao; Vidali, Gianfranco; Brucato, John Robert; Tozzetti, Lorenzo; De Sio, Antonio

    2012-09-01

    Oxygen in the interstellar medium is seen in the gas phase, in ices (incorporated in H{sub 2}O, CO, and CO{sub 2}), and in grains such as (Mg{sub x} Fe{sub 1-x} )SiO{sub 3} or (Mg{sub x} Fe{sub 1-x} ){sub 2}SiO{sub 4}, 0 < x < 1. In this investigation, we study the diffusion of oxygen atoms and the formation of oxygen molecules and ozone on the surface of an amorphous silicate film. We find that ozone is formed at low temperature (<30 K), and molecular oxygen forms when the diffusion of oxygen atoms becomes significant, at around 60 K. This experiment, besides being the first determination of the diffusion energy barrier (1785 {+-} 35 K) for oxygen atoms on a silicate surface, suggests bare silicates as a possible storage place for oxygen atoms in low-A{sub v} environments.

  15. Redox equilibria of multivalent ions in silicate glasses

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Morris, R. V.

    1977-01-01

    Experimental studies were made on the compositional dependence of the redox equilibrium of Eu in synthetic silicate liquids, together with an empirical model describing the observed compositional dependence. Electron paramagnetic resonance (EPR) was used to measure the concentration ratio of Eu(2+) to Eu(3+) in various glasses formed by rapidly quenching silicate liquids. The compositional field studied comprised mixtures of SiO2, TiO2, Al2O3, CaO, MgO, and Na2O. The proposed model describes the Eu(2+)/Eu(3+) ratio over the entire compositional field in terms of parameters easily related to each glass composition. The general applicability and utility of the model is further demonstrated by its application to the Fe(2+)-Fe(3+), Ce(3+)-Ce(4+), and Cr(3+)-Cr(6+) redox reactions in binary alkali oxide silicate glasses of Li, Na, and K.

  16. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  17. Characterization of silicate based cathodes for Li Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Nazri, Gholam-Abbas; Nazri, Maryam; Nail, Vaman; Vaishnava, Prem; Naik, Ratna; Energy Group Collaboration; Energy Group Collaboration; Energy Group Collaboration

    2013-03-01

    The silicate compounds Li2MSiO4, where M = Mn, Fe, Co and Ni have gained interest as electrode materials for Lithium ion batteries due to their high theoretical capacity (>330mAh/g), high thermal stability due to strong Si-O covalent bonds, environmental friendliness, and low cost. However, these materials intrinsically have low electrical conductivity. To improve conductivity of these classes of electrode materials, we synthesized Li2MnSiO4 and Li2FeSiO4 by solid state reaction in an argon atmosphere. The lithium transition metal silicates were compounded with graphene nano-sheets and the composites were used as positive electrode in a coin cell configuration.. The materials structure-composition, morphology, conductivity and electrochemical performance were characterized by XRD, XPS, SEM, TEM and electrochemical techniques.The detail structure-composition analysis and electrochemical performance of the silicate electrodes will be reported.

  18. Treatability of manganese by sodium silicate and chlorine

    SciTech Connect

    Robinson, F.B.; Ronk, S.K. )

    1987-11-01

    Manganese sequestering by nearly simultaneous additions of sodium silicate and sodium hypochlorite was studied in laboratory-prepared waters. Under conditions of near-neutral pH and 150-250 mg/liter of alkalinity as CaCO{sub 3}, 1-2 mg manganese/liter could be sequestered for up to one day. Less effective manganese treatability was found at pH 8 than at pH 7. Additionally, at pH 7 the best results were obtained when neither silicate nor hypochlorite was added because of the slow manganese oxidation rate by oxygen alone. Aging of diluted stock silicate solutions prior to dosing also resulted in poor treatment; the presence of background silica increased the treatment effectiveness only slightly. Overall, manganese was less treatable by this method than iron under the same treatment conditions.

  19. Composition of the Silicates around Evolved Stars and Protostars

    NASA Astrophysics Data System (ADS)

    Demyk, K.; Dartois, E.; Wiesemeyer, H.; Jones, A.; D'Hendecourt, L.; Jourdain de Muizon, M.; Heras, A. M.

    2000-11-01

    We present a study of the composition of the silicates around five evolved stars and three high-mass protostars. Around evolved stars, the oxygen-rich dust is composed of amorphous olivine, crystalline silicates (enstatite, forsterite, diopside) and some oxides (FeO, Al2O3). Using a radiative transfer code we have modelled the SED of two OH/IR stars. We estimate that the amount of crystalline silicates in these objects is of the order of 20%. Around protostars, the dust is composed of porous pyroxene and/or aluminosilicate grains containing iron oxide. We calculate that at most 1-2% of the dust mass is crystalline. The newly formed dust around evolved stars has a different structure and composition from the old dust found around protostars. This implies that some mechanism, which remains to be found, occurs during the grain lifetime and alters the chemical composition and structure of the grains.

  20. Interaction of silicic acid with sulfurous acid scale inhibitor

    SciTech Connect

    Gallup, D.L.

    1997-12-31

    The solubility of amorphous silica and the inhibition of silica polymerization in the presence of sulfurous acid and sulfite salts has been investigated to 260{degrees}C. Investigations of inhibition of silica scaling from geothermal brines by sulfurous acid have produced unusual results. Bisulfite/sulfite increases amorphous silica solubility by {open_quotes}salting in{close_quotes} effects resulting from apparent complexation. Silica-sulfite complexes are postulated to form via hydrogen bonding, and appear to be much stronger than silica-sulfate complexes. Treatment of brines with sulfurous acid inhibits silica scaling by (1) retarding the kinetics of silicic acid polymerization, and (2) forming soluble sulfito-silicate complexes. Sulfurous acid offers several advantages over sulfuric acid in controlling scale deposition-reduced corrosion potential, reduced by-product scale formation potential, oxygen scavenging and inhibition of certain metal silicate scales.

  1. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    SciTech Connect

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  2. Influence of the Central American Seaway and Drake Passage on ocean circulation and neodymium isotopes: A model study

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik L.; Stocker, Thomas F.; Rempfer, Johannes; Ritz, Stefan P.

    2014-12-01

    The sensitivity of the neodymium isotopic composition (ɛNd) to tectonic rearrangements of seaways is investigated using an Earth System Model of Intermediate Complexity. The shoaling and closure of the Central American Seaway (CAS) is simulated, as well as the opening and deepening of Drake Passage (DP). Multiple series of equilibrium simulations with various intermediate depths are performed for both seaways, providing insight into ɛNd and circulation responses to progressive throughflow evolutions. Furthermore, the sensitivity of these responses to the Atlantic Meridional Overturning Circulation (AMOC) and the neodymium boundary source is examined. Modeled ɛNd changes are compared to sediment core and ferromanganese (Fe-Mn) crust data. The model results indicate that the North Atlantic ɛNd response to the CAS shoaling is highly dependent on the AMOC state, i.e., on the AMOC strength before the shoaling to shallow depths (preclosure). Three scenarios based on different AMOC forcings are discussed, of which the model-data agreement favors a shallow preclosure (Miocene) AMOC (˜6 Sv). The DP opening causes a rather complex circulation response, resulting in an initial South Atlantic ɛNd decrease preceding a larger increase. This feature may be specific to our model setup, which induces a vigorous CAS throughflow that is strongly anticorrelated to the DP throughflow. In freshwater experiments following the DP deepening, ODP Site 1090 is mainly influenced by AMOC and DP throughflow changes, while ODP Site 689 is more strongly influenced by Southern Ocean Meridional Overturning Circulation and CAS throughflow changes. The boundary source uncertainty is largest for shallow seaways and at shallow sites.

  3. Robustness of fossil fish teeth for seawater neodymium isotope reconstructions under variable redox conditions in an ancient shallow marine setting

    NASA Astrophysics Data System (ADS)

    Huck, Claire E.; van de Flierdt, Tina; Jiménez-Espejo, Francisco J.; Bohaty, Steven M.; Röhl, Ursula; Hammond, Samantha J.

    2016-03-01

    Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth, and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources.

  4. Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep-sea coral aragonite

    NASA Astrophysics Data System (ADS)

    Struve, Torben; van de Flierdt, Tina; Robinson, Laura F.; Bradtmiller, Louisa I.; Hines, Sophia K.; Adkins, Jess F.; Lambelet, Myriam; Crocket, Kirsty C.; Kreissig, Katharina; Coles, Barry; Auro, Maureen E.

    2016-01-01

    Isotopes of the actinide elements protactinium (Pa), thorium (Th), and uranium (U), and the lanthanide element neodymium (Nd) are often used as complementary tracers of modern and past oceanic processes. The extraction of such elements from low abundance matrices, such as seawater and carbonate, is however labor-intensive and requires significant amounts of sample material. We here present a combined method for the extraction of Pa, Th, and Nd from 5 to 10 L seawater samples, and of U, Th, and Nd from <1 g carbonate samples. Neodymium is collected in the respective wash fractions of Pa-Th and U-Th anion exchange chromatographies. Regardless of the original sample matrix, Nd is extracted during a two-stage ion chromatography, followed by thermal ionization mass spectrometry (TIMS) analysis as NdO+. Using this combined procedure, we obtained results for Nd isotopic compositions on two GEOTRACES consensus samples from Bermuda Atlantic Time Series (BATS), which are within error identical to results for separately sampled and processed dedicated Nd samples (ɛNd = -9.20 ± 0.21 and -13.11 ± 0.21 for 15 and 2000 m water depths, respectively; intercalibration results from 14 laboratories: ɛNd = -9.19 ± 0.57 and -13.14 ± 0.57). Furthermore, Nd isotope results for an in-house coral reference material are identical within analytical uncertainty for dedicated Nd chemistry and after collection of Nd from U-Th anion exchange chromatography. Our procedure does not require major adaptations to independently used ion exchange chromatographies for U-Pa-Th and Nd, and can hence be readily implemented for a wide range of applications.

  5. Global Flows of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum

    PubMed Central

    2014-01-01

    This study, encompassing 231 countries and regions, quantifies the global transfer of three critical metals (neodymium, cobalt, and platinum) considered vital for low-carbon technologies by means of material flow analysis (MFA), using trade data (BACI) and the metal contents of trade commodities, resolving the optimization problem to ensure the material balance of the metals within each country and region. The study shows that in 2005 international trade led to global flows of 18.6 kt of neodymium, 154 kt of cobalt, and 402 t of platinum and identifies the main commodities and top 50 bilateral trade links embodying these metals. To explore the issue of consumption efficiency, the flows were characterized according to the technological level of each country or region and divided into three types: green (“efficient use”), yellow (“moderately efficient use”), and red (“inefficient use”). On this basis, the shares of green, yellow, and red flows in the aggregate global flow of Nd were found to be 1.2%, 98%, and 1.2%, respectively. For Co, the respective figures are 53%, 28%, and 19%, and for Pt 15%, 84%, and 0.87%. Furthermore, a simple indicator focusing on the composition of the three colored flows for each commodity was developed to identify trade commodities that should be prioritized for urgent technical improvement to reduce wasteful use of the metals. Based on the indicator, we discuss logical, strategic identification of the responsibilities and roles of the countries involved in the global flows. PMID:24387330

  6. Thermodynamic Features of the Complexation of Neodymium(III) and Americium(III) by Lactate in Trifluoromethanesulfonate Media.

    SciTech Connect

    Peter R. Zalupski; Leigh R. Martin; Kenneth L. Nash

    2010-10-01

    The protonation of lactate has been studied in a variety of electrolyte solutions using microcalorimetry to reveal a distinct medium influence imposed on the thermochemistry of the investigated equilibrium. The thermochemistry of lactate protonation, when studied directly in 1.0 M sodium lactate, agreed well with the studies performed in trifluoromethanesulfonate (triflate). This thermodynamic agreement suggests that the physical chemistry of lactate in the solutions applicable to the TALSPEAK process – a solvent extraction method for separating trivalent actinides from trivalent lanthanides within the scope of used nuclear fuel processing efforts – may be simulated in triflate solutions. Potentiometry, spectrophotometry and microcalorimetry have been subsequently used to study the thermodynamic features of neodymium and americium complexation by lactate using triflate as a strong background electrolyte. Three successive mononuclear lactate complexes were identified for Nd(III) and Am(III). The stability constants for neodymium, log ß1 = 2.60 ± 0.01, log ß2 = 4.66 ± 0.02 and log ß3 = 5.6 ± 0.1, and for americium, log ß1 = 2.60 ± 0.06, log ß2 = 4.7 ± 0.1 and log ß3 = 6.2 ± 0.2, were found to closely agree with the thermodynamic studies reported in sodium perchlorate solutions. Consequently, the thermodynamic medium effect, imposed on the TALSPEAK-related solution equilibria by the presence of strong background electrolytes such as NaClO4 and NaNO3, do not significantly impact the speciation in solution.

  7. MG Isotopic Measurement of FIB-Isolated Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Nguyen, A.; Ito, M.; Rahman, Z.

    2010-01-01

    The majority of presolar oxide and silicate grains are ascribed to origins in low-mass red giant and asymptotic giant branch (AGB) stars based on their O isotopic ratios. However, a minor population of these grains (< 10%) has O isotopic ratios incompatible with these sources. Two principle alternative sources are higher-than-solar metallicity (Z) stars or, more likely, supernovae (SN) [1-3]. These rare (Group 4) grains [3] are characterized by enrichments in O-18, and typically also enrichments in O-17. An even rarer subset of grains with extremely large enrichments in O-17 and smaller depletions in O-18 were suggested to come from binary star systems [2]. To establish the origins of these isotopically unusual grains, it is necessary to examine isotopic systems in addition to O. Presolar silicates offer several elements diagnostic of their stellar sources and nuclear processes, including O, Si, Mg, Fe and Ca. However, the database for minor element isotopic compositions in silicates is seriously lacking. To date only two silicate grains have been analyzed for Mg [4] or Fe [5]. One major complicating factor is their small size (average 230 nm), which greatly limits the number of measurements that can be performed on any one grain and makes it more difficult to obtain statistically relevant data. This problem is compounded because the grains are identified among isotopically solar silicates, which contribute a diluting signal in isotopic measurements [1]. Thus, relatively small isotopic anomalies are missed due to this dilution effect. By applying focused ion beam (FIB) milling, we obtain undiluted Mg isotopic ratios of isolated rare presolar silicate grains to investigate their sources.

  8. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  9. The Lassell Massif - a Silicic Lunar Volcano

    NASA Astrophysics Data System (ADS)

    Ashley, J.; Robinson, M. S.; Stopar, J. D.; Glotch, T. D.; Hawke, B. R.; Lawrence, S. J.; Jolliff, B. L.; Greenhagen, B. T.; Paige, D. A.

    2013-12-01

    Lunar volcanic processes were dominated by mare-producing basaltic extrusions. However, limited occurrences of non-mare, geochemically evolved (Si-enriched) volcanic deposits have long been suspected on the basis of spectral anomalies (red spots), landform morphologies, and the occurrence of minor granitic components in Apollo sample suites [e.g., 1-5]. The LRO Diviner Lunar Radiometer Experiment (Diviner) measured thermal emission signatures considered diagnostic of highly silicic rocks in several red spot areas [6,7], within the Marius domes [8], and from the Compton-Belkovich feature on the lunar farside [9]. The present study focuses on the Lassell massif red spot (14.73°S, 350.97°E) located in northeastern Mare Nubium near the center of Alphonsus A crater. Here we use Diviner coverage co-projected with Lunar Reconnaissance Orbiter Camera (LROC) images [10] and digital elevation models to characterize the Lassell massif geomorphology and composition. Localized Diviner signatures indicating relatively high silica contents correlate with spatially distinct morphologic features across the Lassell massif. These features include sub-kilometer scale deposits with clear superposing relationships between units of different silica concentrations. The zone with the strongest signal corresponds to the southern half of the massif and the Lassell G and K depressions (formerly thought to be impact craters [11]). These steep-walled pits lack any obvious raised rims or ejecta blankets that would identify them as impact craters; they are likely explosive volcanic vents or collapse calderas. This silica-rich area is contained within the historic red spot area [4], but does not appear to fully overlap with it, implying compositionally distinct deposits originating from the same source region. Low-reflectance deposits, exposed by impact craters and mass wasting across the massif, suggest either basaltic pyroclastics or minor late-stage extrusion of basaltic lavas through vents

  10. Mantle Mineral/Silicate Melt Partitioning

    NASA Astrophysics Data System (ADS)

    McFarlane, E. A.; Drake, M. J.

    1992-07-01

    Introduction: The partitioning of elements among mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. It has been proposed that the elevated Mg/Si ratio of the upper mantle of the Earth is a consequence of the flotation of olivine into the upper mantle (Agee and Walker, 1988). Agee and Walker (1988) have generated a model via mass balance by assuming average mineral compositions to generate upper mantle peridotite. This model determines that upper mantle peridotite could result from the addition of 32.7% olivine and 0.9% majorite garnet into the upper mantle, and subtraction of 27.6% perovskite from the upper mantle (Agee and Walker, 1988). The present contribution uses experimental data to examine the consequences of such multiple phase fractionations enabling an independent evaluation of the above mentioned model. Here we use Mg-perovskite/melt partition coefficients from both a synthetic and a natural system (KLB-1) obtained from this laboratory. Also used are partition coefficient values for majorite garnet/melt, beta spinel/melt and olivine/melt partitioning (McFarlane et al., 1991b; McFarlane et al., 1992). Multiple phase fractionations are examined using the equilibrium crystallization equation and partition coefficient values. The mineral proportions determined by Agee and Walker (1988) are converted into weight fractions and used to compute a bulk partition coefficient value. Discussion: There has been a significant debate concerning whether measured values of trace element partition coefficients permit large-scale fractionation of liquidus phases from an early terrestrial magma ocean (Kato et al., 1988a,b; Walker and Agee, 1989; Drake, 1989; Drake et al., 1991; McFarlane et al., 1990, 1991). It should be noted that it is unclear which, if any, numerical values of partition coefficients are appropriate for examining this question, and certainly the assumptions for the current model must be more fully

  11. Electrical conductivity measurements on silicate melts using the loop technique

    NASA Technical Reports Server (NTRS)

    Waff, H. S.

    1976-01-01

    A new method is described for measurement of the electrical conductivity of silicate melts under controlled oxygen partial pressure at temperatures to 1550 C. The melt samples are suspended as droplets on platinum-rhodium loops, minimizing iron loss from the melt due to alloying with platinum, and providing maximum surface exposure of the melt to the oxygen-buffering gas atmosphere. The latter provides extremely rapid equilibration of the melt with the imposed oxygen partial pressure. The loop technique involves a minimum of setup time and cost, provides reproducible results to within + or - 5% and is well suited to electrical conductivity studies on silicate melts containing redox cations.

  12. Development of interfaces in oxide and silicate matrix composites

    SciTech Connect

    Lewis, M.H.; Cain, M.G.; Doleman, P.

    1995-12-01

    Silicate and oxide matrix CMCs are being developed for application in advanced gas turbines. High-performance Silicate/Nicalon CMCs have been characterised mainly as materials for interface, process and mechanical modelling due to their limited thermal and oxidative stability. Saphikon (Al{sub 2}O{sub 3}) monofilaments have been used in the development of interphase chemistry and processing via vapour and liquid-precursor methods. Prototype Al{sub 2}O{sub 3}-matrix CMCs have been fabricated and exploration of alternative fibre/interphase chemistries conducted via reactivity studies up to 1600{degrees}C.

  13. Polymer layered silicate nanocomposites: Structure, morphology, and properties

    NASA Astrophysics Data System (ADS)

    Nawani, Pranav

    Layered silicates are important fillers for improving various mechanical, flame retardant, and barrier properties of polymers, which can be attributed to their sheet-like morphology. Layered silicates can be modified with organic surfactants to render them compatible with polymer matrices. Organically modified silicates (organoclays) having large surface areas are very cost-efficient non-toxic nanofillers effective at very low loads and are readily available. Upon amalgamation of organoclays with polymer matrix nanocomposites, polymer chains can penetrate in between the silicate layers and result in an intercalated structure where the clay stack remains intact but the interlayer spacing is increased. When penetration becomes more severe, disintegration of clay stacks can occur, resulting in an exfoliated structure. It has often been observed that exfoliation is not complete down to the level of isolated silicate layers; rather, the large clay stacks are broken up into shorter stacks termed 'tactoids' together with a few individual silicate layers, resulting in a kind of mixed intercalated-exfoliated structure. Organoclay particles are mostly intercalated, having a preferred orientation with the clay gallery planes being preferentially parallel to the plane of the pressed film. Preferential orientation of organoclays affects the barrier properties of polymer membranes. Additional fillers like carbon black can induce a change in the orientation of organoclays. The effect of carbon black on the orientation of organoclays was elucidated and a relationship between orientation and permeability of air through such membranes was established. We have also investigated the flammability properties of a series of polymer nanocomposites, containing various Transition Metal Ion (TMI) modified organoclays. The improved fire retardation in nanocomposites with TMI-modified organoclays can be attributed to enhanced carbonaceous char formation during combustion, i.e., charring

  14. Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.

    2006-01-01

    Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.

  15. Polymerization of silicate on hematite surfaces and its influence on arsenic sorption.

    PubMed

    Christl, Iso; Brechbühl, Yves; Graf, Moritz; Kretzschmar, Ruben

    2012-12-18

    Iron oxides and oxyhydroxides are important sorbents for arsenic in soils, sediments, and water treatment systems, but their long-term potential for arsenic retention may be diminished by the formation of polymeric silicate on their surfaces. To study these interactions, we first investigated the sorption of silicate to colloidal hematite (α-Fe(2)O(3)) in short-term (48 h) and long-term (210 days) batch experiments. The polymerization of silicate on the hematite surface was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The pH dependence of silicate sorption exhibited a maximum between pH 9.0 and 9.5. The condensation of silicate on hematite surfaces adsorbed from monomeric silicate solutions steadily continued over the 210 day period, whereby surface polymerization was slower at pH 3 than at pH 6. The effect of silicate surface polymerization on arsenate and arsenite sorption was studied by use of hematite pre-equilibrated with silicate for different time periods of up to 210 days. The competitive effect of silicate on arsenate and arsenite sorption increased with increasing silicate pre-equilibration time. Only under strongly acidic conditions (pH 3), where silicate sorption was weakest and surface polymerization was slowest, was arsenate and arsenite sorption not affected by the presence of silicate. We conclude that the long-term exposure to dissolved silicate can decrease the potential of natural iron (oxyhydr)oxides for adsorbing inorganic arsenic. PMID:23163533

  16. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  17. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  18. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  19. SINTERING AND SULFATION OF CALCIUM SILICATE-ALUMINATE

    EPA Science Inventory

    The effect of sintering on the reactivity of solids at high temperature was studied. The nature of the interaction was studied with calcium silicate-aluminate reacting with SO2 between 665 and 800 C. The kinetics of the sintering and sulfation processes were measured independentl...

  20. In vitro macrophage cytotoxicity of five calcium silicates.

    PubMed Central

    Skaug, V; Davies, R; Gylseth, B

    1984-01-01

    Five calcium silicate minerals (two naturally occurring and three synthetic compounds) with defined morphology and chemical composition were compared for their cytotoxic and lysosomal enzyme releasing effects on unstimulated mouse peritoneal macrophages in vitro. One synthetic material, a fibrous tobermorite, was cytotoxic towards the cells, and two naturally occurring wollastonites induced selective release of beta-glucuronidase from the cells. Images PMID:6318798

  1. Comparative FeNi and Silicate Chronology in Portales Valley

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Papanastassiou, D. A.; Wasserburg, G. J.

    2000-01-01

    Re-Os and U-Pb data on Portales Valley suggest an early formation for the metal and silicates. These two chronometers and Rb-Sr and Sm-Nd require a young disturbance. This is inconsistent with the 39 Ar-40 Ar age and in need of clarification.

  2. Determination of boron in silicates after ion exchange separation

    USGS Publications Warehouse

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  3. Fate of silicate minerals in a peat bog

    NASA Astrophysics Data System (ADS)

    Bennett, Philip C.; Siegel, Donald I.; Hill, Barbara M.; Glaser, Paul H.

    1991-04-01

    An investigation of silicate weathering in a Minnesota mire indicates that quartz and aluminosilicates rapidly dissolve in anoxic, organic-rich, neutral- pH environments. Vertical profiles of pH, dissolved silicon, and major cations were obtained at a raised bog and a spring fen and compared. Profiles of readily extractable silicon, diatom abundance, ash mineralogy, and silicate surface texture were determined from peat cores collected at each site. In the bog, normally a recharge mound, dissolved silicon increases with depth as pH increases, exceeding the background silicon concentration by a factor of two. Silicate grain surfaces, including quartz, are chemically etched at this location, despite being in contact with pore water at neutral pH with dissolved silicon well above the equilibrium solubility of quartz. The increasing silica concentrations at circum-neutral pH are consistent with a system where silicate solubility is influenced by silica-organic-acid complexes. Silica-organic-acid complexes therefore may be the cause of the almost complete absence of diatoms in decomposed peat and contribute to the formation of silica-depleted underclays commonly found beneath coal.

  4. Characterization of iron-phosphate-silicate chemical garden structures.

    PubMed

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life. PMID:22035594

  5. Differentiate Precursor for Silicate Inclusions In the Elga Iron Meteorite

    NASA Astrophysics Data System (ADS)

    Teplyakova, S. N.; Kostitsyn, Y. A.; Kononkova, N. N.

    2010-03-01

    We studied 17 silicate inclusions in IIE Elga irons by electron microprobe and LA-ICP-MS. The bulk compositions of the Elga SIs are enriched in Si, K, Na, and Rb, Nb and could be formed during intensive differentiation process.

  6. Energetics of silicate melts from thermal diffusion studies

    SciTech Connect

    Walker, D.

    1992-07-01

    Efforts are reported in the following areas: laboratory equipment (multianvils for high P/T work, pressure media, SERC/DL sychrotron), liquid-state thermal diffusion (silicate liquids, O isotopic fractionation, volatiles, tektites, polymetallic sulfide liquids, carbonate liquids, aqueous sulfate solutions), and liquid-state isothermal diffusion (self-diffusion, basalt-rhyolite interdiffusion, selective contamination, chemical diffusion).

  7. SINTERING AND SULFATION OF CALCIUM SILICATE-ALUMINATE

    EPA Science Inventory

    The paper gives results of a study of the effect of sintering on the reactivity of solids at high temperature. he nature of the interaction was studied with calcium silicate-aluminate reacting with SO2 between 665 and 800 C, where sintering progresses rapidly. The kinetics of the...

  8. Estimation of high temperature metal-silicate partition coefficients

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Capobianco, Christopher J.; Drake, Michael J.

    1992-01-01

    It has been known for some time that abundances of siderophile elements in the upper mantle of the Earth are far in excess of those expected from equilibrium between metal and silicate at low pressures and temperatures. Murthy (1991) has re-examined this excess of siderophile element problem by estimating liquid metal/liquid silicate partition coefficients reduces from their measured values at a lower temperature, implying that siderophile elements become much less siderophilic at high temperatures. Murthy then draws the important conclusion that metal/silicate equilibrium at high temperatures can account for the abundances of siderophile elements in the Earth's mantle. Of course, his conclusion is critically dependent on the small values of the partition coefficients he calculates. Because the numerical values of most experimentally-determined partition coefficients increase with increasing temperature at both constant oxygen fugacity and at constant redox buffer, we think it is important to try an alternative extrapolation for comparison. We have computed high temperature metal/silicate partition coefficients under a different set of assumptions and show that such long temperature extrapolations yield values which are critically dependent upon the presumed chemical behavior of the siderophile elements in the system.

  9. Thermal conductivity and dielectric constant of silicate materials

    NASA Technical Reports Server (NTRS)

    Simon, I.; Wechsler, A. E.

    1968-01-01

    Report on the thermal conductivity and dielectric constant of nonmetallic materials evaluates the mechanisms of heat transfer in evacuated silicate powders and establishes the complex dielectric constant of these materials. Experimental measurements and results are related to postulated lunar surface materials.

  10. Oxygen from the lunar soil by molten silicate electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1992-01-01

    Accepting that oxygen, rather than gigantic gems or gold, is likely to make the Moon's Klondike, the extraction of oxygen from the lunar soil by molten silicate electrolysis has chosen to be investigated. Process theory and proposed lunar factory are addressed.

  11. Annealing of Silicate Dust by Nebular Shocks at 10 AU

    NASA Technical Reports Server (NTRS)

    Harker, David E.; Desch, Steven J.; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Silicate dust grains in the interstellar medium are known to be mostly amorphous, yet crystalline silicate grains have been observed in many long-period comets and in protoplanetary disks. Annealing of amorphous silicate grains into crystalline grains requires temperatures greater than or approximately equal to 1000 K, but exposure of dust grains in comets to such high temperatures is apparently incompatible with the generally low temperatures experienced by comets. This has led to the proposal of models in which dust grains were thermally processed near the protoSun, then underwent considerable radial transport until they reached the gas giant planet region where the long-period comets originated. We hypothesize instead that silicate dust grains were annealed in situ, by shock waves triggered by gravitational instabilities. We assume a shock speed of 5 km/s, a plausible value for shocks driven by gravitational instabilities. We calculate the peak temperatures of pyroxene grains under conditions typical in protoplanetary disks at 5-10 AU. We show that in situ annealing of micron-sized dust grains can occur, obviating the need for large-scale radial transport.

  12. Potassium silicate-zinc oxide solution for metal finishes

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.

    1970-01-01

    Examples of zinc dust formulations, which are not subject to cracking or crazing, are fire retardant, and have high adhesive qualities, are listed. The potassium silicate in these formulations has mol ratios of dissolved silica potassium oxide in the range 4.8 to 1 - 5.3 to 1.

  13. 77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction with poly(oxypropylene)-poly(oxyethylene) glycol; when used as an inert ingredient in a pesticide chemical formulation. Dow Corning Corporation submitted a petition to EPA under the Federal Food,......

  14. RADIATION EFFECTS ON TRANSPORT AND BUBBLE FORMATION IN SILICATE GLASSES

    EPA Science Inventory

    The objective of the research is to discover the molecular details of chemistry induced by -, γ-, and neutron-irradiation of silicate glasses. The ionization and ballistic effects of radiation will be studied from the viewpoint of defect formation and transport properties. D...

  15. The Silicate-Extinction Relationship in Filament L673

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Allen, Lori; Bary, Jeff; Boogert, Adwin; Huard, Tracy; Knez, Claudia; Leisenring, Jarron; Pontoppidan, Klaus

    2008-03-01

    We propose to obtain Spitzer IRS spectra of 18 background stars toward two cores within the isolated dense filament L673. These stars were carefully selected to probe a wide range of extinctions in the starless core L673-SMM4 and the cluster-forming core L673-SMM1/2 in order to further investigate the silicate-extinction relationship in dense, isolated environments. With the primary goal of characterizing this relationship in different core environments, a previous program (PID 40928) included 63 background stars sampling a wide range of extinctions through four cores: a starless core, single-star-forming core, cluster-forming core, and a core apparently exhibiting an anomalous relationship. The additional observations proposed here would serve to (1) provide a more robust characterization of differences between the silicate-extinction relationship in starless and star-forming cores, and (2) enable us to address whether this relationship is similar for cores of similar star-formation rates. We have shown previously that the silicate-extinction relationship is a sensitive probe of grain evolution, providing constraints on the carbon-to-silicate composition and grain sizes, especially when combined with 1-1000 micron observations.

  16. Molecular orientation of rhodamine dyes on surfaces of layered silicates.

    PubMed

    Bujdák, Juraj; Iyi, Nobuo

    2005-03-17

    Films of the layered silicates fluorohectorite (FH) and saponite (Sap) with various rhodamine dyes were prepared. The dyes with acidic as well as large hydrophobic groups in their molecule were not adsorbed on the surface of FH, which was interpreted in terms of high charge density on the surface of this silicate. All adsorbed dyes formed similar forms, such as isolated cations and H-type molecular aggregates, which were characterized by different spectral properties. Polarized ultraviolet-visible (UV-vis) spectroscopy was used for the characterization of the molecular orientation of dye chromophores on the silicate surface. The isolated dye cations and species, which absorbed light at the low energy part of the spectra, were only slightly tilted with respect to the plane of the silicate surface. The cations forming H-aggregates and absorbing light at low wavelengths were oriented in a nearly perpendicular fashion. The nearly perpendicular orientation was observed as a strong increase of dichroic ratio with film tilting. The orientation of the cations in H-aggregates depends partially on the structure of the dye molecule, namely, on the type of amino group (primary, secondary, or tertiary) in the dye molecule. The type of amino groups probably plays a role in the suitable orientation of dye cations for effective electrostatic interaction between the cations and the negatively charged siloxane surface. X-ray powder diffraction could not distinguish dye phases of dye monomers and molecular aggregates. PMID:16851539

  17. PREFACE: 5th Baltic Conference on Silicate Materials

    NASA Astrophysics Data System (ADS)

    Mezinskis, G.; Bragina, L.; Colombo, P.; Frischat, G. H.; Grabis, J.; Greil, P.; Deja, J.; Kaminskas, R.; Kliava, J.; Medvids, A.; Nowak, I.; Siauciunas, R.; Valancius, Z.; Zalite, I.

    2011-12-01

    Logo This Volume of IOP Conference Series: Materials Science and Engineering presents a selection of the contributions to the 5th Baltic Conference on Silicate Materials (BaltSilica2011) held at Riga Technical University, Riga, Latvia from 23-25 May 2011. The conference was organized by Riga Technical University (Latvia) and Kaunas University of Technology (Lithuania). The series of Baltic conferences on silicate materials was started since 2004: the first conference was held in Riga, Latvia, 2004; the second conference was held in Kaunas, Lithuania 2005; the third was held again in Riga, Latvia, 2007, and the fourth was held in Kaunas, Lithuania 2009. BaltSilica 2011 was attended by around 50 participants from Latvia, Lithuania, Estonia, Germany, Poland, Italy, France, Ukraine and Russia. In comparison with previous silicate materials conferences, the broadening of participating countries is an indication of the interest of scientists, engineers and students to exchange research ideas, latest results, and to find new research topics for cooperation in the fields of silicate, high temperature materials, and inorganic nanomaterials. The scientific programme included 8 invited plenary lectures 23 oral presentations and 25 posters [1]. Scientific themes covered in the conference and in this special issue: Natural and Artificial Stone Materials; Traditional and New Ceramic and Glass-Like Materials; Nanoparticles and Nanomaterials. This volume consists of 23 selected proceeding papers. The Editor of this special issue is grateful to all the contributors to BaltSilica 2011. I am also very grateful to the scientific committee, the local organizing committee, the session chairs, the referees who refereed the submitted articles to this issue, and to students from the Department of Silicate, High Temperature and Inorganic Nanomaterials Technology of the Riga Technical University who ensured the smooth running of the conference. Particular thanks goes to eight plenary

  18. Diode-laser-pumped tunable 896-939.5-nm neodymium-doped fiber laser with 43-mW output power.

    PubMed

    Cook, A L; Hendricks, H D

    1998-05-20

    A diode-laser-pumped neodymium-doped fiber laser is presented. For a launched pump power of 85 mW, the fiber laser had a cw output power of 43 mW, which is approximately an order of magnitude greater output power than any previously reported diode-pumped neodymium fiber laser operating on the 4F(3/2)-4I(9/2) transition, which covers the 900-950-nm region. The fiber laser had a threshold power of 10 mW and a slope efficiency of 58% with respect to launched pump power. Tuning with a diffraction grating was obtained from 896 to 937 nm with narrow-band output powers as high as 32 mW. Emission was also obtained at 939.5 nm with use of a fiber Bragg grating as the output reflector. PMID:18273282

  19. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  20. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  1. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  2. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  3. 40 CFR 180.1268 - Potassium silicate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Potassium silicate; exemption from the... Exemptions From Tolerances § 180.1268 Potassium silicate; exemption from the requirement of a tolerance. Potassium silicate is exempt from the requirement of a tolerance in or on all food commodities so long...

  4. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethyl silicate, reaction products...

  5. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethyl silicate, reaction products...

  6. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethyl silicate, reaction products...

  7. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethyl silicate, reaction products...

  8. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethyl silicate, reaction products...

  9. Synthesis and structure of nanocrystalline mixed Ce–Yb silicates

    SciTech Connect

    Małecka, Małgorzata A. Kępiński, Leszek

    2013-07-15

    Graphical abstract: - Highlights: • New method of synthesis of nanocrystalline mixed lanthanide silicates is proposed. • Formation of A-type (Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} in well dispersed Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. • Formation of Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} in agglomerated Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)}–SiO{sub 2} system. - Abstract: This work presents results of studies on synthesis and structure of mixed, nanocrystalline Ce–Yb silicates. Using TEM, XRD and FTIR we showed that heat treatment of nanocrystalline Ce{sub 1−x}Yb{sub x}O{sub 2−(x/2)} (x = 0.3, 0.5) mixed oxide supported on amorphous silica in reducing atmosphere, results in formation of Ce–Yb mixed silicates. Dispersion of the oxide on the silica surface and thus a local lanthanide/Si atomic ratio determines the stoichiometry of the silicate. Oxide crystallites uniformly dispersed on the silica surface transformed into A-(Ce{sub 1−y}Yb{sub y}){sub 2}Si{sub 2}O{sub 7} disilicate, while the agglomerated nanoparticles converted into Yb{sub y}Ce{sub 9.33−y}(SiO{sub 4}){sub 6}O{sub 2} oxyapatite silicate as an intermediate phase.

  10. Reactions for yttrium silicate high-k dielectrics

    NASA Astrophysics Data System (ADS)

    Chambers, James Joseph

    The continued scaling of metal-oxide-semiconductor-field-effect-transistors (MOSFETs) will require replacing the silicon dioxide gate dielectric with an alternate high dielectric constant (high-k) material. We have exploited the high reactivity of yttrium with both silicon and oxygen to form yttrium silicate high-k dielectrics. Yttrium silicate films with composition of (Y 2O3)x ·(SiO2)1-x and x = 0.32 to 0.87 are formed by oxidizing yttrium on silicon where yttrium reacts concurrently with silicon and oxygen. The competition between silicon and oxygen for yttrium is studied using X-ray photoelectron spectroscopy (XPS) and medium energy ion scattering (MEIS). The initial yttrium thickness mediates the silicon consumption, and a critical thickness (˜40--80 A) exists below which silicon is consumed to form yttrium silicate and above which Y2O3 forms without silicon incorporation. Engineered interfaces modify the silicon consumption, and a nitrided silicon interface results in film with composition close to Y2O3. The silicon consumption also depends on the oxidation temperature, and oxidation at higher temperature generally results in greater silicon incorporation with an activation energy of 0.3--0.5 eV. Yttrium silicate films (˜40 A) formed by oxidation of yttrium on silicon have an amorphous microstructure and an equivalent silicon dioxide thickness of ˜12 A with leakage current <1 A/cm2. Yttrium silicate formation on silicon is also demonstrated using plasma oxidation of yttrium on silicon, reactive sputtering of yttrium and annealing/oxidation of yttrium on thermal SiO 2. The interface reactions described here for yttrium are expected to be active during both physical and chemical vapor deposition of other high-k dielectrics containing Hf, Zr and La.

  11. X-ray spectral diagnostics of synthetic lanthanide silicates

    NASA Astrophysics Data System (ADS)

    Kravtsova, A. N.; Guda, A. A.; Soldatov, A. V.; Goettlicher, J.; Taroev, V. K.; Kashaev, A. A.; Suvorova, L. F.; Tauson, V. L.

    2015-12-01

    Potassium and rare-earth (Eu, Sm, Yb, Ce) silicate and aluminosilicate crystals are hydrothermally synthesized under isothermal conditions at 500°C and a pressure of 100 MPa. The chemical and structural formulas of the synthesized compounds HK6Eu[Si10O25], K7Sm3[Si12O32], K2Sm[AlSi4O12] · 0.375H2O, K4Yb2[Si8O21], and K4Ce2[Al2Si8O24] are determined. In addition, a synthesis product with Eu, in which the dominant phase is assumed to be K3Eu3+[Si6O15] · 2H2O, is studied. The oxidation state of lanthanides in the silicates under study is determined based on X-ray absorption near-edge structure spectroscopy. The Eu L 3-, Sm L 3-, Yb L 3-, and Ce L 3-edge X-ray absorption spectra of the studied silicates and reference samples are recorded using a Rigaku R-XAS laboratory spectrometer. As reference samples, Eu2+S, Eu3+F3, Eu 2 3+ O3, Sm 2 3+ O3, Yb 2 3+ O3, Yb3+F3, Yb3+Cl3, Ce 2 3+ O3, and Ce4+O2 are used. Comparison of the absorption edge energies of lanthanide silicates and reference samples shows that Eu, Sm, Yb, and Ce in all the samples studied are in the oxidation state 3+. The synthesized silicates will supplement our knowledge of possible rare-earth minerals existing in hydrothermal systems, which is important for analyzing the distribution spectra of rare elements, which are widely used for diagnostics of geochemical processes and determination of sources of ore materials.

  12. Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins

    NASA Technical Reports Server (NTRS)

    Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko

    2016-01-01

    Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.

  13. Metal/Silicate Partitioning at High Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.

    2010-01-01

    The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.

  14. Interfacial Reactions and Cubic Neodymium Oxide Formation in Low Dispersed Nd2O3-SiO2 System by Wet Chemical Method

    NASA Astrophysics Data System (ADS)

    Duhan, S.; Aghamkar, P.

    2009-01-01

    Neodymium (binary oxide) powders are synthesized by a solgel technique. Prepared powders are heat treated under different temperature for different time duration and obtained nanostructure of Nd. Metal particle have diameters in the range 7.8-21.6 nm. It is found that the heat treatment plays an important role to produce different structure of Nd-doped silica matrix. The peak position shifts to lower angle as the size of the nano metal oxide particles size increases.

  15. Feasibility of a 486 nm Fraunhofer laser source based on a 4F(sub 3/2) yields 4I(sub 9/2) neodymium laser

    NASA Astrophysics Data System (ADS)

    Hanson, F. E.; Katz, D. L.; Poirier, P.

    1992-03-01

    The objective of this research was to investigate the potential of a laser source based on the neodymium (4)F(sub 3/2) (yields) (4)I(sub 9/2) transition for operation at 486.1 nm, the H(sub beta) Fraunhofer wavelength. We characterized this transition in Nd:YAG. Also, we identified stimulated rotational Raman conversion in H2, D2, and HD as a critical step in such a system.

  16. [Critical evaluation of indications for the holmium:YAG laser and the neodymium:YAG laser in orthopedic surgery based on an in vitro study].

    PubMed

    Anders, J O; Pietsch, S; Staupendahl, G

    1999-04-01

    This is an in vitro study of the biophysical effects of holmium:YAG and neodymium-YAG lasers that was prompted by the poor clinical results obtained with lumbar percutaneous laser discus decompression (PLDD). In the absence of adequate cooling, ablation of tissue with the holmium:YAG laser causes thermal damage to the surrounding tissues. Utilizing the immediate colour-independent laser coupling effect, the holmium:YAG laser removes soft and hard tissue immediately. The low tissue penetrating power (max. 0.32 mm), together with the use of irrigation, avoids thermal problems, and this laser type with its high pulse energy and frequency is to be recommended for arthroscopic surgery. In contrast, the effects of the neodymium:YAG laser are highly dependent on tissue colour. Using this laser on light-coloured tissue only diffuse warming but no ablation of soft tissue was often seen. The depth of tissue penetration seen in our study was 0.58 mm, but is greatly dependent on the duration of application, and is much larger with long application times. In conclusion, we believe that the neodymium:YAG laser is more suitable for percutaneous intradiscal procedures than the holmium:YAG laser. For arthroscopic surgery, the holmium:YAG laser will be the better choice. The effect of each type of laser depends not only on its physical properties, but also on tissue properties (light or dark-coloured, thermal conductivity) and duration of application. PMID:10379068

  17. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    PubMed Central

    2013-01-01

    Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources. PMID:23298332

  18. A randomized controlled trial of peeling and aspiration of Elschnig pearls and neodymium: yttrium-aluminium-garnet laser capsulotomy

    PubMed Central

    Bhargava, Rahul; Kumar, Prachi; Sharma, Shiv Kumar; Kaur, Avinash

    2015-01-01

    AIM To compare surgical peeling and aspiration and neodymium yttrium garnet laser capsulotomy for pearl form of posterior capsule opacification (PCO). METHODS A prospective, randomized, double blind, study was done at Rotary Eye Hospital, Maranda, Palampur, India, Santosh Medical College Hospital, Ghaziabad, India and Laser Eye Clinic, Noida India. Consecutive patients with pearl form of PCO following surgery, phacoemulsification, manual small incision cataract surgery and conventional extracapsular cataract extraction (ECCE) for age related cataract, were randomized to have peeling and aspiration or neodymium yttrium garnet laser capsulotomy. Corrected distance visual acuity (CDVA), intra-operative and post-operative complications were compared. RESULTS A total of 634 patients participated in the study, and 314 (49.5%) patients were randomized to surgical peeling and aspiration group and 320 (50.5%) to the Nd:YAG laser group. The mean pre-procedural logMAR CDVA in peeling and neodymium: yttrium-aluminium-garnet (Nd:YAG) laser group was 0.80±0.25 and 0.86±0.22, respectively. The mean final CDVA in peeling group (0.22±0.23) was comparable to Nd:YAG group (0.24±0.28; t test, P=0.240). There was a significant improvement in vision after both the procedures (P<0.001). A slightly higher percentage of patients in Nd:YAG laser group (283/88.3%) than in peeling group (262/83.4%) had a CDVA of 0.5 (20/63) or better at 9mo (P<0.001). On the contrary, patients having CDVA worse than 1.00 (20/200) was also significantly higher in Nd:YAG laser group as compared to peeling group (25/7.7% vs 15/4.7%, respectively). On application of ANCOVA, there was less than 0.001% risk that PCO thickness and total laser energy had no effect on rate of complications in Nd:YAG laser group and less than 0.001 % risk that PCO thickness had no effect on complications in peeling group respectively. Sum of square analysis suggests that in the Nd:YAG laser group, thick PCO had a stronger impact on

  19. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  20. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  1. Constraints on the neodymium (Nd) oceanic cycle in the Mediterranean Sea using a high resolution coupled model

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Jeandel, Catherine; Dutay, Jean-claude; Arsouze, Thomas

    2015-04-01

    Neodymium isotopic composition (Nd IC) is a tracer of oceanic circulation and lithogenic inputs to the ocean. An extensive compilation of published Nd isotopic values was realized in order to establish a database and a map of ɛNd and Nd concentrations characterizing all the Mediterranean margins. This was built based on different kinds of samples: riverine solid discharge deposited on the shelf, sedimentary material collected along the margins and geological material above or close to an oceanic margin (following Jeandel et al., 2007). The margin Nd isotopic signatures vary from non-radiogenic values around the Gulf of Lions (Nd IC values between -11.5 and -10), to radiogenic values around the Aegean and the Levantine sub-basins (Nd IC up to +6). Such West-East variation was also observed in the seawater data, which are becoming more radiogenic along the eastward circulation in the Mediterranean Sea (Tachikawa et al., 2004). The Nd budget proposed by these authors raised the hypothesis that the exchange of Nd along the margins could play a significant role in driving the oceanic distribution of this tracer. On a more global scale, it was further demonstrated and modelled that dissolved/particulate exchanges between continental margin sediments and open ocean (termed boundary exchange, BE), could be the dominant source-sink terms that determine the distribution of neodymium isotopes in the global ocean (Lacan and Jeandel, 2005a, Arsouze et al 2009). But this global scale study with it low-resolution configuration ORCA2 (2° of horizontal resolution) could not resolve many local and regional-scale features Our purpose is to test this hypothesis for the first time in the Mediterranean Sea by using a high resolution regional coupled model (1/12° of horizontal resolution). In a first approach we considered that boundary exchange is the only term governing Nd distribution in the Mediterranean Sea (other sources have been neglected). This aimed to validate the "Boundary

  2. Seawater-derived neodymium isotope records in the Chukchi Sea, western Arctic Ocean during Holocene: implications for oceanographic circulation

    NASA Astrophysics Data System (ADS)

    Lee, Borom; Nam, Seung-Il; Huh, Youngsook; Lee, Mi Jung

    2015-04-01

    Changes in oceanographic circulation in the Artic have a large influence on the global oceanic and climate system of the Earth through the geological times. In particular, freshwater input from the North Pacific to the western Arctic Ocean affects the Atlantic meridional overturning circulation (AMOC) after the opening of the Bering Strait. Seawater-derived neodymium isotope in marine sediments has been used as a proxy to trace the origin of water masses and oceanic circulation system. The global average residence time of Nd is shorter than the global ocean mixing time and dissolved Nd in seawater behaves quasi-conservatively. In the modern Arctic Ocean, the Nd isotope distribution is dominated by Atlantic source water, although the circum-Arctic riverine discharge and Pacific-derived waters also have noticeable impacts. In this study, we investigated seawater-derived neodymium isotope records from a sediment core recovered from the Chukchi Sea to understand the changes in hydrograhic circulation of the western Arctic during the Holocene. A gravity core, ARA02B 01A, was collected on the northern shelf of the Chukchi Sea (73°37.8939'N, 166°30.9838'W, ca. 111 m in water depth) during the RV Araon expedition in 2011. To obtain seawater-derived Nd records, we extracted Fe-Mn oxide coatings as an authigenic fraction from bulk sediments by leaching with acid-reducing solution after removing carbonate by leaching with acetic acid. Our preliminary results might show a general pattern of increasing radiogenic ɛNd values through Holocene intervals. Therefore, it implies that ɛNd results may be related with variations in the intensity of Bering Strait inflow during the last ~9.31 ka BP. The radiogenic trend was strongly pronounced from the late Holocene (ɛNd -7.23; ca. 8.84 ka BP) to the middle Holocene (ɛNd -4.78; ca. 6.18 ka BP) and vaguely during the middle Holocene. After 4.13 ka BP, ɛNd values were increased again from -4.86 to -4.03 at 0.57 ka BP. But 87Sr/86Sr

  3. The solubility of gold in silicate melts: First results

    NASA Technical Reports Server (NTRS)

    Borisov, A.; Palme, H.; Spettel, B.

    1993-01-01

    The effects of oxygen fugacity and temperature on the solubility of Au in silicate melts were determined. Pd-Au alloys were equilibrated with silicate of anorthite-diopside eutectic composition at different T-fO2 conditions. The behavior of Au was found to be similar to that of Pd reported recently. Au solubilities for alloys with 30 to 40 at. percent Au decrease at 1400 C from 12 ppm in air to 160 ppb at a log fO2 = -8.7. The slope of the log(Me-solubility) vs. log(fO2) curve is close to 1/4 for Au and the simultaneously determined Pd suggesting a formal valence of Au and Pd of 1+. Near the IW buffer Pd and Au solubilities become even less dependent on fO2 perhaps reflecting the presence of some metallic Au and Pd.

  4. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    SciTech Connect

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A; Vuono, Daniel J

    2012-01-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.

  5. Origin and consequences of silicate glass passivation by surface layers

    NASA Astrophysics Data System (ADS)

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-02-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal.

  6. EXAFS studies of uranium sorption on layer-silicate minerals

    SciTech Connect

    Hudson, E.A.; Terminello, L.J.; Viani, B.E.

    1995-12-31

    The local structure of uranium sorbed on mineral surfaces was investigated by uranium L{sub 3}-edge EXAFS. Solutions of uranyl chloride, UO{sub 2}Cl{sub 2}, were exposed to vermiculite, an expansible layer silicate mineral, under conditions which favor sorption by either cation exchange or surface complexation. EXAFS of the resulting mineral samples indicates a larger distortion of the uranyl equatorial shell for cation exchange, possibly due to steric effects of interlayer sorption. The uranyl U-O axial bond distance is greater for surface complexation than for ion exchange. Uranyl sorption on talc and pyrophyllite, layer silicate minerals with essentially no cation-exchange capacity, gives results which generally support the trends for surface complexation on vermiculite.

  7. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate

    PubMed Central

    Robinson, Nathaniel D.

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5×10-8 m2/V s and hydrodynamic resistance per unit length of 70 ×1017 Pa s/m4 with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template. PMID:26629907

  8. Hydrous alteration of amorphous silicate smokes - First results

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Donn, B.; Deseife, R.; Donn, A.; Nelson, R.

    1986-01-01

    Results of the initial studies of the hydrous alteration of amorphous Mg-SiO smokes indicate that, although these materials readily adsorb water, the silicate structure is much more stable at 360 K than expected. Drastic changes in the relative absorption strengths of the 10- and 20-micron 'silicate' features that appear quite rapidly at 750 K were observed; these observations might have important implications for the interpretation of cometary dust spectra. Observations of the development of 3.4-3.5 micron features possibly due to hydrocarbons in the spectra of processed Mg-SiO smokes have raised the exciting possibility that these amorphous condensates could act as Fischer-Tropsch type catalysts to produce hydrocarbons in the primitive solar nebula.

  9. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  10. Carbon and silicate dust formation in V1280 Sco

    NASA Astrophysics Data System (ADS)

    Sakon, I.; Sako, S.; Oanaka, T.; Nozawa, T.; Kimura, Y.; Fujiyoshi, T.; Shimonishi, T.; Usui, F.; Takahashi, H.; Ohsawa, R.; Arai, A.; Uemura, M.; Nagayama, T.; Koo, B.-C.; Kozasa, T.

    2016-07-01

    This study investigates the temporal evolution of the infrared emission from the dusty nova V1280 Sco over 2000 days from the outburst. We have revealed that the infrared spectral energy distributions at 1272, 1616 and 1947 days are explained by the emissions produced by amorphous carbon dust of mass (6.6-8.7) × 10-8 Mʘ with a representative grain size of 0.01 µm and astronomical silicate dust of mass (3.4-4.3) × 10-7 Mʘ with a representative grain size of 0.3-0.5 µm. Both of carbon and silicate dust travel farther away from the white dwarf without an apparent mass evolution throughout those later epochs.

  11. Structural characterization of gel-derived calcium silicate systems.

    PubMed

    Meiszterics, Anikó; Rosta, László; Peterlik, Herwig; Rohonczy, János; Kubuki, Shiro; Henits, Péter; Sinkó, Katalin

    2010-09-30

    The main aim of this study is to synthesize calcium silicate ceramics that exhibit suitable properties to be used for biomedical applications. In the present work, attention was paid to the understanding of processing-structure relationships. A particular effort was made to clarify the identification of Ca-O-Si bonds by means of spectroscopy. The calcium silicate systems were prepared via a sol-gel route, varying the chemical compositions, the catalyst concentration, and the temperature and time of aging and heat treatment. The processes and the phases evolved during the sol-gel procedure were determined. The bond systems were investigated by Fourier transform infrared (FTIR) and (29)Si magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and the aggregate structures by scanning electron microscopy (SEM), small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), and X-ray diffraction (XRD) measurements. PMID:20828114

  12. Deformation and Fracture Mechanisms of Polymer-Silicate Nanocomposites

    NASA Astrophysics Data System (ADS)

    Harcup, Jason; Yee, Albert

    1998-03-01

    The deformation and fracture behavior of a series of nanocomposites comprising polyamide, silicate and in some cases rubber has been studied. Mechanical properties including Young modulus and fracture toughness were measured and it was found that compared to conventional composites, the nanocomposites exhibited far greater improvement in properties over the neat matrix for a given silicate fraction. It was also found that the addition of the rubber phase produced an increase in toughness. The arrested crack tip process zone was obtained using the Double Notch Four Point Bend test geometry and the process zone morphology was studied using TEM and TOM. Fracture surfaces were probed with XEDS and SEM. The use of these techniques enabled the mechanisms which occur during fracture to be studied and related to the mechanical properties and toughening of these materials.

  13. Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Smith, Dorian G. W.; Lambert, Richard St. J.; Gaffey, Michael J.

    1990-01-01

    The reflectance spectra of combinations of olivine, orthopyroxene, and iron meteorite metal are experimentally studied, and the obtained variations in spectral properties are used to constrain the physical and chemical properties of the assemblages. The presence of metal most noticeably affects band area ratios, peak-to-peak and peak-to-minimum reflectance ratios, and band widths. Band width and band areas are useful for determining metal abundance in olivine and metal and orthopyroxene and metal assemblages, respectively. Mafic silicate grain size variations are best determined using band depth criteria. Band centers are most useful for determining mafic silicate composition. An application of these parameters to the S-class asteroid Flora is presented.

  14. Silicic acid biogeochemistry in the Gulf of California

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    Silicon is an essential nutrient for the growth of siliceous phytoplankton, which accounts for a significant amount of marine primary production. Constraints on silicic acid limit primary production and carbon export, so biogeochemical silicon cycling influences the carbon cycle and climate. Silicon cycling has been studied mostly in iron-limited regions of the ocean, and not much is known about the effects of iron availability on silicon cycling in coastal upwelling systems. Pichevin et al. investigated nutrient profiles and sedimentary records from the Gulf of California, which is not limited by iron year-round. They found that iron limitation even in this type of setting is an important factor in silicon cycling in coastal upwelling regions. (Paleoceanography, doi:10.1029/2011PA002237, 2012)

  15. Calc-silicate mineralization in active geothermal systems

    SciTech Connect

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  16. Osmium Solubility in Silicate Melts: New Efforts and New Results

    NASA Technical Reports Server (NTRS)

    Borisov, A.; Walker, R. J.

    1998-01-01

    In a recent paper, Borisov and Palme reported the first experimental results on the partitioning of Os between metal (Ni-rich OsNi alloys) and silicate melt of anorthite-diopside eutectic composition at 1400 C and 1 atm total pressure and and at function of O2 from 10(exp -8) to 10(exp -12) atm. Experiments were done by equilibrating OsNi metal loops with silicate melt. Metal and glass were analyzed separately by INAA. D(sup 0s) ranged from 10(exp 6) to 10(exp 7), which is inconsistent with core/ mantle equilibrium for HSEs and favors the late veneer hypothesis. Unfortunately, there was practically no function of O2 dependence of Os partitioning, and the scatter of experimental results was quite serious, so the formation of Os nuggets was suspected. This new set of experiments was specifically designed to avoid of at least minimize the nugget problem

  17. Origin and consequences of silicate glass passivation by surface layers

    PubMed Central

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  18. Analysis of the Barrier Properties of Polyimide-Silicate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Johnston, J. Chris; Inghram, Linda; McCorkle, Linda; Silverman, Edward

    2003-01-01

    Montmorillonite clay was organically modified and dispersed into a thermoplastic (BPADA-BAPP) and a thermosetting (PMR-15) polyimide matrix. The barrier properties of the neat resins and the nanocomposites were evaluated. Reductions in gas permeability and water absorption were observed in thermoplastic polyimide nanocomposites. The thermosetting polyimide showed a reduction in weight loss during isothermal aging at 288 C. Carbon fabric (T650-35, 8 HS, 8 ply) composites were prepared using both the BPADE-BAPP and PMR-15 based nanocomposites. Dispersion of the layered silicate in the BPADA-BAPP matrix reduced helium permeability by up to 70 percent. The PMR-15/ silicate nanocomposite matrix had an increase in thermal oxidative stability of up to 25 percent.

  19. Thermochemistry of Rare Earth Silicates for Environmental Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    Rare earth silicates are promising candidates as environmental protective coatings (EBCs) for silica-forming ceramics and composites in combustion environments since they are predicted to have lower reactivity with the water vapor combustion products. The reactivity of rare earth silicates is assessed by the thermodynamic activity of the silica component which is best measured by Knudsen effusion mass spectrometry (KEMS). Here, we discuss a novel method based on a reducing agent to increase the partial pressure of SiO(g) which is then used to calculate thermodynamic activity of silica in Y2O3-SiO2 and Yb2O3-SiO2 systems. After the KEMS measurements, samples were probed by X-ray diffraction and their phase content was calculated from Rietveld refinement.

  20. Origin and consequences of silicate glass passivation by surface layers.

    PubMed

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  1. Siliceous sedimentary rock-hosted ores and petroleum

    SciTech Connect

    Hein, J.R.

    1987-01-01

    Geological, biological, oceanographic, and geochemical principles involved in forming mineral deposits associated with siliceous rocks are integrated in this collection. The book emerged from a decade of research by 142 scientists from 33 countries who worked with the International Geological Correlations Project under editor James R. Hein. It reveals how several economic ores and petroleum were formed in siliceous sediments in coastal ocean basins. This collection places each ore-deposit type into a genetic model emphasizing coastal upwelling; displays all chert occurrences on paleographic maps for each period of the Phanerozoic; covers phosphate, uranium, diatomite, manganese, iron, barite, and petroleum deposits; and gives the first evidence of a bacterially mediated, diagenetic origin for manganese deposits.

  2. An experimental investigation of the condensation of silicate grains

    NASA Technical Reports Server (NTRS)

    Day, K. L.; Donn, B.

    1978-01-01

    Amorphous magnesium silicate smoke particles were condensed from hydrogen and argon atmospheres containing Mg and Si0. A wide range of initial compositions were observed but all particles could be recrystallized into forsterite (Mg2Si04), by heating to 1000 C in vacuum. The amount of smoke formed decreased rapidly with temperatures between 300 and 800 K at reactant partial pressures of about 1 torr.

  3. Scenario of Growing Crops on Silicates in Lunar Gargens

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N.; Kovalchuk, M.; Negutska, V.; Lar, O.; Korniichuk, O.; Alpatov, A.; Rogutskiy, I.; Kordyum, V.; Foing, B.

    Self-perpetuating gardens will be a practical necessity for humans, living in permanently manned lunar bases. A lunar garden has to supplement less appetizing packaged food brought from the Earth, and the ornamental plants have to serve as valuable means for emotional relaxation of crews in a hostile lunar environment. The plants are less prone to the inevitable pests and diseases when they are in optimum condition, however, in lunar greenhouses there is a threat for plants to be hosts for pests and predators. Although the lunar rocks are microorganism free, there will be a problem with the acquired infection (pathogens brought from the Earth) in the substrate used for the plant growing. On the Moon pests can be removed by total fumigation, including seed fumigation. However, such a treatment is not required when probiotics (biocontrol bacteria) for seed inoculation are used. A consortium of bacteria, controlling plant diseases, provides the production of an acceptable harvest under growth limiting factors and a threatening infection. To model lunar conditions we have used terrestrial alumino-silicate mineral anorthosite (Malyn, Ukraine) which served us as a lunar mineral analog for a substrate composition. With the idea to provide a plant with some essential growth elements siliceous bacterium Paenibacillus sp. has been isolated from alumino-silicate mineral, and a mineral leaching has been simulated in laboratory condition. The combination of mineral anorthosite and siliceous bacteria, on one hand, and a consortium of beneficial bacteria for biocontrol of plant diseases, on the other hand, are currently used in model experiments to examine the wheat and potato growth and production in cultivating chambers under controlled conditions.

  4. Optical properties of silicates in the far ultraviolet

    NASA Technical Reports Server (NTRS)

    Lamy, P. L.

    1978-01-01

    Near-normal incidence reflectance measurements in the interval 1026-1640 A were performed on four silicates already studied in the visible and infrared. A Kramers-Kronig analysis of these data is used to calculate the complex index of refraction m = n - ik. New transmission measurements improve the determination of k in the interval 2500-4500 A, except for andesite, which is more opaque than had been previously observed.

  5. DIRECT LABORATORY ANALYSIS OF SILICATE STARDUST FROM RED GIANT STARS

    SciTech Connect

    Vollmer, Christian; Hoppe, Peter; Brenker, Frank E.

    2009-07-20

    We performed combined focused ion beam/transmission electron microscopy studies to investigate the chemistry and structure of eight presolar silicate grains that were previously detected by NanoSIMS oxygen isotope mapping of the carbonaceous chondrite Acfer 094. The analyzed presolar silicates belong to the O isotope Groups I/II ({sup 17}O-enriched and {sup 18}O-depleted) and therefore come from 1-2.5 M{sub sun} asymptotic giant branch stars of close-to-solar or slightly lower-than-solar metallicity. Three grains are amorphous, Mg-rich, and show a variable, but more pyroxene-like composition. Most probably, these grains have formed under circumstellar low-temperature conditions below the crystallization temperature. Three grains are Fe-bearing glasses similar to the 'glass with embedded metal and sulfides' (GEMS) grains found in interplanetary dust particles. However, two of the meteorite GEMS grains from this study lack comparatively large ({approx}>20 nm) Fe-rich inclusions and have sulfur contents <1 at.%, which is different than observed for the majority of GEMS grains. These grains likely condensed under strong non-equilibrium conditions from an Si-enriched gas. One olivine is characterized by a crystalline core and an amorphous, more Fe-rich rim, which is probably the result of interstellar medium sputtering combined with Mg removal. The detection of another olivine with a relatively high Fe content (Mg no. 0.9) shows that circumstellar crystalline silicates are more Fe-rich than astrophysical models usually suggest. The overall predominance of olivine among the crystalline silicate stardust population compared to pyroxene indicates preferential formation or survival of this type of mineral. As pyroxene is indeed detected in circumstellar outflows, it remains to be seen how this result is compatible with astrophysical observations and experimental data.

  6. Sulfur Solubility In Silicate Melts: A Thermochemical Model

    NASA Astrophysics Data System (ADS)

    Moretti, R.; Ottonello, G.

    A termochemical model for calculating sulfur solubility of simple and complex silicate melts has been developed in the framework of the Toop-Samis polymeric approach combined with a Flood - Grjotheim theoretical treatment of silicate slags [1,2]. The model allows one to compute sulfide and sulfate content of silicate melts whenever fugacity of gaseous sulphur is provided. "Electrically equivalent ion fractions" are needed to weigh the contribution of the various disproportion reactions of the type: MOmelt + 1/2S2 ,gas MSmelt+1/2O2 ,gas (1) MOmelt + 1/2S2 ,gas + 3/2O2 ,gas MSO4 ,melt (2) Eqs. 1 and 2 account for the oxide-sulfide and the oxide-sulfate disproportiona- tion in silicate melt. Electrically equivalent ion fractions are computed, in a fused salt Temkin notation, over the appropriate matrixes (anionic and cationic). The extension of such matrixes is calculated in the framework of a polymeric model previously developed [1,2,3] and based on a parameterization of acid-base properties of melts. No adjustable parameters are used and model activities follow the raoultian behavior implicit in the ion matrix solution of the Temkin notation. The model is based on a huge amount of data available in literature and displays a high heuristic capability with virtually no compositional limits, as long as the structural role assigned to each oxide holds. REFERENCES: [1] Ottonello G., Moretti R., Marini L. and Vetuschi Zuccolini M. (2001), Chem. Geol., 174, 157-179. [2] Moretti R. (2002) PhD Thesis, University of Pisa. [3] Ottonello G. (2001) J. Non-Cryst. Solids, 282, 72-85.

  7. Effect of mechanical treatment on the silicate lattice of kaolinite

    NASA Astrophysics Data System (ADS)

    Zulumyan, N. H.; Papakhchyan, L. R.; Isahakyan, A. R.; Beglaryan, H. A.; Aloyan, S. G.

    2012-12-01

    X-ray diffraction, differential thermal and chemical analysis have been used to investigate the effect of mechanical treatment on the crystalline lattice of kaolinite. It was established that mechanical treatment leads to amorphization of the mineral and the release of hydroxyl water, but the continuity of kaolinite's silicate lattice remains intact despite certain deformations, and the phase transformations of the mineral thus occur without any noticeable change in temperature.

  8. Lead silicate microstructured optical fibres for electro-optical applications.

    PubMed

    Zhang, Wen Qi; Manning, Sean; Ebendorff-Heidepriem, Heike; Monro, Tanya M

    2013-12-16

    We report progress towards the realization of optical modulators based on electro-optic effects in soft glass fibres. A hybrid fabrication procedure was developed for producing microstructured lead silicate glass fibres with internal electrodes. Electro-optical characterization confirms experimentally that the enhanced nonlinear properties and superior isolation between the optical field and the electrodes make these fibres an ideal candidate platform for efficient electro-optical devices. PMID:24514705

  9. Rapid determination of nanogram amounts of tellurium in silicate rocks

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1976-01-01

    A hydride-generation flameless atomic-absorption technique is used to determine as little as 5 ng g-1 tellurium in 0.25 g of silicate rock. After acid decomposition of the sample, tellurium hydride is generated with sodium borohydride and the vapor passed directly to a resistance-heated quartz cell mounted in an atomic-absorption spectrophotometer. Analyses of 11 U.S. Geological Survey standard rocks are presented. ?? 1976.

  10. Method 366.0 Determination of Dissolved Silicate in Estuarine and Coastal Watersby Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of dissolved silicate concentration in estuarine and coastal waters. The dissolved silicate is mainly in the form of silicic acid, H SiO , in estuarine and 4 4 coastal waters. All soluble silicate, including colloidal silici...

  11. Irradiation of the posterior ocular segment with the neodymium-YAG laser in its free-running mode

    SciTech Connect

    Fankhauser, F.; Kwasniewska, S.; van der Zypen, E.

    1985-09-01

    A neodymium-YAG laser, operating in its free-running mode with pulse durations of 10 to 20 ms, was used to treat 63 cases of choroidal and retinal diseases. These cases included diabetic background retinopathies, thrombosis of the central retinal vein or branch retinal vein, neovascular membranes under the pigment epithelium, and retinal breaks or degenerations of the peripheral retina. Because the number of diabetic retinopathies (24) and their average follow-up time (25.5 months) are insufficient for the evaluation of irradiation effects, no definite statement as to the merits of this energy modality in such cases can be made. The irradiation of infarcted retina was followed by extensive atrophy of the involved area. No secondary glaucoma was observed during a follow-up period of 16.4 months. The irradiation in four cases of neovascular subretinal membranes was followed by disappearance of the membranes. However, relapse later occurred in all four cases. The irradiation of eight retinal breaks resulted in solid scar tissue. Two choroidal melanomas were destroyed and did not recur during a follow-up period of 22 months.

  12. A simple and fast preparation of neodymium-substituted nanocrystalline Mn{sub 2}O{sub 3}

    SciTech Connect

    Cheney, Marcos A.; Hanifehpour, Younes; Joo, Sang Woo; Min, Bong-Ki

    2013-02-15

    Graphical abstract: Synthesis of Mn{sub 2−x}Nd{sub x}O{sub 3} with mixed morphology -- Abstract: Neodymium (Nd) ions were substituted for manganese in the crystal lattice of synthetic Mn{sub 2}O{sub 3}, via oxidation of Mn(NO{sub 3}){sub 2} in basic solution at room temperature. Doping of Nd into the lattice structure of Mn{sub 2}O{sub 3} has been reported for the first time, which resulted in materials with new composition, morphology and optical properties. The synthesized materials were characterized by XRD, SEM, TEM, HRTEM, XPS and TOF-SIMS. Light (2.6%) Nd doping resulted in a mixture of rods, plates and small sheets, while heavy (8.9%) Nd doping resulted in rods, large sheets and large single crystals. The effect of structural doping of Nd ions into Mn{sub 2}O{sub 3} resulted in a red shift in the absorbance.

  13. The development of microstructure during hydrogenation-disproportionation-desorption-recombination treatment of sintered neodymium-iron-boron-type magnets

    NASA Astrophysics Data System (ADS)

    Sheridan, R. S.; Harris, I. R.; Walton, A.

    2016-03-01

    The hydrogen absorption and desorption characteristics of the hydrogenation disproportionation desorption and recombination (HDDR) process on scrap sintered neodymium-iron-boron (NdFeB) type magnets have been investigated. At each stage of the process, the microstructural changes have been studied using high resolution scanning electron microscopy. It was found that the disproportionation reaction initiates at grain boundaries and triple points and then propagates towards the centre of the matrix grains. This process was accelerated at particle surfaces and at free surfaces produced by any cracks in the powder particles. However, the recombination reaction appeared to initiate randomly throughout the particles with no apparent preference for particle surfaces or internal cracks. During the hydrogenation of the grain boundaries and triple junctions, the disproportionation reaction was, however, affected by the much higher oxygen content of the sintered NdFeB compared with that of the as-cast NdFeB alloys. Throughout the entire HDDR reaction the oxidised triple junctions (from the sintered structure) remained unreacted and hence, remained in their original form in the fine recombined microstructure. This resulted in a very significant reduction in the proportion of cavitation in the final microstructure and this could lend to improved consolidation in the recycled magnets.

  14. Ball-Tip Fibres For Laser Angioplasty: Comparison Of Wavelengths From A Pulsed Neodymium-Yag Laser.

    NASA Astrophysics Data System (ADS)

    Michaels, Jonathan A.; Cross, Frank W.; Bowker, Timothy J.; Bown, Stephen G.

    1989-06-01

    A new ball-tip fibre optic device has been assessed for the purpose of laser angioplasty. A pulsed Neodymium-YAG laser producing 100 p.s pulses at a repetition rate of 10 Hz was used to ablate human cadaver arterial tissue using approximately 500 mJ per pulse at a wavelength of 1064 nm or 300 mJ at a wavelength of 1.3 μm. Both wavelengths are capable of ablating atheroma with little histological evidence of surrounding thermal damage. Crater depths of about 5 μm per Joule were produced using 1064 nm with normal tissue exposed under saline. Crater depth increases by about 50% when exposures are carried out under blood and when diseased arterial tissue is exposed the crater depth is almost doubled. Depth of ablation with a wavelength of 1.3 μm is 3 to 4 times greater than with 1064 nm for the same exposure and a similar increased response is seen for diseased tissue or in the presence of blood. Further experiments at 1064 nm have shown that the ball-tip device has advantages over bare fibre or sapphire tipped devices in the recanalisation of occluded femoral vessels in an artificial circulation.

  15. Investigation of the aggregation of then neodymium complexes of dialkylphosphoric,--oxothiophosphinic, and --dithiophosphinic acids in toluene.

    SciTech Connect

    Jensen, M. P.; Chiarizia, R.; Urban, V.; Chemistry

    2001-01-01

    Small angle neutron scattering and visible absorption spectroscopy were used to study the neodymium complexes of a series of acidic organophosphorus extractants in deuterated toluene at high ({>=}33% theoretical capacity) metal loading. Organic phases containing 0.10 M bis(2-ethylhexyl)phosphoric acid (HDEHP), bis(2,4,4-trimethylpentyl)oxothiophosphinic acid (HC302), or bis(2,4,4-trimethylpentyl)dithiophosphinic acid (HC301) were used. Under these conditions, the neutron scattering experiments show that HDEHP and HC302 exist as dimeric species in the absence of Nd. Extraction of Nd disrupts the dimeric structure of the extractants to form dinuclear complexes with the formula Nd{sub 2}(DEHP){sub 6} or Nd{sub 2}(C302){sub 6}. In contrast, 0.10 M HC301 is not dimeric in deuterated toluene. At 86% of the theoretical Nd capacity, the extracted complex is also dinuclear with the average formula Nd{sub 2}(C301){sub 6}, but at 46% of the theoretical Nd capacity only the mononuclear complex, Nd(C301){sub 3}, is formed. The Nd hypersensitive transitions in the visible region of the spectrum provide further support for this interpretation of the neutron scattering data and the equivalence of the Nd coordination in highly loaded HDEHP and bis(2,4,4-trimethylpentyl)phosphinic acid.

  16. Dynamic photopatterning of cells in situ by Q-switched neodymium-doped yttrium ortho-vanadate laser

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Okano, Kazunori; Kao, Fu-Jen

    2014-01-01

    Cellular micropattering has been increasingly adopted in quantitative biological experiments. A Q-switched pulsed neodymium-doped yttrium ortho-vanadate (Nd) laser directed in-situ microfabrication technique for cell patterning is presented. A platform is designed uniquely to achieve laser ablation. The platform is comprised of thin gold coating over a glass surface that functions as a thermal transducer and is over-layered by a cell repellant polymer layer. Micropatterns are engraved on the platform, subsequently exposing specific cell adhesive micro-domains by ablating the gold-polymer coating photothermally. Experimental results indicate that the proposed approach is applicable under culture conditions, viable toward cells, and has a higher engraving speed. Possible uses in arraying isolated single cells on the platform are also shown. Additionally, based on those micro-patterns, dynamic cellular morphological changes and migrational speed in response to geometrical barriers are studied to demonstrate the potential applications of the proposed approach. Our results further demonstrate that cells in narrower geometry had elongated shapes and higher migrational speed than those in wider geometry. Importantly, the proposed approach will provide a valuable reference for efforts to study single cell dynamics and cellular migration related processes for areas such as cell division, wound healing, and cancer invasion.

  17. Silicate bonding properties: Investigation through thermal conductivity measurements

    NASA Astrophysics Data System (ADS)

    Lorenzini, M.; Cesarini, E.; Cagnoli, G.; Campagna, E.; Haughian, K.; Hough, J.; Losurdo, G.; Martelli, F.; Martin, I.; Piergiovanni, F.; Reid, S.; Rowan, S.; van Veggel, A. A.; Vetrano, F.

    2010-05-01

    A direct approach to reduce the thermal noise contribution to the sensitivity limit of a GW interferometric detector is the cryogenic cooling of the mirrors and mirrors suspensions. Future generations of detectors are foreseen to implement this solution. Silicon has been proposed as a candidate material, thanks to its very low intrinsic loss angle at low temperatures and due to its very high thermal conductivity, allowing the heat deposited in the mirrors by high power lasers to be efficiently extracted. To accomplish such a scheme, both mirror masses and suspension elements must be made of silicon, then bonded together forming a quasi-monolithic stage. Elements can be assembled using hydroxide-catalysis silicate bonding, as for silica monolithic joints. The effect of Si to Si bonding on suspension thermal conductance has therefore to be experimentally studied. A measurement of the effect of silicate bonding on thermal conductance carried out on 1 inch thick silicon bonded samples, from room temperature down to 77 K, is reported. In the explored temperature range, the silicate bonding does not seem to affect in a relevant way the sample conductance.

  18. Translational dynamics of water in a nanoporous layered silicate

    SciTech Connect

    Nair, Sankar; Chowdhuri, Zema; Peral, Inmaculada; Neumann, Dan A.; Dickinson, L. Charles; Tompsett, Geoffrey; Jeong, Hae-Kwon; Tsapatsis, Michael

    2005-03-01

    Neutron time-of-flight and backscattering spectroscopy have been used to study the translational diffusion of water molecules in the unusual layered material AMH-3, which consists of (zeolitelike) three-dimensionally nanoporous silicate layers spaced by (claylike) interlayer regions. The synthesis of AMH-3 and its characterization by {sup 29}Si NMR, Raman, and infrared spectroscopy, are described. An analysis of quasielastic neutron scattering (QENS) spectra using the random jump diffusion model reveals two translational diffusive motions clearly separated in time scales: a fast process (D{approx}10{sup -9} m{sup 2}/s at 300 K), and a much slower process (D{approx}10{sup -11} m{sup 2}/s at 300 K). Considering the structural model of AMH-3 and the transport properties extracted from the QENS data, it is suggested that the slower motion corresponds to diffusion by water molecules in the interlayer spaces whereas the fast process involves diffusion in the silicate layer. This first investigation of transport phenomena in nanoporous layered silicates like AMH-3 indicates that they have the potential to offer mass transport properties different from zeolite materials and layered clays.

  19. Grasslands, silicate weathering and diatoms: Cause and effect

    SciTech Connect

    Johansson, A.K. . Dept. of Geological Sciences)

    1993-03-01

    Diatoms are silica-limited, photosynthetic, single-celled eukaryotes that today occupy a wide variety of habitats both in freshwater and marine environments. Ultimately the silica they use is derived from the weathering of silicates on land. Although marine diatoms first appear in the Jurassic, the fossil record shows a remarkable correlation between the Mid-Miocene appearance of widespread grasslands and the drastic increase in diatom-rich deposits in freshwater, as well as in marine environments throughout the world. Grasses actively weather silicates, accumulating soluble silica into their leaves. Decomposing grasses release this soluble silica into the soil from whence it is transported into lakes and oceans and made available to diatoms. Grasses also probably increased chemical weathering, and hence the release of soluble silica, in previously weakly vegetated semi-arid areas. Increased weathering of silicates also led to cooler climates as evidenced by the Mid-Miocene [delta][sup 18]O record. The author suggests that the Tertiary expansion of grasslands is responsible for the explosive increase in diversity and abundance of diatoms in the oceans and freshwaters of the Mid-Miocene.

  20. Contrasting siliceous replacement mineralization, east-central Nevada

    SciTech Connect

    Barton, M.D.; Ilchik, R.P. . Dept. of Geosciences); Seedorff, C.E. )

    1993-04-01

    Fine-grained siliceous replacement of carbonate-bearing rocks (jasperoid) occurs in most mineral districts in east-central Nevada. In most of these occurrences, jasperoid contains Au and(or) Ag and little or no base metals, although concentrations and ratios vary significantly. Broadly, two end-members are distinguished: (1) silicification as an intermediate- to late-stage part of complex alteration associated with igneous centers, and (2) jasperoids lacking other associated alteration and having few or no associated igneous rocks. Within this region, siliceous replacements are found with all metallic ([+-] magmatic) suites. No single factor in these occurrences relates the distribution, metal contents, fluid geochemistry, igneous rocks and associated alteration. Summarizing these characteristics: geochemical and fluid inclusion evidence shows that fluids in igneous-related jasperoids can be high-salinity magmatic (Ely), low-salinity magmatic (McCullough Butte), or metoric (Ward). Fluids in igneous-poor systems are low-salinity, exchanged meteoric waters from which a minor magmatic component can not be excluded. At this level of detail, the best predictor of Ag:Au are the district-scale alteration characteristics. Siliceous replacement takes place in many kinds systems and probably requires no more than a cooling, mildly acidic hydrothermal fluid. Metal suites, other fluid characteristics, and geological environment all need to be considered in evaluating the significance of any jasperoid.

  1. Proton tunneling in low dimensional cesium silicate LDS-1.

    PubMed

    Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-14

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm(-1) are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm(-1), which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm(-1) are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm(-1)) and asymmetric mode (155 and 1220 cm(-1)). The broad absorption at 100-600 cm(-1) reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs(+) but also with the proton oscillation relevant to the second excited state (n = 2). PMID:26178114

  2. Translational dynamics of water in a nanoporous layered silicate

    NASA Astrophysics Data System (ADS)

    Nair, Sankar; Chowdhuri, Zema; Peral, Inmaculada; Neumann, Dan A.; Dickinson, L. Charles; Tompsett, Geoffrey; Jeong, Hae-Kwon; Tsapatsis, Michael

    2005-03-01

    Neutron time-of-flight and backscattering spectroscopy have been used to study the translational diffusion of water molecules in the unusual layered material AMH-3, which consists of (zeolitelike) three-dimensionally nanoporous silicate layers spaced by (claylike) interlayer regions. The synthesis of AMH-3 and its characterization by Si29 NMR, Raman, and infrared spectroscopy, are described. An analysis of quasielastic neutron scattering (QENS) spectra using the random jump diffusion model reveals two translational diffusive motions clearly separated in time scales: a fast process ( Dtilde 10-9m2/s at 300 K), and a much slower process ( Dtilde 10-11m2/s at 300 K). Considering the structural model of AMH-3 and the transport properties extracted from the QENS data, it is suggested that the slower motion corresponds to diffusion by water molecules in the interlayer spaces whereas the fast process involves diffusion in the silicate layer. This first investigation of transport phenomena in nanoporous layered silicates like AMH-3 indicates that they have the potential to offer mass transport properties different from zeolite materials and layered clays.

  3. In vitro studies of calcium phosphate silicate bone cements.

    PubMed

    Zhou, Shuxin; Ma, Jingzhi; Shen, Ya; Haapasalo, Markus; Ruse, N Dorin; Yang, Quanzu; Troczynski, Tom

    2013-02-01

    A novel calcium phosphate silicate bone cement (CPSC) was synthesized in a process, in which nanocomposite forms in situ between calcium silicate hydrate (C-S-H) gel and hydroxyapatite (HAP). The cement powder consists of tricalcium silicate (C(3)S) and calcium phosphate monobasic (CPM). During cement setting, C(3)S hydrates to produce C-S-H and calcium hydroxide (CH); CPM reacts with the CH to precipitate HAP in situ within C-S-H. This process, largely removing CH from the set cement, enhances its biocompatibility and bioactivity. The testing results of cell culture confirmed that the biocompatibility of CPSC was improved as compared to pure C(3)S. The results of XRD and SEM characterizations showed that CPSC paste induced formation of HAP layer after immersion in simulated body fluid for 7 days, suggesting that CPSC was bioactive in vitro. CPSC cement, which has good biocompatibility and low/no cytotoxicity, could be a promising candidate as biomedical cement. PMID:23114635

  4. Laboratory studies of actinide metal-silicate fractionation

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Burnett, D. S.

    1980-01-01

    Actinide and Sm partition coefficients between silicate melt and several metallic phases have been measured. Under reducing conditions Si, Th, U and Pu can be reduced to metals from silicate melts and alloyed with a platinum-gold alloy. U and Pu enter a molten Pt-Si alloy with roughly equal affinity but U strongly partitions into the solid Pt. Th behaves qualitatively the same as Pu but is much less readily reduced than U, and Sm appears to remain unreduced. Experiments with Fe metal have shown that the partition coefficients of the actinides between Fe and silicate liquid are extremely low, suggesting a very low actinide concentration in planetary cores. Experiments show that platinum metals can efficiently fractionate actinides and fractionate actinides from lanthanides and this process may be relevant to the condensation behavior of these elements from the solar nebula. Pt-metal grains in Allende Ca-Al-rich inclusions appear to be U-poor, although the sub-class of Zr-bearing Pt metals may have high U contents.

  5. Electrochemical Studies on Silicate and Bicarbonate Ions for Corrosion Inhibitors

    NASA Astrophysics Data System (ADS)

    Mohorich, Michael E.; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jaak; Rebak, Raul B.

    2010-10-01

    Several types of carbon and high-strength low-alloy (HSLA) steels are being considered for use in the underground reinforcement of the Yucca Mountain Nuclear Waste Repository. In this study, potentiodynamic polarization under reducing conditions was used to determine the corrosion rates (CRs) and passivity behavior of AISI 4340 steel using different combinations of sodium silicate (Na2SiO3) and sodium bicarbonate (NaHCO3), in both pure water (PW) and simulated seawater (SW, 3.5 pct NaCl). These experiments were carried out to examine the potential inhibiting properties of the silicate or bicarbonate ions on the surface of the steel. The addition of sodium silicate to solution reduced the observed CR at room temperature to 19 μm/y at 0.005 M concentration and 7 μm/y at 0.025 M concentration in PW. The addition of sodium bicarbonate increased the CR from 84 μm/y (C = 0.1 M) to 455 μm/y (C = 1 M). These same behaviors were also observed at higher temperatures.

  6. (Energetics of silicate melts from thermal diffusion studies)

    SciTech Connect

    Not Available

    1990-01-01

    The first year of this three year renewal award has been used to continue data collection and analysis of thermal (Soret) diffusion in silicate liquid and explore the related process of thermal migration in subliquidus magmas and isothermal interdiffusion. Data collection efforts have been materially aided by advances in thermal insulation in the pressure media outside our pressurized cylindrical heaters. BaCO{sub 3} is very effective in protecting the pressure vessel core from thermal deterioration with the result that the heater inside and outside diameters can be substantially increased. This permits several charges to be run simultaneously in an axisymmetric cluster around a double or triple junction thermocouple which can measure axial thermal gradients in situ. Research during the past year has concentrated in four major areas: Modelling thermal diffusion in multi-component silicate liquids, Soret fractionation of major and minor chemical components, characterization of thermal diffusion in naturally-occurring magmas with an emphasis on volatile bearing rhyolitic melts, and the effects of thermal gradients on silicate magma in the melting interval.

  7. CARBON DIOXIDE SEQUESTRATION BY MECHANOCHEMICAL CARBONATION OF MINERAL SILICATES

    SciTech Connect

    Michael G. Nelson

    2004-04-01

    The University of Utah and the University of Idaho investigated the carbonation of silicate minerals by mechanochemical processing. This method uses intense grinding, and has the potential of being much less expensive than other methods of mineral sequestration. Tests were conducted in three types of grinding devices. In these tests, natural and synthetic silicate compounds were ground for varying times in the presence of gaseous CO{sub 2}. A significant change takes place in the lizardite variety of serpentine after 15 to 20 minutes of intense grinding in the presence of gaseous CO{sub 2}. The X-ray diffraction spectrum of lizardite thus treated was much different than that of the untreated mineral. This spectrum could not be identified as that of any natural or synthetic material. Laboratory analyses showed that small amounts of carbon are fixed by grinding lizardite, forsterite, and wollastonite (all naturally-occurring minerals), and synthetic magnesium silicate, in the presence of gaseous CO{sub 2}. It was thus concluded that further investigation was warranted, and a follow-up proposal was submitted to the Department of Energy under solicitation number.

  8. Silicic Magma Genesis in Neogene Central Volcanoes in Northeast Iceland

    NASA Astrophysics Data System (ADS)

    Berg, S. E.; Troll, V. R.; Riishuus, M. S.; Burchardt, S.; Krumbholz, M.

    2012-04-01

    We report on a geological expedition to NE Iceland in August 2011. A comprehensive sample suite of intrusive and extrusive rocks, ranging from basaltic to silicic compositions, was collected from the Neogene silicic central volcanic complexes in the region between Borgarfjörður eystri and Loðmundarfjörður. The area contains the second-most voluminous occurrence of silicic rocks in Iceland, including caldera structures, inclined sheet swarms, extensive ignimbrite sheets, sub-volcanic rhyolites and silicic lava flows. Yet it is one of Iceland's geologically least known areas (c.f. Gústafsson, 1992; Martin & Sigmarsson, 2010; Burchardt et al., 2011). The voluminous occurrence of evolved rocks in Iceland (10-12 %) is very unusual for an ocean island or a mid-oceanic ridge, with a typical signal of magmatic bimodality, often called "Bunsen-Daly" compositional gap (e.g. Bunsen, 1851; Daly, 1925; Barth et al., 1939). The Bunsen-Daly Gap is a long-standing fundamental issue in petrology and difficult to reconcile with continuous fractional crystallization as a dominant process in magmatic differentiation (Bowen, 1928), implying that hydrothermal alteration and crustal melting may play a significant role. Our aim is to contribute to a solution of this issue by unravelling the occurrence of voluminous evolved rhyolites in NE Iceland. We will use a combined petrological, textural, experimental and in-situ isotope approach. We plan to perform major, trace element and Sr-Nd-Hf-Pb-He-O isotope geochemistry, as well as U/Pb and Ar/Ar geochronology on rocks and mineral separates. In addition, high pressure-temperature partial melting experiments aim to reproduce and further constrain natural processes. Using the combined data set we intend to produce a comprehensive and quantitative analysis of rhyolite petrogenesis, and of the temporal, structural and geochemical evolution of the silicic volcanism in NE Iceland. The chosen field area serves as a good analogue for active

  9. Compositional dependence of in vitro response to commercial silicate glasses

    NASA Astrophysics Data System (ADS)

    Jedlicka, Amy B.

    Materials are often incorporated into the human body, interacting with surrounding fluids, cells and tissues. The reactions that occur between a material and this surrounding biological system are not fundamentally understood. Basic knowledge of material biocompatibility and the controlling processes is lacking. This thesis examines material biocompatibility of a series of silicate-based glasses on a primary level determining cell response to material composition and durability. The silicate glass system studied included two BioglassRTM compositions with known biologically favorable response, two fiberglass compositions, with demonstrated 'not-unfavorable' in vitro response, a ternary soda-lime-silicate glass, a binary alkali silicate glass, and pure silica. Chemical durability was analyzed in three different fluids through solution analysis and material characterization. In vitro response to the substrates was observed. Cell behavior was then directly correlated to the material behavior in cell culture medium under the same conditions as the in vitro test, yet in the absence of cells. The effect of several physical and chemical surface treatments on substrates with predetermined biocompatible behavior was subsequently determined. The chemically durable glasses with no added B2O3 elicited similar cell response as the control polystyrene substrate. The addition of B2O3 resulted in polygonal cell shape and restricted cell proliferation. The non-durable glasses presented a dynamic surface to the cells, which did not adversely affect in vitro response. Extreme dissolution of the binary alkali silicate glass in conjunction with increased pH resulted in unfavorable cell response. Reaction of the Bioglass RTM compositions, producing a biologically favorable calcium-phosphate surface film, caused enhanced cell attachment and spreading. Surface energy increase due to sterilization procedures did not alter cellular response. Surface treatment procedures influencing substrate

  10. ON THE 10 mum SILICATE FEATURE IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Nikutta, Robert; Elitzur, Moshe; Lacy, Mark E-mail: moshe@pa.uky.ed

    2009-12-20

    The 10 mum silicate feature observed with Spitzer in active galactic nuclei (AGNs) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths in several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. Addressing (1), we present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10 mum silicate feature in emission. Such emission arises in models of the AGN torus easily when its clumpy nature is taken into account. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED. We find that the cloud radial distribution varies as r {sup -1.5} and the torus contains 2-4 clouds along radial equatorial rays, each with optical depth at visual approx60-80. The source bolometric luminosity is approx3 x 10{sup 12} L{sub sun}. Our modeling suggests that approx<35% of objects with tori sharing these characteristics and geometry would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10 mum emission feature in SST1721+6012 together with its rarity among other QSO2. Investigating (2), we also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10 mum silicate feature detected in emission. Together with other similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from simple radiative transfer effects. Regarding (3), we find additionally that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed

  11. Mg-perovskite/silicate melt and magnesiowuestite/silicate melt partition coefficients for KLB-1 at 250 Kbars

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Rubie, David C.; Mcfarlane, Elisabeth A.

    1992-01-01

    The partitioning of elements amongst lower mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. Because of the technical difficulty in carrying out such measurements, only one direct set of measurements was reported previously, and these results as well as interpretations based on them have generated controversy. Here we report what are to our knowledge only the second set of directly measured trace element partition coefficients for a natural system (KLB-1).

  12. Silicate sulfidation and chemical differences between enstatite chondrites and Earth

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; Petaev, M. I.; Buseck, P. R.

    2013-12-01

    Isotopic similarity between the Earth-Moon system and enstatite chondrites (ECs) led to the idea that ECs were Earth's building blocks [1-3]. However, compared to Earth's mantle, ECs have low Fe0/Fe ratios, are enriched in volatile elements, and depleted in refractory lithophile elements and Mg [4]. Therefore, deriving Earth composition from ECs requires a loss of volatiles during or prior to accretion and sequestering a large fraction of Si in the deep Earth. Alternatively, the isotopic similarity between the Earth and ECs is explained by their formation from a common precursor that experienced different evolutionary paths resulting in the chemical difference [4]. The vestiges of such a precursor are still present in the unequilibrated ECs as FeO-rich silicates with O isotopic compositions identical to bulk ECs and Earth [5]. Conversion of such a precursor into the characteristic EC mineral assemblage requires high-temperature processing in an H-poor environment with high fS2 and fO2 close to that of the classic solar nebula [6], consistent with redox conditions inferred from Ti4+/Ti3+ ratios in EC pyroxene [7]. Under such conditions reaction of FeO-rich silicates with S-rich gas results in their replacement by the assemblage of FeO-poor silicates; Fe, Mg, Ca sulfides; free silica; and Si-bearing Fe,Ni metal alloy. The progressive sulfidation of ferromagnesian silicates in chondrules results in loss of Mg and addition of Fe, Mn, S, Na, K and, perhaps, other volatiles [6]. At the advanced stages of silicate sulfidation recorded in the metal-sulfide nodules [8], a portion of Si is reduced and dissolved in the Fe,Ni metal. This process is known to fractionate Si isotopes [9,10] and would explain the differences between the ECs and Earth's mantle [11]. The sulfidation of silicates also produces porous S-rich silica, a peculiar phase observed so far only in the ECs. It consists of a sinewy SiO2-rich framework enclosing numerous vesicles filled with beam

  13. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.

    PubMed

    Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

    2013-10-21

    The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity. PMID:23949284

  14. Evaluation of the {sup 4}I{sub 11/2} terminal level lifetime for several neodymium-doped laser crystals and glasses

    SciTech Connect

    Bibeau, C.

    1995-04-25

    All models of lasing action require knowledge of the physical parameters involved, of which many can be measured or estimated. The value of the terminal level lifetime is an important parameter in modeling many high power laser systems since the terminal level lifetime can have a substantial impact on the extraction efficiency of the system. However, the values of the terminal level lifetimes for a number of important laser materials such as ND:YAG and ND:YLF are not well known. The terminal level lifetime, a measure of the time it takes for the population to drain out of the terminal (lower) lasing level, has values that can range from picoseconds to microseconds depending on the host medium, thus making it difficult to construct one definitive experiment for all materials. Until recently, many of the direct measurements of the terminal level lifetime employed complex energy extraction or gain recovery methods coupled with a numerical model which often resulted in large uncertainties in the measured lifetimes. In this report we demonstrate a novel and more accurate approach which employs a pump-probe technique to measure the terminal level lifetime of 16 neodymium-doped materials. An alternative yet indirect method, which is based on the ``Energy Gap Law,`` is to measure the nonradiative lifetime of another transition which has the same energy gap as the transition of the terminal level lifetime. Employing this simpler approach, we measured the lifetime for 30 neodymium-doped materials. We show for the first time a direct comparison between the two methods and determine that the indirect method can be used to infer the terminal level lifetime within a factor of two for most neodymium-doped glasses and crystals.

  15. Neodymium, strontium, and lead isotopes in the Maloin Ranch Pluton, Wyoming: Implications for the origin of evolved rocks at anorthosite margins

    SciTech Connect

    Kolker, A.; Hanson, G.N. ); Frost, C.D. ); Geist, D.J. )

    1991-08-01

    Neodymium, strontium, and lead isotopic data are used in this study to investigate the origin of chemically evolved rocks in the Maloin Ranch Pluton, a composite body that borders and intrudes the Laramie Anorthosite. In the Maloin Ranch Pluton, these include ferrodiorite at the base of the intrusion, overalain progressively by fine-grained monzonite, monzosyenite, and porphyritic granite. Biotite gabbro and fine-grained granitic dikes are present locally at various levels of this sequence. The origin of the evolved rocks and their possible relation to associated anorthositic bodies has been much debated. In the Maloin Ranch Pluton, each rock type has distinct isotopic characteristics which, together with trace-element data previously reported, suggest different source characteristics for each member. Strontium and neodymium isotopic data for Maloin Ranch ferrodiorite and Laramie anorthositic rocks show considerable overlap, consistent with a comagmatic relation. Biotite gabbro is chemically and isotopically the most primitive rock type in the Maloin Ranch Pluton. The data suggest that biotite gabbro has a mantle source, but has undergone extensive fractionation in the crust. The authors' results suggest that the remainder (and bulk) of the intrusion formed by partial melting of the lower crust due to the emplacement of the Laramie Anorthosite. Trace-element and isotopic characteristics of the fine-grained monzonite are explained by partial melting of mantle-dervied lower crust, added to the margin of the Archean Wyoming craton at about 1.8 Ga. Neodymium, strontium, and lead isotope data for Maloin Ranch monzosyenite and porphyritic granite also suggest a lower crustal source.

  16. Combined Intralesional Neodymium-Doped Yttrium Aluminium Garnet Laser and Intratumoral Ligation as Curative Treatment for Craniofacial Arteriovenous Malformations.

    PubMed

    Rojvachiranonda, Nond; Lerdlum, Sukalaya; Mahatumarat, Charan

    2016-03-01

    Craniofacial arteriovenous malformation (AVM), although very rare, has been a very difficult problem to treat especially when it is large and involves important structures. Surgical resection often results in unacceptable complications but still not curative. At our institution, treatment by combined intralesional neodymium-doped yttrium aluminium garnet laser and intratumoral ligation has been successful in venous malformation. This minimally invasive technique was then applied to more challenging AVM on the head and neck. Disease control was studied using clinical parameters and magnetic resonance imaging.Four patients with moderate-to-severe (Schobinger 2-4) craniofacial AVM were treated by this technique from 2001 to 2011. Patient age ranged from 2 to 51 years (mean: 25 years). After 2 to 4 treatments and follow-up period of 1456 days, 3 (75%) were cured. One of them was infant with huge mass and secondary pulmonary hypertension. Clinical cure was achieved after 3 treatments without residual cardiovascular compromise. The other patient (25%) had cheek mass with intraorbital involvement. The authors did not treat periorbital lesion so as to avoid triggering intraorbital spreading. The rest of the cheek lesion was clinically and radiologically cured.Laser energy setting, ablative technique, and skin cooling are the main factors determining the success. Individualized laser settings and properly set endpoints can increase treatment effectiveness in shorter period. In conclusion, this minimally invasive technique was successful in curing AVM without complication. With more clinical study and development of soft tissue monitoring tools, it is possible that intralesional laser could become the treatment of choice for all cutaneous AVM. PMID:26825744

  17. Physical properties of double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6}

    SciTech Connect

    Wakeshima, Makoto; Hinatsu, Yukio; Ohoyama, Kenji

    2013-01-15

    The crystal, magnetic structures and physical properties of the double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6} are investigated through powder X-ray and neutron diffraction, electrical conductivity, magnetic susceptibility, and specific heat measurements. The Rietveld analysis reveals that the Nd and Os ions are arranged with regularity over the six-coordinate B sites in a distorted perovskite ABO{sub 3} framework. The monoclinic crystal structure described by space group P2{sub 1}/n (tilt system a{sup -}a{sup -}c{sup +}) becomes more distorted with decreasing temperature from 300 K down to 2.5 K. This compound shows a long-range antiferromagnetic ordering of Os{sup 5+} below 65 K. An antiferromagnetic ordering of Nd{sup 3+} also occurs at lower temperatures ({approx}20 K). The magnetic structure is of Type I and the magnetic moments of Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. - Graphical Abstract: The Magnetic structure of Ba{sub 2}NdOsO{sub 6} is of Type I, and the magnetic moments of the Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. Highlights: Black-Right-Pointing-Pointer Crystal structures of Ba{sub 2}NdOsO{sub 6} are determined to be monoclinic below 300 K. Black-Right-Pointing-Pointer Its electrical resistivity shows a Mott variable-range hopping behavior with localized carriers. Black-Right-Pointing-Pointer An antiferromagnetic ordering of the Os{sup 5+}moment occurs at 65 K. Black-Right-Pointing-Pointer The magnetic structure of Ba{sub 2}NdOsO{sub 6} is determined to be of Type I.

  18. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems

    SciTech Connect

    Gleason, J.D.; Marikos, M.A.; Barton, M.D.; Johnson, D.A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium iosotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, {epsilon}{sub Nd} for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age ({epsilon}{sub Nd} = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, {epsilon}{sub Nd} for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks ({minus}1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks ({epsilon}{sub Nd} = {minus}2.0 to {minus}4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar {epsilon}{sub Nd}({minus}1.7 to {minus}2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with {epsilon}{sub Nd} = {minus}2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  19. The effect of particulate dissolution on the neodymium (Nd) isotope and Rare Earth Element (REE) composition of seawater

    NASA Astrophysics Data System (ADS)

    Pearce, Christopher R.; Jones, Morgan T.; Oelkers, Eric H.; Pradoux, Catherine; Jeandel, Catherine

    2013-05-01

    The exchange of material between particulates and seawater along the continental margins, a process commonly referred to as boundary exchange, is thought to play a significant role in controlling the neodymium (Nd) isotope and Rare Earth Element (REE) composition of the oceans. This study provides experimental verification of this concept by quantifying the effect of particulate dissolution in seawater on dissolved ɛNd and REE compositions. Three closed-system experiments were performed using basaltic particulate material of riverine, estuarine and marine origin. The release of Nd from this basaltic material increased the ɛNd composition of seawater in all three experiments, with a ɛNd value close to that of the associated sediment being achieved within 80 days in all experiments. Mass balance indicates that up to 0.4% of Nd from the particulate phase was released to the seawater over the duration of these experiments, and that the rate of release varied according to particulate origin and surface area. Progressive variations in the PAAS normalised REE patterns, as well as the Eu and Ce anomalies and La/Yb ratio, demonstrate that REEs were also transferred from the basaltic particulates to seawater during the experiments. Despite evidence for the release of REEs from the particulate material, dissolved REE abundances decreased during the experiments, and are thought to reflect incorporation into the REE-phosphate mineral rhabdophane. Together these experimental results confirm that elemental release from basaltic sediments on the ocean margins is a significant marine flux that can have a major control on the composition of seawater.

  20. Sparkle/PM3 Parameters for the Modeling of Neodymium(III), Promethium(III), and Samarium(III) Complexes.

    PubMed

    Freire, Ricardo O; da Costa, Nivan B; Rocha, Gerd B; Simas, Alfredo M

    2007-07-01

    The Sparkle/PM3 model is extended to neodymium(III), promethium(III), and samarium(III) complexes. The unsigned mean error, for all Sparkle/PM3 interatomic distances between the trivalent lanthanide ion and the ligand atoms of the first sphere of coordination, is 0.074 Å for Nd(III); 0.057 Å for Pm(III); and 0.075 Å for Sm(III). These figures are similar to the Sparkle/AM1 ones of 0.076 Å, 0.059 Å, and 0.075 Å, respectively, indicating they are all comparable models. Moreover, their accuracy is similar to what can be obtained by present-day ab initio effective potential calculations on such lanthanide complexes. Hence, the choice of which model to utilize will depend on the assessment of the effect of either AM1 or PM3 on the quantum chemical description of the organic ligands. Finally, we present a preliminary attempt to verify the geometry prediction consistency of Sparkle/PM3. Since lanthanide complexes are usually flexible, we randomly generated 200 different input geometries for the samarium complex QIPQOV which were then fully optimized by Sparkle/PM3. A trend appeared in that, on average, the lower the total energy of the local minima found, the lower the unsigned mean errors, and the higher the accuracy of the model. These preliminary results do indicate that attempting to find, with Sparkle/PM3, a global minimum for the geometry of a given complex, with the understanding that it will tend to be closer to the experimental geometry, appears to be warranted. Therefore, the sparkle model is seemingly a trustworthy semiempirical quantum chemical model for the prediction of lanthanide complexes geometries. PMID:26633229

  1. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe-oxide (Fe-P-REE) systems

    NASA Astrophysics Data System (ADS)

    Gleason, James D.; Marikos, Mark A.; Barton, Mark D.; Johnson, David A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium isotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, ɛ Nd for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age (ɛ Nd = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, ɛ Nd for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks (-1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks (ɛ Nd = -2.0 to -4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar ɛ Nd (-1.7 to -2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with ɛ Nd = -2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  2. From the subtropics to the central equatorial Pacific Ocean: Neodymium isotopic composition and rare earth element concentration variations

    NASA Astrophysics Data System (ADS)

    Grenier, MéLanie; Jeandel, Catherine; Lacan, FrançOis; Vance, Derek; Venchiarutti, CéLia; Cros, Alexandre; Cravatte, Sophie

    2013-02-01

    Neodymium isotopic compositions (ɛNd) and rare earth element (REE) concentrations were measured for filtered surface to deep waters (112 samples) in the Southern Tropical Pacific. The relatively detailed picture of these tracer distributions allowed us to refine the areas where oceanic ɛNd variations occur. ɛNd values increase for most of the water masses flowing from Samoa to the Solomon Sea and in the Papua New Guinea (PNG) area, as already observed. Furthermore, water masses arriving from the eastern equatorial Pacific (200-550 m depth) also revealed radiogenic values, possibly acquired in the vicinity of the South American coasts and Galapagos Islands. These ɛNd variations affect the whole water column. The most likely process causing such variations is "boundary exchange" between the numerous radiogenic slopes/margins located in this area and seawater flowing past. Dissolution of atmospheric deposition and/or diffuse streaming of volcanic ash are also suggested to explain the radiogenic ɛNd observed at the surface in the PNG area. Interestingly, a positive europium (Eu) anomaly characterizes the normalized REE patterns of most of the studied water masses. This anomaly is consistent with the REE patterns of sediment and rock samples that are potential sources for the local waters. Such consistency reinforces the hypothesis that lithogenic sources play a major role in the oceanic REE budget, thanks to "boundary exchange." The data set presented here is a good basis for further sampling that will be realized in the framework of the ongoing GEOTRACES program (www.geotraces.org).

  3. Analyses of Cometary Silicate Crystals: DDA Spectral Modeling of Forsterite

    NASA Technical Reports Server (NTRS)

    Wooden, Diane

    2012-01-01

    Comets are the Solar System's deep freezers of gases, ices, and particulates that were present in the outer protoplanetary disk. Where comet nuclei accreted was so cold that CO ice (approximately 50K) and other supervolatile ices like ethane (C2H2) were preserved. However, comets also accreted high temperature minerals: silicate crystals that either condensed (greater than or equal to 1400 K) or that were annealed from amorphous (glassy) silicates (greater than 850-1000 K). By their rarity in the interstellar medium, cometary crystalline silicates are thought to be grains that formed in the inner disk and were then radially transported out to the cold and ice-rich regimes near Neptune. The questions that comets can potentially address are: How fast, how far, and over what duration were crystals that formed in the inner disk transported out to the comet-forming region(s)? In comets, the mass fractions of silicates that are crystalline, f_cryst, translate to benchmarks for protoplanetary disk radial transport models. The infamous comet Hale-Bopp has crystalline fractions of over 55%. The values for cometary crystalline mass fractions, however, are derived assuming that the mineralogy assessed for the submicron to micron-sized portion of the size distribution represents the compositional makeup of all larger grains in the coma. Models for fitting cometary SEDs make this assumption because models can only fit the observed features with submicron to micron-sized discrete crystals. On the other hand, larger (0.1-100 micrometer radii) porous grains composed of amorphous silicates and amorphous carbon can be easily computed with mixed medium theory wherein vacuum mixed into a spherical particle mimics a porous aggregate. If crystalline silicates are mixed in, the models completely fail to match the observations. Moreover, models for a size distribution of discrete crystalline forsterite grains commonly employs the CDE computational method for ellipsoidal platelets (c:a:b=8

  4. The Relationship Between Metal and Silicates in Type I Chondrules

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Zanda, B.

    1992-07-01

    There is wide agreement that chondrules were formed by melting of pre-existing minerals, but there is still controversy over how, when, and from exactly what they were formed. Much work on chondrules has emphasized magnesian granular/microporphyritic type I chondrules, but metal-rich type I chondrules are even more abundant in carbonaceous chondrites (McSween, 1977). The observation that metal is homogeneous within one chondrule but differs from chondrule to chondrule (Zanda et al., 1991) suggests some systematic relationship may exist between metal and silicates. It is the purpose of this paper to investigate those relationships for Renazzo and Semarkona. We observe a strong correlation between the silicate texture of chondrules, which falls in a fine-coarse granular-porphyritic-barred sequence related to degree of melting, and the nature of the metal. Where olivine grains are small and/or closely packed, metal occurs as tiny spherules. Where grain size and melt channels are larger, metal forms coalescing blebs or chains. With distinctly microporphyritic textures metal occurs mostly near the periphery of the chondrule and with truly porphyritic and barred chondrules it forms a rim or crown around the chondrule. Similar metal coalescence and expulsion textures have been observed for Bishunpur chondrules (Rambaldi and Wasson, 1981) and geochemical evidence shows that metal rims on Semarkona chondrules were derived from their interiors (Grossman and Wasson, 1987). There appears to be a continuous gradation between metal-rich and ordinary type I chondrules as a function of degree of melting, which suggests that many type I chondrules passed through a stage of being metal-rich during formation. If chondrules were manufactured from homogeneous interstellar dust, there is a very short time period for metal-silicate fractionation. If chondrules were formed from condensate aggregates, this constraint can be relaxed as condensates aggregated over different temperature

  5. Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate

    NASA Technical Reports Server (NTRS)

    Abdel-Fattah, Tarek; Siochi, Mia; Crooks, Roy

    2005-01-01

    Multiwall carbon nanotubes were synthesized from sucrose by a pyrolytic technique using mesoporous MCM-41 silicate templates without transition metal catalysts. The Nanotubes were examined in the carbon/silicate composite and after dissolution of the silicate. High resolution transmission electron microscopy study of the multiwall nanotubes showed them to be 15 nm in diameter, 200 nm in length and close-ended. There was variation in crystallinity with some nanotubes showing disordered wall structures.

  6. Biomimetic Calcium-Silicate Cements Support Differentiation Of Human Orofacial Mesenchymal Stem Cells

    PubMed Central

    Gandolfi, Maria Giovanna; Shah, Sara N.; Feng, Ruoxue; Prati, Carlo; Akintoye, Sunday O.

    2011-01-01

    Introduction Human orofacial bone mesenchymal stem cells (OFMSCs) from maxilla and mandible have robust osteogenic regenerative properties based on our previous reports that demonstrate phenotypic and functional differences between jaw and axial bone mesenchymal stem cells in same individuals. Furthermore, a combination of OFMSCs with bioactive calcium-releasing cements can potentially improve OFMSC multi-lineage differentiation capacity, but biocompatibility of calcium silicate cements with OFMSCs is still unclear. We tested the hypothesis that material extracts of calcium-releasing calcium-silicate cements support biomimetic microenvironment for survival and differentiation of human OFMSCs. Methods Two experimental calcium-silicate cements 1) calcium-silicate mineral powder (wTC) containing di- and tricalcium-silicate, calcium sulphate, and calcium chloride and 2) wTC doped with alpha-tricalcium phosphate (wTC-αTCP) were designed and prepared. Cement setting times were assessed by Gilmore needles, ability to release calcium and hydroxyl ions was assessed by potentiometric methods and OFMSC attachment to calcium-silicate discs was assessed. Calcium-silicate material extracts were tested for ability to support OFMSCs survival and in vitro/in vivo differentiation. Results Fewer OFMSCs attached to calcium-silicate discs relative to tissue culture plastic (p=0.001). Extracts of calcium-silicate cements sustained OFMSC survival, maintained steady state levels of vascular cell adhesion molecule-1, alkaline phosphatase and bone sialoprotein while upregulating their respective gene transcripts. Adipogenic and in vivo bone regenerative capacities of OFMSCs were also unaffected by calcium-silicate extracts. Conclusions Ion-releasing calcium-silicate cements support a biomimetic microenvironment conducive to survival and differentiation of OFMSCs. Combination of OFMSCs and calcium-silicate cement can potentially promote tissue regeneration in periapical bone defects. PMID

  7. Impact of atmospheric CO2 levels on continental silicate weathering

    NASA Astrophysics Data System (ADS)

    Beaulieu, E.; GoddéRis, Y.; Labat, D.; Roelandt, C.; Oliva, P.; Guerrero, B.

    2010-07-01

    Anthropogenic sources are widely accepted as the dominant cause for the increase in atmospheric CO2 concentrations since the beginning of the industrial revolution. Here we use the B-WITCH model to quantify the impact of increased CO2 concentrations on CO2 consumption by weathering of continental surfaces. B-WITCH couples a dynamic biogeochemistry model (LPJ) and a process-based numerical model of continental weathering (WITCH). It allows simultaneous calculations of the different components of continental weathering fluxes, terrestrial vegetation dynamics, and carbon and water fluxes. The CO2 consumption rates are estimated at four different atmospheric CO2 concentrations, from 280 up to 1120 ppmv, for 22 sites characterized by silicate lithologies (basalt, granite, or sandstones). The sensitivity to atmospheric CO2 variations is explored, while temperature and rainfall are held constant. First, we show that under 355 ppmv of atmospheric CO2, B-WITCH is able to reproduce the global pattern of weathering rates as a function of annual runoff, mean annual temperature, or latitude for silicate lithologies. When atmospheric CO2 increases, evapotranspiration generally decreases due to progressive stomatal closure, and the soil CO2 pressure increases due to enhanced biospheric productivity. As a result, vertical drainage and soil acidity increase, promoting CO2 consumption by mineral weathering. We calculate an increase of about 3% of the CO2 consumption through silicate weathering (mol ha-1 yr-1) for 100 ppmv rise in CO2. Importantly, the sensitivity of the weathering system to the CO2 rise is not uniform and heavily depends on the climatic, lithologic, pedologic, and biospheric settings.

  8. Low-(18)O Silicic Magmas: Why Are They So Rare?

    SciTech Connect

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  9. Sealing of cracks in cement using microencapsulated sodium silicate

    NASA Astrophysics Data System (ADS)

    Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.

    2016-08-01

    Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.

  10. Proton tunneling in low dimensional cesium silicate LDS-1

    SciTech Connect

    Matsui, Hiroshi Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-14

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi{sub 2}O{sub 5}), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm{sup −1} are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O–O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm{sup −1}, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm{sup −1} are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm{sup −1}) and asymmetric mode (155 and 1220 cm{sup −1}). The broad absorption at 100–600 cm{sup −1} reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs{sup +} but also with the proton oscillation relevant to the second excited state (n = 2)

  11. Geoengineering potential of artificially enhanced silicate weathering of olivine.

    PubMed

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A

    2010-11-23

    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO(2) sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1-5 Pg of C per year for the 21st century by this technique. PMID:21059941

  12. Geoengineering potential of artificially enhanced silicate weathering of olivine

    PubMed Central

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A.

    2010-01-01

    Geoengineering is a proposed action to manipulate Earth’s climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO2 sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1–5 Pg of C per year for the 21st century by this technique. PMID:21059941

  13. Silicates on Iapetus from Cassini’s Composite Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Young, Cindy L.; Wray, James J.; Clark, Roger N.; Spencer, John R.; Jennings, Donald E.; Hand, Kevin P.; Poston, Michael J.; Carlson, Robert W.

    2015-10-01

    We present the first spectral features obtained from Cassini’s Composite Infrared Spectrometer (CIRS) for any icy moon. The spectral region covered by CIRS focal planes (FP) 3 and 4 is rich in emissivity features, but previous studies at these wavelengths have been limited by low signal-to-noise ratios (S/Ns) for individual spectra. Our approach is to average CIRS FP3 spectra to increase the S/N and use emissivity spectra to constrain the composition of the dark material on Iapetus. We find an emissivity feature at ∼855 cm‑1 and a possible doublet at 660 and 690 cm‑1 that do not correspond to any known instrument artifacts. We attribute the 855 cm‑1 feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths. Silicates on the dark terrains of Saturn’s icy moons have been suspected for decades, but there have been no definitive detections until now. Serpentines reported in the literature at ambient temperature and pressure have features near 855 and 660 cm‑1. However, peaks can shift depending on temperature and pressure, so measurements at Iapetus-like conditions are necessary for more positive feature identifications. As a first investigation, we measured muscovite at 125 K in a vacuum and found that this spectrum does match the emissivity feature near 855 cm‑1 and the location of the doublet. Further measurements are needed to robustly identify a specific silicate, which would provide clues regarding the origin and implications of the dark material.

  14. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.

    PubMed

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Shigetomi, Yosuke; Suh, Sangwon

    2015-02-17

    Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 10(3) t for neodymium, 9.4 × 10(3) t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 10(3) t, 1.3 × 10(5) t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10(-2) points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade

  15. High-temperature silicate volcanism on Jupiter's moon Io

    USGS Publications Warehouse

    McEwen, A.S.; Keszthelyi, L.; Spencer, J.R.; Schubert, G.; Matson, D.L.; Lopes-Gautier, R.; Klaasen, K.P.; Johnson, T.V.; Head, J.W.; Geissler, P.; Fagents, S.; Davies, A.G.; Carr, M.H.; Breneman, H.H.; Belton, M.J.S.

    1998-01-01

    Infrared wavelength observations of Io by the Galileo spacecraft show that at last 12 different vents are erupting lavas that are probably hotter than the highest temperature basaltic eruptions on Earth today. In at least one case, the eruption near Pillan Patea, two independent instruments on Galileo show that the lava temperature must have exceeded 1700 kelvin and may have reached 2000 kelvin. The most likely explanation is that these lavas are ultramafic (magnesium-rich) silicates, and this idea is supported by the tentative identification of magnesium-rich orthopyroxene in lava flows associated with thse high-temperature hot spots.

  16. Micro-PIXE analysis of silicate reference standards

    USGS Publications Warehouse

    Czamanske, G.K.; Sisson, T.W.; Campbell, J.L.; Teesdale, W.J.

    1993-01-01

    The accuracy and precision of the University of Guelph proton microprobe have been evaluated through trace-element analysis of well-characterized silicate glasses and minerals, including BHVO-1 glass, Kakanui augite and hornblende, and ten other natural samples of volcanic glass, amphibole, pyroxene, and garnet. Using the 2.39 wt% Mo in a NIST steel as the standard, excellent precision and agreement between reported and analyzed abundances were obtained for Fe, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, and Nb. -from Authors

  17. Using petroleum hydrocarbons for thermochemical treatment of silicate glasses

    SciTech Connect

    Gorokhovskii, A.V.; Polyakov, K.V.

    1987-11-01

    The authors investigate the use of vaporized gasoline as a reagent in the surface treatment of silicate glasses for the purpose of enhancing the chemical and temperature stability of the glasses during their use as catalysts in heterogeneous catalysis processes. The performance of the treatment is found to increase proportionately with aluminum and boron oxide content in the glasses tested. The use of the gasoline fraction is assessed against ethylene and is found to be economically superior. It is recommended that the original gasoline fraction, as opposed to the final ethylated product, be used, in order to eliminate the presence of toxic lead compounds in the vapor.

  18. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses

    SciTech Connect

    Epstein, S.; Stolper, E.

    1992-01-01

    The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

  19. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    SciTech Connect

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  20. Multiple episodes of zeolite deposition in fractured silicic tuff

    SciTech Connect

    Carlos, B.A.; Chipera, S.J.; Snow, M.G.

    1995-04-01

    Fractures in silicic tuffs above the water table at Yucca Mountain, Nevada, USA contain two morphologies of heulandite with different compositions. Tabular heulandite is zoned, with Sr-rich cores and Mg-rich rims. Later prismatic heulandite is nearly the same composition as the more magnesian rims. Heulandite and stellerite may occur between layers of calcite, and calcite occurs locally between generations of heulandite. Thermodynamic modeling, using estimated thermodynamic data and observed chemical compositions for heulandite and stellerite, shows that stellerite is the favored zeolite unless Ca concentrations are reduced or Mg and/or Sr concentrations are significantly elevated above current Yucca Mountain waters.