Science.gov

Sample records for neoformans intracellular pathogenesis

  1. Relationship of the Glyoxylate Pathway to the Pathogenesis of Cryptococcus neoformans

    PubMed Central

    Rude, Thomas H.; Toffaletti, Dena L.; Cox, Gary M.; Perfect, John R.

    2002-01-01

    Functional genomics has become a major focus in the study of microbial pathogenesis. This study used a functional genomic tool, differential display reverse transcription-PCR, to identify a transcriptional profile of Cryptococcus neoformans cells as they produced meningitis in an immunosuppressed host. This serial global gene expression during infection allowed for the identification of up- and down-regulated genes during infection. During this profiling, a single gene for the enzyme isocitrate lyase (ICL1) was found to be up regulated at 1 week of infection in a rabbit meningitis model and during a time of maximum host cellular response. The finding suggested that this enzyme and the glyoxylate shunt pathway are important to this yeast's energy production during infection. However, site-directed icl1 mutants had no apparent virulence defect in two animal models and no growth defect within macrophages. These observations suggest that although the yeast responded to a certain environmental cue(s) by an increase in ICL1 expression during infection, this gene was not necessary for progression of a C. neoformans infection. Compounds that specifically target only ICL1 are unlikely to cripple C. neoformans growth in vivo. PMID:12228298

  2. Relative Contributions of Prenylation and Postprenylation Processing in Cryptococcus neoformans Pathogenesis.

    PubMed

    Esher, Shannon K; Ost, Kyla S; Kozubowski, Lukasz; Yang, Dong-Hoon; Kim, Min Su; Bahn, Yong-Sun; Alspaugh, J Andrew; Nichols, Connie B

    2016-01-01

    Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase β-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCE Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes

  3. Relative Contributions of Prenylation and Postprenylation Processing in Cryptococcus neoformans Pathogenesis

    PubMed Central

    Esher, Shannon K.; Ost, Kyla S.; Kozubowski, Lukasz; Yang, Dong-Hoon; Kim, Min Su; Bahn, Yong-Sun; Nichols, Connie B.

    2016-01-01

    ABSTRACT Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase β-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCE Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular

  4. Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection.

    PubMed

    Bojarczuk, Aleksandra; Miller, Katie A; Hotham, Richard; Lewis, Amy; Ogryzko, Nikolay V; Kamuyango, Alfred A; Frost, Helen; Gibson, Rory H; Stillman, Eleanor; May, Robin C; Renshaw, Stephen A; Johnston, Simon A

    2016-01-01

    Cryptococcus neoformans is a significant fungal pathogen of immunocompromised patients. Many questions remain regarding the function of macrophages in normal clearance of cryptococcal infection and the defects present in uncontrolled cryptococcosis. Two current limitations are: 1) The difficulties in interpreting studies using isolated macrophages in the context of the progression of infection, and 2) The use of high resolution imaging in understanding immune cell behavior during animal infection. Here we describe a high-content imaging method in a zebrafish model of cryptococcosis that permits the detailed analysis of macrophage interactions with C. neoformans during infection. Using this approach we demonstrate that, while macrophages are critical for control of C. neoformans, a failure of macrophage response is not the limiting defect in fatal infections. We find phagocytosis is restrained very early in infection and that increases in cryptococcal number are driven by intracellular proliferation. We show that macrophages preferentially phagocytose cryptococci with smaller polysaccharide capsules and that capsule size is greatly increased over twenty-four hours of infection, a change that is sufficient to severely limit further phagocytosis. Thus, high-content imaging of cryptococcal infection in vivo demonstrates how very early interactions between macrophages and cryptococci are critical in the outcome of cryptococcosis. PMID:26887656

  5. Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection

    PubMed Central

    Bojarczuk, Aleksandra; Miller, Katie A.; Hotham, Richard; Lewis, Amy; Ogryzko, Nikolay V.; Kamuyango, Alfred A.; Frost, Helen; Gibson, Rory H.; Stillman, Eleanor; May, Robin C.; Renshaw, Stephen A.; Johnston, Simon A.

    2016-01-01

    Cryptococcus neoformans is a significant fungal pathogen of immunocompromised patients. Many questions remain regarding the function of macrophages in normal clearance of cryptococcal infection and the defects present in uncontrolled cryptococcosis. Two current limitations are: 1) The difficulties in interpreting studies using isolated macrophages in the context of the progression of infection, and 2) The use of high resolution imaging in understanding immune cell behavior during animal infection. Here we describe a high-content imaging method in a zebrafish model of cryptococcosis that permits the detailed analysis of macrophage interactions with C. neoformans during infection. Using this approach we demonstrate that, while macrophages are critical for control of C. neoformans, a failure of macrophage response is not the limiting defect in fatal infections. We find phagocytosis is restrained very early in infection and that increases in cryptococcal number are driven by intracellular proliferation. We show that macrophages preferentially phagocytose cryptococci with smaller polysaccharide capsules and that capsule size is greatly increased over twenty-four hours of infection, a change that is sufficient to severely limit further phagocytosis. Thus, high-content imaging of cryptococcal infection in vivo demonstrates how very early interactions between macrophages and cryptococci are critical in the outcome of cryptococcosis. PMID:26887656

  6. Cryptococcus neoformans induces antimicrobial responses and behaves as a facultative intracellular pathogen in the non mammalian model Galleria mellonella

    PubMed Central

    Trevijano-Contador, Nuria; Herrero-Fernández, Inés; García-Barbazán, Irene; Scorzoni, Liliana; Rueda, Cristina; Rossi, Suélen Andreia; García-Rodas, Rocío; Zaragoza, Oscar

    2015-01-01

    Cryptococcus neoformans is an encapsulated opportunistic fungal pathogen that is found in multiple niches in the environment and that can cause fatal meningoencephalitis in susceptible patients, mainly HIV+ individuals. Cryptococcus also infects environmental hosts such as nematodes, insects and plants. In particular, C. neoformans can kill the lepidopteran Galleria mellonella, which offers a useful tool to study microbial virulence and drug efficacy. Galleria mellonella immunity relies on innate responses based on melanization, accumulation of antimicrobial peptides, and cellular responses as phagocytosis or multicellular encapsulation. In this work we have investigated the immune response of G. mellonella during cryptococcal infection. We found that G. mellonella infected with C. neoformans had a high lytic activity in their hemolymph. This response was temperature- and capsule-dependent. During interaction with phagocytic cells, C. neoformans behaved as an intracellular pathogen since it could replicate within hemocytes. Non-lytic events were also observed. In contrast to Candida species, C. neoformans did not induce melanization of G. mellonella after infection. Finally, passage of C. neoformans through G. mellonella resulted in changes in capsule structure as it has been also reported during infection in mammals. Our results highlight that G. mellonella is an optimal model to investigate innate immune responses against C. neoformans. PMID:25531532

  7. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis.

    PubMed

    Garfoot, Andrew L; Rappleye, Chad A

    2016-02-01

    The fungal pathogen Histoplasma capsulatum causes respiratory and disseminated disease, even in immunocompetent hosts. In contrast to opportunistic pathogens, which are readily controlled by phagocytic cells, H. capsulatum yeasts are able to infect macrophages, survive antimicrobial defenses, and proliferate as an intracellular pathogen. In this review, we discuss some of the molecular mechanisms that enable H. capsulatum yeasts to overcome obstacles to intracellular pathogenesis. H. capsulatum yeasts gain refuge from extracellular obstacles such as antimicrobial lung surfactant proteins by engaging the β-integrin family of phagocytic receptors to promote entry into macrophages. In addition, H. capsulatum yeasts conceal immunostimulatory β-glucans to avoid triggering signaling receptors such as the β-glucan receptor Dectin-1. H. capsulatum yeasts counteract phagocyte-produced reactive oxygen species by expression of oxidative stress defense enzymes including an extracellular superoxide dismutase and an extracellular catalase. Within the phagosome, H. capsulatum yeasts block phagosome acidification, acquire essential metals such as iron and zinc, and utilize de novo biosynthesis pathways to overcome nutritional limitations. These mechanisms explain how H. capsulatum yeasts avoid and negate macrophage defense strategies and establish a hospitable intracellular niche, making H. capsulatum a successful intracellular pathogen of macrophages. PMID:26235362

  8. Cryptococcus neoformans Thermotolerance to Avian Body Temperature Is Sufficient For Extracellular Growth But Not Intracellular Survival In Macrophages

    PubMed Central

    Johnston, Simon A.; Voelz, Kerstin; May, Robin C.

    2016-01-01

    Cryptococcus neoformans is a fatal fungal pathogen of humans that efficiently parasitises macrophages. Birds can be colonised by cryptococci and can transmit cryptococcosis to humans via inhalation of inoculated bird excreta. However, colonisation of birds appears to occur in the absence of symptomatic infection. Here, using a pure population of primary bird macrophages, we demonstrate a mechanism for this relationship. We find that bird macrophages are able to suppress the growth of cryptococci seen in mammalian cells despite C. neoformans being able to grow at bird body temperature, and are able to escape from bird macrophages by vomocytosis. A small subset of cryptococci are able to adapt to the inhibitory intracellular environment of bird macrophages, exhibiting a large cell phenotype that rescues growth suppression. Thus, restriction of intracellular growth combined with survival at bird body temperature explains the ability of birds to efficiently spread C. neoformans in the environment whilst avoiding systemic disease. PMID:26883088

  9. Identification and Characterization of CPS1 as a Hyaluronic Acid Synthase Contributing to the Pathogenesis of Cryptococcus neoformans Infection▿

    PubMed Central

    Jong, Ambrose; Wu, Chun-Hua; Chen, Han-Min; Luo, Feng; Kwon-Chung, Kyung J.; Chang, Yun C.; LaMunyon, Craig W.; Plaas, Anna; Huang, Sheng-He

    2007-01-01

    Cryptococcus neoformans is a pathogenic yeast that often causes devastating meningoencephalitis in immunocompromised individuals. We have previously identified the C. neoformans CPS1 gene, which is required for a capsular layer on the outer cell wall. In this report, we investigate the function of the CPS1 gene and its pathogenesis. We demonstrated that treatment of yeast with either 4-methylumbelliferone or hyaluronidase resulted in a reduction of the level of C. neoformans binding to human brain microvascular endothelial cells (HBMEC). Yeast extracellular structures were also altered accordingly in hyaluronidase-treated cells. Furthermore, observation of yeast strains with different hyaluronic acid contents showed that the ability to bind to HBMEC is proportional to the hyaluronic acid content. A killing assay with Caenorhabditis elegans demonstrated that the CPS1 wild-type strain is more virulent than the cps1Δ strain. When CPS1 is expressed in Saccharomyces cerevisiae and Escherichia coli, hyaluronic acid can be detected in the cells. Additionally, we determined by fluorophore-assisted carbohydrate electrophoretic analysis that hyaluronic acid is a component of the C. neoformans capsule. The size of hyaluronic acid molecules is evaluated by gel filtration and transmission electron microscopy studies. Together, our results support that C. neoformans CPS1 encodes hyaluronic acid synthase and that its product, hyaluronic acid, plays a role as an adhesion molecule during the association of endothelial cells with yeast. PMID:17545316

  10. Binding of the wheat germ lectin to Cryptococcus neoformans chitooligomers affects multiple mechanisms required for fungal pathogenesis

    PubMed Central

    Fonseca, Fernanda L.; Guimarães, Allan J.; Kmetzsch, Lívia; Dutra, Fabianno F.; Silva, Fernanda D.; Taborda, Carlos P.; Araujo, Glauber de S.; Frases, Susana; Staats, Charley C.; Bozza, Marcelo T.; Schrank, Augusto; Vainstein, Marilene H.; Nimrichter, Leonardo; Casadevall, Arturo; Rodrigues, Marcio L.

    2015-01-01

    The principal capsular component of Cryptococcus neoformans, glucuronoxylomannan (GXM), interacts with surface glycans, including chitin-like oligomers. Although the role of GXM in cryptococcal infection has been well explored, there is no information on how chitooligomers affect fungal pathogenesis. In this study, surface chitooligomers of C. neoformans were blocked through the use of the wheat germ lectin (WGA) and the effects on animal pathogenesis, interaction with host cells, fungal growth and capsule formation were analyzed. Treatment of C. neoformans cells with WGA followed by infection of mice delayed mortality relative to animals infected with untreated fungal cells. This observation was associated with reduced brain colonization by lectin-treated cryptococci. Blocking chitooligomers also rendered yeast cells less efficient in their ability to associate with phagocytes. WGA did not affect fungal viability, but inhibited GXM release to the extracellular space and capsule formation. In WGA-treated yeast cells, genes that are involved in capsule formation and GXM traffic had their transcription levels decreased in comparison with untreated cells. Our results suggest that cellular pathways required for capsule formation and pathogenic mechanisms are affected by blocking chitin-derived structures at the cell surface of C. neoformans. Targeting chitooligomers with specific ligands may reveal new therapeutic alternatives to control cryptococcosis. PMID:23608320

  11. Characterization of a flocculation-like phenotype in Cryptococcus neoformans and its effects on pathogenesis.

    PubMed

    Li, Li; Zaragoza, Oscar; Casadevall, Arturo; Fries, Bettina C

    2006-11-01

    We investigated the phenomenon of cell-cell aggregation (flocculation) in a serotype D strain of Cryptococcus neoformans (ATCC 24067, isolate RC-2). Cell aggregation into clumps of 5-40 cells (clump+ cells) occurred during the early log phase and disappeared in the beginning of the stationary phase (clump- cells). The cell aggregation phenomenon was medium dependent. Clump+ cells could be dispersed by either vortexing or proteinase K digestion. Most importantly, the transient change in cellular phenotype changed several important host-pathogen interactions. Adherence of clump+ cells to murine macrophage-like cells J774.16 was significantly (P < 0.001) enhanced compared with adherence of clump- cells. Furthermore, complement-mediated phagocytosis efficacy of dispersed clump+ cells was significantly higher (P < 0.001) compared with clump- cells. Similar findings were documented with an in vivo phagocytosis assay. Infection of mice with a low inoculum (10(4)) of clump+ cells resulted in lower fungal burden when compared with mice infected with clump- cells. Accordingly, mice infected with clump+ cells survived significantly longer than mice infected with clump- cells. These results indicate that the cellular phenotype undergoes significant changes that result in a transient flocculation-like phenotype. We hypothesize that this cell-cell aggregation is the result of changes in protein content in the polysaccharide capsule. We conclude from our data that the change in cellular phenotype has a dramatic effect on cell adherence, and on complement-mediated phagocytosis, both of which can affect the pathogenesis of the disease in the host. Our results underscore the complexity of studies that investigate host pathogen interactions and may explain differences and inconsistencies observed in in vitro and in vivo assays. PMID:16759224

  12. A novel experimental model of Cryptococcus neoformans-related immune reconstitution inflammatory syndrome (IRIS) provides insights into pathogenesis.

    PubMed

    Eschke, Maria; Piehler, Daniel; Schulze, Bianca; Richter, Tina; Grahnert, Andreas; Protschka, Martina; Müller, Uwe; Köhler, Gabriele; Höfling, Corinna; Rossner, Steffen; Alber, Gottfried

    2015-12-01

    Antiretroviral therapy (ART) has yielded major advances in fighting the HIV pandemic by restoring protective immunity. However, a significant proportion of HIV patients co-infected with the opportunistic fungal pathogen Cryptococcus neoformans paradoxically develops a life-threatening immune reconstitution inflammatory syndrome (IRIS) during antiretroviral therapy. Despite several clinical studies, the underlying pathomecha-nisms are poorly understood. Here, we present the first mouse model of cryptococcal IRIS that allows for a detailed analysis of disease development. Lymphocyte-deficient RAG-1(-/-) mice are infected with C. neoformans and 4 weeks later adoptively transferred with purified CD4(+) T cells. Reconstitution of CD4(+) T cells is sufficient to induce a severe inflammatory disease similar to clinical IRIS in C. neoformans-infected RAG-1(-/-) mice of different genetic backgrounds and immunological phenotypes (i.e. C57BL/6 and BALB/c). Multiorgan inflammation is accompanied by a systemic release of distinct proinflammatory cytokines, i.e. IFN-γ, IL-6, and TNF-α. IRIS development is characterized by infection-dependent activation of donor CD4(+) T cells, which are the source of IFN-γ. Interestingly, IFN-γ-mediated effects are not required for disease induction. Taken together, this novel mouse model of cryptococcal IRIS provides a useful tool to verify potential mechanisms of pathogenesis, revealing targets for diagnosis and therapeutic interventions. PMID:26381487

  13. Modulation of Macrophage Inflammatory Nuclear Factor κB (NF-κB) Signaling by Intracellular Cryptococcus neoformans.

    PubMed

    Hayes, James B; Sircy, Linda M; Heusinkveld, Lauren E; Ding, Wandi; Leander, Rachel N; McClelland, Erin E; Nelson, David E

    2016-07-22

    Cryptococcus neoformans (Cn) is a common facultative intracellular pathogen that can cause life-threatening fungal meningitis in immunocompromised individuals. Shortly after infection, Cn is detectable as both extra- and intracellular yeast particles, with Cn being capable of establishing long-lasting latent infections within host macrophages. Although recent studies have shown that shed capsular polysaccharides and intact extracellular Cn can compromise macrophage function through modulation of NF-κB signaling, it is currently unclear whether intracellular Cn also affects NF-κB signaling. Utilizing live cell imaging and computational modeling, we find that extra- and intracellular Cn support distinct modes of NF-κB signaling in cultured murine macrophages. Specifically, in RAW 264.7 murine macrophages treated with extracellular glucuronoxylomannan (GXM), the major Cn capsular polysaccharide, LPS-induced nuclear translocation of p65 is inhibited, whereas in cells with intracellular Cn, LPS-induced nuclear translocation of p65 is both amplified and sustained. Mathematical simulations and quantification of nascent protein expression indicate that this is a possible consequence of Cn-induced "translational interference," impeding IκBα resynthesis. We also show that long term Cn infection induces stable nuclear localization of p65 and IκBα proteins in the absence of additional pro-inflammatory stimuli. In this case, nuclear localization of p65 is not accompanied by TNFα or inducible NOS (iNOS) expression. These results demonstrate that capsular polysaccharides and intact intracellular yeast manipulate NF-κB via multiple distinct mechanisms and provide new insights into how Cn might modulate cellular signaling at different stages of an infection. PMID:27231343

  14. The Role of Host Gender in the Pathogenesis of Cryptococcus neoformans Infections

    PubMed Central

    McClelland, Erin E.; Hobbs, Letizia M.; Rivera, Johanna; Casadevall, Arturo; Potts, Wayne K.; Smith, Jennifer M.; Ory, Jeramia J.

    2013-01-01

    Cryptococcus neoformans (Cn) is a pathogenic yeast and the cause of cryptococcal meningitis. Prevalence of disease between males and females is skewed, with males having an increased incidence of disease. Based on the reported gender susceptibility differences to Cn in the literature, we used clinical isolates from Botswanan HIV-infected patients to test the hypothesis that different gender environments exerted different selective pressures on Cn. When we examined this data set, we found that men had significantly higher risk of death despite having significantly higher CD4+ T lymphocyte counts upon admittance to the hospital. These observations suggested that Cn strains are uniquely adapted to different host gender environments and that the male immune response may be less efficient in controlling Cn infection. To discriminate between these possibilities, we tested whether there were phenotypic differences between strains isolated from males and females and whether there was an interaction between Cn and the host immune response. Virulence phenotypes showed that Cn isolates from females had longer doubling times and released more capsular glucoronoxylomannan (GXM). The presence of testosterone but not 17-β estradiol was associated with higher levels of GXM release for a laboratory strain and 28 clinical isolates. We also measured phagocytic efficiency, survival of Cn, and amount of killing of human macrophages by Cn after incubation with four isolates. While macrophages from females phagocytosed more Cn than macrophages from males, male macrophages had a higher fungal burden and showed increased killing by Cn. These data are consistent with the hypothesis that differential interaction between Cn and macrophages within different gender environments contribute to the increased prevalence of cryptococcosis in males. This could be related to differential expression of cryptococcal virulence genes and capsule metabolism, changes in Cn phagocytosis and increased death

  15. Role of intracellular events in the pathogenesis of dengue; an overview.

    PubMed

    Jain, Bhawana; Chaturvedi, Umesh C; Jain, Amita

    2014-01-01

    Dengue is one of the most important mosquito-borne viral diseases that are relentlessly spreading in newer areas in the tropical and subtropical regions of the World. In last fifty years, in spite of intensive and extensive investigations, pathogenesis of dengue is still not clearly understood. Recently, the research focus is on studying the role of intracellular events in pathogenesis of viral infections. Entry of virion in the host cell is followed by quick succession of events, unfolded protein response, lipid bodies and lipophagy, endoplasmic reticulum stress and recent demonstration of autophagy. The turbulence caused by these events may result in clearance of the virus/enhanced replication and survival of the host cell/apoptosis. Both, increased virus load and apoptosis of host cell may have pathological effects on the host. In the present review, we have summed up the role of various intracellular events in viral infections with special emphasis on Dengue virus infection. PMID:24685697

  16. Molecular Genetic Analyses of Mating Pheromones Reveal Intervariety Mating or Hybridization in Cryptococcus neoformans

    PubMed Central

    Chaturvedi, Vishnu; Fan, Jinjiang; Stein, Birgit; Behr, Melissa J.; Samsonoff, William A.; Wickes, Brian L.; Chaturvedi, Sudha

    2002-01-01

    The sexual mating of the pathogenic yeast Cryptococcus neoformans is important for pathogenesis studies because the fungal virulence is linked to the α mating type (MATα). We characterized C. neoformans mating pheromones (MFα 1 and MFa1) from 122 strains to understand intervariety hybridization or mating and intervariety virulence. MFα 1 in three C. neoformans varieties showed (a) specific nucleotide polymorphisms, (b) different copy numbers and chromosomal localizations, and (c) unique deduced amino acids in two geographic populations of C. neoformans var. gattii. MFα 1 of different varieties cross-hybridized in Southern hybridizations. Their phylogenetic analyses showed purifying selection (neutral evolution). These observations suggested that MATα strains from any of the three C. neoformans varieties could mate or hybridize in nature with MATa strains of C. neoformans var. neoformans. A few serotype A/D diploid strains provided evidence for mating or hybridization, while a majority of A/D strains tested positive for haploid MFα 1 identical to that of C. neoformans var. grubii. MFα 1 sequence and copy numbers in diploids were identical to those of C. neoformans var. grubii, while their MFa1 sequences were identical to those of C. neoformans var. neoformans; thus, these strains were hybrids. The mice survival curves and histological lesions revealed A/D diploids to be highly pathogenic, with pathogenicity levels similar to that of the C. neoformans var. grubii type strain and unlike the low pathogenicity levels of C. neoformans var. neoformans strains. In contrast to MFα 1 in three varieties, MFa1 amplicons and hybridization signals could be obtained only from two C. neoformans var. neoformans reference strains and eight A/D diploids. This suggested that a yet undiscovered MFa pheromone(s) in C. neoformans var. gattii and C. neoformans var. grubii is unrelated to, highly divergent from, or rarer than that in C. neoformans var. neoformans. These

  17. Intracellular protozoan parasites of humans: the role of molecular chaperones in development and pathogenesis.

    PubMed

    Shonhai, Addmore; Maier, Alexander G; Przyborski, Jude M; Blatch, Gregory L

    2011-02-01

    Certain kinetoplastid (Leishmania spp. and Tryapnosoma cruzi) and apicomplexan parasites (Plasmodium falciparum and Toxoplasma gondii) are capable of invading human cells as part of their pathology. These parasites appear to have evolved a relatively expanded or diverse complement of genes encoding molecular chaperones. The gene families encoding heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp70) chaperones show significant expansion and diversity (especially for Leishmania spp. and T. cruzi), and in particular the Hsp40 family appears to be an extreme example of phylogenetic radiation. In general, Hsp40 proteins act as co-chaperones of Hsp70 chaperones, forming protein folding pathways that integrate with Hsp90 to ensure proteostasis in the cell. It is tempting to speculate that the diverse environmental insults that these parasites endure have resulted in the evolutionary selection of a diverse and expanded chaperone network. Hsp90 is involved in development and growth of all of these intracellular parasites, and so far represents the strongest candidate as a target for chemotherapeutic interventions. While there have been some excellent studies on the molecular and cell biology of Hsp70 proteins, relatively little is known about the biological function of Hsp70-Hsp40 interactions in these intracellular parasites. This review focuses on intracellular protozoan parasites of humans, and provides a critique of the role of heat shock proteins in development and pathogenesis, especially the molecular chaperones Hsp90, Hsp70 and Hsp40. PMID:20955165

  18. Cryptococcosis (C. neoformans)

    MedlinePlus

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch C. neoformans Infection Recommend on Facebook Tweet Share Compartir ... throughout the world. People can become infected with C. neoformans after breathing in the microscopic fungus, although ...

  19. Rotenone Decreases Intracellular Aldehyde Dehydrogenase Activity: Implications for the Pathogenesis of Parkinson Disease

    PubMed Central

    Goldstein, David S.; Sullivan, Patti; Cooney, Adele; Jinsmaa, Yunden; Kopin, Irwin J.; Sharabi, Yehonatan

    2015-01-01

    Repeated systemic administration of the mitochondrial complex I inhibitor rotenone produces a rodent model of Parkinson disease (PD). Mechanisms of relatively selective rotenone-induced damage to nigrostriatal dopaminergic neurons remain incompletely understood. According to the “catecholaldehyde hypothesis,” buildup of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to PD pathogenesis. Vesicular uptake blockade increases DOPAL levels, and DOPAL is detoxified mainly by aldehyde dehydrogenase (ALDH). We tested whether rotenone interferes with vesicular uptake and intracellular ALDH activity. Endogenous and F-labeled catechols were measured in PC12 cells incubated with rotenone (0-1000 nM, 180 minutes), without or with F-dopamine (2 μM) to track vesicular uptake and catecholamine metabolism. Rotenone dose-dependently increased DOPAL, F-DOPAL, and 3,4-dihydroxyphenylethanol (DOPET) levels while decreasing dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels and the ratio of dopamine to the sum of its deaminated metabolites. In test tubes, rotenone did not affect conversion of DOPAL to DOPAC by ALDH when NAD+ was supplied, whereas the direct-acting ALDH inhibitor benomyl markedly increased DOPAL and decreased DOPAC concentrations in the reaction mixtures. We propose that rotenone builds up intracellular DOPAL by decreasing ALDH activity and attenuating vesicular sequestration of cytoplasmic catecholamines. The results provide a novel mechanism for selective rotenone-induced toxicity in dopaminergic neurons. PMID:25645689

  20. Intracellular Bacteria in the Pathogenesis of Escherichia coli Urinary Tract Infection in Children

    PubMed Central

    Robino, Luciana; Scavone, Paola; Araujo, Lucia; Algorta, Gabriela; Zunino, Pablo; Pírez, María Catalina; Vignoli, Rafael

    2014-01-01

    Background. Uropathogenic Escherichia coli (UPEC) is the most common agent of urinary tract infection (UTI). The classic model of pathogenesis proposes the ascent of UPEC by the urethra and external adherence to the urothelium. Recently, the ability of UPEC to invade urothelial cells and to form intracellular bacterial communities (IBCs) has been described. Methods. The objective of the present study was to determine the presence of intracellular bacteria (IB) in children with UTI caused by E. coli and to characterize its virulence attributes and its relation with clinical outcomes. One hundred thirty-three children with E. coli UTI who attended a reference children's hospital between June and November 2012 were included. Urine samples were analyzed by optical and confocal microscopy looking for exfoliated urothelial cells with IB. Phylogenetic group and 24 virulence factors of UPEC were determined using multiplex polymerase chain reaction. Medical records were analyzed. Results. The presence of IB was detected in 49 of 133 (36.8%) samples by confocal microscopy, in 30 cases as IBC, and in 19 as isolated intracellular bacteria (IIB). Only 50% of these cases could be detected by light microscopy. Seventy-four medical records were analyzed, 34 with IBC/IIB, 40 without IB. Any virulence gene was associated with IBC/IIB. The presence of IBC/IIB was associated with recurrent UTI (odds ratio [OR], 3.3; 95% confidence interval [CI], 1.3–9; P = .017), especially in children without urinary tract functional or morphological abnormalities (OR, 8.0; 95% CI, 2.3–27.4; P = .000). IBCs were associated with lower urinary tract syndrome (OR, 3.6; 95% CI, 1.1–11.8; P = .05) and absence of fever (P = .009). Conclusions. IBCs/IIB could explain a high proportion of children with recurrent UTI. PMID:25091303

  1. Pigment Production on L-Tryptophan Medium by Cryptococcus gattii and Cryptococcus neoformans

    PubMed Central

    Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo

    2014-01-01

    In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin. PMID:24736553

  2. Pigment production on L-tryptophan medium by Cryptococcus gattii and Cryptococcus neoformans.

    PubMed

    Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo

    2014-01-01

    In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin. PMID:24736553

  3. Virulence-Associated Enzymes of Cryptococcus neoformans

    PubMed Central

    Almeida, Fausto; Wolf, Julie M.

    2015-01-01

    Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review focuses on recent developments in the virulence-associated enzymes from Cryptococcus neoformans. The enzymatic suite of C. neoformans has evolved for environmental survival, but several of these enzymes play a dual role in colonizing the mammalian host. We also discuss new therapeutic and diagnostic strategies that could be based on the underlying enzymology. PMID:26453651

  4. Cryptococcus neoformans: a sugar-coated killer with designer genes.

    PubMed

    Perfect, John R

    2005-09-01

    Cryptococcus neoformans has become a common central nervous system pathogen as the immunocompromised populations enlarge world-wide. This encapsulated yeast has significant advantages for the study of fungal pathogenesis and these include: (1) a clinically important human pathogen; (2) a tractable genetic system; (3) advanced molecular biology foundation; (4) understanding of several virulence phenotypes; (5) well-studied pathophysiology; and (6) robust animal models. With the use of a sequenced genome and site-directed mutagenesis to produce specific null mutants, the virulence composite of C. neoformans has begun to be identified one gene at a time. Studies into capsule production, melanin synthesis, high temperature growth, metabolic pathways and a variety of signaling pathways have led to understandings of what makes this yeast a pathogen at the molecular level. Multiple principles of molecular pathogenesis have been demonstrated in virulence studies with C. neoformans. These include evolutionary differences between the varieties of C. neoformans in their genes for virulence, quantitative impact of genes on the virulence composite, species and site-specific importance of a virulence gene, gene expression correlation with its functional importance or phenotype and the impact of a pathogenesis gene on the host immune response. C. neoformans has now become a primary model to study molecular fungal pathogenesis with the goal of identifying drug targets or vaccine strategies. PMID:16055314

  5. The Role of Intracellular Organisms in the Pathogenesis of Inflammatory Arthritis

    PubMed Central

    2014-01-01

    Inflammatory arthritis is a condition which is characterised by recurrent episodes of joint pain and swelling. It encompasses a spectrum of disorders ranging from rheumatoid arthritis to ankylosing spondylitis. In these conditions, for reasons that are poorly understood, the immune system raises an inflammatory response within the joint space. In some cases, autoantigens have been identified (e.g., anticitrullinated peptides in rheumatoid arthritis), but the absence of these, in the seronegative arthritides, for example, raises question as to the underlying pathogenesis. Interest has, therefore, turned to host-pathogen interactions and whether aberrant immune responses to these could explain the development of arthritis. This has been most widely studied in reactive arthritis (ReA), where an infectious episode precedes the development of the joint symptoms. In this review, we present the evidence for the role of host-bacterial interactions in the pathogenesis of joint inflammation with particular emphasis on ReA. We discuss a range of possible mechanisms including molecular mimicry, persistent low grade infections, and abnormal host responses to common bacterial causes of reactive arthritis as well as discussing some of the clinical challenges that we face in making the diagnosis and in treatment of persistent symptoms. PMID:24995143

  6. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    PubMed Central

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  7. Mitochondrial Protein Nfu1 Influences Homeostasis of Essential Metals in the Human Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Kim, Jeongmi; Park, Minji; Do, Eunsoo

    2014-01-01

    Mitochondrial protein Nfu1 plays an important role in the assembly of mitochondrial Fe-S clusters and intracellular iron homeostasis in the model yeast Saccharomyces cerevisiae. In this study, we identified the Nfu1 ortholog in the human fungal pathogen Cryptococcus neoformans. Our data showed that C. neoformans Nfu1 localized in the mitochondria and influenced homeostasis of essential metals such as iron, copper and manganese. Marked growth defects were observed in the mutant lacking NFU1, which suggests a critical role of Nfu1 in Fe-S cluster biosynthesis and intracellular metal homeostasis in C. neoformans. PMID:25606020

  8. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis

    PubMed Central

    Conover, Matt S.; Hadjifrangiskou, Maria; Palermo, Joseph J.; Hibbing, Michael E.; Dodson, Karen W.

    2016-01-01

    ABSTRACT Uropathogenic Escherichia coli (UPEC) is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs). Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs) of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies. PMID:27073089

  9. Temporal kinetics and quantitative analysis of Cryptococcus neoformans nonlytic exocytosis.

    PubMed

    Stukes, Sabriya A; Cohen, Hillel W; Casadevall, Arturo

    2014-05-01

    Cryptococcus neoformans is a facultative intracellular pathogen and the causative agent of cryptococcosis, a disease that is often fatal to those with compromised immune systems. C. neoformans has the capacity to escape phagocytic cells through a process known as nonlytic exocytosis whereby the cryptococcal cell is released from the macrophage into the extracellular environment, leaving both the host and pathogen alive. Little is known about the mechanism behind nonlytic exocytosis, but there is evidence that both the fungal and host cells contribute to the process. In this study, we used time-lapse movies of C. neoformans-infected macrophages to delineate the kinetics and quantitative aspects of nonlytic exocytosis. We analyzed approximately 800 macrophages containing intracellular C. neoformans and identified 163 nonlytic exocytosis events that were further characterized into three subcategories: type I (complete emptying of macrophage), type II (partial emptying of macrophage), and type III (cell-to-cell transfer). The majority of type I and II events occurred after several hours of intracellular residence, whereas type III events occurred significantly (P < 0.001) earlier in the course of macrophage infection. Our results show that nonlytic exocytosis is a morphologically and temporally diverse process that occurs relatively rapidly in the course of macrophage infection. PMID:24595144

  10. Temporal Kinetics and Quantitative Analysis of Cryptococcus neoformans Nonlytic Exocytosis

    PubMed Central

    Stukes, Sabriya A.; Cohen, Hillel W.

    2014-01-01

    Cryptococcus neoformans is a facultative intracellular pathogen and the causative agent of cryptococcosis, a disease that is often fatal to those with compromised immune systems. C. neoformans has the capacity to escape phagocytic cells through a process known as nonlytic exocytosis whereby the cryptococcal cell is released from the macrophage into the extracellular environment, leaving both the host and pathogen alive. Little is known about the mechanism behind nonlytic exocytosis, but there is evidence that both the fungal and host cells contribute to the process. In this study, we used time-lapse movies of C. neoformans-infected macrophages to delineate the kinetics and quantitative aspects of nonlytic exocytosis. We analyzed approximately 800 macrophages containing intracellular C. neoformans and identified 163 nonlytic exocytosis events that were further characterized into three subcategories: type I (complete emptying of macrophage), type II (partial emptying of macrophage), and type III (cell-to-cell transfer). The majority of type I and II events occurred after several hours of intracellular residence, whereas type III events occurred significantly (P < 0.001) earlier in the course of macrophage infection. Our results show that nonlytic exocytosis is a morphologically and temporally diverse process that occurs relatively rapidly in the course of macrophage infection. PMID:24595144

  11. STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans.

    PubMed

    Leopold Wager, Chrissy M; Hole, Camaron R; Wozniak, Karen L; Olszewski, Michal A; Mueller, Mathias; Wormley, Floyd L

    2015-12-01

    Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an opportunistic fungal pathogen that primarily affects AIDS patients and patients undergoing immunosuppressive therapy. In immunocompromised individuals, C. neoformans can lead to life-threatening meningoencephalitis. Studies using a virulent strain of C. neoformans engineered to produce gamma interferon (IFN-γ), denoted H99γ, demonstrated that protection against pulmonary C. neoformans infection is associated with the generation of a T helper 1 (Th1)-type immune response and signal transducer and activator of transcription 1 (STAT1)-mediated classical (M1) macrophage activation. However, the critical mechanism by which M1 macrophages mediate their anti-C. neoformans activity remains unknown. The current studies demonstrate that infection with C. neoformans strain H99γ in mice with macrophage-specific STAT1 ablation resulted in severely increased inflammation of the pulmonary tissue, a dysregulated Th1/Th2-type immune response, increased fungal burden, deficient M1 macrophage activation, and loss of protection. STAT1-deficient macrophages produced significantly less nitric oxide (NO) than STAT1-sufficient macrophages, correlating with an inability to control intracellular cryptococcal proliferation, even in the presence of reactive oxygen species (ROS). Furthermore, macrophages from inducible nitric oxide synthase knockout mice, which had intact ROS production, were deficient in anticryptococcal activity. These data indicate that STAT1 activation within macrophages is required for M1 macrophage activation and anti-C. neoformans activity via the production of NO. PMID:26351277

  12. Mathematical modeling of pathogenicity of Cryptococcus neoformans

    PubMed Central

    Garcia, Jacqueline; Shea, John; Alvarez-Vasquez, Fernando; Qureshi, Asfia; Luberto, Chiara; Voit, Eberhard O; Del Poeta, Maurizio

    2008-01-01

    Cryptococcus neoformans (Cn) is the most common cause of fungal meningitis worldwide. In infected patients, growth of the fungus can occur within the phagolysosome of phagocytic cells, especially in non-activated macrophages of immunocompromised subjects. Since this environment is characteristically acidic, Cn must adapt to low pH to survive and efficiently cause disease. In the present work, we designed, tested, and experimentally validated a theoretical model of the sphingolipid biochemical pathway in Cn under acidic conditions. Simulations of metabolic fluxes and enzyme deletions or downregulation led to predictions that show good agreement with experimental results generated post hoc and reconcile intuitively puzzling results. This study demonstrates how biochemical modeling can yield testable predictions and aid our understanding of fungal pathogenesis through the design and computational simulation of hypothetical experiments. PMID:18414484

  13. Biofilm Formation by Cryptococcus neoformans.

    PubMed

    Martinez, Luis R; Casadevall, Arturo

    2015-06-01

    The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology. PMID:26185073

  14. Cryptococcus neoformans carried by Odontomachus bauri ants.

    PubMed

    Jesus, Mariana Santos de; Rodrigues, William Costa; Barbosa, Glaucia; Trilles, Luciana; Wanke, Bodo; Lazéra, Márcia dos Santos; Silva, Manuela da

    2012-06-01

    Cryptococcus neoformans is the most common causative agent of cryptococcosis worldwide. Although this fungus has been isolated from a variety of organic substrates, several studies suggest that hollow trees constitute an important natural niche for C. neoformans. A previously surveyed hollow of a living pink shower tree (Cassia grandis) positive for C. neoformans in the city of Rio de Janeiro, Brazil, was chosen for further investigation. Odontomachus bauri ants (trap-jaw ants) found inside the hollow were collected for evaluation as possible carriers of Cryptococcus spp. Two out of 10 ants were found to carry phenoloxidase-positive colonies identified as C. neoformans molecular types VNI and VNII. The ants may have acted as a mechanical vector of C. neoformans and possibly contributed to the dispersal of the fungi from one substrate to another. To the best of our knowledge, this is the first report on the association of C. neoformans with ants of the genus Odontomachus. PMID:22666855

  15. Transcriptional control of sexual development in Cryptococcus neoformans.

    PubMed

    Mead, Matthew E; Hull, Christina M

    2016-05-01

    Developmental processes are essential for the normal life cycles of many pathogenic fungi, and they can facilitate survival in challenging environments, including the human host. Sexual development of the human fungal pathogen Cryptococcus neoformans not only produces infectious particles (spores) but has also enabled the evolution of new disease-related traits such as drug resistance. Transcription factor networks are essential to the development and pathogenesis of C. neoformans, and a variety of sequence-specific DNA-binding proteins control both key developmental transitions and virulence by regulating the expression of their target genes. In this review we discuss the roles of known transcription factors that harbor important connections to both development and virulence. Recent studies of these transcription factors have identified a common theme in which metabolic, stress, and other responses that are required for sexual development appear to have been co-opted for survival in the human host, thus facilitating pathogenesis. Future work elucidating the connection between development and pathogenesis will provide vital insights into the evolution of complex traits in eukaryotes as well as mechanisms that may be used to combat fungal pathogens. PMID:27095452

  16. Characterization of the antigenicity of Cpl1, a surface protein of Cryptococcus neoformans var. neoformans.

    PubMed

    Cai, Jian-Piao; Liu, Ling-Li; To, Kelvin K W; Lau, Candy C Y; Woo, Patrick C Y; Lau, Susanna K P; Guo, Yong-Hui; Ngan, Antonio H Y; Che, Xiao-Yan; Yuen, Kwok-Yung

    2015-01-01

    Cryptococcus neoformans var. neoformans is an important fungal pathogen. The capsule is a well established virulence factor and a target site for diagnostic tests. The CPL1 gene is required for capsular formation and virulence. The protein product Cpl1 has been proposed to be a secreted protein, but the characteristics of this protein have not been reported. Here we sought to characterize Cpl1. Phylogenetic analysis showed that the Cpl1 of C. neoformans var. neoformans and the Cpl1 orthologs identified in C. neoformans var. grubii and C. gattii formed a distinct cluster among related fungi; while the putative ortholog found in Trichosporon asahii was distantly related to the Cryptococcus cluster. We expressed Cpl1 abundantly as a secreted His-tagged protein in Pichia pastoris. The protein was used to immunize guinea pigs and rabbits for high titer mono-specific polyclonal antibody that was shown to be highly specific against the cell wall of C. neoformans var. neoformans and did not cross react with C. gattii, T. asahii, Aspergillus spp., Candida spp. and Penicillium spp. Using the anti-Cpl1 antibody, we detected Cpl1 protein in the fresh culture supernatant of C. neoformans var. neoformans and we showed by immunostaining that the Cpl1 protein was located on the surface. The Cpl1 protein is a specific surface protein of C. neoformans var. neoformans. PMID:25261494

  17. A genetic linkage map of Cryptococcus neoformans variety neoformans serotype D (Filobasidiella neoformans).

    PubMed Central

    Marra, Robert E; Huang, Johnny C; Fung, Eula; Nielsen, Kirsten; Heitman, Joseph; Vilgalys, Rytas; Mitchell, Thomas G

    2004-01-01

    To construct a genetic linkage map of the heterothallic yeast, Cryptococcus neoformans (Filobasidiella neoformans), we crossed two mating-compatible strains and analyzed 94 progeny for the segregation of 301 polymorphic markers, consisting of 228 restriction site polymorphisms, 63 microsatellites, two indels, and eight mating-type (MAT)-associated markers. All but six markers showed no significant (P < 0.05) segregation distortion. At a minimum LOD score of 6.0 and a maximum recombination frequency of 0.30, 20 linkage groups were resolved, resulting in a map length of approximately 1500 cM. Average marker density is 5.4 cM (range 1-28.7 cM). Hybridization of selected markers to blots of electrophoretic karyotypes unambiguously assigned all linkage groups to chromosomes and led us to conclude that the C. neoformans genome is approximately 20.2 Mb, comprising 14 chromosomes ranging in size from 0.8 to 2.3 Mb, with a ratio of approximately 13.2 kb/cM averaged across the genome. However, only 2 of 12 ungrouped markers hybridized to chromosome 10. The hybridizations revealed at least one possible reciprocal translocation involving chromosomes 8, 9, and 12. This map has been critical to genome sequence assembly and will be essential for future studies of quantitative trait inheritance. PMID:15238516

  18. Fungicidal mechanism of action of D0870 against Cryptococcus neoformans under acidic conditions.

    PubMed Central

    Yamada, H; Watanabe, T; Kato, K; Mochizuki, H

    1997-01-01

    The fungicidal mechanism of the triazole D0870 against Cryptococcus neoformans under acidic conditions was investigated. D0870 reduced the intracellular K+ content of C. neoformans at pH 4 to about half the value at pH 7 after 12 h of incubation. The 50% inhibitory concentrations of D0870 for ergosterol biosynthesis were almost the same at both pH 4 (0.017 microg/ml) and 7 (0.014 microg/ml); however, D0870 caused a marked accumulation of an unknown lipid and methylated sterols in C. neoformans cultured at pH 4. Extracted fractions containing the unknown lipid or methylated sterols showed strong fungicidal activities against C. neoformans both at pH 4 and 7 in phosphate-citrate buffer not containing D0870. Gas chromatographic-mass spectrometric analysis showed that the unknown lipid was obtusifolione. These results suggest that D0870 kills C. neoformans by disturbing the permeability of the cell membrane through the accumulation of obtusifolione and methylated sterols in the cell membrane under acidic conditions. PMID:9420043

  19. A Multi-Host Approach for the Systematic Analysis of Virulence Factors in Cryptococcus neoformans

    PubMed Central

    Desalermos, Athanasios; Tan, Xiaojiang; Rajamuthiah, Rajmohan; Arvanitis, Marios; Wang, Yan; Li, Dedong; Kourkoumpetis, Themistoklis K.; Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

    2015-01-01

    A multi-host approach was followed to screen a library of 1201 signature-tagged deletion strains of Cryptococcus neoformans mutants to identify previously unknown virulence factors. The primary screen was performed using a Caenorhabditis elegans–C. neoformans infection assay. The hits among these strains were reconfirmed as less virulent than the wild type in the insect Galleria mellonella–C. neoformans infection assay. After this 2-stage screen, and to prioritize hits, we performed serial evaluations of the selected strains, using the C. elegans model. All hit strains identified through these studies were validated in a murine model of systemic cryptococcosis. Twelve strains were identified through a stepwise screening assay. Among them, 4 (CSN1201, SRE1, RDI1, and YLR243W) were previously discovered, providing proof of principle for this approach, while the role of the remaining 8 genes (CKS101, CNC5600, YOL003C, CND1850, MLH3, HAP502, MSL5, and CNA2580) were not previously described in cryptococcal virulence. The multi-host approach is an efficient method of studying the pathogenesis of C. neoformans. We used diverse model hosts, C. elegans, G. mellonella, and mice, with physiological differences and identified 12 genes associated with mammalian infection. Our approach may be suitable for large pathogenesis screens. PMID:25114160

  20. Triclosan Demonstrates Synergic Effect with Amphotericin B and Fluconazole and Induces Apoptosis-Like Cell Death in Cryptococcus neoformans

    PubMed Central

    Movahed, Elaheh; Tan, Grace Min Yi; Munusamy, Komathy; Yeow, Tee Cian; Tay, Sun Tee; Wong, Won Fen; Looi, Chung Yeng

    2016-01-01

    Objectives: Cryptococcus neoformans is an opportunistic fungus that causes fatal meningoencephalitis especially in AIDS patients. There is an increasing need for discovery of new anti-cryptococcal drugs due to emergence of resistance cases in recent years. In this study, we aim to elucidate the antifungal effect of triclosan against C. neoformans. Methods: Minimal inhibitory concentration (MIC) of triclosan in different C. neoformans strains was first examined. The in vitro interactions between triclosan and two standard anti-fungal drugs (amphotericin B and fluconazole) were further evaluated by microdilution checkerboard assay. Mechanism of triclosan fungicidal activity was then investigated by viewing the cell morphology under transmission electron microscope. Results: We reported that triclosan potently inhibited the growth of C. neoformans. A combination of triclosan with amphotericin B or with fluconazole enhanced their fungicidal effects. Triclosan-treated C. neoformans displayed characteristics such as nuclear chromatin condensation, extensive intracellular vacuolation and mitochondrial swelling, indicating that triclosan triggered apoptosis-like cell death. Conclusion: In summary, our report suggests triclosan as an independent drug or synergent for C. neoformans treatment. PMID:27047474

  1. Cryptococcus Neoformans Modulates Extracellular Killing by Neutrophils

    PubMed Central

    Qureshi, Asfia; Grey, Angus; Rose, Kristie L.; Schey, Kevin L.; Del Poeta, Maurizio

    2011-01-01

    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (Tgε26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike Candida albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. We monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the conditioned medium and found that pre-incubation with live but not “heat-killed” fungal cells significantly inhibits further killing activity of the medium. We then studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption–ionization tissue imaging in infected lung we found that similar to previous observations in the isogenic wild-type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells, but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells. PMID:21960987

  2. Cryptococcus neoformans infection in malignancy.

    PubMed

    Schmalzle, Sarah A; Buchwald, Ulrike K; Gilliam, Bruce L; Riedel, David J

    2016-09-01

    Cryptococcosis is an opportunistic invasive fungal infection that is well described and easily recognised when it occurs as meningitis in HIV-infected persons. Malignancy and its treatment may also confer a higher risk of infection with Cryptococcus neoformans, but this association has not been as well described. A case of cryptococcosis in a cancer patient is presented, and all cases of coincident C. neoformans infection and malignancy in adults published in the literature in English between 1970 and 2014 are reviewed. Data from these cases were aggregated in order to describe the demographics, type of malignancy, site of infection, clinical manifestations, treatment and outcomes of cryptococcosis in patients with cancer. Haematologic malignancies accounted for 82% of cases, with lymphomas over-represented compared to US population data (66% vs. 53% respectively). Cryptococcosis was reported rarely in patients with solid tumours. Haematologic malignancy patients were more likely to have central nervous system (P < 0.001) or disseminated disease (P < 0.001), receive Amphotericin B as part of initial therapy (P = 0.023), and had higher reported mortality rates than those with solid tumours (P = 0.222). Providers should have heightened awareness of the possibility of cryptococcosis in patients with haematologic malignancy presenting with infection. PMID:26932366

  3. Surface-Associated Plasminogen Binding of Cryptococcus neoformans Promotes Extracellular Matrix Invasion

    PubMed Central

    Fox, Deborah

    2009-01-01

    evidence for the cooperative role of multiple virulence determinants in C. neoformans pathogenesis and suggest new avenues for the development of anti-infective agents in the prevention of fungal tissue invasion. PMID:19492051

  4. Natural habitat of Cryptococcus neoformans var. gattii.

    PubMed Central

    Ellis, D H; Pfeiffer, T J

    1990-01-01

    Environmental isolations have established that Cryptococcus neoformans var. gattii appears to have a specific ecological association with Eucalyptus camaldulensis. So far, we have isolated C. neoformans var. gattii on 35 separate occasions, all from samples associated with E. camaldulensis. The global distribution of E. camaldulensis appears to correspond to the epidemiologic distribution of cryptococcosis caused by C. neoformans var. gattii. No other environmental source for the fungus has yet been detected, and no other eucalypt has the distribution pattern corresponding to reported cases caused by this fungus. These findings may provided an explanation for the high incidence of infections caused by C. neoformans var. gattii in Australian aborigines living in the Northern Territory and for its low worldwide incidence in acquired immunodeficiency syndrome patients. Images PMID:2199524

  5. 3-Bromopyruvate: a novel antifungal agent against the human pathogen Cryptococcus neoformans.

    PubMed

    Dyląg, Mariusz; Lis, Paweł; Niedźwiecka, Katarzyna; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2013-05-01

    We have investigated the antifungal activity of the pyruvic acid analogue: 3-bromopyruvate (3-BP). Growth inhibition by 3-BP of 110 strains of yeast-like and filamentous fungi was tested by standard spot tests or microdilution method. The human pathogen Cryptococcus neoformans exhibited a low Minimal Inhibitory Concentration (MIC) of 0.12-0.15 mM 3-BP. The high toxicity of 3-BP toward C. neoformans correlated with high intracellular accumulation of 3-BP and also with low levels of intracellular ATP and glutathione. Weak cytotoxicity towards mammalian cells and lack of resistance conferred by the PDR (Pleiotropic Drug Resistance) network in the yeast Saccharomyces cerevisiae, are other properties of 3-BP that makes it a novel promising anticryptococcal drug. PMID:23541578

  6. Host immunity to Cryptococcus neoformans

    PubMed Central

    Rohatgi, Soma; Pirofski, Liise-anne

    2015-01-01

    Cryptococcosis is caused by the fungal genus Cryptococcus. Cryptococcosis, predominantly meningoencephalitis, emerged with the HIV pandemic, primarily afflicting HIV-infected patients with profound T-cell deficiency. Where in use, combination antiretroviral therapy has markedly reduced the incidence of and risk for disease, but cryptococcosis continues to afflict those without access to therapy, particularly in sub-Saharan Africa and Asia. However, cryptococcosis also occurs in solid organ transplant recipients and patients with other immunodeficiencies as well as those with no known immunodeficiency. This article reviews innate and adaptive immune responses to C. neoformans, with an emphasis on recent studies on the role of B cells, natural IgM and Fc gamma receptor polymorphisms in resistance to cryptococcosis. PMID:25865194

  7. Host immunity to Cryptococcus neoformans.

    PubMed

    Rohatgi, Soma; Pirofski, Liise-Anne

    2015-01-01

    Cryptococcosis is caused by the fungal genus Cryptococcus. Cryptococcosis, predominantly meningoencephalitis, emerged with the HIV pandemic, primarily afflicting HIV-infected patients with profound T-cell deficiency. Where in use, combination antiretroviral therapy has markedly reduced the incidence of and risk for disease, but cryptococcosis continues to afflict those without access to therapy, particularly in sub-Saharan Africa and Asia. However, cryptococcosis also occurs in solid organ transplant recipients and patients with other immunodeficiencies as well as those with no known immunodeficiency. This article reviews innate and adaptive immune responses to C. neoformans, with an emphasis on recent studies on the role of B cells, natural IgM and Fc gamma receptor polymorphisms in resistance to cryptococcosis. PMID:25865194

  8. Identification and properties of plasma membrane azole efflux pumps from the pathogenic fungi Cryptococcus gattii and Cryptococcus neoformans

    PubMed Central

    Basso, Luiz R.; Gast, Charles E.; Bruzual, Igor; Wong, Brian

    2015-01-01

    Objectives Cryptococcus gattii from the North American Northwest (NW) have higher azole MICs than do non-NW C. gattii or Cryptococcus neoformans. Since mechanisms of azole resistance in C. gattii are not known, we identified C. gattii and C. neoformans plasma membrane azole efflux pumps and characterized their properties. Methods The C. gattii R265 genome was searched for orthologues of known fungal azole efflux genes, expression of candidate genes was assessed by RT–PCR and the expressed genes' cDNAs were cloned and expressed in Saccharomyces cerevisiae. Azole MICs and intracellular [3H]fluconazole were measured in C. gattii and C. neoformans and in S. cerevisiae expressing each cDNA of interest, as was [3H]fluconazole uptake by post-Golgi vesicles (PGVs) isolated from S. cerevisiae sec6-4 mutants expressing each cDNA of interest. Results Intracellular [3H]fluconazole concentrations were inversely correlated with fluconazole MICs only in 25 NW C. gattii strains. S. cerevisiae expressing three C. gattii cDNAs (encoded by orthologues of C. neoformans AFR1 and MDR1 and the previously unstudied gene AFR2) and their C. neoformans counterparts had higher azole MICs and lower intracellular [3H]fluconazole concentrations than did empty-vector controls. PGVs from S. cerevisiae expressing all six Cryptococcus cDNAs also accumulated more [3H]fluconazole than did controls, and [3H]fluconazole transport by all six transporters of interest was ATP dependent and was inhibited by excess unlabelled fluconazole, voriconazole, itraconazole and posaconazole. Conclusions We conclude that C. gattii and C. neoformans AFR1, MDR1 and AFR2 encode ABC transporters that pump multiple azoles out of S. cerevisiae cells, thereby causing azole resistance. PMID:25630649

  9. Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population

    PubMed Central

    Cogliati, Massimo; Zani, Alberto; Rickerts, Volker; McCormick, Ilka; Desnos-Ollivier, Marie; Velegraki, Aristea; Escandon, Patricia; Ichikawa, Tomoe; Ikeda, Reiko; Bienvenue, Anne-Lise; Tintelnot, Kathrin; Tore, Okan; Akcaglar, Sevim; Lockhart, Shawn; Tortorano, Anna Maria; Varma, Ashok

    2016-01-01

    Cryptococcus neoformans var. neoformans (serotype D) represents about 30% of the clinical isolates in Europe and is present less frequently in the other continents. It is the prevalent etiological agent in primary cutaneous cryptococcosis as well as in cryptococcal skin lesions of disseminated cryptococcosis. Very little is known about the genotypic diversity of this Cryptococcus subtype. The aim of this study was to investigate the genotypic diversity among a set of clinical and environmental C. neoformans var. neoformans isolates and to evaluate the relationship between genotypes, geographical origin and clinical manifestations. A total of 83 globally collected C. neoformans var. neoformans isolates from Italy, Germany, France, Belgium, Denmark, Greece, Turkey, Thailand, Japan, Colombia, and the USA, recovered from different sources (primary and secondary cutaneous cryptococcosis, disseminated cryptococcosis, the environment, and animals), were included in the study. All isolates were confirmed to belong to genotype VNIV by molecular typing and they were further investigated by MLST analysis. Maximum likelihood phylogenetic as well as network analysis strongly suggested the existence of a recombinant rather than a clonal population structure. Geographical origin and source of isolation were not correlated with a specific MLST genotype. The comparison with a set of outgroup C. neoformans var. grubii isolates provided clear evidence that the two varieties have different population structures. PMID:26768709

  10. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival

    PubMed Central

    Fernandes, João Daniel Santos; Martho, Kevin; Tofik, Veridiana; Vallim, Marcelo A.; Pascon, Renata C.

    2015-01-01

    Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR). We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8). The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i) quality of nitrogen (Nitrogen Catabolism Repression, NCR) and carbon sources (Carbon Catabolism Repression, CCR), (ii) amino acid availability in the extracellular environment (SPS-sensing) and (iii) nutritional deprivation (Global Amino Acid Control, GAAC). This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro. PMID:26162077

  11. The 14-3-3 Gene Function of Cryptococcus neoformans Is Required for its Growth and Virulence.

    PubMed

    Li, Jingbo; Chang, Yun C; Wu, Chun-Hua; Liu, Jennifer; Kwon-Chung, Kyung J; Huang, Sheng-He; Shimada, Hiro; Fante, Rob; Fu, Xiaowei; Jong, Ambrose

    2016-05-28

    Cryptococcus neoformans is a life-threatening pathogenic yeast that causes devastating meningoencephalitis. The mechanism of cryptococcal brain invasion is largely unknown, and recent studies suggest that its extracellular microvesicles may be involved in the invasion process. The 14-3-3 protein is abundant in the extracellular microvesicles of C. neoformans, and the 14-3-3-GFP fusion has been used as the microvesicle's marker. However, the physiological role of 14-3-3 has not been explored. In this report, we have found that C. neoformans contains a single 14-3-3 gene that apparently is an essential gene. To explore the functions of 14-3-3, we substituted the promoter region of the 14-3-3 with the copper-controllable promoter CTR4. The CTR4 regulatory strain showed an enlarged cell size, drastic changes in morphology, and a decrease in the thickness of the capsule under copper-enriched conditions. Furthermore, the mutant cells produced a lower amount of total proteins in their extracellular microvesicles and reduced adhesion to human brain microvascular endothelial cells in vitro. Proteomic analyses of the protein components under 14-3-3-overexpressed and -suppressed conditions revealed that the 14-3-3 function(s) might be associated with the microvesicle biogenesis. Our results support that 14-3-3 has diverse pertinent roles in both physiology and pathogenesis in C. neoformans. Its gene functions are closely relevant to the pathogenesis of this fungus. PMID:26437944

  12. Analysis of Cell Cycle and Replication of Mouse Macrophages after In Vivo and In Vitro Cryptococcus neoformans Infection Using Laser Scanning Cytometry

    PubMed Central

    Tesfa, Lydia; Zhang, Jinghang; Rivera, Johanna; Gonçalves, Teresa; Casadevall, Arturo

    2012-01-01

    We investigated the outcome of the interaction of Cryptococcus neoformans with murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis of C. neoformans promoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2′-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis of C. neoformans promoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellular C. neoformans residence that manifested itself in impaired cell cycle completion as a consequence of a block in the G2/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replication in vivo and demonstrated that these cells are capable of low levels of cell division in the presence or absence of C. neoformans infection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect of C. neoformans infection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferation in vivo. PMID:22252872

  13. An inducible and secreted eukaryote-like serine/threonine kinase of Salmonella enterica serovar Typhi promotes intracellular survival and pathogenesis.

    PubMed

    Theeya, Nagaraja; Ta, Atri; Das, Sayan; Mandal, Rahul S; Chakrabarti, Oishee; Chakrabarti, Saikat; Ghosh, Amar N; Das, Santasabuj

    2015-02-01

    Eukaryote-like serine/threonine kinases (eSTKs) constitute an important family of bacterial virulence factors. Genome analysis had predicted putative eSTKs in Salmonella enterica serovar Typhi, although their functional characterization and the elucidation of their role in pathogenesis are still awaited. We show here that the primary sequence and secondary structure of the t4519 locus of Salmonella Typhi Ty2 have all the signatures of eukaryotic superfamily kinases. t4519 encodes a ∼39-kDa protein (T4519), which shows serine/threonine kinase activities in vitro. Recombinant T4519 (rT4519) is autophosphorylated and phosphorylates the universal substrate myelin basic protein. Infection of macrophages results in decreased viability of the mutant (Ty2Δt4519) strain, which is reversed by gene complementation. Moreover, reactive oxygen species produced by the macrophages signal to the bacteria to induce T4519, which is translocated to the host cell cytoplasm. That T4519 may target a host substrate(s) is further supported by the activation of host cellular signaling pathways and the induction of cytokines/chemokines. Finally, the role of T4519 in the pathogenesis of Salmonella Typhi is underscored by the significantly decreased mortality of mice infected with the Ty2Δt4519 strain and the fact that the competitive index of this strain for causing systemic infection is 0.25% that of the wild-type strain. This study characterizes the first eSTK of Salmonella Typhi and demonstrates its role in promoting phagosomal survival of the bacteria within macrophages, which is a key determinant of pathogenesis. This, to the best of our knowledge, is the first study to describe the essential role of eSTKs in the in vivo pathogenesis of Salmonella spp. PMID:25404028

  14. Growth and pigment production on D-tryptophan medium by Cryptococcus gattii, Cryptococcus neoformans, and Candida albicans.

    PubMed

    Chaskes, Stuart; Frases, Susana; Cammer, Michael; Gerfen, Gary; Casadevall, Arturo

    2008-01-01

    Given the increasing prevalence of cryptococcosis caused by Cryptococcus gattii (serotypes B and C) strains, there is a need for rapid and reliable tests that discriminate C. gattii from Cryptococcus neoformans (serotypes A, D, and AD). Seventy-two C. neoformans strains, sixty-seven C. gattii strains, and five Candida albicans strains were analyzed for their ability to grow and produce pigment on minimal D-tryptophan D-proline (m-DTDP) medium, on yeast carbon base D-tryptophan D-proline (YCB-DTDP) medium, and on fructose D-tryptophan glycine (m-FDTG) medium. Of the C. gattii and C. neoformans isolates, 94% and 0% grew on m-DTDP agar, respectively, and 98% and 0% grew in YCB-DTDP medium, respectively. C. gattii produced large amounts of brown intracellular pigment(s) on m-DTDP agar and smaller amounts of yellow-brown (amber) extracellular pigment(s). C. albicans grew on both media and produced a pink photoactivated pigment on m-DTDP agar. C. gattii produced large amounts of brown intracellular pigments on the differential medium m-FDTG, whereas C. neoformans produced smaller amounts of the brown pigments and C. albicans produced a pink pigment. The pigments produced by C. gattii from D-tryptophan were distinct and were not related to melanin formation from 3,4-dihydroxyphenylalanine. Thin-layer chromatography of the methanol-extracted C. gattii cells detected four different pigments, including brown (two types), yellow, and pink-purple compounds. We conclude that tryptophan-derived pigments are not melanins and that growth on m-DTDP or YCB-DTDP agar can be used to rapidly differentiate C. gattii from C. neoformans. PMID:17989195

  15. Genome-Wide Transcription Study of Cryptococcus neoformans H99 Clinical Strain versus Environmental Strains

    PubMed Central

    Movahed, Elaheh; Munusamy, Komathy; Tan, Grace Min Yi; Looi, Chung Yeng; Tay, Sun Tee; Wong, Won Fen

    2015-01-01

    The infection of Cryptococcus neoformans is acquired through the inhalation of desiccated yeast cells and basidiospores originated from the environment, particularly from bird’s droppings and decaying wood. Three environmental strains of C. neoformans originated from bird droppings (H4, S48B and S68B) and C. neoformans reference clinical strain (H99) were used for intranasal infection in C57BL/6 mice. We showed that the H99 strain demonstrated higher virulence compared to H4, S48B and S68B strains. To examine if gene expression contributed to the different degree of virulence among these strains, a genome-wide microarray study was performed to inspect the transcriptomic profiles of all four strains. Our results revealed that out of 7,419 genes (22,257 probes) examined, 65 genes were significantly up-or down-regulated in H99 versus H4, S48B and S68B strains. The up-regulated genes in H99 strain include Hydroxymethylglutaryl-CoA synthase (MVA1), Mitochondrial matrix factor 1 (MMF1), Bud-site-selection protein 8 (BUD8), High affinity glucose transporter 3 (SNF3) and Rho GTPase-activating protein 2 (RGA2). Pathway annotation using DAVID bioinformatics resource showed that metal ion binding and sugar transmembrane transporter activity pathways were highly expressed in the H99 strain. We suggest that the genes and pathways identified may possibly play crucial roles in the fungal pathogenesis. PMID:26360021

  16. Invasion of the Central Nervous System by Cryptococcus neoformans Requires a Secreted Fungal Metalloprotease

    PubMed Central

    Vu, Kiem; Tham, Rick; Uhrig, John P.; Thompson, George R.; Na Pombejra, Sarisa; Jamklang, Mantana; Bautos, Jennifer M.

    2014-01-01

    ABSTRACT Cryptococcus spp. cause life-threatening fungal infection of the central nervous system (CNS), predominantly in patients with a compromised immune system. Why Cryptococcus neoformans has this remarkable tropism for the CNS is not clear. Recent research on cerebral pathogenesis of C. neoformans revealed a predominantly transcellular migration of cryptococci across the brain endothelium; however, the identities of key fungal virulence factors that function specifically to invade the CNS remain unresolved. Here we found that a novel, secreted metalloprotease (Mpr1) that we identified in the extracellular proteome of C. neoformans (CnMpr1) is required for establishing fungal disease in the CNS. Mpr1 belongs to a poorly characterized M36 class of fungalysins that are expressed in only some fungal species. A strain of C. neoformans lacking the gene encoding Mpr1 (mpr1Δ) failed to breach the endothelium in an in vitro model of the human blood-brain barrier (BBB). A mammalian host infected with the mpr1Δ null strain demonstrated significant improvement in survival due to a reduced brain fungal burden and lacked the brain pathology commonly associated with cryptococcal disease. The in vivo studies further indicate that Mpr1 is not required for fungal dissemination and Mpr1 likely targets the brain endothelium specifically. Remarkably, the sole expression of CnMPR1 in Saccharomyces cerevisiae resulted in a robust migration of yeast cells across the brain endothelium, demonstrating Mpr1’s specific activity in breaching the BBB and suggesting that Mpr1 may function independently of the hyaluronic acid-CD44 pathway. This distinct role for Mpr1 may develop into innovative treatment options and facilitate a brain-specific drug delivery platform. PMID:24895304

  17. Cryptococcus neoformans var. grubii-Induced Arthritis with Encephalitic Dissemination in a Dog and Review of Published Literature.

    PubMed

    Headley, Selwyn Arlington; Mota, Francisco Claudio D; Lindsay, Scott; de Oliveira, Luiza M; Medeiros, Alessandra Aparecida; Pretto-Giordano, Lucienne Garcia; Saut, João Paulo Elsen; Krockenberger, Mark

    2016-08-01

    This article describes the clinical, pathological, and immunohistochemical findings associated with Cryptococcus neoformans var. grubii in a 4-year-old female Boxer dog from Uberlândia, Minas Gerais, Southeastern Brazil. Clinically, there was a swelling at the right metatarsal region and the hock joint with enlargement of regional lymph nodes. Radiographical evaluation revealed lysis of the tarsal bone; cytology demonstrated cryptococcal intralesional organisms at the swollen joint. Despite empirical antifungals therapeutic, the animal developed neurological cryptococcosis and died spontaneously. Significant pathological alterations included arthritis, lymphadenitis, and encephalitic cryptococcomas associated with numerous intralesional narrow-necked budding encapsulated yeasts. Immunohistochemistry utilising monoclonal antibodies that label C. neoformans sp. complex capsule, characterised the yeasts as C. neoformans var. grubii. Collectively, the pathological and immunohistochemical findings of this dog indicate that the intralesional organisms observed within the articular surface of the hock joint, lymph nodes, and the brain were C. neoformans var. grubii, confirming the participation of this fungal pathogen in the development of cryptococcal arthritis. In this case, the most likely pathogenesis was percutaneous inoculation with resultant abscess-like lesion, which resulted in the draining sinus, swelling of the right hind limb with progression to the articular disease. Thereafter, the fungal pathogen probably compromised the adjacent lymph nodes with subsequent haematogenous distribution to the brain, terminating with cryptococcal arthritis, lymphadenitis, and encephalitis. PMID:27126588

  18. Isolation of Cryptococcus neoformans var. neoformans from bird droppings, fruits and vegetables in Mexico City.

    PubMed

    López-Martínez, R; Castañón-Olivares, L R

    1995-01-01

    The presence of Cryptococcus neoformans in various natural sources, such as bird droppings, fruits and vegetables, was investigated. A total of 711 samples were analyzed; C. neoformans var. neoformans was isolated from seven out of 74 bird droppings (9.5%), with parrots as one of the most significant sources. Fruits were positive in 9.5% of the 169 samples studied, specially citrus fruits, particularly grapefruit, in which the highest frequency was found. From the 468 vegetable samples, only 20 were positive (4.2%). It is emphasized that five of the positive vegetables species are autochthonous to Mexico: avocado (Nectandra salicifolia), beet (Beta vulgaris var. quinopodiace), chayote (Sechium edule), stringbean (Cassia sp), and nopal (Opuntia ficus-indica). PMID:7617014

  19. Cryptococcus neoformans: Tripping on Acid in the Phagolysosome

    PubMed Central

    DeLeon-Rodriguez, Carlos M.; Casadevall, Arturo

    2016-01-01

    Cryptococcus neoformans (Cn) is a basidiomycetous pathogenic yeast that is a frequent cause of meningoencephalitis in immunocompromised individuals. Cn is a facultative intracellular pathogen in mammals, insects and amoeba. Cn infection occurs after inhalation of spores or desiccated cells from the environment. After inhalation Cn localizes to the lungs where it can be phagocytosed by alveolar macrophages. Cn is surrounded by a polysaccharide capsule that helps the fungus survive in vivo by interfering with phagocytosis, quenching free radical bursts and shedding polysaccharides that negatively modulates the immune system. After phagocytosis, Cn resides within the phagosome that matures to become a phagolysosome, a process that results in the acidification of the phagolysosomal lumen. Cn replicates at a higher rate inside macrophages than in the extracellular environment, possibly as a result that the phagosomal pH is near that optimal for growth. Cn increases the phagolysosomal pH and modulates the dynamics of Rab GTPases interaction with the phagolysosome. Chemical manipulation of the phagolysosomal pH with drugs can result in direct and indirect killing of Cn and reduced non-lytic exocytosis. Phagolysosomal membrane damage after Cn infection occurs both in vivo and in vitro, and is required for Cn growth and survival. Macrophage treatment with IFN-γ reduces the phagolysosomal damage and increases intracellular killing of Cn. Studies on mice and humans show that treatment with IFN-γ can improve host control of the disease. However, the mechanism by which Cn mediates phagolysosomal membrane damage remains unknown but likely candidates are phospholipases and mechanical damage from an enlarging capsule. Here we review Cn intracellular interaction with a particular emphasis on phagosomal interactions and develop the notion that the extent of damage of the phagosomal membrane is a key determinant of the outcome of the Cn-macrophage interaction. PMID:26925039

  20. Colonization of a voice prosthesis by Cryptococcus neoformans.

    PubMed

    Bauters, T G; Moerman, M; Pini, G; Vermeersch, H; Nelis, H J

    2001-08-01

    Tracheoesophageal voice prostheses in laryngectomized patients commonly deteriorate due to the presence of yeasts, particularly Candida species. We describe the first case of colonization of such a device by Cryptococcus neoformans in a patient with a history of glottic carcinoma. The isolate showed an identical genomic pattern with C. neoformans from pigeon excreta in the patient's environment. PMID:11556769

  1. Serotyping of Cryptococcus neoformans Isolates from Clinical and Environmental Sources in Spain

    PubMed Central

    Baró, Teresa; Torres-Rodríguez, Josep M.; Morera, Yolanda; Alía, Concepción; López, Olga; Méndez, Raul

    1999-01-01

    We determined biovars and serotypes of 154 isolates of Cryptococcus neoformans from clinical and environmental sources from different areas of Spain. All clinical isolates belonged to C. neoformans var. neoformans. Serotypes showed an irregular distribution. C. neoformans var. gattii serotype B was isolated from necropsy specimens from goats with pulmonary disease. PMID:10074545

  2. Hydroxyurea treatment inhibits proliferation of Cryptococcus neoformans in mice.

    PubMed

    Tripathi, Kaushlendra; Mor, Visesato; Bairwa, Narendra K; Del Poeta, Maurizio; Mohanty, Bidyut K

    2012-01-01

    The fungal pathogen Cryptococcus neoformans (Cn) is a serious threat to immunocompromised individuals, especially for HIV patients who develop meningoencephalitis. For effective cryptococcal treatment, novel antifungal drugs or innovative combination therapies are needed. Recently, sphingolipids have emerged as important bioactive molecules in the regulation of microbial pathogenesis. Previously we reported that the sphingolipid pathway gene, ISC1, which is responsible for ceramide production, is a major virulence factor in Cn infection. Here we report our studies of the role of ISC1 during genotoxic stress induced by the antineoplastic hydroxyurea (HU) and methyl methanesulfonate (MMS), which affect DNA replication and genome integrity. We observed that Cn cells lacking ISC1 are highly sensitive to HU and MMS in a rich culture medium. HU affected cell division of Cn cells lacking the ISC1 gene, resulting in cell clusters. Cn ISC1, when expressed in a Saccharomyces cerevisiae (Sc) strain lacking its own ISC1 gene, restored HU resistance. In macrophage-like cells, although HU affected the proliferation of wild type (WT) Cn cells by 50% at the concentration tested, HU completely inhibited Cn isc1Δ cell proliferation. Interestingly, our preliminary data show that mice infected with WT or Cn isc1Δ cells and subsequently treated with HU had longer lifespans than untreated, infected control mice. Our work suggests that the sphingolipid pathway gene, ISC1, is a likely target for combination therapy with traditional drugs such as HU. PMID:22783238

  3. Antibody Response to Cryptococcus neoformans Proteins in Rodents and Humans

    PubMed Central

    Chen, Lin-Chi; Goldman, David L.; Doering, Tamara L.; Pirofski, Liise-anne; Casadevall, Arturo

    1999-01-01

    The prevalence and specificity of serum antibodies to Cryptococcus neoformans proteins was studied in mice and rats with experimental infection, in individuals with or without a history of potential laboratory exposure to C. neoformans, human immunodeficiency virus (HIV)-positive individuals who developed cryptococcosis, in matched samples from HIV-positive individuals who did not develop cryptococcosis, and in HIV-negative individuals. Rodents had little or no serum antibody reactive with C. neoformans proteins prior to infection. The intensity and specificity of the rodent antibody response were dependent on the species, the mouse strain, and the viability of the inoculum. All humans had serum antibodies reactive with C. neoformans proteins regardless of the potential exposure, the HIV infection status, or the subsequent development of cryptococcosis. Our results indicate (i) a high prevalence of antibodies reactive with C. neoformans proteins in the sera of rodents after cryptococcal infection and in humans with or without HIV infection; (ii) qualitative and quantitative differences in the antibody profiles of HIV-positive individuals; and (iii) similarities and differences between humans, mice, and rats with respect to the specificity of the antibodies reactive with C. neoformans proteins. The results are consistent with the view that C. neoformans infections are common in human populations, and the results have implications for the development of vaccination strategies against cryptococcosis. PMID:10225877

  4. [Phenotype characterization of environmental Cryptococcus neoformans isolates].

    PubMed

    Huérfano, Sandra; Cepero, Maria Caridad; Castañeda, Elizabeth

    2003-09-01

    Cryptococcosis is caused by the three varieties of C. neoformans with physiological and virulence differences, some of which have been studied to determine biological aspects of this microorganism. The phenotypical aspects of environmental isolates from varieties grubii and gattii were evaluated to establish differences associated with their life cycle and virulence. To this end, 28 and 31 strains of C. neoformans serotypes A (var. grubii) and C (var. gattii) were studied. The microscopic and macroscopic morphology on Sabouraud agar and soils, growth rate at 37 degrees C, production of 22 extracellular enzymes, haploid fructification, mating type, killer toxin sensitivity patterns and virulence in BALB/c mice were evaluated. No differences were observed between the two varieties regarding microscopic and macroscopic morphology or growth at 37 degrees C (p > 0.05). However, a decrease in the cellular and capsular sizes of yeast in soil, as compared to Sabouraud, was observed (p < 0.05). Additionally, higher enzimatic activity of proteases, phospholipases, phenoloxidase and beta-glucosidase was observed in var. grubii isolates as compared to var. gattii (p < 0.05). In both varieties, structures related with haploid fruitification were observed and all isolates were mating type alpha. Killer toxin sensitivity patterns of the isolates of var. grubii were I and II; in contrast, in var. gattii, seven different patterns were found: I, V, IX-XIII. In the animal model we found that 12 of 22 (54.5%) isolates of var. grubii caused the death of the mice during the observation period, while none of the 14 var. gattii isolates caused it. The decrease in capsular and cellular sizes of the yeast in soil and the frequency of mating type alpha with structures related to haploid fructification suggest an important mechanism of production of infectious particles in nature. Additionally, greater enzimatic activity of var. grubii can be associated with the virulence in the animal model

  5. Effects of CTR4 deletion on virulence and stress response in Cryptococcus neoformans.

    PubMed

    Zhang, Ping; Zhang, Defa; Zhao, Xueru; Wei, Dongsheng; Wang, Yu; Zhu, Xudong

    2016-08-01

    Roles of the high-affinity copper transporter Ctr4 in the virulence of Cryptococcus neoformans remain to be fully determined. Here we demonstrate that Ctr4 plays a necessary role in virulence and tolerance to a number of stress conditions. We first observed, with the method of flame atomic absorption spectrometry, that deletion of CTR4 resulted in a significant decrease in intracellular copper level, confirming the role of Ctr4 as a copper transporter in C. neoformans. Furthermore, CTR4 was critical for the yeast to survive at both elevated and low temperatures, as the growth rate of the ctr4Δ mutant at 4 and 37 °C was significantly decreased. The mutant ctr4Δ also exhibited hypersensitivity to osmotic stress imposed by 2 M NaCl or KCl, indicating the possible crosstalk of Ctr4 with the HOG signalling pathway. Moreover, cell wall and plasma membrane integrity appeared to be impaired in the ctr4Δ strain. The virulence of ctr4Δ in two mouse cryptococcosis models was remarkably reduced either via an intranasal or intravenous inoculation. Our work confirms the roles of Ctr4 in virulence and copper homeostasis as well as other additional novel functions. PMID:27317510

  6. Capsule Growth in Cryptococcus neoformans Is Coordinated with Cell Cycle Progression

    PubMed Central

    García-Rodas, Rocío; Cordero, Radames J. B.; Trevijano-Contador, Nuria; Janbon, Guilhem; Moyrand, Frédérique; Casadevall, Arturo

    2014-01-01

    ABSTRACT The fungal pathogen Cryptococcus neoformans has several virulence factors, among which the most important is a polysaccharide capsule. The size of the capsule is variable and can increase significantly during infection. In this work, we investigated the relationship between capsular enlargement and the cell cycle. Capsule growth occurred primarily during the G1 phase. Real-time visualization of capsule growth demonstrated that this process occurred before the appearance of the bud and that capsule growth arrested during budding. Benomyl, which arrests the cells in G2/M, inhibited capsule growth, while sirolimus (rapamycin) addition, which induces G1 arrest, resulted in cells with larger capsule. Furthermore, we have characterized a mutant strain that lacks a putative G1/S cyclin. This mutant showed an increased capacity to enlarge the capsule, both in vivo (using Galleria mellonella as the host model) and in vitro. In the absence of Cln1, there was a significant increase in the production of extracellular vesicles. Proteomic assays suggest that in the cln1 mutant strain, there is an upregulation of the glyoxylate acid cycle. Besides, this cyclin mutant is avirulent at 37°C, which correlates with growth defects at this temperature in rich medium. In addition, the cln1 mutant showed lower intracellular replication rates in murine macrophages. We conclude that cell cycle regulatory elements are involved in the modulation of the expression of the main virulence factor in C. neoformans. PMID:24939886

  7. Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis

    SciTech Connect

    Alspaugh, J.A.; Granger, D.L. )

    1991-07-01

    Activated macrophages are able to inhibit the replication of intracellular microbes and tumor cells. In the murine system, this cytostatic effect is associated with the oxidation of L-arginine to L-citrulline, nitrite, and nitrate and is thought to be mediated by an intermediate of this reaction, possibly nitric oxide (NO.). By exposing replicating Cryptococcus neoformans cells to conditions under which NO. is chemically generated, we have observed a cytostatic effect similar to that caused by activated murine macrophages. Nitric oxide is formed as a decomposition product of nitrite salts in acidic, aqueous solutions. Although C. neoformans replicates well in the presence of high nitrite concentrations at physiologic pH, its growth in acidic media can be inhibited by the addition of low concentrations of sodium nitrite. The degree of cytostasis is dependent on both the pH and the nitrite concentration of the NO. generating solution. The cytostatic effector molecule appears to be a gas since, in addition to inhibiting C. neoformans replication in solution, it is able to exert its inhibitory effect across a gas-permeable but ion-impermeable membrane. At high nitrite concentrations, a fungicidal effect occurs. We propose that the growth inhibition of C. neoformans upon exposure to chemically generated NO. or some related oxide of nitrogen represents a cell-free system simulating the cytostatic effect of activated murine macrophages.

  8. Role of Granulocyte Macrophage Colony-Stimulating Factor in Host Defense Against Pulmonary Cryptococcus neoformans Infection during Murine Allergic Bronchopulmonary Mycosis

    PubMed Central

    Chen, Gwo-Hsiao; Olszewski, Michal A.; McDonald, Roderick A.; Wells, Jason C.; Paine, Robert; Huffnagle, Gary B.; Toews, Galen B.

    2007-01-01

    We investigated the role of granulocyte macrophage colony-stimulating factor (GM-CSF) in host defense in a murine model of pulmonary cryptococcosis induced by intratracheal inoculation of Cryptococcus neoformans. Pulmonary C. neoformans infection of C57BL/6 mice is an established model of an allergic bronchopulmonary mycosis. Our objective was to determine whether GM-CSF regulates the pulmonary Th2 immune response in C. neoformans-infected C57BL/6 mice. Long-term pulmonary fungistasis was lost in GM-CSF knockout (GM−/−) mice, resulting in increased pulmonary burden of fungi between weeks 3 and 5. GM-CSF was required for the early influx of macrophages and CD4 and CD8 T cells into the lungs but was not required later in the infection. Lack of GM-CSF also resulted in reduced eosinophil recruitment and delayed recruitment of mononuclear cells into the airspace. Macrophages from GM+/+ mice showed numerous hallmarks of alternatively activated macrophages: higher numbers of intracellular cryptococci, YM1 crystals, and induction of CCL17. These hallmarks are absent in macrophages from GM−/− mice. Mucus-producing goblet cells were abundantly present within the bronchial epithelial layer in GM+/+ mice but not in GM−/− mice at week 5 after infection. Production of both Th1 and Th2 cytokines was impaired in the absence of GM-CSF, consistent with both reduced C. neoformans clearance and absence of allergic lung pathology. PMID:17322386

  9. Applying Genetics and Molecular Biology to the Study of the Human Pathogen Cryptococcus neoformans

    PubMed Central

    Chun, Cheryl D.; Madhani, Hiten D.

    2013-01-01

    The basidiomycete yeast Crytococcus neoformans is a prominent human pathogen. It primarily infects immunocompromised individuals producing a meningoencephalitis that is lethal if untreated. Recent advances in its genetics and molecular biology have made it a model system for understanding both the Basidiomycota phylum and mechanisms of fungal pathogenesis. The relative ease of experimental manipulation coupled with the development of murine models for human disease allow for powerful studies in the mechanisms of virulence and host responses. This chapter introduces the organism and its life cycle and then provides detailed step-by-step protocols for culture, manipulation of the genome, analysis of nucleic acids and proteins, and assessment of virulence and expression of virulence factors. PMID:20946836

  10. Intron retention-dependent gene regulation in Cryptococcus neoformans

    PubMed Central

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  11. Intron retention-dependent gene regulation in Cryptococcus neoformans.

    PubMed

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  12. Mechanisms of inhibition of Cryptococcus neoformans by human lymphocytes.

    PubMed Central

    Levitz, S M; North, E A; Dupont, M P; Harrison, T S

    1995-01-01

    Recently, our laboratory and others have demonstrated that human peripheral blood T and NK lymphocytes directly inhibit the growth of Cryptococcus neoformans. In this study, we further define the conditions under which lymphocyte-mediated fungistasis against C. neoformans occurs and examine whether mechanisms implicated in lymphocyte-mediated activities against other target cells are also involved in anticryptococcal activity. The addition of whole or broken heat-killed C. neoformans modestly inhibited lymphocyte-mediated fungistasis, whereas other particulates had no effect. The hydroxyl radical scavenger catechin, but not diethyl urea or propyl gallate, profoundly inhibited fungistasis. Salicylic acid inhibited fungistasis in a dose-dependent fashion. However, two other cyclooxygenase inhibitors, piroxicam and indomethacin, had no effect, suggesting that the mechanism of inhibition by salicylic acid was cyclooxygenase independent. Reagent prostaglandin E2, at concentrations shown by others to inhibit NK cell-mediated bactericidal and tumorlytic activities, had no effect on lymphocyte-mediated fungistasis. The addition of selected monoclonal antibodies or ligands reactive with receptors on human lymphocytes had no significant effect on lymphocyte-mediated fungistasis. Acapsular, small-capsuled, and large-capsuled C. neoformans organisms were inhibited by lymphocytes to an approximately equal extent. These data demonstrate that lymphocyte-mediated activity against C. neoformans proceeds regardless of the presence of capsule and by mechanisms at least in part dissimilar from those seen with other target cells. PMID:7642290

  13. Isolation and characterization of the Cryptococcus neoformans MATa pheromone gene.

    PubMed Central

    McClelland, Carol M; Fu, Jianmin; Woodlee, Gay L; Seymour, Tara S; Wickes, Brian L

    2002-01-01

    Cryptococcus neoformans is a heterothallic basidiomycete with two mating types, MATa and MATalpha. The mating pathway of this fungus has a number of conserved genes, including a MATalpha-specific pheromone (MFalpha1). A modified differential display strategy was used to identify a gene encoding the MATa pheromone. The gene, designated MFa1, is 42 amino acids in length and contains a conserved farnesylation motif. MFa1 is present in three linked copies that span a 20-kb fragment of MATa-specific DNA and maps to the MAT-containing chromosome. Transformation studies showed that MFa1 induced filament formation only in MATalpha cells, demonstrating that MFa1 is functionally conserved. Sequence analysis of the predicted Mfa1 and Mfalpha1 proteins revealed that, in contrast to other fungi such as Saccharomyces cerevisiae, the C. neoformans pheromone genes are structurally and functionally conserved. However, unlike the MFalpha1 gene, which is found in MATalpha strains of both varieties of C. neoformans, MFa1 is specific for the neoformans variety of C. neoformans. PMID:11901112

  14. Induction of Protective Immunity to Cryptococcal Infection in Mice by a Heat-Killed, Chitosan-Deficient Strain of Cryptococcus neoformans

    PubMed Central

    Upadhya, Rajendra; Lam, Woei C.; Maybruck, Brian; Specht, Charles A.; Levitz, Stuart M.

    2016-01-01

    ABSTRACT Cryptococcus neoformans is a major opportunistic fungal pathogen that causes fatal meningoencephalitis in immunocompromised individuals and is responsible for a large proportion of AIDS-related deaths. The fungal cell wall is an essential organelle which undergoes constant modification during various stages of growth and is critical for fungal pathogenesis. One critical component of the fungal cell wall is chitin, which in C. neoformans is predominantly deacetylated to chitosan. We previously reported that three chitin deacetylase (CDA) genes have to be deleted to generate a chitosan-deficient C. neoformans strain. This cda1Δ2Δ3Δ strain was avirulent in mice, as it was rapidly cleared from the lungs of infected mice. Here, we report that clearance of the cda1Δ2Δ3Δ strain was associated with sharply spiked concentrations of proinflammatory molecules that are known to be critical mediators of the orchestration of a protective Th1-type adaptive immune response. This was followed by the selective enrichment of the Th1-type T cell population in the cda1Δ2Δ3Δ strain-infected mouse lung. Importantly, this response resulted in the development of robust protective immunity to a subsequent lethal challenge with a virulent wild-type C. neoformans strain. Moreover, protective immunity was also induced in mice vaccinated with heat-killed cda1Δ2Δ3Δ cells and was effective in multiple mouse strains. The results presented here provide a strong framework to develop the cda1Δ2Δ3Δ strain as a potential vaccine candidate for C. neoformans infection. PMID:27165801

  15. In vitro evaluation of combination of fluconazole and flucytosine against Cryptococcus neoformans var. neoformans.

    PubMed Central

    Nguyen, M H; Barchiesi, F; McGough, D A; Yu, V L; Rinaldi, M G

    1995-01-01

    Amphotericin B and fluconazole are current acceptable therapies for cryptococcal meningitis; however, their effect remains suboptimal. The combination of fluconazole and flucytosine has yielded encouraging clinical results in human immunodeficiency virus patients with cryptococcal meningitis. To investigate the biological basis of this finding, we performed in vitro combination testing of fluconazole and flucytosine against 50 clinical strains of Cryptococcus neoformans var. neoformans. Synergy (fractional inhibitory concentration index of < 1.0) was observed in 62% of cases, while antagonism (fractional inhibitory concentration index of > 2.0) was not observed. For cases in which synergy was not achieved (autonomous or additive effects), the beneficial effect of the combination was still seen (i.e., there was still a decrease, although not as dramatic, in the MIC of one or both drugs when used in combination). The in vitro inhibitory action of flucytosine was greatly enhanced by the addition of fluconazole; the flucytosine MICs for Cryptococcus isolates were markedly decreased to concentrations which were severalfold lower than the achievable cerebrospinal fluid flucytosine concentration. On the other hand, the addition of flucytosine did not greatly enhance the in vitro activity of fluconazole if the initial fluconazole MIC for the isolate was > or = 8 micrograms/ml. Controlled clinical studies are warranted to further elucidate the potential utility of fluconazole-flucytosine combination therapy. PMID:7486902

  16. The vacuolar-sorting protein Snf7 is required for export of virulence determinants in members of the Cryptococcus neoformans complex.

    PubMed Central

    da C. Godinho, Rodrigo M.; Crestani, Juliana; Kmetzsch, Lívia; de S. Araujo, Glauber; Frases, Susana; Staats, Charley C.; Schrank, Augusto; Vainstein, Marilene H.; Rodrigues, Marcio L.

    2014-01-01

    Fungal pathogenesis requires a number of extracellularly released virulence factors. Recent studies demonstrating that most fungal extracellular molecules lack secretory tags suggest that unconventional secretion mechanisms and fungal virulence are strictly connected. Proteins of the endosomal sorting complex required for transport (ESCRT) have been recently associated with polysaccharide export in the yeast-like human pathogen Cryptococcus neoformans. Snf7 is a key ESCRT operator required for unconventional secretion in Eukaryotes. In this study we generated snf7Δ mutant strains of C. neoformans and its sibling species C. gattii. Lack of Snf7 resulted in important alterations in polysaccharide secretion, capsular formation and pigmentation. This phenotype culminated with loss of virulence in an intranasal model of murine infection in both species. Our data support the notion that Snf7 expression regulates virulence in C. neoformans and C. gattii by ablating polysaccharide and melanin traffic. These results are in agreement with the observation that unconventional secretion is essential for cryptococcal pathogenesis and strongly suggest the occurrence of still obscure mechanisms of exportation of non-protein molecules in Eukaryotes. PMID:25178636

  17. ALL2, a Homologue of ALL1, Has a Distinct Role in Regulating pH Homeostasis in the Pathogen Cryptococcus neoformans

    PubMed Central

    Jain, Neena; Bouklas, Tejas; Gupta, Anjali; Varshney, Avanish K.; Orner, Erika P.

    2015-01-01

    Cryptococcus neoformans is a facultative intracellular fungal pathogen that has a polysaccharide capsule and causes life-threatening meningoencephalitis. Its capsule, as well as its ability to survive in the acidic environment of the phagolysosome, contributes to the pathogen's resilience in the host environment. Previously, we reported that downregulation of allergen 1 (ALL1) results in the secretion of a shorter, more viscous exopolysaccharide with less branching and structural complexity, as well as altered iron homeostasis. Now, we report on a homologous coregulated gene, allergen 2 (ALL2). ALL2's function was characterized by generating null mutants in C. neoformans. In contrast to ALL1, loss of ALL2 attenuated virulence in the pulmonary infection model. The all2Δ mutant shed a less viscous exopolysaccharide and exhibited higher sensitivity to hydrogen peroxide than the wild type, and as a result, the all2Δ mutant was more resistant to macrophage-mediated killing. Transcriptome analysis further supported the distinct function of these two genes. Unlike ALL1's involvement in iron homeostasis, we now present data on ALL2's unique function in maintaining intracellular pH in low-pH conditions. Thus, our data highlight that C. neoformans, a human-pathogenic basidiomycete, has evolved a unique set of virulence-associated genes that contributes to its resilience in the human niche. PMID:26597983

  18. Cryptococcus neoformans as a cause of bronchiolitis obliterans organizing pneumonia.

    PubMed

    Kessler, Alexander T; Al Kharrat, Tamim; Kourtis, Athena P

    2010-06-01

    The most frequent manifestations of Cryptococcus neoformans (CN) disease are systemic infections in immunocompromised patients and localized pulmonary disease in immunocompetent individuals. Such pulmonary cryptococcosis can range from asymptomatic infection to frank pneumonia that can be severe. Bronchiolitis obliterans organizing pneumonia (BOOP) is a rare severe form of pneumonitis caused by a variety of infectious and toxic agents or connective tissue diseases. BOOP due to Cryptococcus neoformans has very rarely been reported; there have been only five such case reports, mostly in immunocompromised patients. We report herein on a case of CN-associated BOOP in an immunocompetent individual and discuss the diagnosis and treatment of this entity. PMID:20169387

  19. Production of diagnostic pigment by phenoloxidase activity of cryptococcus neoformans.

    PubMed

    Shaw, C E; Kapica, L

    1972-11-01

    Cryptococcus neoformans produces brown pigmented colonies when grown on agar media made from an extract of potatoes and carrots, broad beans (Vicia faba), or Guizotia abyssinica seeds. Since other yeasts do not produce the pigment, these media are useful as differential isolation media for C. neoformans. Similar specific pigment was produced by C. neoformans on chemically defined agar media which contained six different substrates of phenoloxidase (o-diphenol: oxygen oxidoreductase EC 1.10.3.1) an enzyme which catalyses the oxidation of o-diphenols to melanin. Substrates were incorporated singly into the media and included L-3, 4-dihydroxyphenylalanine (L-DOPA), chlorogenic acid, protocatechuic acid, catechol, norepinephrine, and 3-hydroxytyramine hydrochloride (dopamine). No pigment was produced on media without substrate. Phenoloxidase activity in (NH(4))(2)SO(4) precipitates of C. neoformans cell-free extract was assayed by measuring increases in absorbance at 480 nm produced in solutions of L-DOPA. This reaction showed oxygen uptake and was effectively inhibited by copper chelators, but not by catalase. The enzyme also oxidized the five other substrates which induced pigment formation. Electron micrographs of cells incubated in L-DOPA showed deposition of the pigment in the cell wall. PMID:4118328

  20. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence

    PubMed Central

    Ding, Chen; Festa, Richard A.; Chen, Ying-Lien; Espart, Anna; Palacios, Òscar; Espín, Jordi; Capdevila, Mercè; Atrian, Sílvia; Heitman, Joseph; Thiele, Dennis J.

    2013-01-01

    Summary Copper (Cu) is an essential metal that is toxic at high concentrations. Thus, pathogens often rely on host Cu for growth, but host cells can hyper-accumulate Cu to exert anti-microbial effects. The human fungal pathogen Cryptococcus neoformans encodes various Cu-responsive genes but their role in infection is unclear. We determine that pulmonary C. neoformans infection results in Cu-specific induction of genes encoding the Cu-detoxifying metallothionein (Cmt) proteins. Mutant strains lacking CMTs or expressing Cmt variants defective in Cu-coordination exhibit severely attenuated virulence and reduced pulmonary colonization. Consistent with the up-regulation of Cmt proteins, C. neoformans pulmonary infection results in increased serum Cu concentrations and respectively increases and decreases alveolar macrophage expression of the Cu importer, Ctr1, and ATP7A, a transporter implicated in phagosomal Cu compartmentalization. These studies indicate that the host mobilizes Cu as an innate anti-fungal defense but that C. neoformans senses and neutralizes toxic Cu to promote infection. PMID:23498952

  1. Primary Larynx Cryptococcus neoformans Infection: A Distinctive Clinical Entity.

    PubMed

    Bergeron, Mathieu; Gagné, Andrée-Anne; Côté, Mathieu; Chênevert, Jacinthe; Dubé, Robert; Pelletier, René

    2015-12-01

    Cryptococcus neoformans can directly infect the vocal cords. Endoscopic findings were undistinctive from most infiltrative diseases. Tissue biopsy was essential for the diagnosis. Inhaled corticosteroids can predispose to the infection, and fluconazole 400 mg daily for at least 6 weeks appeared to be minimal to achieve a permanent cure. PMID:26753169

  2. Radioimmunotherapy of Cryptococcus neoformans spares bystander mammalian cells

    PubMed Central

    Bryan, Ruth A; Jiang, Zewei; Morgenstern, Alfred; Bruchertseifer, Frank; Casadevall, Arturo; Dadachova, Ekaterina

    2013-01-01

    Aim Previously, we showed that radioimmunotherapy (RIT) for cryptococcal infections using radioactively labeled antibodies recognizing the cryptococcal capsule reduced fungal burden and prolonged survival of mice infected with Cryptococcus neoformans. Here, we investigate the effects of RIT on bystander mammalian cells. Materials & methods Heat-killed C. neoformans bound to anticapsular antibodies, unlabeled or labeled with the β-emitter rhenium-188 (16.9-h half-life) or the α-emitter bismuth-213 (46-min half-life), was incubated with macrophage-like J774.16 cells or epithelial-like Chinese hamster ovary cells. Lactate dehydrogenase activity, crystal violet uptake, reduction of tetrazolium dye (2,3)-bis-(2-methoxy-4-nitro-5-sulfenyl)-(2H)-terazolium-5-carboxanilide and nitric oxide production were measured. Results The J774.16 and Chinese hamster ovary cells maintained membrane integrity, viability and metabolic activity following exposure to radiolabeled C. neoformans. Conclusion RIT of C. neoformans is a selective therapy with minimal effects on host cells and these results are consistent with observations that RIT-treated mice with cryptococcal infection lacked RIT-related pathological changes in lungs and brain tissues. PMID:24020737

  3. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  4. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  5. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  6. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  7. 21 CFR 866.3165 - Cryptococcus neoformans serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cryptococcus neoformans serological reagents. 866.3165 Section 866.3165 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents §...

  8. Dynamic and Heterogeneous Mutations to Fluconazole Resistance in Cryptococcus neoformans

    PubMed Central

    Xu, Jianping; Onyewu, Chiatogu; Yoell, Heather J.; Ali, Rabia Y.; Vilgalys, Rytas J.; Mitchell, Thomas G.

    2001-01-01

    Infections with the human pathogenic basidiomycetous yeast Cryptococcus neoformans are often treated with fluconazole. Resistance to this antifungal agent has been reported. This study investigated the patterns of mutation to fluconazole resistance in C. neoformans in vitro. The MIC of fluconazole was measured for 21 strains of C. neoformans. The MICs for these 21 strains differed (0.25 to 4.0 μg/ml), but the strains were selected for this study because they exhibited no growth on plates of yeast morphology agar (YMA) containing 8 μg of fluconazole per ml. To determine their mutation rates, six independent cultures from a single original colony were established for each of the 21 strains. Each culture was then spread densely on a YMA plate with 8 μg of fluconazole per ml. A random set of putative mutants was subcultured, and the MIC of fluconazole was determined for each mutant. The 21 strains evinced significant heterogeneity in their mutation rates. The MICs of the putative mutants ranged widely, from their original MIC to 64 μg of fluconazole per ml. However, for this set of 21 strains, there was no significant correlation between the original MIC for a strain and the mutation rate of that strain; the MIC for the mutant could not be predicted from the original MIC. These results suggest that dynamic and heterogeneous mutational processes are involved in generating fluconazole resistance in C. neoformans. PMID:11158735

  9. The Transcriptional Response of Cryptococcus neoformans to Ingestion by Acanthamoeba castellanii and Macrophages Provides Insights into the Evolutionary Adaptation to the Mammalian Host

    PubMed Central

    Paes, Hugo Costa; Albuquerque, Patrícia; Tavares, Aldo Henrique F. P.; Fernandes, Larissa; Silva-Pereira, Ildinete; Casadevall, Arturo

    2013-01-01

    Virulence of Cryptococcus neoformans for mammals, and in particular its intracellular style, was proposed to emerge from evolutionary pressures on its natural environment by protozoan predation, which promoted the selection of strategies that allow intracellular survival in macrophages. In fact, Acanthamoeba castellanii ingests yeast cells, which then can replicate intracellularly. In addition, most fungal factors needed to establish infection in the mammalian host are also important for survival within the amoeba. To better understand the origin of C. neoformans virulence, we compared the transcriptional profile of yeast cells internalized by amoebae and murine macrophages after 6 h of infection. Our results showed 656 and 293 genes whose expression changed at least 2-fold in response to the intracellular environments of amoebae and macrophages, respectively. Among the genes that were found in both groups, we focused on open reading frame (ORF) CNAG_05662, which was potentially related to sugar transport but had no determined biological function. To characterize its function, we constructed a mutant strain and evaluated its ability to grow on various carbon sources. The results showed that this gene, named PTP1 (polyol transporter protein 1), is involved in the transport of 5- and 6-carbon polyols such as mannitol and sorbitol, but its presence or absence had no effect on cryptococcal virulence for mice or moth larvae. Overall, these results are consistent with the hypothesis that the capacity for mammalian virulence originated from fungus-protozoan interactions in the environment and provide a better understanding of how C. neoformans adapts to the mammalian host. PMID:23524994

  10. Rapid presumptive identification of Cryptococcus neoformans by staphylococcal coagglutination.

    PubMed Central

    Maccani, J E

    1981-01-01

    A coagglutination reagent was prepared by sensitizing the Cowan I strain of Staphylococcus aureus with rabbit immune globulin directed against Cryptococcus neofromans A15 and absorbed with C. laurentii. This reagent was evaluated for its usefulness in differentiating C. neoformans from other yeast colonies rapidly. Antigen-containing extracts were prepared form Sabouraud dextrose agar cultures of 48 C. neoformans, 33 other Cryptococcus species, 21 Candida, 4 Torulopsis, 3 Saccharomyces, and 2 Rhodotorula strains. This was done by suspending a 0.001-ml loopful of colony growth in 0.5 ml of phenolized saline, mixing for 30 s, and then centrifuging. Equal volumes (50 microliters) of coagglutination reagent and yeast extract were mixed within marked circles on a glass slide and then mechanically rotated at 180 rpm for 8 min. Forty-five of the 48 strains of C. neoformans produced strong (3+ to 4+) agglutination, and 3 strains of serotype C produced weak (1+ to 2+) agglutination with the reagent. Other Cryptococcus species which reacted positively were 4 C. albidus subsp. diffluens, 7 C. albidus subsp. albidus, and 2 C. terreus strains; however, false-positive errors in identification were circumvented by performing a supplemental rapid test for nitrate utilization which differentiated these yeasts from C. neoformans. None of the other yeasts tested (including 14 C. laurentii, 2 C. luteolus, and 2 C. uniguttulatus strains) produced any degree of agglutination with the reagent. A commercial cryptococcal latex agglutination reagent (Crypto-Test, Microbiological Associates, Walkersville, Md.) proved less reliable for identifying C. neoformans yeast colonies because of cross-reactions which occurred with all other species of Cryptococcus tested. PMID:7016909

  11. Cryptococcus neoformans-induced macrophage lysosome damage crucially contributes to fungal virulence1

    PubMed Central

    Davis, Michael J.; Eastman, Alison J.; Qiu, Yafeng; Gregorka, Brian; Kozel, Thomas R.; Osterholzer, John J.; Curtis, Jeffrey L.; Swanson, Joel A.; Olszewski, Michal A.

    2015-01-01

    Upon ingestion by macrophages, Cryptococcus neoformans (Cn) can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms which allow classical activation to counteract replication. Cn-induced lysosome damage was observed in infected murine bone marrow-derived macrophages, increased with time and required yeast viability. To demonstrate lysosome damage in the infected host, we developed a novel flow-cytometric method for measuring lysosome damage. Increased lysosome damage was found in Cn-containing lung cells compared to Cn–free cells. Among Cn-containing myeloid cells, recently recruited cells displayed lower damage than resident cells, consistent with the protective role of recruited macrophages. The magnitude of lysosome damage correlated with increased Cn replication. Experimental induction of lysosome damage increased Cn replication. Activation of macrophages with IFN-γ abolished macrophage lysosome damage and enabled increased killing of Cn. We conclude that induction of lysosome damage is an important Cn survival strategy and that classical activation of host macrophages counters replication by preventing damage. Thus, therapeutic strategies which decrease lysosomal damage, or increase resistance to such damage, could be valuable in treating cryptococcal infections. PMID:25637026

  12. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  13. Isolation of Cryptococcus neoformans var. gattii from Eucalyptus camaldulensis in India.

    PubMed

    Chakrabarti, A; Jatana, M; Kumar, P; Chatha, L; Kaushal, A; Padhye, A A

    1997-12-01

    Cryptococcus neoformans var. gattii has an ecological association with five Eucalyptus species: E. blakelyi, E. camaldulensis, E. gomphocephala, E. rudis, and E. tereticornis. After human infections due to C. neoformans var. gattii were diagnosed in the states of Punjab, Himachal Pradesh, and Karnataka, India, a study was undertaken to investigate the association of C. neoformans var. gattii with Indian eucalypts, especially in the state of Punjab. A total of 696 specimens collected from E. camaldulensis, E. citriodora and E. tereticornis (hybrid) trees were examined for the presence of C. neoformans var. gattii. Flowers from two trees of E. camaldulensis in the Chak Sarkar forest and one from the village of Periana near the Ferozepur area yielded five isolates of C. neoformans var. gattii. The origin of the trees could be traced to Australia, thus providing evidence that the distribution of E. camaldulensis correlated with the distribution of human cryptococcosis cases caused by C. neoformans var. gattii in northern India. PMID:9399553

  14. 9-O-butyl-13-(4-isopropylbenzyl)berberine, KR-72, Is a Potent Antifungal Agent That Inhibits the Growth of Cryptococcus neoformans by Regulating Gene Expression

    PubMed Central

    Hwang, Hyun Sook; Park, Ki Duk; Kim, Sung Uk; Bahn, Yong-Sun

    2014-01-01

    In this study we explored the mode of action of KR-72, a 9-O-butyl-13-(4-isopropylbenzyl)berberine derivative previously shown to exhibit potent antifungal activity against a variety of human fungal pathogens. The DNA microarray data revealed that KR-72 treatment significantly changed the transcription profiles of C. neoformans, affecting the expression of more than 2,000 genes. Genes involved in translation and transcription were mostly upregulated, whereas those involved in the cytoskeleton, intracellular trafficking, and lipid metabolism were downregulated. KR-72 also exhibited a strong synergistic effect with the antifungal agent FK506. KR-72 treatment regulated the expression of several essential genes, including ECM16, NOP14, HSP10 and MGE1, which are required for C. neoformans growth. The KR-72-mediated induction of MGE1 also likely reduced the viability of C. neoformans by impairing cell cycle or the DNA repair system. In conclusion, KR-72 showed antifungal activity by modulating diverse biological processes through a mode of action distinct from those of clinically available antifungal drugs such as polyene and azole drugs. PMID:25302492

  15. Distribution of Cryptococcus neoformans in a natural site.

    PubMed Central

    Ruiz, A; Fromtling, R A; Bulmer, G S

    1981-01-01

    Pigeon droppings in a vacant tower were assayed for the number and size of viable cells of Cryptococcus neoformans. The dry, thinly scattered floor debris contained 2.6 x 10(6) viable cells per g--300 times more cells than were cultured from a large, compact pile of pigeon droppings (7.4 x 10(3) cells per g). Aerosols generated from floor debris containing pigeon droppings had an average of 360 viable cells in 31 liters of air; 27 of these cells (7.5%) were 1.1 to 3.3 micrometers in diameter and, therefore, capable of human lung deposition. Environmental factors which may influence the distribution, survival, and proliferation of C. neoformans in nature are discussed. PMID:7012011

  16. The Cch1-Mid1 High-Affinity Calcium Channel Contributes to the Virulence of Cryptococcus neoformans by Mitigating Oxidative Stress.

    PubMed

    Vu, Kiem; Bautos, Jennifer M; Gelli, Angie

    2015-11-01

    Pathogenic fungi have developed mechanisms to cope with stresses imposed by hosts. For Cryptococcus spp., this implies active defense mechanisms that attenuate and ultimately overcome the onslaught of oxidative stresses in macrophages. Among cellular pathways within Cryptococcus neoformans' arsenal is the plasma membrane high-affinity Cch1-Mid1 calcium (Ca(2+)) channel (CMC). Here we show that CMC has an unexpectedly complex and disparate role in mitigating oxidative stress. Upon inhibiting the Ccp1-mediated oxidative response pathway with antimycin, strains of C. neoformans expressing only Mid1 displayed enhanced growth, but this was significantly attenuated upon H2O2 exposure in the absence of Mid1, suggesting a regulatory role for Mid1 acting through the Ccp1-mediated oxidative stress response. This notion is further supported by the interaction detected between Mid1 and Ccp1 (cytochrome c peroxidase). In contrast, Cch1 appears to have a more general role in promoting cryptococci survival during oxidative stress. A strain lacking Cch1 displayed a growth defect in the presence of H2O2 without BAPTA [(1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, cesium salt] or additional stressors such as antimycin. Consistent with a greater contribution of Cch1 to oxidative stress tolerance, an intracellular growth defect was observed for the cch1Δ strain in the macrophage cell line J774A.1. Interestingly, while the absence of either Mid1 or Cch1 significantly compromises the ability of C. neoformans to tolerate oxidative stress, the absence of both Mid1 and Cch1 has a negligible effect on C. neoformans growth during H2O2 stress, suggesting the existence of a compensatory mechanism that becomes active in the absence of CMC. PMID:26385891

  17. A Homolog of Ste6, the a-Factor Transporter in Saccharomyces cerevisiae, Is Required for Mating but Not for Monokaryotic Fruiting in Cryptococcus neoformans

    PubMed Central

    Hsueh, Yen-Ping; Shen, Wei-Chiang

    2005-01-01

    Fungal pheromones function during the initial recognition stage of the mating process. One type of peptide pheromone identified in ascomycetes and basidiomycetes terminates in a conserved CAAX motif and requires extensive posttranslational modifications to become mature and active. A well-studied representative is the a-factor of Saccharomyces cerevisiae. Unlike the typical secretory pathway utilized by most peptides, an alternative mechanism involving the ATP-binding cassette transporter Ste6 is used for the export of mature a-factor. Cryptococcus neoformans, a bipolar human pathogenic basidiomycete, produces CAAX motif-containing lipopeptide pheromones in both MATa and MATα cells. Virulence studies with a congenic pair of C. neoformans serotype D strains have shown that MATα cells are more virulent than MATa cells. Characterization of the MATα pheromones indicated that an autocrine signaling loop may contribute to the differentiation and virulence of MATα cells. To further address the role of pheromones in the signaling loop, we identified a STE6 homolog in the C. neoformans genome and determined its function by gene disruption. The ste6 mutants in either mating-type background showed partially impaired mating functions, and mating was completely abolished in a bilateral mutant cross. Surprisingly, the MATα ste6 mutant does not exhibit a defect in monokaryotic fruiting, suggesting that the activation of the autocrine signaling loop by the pheromone is via a Ste6-independent mechanism. MFα pheromone itself is essential for this process and could induce the signaling response intracellularly in MATα cells. Our data demonstrate that Ste6 is evolutionarily conserved for mating and is not required for monokaryotic fruiting in C. neoformans. PMID:15643070

  18. The Cch1-Mid1 High-Affinity Calcium Channel Contributes to the Virulence of Cryptococcus neoformans by Mitigating Oxidative Stress

    PubMed Central

    Vu, Kiem; Bautos, Jennifer M.

    2015-01-01

    Pathogenic fungi have developed mechanisms to cope with stresses imposed by hosts. For Cryptococcus spp., this implies active defense mechanisms that attenuate and ultimately overcome the onslaught of oxidative stresses in macrophages. Among cellular pathways within Cryptococcus neoformans' arsenal is the plasma membrane high-affinity Cch1-Mid1 calcium (Ca2+) channel (CMC). Here we show that CMC has an unexpectedly complex and disparate role in mitigating oxidative stress. Upon inhibiting the Ccp1-mediated oxidative response pathway with antimycin, strains of C. neoformans expressing only Mid1 displayed enhanced growth, but this was significantly attenuated upon H2O2 exposure in the absence of Mid1, suggesting a regulatory role for Mid1 acting through the Ccp1-mediated oxidative stress response. This notion is further supported by the interaction detected between Mid1 and Ccp1 (cytochrome c peroxidase). In contrast, Cch1 appears to have a more general role in promoting cryptococci survival during oxidative stress. A strain lacking Cch1 displayed a growth defect in the presence of H2O2 without BAPTA [(1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, cesium salt] or additional stressors such as antimycin. Consistent with a greater contribution of Cch1 to oxidative stress tolerance, an intracellular growth defect was observed for the cch1Δ strain in the macrophage cell line J774A.1. Interestingly, while the absence of either Mid1 or Cch1 significantly compromises the ability of C. neoformans to tolerate oxidative stress, the absence of both Mid1 and Cch1 has a negligible effect on C. neoformans growth during H2O2 stress, suggesting the existence of a compensatory mechanism that becomes active in the absence of CMC. PMID:26385891

  19. Cryptococcus neoformans Host Adaptation: Toward Biological Evidence of Dormancy

    PubMed Central

    Vernel-Pauillac, Frédérique; Sturny-Leclère, Aude; Dromer, Françoise

    2015-01-01

    ABSTRACT Cryptococcosis is an opportunistic infection due to the ubiquitous yeast Cryptococcus neoformans. This yeast interacts closely with innate immune cells, leading to various fates, including fungal persistence within cells, making possible the dissemination of the yeast cells with monocytes via a Trojan horse strategy. In humans, the natural history of the infection begins with primoinfection during childhood, which is followed by dormancy and, in some individuals, reactivation upon immunosuppression. To address the question of dormancy, we studied C. neoformans infection at the macrophage level (in vitro H99-macrophage interaction) and at the organ level in a murine model of cryptococcosis. We analyzed the diversity of yeast adaptation to the host by characterizing several C. neoformans populations with new assays based on flow cytometry (quantitative flow cytometry, multispectral imaging flow cytometry, sorting), microscopy (dynamic imaging), and gene expression analysis. On the basis of parameters of multiplication and stress response, various populations of yeast cells were observed over time in vivo and in vitro. Cell sorting allowed the identification of a subpopulation that was less prone to grow under standard conditions than the other populations, with growth enhanced by the addition of serum. Gene expression analysis revealed that this population had specific metabolic characteristics that could reflect dormancy. Our data suggest that dormant yeast cells could exist in vitro and in vivo. C. neoformans exhibits a huge plasticity and adaptation to hosts that deserves further study. In vitro generation of dormant cells is now the main challenge to overcome the limited number of yeast cells recovered in our models. PMID:25827423

  20. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Maeng, Shinae; Lee, Kyung-Tae; So, Yee-Seul; Hong, Joohyeon; Choi, Jaeyoung; Byun, Hyo-Jeong; Kim, Hyelim; Bang, Soohyun; Song, Min-Hee; Lee, Jang-Won; Kim, Min Su; Kim, Seo-Young; Ji, Je-Hyun; Park, Goun; Kwon, Hyojeong; Cha, Suyeon; Meyers, Gena Lee; Wang, Li Li; Jang, Jooyoung; Janbon, Guilhem; Adedoyin, Gloria; Kim, Taeyup; Averette, Anna K.; Heitman, Joseph; Cheong, Eunji; Lee, Yong-Hwan; Lee, Yin-Won; Bahn, Yong-Sun

    2015-01-01

    Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but its overall biological and pathogenic regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs). Here, we report the construction of a high-quality library of 322 signature-tagged gene-deletion strains for 155 putative TF genes previously predicted using the DNA-binding domain TF database, and examine their in vitro and in vivo phenotypic traits under 32 distinct growth conditions. At least one phenotypic trait is exhibited by 145 out of 155 TF mutants (93%) and ∼85% of them (132/155) are functionally characterized for the first time in this study. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and human fungal pathogens. PMID:25849373

  1. The Cryptococcus neoformans Capsule: a Sword and a Shield

    PubMed Central

    O'Meara, Teresa R.

    2012-01-01

    Summary: The human fungal pathogen Cryptococcus neoformans is characterized by its ability to induce a distinct polysaccharide capsule in response to a number of host-specific environmental stimuli. The induction of capsule is a complex biological process encompassing regulation at multiple steps, including the biosynthesis, transport, and maintenance of the polysaccharide at the cell surface. By precisely regulating the composition of its cell surface and secreted polysaccharides, C. neoformans has developed intricate ways to establish chronic infection and dormancy in the human host. The plasticity of the capsule structure in response to various host conditions also underscores the complex relationship between host and parasite. Much of this precise regulation of capsule is achieved through the transcriptional responses of multiple conserved signaling pathways that have been coopted to regulate this C. neoformans-specific virulence-associated phenotype. This review focuses on specific host stimuli that trigger the activation of the signal transduction cascades and on the downstream transcriptional responses that are required for robust encapsulation around the cell. PMID:22763631

  2. Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes

    PubMed Central

    Brandão, Fabiana AS; Derengowski, Lorena S; Albuquerque, Patrícia; Nicola, André M; Silva-Pereira, Ildinete; Poças-Fonseca, Marcio J

    2015-01-01

    Cryptococcus neoformans undergoes phenotypical changes during host infection in order to promote persistence and survival. Studies have demonstrated that such adaptations require alterations in gene transcription networks by distinct mechanisms. Drugs such as the histone deacetylases inhibitors (HDACi) Sodium Butyrate (NaBut) and Trichostatin A (TSA) can alter the chromatin conformation and have been used to modulate epigenetic states in the treatment of diseases such as cancer. In this work, we have studied the effect of NaBut and TSA on the expression of C. neoformans major virulence phenotypes and on the survival rate of an animal model infected with drugs-treated yeasts. Both drugs affected fungal growth at 37°C more intensely than at 30°C; nonetheless, drugs did not affect cell viability at the concentrations we studied. HDACi also provoked the reduction of the fungal capsule expansion. Phospholipases enzyme activity decreased; mating process and melanin synthesis were also affected by both inhibitors. NaBut led to an increase in the population of cells in G2/M. Treated yeast cells, which were washed in order to remove the drugs from the culture medium prior to the inoculation in the Galleria mellonela infection model, did not cause significant difference at the host survival curve when compared to non-treated cells. Overall, NaBut effects on the impairment of C. neoformans main virulence factors were more intense and stable than the TSA effects. PMID:26103530

  3. The capsule of the fungal pathogen Cryptococcus neoformans

    PubMed Central

    Zaragoza, Oscar; Rodrigues, Marcio L.; De Jesus, Magdia; Frases, Susana; Dadachova, Ekaterina; Casadevall, Arturo

    2009-01-01

    The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades, and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), in addition to a smaller proportion of mannoproteins (MP). Most of the studies on the composition of the capsule have focused on GXM, which comprises more than 90% of the capsule's polysaccharide mass. It is GalXM, however, that is of particular scientific interest because of its immunological properties. The molecular structure of these polysaccharides is very complex and has not yet been fully elucidated. Both GXM and GalXM are high molecular mass polymers with the mass of GXM equaling roughly 10 times that of GalXM. Recent findings suggest, however, that the actual Mw might be different to what it has traditionally been thought to be. In addition to their structural roles in the polysaccharide capsule, these molecules have been associated with many deleterious effects on the immune response. Capsular components are therefore considered key virulence determinants in Cryptococcus neoformans, which has motivated their use in vaccines and made them targets for monoclonal antibody treatments. In this review we will provide an update on the current knowledge of the C. neoformans capsule, covering aspects related to its structure, synthesis, and particularly, its role as a virulence factor. PMID:19426855

  4. Identification of QTLs Associated with Virulence Related Traits and Drug Resistance in Cryptococcus neoformans

    PubMed Central

    Vogan, Aaron A.; Khankhet, Jordan; Samarasinghe, Himeshi; Xu, Jianping

    2016-01-01

    Cryptococcus neoformans is a basidiomycete fungus capable of causing deadly meningoenchephilitis, primarily in immunocompromised individuals. Formerly, C. neoformans was composed of two divergent lineages, but these have recently been elevated to species status, now C. neoformans (formerly C. neoformans var. grubii) and C. deneoformans (formerly C. neoformans var. neoformans). While both species can cause deadly infections in humans, C. neoformans is much more prevalent in clinical settings than C. deneoformans. However, the genetic factors contributing to their significant differences in virulence remain largely unknown. Quantitative trait locus (QTL) mapping is a powerful tool that can be used to identify genomic regions associated with phenotypic differences between strains. Here, we analyzed a hybrid cross between these two species and identified a total of 23 QTL, including five for melanin production, six for cell size, one for cell wall thickness, five for the frequency of capsule production, three for minimal inhibitory concentration (MIC) of fluconazole in broth, and three for MIC on solid medium. For the fluconazole resistance-associated QTL, three showed environment and/or concentration-specific effects. Our results provide a large number of candidate gene regions from which to explore the molecular bases for phenotypic differences between C. neoformans and C. deneoformans. PMID:27371951

  5. Eucalyptus Tree: A Potential Source of Cryptococcus neoformans in Egyptian Environment

    PubMed Central

    Hamza, Dalia; Elhelw, Rehab; Refai, Mohamed

    2016-01-01

    In Egypt, the River Red Gum (Eucalyptus camaldulensis) is a well-known tree and is highly appreciated by the rural and urban dwellers. The role of Eucalyptus trees in the ecology of Cryptococcus neoformans is documented worldwide. The aim of this survey was to show the prevalence of C. neoformans during the flowering season of E. camaldulensis at the Delta region in Egypt. Three hundred and eleven samples out of two hundred Eucalyptus trees, including leaves, flowers, and woody trunks, were collected from four governorates in the Delta region. Thirteen isolates of C. neoformans were recovered from Eucalyptus tree samples (4.2%). Molecular identification of C. neoformans was done by capsular gene specific primer CAP64 and serotype identification was done depending on LAC1 gene. This study represents an update on the ecology of C. neoformans associated with Eucalyptus tree in Egyptian environment. PMID:26884765

  6. Eucalyptus Tree: A Potential Source of Cryptococcus neoformans in Egyptian Environment.

    PubMed

    Elhariri, Mahmoud; Hamza, Dalia; Elhelw, Rehab; Refai, Mohamed

    2016-01-01

    In Egypt, the River Red Gum (Eucalyptus camaldulensis) is a well-known tree and is highly appreciated by the rural and urban dwellers. The role of Eucalyptus trees in the ecology of Cryptococcus neoformans is documented worldwide. The aim of this survey was to show the prevalence of C. neoformans during the flowering season of E. camaldulensis at the Delta region in Egypt. Three hundred and eleven samples out of two hundred Eucalyptus trees, including leaves, flowers, and woody trunks, were collected from four governorates in the Delta region. Thirteen isolates of C. neoformans were recovered from Eucalyptus tree samples (4.2%). Molecular identification of C. neoformans was done by capsular gene specific primer CAP64 and serotype identification was done depending on LAC1 gene. This study represents an update on the ecology of C. neoformans associated with Eucalyptus tree in Egyptian environment. PMID:26884765

  7. Isolation and Characterization of Cryptococcus neoformans from Environmental Sources in Busan

    PubMed Central

    Oh, Kwang Seok

    2005-01-01

    Twenty nine samples of pigeon droppings (n = 12) and soil contaminated with avian excreta (n = 19), collected from different sites in Busan, were examined for isolation and characterization of Cryptococcus neoformans. Of these samples, 5 strains of C. neoformans were recovered from pigeon droppings (5/12 : 41.7%). All isolates were belonged to C. neoformans var. grubii (serotype A). The extracellular enzyme activities of the strains by using the API-ZYM system showed two different enzymatic patterns. The genetic variability among C. neoformans isolates was analyzed by random amplified polymorphic DNA (RAPD) using three 10-mer primers. Two different RAPD patterns, which clearly distinguished the isolates, were identified. Analysis of RAPD patterns provided a good characterization of environmental strains of C. neoformans serotype A as a heterogeneous group and were in good agreement with enzymatic profiles. PMID:24049499

  8. Susceptibility of Intact Germinating Arabidopsis thaliana to Human Fungal Pathogens Cryptococcus neoformans and C. gattii

    PubMed Central

    Park, Yoon-Dong

    2013-01-01

    The fungus Cryptococcus contributes a large global burden of infectious death in both HIV-infected and healthy individuals. As Cryptococcus is an opportunistic pathogen, much of the evolutionary pressure shaping virulence occurs in environments in contact with plants and soil. The present studies investigated inoculation of intact seeds of the common weed Arabidopsis thaliana with fungal cells over a 21-day period. C. gattii was the more virulent plant pathogen, resulting in disrupted germination as well as increased stem lodging, fungal burden, and plant tissue colocalization. C. neoformans was a less virulent plant pathogen but exhibited prolonged tissue residence within the cuticle and vascular spaces. Arabidopsis mutants of the PRN1 gene, which is involved in abiotic and biotic signaling affecting phenylalanine-derived flavonoids, showed altered susceptibility to cryptoccocal infections, suggesting roles for this pathway in cryptococcal defense. The fungal virulence factor laccase was also implicated in plant pathogenesis, as a cryptococcal lac1Δ strain was less virulent than wild-type fungi and was unable to colonize seedlings. In conclusion, these studies expand knowledge concerning the ecological niche of Cryptococcus by demonstrating the pathogenic capacity of the anamorphic form of cryptococcal cells against healthy seedlings under physiologically relevant conditions. In addition, an important role of laccase in plant as well as human virulence may suggest mechanisms for laccase retention and optimization during evolution of this fungal pathogen. PMID:23435895

  9. Cryptococcus neoformans Variants Generated by Phenotypic Switching Differ in Virulence through Effects on Macrophage Activation▿ †

    PubMed Central

    Guerrero, A.; Jain, N.; Wang, X.; Fries, B. C.

    2010-01-01

    Macrophages have a central role in the pathogenesis of cryptococcosis since they are an important line of defense, serve as a site for fungal replication, and also can contribute to tissue damage. The objective of this study was to investigate the interaction of macrophages with cells from smooth-colony variants (SM) and mucoid-colony variants (MC) arising from phenotypic switching of Cryptococcus neoformans. Alveolar macrophages (AMs) isolated from SM- and MC-infected mice exhibited differences in gene and surface expression of PD-L1, PD-L2, and major histocompatibility class II (MHC-II). PD-L1 and PD-L2 are the ligands for PD1 and are differentially regulated in Th1- and Th2-type cells. In addition, macrophage activation in SM- and MC-infected mice was characterized as alternatively activated. Flow cytometric and cytokine analysis demonstrated that MC infection was associated with the emergence of Th17 cells and higher levels of interleukin-17 (IL-17) in lung tissue, which were reduced by AM depletion. In conclusion, our results indicate that macrophages play a significant role in maintaining damage-promoting inflammation in the lung during MC infection, which ultimately results in death. PMID:20048044

  10. Role of a VPS41 homologue in starvation response, intracellular survival and virulence of Cryptococcus neoformans.

    PubMed

    Liu, Xiaoguang; Hu, Guowu; Panepinto, John; Williamson, Peter R

    2006-09-01

    Previous studies have demonstrated an important role for the vacuole in the virulence of the fungus Cryptococcus and studies in yeast have implicated the vacuolar protein Vps41 in copper loading of proteins such as iron transporters. However, our studies found that a cryptococcal vps41Delta strain displayed wild-type growth on media containing iron and copper chelators and normal activity of the copper-containing virulence factor laccase as well as almost normal growth at 37 degrees C and wild-type production of the virulence factor capsule. Despite these attributes, the vps41Delta mutant strain showed a dramatic attenuation of virulence in mice and co-incubation of mutant cells with the macrophage cell line, J774.16, resulted in a dramatic loss in viability of the vps41Delta mutant strain at 10 h compared with wild-type and complemented strains. Closer examination revealed that the vps41Delta mutant displayed a dramatic loss in viability after nutrient starvation which was traced to a failure to undergo G2 arrest, but there was no defect in the formation of autophagic or proteolytic vesicles. Our results indicate that VPS41 plays a key role in regulating starvation response in this pathogenic organism and that defects in cell cycle arrest are associated with attenuated pathogenic fitness in mammalian hosts. PMID:16879414

  11. Morphotype-specific effector functions of Cryptococcus neoformans PUM1

    PubMed Central

    Kaur, Jan Naseer; Panepinto, John C.

    2016-01-01

    The basidiomycete fungal pathogen Cryptococcus neoformans requires the PUF protein, Pum1, for hyphal morphogenesis during sexual development. In this study we found that Pum1 was auto-repressive under growth as yeast, but that auto-repression was relieved during filamentous growth through utilization of an alternative transcription start site driven by the master filamentation regulator Znf2. In addition, Pum1 was required to stabilize the ZNF2 mRNA through an indirect mechanism suggesting that Znf2 and Pum1 each positively regulate the expression of the other to achieve the filamentous morphotype required for sexual development in Cryptococcus. PMID:27008977

  12. Antimicrobial activity of Hymenaea martiana towards dermatophytes and Cryptococcus neoformans.

    PubMed

    de Souza, Ana Cristina Machado; Kato, Lucilia; da Silva, Cleuza Conceição; Cidade, Amanda Feitosa; de Oliveira, Cecilia Maria Alves; Silva, Maria do Rosário Rodrigues

    2010-11-01

    The biological activity of crude extract and fractions of Hymenaea martiana was evaluated against a panel of human pathogenic fungi. The crude extracts and hydroalcoholic fractions (E) showed a high activity against Cryptococcus neoformans species complex isolates with MICs between 2 and 64 μg ml(-1). The methanolic (C) and butanolic (D) fractions were the most active against Trichopyton rubrum, Trichopyton mentagrophytes and Microsporum canis with MICs between 8 and 256 μg ml(-1). None of the extracts was active against the yeast Malassezia furfur, Malassezia obtusa and Malassezia sympodialis. PMID:19563478

  13. Anthrax Pathogenesis.

    PubMed

    Moayeri, Mahtab; Leppla, Stephen H; Vrentas, Catherine; Pomerantsev, Andrei P; Liu, Shihui

    2015-01-01

    Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed. PMID:26195305

  14. Cryptococcus neoformans: paradigm for the role of antibody immunity against fungi?

    PubMed

    Pirofski, L A; Casadevall, A

    1996-08-01

    Cryptococcus neoformans is an encapsulated fungus that is a frequent cause of life-threatening infections in patients with AIDS. C. neoformans has many similarities with encapsulated bacteria such as S. pneumoniae and H. influenzae for which antibody immunity is important in protection. However the role of antibody immunity in protection against C. neoformans has been controversial. Experiments with polyclonal sera have produced conflicting evidence for and against the importance of antibody immunity in host defense. Experiments with monoclonal antibodies (mAb) to the C. neoformans capsular polysaccharide (CPS) have revealed the existence of protective, non-protective and disease-enhancing mAbs, suggesting that the divergent results obtained with polyclonal preparations may be a result of relative proportion of protective and non-protective antibodies in immune sera. Administration of protective mAbs can prolong survival, decrease organ fungal burden, and reduce serum polysaccharide antigen. In vitro experiments suggests that protective mAbs modify the course of infection by enhancing effector cell function against C. neoformans. Addition of mAb to antifungal drugs enhances their efficacy against C. neoformans in vivo and in vitro. Human-mouse chimeric antibodies with activity against C. neoformans have been constructed. A highly immunogenic capsular polysaccharide-protein vaccine has been synthesized that elicits protective antibodies in mice. Antibody immunity elicited by conjugate vaccines or provided by passive administration may be useful in the prevention treatment of human cryptococcal infections. PMID:8899968

  15. Phospholipids Trigger Cryptococcus neoformans Capsular Enlargement during Interactions with Amoebae and Macrophages

    PubMed Central

    Chrisman, Cara J.; Albuquerque, Patricia; Guimaraes, Allan J.; Nieves, Edward; Casadevall, Arturo

    2011-01-01

    A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists. PMID:21637814

  16. Lipophilic dye staining of Cryptococcus neoformans extracellular vesicles and capsule.

    PubMed

    Nicola, André Moraes; Frases, Susana; Casadevall, Arturo

    2009-09-01

    Cryptococcus neoformans is an encapsulated yeast that causes systemic mycosis in immunosuppressed individuals. Recent studies have determined that this fungus produces vesicles that are released to the extracellular environment both in vivo and in vitro. These vesicles contain assorted cargo that includes several molecules associated with virulence and implicated in host-pathogen interactions, such as capsular polysaccharides, laccase, urease, and other proteins. To date, visualization of extracellular vesicles has relied on transmission electron microscopy, a time-consuming technique. In this work we report the use of fluorescent membrane tracers to stain lipophilic structures in cryptococcal culture supernatants and capsules. Two dialkylcarbocyanine probes with different spectral characteristics were used to visualize purified vesicles by fluorescence microscopy and flow cytometry. Dual staining of vesicles with dialkylcarbocyanine and RNA-selective nucleic acid dyes suggested that a fraction of the vesicle population carried RNA. Use of these dyes to stain whole cells, however, was hampered by their possible direct binding to capsular polysaccharide. A fluorescent phospholipid was used as additional membrane tracer to stain whole cells, revealing punctate structures on the edge of the capsule which are consistent with vesicular trafficking. Lipophilic dyes provide new tools for the study of fungal extracellular vesicles and their content. The finding of hydrophobic regions in the capsule of C. neoformans adds to the growing evidence for a structurally complex structure composed of polysaccharide and nonpolysaccharide components. PMID:19465562

  17. Extensive Genetic Diversity within the Dutch Clinical Cryptococcus neoformans Population

    PubMed Central

    Hagen, Ferry; Illnait-Zaragozí, María-Teresa; Meis, Jacques F.; Chew, William H. M.; Curfs-Breuker, Ilse; Mouton, Johan W.; Hoepelman, Andy I. M.; Spanjaard, Lodewijk; Verweij, Paul E.; Kampinga, Greetje A.; Kuijper, Ed J.; Klaassen, Corné H. W.

    2012-01-01

    A set of 300 Dutch Cryptococcus neoformans isolates, obtained from 237 patients during 1977 to 2007, was investigated by determining the mating type, serotype, and AFLP and microsatellite genotype and susceptibility to seven antifungal compounds. Almost half of the studied cases were from HIV-infected patients, followed by a patient group of individuals with other underlying diseases and immunocompetent individuals. The majority of the isolates were mating type α and serotype A, followed by αD isolates and other minor categories. The most frequently observed genotype was AFLP1, distantly followed by AFLP2 and AFLP3. Microsatellite typing revealed a high genetic diversity among serotype A isolates but a lower diversity within the serotype D set of isolates. One patient was infected by multiple AFLP genotypes. Fluconazole and flucytosine had the highest geometric mean MICs of 2.9 and 3.5 μg/ml, respectively, while amphotericin B (0.24 μg/ml), itraconazole (0.08 μg/ml), voriconazole (0.07 μg/ml), posaconazole (0.06 μg/ml), and isavuconazole (0.03 μg/ml) had much lower geometric mean MICs. One isolate had a high flucytosine MIC (>64 μg/ml), while decreased susceptibility (≥16 μg/ml) for flucytosine and fluconazole was found in 9 and 10 C. neoformans isolates, respectively. PMID:22442325

  18. Molecular Typing of IberoAmerican Cryptococcus neoformans Isolates

    PubMed Central

    Castañeda, Alexandra; Jackson, Stuart; Huynh, Matthew; Castañeda, Elizabeth

    2003-01-01

    A network was established to acquire basic knowledge of Cryptococcus neoformans in IberoAmerican countries. To this effect, 340 clinical, veterinary, and environmental isolates from Argentina, Brazil, Chile, Colombia, Mexico, Peru, Venezuela, Guatemala, and Spain were typed by using M13 polymerase chain reaction-fingerprinting and orotidine monophosphate pyrophosphorylase (URA5) gene restriction fragment length polymorphsm analysis with HhaI and Sau96I in a double digest. Both techniques grouped all isolates into eight previously established molecular types. The majority of the isolates, 68.2% (n=232), were VNI (var. grubii, serotype A), which accords with the fact that this variety causes most human cryptococcal infections worldwide. A smaller proportion, 5.6% (n=19), were VNII (var. grubii, serotype A); 4.1% (n=14), VNIII (AD hybrid), with 9 isolates having a polymorphism in the URA5 gene; 1.8% (n=6), VNIV (var. neoformans, serotype D); 3.5% (n=12), VGI; 6.2% (n=21), VGII; 9.1% (n=31), VGIII, and 1.5% (n=5) VGIV, with all four VG types containing var. gattii serotypes B and C isolates. PMID:12603989

  19. The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools

    PubMed Central

    Pontes, Bruno; Frases, Susana

    2015-01-01

    The fungal pathogen Cryptococcus neoformans causes life-threatening infections in immunocompromised individuals, representing one of the leading causes of morbidity and mortality in AIDS patients. The main virulence factor of C. neoformans is the polysaccharide capsule; however, many fundamental aspects of capsule structure and function remain poorly understood. Recently, important capsule properties were uncovered using optical tweezers and other biophysical techniques, including dynamic and static light scattering, zeta potential and viscosity analysis. This review provides an overview of the latest findings in this emerging field, explaining the impact of these findings on our understanding of C. neoformans biology and resistance to host immune defenses. PMID:26157436

  20. Intracellular microlasers

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Hyun Yun, Seok

    2015-09-01

    Optical microresonators, which confine light within a small cavity, are widely exploited for various applications ranging from the realization of lasers and nonlinear devices to biochemical and optomechanical sensing. Here we use microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explore two distinct types of microresonator—soft and hard—that support whispering-gallery modes. Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (˜500 pN μm-2) and its dynamic fluctuations at a sensitivity of 20 pN μm-2 (20 Pa). In a second form, whispering-gallery modes within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.

  1. Pathogenesis and Immunobiology of Brucellosis

    PubMed Central

    de Figueiredo, Paul; Ficht, Thomas A.; Rice-Ficht, Allison; Rossetti, Carlos A.; Adams, L. Garry

    2016-01-01

    This review of Brucella–host interactions and immunobiology discusses recent discoveries as the basis for pathogenesis-informed rationales to prevent or treat brucellosis. Brucella spp., as animal pathogens, cause human brucellosis, a zoonosis that results in worldwide economic losses, human morbidity, and poverty. Although Brucella spp. infect humans as an incidental host, 500,000 new human infections occur annually, and no patient-friendly treatments or approved human vaccines are reported. Brucellae display strong tissue tropism for lymphoreticular and reproductive systems with an intracellular lifestyle that limits exposure to innate and adaptive immune responses, sequesters the organism from the effects of antibiotics, and drives clinical disease manifestations and pathology. Stealthy brucellae exploit strategies to establish infection, including i) evasion of intracellular destruction by restricting fusion of type IV secretion system-dependent Brucella-containing vacuoles with lysosomal compartments, ii) inhibition of apoptosis of infected mononuclear cells, and iii) prevention of dendritic cell maturation, antigen presentation, and activation of naive T cells, pathogenesis lessons that may be informative for other intracellular pathogens. Data sets of next-generation sequences of Brucella and host time-series global expression fused with proteomics and metabolomics data from in vitro and in vivo experiments now inform interactive cellular pathways and gene regulatory networks enabling full-scale systems biology analysis. The newly identified effector proteins of Brucella may represent targets for improved, safer brucellosis vaccines and therapeutics. PMID:25892682

  2. Role of Mannoprotein in Induction and Regulation of Immunity to Cryptococcus neoformans

    PubMed Central

    Pietrella, Donatella; Cherniak, Robert; Strappini, Carla; Perito, Stefano; Mosci, Paolo; Bistoni, Francesco; Vecchiarelli, Anna

    2001-01-01

    Our previous observations showed that mannoprotein (MP) induces early and massive production of interleukin-12 (IL-12) in vitro. This study was designed to investigate whether this phenomenon could be applied in vivo and to determine the biological significance of MP in Cryptococcus neoformans infection. The results reported here show that MP treatment induces IL-12 secretion by splenic macrophages and IL-12 p40 mRNA in the brain. During C. neoformans infection, MP reinforced IL-12 and IFN-γ secretion that coincided with enhanced antifungal activity of natural effector cells, early resolution of the inflammatory process, and clearance of fungal load from the brain. These studies show that MP is a key inflammatory mediator that induces a protective immune response against C. neoformans infection. This information can be used to facilitate the design of a rational approach to manipulate the immune response to C. neoformans. PMID:11292692

  3. Genotypes of Clinical and Environmental Isolates of Cryptococcus neoformans and Cryptococcus gattii in Korea

    PubMed Central

    Park, So Hae; Choi, Seok Cheol; Lee, Kyung Won; Kim, Mi-Na

    2015-01-01

    Multilocus sequence typing analysis was applied to determine the genotypes of 147 (137 clinical and 10 environmental) Cryptococcus neoformans and three clinical Cryptococcus gattii isolates from 1993 to 2014 in Korea. Among the 137 clinical isolates of C. neoformans, the most prevalent genotype was ST5 (n = 131), followed by ST31 (n = 5) and ST127 (n = 1). Three C. gattii strains were identified as ST57, ST7, and ST113. All environmental isolates were identified as C. neoformans with two genotypes, ST5 (n = 7) and ST31 (n = 3). Our results show that C. neoformans isolates in Korea are genetically homogeneous, and represent a close genetic relationship between clinical and environmental isolates. PMID:26539057

  4. Aging as an emergent factor that contributes to phenotypic variation in Cryptococcus neoformans.

    PubMed

    Bouklas, Tejas; Fries, Bettina C

    2015-05-01

    Cryptococcus neoformans, similar to other eukaryotes, undergoes replicative aging. Replicative life spans have been determined for clinical C. neoformans strains, and although they are a reproducible trait, life spans vary considerably among strains. C. neoformans has been proposed as an ideal model organism to investigate the contribution of replicative aging in a fungal pathogen population to emerging phenotypic variation during chronic cryptococcal infections. C. neoformans cells of advanced generational age manifest a distinct phenotype; specifically, a larger cell size, a thicker cell wall, drug resistance, as well as resistance to hydrogen peroxide-mediated killing. Consequently, old cells are selected in the host environment during chronic infection and aging could be an unanticipated mechanism of pathogen adaptation that contributes to persistent disease. Aging as a natural process of phenotypic variation should be further studied as it likely is also relevant for other eukaryotic pathogen populations that undergo asymmetric replicative aging. PMID:25307541

  5. Detection of Cryptococcus neoformans var. grubii in honeybee (Apis mellifera) colonies.

    PubMed

    Ergin, C; Ilkit, M; Kaftanoglu, O

    2004-10-01

    The plant flora has an important role in the ecology of Cryptococcus neoformans. It is estimated that the environmental spreading and contamination of human beings with this yeast occurs via contaminated particles of plants. Cultivation of canopy parts of plants in selective media is the most widely used isolation method of this yeast. Cryptococcus neoformans var. grubii was isolated from honeybee colonies in Eucalyptus forests but was not isolated from the places where this flora did not exist. Our results indicate that the occurrence of C. neoformans in honeybee colonies during the flowering season of Eucalyptus spp. trees can be an important bioindicator for environmental yeast presence. The screening of honeybee colonies is a practical and a rapid method for the monitoring of the C. neoformans presence in flowering plants. PMID:15504129

  6. Intracellular microlasers

    PubMed Central

    Humar, Matjaž; Yun, Seok Hyun

    2015-01-01

    Optical microresonators1 which confine light within a small cavity are widely exploited for various applications ranging from the realization of lasers2 and nonlinear devices3, 4, 5 to biochemical and optomechanical sensing6, 7, 8, 9, 10, 11. Here we employ microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explored two distinct types of microresonators: soft and hard, that support whispering-gallery modes (WGM). Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (~500 pN/μm2) and its dynamic fluctuations at a sensitivity of 20 pN/μm2 (20 Pa). In a second form, WGMs within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes. PMID:26417383

  7. Magnesium Ion Acts as a Signal for Capsule Induction in Cryptococcus neoformans

    PubMed Central

    Rathore, Sudarshan S.; Raman, Thiagarajan; Ramakrishnan, Jayapradha

    2016-01-01

    Cryptococcal meningitis caused by Cryptococcus neoformans, is a common opportunistic neural infection in immunocompromised individuals. Cryptococcus meningitis is associated with fungal burden with larger capsule size in cerebrospinal fluid (CSF). To understand the role of CSF constituents in capsule enlargement, we have evaluated the effect of artificial CSF on capsule induction in comparison with various other capsule inducing media. Two different strains of C. neoformans, an environmental and a clinical isolates were used in the present study. While comparing the various capsule inducing media for the two different strains of C. neoformans, it was observed that the capsule growth was significantly increased when grown in artificial CSF at pH 5.5, temperature 34°C for ATCC C. neoformans and 37°C for Clinical C. neoformans and with an incubation period of 72 h. In addition, artificial CSF supports biofilm formation in C. neoformans. While investigating the individual components of artificial CSF, we found that Mg2+ ions influence the capsule growth in both environmental and clinical strains of C. neoformans. To confirm our results we studied the expression of four major CAP genes namely, CAP10, CAP59, CAP60, and CAP64 in various capsule inducing media and in different concentrations of Mg2+ and Ca2+. Our results on gene expression suggest that, Mg2+ does have an effect on CAP gene expression, which are important for capsule biosynthesis and virulence. Our findings on the role of Mg2+ ion as a signal for capsule induction will promote a way to elucidate the control mechanisms for capsule biosynthesis in C. neoformans. PMID:27014245

  8. Genetic study of oxygen resistance and melanization in Cryptococcus neoformans.

    PubMed Central

    Emery, H S; Shelburne, C P; Bowman, J P; Fallon, P G; Schulz, C A; Jacobson, E S

    1994-01-01

    Genetic analysis of oxygen-sensitive mutants of Cryptococcus neoformans revealed two loci (oxy1 and oxy2) linking hyperoxia sensitivity to production of melanin, a known virulence factor. Hyperoxia-sensitive strain 562 (oxy1 oxy2) is albino and avirulent. oxy2-defective strains lacking the oxy1 defect are melanin deficient but show normal hyperoxia resistance. Mutants defective at three additional mapped melanin loci fail to show hyperoxia sensitivity in the oxy1 background. Revertants of strain 562, which regain the ability to synthesize melanin by mutation at suppressor sites unlinked to oxy2, retain the oxygen sensitivity conferred by their oxy1 and oxy2 defects. These data identify the melanin gene oxy2 as unique in its association of hyperoxia resistance and melanization. Images PMID:7960156

  9. “Virulence Mechanisms and Cryptococcus neoformans pathogenesis”

    PubMed Central

    Alspaugh, J. Andrew

    2014-01-01

    The human fungal pathogen Cryptococcus neoformans is able to rapidly and effectively adapt to varying conditions, favoring its survival in the environment and in the infected host. Many microbial phenotypes have been specifically correlated with virulence in this opportunistic pathogen, such as capsule production, melanin formation, and the secretion of various proteins. Additionally, cellular features such as the cell wall and morphogenesis play important roles in the interaction of this fungus with host immune recognition and response pathways. Survival in the face of host stress also requires maintaining RNA/DNA integrity. Additionally, aging and senescence of the fungal cells determines resistance to host-derived stresses. New mechanisms regulating the expression of these virulence-associated phenotypes have been recently explored. Importantly, human clinical studies are now confirming the roles of specific microbial factors in human infections. PMID:25256589

  10. Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis

    PubMed Central

    Gibson, Josie F.; Johnston, Simon A.

    2015-01-01

    The vast majority of infection with cryptococcal species occurs with Cryptococcus neoformans in the severely immunocompromised. A significant exception to this is the infections of those with apparently normal immune systems by Cryptococcus gattii. Susceptibility to cryptococcosis can be broadly categorised as a defect in adaptive immune responses, especially in T cell immunity. However, innate immune cells such as macrophages play a key role and are likely the primary effector cell in the killing and ultimate clearance of cryptococcal infection. In this review we discuss the current state of our understanding of how the immune system responds to cryptococcal infection in health and disease, with reference to the work communicated at the 9th International Conference on Cryptococcus and Cryptococcosis (ICCC9). We have focussed on cell mediated responses, particularly early in infection, but with the aim of presenting a broad overview of our understanding of immunity to cryptococcal infection, highlighting some recent advances and offering some perspectives on future directions. PMID:25498576

  11. Occurrence and susceptibilities to disinfectants of Cryptococcus neoformans in fecal droppings from pigeons in Bangkok, Thailand.

    PubMed

    Krangvichain, Prathomporn; Niyomtham, Waree; Prapasarakul, Nuvee

    2016-03-01

    Cryptococcus neoformans is an opportunistic pathogenic yeast that causes meningoencephalitis and deep skin dermatitis in humans and animals. A hygienic strategy using disinfectants on environmental samples can reduce the risk to the public. The objectives were to survey the distribution of C. neoformans in pigeon fecal droppings collected in 11 districts in Bangkok during 2011-2012 and to evaluate the efficacy of three commercial disinfectant products (based on potassium monopersulfate, sodium hypochlorite and quaternary ammonium compounds, respectively). These were evaluated against pure C. neoformans and yeasts resuspended in sterile pigeon feces using the dilution-neutralization method [Europäische NORM (EN) 1656]. In total, 18 of 164 (11%) samples were positive for C. neoformans. These came from only three of the 11 districts, with a prevalence of between 13-56%. Using multiplex PCR, serotype A was the sole group found. For all disinfectants, C. neoformans mixed in feces was tolerated at a higher dose and time exposure than pure isolates. The most effective disinfectant in this study was a 0.12% quaternary ammonium compound that could rapidly eradicate the yeasts mixed in feces. This finding highlights the occurrence and distribution of C. neoformans in the capital city of Thailand and the need to prolong the duration of exposure to disinfectants with pigeon feces. PMID:26596636

  12. Cryptococcus neoformans Mates on Pigeon Guano: Implications for the Realized Ecological Niche and Globalization▿

    PubMed Central

    Nielsen, Kirsten; De Obaldia, Anna L.; Heitman, Joseph

    2007-01-01

    The ecological niche that a species can occupy is determined by its resource requirements and the physical conditions necessary for survival. The niche to which an organism is most highly adapted is the realized niche, whereas the complete range of habitats that an organism can occupy represents the fundamental niche. The growth and development of Cryptococcus neoformans and Cryptococcus gattii on pigeon guano were examined to determine whether these two species occupy the same or different ecological niches. C. neoformans is a cosmopolitan pathogenic yeast that infects predominantly immunocompromised individuals, exists in two varieties (grubii [serotype A] and neoformans [serotype D]), and is commonly isolated from pigeon guano worldwide. By contrast, C. gattii often infects immunocompetent individuals and is associated with geographically restricted environments, most notably, eucalyptus trees. Pigeon guano supported the growth of both species, and a brown pigment related to melanin, a key virulence factor, was produced. C. neoformans exhibited prolific mating on pigeon guano, whereas C. gattii did not. The observations that C. neoformans completes the life cycle on pigeon guano but that C. gattii does not indicates that pigeon guano could represent the realized ecological niche for C. neoformans. Because C. gattii grows on pigeon guano but cannot sexually reproduce, pigeon guano represents a fundamental but not a realized niche for C. gattii. Based on these studies, we hypothesize that an ancestral Cryptococcus strain gained the ability to sexually reproduce in pigeon guano and then swept the globe. PMID:17449657

  13. Occurrence and susceptibilities to disinfectants of Cryptococcus neoformans in fecal droppings from pigeons in Bangkok, Thailand

    PubMed Central

    KRANGVICHAIN, Prathomporn; NIYOMTHAM, Waree; PRAPASARAKUL, Nuvee

    2015-01-01

    Cryptococcus neoformans is an opportunistic pathogenic yeast that causes meningoencephalitis and deep skin dermatitis in humans and animals. A hygienic strategy using disinfectants on environmental samples can reduce the risk to the public. The objectives were to survey the distribution of C. neoformans in pigeon fecal droppings collected in 11 districts in Bangkok during 2011–2012 and to evaluate the efficacy of three commercial disinfectant products (based on potassium monopersulfate, sodium hypochlorite and quaternary ammonium compounds, respectively). These were evaluated against pure C. neoformans and yeasts resuspended in sterile pigeon feces using the dilution-neutralization method [Europäische NORM (EN) 1656]. In total, 18 of 164 (11%) samples were positive for C. neoformans. These came from only three of the 11 districts, with a prevalence of between 13–56%. Using multiplex PCR, serotype A was the sole group found. For all disinfectants, C. neoformans mixed in feces was tolerated at a higher dose and time exposure than pure isolates. The most effective disinfectant in this study was a 0.12% quaternary ammonium compound that could rapidly eradicate the yeasts mixed in feces. This finding highlights the occurrence and distribution of C. neoformans in the capital city of Thailand and the need to prolong the duration of exposure to disinfectants with pigeon feces. PMID:26596636

  14. Production of tumor necrosis factor alpha in human leukocytes stimulated by Cryptococcus neoformans.

    PubMed Central

    Levitz, S M; Tabuni, A; Kornfeld, H; Reardon, C C; Golenbock, D T

    1994-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a key mediator of inflammation and may promote human immunodeficiency virus replication in latently infected cells. Since cryptococcosis often is associated with aberrations in the host inflammatory response and occurs preferentially in persons with AIDS, we defined the conditions under which human leukocytes produce TNF-alpha when stimulated by Cryptococcus neoformans. Peripheral blood mononuclear cells (PBMC) produced comparable amounts of TNF-alpha following stimulation with C. neoformans and lipopolysaccharide. Detectable TNF-alpha release in response to C. neoformans occurred only when fungi with small-sized capsules were used and complement-sufficient serum was added. Fractionation of PBMC established that monocytes were the predominant source of TNF-alpha. TNF-alpha gene expression and release occurred significantly later in PBMC stimulated with C. neoformans than in PBMC stimulated with LPS. C. neoformans was also a potent inducer of TNF-alpha from freshly isolated bronchoalveolar macrophages (BAM). Upon in vitro culture, BAM and monocytes bound greater numbers of fungal cells, yet their capacity to produce TNF-alpha following cryptococcal stimulation declined by 74 to 100%. However, this decline was reversed if the BAM and monocytes were cultured with gamma interferon. These data establish that C. neoformans can potently stimulate TNF-alpha release from human leukocytes. However, several variables profoundly affected the amount of TNF-alpha released, including the type of leukocyte and its state of activation, the size of the cryptococcal capsule, and the availability of opsonins. PMID:8168965

  15. Genetic and pathological characteristics of Cryptococcus gattii and Cryptococcus neoformans var. neoformans from meningoencephalitis in autochthonous goats and mouflons, Sardinia, Italy.

    PubMed

    Maestrale, Caterina; Masia, Mariangela; Pintus, Davide; Lollai, Stefano; Kozel, Thomas R; Gates-Hollingsworth, Marcellene A; Cancedda, Maria Giovanna; Cabras, Pierangela; Pirino, Salvatore; D'Ascenzo, Vittoria; Ligios, Ciriaco

    2015-06-12

    In this study, we examined in Sardinia the brain of 555 autochthonous sheep, 50 goats, and 4 mouflons which were found affected by neurological signs. We found 6 goats and one mouflon with meningoencephalitis caused by Cryptococcus sp. There was no evidence of cryptococcal infections in any of the examined sheep. MLST genotyping on Cryptococcus sp. isolates identified Cryptococcus gatti genotype AFLP4/VGI and Cryptococcus neoformans var. neoformans genotype AFLP2/VNIV. Phylogenetically, all Cryptococcus gattii isolates fell within the autochthonous animal, human and environmental Mediterranean isolate cluster, forming a distinct branch along with environmental strains from Alicante, in the southern Mediterranean coast of Spain. PMID:25840469

  16. The Membrane Phospholipid Binding Protein Annexin A2 Promotes Phagocytosis and Nonlytic Exocytosis of Cryptococcus neoformans and Impacts Survival in Fungal Infection.

    PubMed

    Stukes, Sabriya; Coelho, Carolina; Rivera, Johanna; Jedlicka, Anne E; Hajjar, Katherine A; Casadevall, Arturo

    2016-08-15

    Cryptococcus neoformans is a fungal pathogen with a unique intracellular pathogenic strategy that includes nonlytic exocytosis, a phenomenon whereby fungal cells are expunged from macrophages without lysing the host cell. The exact mechanism and specific proteins involved in this process have yet to be completely defined. Using murine macrophages deficient in the membrane phospholipid binding protein, annexin A2 (ANXA2), we observed a significant decrease in both phagocytosis of yeast cells and the frequency of nonlytic exocytosis. Cryptococcal cells isolated from Anxa2-deficient (Anxa2(-/-)) bone marrow-derived macrophages and lung parenchyma displayed significantly larger capsules than those isolated from wild-type macrophages and tissues. Concomitantly, we observed significant differences in the amount of reactive oxygen species produced between Anxa2(-/-) and Anxa2(+/+) macrophages. Despite comparable fungal burden, Anxa2(-/-) mice died more rapidly than wild-type mice when infected with C. neoformans, and Anxa2(-/-) mice exhibited enhanced inflammatory responses, suggesting that the reduced survival reflected greater immune-mediated damage. Together, these findings suggest a role for ANXA2 in the control of cryptococcal infection, macrophage function, and fungal morphology. PMID:27371724

  17. Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation

    PubMed Central

    Geddes, J. M. H.; Caza, M.; Croll, D.; Stoynov, N.; Foster, L. J.

    2016-01-01

    ABSTRACT The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA) signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis. PMID:26758180

  18. Isocitrate Dehydrogenase Is Important for Nitrosative Stress Resistance in Cryptococcus neoformans, but Oxidative Stress Resistance Is Not Dependent on Glucose-6-Phosphate Dehydrogenase▿

    PubMed Central

    Brown, Sarah M.; Upadhya, Rajendra; Shoemaker, James D.; Lodge, Jennifer K.

    2010-01-01

    The opportunistic intracellular fungal pathogen Cryptococcus neoformans depends on many antioxidant and denitrosylating proteins and pathways for virulence in the immunocompromised host. These include the glutathione and thioredoxin pathways, thiol peroxidase, cytochrome c peroxidase, and flavohemoglobin denitrosylase. All of these ultimately depend on NADPH for either catalytic activity or maintenance of a reduced, functional form. The need for NADPH during oxidative stress is well established in many systems, but a role in resistance to nitrosative stress has not been as well characterized. In this study we investigated the roles of two sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1) and NADP+-dependent isocitrate dehydrogenase (Idp1), in production of NADPH and resistance to oxidative and nitrosative stress. Deletion of ZWF1 in C. neoformans did not result in an oxidative stress sensitivity phenotype or changes in the amount of NADPH produced during oxidative stress compared to those for the wild type. Deletion of IDP1 resulted in greater sensitivity to nitrosative stress than to oxidative stress. The amount of NADPH increased 2-fold over that in the wild type during nitrosative stress, and yet the idp1Δ strain accumulated more mitochondrial damage than the wild type during nitrosative stress. This is the first report of the importance of Idp1 and NADPH for nitrosative stress resistance. PMID:20400467

  19. Intracellular Action of a Secreted Peptide Required for Fungal Virulence.

    PubMed

    Homer, Christina M; Summers, Diana K; Goranov, Alexi I; Clarke, Starlynn C; Wiesner, Darin L; Diedrich, Jolene K; Moresco, James J; Toffaletti, Dena; Upadhya, Rajendra; Caradonna, Ippolito; Petnic, Sarah; Pessino, Veronica; Cuomo, Christina A; Lodge, Jennifer K; Perfect, John; Yates, John R; Nielsen, Kirsten; Craik, Charles S; Madhani, Hiten D

    2016-06-01

    Quorum sensing (QS) is a bacterial communication mechanism in which secreted signaling molecules impact population function and gene expression. QS-like phenomena have been reported in eukaryotes with largely unknown contributing molecules, functions, and mechanisms. We identify Qsp1, a secreted peptide, as a central signaling molecule that regulates virulence in the fungal pathogen Cryptococcus neoformans. QSP1 is a direct target of three transcription factors required for virulence, and qsp1Δ mutants exhibit attenuated infection, slowed tissue accumulation, and greater control by primary macrophages. Qsp1 mediates autoregulatory signaling that modulates secreted protease activity and promotes cell wall function at high cell densities. Peptide production requires release from a secreted precursor, proQsp1, by a cell-associated protease, Pqp1. Qsp1 sensing requires an oligopeptide transporter, Opt1, and remarkably, cytoplasmic expression of mature Qsp1 complements multiple phenotypes of qsp1Δ. Thus, C. neoformans produces an autoregulatory peptide that matures extracellularly but functions intracellularly to regulate virulence. PMID:27212659

  20. Peroxisomal and Mitochondrial β-Oxidation Pathways Influence the Virulence of the Pathogenic Fungus Cryptococcus neoformans

    PubMed Central

    Kretschmer, Matthias; Wang, Joyce

    2012-01-01

    An understanding of the connections between metabolism and elaboration of virulence factors during host colonization by the human-pathogenic fungus Cryptococcus neoformans is important for developing antifungal therapies. Lipids are abundant in host tissues, and fungal pathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. In addition, lipids are important signaling molecules in both fungi and mammals. In this report, we demonstrate that defects in the peroxisomal and mitochondrial β-oxidation pathways influence the growth of C. neoformans on fatty acids as well as the virulence of the fungus in a mouse inhalation model of cryptococcosis. Disease attenuation may be due to the cumulative influence of altered carbon source acquisition or processing, interference with secretion, changes in cell wall integrity, and an observed defect in capsule production for the peroxisomal mutant. Altered capsule elaboration in the context of a β-oxidation defect was unexpected but is particularly important because this trait is a major virulence factor for C. neoformans. Additionally, analysis of mutants in the peroxisomal pathway revealed a growth-promoting activity for C. neoformans, and subsequent work identified oleic acid and biotin as candidates for such factors. Overall, this study reveals that β-oxidation influences virulence in C. neoformans by multiple mechanisms that likely include contributions to carbon source acquisition and virulence factor elaboration. PMID:22707485

  1. Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin.

    PubMed

    Cogliati, Massimo; D'Amicis, Roberta; Zani, Alberto; Montagna, Maria Teresa; Caggiano, Giuseppina; De Giglio, Osvalda; Balbino, Stella; De Donno, Antonella; Serio, Francesca; Susever, Serdar; Ergin, Cagri; Velegraki, Aristea; Ellabib, Mohamed S; Nardoni, Simona; Macci, Cristina; Oliveri, Salvatore; Trovato, Laura; Dipineto, Ludovico; Rickerts, Volker; McCormick-Smith, Ilka; Akcaglar, Sevim; Tore, Okan; Mlinaric-Missoni, Emilija; Bertout, Sebastien; Mallié, Michele; Martins, Maria da Luz; Vencà, Ana C F; Vieira, Maria L; Sampaio, Ana C; Pereira, Cheila; Griseo, Giuseppe; Romeo, Orazio; Ranque, Stéphane; Al-Yasiri, Mohammed H Y; Kaya, Meltem; Cerikcioglu, Nilgun; Marchese, Anna; Vezzulli, Luigi; Ilkit, Macit; Desnos-Ollivier, Marie; Pasquale, Vincenzo; Korem, Maya; Polacheck, Itzhack; Scopa, Antonio; Meyer, Wieland; Ferreira-Paim, Kennio; Hagen, Ferry; Theelen, Bart; Boekhout, Teun; Lockhart, Shawn R; Tintelnot, Kathrin; Tortorano, Anna Maria; Dromer, Françoise; Varma, Ashok; Kwon-Chung, Kyung J; Inácio, Joäo; Alonso, Beatriz; Colom, Maria F

    2016-06-01

    In order to elucidate the distribution of Cryptococcus neoformans and C. gattii in the Mediterranean basin, an extensive environmental survey was carried out during 2012-2015. A total of 302 sites located in 12 countries were sampled, 6436 samples from 3765 trees were collected and 5% of trees were found to be colonized by cryptococcal yeasts. Cryptococcus neoformans was isolated from 177 trees and C. gattii from 13. Cryptococcus neoformans colonized 27% of Ceratonia, 10% of Olea, Platanus and Prunus trees and a lower percentage of other tree genera. The 13 C. gattii isolates were collected from five Eucalyptus, four Ceratonia, two Pinus and two Olea trees. Cryptococcus neoformans was distributed all around the Mediterranean basin, whereas C. gattii was isolated in Greece, Southern Italy and Spain, in agreement with previous findings from both clinical and environmental sources. Among C. neoformans isolates, VNI was the prevalent molecular type but VNII, VNIV and VNIII hybrid strains were also isolated. With the exception of a single VGIV isolate, all C. gattii isolates were VGI. The results confirmed the presence of both Cryptococcus species in the Mediterranean environment, and showed that both carob and olive trees represent an important niche for these yeasts. PMID:27188887

  2. Cryptococcus neoformans capsule protects cell from oxygen reactive species generated by antimicrobial photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Prates, Renato Araujo; Hamblin, Michael R.; Kato, Ilka T.; Fuchs, Beth; Mylonakis, Eleytherios; Simões Ribeiro, Martha; Tegos, George

    2011-03-01

    Antimicrobial photodynamic inactivation (APDI) is based on the utilization of substances that can photosensitize biological tissues and are capable of being activated in the presence of light. Cryptococcus neoformans is an yeast surrounded by a capsule composed primarily of glucoronoxylomannan that plays an important role in its virulence. This yeast causes infection on skin, lungs and brain that can be associated with neurological sequelae and neurosurgical interventions, and its conventional treatment requires prolonged antifungal therapy, which presents important adverse effects. The aim of this study was to evaluate the protective effect of Cryptococcus neoformans capsule against reactive oxygen species generated by APDI. Cryptococcus neoformans KN99α, which is a strain able to produce capsule, and CAP59 that does not present capsule production were submitted to APDI using methylene blue (MB), rose bengal (RB), and pL-ce6 as photosensitizers (PS). Then microbial inactivation was evaluated by counting colony form units following APDI and confocal laser scanning microscopy (CLSM) illustrated localization as well as the preferential accumulation of PS into the fungal cells. C. neoformans KN99α was more resistant to APDI than CAP59 for all PSs tested. CLSM showed incorporation of MB and RB into the cytoplasm and a preferential uptake in mitochondria. A nuclear accumulation of MB was also observed. Contrarily, pL-ce6 appears accumulated in cell wall and cell membrane and minimal florescence was observed inside the fungal cells. In conclusion, the ability of C. neoformans to form capsule enhances survival following APDI.

  3. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens

    SciTech Connect

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.; Kelly, Shannon M.; Hellinga, Homme W.; Alspaugh, J. Andrew; Beese, Lorena S.

    2012-09-17

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections.

  4. Neutrophil swarming toward Cryptococcus neoformans is mediated by complement and leukotriene B4.

    PubMed

    Sun, Donglei; Shi, Meiqing

    2016-09-01

    Swarming behavior of neutrophils has been noticed in both sterile injury and infection models and the mechanisms are being unveiled. So far, no in vitro model has been established to study neutrophil swarming to microbes. In the current study, using live-cell imaging, we observed in vitro neutrophil swarming toward Cryptococcus neoformans, a fungal pathogen causing human meningoencephalitis. Complement C3 and CD11b expression are essential for neutrophils to form cell swarms surrounding C. neoformans. Leukotriene B4 (LTB4) was quickly released by neutrophils during their interactions with C. neoformans. Blockade of LTB4 synthesis inhibited the swarming response to C. neoformans. Importantly, blockade of LTB4 synthesis also significantly reduced neutrophil recruitment in the lung vasculature of mice infected intravenously with C. neoformans, demonstrating a critical role of LTB4 in intravascular neutrophil swarming during infection. Together, this is the first report of neutrophil dynamics of swarming toward a microorganism in vitro, mediated by complement and LTB4. PMID:27402276

  5. Susceptibility profile and epidemiological cut-off values of Cryptococcus neoformans species complex from Argentina.

    PubMed

    Córdoba, Susana; Isla, Maria G; Szusz, Wanda; Vivot, Walter; Altamirano, Rodrigo; Davel, Graciela

    2016-06-01

    Epidemiological cut-off values (ECVs) based on minimal inhibitory concentration (MIC) distribution have been recently proposed for some antifungal drug/Cryptococcus neoformans combinations. However, these ECVs vary according to the species studied, being serotypes and the geographical origin of strains, variables to be considered. The aims were to define the wild-type (WT) population of the C. neoformans species complex (C. neoformans) isolated from patients living in Argentina, and to propose ECVs for six antifungal drugs. A total of 707 unique C. neoformans isolates obtained from HIV patients suffering cryptococcal meningitis were studied. The MIC of amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole and posaconazole was determined according to the EDef 7.2 (EUCAST) reference document. The MIC distribution, MIC50 , MIC90 and ECV for each of these drugs were calculated. The highest ECV, which included ≥95% of the WT population modelled, was observed for flucytosine and fluconazole (32 μg ml(-1) each). For amphotericin B, itraconazole, voriconazole and posaconazole, the ECVs were: 0.5, 0.5, 0.5 and 0.06 μg ml(-1) respectively. The ECVs determined in this study may aid in identifying the C. neoformans strains circulating in Argentina with decreased susceptibility to the antifungal drugs tested. PMID:26865081

  6. Microevolution of a Standard Strain of Cryptococcus neoformans Resulting in Differences in Virulence and Other Phenotypes

    PubMed Central

    Franzot, Sarah P.; Mukherjee, Jean; Cherniak, Robert; Chen, Lin-Chi; Hamdan, Junia S.; Casadevall, Arturo

    1998-01-01

    Cryptococcus neoformans is a major fungal pathogen for patients with debilitated immune systems. However, no information is available on the stability of virulence or of phenotypes associated with virulence for C. neoformans laboratory strains. A serendipitous observation in our laboratory that one isolate of C. neoformans ATCC 24067 (strain 52D) became attenuated after continuous in vitro culture prompted us to perform a comparative study of nine strain 24067 isolates obtained from six different research laboratories. Each isolate was characterized by DNA typing, virulence for mice, proteinase production, extracellular protein synthesis, melanin synthesis, carbon assimilation pattern, antifungal drug susceptibility, colony morphology, growth rate, agglutination titers, phagocytosis by murine macrophages, capsule size, and capsular polysaccharide structure. All isolates had similar DNA typing patterns consistent with their assignment to the same strain, although minor chromosome size polymorphisms were observed in the electrophoretic karyotypes of two isolates. Several isolates had major differences in phenotypes that may be associated with virulence, including growth rate, capsule size, proteinase production, and melanization. These findings imply that C. neoformans is able to undergo rapid changes in vitro, probably as a result of adaptation to laboratory conditions, and suggest the need for careful attention to storage and maintenance conditions. In summary, our results indicate that C. neoformans (i) can become attenuated by in vitro culture and (ii) is capable of microevolution in vitro with the emergence of variants exhibiting new genotypic and phenotypic characteristics. PMID:9423844

  7. Structures of Cryptococcus neoformans Protein Farnesyltransferase Reveal Strategies for Developing Inhibitors That Target Fungal Pathogens*

    PubMed Central

    Hast, Michael A.; Nichols, Connie B.; Armstrong, Stephanie M.; Kelly, Shannon M.; Hellinga, Homme W.; Alspaugh, J. Andrew; Beese, Lorena S.

    2011-01-01

    Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing. Protein farnesyltransferase (FTase) catalyzes post-translational lipidation of key signal transduction proteins and is essential in C. neoformans. We present a multidisciplinary study validating C. neoformans FTase (CnFTase) as a drug target, showing that several anticancer FTase inhibitors with disparate scaffolds can inhibit C. neoformans and suggesting structure-based strategies for further optimization of these leads. Structural studies are an essential element for species-specific inhibitor development strategies by revealing similarities and differences between pathogen and host orthologs that can be exploited. We, therefore, present eight crystal structures of CnFTase that define the enzymatic reaction cycle, basis of ligand selection, and structurally divergent regions of the active site. Crystal structures of clinically important anticancer FTase inhibitors in complex with CnFTase reveal opportunities for optimization of selectivity for the fungal enzyme by modifying functional groups that interact with structurally diverse regions. A substrate-induced conformational change in CnFTase is observed as part of the reaction cycle, a feature that is mechanistically distinct from human FTase. Our combined structural and functional studies provide a framework for developing FTase inhibitors to treat invasive fungal infections. PMID:21816822

  8. Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans

    PubMed Central

    Coelho, Carolina; Souza, Ana Camila Oliveira; Derengowski, Lorena da Silveira; de Leon-Rodriguez, Carlos; Wang, Bo; Leon-Rivera, Rosiris; Bocca, Anamelia Lorenzetti; Gonçalves, Teresa; Casadevall, Arturo

    2015-01-01

    Human infection with Cryptococcus neoformans (Cn), a common fungal pathogen follows deposition of yeast spores in the lung alveoli. The subsequent host-pathogen interaction can result in either eradication, latency or extra-pulmonary dissemination. Successful control of Cn infection is dependent on host macrophages but macrophages display little ability to kill Cn in vitro. Recently, we reported that ingestion of Cn by mouse macrophages induces early cell cycle progression followed by mitotic arrest, an event that almost certainly reflects host cell damage. The goal of the present work was to understand macrophage pathways affected by Cn toxicity. Infection of macrophages by Cn was associated with alterations in protein translation rate and activation of several stress pathways such as Hypoxia Inducing Factor-1α (HIF-1α), Receptor-interacting Protein 1 (RIP1) and Apoptosis Inducing Factor (AIF). Concomitantly we observed mitochondrial depolarization in infected macrophages, an observation that was replicated in vivo. We also observed differences in the stress pathways activated depending on macrophage cell type, consistent with the non-specific nature of Cn virulence known to infect phylogenetically distant hosts. Our results indicate that Cn infection impairs multiple host cellular functions and undermines the health of these critical phagocytic cells, which can potentially interfere with their ability to clear this fungal pathogen. PMID:25646306

  9. Interaction of Cryptococcus neoformans Extracellular Vesicles with the Cell Wall

    PubMed Central

    Wolf, Julie M.; Espadas-Moreno, Javier; Luque-Garcia, Jose L.

    2014-01-01

    Cryptococcus neoformans produces extracellular vesicles containing a variety of cargo, including virulence factors. To become extracellular, these vesicles not only must be released from the plasma membrane but also must pass through the dense matrix of the cell wall. The greatest unknown in the area of fungal vesicles is the mechanism by which these vesicles are released to the extracellular space given the presence of the fungal cell wall. Here we used electron microscopy techniques to image the interactions of vesicles with the cell wall. Our goal was to define the ultrastructural morphology of the process to gain insights into the mechanisms involved. We describe single and multiple vesicle-leaving events, which we hypothesized were due to plasma membrane and multivesicular body vesicle origins, respectively. We further utilized melanized cells to “trap” vesicles and visualize those passing through the cell wall. Vesicle size differed depending on whether vesicles left the cytoplasm in single versus multiple release events. Furthermore, we analyzed different vesicle populations for vesicle dimensions and protein composition. Proteomic analysis tripled the number of proteins known to be associated with vesicles. Despite separation of vesicles into batches differing in size, we did not identify major differences in protein composition. In summary, our results indicate that vesicles are generated by more than one mechanism, that vesicles exit the cell by traversing the cell wall, and that vesicle populations exist as a continuum with regard to size and protein composition. PMID:24906412

  10. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    PubMed Central

    Giustini, Andrew. J.; Gottesman, Rachel E.; Petryk, A.A.; Rauwerdink, A.M.; Hoopes, P. Jack.

    2013-01-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro. PMID:24382988

  11. Clonality and intracellular polyploidy in virus evolution and pathogenesis.

    PubMed

    Perales, Celia; Moreno, Elena; Domingo, Esteban

    2015-07-21

    In the present article we examine clonality in virus evolution. Most viruses retain an active recombination machinery as a potential means to initiate new levels of genetic exploration that go beyond those attainable solely by point mutations. However, despite abundant recombination that may be linked to molecular events essential for genome replication, herein we provide evidence that generation of recombinants with altered biological properties is not essential for the completion of the replication cycles of viruses, and that viral lineages (near-clades) can be defined. We distinguish mechanistically active but inconsequential recombination from evolutionarily relevant recombination, illustrated by episodes in the field and during experimental evolution. In the field, recombination has been at the origin of new viral pathogens, and has conferred fitness advantages to some viruses once the parental viruses have attained a sufficient degree of diversification by point mutations. In the laboratory, recombination mediated a salient genome segmentation of foot-and-mouth disease virus, an important animal pathogen whose genome in nature has always been characterized as unsegmented. We propose a model of continuous mutation and recombination, with punctuated, biologically relevant recombination events for the survival of viruses, both as disease agents and as promoters of cellular evolution. Thus, clonality is the standard evolutionary mode for viruses because recombination is largely inconsequential, since the decisive events for virus replication and survival are not dependent on the exchange of genetic material and formation of recombinant (mosaic) genomes. PMID:26195777

  12. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack

    2011-03-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

  13. Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans.

    PubMed

    Schlicker, Christine; Hall, Rebecca A; Vullo, Daniela; Middelhaufe, Sabine; Gertz, Melanie; Supuran, Claudiu T; Mühlschlegel, Fritz A; Steegborn, Clemens

    2009-01-30

    In the pathogenic fungus Cryptococcus neoformans, a CO(2)-sensing system is essential for survival in the natural environment (approximately 0.03% CO(2)) and mediates the switch to virulent growth in the human host (approximately 5% CO(2)). This system is composed of the carbonic anhydrase (CA) Can2, which catalyzes formation of bicarbonate, and the fungal, bicarbonate-stimulated adenylyl cyclase Cac1. The critical role of these enzymes for fungal metabolism and pathogenesis identifies them as targets for antifungal drugs. Here, we prove functional similarity of Can2 to the CA Nce103 from Candida albicans and describe its biochemical and structural characterization. The crystal structure of Can2 reveals that the enzyme belongs to the "plant-type" beta-CAs but carries a unique N-terminal extension that can interact with the active-site entrance of the dimer. We further tested a panel of compounds, identifying nanomolar Can2 inhibitors, and present the structure of a Can2 complex with the inhibitor and product analog acetate, revealing insights into interactions with physiological ligands and inhibitors. PMID:19071134

  14. Identification of Genes from the Fungal Pathogen Cryptococcus neoformans Related to Transmigration into the Central Nervous System

    PubMed Central

    Tseng, Hsiang-Kuang; Liu, Chang-Pan; Price, Michael S.; Jong, Ambrose Y.; Chang, Jui-Chih; Toffaletti, Dena L.; Betancourt-Quiroz, Marisol; Frazzitta, Aubrey E.; Cho, Wen-Long; Perfect, John R.

    2012-01-01

    Background A mouse brain transmigration assessment (MBTA) was created to investigate the central nervous system (CNS) pathogenesis of cryptococcal meningoencephalitis. Methodology/Principal Findings Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT) resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the “Trojan horse” model of CNS entry) is not the primary mechanism for C. neoformans migration into the CNS in this MBTA. Conclusions/Significance This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB), and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry. PMID:23028773

  15. TLR9 Signaling Is Required for Generation of the Adaptive Immune Protection in Cryptococcus neoformans-Infected Lungs

    PubMed Central

    Zhang, Yanmei; Wang, Fuyuan; Bhan, Urvashi; Huffnagle, Gary B.; Toews, Galen B.; Standiford, Theodore J.; Olszewski, Michal A.

    2010-01-01

    To determine whether TLR9 signaling contributes to the development of the adaptive immune response to cryptococcal infection, wild-type (TLR9+/+) and TLR9 knockout (TLR9−/−) BALB/c mice were infected intratracheally with 104 C. neoformans 52D. We evaluated 1) organ microbial burdens, 2) pulmonary leukocyte recruitment, 3) pulmonary and systemic cytokine induction, and 4) macrophage activation profiles. TLR9 deletion did not affect pulmonary growth during the innate phase, but profoundly impaired pulmonary clearance during the adaptive phase of the immune response (a 1000-fold difference at week 6). The impaired clearance in TLR9−/− mice was associated with: 1) significantly reduced CD4+, CD8+ T cell, and CD19+ B cell recruitment into the lungs; 2) defects in Th polarization indicated by altered cytokine responses in the lungs, lymphonodes, and spleen; and 3) diminished macrophage accumulation and altered activation profile, including robust up-regulation of Arg1 and FIZZ1 (indicators of alternative activation) and diminished induction of inducible nitric oxide synthase (an indicator of classical activation). Histological analysis revealed defects in granuloma formation and increased numbers of intracellular yeast residing within macrophages in the lungs of TLR9−/− mice. We conclude that TLR9 signaling plays an important role in the development of robust protective immunity, proper recruitment and function of effector cells (lymphocytes and macrophages), and, ultimately, effective cryptococcal clearance from the infected lungs. PMID:20581055

  16. Lipid Flippase Subunit Cdc50 Mediates Drug Resistance and Virulence in Cryptococcus neoformans

    PubMed Central

    Huang, Wei; Liao, Guojian; Baker, Gregory M.; Wang, Yina; Lau, Richard; Paderu, Padmaja; Perlin, David S.

    2016-01-01

    ABSTRACT Cryptococcus neoformans is a human fungal pathogen and a major cause of fungal meningitis in immunocompromised individuals. Treatment options for cryptococcosis are limited. Of the two major antifungal drug classes, azoles are active against C. neoformans but exert a fungistatic effect, necessitating long treatment regimens and leaving open an avenue for emergence of azole resistance. Drugs of the echinocandin class, which target the glucan synthase and are fungicidal against a number of other fungal pathogens, such as Candida species, are ineffective against C. neoformans. Despite the sensitivity of the target enzyme to the drug, the reasons for the innate resistance of C. neoformans to echinocandins remain unknown. To understand the mechanism of echinocandin resistance in C. neoformans, we screened gene disruption and gene deletion libraries for mutants sensitive to the echinocandin-class drug caspofungin and identified a mutation of CDC50, which encodes the β-subunit of membrane lipid flippase. We found that the Cdc50 protein localized to membranes and that its absence led to plasma membrane defects and enhanced caspofungin penetration into the cell, potentially explaining the increased caspofungin sensitivity. Loss of CDC50 also led to hypersensitivity to the azole-class drug fluconazole. Interestingly, in addition to functioning in drug resistance, CDC50 was also essential for fungal resistance to macrophage killing and for virulence in a murine model of cryptococcosis. Furthermore, the surface of cdc50Δ cells contained increased levels of phosphatidylserine, which has been proposed to act as a macrophage recognition signal. Together, these results reveal a previously unappreciated role of membrane lipid flippase in C. neoformans drug resistance and virulence. PMID:27165800

  17. Cryptococcus neoformans Directly Stimulates Perforin Production and Rearms NK Cells for Enhanced Anticryptococcal Microbicidal Activity▿

    PubMed Central

    Marr, Kaleb J.; Jones, Gareth J.; Zheng, Chunfu; Huston, Shaunna M.; Timm-McCann, Martina; Islam, Anowara; Berenger, Byron M.; Ma, Ling Ling; Wiseman, Jeremy C. D.; Mody, Christopher H.

    2009-01-01

    NK cells, in addition to possessing antitumor and antiviral activity, exhibit perforin-dependent microbicidal activity against the opportunistic pathogen Cryptococcus neoformans. However, the factors controlling this response, particularly whether the pathogen itself provides an activation or rearming signal, are largely unknown. The current studies were performed to determine whether exposure to this fungus alters subsequent NK cell anticryptococcal activity. NK cells lost perforin and mobilized lysosome-associated membrane protein 1 to the cell surface following incubation with the fungus, indicating that degranulation had occurred. Despite a reduced perforin content during killing, NK cells acquired an enhanced ability to kill C. neoformans, as demonstrated using auxotrophs that allowed independent assessment of the killing of two strains. De novo protein synthesis was required for optimal killing; however, there was no evidence that a soluble factor contributed to the enhanced anticryptococcal activity. Exposure of NK cells to C. neoformans caused the cells to rearm, as demonstrated by increased perforin mRNA levels and enhanced loss of perforin when transcription was blocked. Degranulation alone was insufficient to provide the activation signal as NK cells lost anticryptococcal activity following treatment with strontium chloride. However, NK cells regained the activity upon prolonged exposure to C. neoformans, which is consistent with activation by the microbe. The enhanced cytotoxicity did not extend to tumor killing since NK cells exposed to C. neoformans failed to kill NK-sensitive tumor targets (K562 cells). These studies demonstrate that there is contact-mediated microbe-specific rearming and activation of microbicidal activity that are necessary for optimal killing of C. neoformans. PMID:19307209

  18. Melioidosis: Molecular Aspects of Pathogenesis

    PubMed Central

    Stone, Joshua K.; DeShazer, David; Brett, Paul J.; Burtnick, Mary N.

    2015-01-01

    SUMMARY Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, a multifaceted disease that is highly endemic in Southeast Asia and northern Australia. This facultative intracellular pathogen possesses a large genome that encodes a wide array of virulence factors that promote survival in vivo by manipulating host cell processes and disarming elements of the host immune system. Antigens and systems that play key roles in B. pseudomallei virulence include capsular polysaccharide, lipopolysaccharide, adhesins, specialized secretion systems, actin-based motility and various secreted factors. This review provides an overview of the current and steadily expanding knowledge regarding the molecular mechanisms used by this organism to survive within a host and their contribution to the pathogenesis of melioidosis. PMID:25312349

  19. Transcriptional Regulation by Protein Kinase A in Cryptococcus neoformans

    PubMed Central

    Hu, Guanggan; Steen, Barbara R; Lian, Tianshun; Sham, Anita P; Tam, Nicola; Tangen, Kristin L; Kronstad, James W

    2007-01-01

    A defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5′-monophosphate (cAMP)–dependent protein kinase A (PKA) is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between the pka1 and pkr1 mutants and a wild-type strain, and found that PKA influences transcript levels for genes involved in cell wall synthesis, transport functions such as iron uptake, the tricarboxylic acid cycle, and glycolysis. Among the myriad of transcriptional changes in the mutants, we also identified differential expression of ribosomal protein genes, genes encoding stress and chaperone functions, and genes for secretory pathway components and phospholipid synthesis. The transcriptional influence of PKA on these functions was reminiscent of the linkage between transcription, endoplasmic reticulum stress, and the unfolded protein response in Saccharomyces cerevisiae. Functional analyses confirmed that the PKA mutants have a differential response to temperature stress, caffeine, and lithium, and that secretion inhibitors block capsule production. Importantly, we also found that lithium treatment limits capsule size, thus reinforcing potential connections between this virulence trait and inositol and phospholipid metabolism. In addition, deletion of a PKA-regulated gene, OVA1, revealed an epistatic relationship with pka1 in the control of capsule size and melanin formation. OVA1 encodes a putative phosphatidylethanolamine-binding protein that appears to negatively influence capsule production and melanin accumulation. Overall, these findings support a role for PKA in regulating the delivery of virulence factors such as the capsular polysaccharide to the cell surface and serve to highlight the importance of secretion and phospholipid metabolism as potential targets for

  20. The expanding host tree species spectrum of Cryptococcus gattii and Cryptococcus neoformans and their isolations from surrounding soil in India.

    PubMed

    Randhawa, H S; Kowshik, T; Chowdhary, Anuradha; Preeti Sinha, K; Khan, Z U; Sun, Sheng; Xu, Jianping

    2008-12-01

    This study reports the widespread prevalence of Cryptococcus neoformans and Cryptococcus gattii in decayed wood inside trunk hollows of 14 species representing 12 families of trees and from soil near the base of various host trees from Delhi and several places in the Indian states of Uttar Pradesh, Haryana, Tamil Nadu and Chandigarh Union Territory. Of the 311 trees from which samples were obtained, 64 (20.5%) were found to contain strains of the C. neoformans species complex. The number of trees positive for C. neoformans var grubii (serotypeA) was 51 (16.3%), for C. gattii (serotype B) 24 (7.7%) and for both C. neoformans and C. gattii 11 (3.5%). The overall prevalence of C. neoformans species complex in decayed wood samples was 19.9% (111/556). There was no obvious correlation between the prevalence of these two yeast species and the species of host trees. The data on prevalence of C. gattii (24%) and C. neoformans (26%) in soil around the base of some host trees indicated that soil is another important ecologic niche for these two Cryptococcus species in India. Among our sampled tree species, eight and six were recorded for the first time as hosts for C. neoformans var grubii and C. gattii, respectively. A longitudinal surveillance of 8 host tree species over 0.7 to 2.5 years indicated long term colonization of Polyalthia longifolia, Mimusops elengi and Manilkara hexandra trees by C. gattii and/or C. neoformans. The mating type was determined for 153 of the isolates, including 98 strains of serotype A and 55 of serotype B and all proved to be mating type alpha (MAT alpha). Our observations document the rapidly expanding spectrum of host tree species for C. gattii and C. neoformans and indicate that decayed woods of many tree species are potentially suitable ecological niches for both pathogens. PMID:18608895

  1. Pleiotropic Roles of the Msi1-Like Protein Msl1 in Cryptococcus neoformans

    PubMed Central

    Yang, Dong-Hoon; Maeng, Shinae; Strain, Anna K.; Floyd, Anna; Nielsen, Kirsten; Heitman, Joseph

    2012-01-01

    Msi1-like (MSIL) proteins contain WD40 motifs and have a pleiotropic cellular function as negative regulators of the Ras/cyclic AMP (cAMP) pathway and components of chromatin assembly factor 1 (CAF-1), yet they have not been studied in fungal pathogens. Here we identified and characterized an MSIL protein, Msl1, in Cryptococcus neoformans, which causes life-threatening meningoencephalitis in humans. Notably, Msl1 plays pleiotropic roles in C. neoformans in both cAMP-dependent and -independent manners largely independent of Ras. Msl1 negatively controls antioxidant melanin production and sexual differentiation, and this was repressed by the inhibition of the cAMP-signaling pathway. In contrast, Msl1 controls thermotolerance, diverse stress responses, and antifungal drug resistance in a Ras/cAMP-independent manner. Cac2, which is the second CAF-1 component, appears to play both redundant and distinct functions compared to the functions of Msl1. Msl1 is required for the full virulence of C. neoformans. Transcriptome analysis identified a group of Msl1-regulated genes, which include stress-related genes such as HSP12 and HSP78. In conclusion, this study demonstrates pleiotropic roles of Msl1 in the human fungal pathogen C. neoformans, providing insight into a potential novel antifungal therapeutic target. PMID:23042129

  2. Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance

    PubMed Central

    Paul, Sanjoy; Doering, Tamara L.; Moye-Rowley, W. Scott

    2014-01-01

    Cryptococcus neoformans is a pathogen that is the most common cause of fungal meningitis. As with most fungal pathogens, the most prevalent clinical antifungal used to treat Cryptococcosis is orally administered fluconazole. Resistance to this antifungal is an increasing concern in treatment of fungal disease in general. Our knowledge of the specific determinants involved in fluconazole resistance in Cryptococcus is limited. Here we report the identification of an important genetic determinant of fluconazole resistance in Cryptococcus neoformans that encodes a basic region-leucine zipper transcription factor homologous to Saccharomyces cerevisiae Yap1. Expression of a codon-optimized form of the Cn YAP1 cDNA in S. cerevisiae complemented defects caused by loss of the endogenous S. cerevisiae YAP1 gene and activated transcription from a reporter gene construct. Mutant strains of C. neoformans lacking YAP1 were hypersensitive to a range of oxidative stress agents but importantly also to fluconazole. Loss of Yap1 homologues from other fungal pathogens like Candida albicans or Aspergillus fumigatus was previously found to cause oxidant hypersensitivity but had no detectable effect on fluconazole resistance. Our data provide evidence for a unique biological role of Yap1 in wild-type fluconazole resistance in C. neoformans. PMID:25445311

  3. ISOLATION OF Cryptococcus neoformans FROM ENVIRONMENTAL SAMPLES COLLECTED IN SOUTHEASTERN NIGERIA.

    PubMed

    Nweze, Emeka I; Kechia, Fred A; Dibua, Uju E; Eze, Charles; Onoja, Uwakwe S

    2015-01-01

    Cryptococcosis caused by Cryptococcus neoformans is the second most common fungal opportunistic pathogen and a life-threatening infection with serious clinical manifestations especially in HIV/AIDS and other immunocompromised patients. In Nigeria, HIV/AIDS infection has reached an alarming level. Despite this, information on the presence of this fungus in clinical and environmental samples is very scanty in Nigeria and many other parts of Africa. We set out to evaluate the presence of Cryptococcus neoformans or C. gattiiin pigeon droppings obtained from Southeastern Nigeria. One hundred and seventy-seven samples of pigeon droppings from six sample types were collected. The area covered comprised of ten cities and other locations spanning across five States in Nigeria. Using established techniques, Cryptococcus neoformans was isolated from 39 of the 177 (22.0%) samples overall. No C. gattiiwas isolated. Most of the isolates (32.4%) were recovered from dovecotes (11 of 34) followed closely by samples taken from markets (31.8%; seven of 22) and least from the church (4.0%; one of 25). The highest isolation rate (38.9%) was found in samples from Enugu-Ezike(seven of 23) while the least came from Afikpo and the other locations each with 9.1% isolation rate. This is the first large-scale screening of Cryptococcus neoformans from pigeon droppings in Nigeria. The ecological and epidemiological significance of these findings are discussed. PMID:26422152

  4. Cryptococcus neoformans meningitis with negative cryptococcal antigen: Evaluation of a new immunochromatographic detection assay

    PubMed Central

    Opota, O.; Desgraz, B.; Kenfak, A.; Jaton, K.; Cavassini, M.; Greub, G.; Prod'hom, G.; Giulieri, S.

    2014-01-01

    Detection of cryptococcal antigen in serum or cerebrospinal fluid allows cryptococcal meningitis diagnosis within few hours with >90% sensitivity. In an HIV-positive patient with Cryptococcus neoformans meningitis, initial antigen detection by immunoagglutination was negative. We thus evaluated a new immunochromatographic detection assay that exhibited a higher sensitivity. PMID:25755893

  5. Multilocus sequence typing of Cryptococcus neoformans in non-HIV associated cryptococcosis in Nagasaki, Japan.

    PubMed

    Mihara, Tomo; Izumikawa, Koichi; Kakeya, Hiroshi; Ngamskulrungroj, Popchai; Umeyama, Takashi; Takazono, Takahiro; Tashiro, Masato; Nakamura, Shigeki; Imamura, Yoshifumi; Miyazaki, Taiga; Ohno, Hideaki; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Miyzaki, Yoshitsugu; Kohno, Shigeru

    2013-04-01

    Cryptococcosis is primarily caused by two Cryptococcus species, i.e., Cryptococcus neoformans and C. gattii. Both include several genetically diverse subgroups that can be differentiated using various molecular strain typing methods. Since little is known about the molecular epidemiology of the C. neoformans/C. gattii species complex in Japan, we conducted a molecular epidemiological analysis of 35 C. neoformans isolates from non-HIV patients in Nagasaki, Japan and 10 environmental isolates from Thailand. All were analyzed using URA5-restriction fragment length polymorphism (RFLP) and multilocus sequence typing (MLST). Combined sequence data for all isolates were evaluated with the neighbor-joining method. All were found to be serotype A and mating type MATα. Thirty-two of the 35 clinical isolates molecular type VNI, while the three remaining isolates were VNII as determined through the URA5-RFLP method. Thirty-one of the VNI isolates were identified as MLST sequence type (ST) 5, the remaining one was ST 32 and the three VNII isolates were found to be ST 43. All the environmental isolates were identified as molecular type VNI (four MLST ST 5 and six ST 4). Our study shows that C. neoformans isolates in Nagasaki are genetically homogeneous, with most of the isolates being ST 5. PMID:22901045

  6. Experimental infection of almond trees seedlings (Terminalia catappa) with an environmental isolate of Cryptococcus neoformans var. gattii, serotype C.

    PubMed

    Huérfano, S; Castañeda, A; Castañeda, E

    2001-09-01

    Recently, our laboratory reported the isolation of Cryptococcus neoformans var. gattii, serotype C for the first time from almond trees (Terminalia catappa) detritus. The aim of the present study was to establish the survival of C. neoformans in almond trees seedlings. Thirty seedlings were infected in the stems and samples were taken and processed at different times and by different techniques. No morphological alterations (macro or microscopic) were observed in the infected plants. However, C. neoformans was found to be viable for at least 100 days after infection. These data constitute our first approach towards the understanding of the yeast interactions with a host-plant. PMID:15487923

  7. Redox biology of tuberculosis pathogenesis.

    PubMed

    Trivedi, Abhishek; Singh, Nisha; Bhat, Shabir Ahmed; Gupta, Pawan; Kumar, Ashwani

    2012-01-01

    Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development. PMID:22633061

  8. Photodynamic therapy can kill Cryptococcus neoformans in in vitro and in vivo models

    NASA Astrophysics Data System (ADS)

    Prates, Renato A.; da Silva, Eriques G.; Chaves, Priscila F.; Santos, Antônio José S.; Paula, Claudete R.; Ribeiro, Martha S.

    2009-02-01

    Cryptococcosis is an infection caused by the encapsulated yeast Cryptococcus neoformans and the most afflicted sites are lung, skin and central nervous system. A range of studies had reported that photodynamic therapy (PDT) can inactivate yeast cells; however, the in vivo experimental models of cryptococcosis photoinactivation are not commonly reported. The aim of this study was to investigate the ability of methylene blue (MB) combined with a low-power red laser to inactivate Cryptococcus neoformans in in vitro and in vivo experimental models. To perform the in vitro study, suspension of Cryptococcus neoformans ATCC-90112 (106cfu/mL) was used. The light source was a laser (Photon Lase III, DMC, SÃ#o Carlos, Brazil) emitting at λ660nm with output power of 90mW for 6 and 9min of irradiation, resulting fluences at 108 and 162J/cm². As photosensitizer, 100μM MB was used. For the in vivo study, 10 BALB/c mice had the left paw inoculated with C. neoformans ATCC-90112 (107cfu). Twenty-four hours after inoculation, PDT was performed using 150μM MB and 100mW red laser with fluence at 180J/cm2. PDT was efficient in vitro against C. neoformans in both parameters used: 3 log reduction with 108J/cm² and 6 log reduction with 162J/cm². In the in vivo experiment, PDT was also effective; however, its effect was less expressive than in the in vitro study (about 1 log reduction). In conclusion, PDT seems to be a helpful alternative to treat dermal cryptococcosis; however, more effective parameters must be found in in vivo studies.

  9. Molecular typing of environmental Cryptococcus neoformans/C. gattii species complex isolates from Manaus, Amazonas, Brazil.

    PubMed

    Alves, Gleica Soyan Barbosa; Freire, Ana Karla Lima; Bentes, Amaury Dos Santos; Pinheiro, José Felipe de Souza; de Souza, João Vicente Braga; Wanke, Bodo; Matsuura, Takeshi; Jackisch-Matsuura, Ani Beatriz

    2016-08-01

    Cryptococcus neoformans and Cryptococcus gattii are the main causative agents of cryptococcosis, a systemic fungal disease that affects internal organs and skin, and which is acquired by inhalation of spores or encapsulated yeasts. It is currently known that the C. neoformans/C. gattii species complex has a worldwide distribution, however, some molecular types seem to prevail in certain regions. Few environmental studies of Cryptococcus have been conducted in the Brazilian Amazon. This is the first ecological study of the pathogenic fungi C. neoformans/C. gattii species complex in the urban area of Manaus, Amazonas, Brazil. A total of 506 samples from pigeon droppings (n = 191), captive bird droppings (n = 60) and tree hollows (n = 255) were collected from June 2012 to January 2014 at schools and public buildings, squares, pet shops, households, the zoo and the bus station. Samples were plated on niger seed agar (NSA) medium supplemented with chloramphenicol and incubated at 25°C for 5 days. Dark-brown colonies were isolated and tested for thermotolerance at 37°C, cycloheximide resistance and growth on canavanine-glycine-bromothymol blue agar. Molecular typing was done by PCR-RFLP. Susceptibility to the antifungal drugs amphotericin B, fluconazole, itraconazole and ketoconazole was tested using Etest(®) strips. In total, 13 positive samples were obtained: one tree hollow (C. gattiiVGII), nine pigeon droppings (C. neoformansVNI) and three captive bird droppings (C. neoformansVNI). The environmental cryptococcal isolates found in this study were of the same molecular types as those responsible for infections in Manaus. PMID:27005969

  10. Sexual Cycle of Cryptococcus neoformans var. grubii and Virulence of Congenic a and α Isolates

    PubMed Central

    Nielsen, Kirsten; Cox, Gary M.; Wang, Ping; Toffaletti, Dena L.; Perfect, John R.; Heitman, Joseph

    2003-01-01

    Cryptococcus neoformans is a human-pathogenic fungus that has evolved into three distinct varieties that infect most prominently the central nervous system. A sexual cycle involving haploid cells of a and α mating types has been reported for two varieties (C. neoformans var. neoformans, serotype D, and C. neoformans var. gattii, serotypes B and C), yet the vast majority of infections involve a distinct variety (C. neoformans var. grubii, serotype A) that has been thought to be clonal and restricted to the α mating type. We recently identified the first serotype A isolate of the a mating type which had been thought to be extinct (strain 125.91). Here we report that this unusual strain can mate with a subset of pathogenic serotype A strains to produce a filamentous dikaryon with fused clamp connections, basidia, and viable recombinant basidiospores. One meiotic segregant mated poorly with the serotype A reference strain H99 but robustly with a crg1 mutant that lacks a regulator of G protein signaling and is hyperresponsive to mating pheromone. This meiotic segregant was used to create congenic a and α mating type serotype A strains. Virulence tests with rabbit and murine models of cryptococcal meningitis showed that the serotype A congenic a and α mating type strains had equivalent virulence in animal models, in contrast to previous studies linking the α mating type to increased virulence in congenic serotype D strains. Our studies highlight a role for sexual recombination in the evolution of a human fungal pathogen and provide a robust genetic platform to establish the molecular determinants of virulence. PMID:12933823

  11. Isolation, Identification and Molecular Typing of Cryptococcus neoformans from Pigeon Droppings and Other Environmental Sources in Tripoli, Libya.

    PubMed

    Ellabib, Mohamed S; Aboshkiwa, Mohamed A; Husien, Walid M; D'Amicis, Roberta; Cogliati, Massimo

    2016-08-01

    Cryptococcus neoformans and C. gattii are the major cause of fungal meningitis, a potentially lethal mycosis. Since pigeon excreta and other environmental sources can be considered a significant environmental reservoir of this species in urban areas, 100 samples of pigeon excreta and 420 samples from Eucalyptus camaldulensis and Olea europaea (olive tree) around the city of Tripoli, Libya, were collected. C. neoformans was isolated and identified using standard biochemical assays from 46 samples: 34 from pigeon droppings, 3 from Eucalyptus trees and 9 from olive trees. Molecular typing revealed that all isolates from pigeon droppings belonged to molecular type VNI (C. neoformans var. grubii) and mating type αA, whereas those from trees included also the molecular type VNII and VNIII (AD hybrids). The present study reports, for the first time, information about the distribution of species, mating types and molecular types of C. neoformans/C. gattii species complex in Libya. PMID:26943725

  12. Hypoxia and Fungal Pathogenesis: To Air or Not To Air?

    PubMed Central

    Grahl, Nora; Shepardson, Kelly M.; Chung, Dawoon

    2012-01-01

    Over the last 3 decades, the frequency of life-threatening human fungal infections has increased as advances in medical therapies, solid-organ and hematopoietic stem cell transplantations, an increasing geriatric population, and HIV infections have resulted in significant rises in susceptible patient populations. Although significant advances have been made in understanding how fungi cause disease, the dynamic microenvironments encountered by fungi during infection and the mechanisms by which they adapt to these microenvironments are not fully understood. As inhibiting and preventing in vivo fungal growth are main goals of antifungal therapies, understanding in vivo fungal metabolism in these host microenvironments is critical for the improvement of existing therapies or the design of new approaches. In this minireview, we focus on the emerging appreciation that pathogenic fungi like Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are exposed to oxygen-limited or hypoxic microenvironments during fungal pathogenesis. The implications of these in vivo hypoxic microenvironments for fungal metabolism and pathogenesis are discussed with an aim toward understanding the potential impact of hypoxia on invasive fungal infection outcomes. PMID:22447924

  13. Induction of Brain Microvascular Endothelial Cell Urokinase Expression by Cryptococcus neoformans Facilitates Blood-Brain Barrier Invasion

    PubMed Central

    Stie, Jamal; Fox, Deborah

    2012-01-01

    The invasive ability of the blood-borne fungal pathogen Cryptococcus neoformans can be enhanced through interactions with host plasma components, such as plasminogen. Previously we showed by in vitro studies that plasminogen coats the surface of C. neoformans and is converted to the active serine protease, plasmin, by host plasminogen activators. Viable, but not formaldehyde- or sodium azide-killed, cryptococcal strains undergo brain microvascular endothelial cell-dependent plasminogen-to-plasmin activation, which results in enhanced, plasmin-dependent cryptococcal invasion of primary bovine brain microvascular endothelial cells and fungal ability to degrade plasmin substrates. In the present work, brain microvascular endothelial cells cultured with viable, but not killed, cryptococcal strains led to significant increases in both urokinase mRNA transcription and cell-associated urokinase protein expression. Soluble urokinase was also detected in conditioned medium from brain microvascular endothelial cells cultured with viable, but not killed, C. neoformans. Exposure of plasminogen pre-coated viable C. neoformans to conditioned medium from strain-matched brain microvascular endothelial cell-fungal co-cultures resulted in plasminogen-to-plasmin activation and plasmin-dependent cryptococcal invasion. siRNA-mediated silencing of urokinase gene expression or the use of specific inhibitors of urokinase activity abrogated both plasminogen-to-plasmin activation on C. neoformans and cryptococcal-brain microvascular endothelial cell invasion. Our results suggest that pathogen exploitation of the host urokinase-plasmin(ogen) system may contribute to C. neoformans virulence during invasive cryptococcosis. PMID:23145170

  14. Viral diseases and pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It includes classification of viral infection. It describes common ways of virus entry, replication, and transmission. It introduces the routes of viral invasion and molecular basis for viral pathogenesis....

  15. Development of Protective Inflammation and Cell-Mediated Immunity against Cryptococcus neoformans after Exposure to Hyphal Mutants

    PubMed Central

    Zhai, Bing; Wozniak, Karen L.; Masso-Silva, Jorge; Upadhyay, Srijana; Hole, Camaron; Rivera, Amariliz; Wormley, Floyd L.

    2015-01-01

    ABSTRACT Morphological switch is tightly coupled with the pathogenesis of many dimorphic fungal pathogens. Cryptococcus neoformans, the major causative agent of cryptococcal meningitis, mostly presents as the yeast form but is capable of switching to the hyphal form. The filamentous form has long been associated with attenuated virulence, yet the underlying mechanism remains elusive. We previously identified the master regulator Znf2 that controls the yeast-to-hypha transition in Cryptococcus. Activation of Znf2 promotes hyphal formation and abolishes fungal virulence in vivo. Here we demonstrated that the cryptococcal strain overexpressing ZNF2 elicited strong and yet temporally confined proinflammatory responses in the early stage of infection. In contrast, exacerbated inflammation in mice infected with the wild-type (WT) strain showed that they were unable to control the infection. Animals inoculated with this filamentous Cryptococcus strain had fewer pulmonary eosinophils and CD11c+ CD11b+ cells than animals inoculated with WT yeast. Moreover, mice infected with this strain developed protective Th1- or Th17-type T cell responses. These findings suggest that the virulence attenuation of the filamentous form is likely due to its elicitation of protective host responses. The antivirulence effect of Znf2 was independent of two previously identified factors downstream of Znf2. Interestingly, mucosal immunizations with high doses of ZNF2-overexpressing cells, either in the live or heat-killed form, offered 100% protection to the host from a subsequent challenge with the otherwise lethal clinical strain H99. Our results demonstrate that heat-resistant cellular components presented in cryptococcal cells with activated ZNF2 elicit protective host immune responses. These findings could facilitate future research on novel immunological therapies. PMID:26443458

  16. Decayed wood of Syzygium cumini and Ficus religiosa living trees in Delhi/New Delhi metropolitan area as natural habitat of Cryptococcus neoformans.

    PubMed

    Randhawa, H S; Kowshik, T; Khan, Z U

    2003-06-01

    The isolation is reported of Cryptococcus neoformans var. gattii and C. n. var. neoformans from decayed wood inside trunk hollows of Syzygium cumini and of C. n. var. neoformans from Ficus religiosa trees in the Delhi/New Delhi metropolitan area. Fourteen of sixty-six (21%) S. cumini trees investigated proved to be positive, seven for each variety. The two varieties never co-occurred in the same hollow. C. n. var. neoformans was also isolated from three of seventeen Ficus religiosa-trees. Two of these isolates originated from decayed wood and one from bark. The C. n. var. gattii and C. n. var. neoformans isolates belonged to serotype B and serotype A, respectively. The data strongly supported colonization of S. cumini by both varieties and of F. religiosa trees by C. n. var. neoformans. Evidence of this was found by repeated isolations. For example, in 36/44 (82%) samples for C. n. var. gattii and 22/27 (81%) samples for C. n. var. neoformans, and by a high population density in the tested wood debris (maximally 6 x 10(5) colony-forming units per gram [c.f.u./g] for C. n. var. gattii and 8 x 10(4) c.f.u./g for C. n. var. neoformans). No eucalypt trees were seen near the positive S. cumini and F. religiosa trees. The densities of C. neoformans in these trees exceeded those found previously in Eucalyptus camaldulensis and in other tree species more rarely reported to be sources of C. neoformans in India. S. cumini and F. religiosa appear not to have been reported to date as sources for either C. n. var. gattii or C n. var. neoformans. Our results add to the recently emerging evidence that the natural habitat of C. n. var. gattii and C. n. var. neoformans is not specific to woody or other debris of particular tree species, but instead is more generalized. PMID:12964711

  17. Usefulness of silkworm as a host animal for understanding pathogenicity of Cryptococcus neoformans.

    PubMed

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2016-02-01

    We propose Cryptococcus neoformans infection model using silkworm for understanding cryptococcosis and screening of therapeutically effective antibiotics. Silkworm is an insect whose rearing methods were established through a long history of the sericulture industry. Silkworm facilitates experiments using a large number of individuals because of low cost for rearing and few ethical problems caused by killing animals. Silkworm can be reared at 37˚C to perform infection experiments at same temperature to human body. Injection of accurate amounts of samples into hemolymph of silkworm by usual syringes is easy to be done since silkworm has an appropriate size to handle. Moreover two injection methods, injection into hemolymph and intestine, are distinguishable for silkworms. The former is correspondent to intravenous injection, and the latter is to oral administration in humans. Taking these advantages of silkworms as host animals, it is possible to evaluate the virulence factors in C. neoformans and the therapeutic efficacy of antifungal agents. PMID:26902902

  18. Control of Intracellular Calcium Signaling as a Neuroprotective Strategy

    PubMed Central

    Duncan, R. Scott; Goad, Daryl L.; Grillo, Michael A.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed. PMID:20335972

  19. A Small Protein Associated with Fungal Energy Metabolism Affects the Virulence of Cryptococcus neoformans in Mammals.

    PubMed

    McClelland, Erin E; Ramagopal, Udupi A; Rivera, Johanna; Cox, James; Nakouzi, Antonio; Prabu, Moses M; Almo, Steven C; Casadevall, Arturo

    2016-09-01

    The pathogenic yeast Cryptococcus neoformans causes cryptococcosis, a life-threatening fungal disease. C. neoformans has multiple virulence mechanisms that are non-host specific, induce damage and interfere with immune clearance. Microarray analysis of C. neoformans strains serially passaged in mice associated a small gene (CNAG_02591) with virulence. This gene, hereafter identified as HVA1 (hypervirulence-associated protein 1), encodes a protein that has homologs of unknown function in plant and animal fungi, consistent with a conserved mechanism. Expression of HVA1 was negatively correlated with virulence and was reduced in vitro and in vivo in both mouse- and Galleria-passaged strains of C. neoformans. Phenotypic analysis in hva1Δ and hva1Δ+HVA1 strains revealed no significant differences in established virulence factors. Mice infected intravenously with the hva1Δ strain had higher fungal burden in the spleen and brain, but lower fungal burden in the lungs, and died faster than mice infected with H99W or the hva1Δ+HVA1 strain. Metabolomics analysis demonstrated a general increase in all amino acids measured in the disrupted strain and a block in the TCA cycle at isocitrate dehydrogenase, possibly due to alterations in the nicotinamide cofactor pool. Macrophage fungal burden experiments recapitulated the mouse hypervirulent phenotype of the hva1Δ strain only in the presence of exogenous NADPH. The crystal structure of the Hva1 protein was solved, and a comparison of structurally similar proteins correlated with the metabolomics data and potential interactions with NADPH. We report a new gene that modulates virulence through a mechanism associated with changes in fungal metabolism. PMID:27583447

  20. Cryptococcosis Serotypes Impact Outcome and Provide Evidence of Cryptococcus neoformans Speciation

    PubMed Central

    Desnos-Ollivier, Marie; Patel, Sweta; Raoux-Barbot, Dorothée; Heitman, Joseph

    2015-01-01

    ABSTRACT Cryptococcus neoformans is a human opportunistic fungal pathogen causing severe disseminated meningoencephalitis, mostly in patients with cellular immune defects. This species is divided into three serotypes: A, D, and the AD hybrid. Our objectives were to compare population structures of serotype A and D clinical isolates and to assess whether infections with AD hybrids differ from infections with the other serotypes. For this purpose, we analyzed 483 isolates and the corresponding clinical data from 234 patients enrolled during the CryptoA/D study or the nationwide survey on cryptococcosis in France. Isolates were characterized in terms of ploidy, serotype, mating type, and genotype, utilizing flow cytometry, serotype- and mating type-specific PCR amplifications, and multilocus sequence typing (MLST) methods. Our results suggest that C. neoformans serotypes A and D have different routes of multiplication (primarily clonal expansion versus recombination events for serotype A and serotype D, respectively) and important genomic differences. Cryptococcosis includes a high proportion of proven or probable infections (21.5%) due to a mixture of genotypes, serotypes, and/or ploidies. Multivariate analysis showed that parameters independently associated with failure to achieve cerebrospinal fluid (CSF) sterilization by week 2 were a high serum antigen titer, the lack of flucytosine during induction therapy, and the occurrence of mixed infection, while infections caused by AD hybrids were more likely to be associated with CSF sterilization. Our study provides additional evidence for the possible speciation of C. neoformans var. neoformans and grubii and highlights the importance of careful characterization of causative isolates. PMID:26060271

  1. Isolates of Cryptococcus neoformans from infected animals reveal genetic exchange in unisexual, alpha mating type populations.

    PubMed

    Bui, Tien; Lin, Xiaorong; Malik, Richard; Heitman, Joseph; Carter, Dee

    2008-10-01

    Sexual reproduction and genetic exchange are important for the evolution of fungal pathogens and for producing potentially infective spores. Studies to determine whether sex occurs in the pathogenic yeast Cryptococcus neoformans var. grubii have produced enigmatic results, however: basidiospores are the most likely infective propagules, and clinical isolates are fertile and genetically diverse, consistent with a sexual species, but almost all populations examined consist of a single mating type and have little evidence for genetic recombination. The choice of population is critical when looking for recombination, particularly when significant asexual propagation is likely and when latency may complicate assessing the origin of an isolate. We therefore selected isolates from infected animals living in the region of Sydney, Australia, with the assumption that the relatively short life spans and limited travels of the animal hosts would provide a very defined population. All isolates were mating type alpha and were of molecular genotype VNI or VNII. A lack of linkage disequilibrium among loci suggested that genetic exchange occurred within both genotype groups. Four diploid VNII isolates that produced filaments and basidium-like structures when cultured in proximity to an a mating type strain were found. Recent studies suggest that compatible alpha-alpha unions can occur in C. neoformans var. neoformans populations and in populations of the sibling species Cryptococcus gattii. As a mating type strains of C. neoformans var. grubii have never been found in Australia, or in the VNII molecular type globally, the potential for alpha-alpha unions is evidence that alpha-alpha unisexual mating maintains sexual recombination and diversity in this pathogen and may produce infectious propagules. PMID:18552280

  2. Restricted Substrate Specificity for the Geranylgeranyltransferase-I Enzyme in Cryptococcus neoformans: Implications for Virulence

    PubMed Central

    Selvig, Kyla; Ballou, Elizabeth R.; Nichols, Connie B.

    2013-01-01

    Proper cellular localization is required for the function of many proteins. The CaaX prenyltransferases (where CaaX indicates a cysteine followed by two aliphatic amino acids and a variable amino acid) direct the subcellular localization of a large group of proteins by catalyzing the attachment of hydrophobic isoprenoid moieties onto C-terminal CaaX motifs, thus facilitating membrane association. This group of enzymes includes farnesyltransferase (Ftase) and geranylgeranyltransferase-I (Ggtase-1). Classically, the variable (X) amino acid determines whether a protein will be an Ftase or Ggtase-I substrate, with Ggtase-I substrates often containing CaaL motifs. In this study, we identify the gene encoding the β subunit of Ggtase-I (CDC43) and demonstrate that Ggtase-mediated activity is not essential. However, Cryptococcus neoformans CDC43 is important for thermotolerance, morphogenesis, and virulence. We find that Ggtase-I function is required for full membrane localization of Rho10 and the two Cdc42 paralogs (Cdc42 and Cdc420). Interestingly, the related Rac and Ras proteins are not mislocalized in the cdc43Δ mutant even though they contain similar CaaL motifs. Additionally, the membrane localization of each of these GTPases is dependent on the prenylation of the CaaX cysteine. These results indicate that C. neoformans CaaX prenyltransferases may recognize their substrates in a unique manner from existing models of prenyltransferase specificity. It also suggests that the C. neoformans Ftase, which has been shown to be more important for C. neoformans proliferation and viability, may be the primary prenyltransferase for proteins that are typically geranylgeranylated in other species. PMID:24014765

  3. Mouse-human immunoglobulin G1 chimeric antibodies with activities against Cryptococcus neoformans.

    PubMed Central

    Zebedee, S L; Koduri, R K; Mukherjee, J; Mukherjee, S; Lee, S; Sauer, D F; Scharff, M D; Casadevall, A

    1994-01-01

    Passive antibody administration is a potentially useful approach for the therapy of human Cryptococcus neoformans infections. To evaluate the efficacy of the human immunoglobulin G1 (IgG1) constant region against C. neoformans and to construct murine antibody derivatives with reduced immunogenicities and longer half-lives in humans, two mouse-human IgG1 chimeric antibodies were generated from the protective murine monoclonal antibodies 2D10 (IgM) and 18B7 (IgG1). The 2D10 mouse-human IgG1 chimeric antibody (ch2D10) had significantly lower binding affinity than its parent murine antibody (m2D10), presumably because of a loss of avidity contribution on switching from IgM to IgG. The 18B7 mouse-human IgG1 chimeric antibody (ch18B7) had higher affinity for cryptococcal polysaccharide antigen than its parent murine antibody (m18B7). ch18B7 and ch2D10 promoted phagocytosis of C. neoformans by primary human microglial cells and the murine J774.16 macrophage-like cell line. ch18B7 and m18B7 enhanced fungistatic or fungicidal activity of J774.16 cells and prolonged the survival of lethally infected mice. We conclude that the human IgG1 constant chain can be effective in mediating antifungal activity against C. neoformans. ch18B7 or similar antibodies are potential candidates for passive antibody therapy of human cryptococcosis. PMID:7979280

  4. In Vitro Analysis of Metabolites Secreted during Infection of Lung Epithelial Cells by Cryptococcus neoformans.

    PubMed

    Liew, Kah Leong; Jee, Jap Meng; Yap, Ivan; Yong, Phelim Voon Chen

    2016-01-01

    Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection. PMID:27054608

  5. In Vitro Analysis of Metabolites Secreted during Infection of Lung Epithelial Cells by Cryptococcus neoformans

    PubMed Central

    2016-01-01

    Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection. PMID:27054608

  6. Activity of tannins from Stryphnodendron adstringens on Cryptococcus neoformans: effects on growth, capsule size and pigmentation

    PubMed Central

    Ishida, Kelly; Rozental, Sonia; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru

    2009-01-01

    Background Stryphnodendron adstringens (Mart.) Coville, Leguminosae, also known in Brazil as barbatimão, is rich in tannins and many flavan-3-ols and proanthocyanidins such as prodelphinidins and prorobinetinidins. Previous studies have demonstrated several pharmacological properties of tannins from barbatimão, including anti-candidal activity. Methods The antifungal activity of proanthocyanidin polymeric tannins from Stryphnodendron adstringens (subfraction F2.4) was evaluated against three strains of Cryptococcus neoformans with different capsule expressions, using the broth microdilution technique, light microscopy and transmission electron microscopy. The effect of subfraction F2.4 on C. neoformans and melanoma mammalian cells pigmentation was also evaluated. Results Although susceptibility assays revealed MIC values quite similar (between 2.5 and 5.0 μg/ml), analyses of MFC values revealing that the acapsular mutant Cap 67 was more susceptible to be killed by the subfraction F2.4 (MFC = 20 μg/ml) than the two tested capsular strains (T1-444 and ATCC 28957) (MFC > 160 μg/ml). Optical and electron microscopy experiments revealed relevant alterations in cell shape and size in all strains treated with 1 and 2.5 μg/ml of subfraction F2.4. Capsule size of the capsular strains decreased drastically after subfraction F2.4 treatment. In addition, ultrastructural alterations such as cell wall disruption, cytoplasm extraction, mitochondria swelling, increase in the number of cytoplasmic vacuoles and formation of membranous structures in the cytoplasm were also observed in treated yeasts. Incubation with subfraction F2.4 also decreased C. neoformans pigmentation, however, did not interfere in melanization of B16F10 mammalian cells. Conclusion Our data indicate that tannins extracted from S. adstringens interfered with growth, capsule size and pigmentation, all important virulence factors of C. neoformans, and may be considered as a putative candidate for the

  7. Scavenger Receptor A Modulates the Immune Response to Pulmonary Cryptococcus neoformans Infection

    PubMed Central

    Qiu, Yafeng; Dayrit, Jeremy K.; Davis, Michael J.; Carolan, Jacob F.; Osterholzer, John J.; Curtis, Jeffrey L.; Olszewski, Michal A.

    2014-01-01

    Scavenger receptors represent an important class of pattern recognition receptors shown to mediate both beneficial and detrimental roles in host defense against microbial pathogens. The role of the major macrophage scavenger receptor, scavenger receptor A (SRA), in the immune response against the pathogenic fungus, Cryptococcus neoformans, is unknown. To evaluate the role of SRA in anticryptococcal host defenses, SRA+/+ mice and SRA−/− mice were infected intratracheally with C. neoformans. Results show that infection of SRA−/− mice resulted in a reduction in the pulmonary fungal burden at the efferent phase (3 wk) compared with SRA+/+ mice. Improved fungal clearance in SRA−/− mice was associated with decreased accumulation of eosinophils and greater accumulation of CD4+ T cells and CD11b+ dendritic cells. Additional parameters were consistent with enhanced anti-cryptococcal immunity in the infected SRA−/− mice: 1) increased expression of the costimulatory molecules CD80 and CD86 by lung APCs, 2) decreased expression of Th2 cytokines (IL-4 and IL-13) and IL-10 in lung leukocytes and in cryptococcal Ag-pulsed splenocytes, 3) diminished IgE production in sera, and 4) increased hallmarks of classical pulmonary macrophage activation. These effects were preceded by increased expression of early pro-Th1 genes in pulmonary lymph nodes at the afferent phase (1 wk). Collectively, our data show that SRA can be exploited by C. neoformans to interfere with the early events of the afferent responses that support Th1 immune polarization. This results in amplification of Th2 arm of the immune response and subsequently impaired adaptive control of C. neoformans in the infected lungs. PMID:23733871

  8. Distinct and redundant roles of exonucleases in Cryptococcus neoformans: Implications for virulence and mating

    PubMed Central

    Wollschlaeger, Carolin; Trevijano-Contador, Nuria; Wang, Xuying; Legrand, Mélanie; Zaragoza, Oscar; Heitman, Joseph; Janbon, Guilhem

    2015-01-01

    Opportunistic pathogens like Cryptococcus neoformans are constantly exposed to changing environments, in their natural habitat as well as when encountering a human host. This requires a coordinated program to regulate gene expression that can act at the levels of mRNA synthesis and also mRNA degradation. Here, we find that deletion of the gene encoding the major cytoplasmic 5’→3’ exonuclease Xrn1p in C. neoformans has important consequences for virulence associated phenotypes such as growth at 37°C, capsule and melanin. In an invertebrate model of cryptococcosis the alteration of these virulence properties corresponds to avirulence of the xrn1Δ mutant strains. Additionally, deletion of XRN1 impairs uni- and bisexual mating. On a molecular level, the absence of XRN1 is associated with the upregulation of other major exonuclease encoding genes (i.e. XRN2 and RRP44). Using inducible alleles of RRP44 and XRN2, we show that artificial overexpression of these genes alters LAC1 gene expression and mating. Our data thus suggest the existence of a complex interdependent regulation of exonuclease encoding genes that impact upon virulence and mating in C. neoformans. PMID:25267175

  9. Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin.

    PubMed Central

    Levitz, S M; Tabuni, A

    1991-01-01

    We studied the receptors on human cultured macrophages (MO-M phi) responsible for binding encapsulated and isogenic mutant acapsular strains of Cryptococcus neoformans, and whether such binding leads to a phagocytic event. Both strains required opsonization with complement components in normal human serum in order for binding to occur. Binding of the acapsular, but not the encapsulated, strain led to phagocytosis. MAb directed against any of the three defined complement receptors (CR) on MO-M phi (CR1, CR3, and CR4) profoundly inhibited binding of serum-opsonized encapsulated (and to a lesser extent acapsular) organisms to MO-M phi. Immunofluorescence studies demonstrated migration of CR to the area of the cryptococcal binding site. Trypsin and elastase inhibited binding of encapsulated and, to a lesser extent, acapsular yeasts to MO-M phi. Binding of encapsulated C. neoformans was profoundly inhibited by incubation in the cold or by inhibitors of receptor capping and actin microfilaments. Thus, multiple CR appear to contribute to binding of serum-opsonized encapsulated C. neoformans by MO-M phi. Binding is an energy-dependent process that requires conformational changes in actin yet does not lead to phagocytosis of the organism. In contrast, energy is not required for binding of acapsular yeasts by MO-M phi and binding triggers phagocytosis. Images PMID:1991837

  10. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans.

    PubMed

    Panepinto, John; Komperda, Kazimierz; Frases, Susana; Park, Yoon-Dong; Djordjevic, Julianne T; Casadevall, Arturo; Williamson, Peter R

    2009-03-01

    The cell wall of pathogenic fungi such as Cryptococcus neoformans, provides a formidable barrier to secrete virulence factors that produce host cell damage. To study secretion of virulence factors to the cell periphery, sec6 RNAi mutant strains of C. neoformans were tested for virulence factor expression. The studies reported here show that SEC6 RNAi mutant strains were defective in a number of virulence factors including laccase, urease as well as soluble polysaccharide and demonstrated attenuated virulence in mice. Further analysis by transmission electron microscopy detected the production of abundant extracellular exosomes in wild-type strains containing empty plasmid, but a complete absence in the iSEC6 strain. In addition, a green fluorescent protein-laccase fusion protein demonstrated aberrant localization within cytoplasmic vesicles in iSEC6 strains. In contrast, iSEC6 strains retained normal growth at 37 degrees C, as well as substantially normal capsule formation, phospholipase activity and total secreted protein. These results provide the first molecular evidence for the existence of fungal exosomes and associate these vesicles with the virulence of C. neoformans. PMID:19210702

  11. Unravelling secretion in Cryptococcus neoformans: more than one way to skin a cat.

    PubMed

    Rodrigues, Marcio L; Djordjevic, Julianne T

    2012-06-01

    Secretion pathways in fungi are essential for the maintenance of cell wall architecture and for the export of a number of virulence factors. In the fungal pathogen, Cryptococcus neoformans, much evidence supports the existence of more than one route taken by secreted molecules to reach the cell periphery and extracellular space, and a significant degree of crosstalk between conventional and non-conventional secretion routes. The need for such complexity may be due to differences in the nature of the exported cargo, the spatial and temporal requirements for constitutive and non-constitutive protein secretion, and/or as a means of compensating for the extra burden on the secretion machinery imposed by the elaboration of the polysaccharide capsule. This review focuses on the role of specific components of the C. neoformans secretion machinery in protein and/or polysaccharide export, including Sec4, Sec6, Sec14, Golgi reassembly and stacking protein and extracellular exosome-like vesicles. We also address what is known about traffic of the lipid, glucosylceramide, a target of therapeutic antibodies and an important regulator of C. neoformans pathogenicity, and the role of signalling pathways in the regulation of secretion. PMID:21898146

  12. Multicenter evaluation of broth microdilution method for susceptibility testing of Cryptococcus neoformans against fluconazole.

    PubMed Central

    Sanati, H; Messer, S A; Pfaller, M; Witt, M; Larsen, R; Espinel-Ingroff, A; Ghannoum, M

    1996-01-01

    We have developed a microdilution method for measuring the susceptibility of Cryptococcus neoformans to fluconazole. The present study evaluated the interlaboratory agreement of the results for the microdilution method obtained at three different sites and compared this method with the National Committee for Clinical Laboratory Standards M27-P reference method. Excellent interlaboratory agreement among the results obtained at the three sites was achieved with this method (83 and 96% agreement within 1 and 2 log2 dilutions, respectively). An overall agreement of 90% between the microdilution method and the M27-P method was observed, demonstrating the comparability of the two methods. However, there are inherent problems with the M27-P method in relation to measuring C. neoformans susceptibility, including suboptimal growth of the organism in RPMI 1640, a longer incubation period, and a narrow range of MICs. On the basis of these data, the microdilution method tested in this study is recommended for inclusion in the National Committee for Laboratory Standards method for testing the antifungal susceptibility of C. neoformans. PMID:8727919

  13. Cryptococcus neoformans Requires a Functional Glycolytic Pathway for Disease but Not Persistence in the Host

    PubMed Central

    Price, Michael S.; Betancourt-Quiroz, Marisol; Price, Jennifer L.; Toffaletti, Dena L.; Vora, Haily; Hu, Guanggan; Kronstad, James W.; Perfect, John R.

    2011-01-01

    ABSTRACT Cryptococcus neoformans is an important fungal pathogen of immunocompromised individuals, with a close relative, Cryptococcus gattii, emerging as a serious threat for the immunocompetent. During initial infection, C. neoformans colonizes the airspaces of the lungs, resulting in pneumonia, and subsequently migrates to the central nervous system (CNS). We sought to understand fungal carbon utilization during colonization of these fundamentally different niches within the host, in particular the roles of gluconeogenesis and glycolysis. We created mutants at key points in the gluconeogenesis/glycolysis metabolic pathways that are restricted for growth on lactate and glucose, respectively. A phosphoenolpyruvate carboxykinase mutant (the pck1∆ mutant), blocked for entry of 2- and 3-carbon substrates into gluconeogenesis and attenuated for virulence in a murine inhalation model, showed wild-type (WT) persistence in a rabbit cerebrospinal fluid (CSF) model of cryptococcosis. Conversely, both the pyruvate kinase (pyk1∆) and the hexose kinase I and II (hxk1∆/hxk2∆) mutants, which show impaired glucose utilization, exhibited severely attenuated virulence in the murine inhalation model of cryptococcosis and decreased persistence in the CNS in both the rabbit CSF and the murine inhalation models while displaying adequate persistence in the lungs of mice. These data suggest that glucose utilization is critical for virulence of C. neoformans and persistence of the yeast in the CNS. PMID:21652778

  14. Radiological Studies Reveal Radial Differences in the Architecture of the Polysaccharide Capsule of Cryptococcus neoformans

    PubMed Central

    Bryan, R. A.; Zaragoza, O.; Zhang, T.; Ortiz, G.; Casadevall, A.; Dadachova, E.

    2005-01-01

    The polysaccharide capsule of the pathogenic fungus Cryptococcus neoformans is an important virulence factor, but relatively little is known about its architecture. We applied a combination of radiological, chemical, and serological methods to investigate the structure of this polysaccharide capsule. Exposure of C. neoformans cells to gamma radiation, dimethyl sulfoxide, or radiolabeled monoclonal antibody removed a significant part of the capsule. Short intervals of gamma irradiation removed the outer portion of the cryptococcal capsule without killing cells, which could subsequently repair their capsules. Survival analysis of irradiated wild-type, acapsular mutant, and complemented mutant strains demonstrated that the capsule contributed to radioprotection and had a linear attenuation coefficient higher than that of lead. The capsule portions remaining after dimethyl sulfoxide or gamma radiation treatment were comparable in size, 65 to 66 μm3, and retained immunoreactivity for a monoclonal antibody to glucuronoxylomannan. Simultaneous or sequential treatment of the cells with dimethyl sulfoxide and radiation removed the remaining capsule so that it was not visible by light microscopy. The capsule could be protected against radiation by either of the free radical scavengers ascorbic acid and sorbitol. Sugar composition analysis of polysaccharide removed from the outer and inner parts of the capsule revealed significant differences in glucuronic acid and xylose molar ratios, implying differences in the chemical structure of the constituent polysaccharides. Our results provide compelling evidence for the existence of two zones in the C. neoformans capsule that differ in susceptibility to dimethyl sulfoxide and radiation and, possibly, in packing and composition. PMID:15701808

  15. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils.

    PubMed

    Rocha, Juliana D B; Nascimento, Michelle T C; Decote-Ricardo, Debora; Côrte-Real, Suzana; Morrot, Alexandre; Heise, Norton; Nunes, Marise P; Previato, José Osvaldo; Mendonça-Previato, Lucia; DosReis, George A; Saraiva, Elvira M; Freire-de-Lima, Célio G

    2015-01-01

    In the present study, we characterized the in vitro modulation of NETs (neutrophil extracellular traps) induced in human neutrophils by the opportunistic fungus Cryptococcus neoformans, evaluating the participation of capsular polysaccharides glucuronoxylomanan (GXM) and glucuronoxylomannogalactan (GXMGal) in this phenomenon. The mutant acapsular strain CAP67 and the capsular polysaccharide GXMGal induced NET production. In contrast, the wild-type strain and the major polysaccharide GXM did not induce NET release. In addition, C. neoformans and the capsular polysaccharide GXM inhibited PMA-induced NET release. Additionally, we observed that the NET-enriched supernatants induced through CAP67 yeasts showed fungicidal activity on the capsular strain, and neutrophil elastase, myeloperoxidase, collagenase and histones were the key components for the induction of NET fungicidal activity. The signaling pathways associated with NET induction through the CAP67 strain were dependent on reactive oxygen species (ROS) and peptidylarginine deiminase-4 (PAD-4). Neither polysaccharide induced ROS production however both molecules blocked the production of ROS through PMA-activated neutrophils. Taken together, the results demonstrate that C. neoformans and the capsular component GXM inhibit the production of NETs in human neutrophils. This mechanism indicates a potentially new and important modulation factor for this fungal pathogen. PMID:25620354

  16. Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans

    PubMed Central

    Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Oliveira, Debora; Kronstad, James W.; Jung, Won Hee

    2015-01-01

    Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up- regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans. PMID:25554701

  17. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  18. Essential Roles of the Kar2/BiP Molecular Chaperone Downstream of the UPR Pathway in Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Kang, Hyun Ah; Bahn, Yong-Sun

    2013-01-01

    The endoplasmic reticulum (ER) is a central hub where secreted or membrane-bound proteins are maturated and folded properly in eukaryotes. Maintenance of ER homeostasis is particularly important for human fungal pathogens, such as Cryptococcus neoformans, which encounter a plethora of host-mediated stresses during infection. Our previous study demonstrated that the unfolded protein response (UPR) pathway, composed of the evolutionarily conserved Ire1 kinase and the unique Hxl1 transcription factor, has pleiotropic roles in ER stress response, thermotolerance, antifungal drug resistance, and virulence in C. neoformans. Here, we functionally characterized an ER-resident molecular chaperone, Kar2/BiP, in C. neoformans. Conditional expression of KAR2 by the copper-regulated promoter revealed that Kar2 is essential for the viability of C. neoformans. Constitutive expression of KAR2 by the strong histone H3 promoter partially restores resistance to ER stress, cell wall stress, thermotolerance, and genotoxic stress in ire1Δ and hxl1Δ mutants, suggesting that Kar2 mainly functions downstream of the UPR pathway. Furthermore, Kar2 appears to control azole resistance in C. neoformans downstream of the UPR pathway without regulation of ERG11 or ERG3. Interestingly, we discovered that azole treatment is sensed as ER-stress and subsequently activates the Ire1-dependent Hxl1 splicing event and induction of KAR2 by the UPR pathway. In contrast, the constitutive expression of Kar2 is not sufficient to restore the Ire1-mediated regulation of capsule production in C. neoformans UPR mutants. In conclusion, this study demonstrates that Kar2 is not only essential for vegetative growth but also required for response and adaptation to the environmental stresses and antifungal drugs downstream of the UPR pathway in C. neoformans. PMID:23484059

  19. Pathogenesis of Hepatic Encephalopathy

    PubMed Central

    Ciećko-Michalska, Irena; Szczepanek, Małgorzata; Słowik, Agnieszka; Mach, Tomasz

    2012-01-01

    Hepatic encephalopathy can be a serious complication of acute liver failure and chronic liver diseases, predominantly liver cirrhosis. Hyperammonemia plays the most important role in the pathogenesis of hepatic encephalopathy. The brain-blood barrier disturbances, changes in neurotransmission, neuroinflammation, oxidative stress, GABA-ergic or benzodiazepine pathway abnormalities, manganese neurotoxicity, brain energetic disturbances, and brain blood flow abnormalities are considered to be involved in the development of hepatic encephalopathy. The influence of small intestine bacterial overgrowth (SIBO) on the induction of minimal hepatic encephalopathy is recently emphasized. The aim of this paper is to present the current views on the pathogenesis of hepatic encephalopathy. PMID:23316223

  20. Pathogenesis of Castleman's Disease.

    PubMed

    Zhang, Lu; Li, Jian

    2016-02-01

    Castleman's disease (CD) is a rare lymphoproliferative disorder that comprises at least two distinct clinical subtypes (unicentric and multicentric). Three pathologic variants (hyaline vascular variant, plasma cell variant, and mixed variant) have been recognized. In addition to interleukin-6 and human herpes virus 8, some other cytokines and viruses may also be involved in the pathogenesis of CD. This review summarizes the recent advances in the underlying pathogenesis of CD, with an attempt to provide evidence for new treatment options that may change the current treatment strategies and improve patients' outcomes. PMID:26956866

  1. Enhanced egress of intracellular Eimeria tenella sporozoites by splenic lymphocytes from coccidia-infected chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Egress, which describes the mechanism that some intracellular parasites use to exit from parasitophorous vacuoles and host cells, plays a very important role in the parasite life cycle and is central to Eimeria propagation and pathogenesis. Despite the importance of egress in the intracellular paras...

  2. Essential Gene Discovery in the Basidiomycete Cryptococcus neoformans for Antifungal Drug Target Prioritization

    PubMed Central

    Ianiri, Giuseppe

    2015-01-01

    ABSTRACT Fungal diseases represent a major burden to health care globally. As with other pathogenic microbes, there is a limited number of agents suitable for use in treating fungal diseases, and resistance to these agents can develop rapidly. Cryptococcus neoformans is a basidiomycete fungus that causes cryptococcosis worldwide in both immunocompromised and healthy individuals. As a basidiomycete, it diverged from other common pathogenic or model ascomycete fungi more than 500 million years ago. Here, we report C. neoformans genes that are essential for viability as identified through forward and reverse genetic approaches, using an engineered diploid strain and genetic segregation after meiosis. The forward genetic approach generated random insertional mutants in the diploid strain, the induction of meiosis and sporulation, and selection for haploid cells with counterselection of the insertion event. More than 2,500 mutants were analyzed, and transfer DNA (T-DNA) insertions in several genes required for viability were identified. The genes include those encoding the thioredoxin reductase (Trr1), a ribosome assembly factor (Rsa4), an mRNA-capping component (Cet1), and others. For targeted gene replacement, the C. neoformans homologs of 35 genes required for viability in ascomycete fungi were disrupted, meiosis and sporulation were induced, and haploid progeny were evaluated for their ability to grow on selective media. Twenty-one (60%) were found to be required for viability in C. neoformans. These genes are involved in mitochondrial translation, ergosterol biosynthesis, and RNA-related functions. The heterozygous diploid mutants were evaluated for haploinsufficiency on a number of perturbing agents and drugs, revealing phenotypes due to the loss of one copy of an essential gene in C. neoformans. This study expands the knowledge of the essential genes in fungi using a basidiomycete as a model organism. Genes that have no mammalian homologs and are essential

  3. Hepatitis E Pathogenesis.

    PubMed

    Lhomme, Sébastien; Marion, Olivier; Abravanel, Florence; Chapuy-Regaud, Sabine; Kamar, Nassim; Izopet, Jacques

    2016-01-01

    Although most hepatitis E virus (HEV) infections are asymptomatic, some can be severe, causing fulminant hepatitis and extra-hepatic manifestations, including neurological and kidney injuries. Chronic HEV infections may also occur in immunocompromised patients. This review describes how our understanding of the pathogenesis of HEV infection has progressed in recent years. PMID:27527210

  4. Inflammatory bowel disease: Pathogenesis

    PubMed Central

    Zhang, Yi-Zhen; Li, Yong-Yu

    2014-01-01

    Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is characterized by chronic relapsing intestinal inflammation. It has been a worldwide health-care problem with a continually increasing incidence. It is thought that IBD results from an aberrant and continuing immune response to the microbes in the gut, catalyzed by the genetic susceptibility of the individual. Although the etiology of IBD remains largely unknown, it involves a complex interaction between the genetic, environmental or microbial factors and the immune responses. Of the four components of IBD pathogenesis, most rapid progress has been made in the genetic study of gut inflammation. The latest internationally collaborative studies have ascertained 163 susceptibility gene loci for IBD. The genes implicated in childhood-onset and adult-onset IBD overlap, suggesting similar genetic predispositions. However, the fact that genetic factors account for only a portion of overall disease variance indicates that microbial and environmental factors may interact with genetic elements in the pathogenesis of IBD. Meanwhile, the adaptive immune response has been classically considered to play a major role in the pathogenesis of IBD, as new studies in immunology and genetics have clarified that the innate immune response maintains the same importance in inducing gut inflammation. Recent progress in understanding IBD pathogenesis sheds lights on relevant disease mechanisms, including the innate and adaptive immunity, and the interactions between genetic factors and microbial and environmental cues. In this review, we provide an update on the major advances that have occurred in above areas. PMID:24415861

  5. Hepatitis E Pathogenesis

    PubMed Central

    Lhomme, Sébastien; Marion, Olivier; Abravanel, Florence; Chapuy-Regaud, Sabine; Kamar, Nassim; Izopet, Jacques

    2016-01-01

    Although most hepatitis E virus (HEV) infections are asymptomatic, some can be severe, causing fulminant hepatitis and extra-hepatic manifestations, including neurological and kidney injuries. Chronic HEV infections may also occur in immunocompromised patients. This review describes how our understanding of the pathogenesis of HEV infection has progressed in recent years. PMID:27527210

  6. [Pathogenesis of hypophosphatemia].

    PubMed

    Takeuchi, Yasuhiro

    2016-02-01

    Chronic hypophosphatemia is seriously involved in several disorders of musculoskeletal system. Symptoms of patients are usually non-specific, such as pain with or without muscle weakness on lower extremities and are often hard to be correctly diagnosed. It is clinically important for physicians to understand pathogenesis and clinical features of hypophosphatemia and its related diseases. PMID:26813499

  7. [Experimental inoculation of Terminalia catappa seedlings with an environmental isolate of Cryptococcus neoformans var. gattii serotype C ].

    PubMed

    Escandón, Patricia; Huérfano, Sandra; Castañeda, Elizabeth

    2002-12-01

    In 1997, our laboratory reported for the first time the isolation of Cryptococcus neoformans var. gattii serotype C associated with almond tree (Terminalia catappa) detritus. This finding led to a more detailed follow up of the association between the plant and the yeast. Preliminary data have shown that survival of the yeast in almond trees seedlings goes beyond 100 days. The aim of the present study was to establish if under the conditions previously studied, C. neoformans var. gattii would remain viable for longer periods. A total of 83 almond tree seedings, 20-40 cm high, were inoculated with C. neoformans var. gattii serotype C (INS-755). Assays were carried out inoculating the stem or the soil where the seedlings were planted. Observations were undertaken for a period of up to 12 months. As processing techniques we employed the endophytic fungi procedure (stems), maceration (roots, leaves) and standard suspension method (soils). Additionally, microscopic visualization of the yeast in plant tissues was done with trypan blue plus lactophenol. C. neoformans var. gattii was recovered from the inoculated plants for a period of up to 12 months post-inoculation; additionally, the fungus had the capacity to migrate from the stem to the soil and viceversa, without causing macroscopic or microscopic alterations in the plant tissues. This finding suggests that there appears to be an association between the host plant and C. neoformans var. gattii in the environment. PMID:12596450

  8. The Neurobiological Pathogenesis of Poststroke Depression

    PubMed Central

    Liu, Xue-Yuan

    2014-01-01

    Poststroke depression (PSD) is an important consequence after stroke, with negative impact on stroke outcome. The pathogenesis of PSD is complicated, with some special neurobiological mechanism, which mainly involves neuroanatomical, neuron, and biochemical factors and neurogenesis which interact in complex ways. Abundant studies suggested that large lesions in critical areas such as left frontal lobe and basal ganglia or accumulation of silent cerebral lesions might interrupt the pathways of monoamines or relevant pathways of mood control, thus leading to depression. Activation of immune system after stroke produces more cytokines which increase glutamate excitotoxicity, results in more cell deaths of critical areas and enlargement of infarctions, and, together with hypercortisolism induced by stress or inflammation after stroke which could decrease intracellular serotonin transporters, might be the key biochemical change of PSD. The interaction among cytokines, glucocorticoid, and neurotrophin results in the decrease of hippocampal neurogenesis which has been proved to be important for mood control and pharmaceutical effect of selective serotonin reuptake inhibitors and might be another promising pathway to understand the pathogenesis of PSD. In order to reduce the prevalence of PSD and improve the outcome of stroke, more relevant studies are still required to clarify the pathogenesis of PSD. PMID:24744682

  9. Vesicular Polysaccharide Export in Cryptococcus neoformans Is a Eukaryotic Solution to the Problem of Fungal Trans-Cell Wall Transport▿

    PubMed Central

    Rodrigues, Marcio L.; Nimrichter, Leonardo; Oliveira, Débora L.; Frases, Susana; Miranda, Kildare; Zaragoza, Oscar; Alvarez, Mauricio; Nakouzi, Antonio; Feldmesser, Marta; Casadevall, Arturo

    2007-01-01

    The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment. PMID:17114598

  10. Schwannomas and their pathogenesis.

    PubMed

    Hilton, David A; Hanemann, Clemens Oliver

    2014-04-01

    Schwannomas may occur spontaneously, or in the context of a familial tumor syndrome such as neurofibromatosis type 2 (NF2), schwannomatosis and Carney's complex. Schwannomas have a variety of morphological appearances, but they behave as World Health Organization (WHO) grade I tumors, and only very rarely undergo malignant transformation. Central to the pathogenesis of these tumors is loss of function of merlin, either by direct genetic change involving the NF2 gene on chromosome 22 or secondarily to merlin inactivation. The genetic pathways and morphological features of schwannomas associated with different genetic syndromes will be discussed. Merlin has multiple functions, including within the nucleus and at the cell membrane, and this review summarizes our current understanding of the mechanisms by which merlin loss is involved in schwannoma pathogenesis, highlighting potential areas for therapeutic intervention. PMID:24450866

  11. Chronic rhinosinusitis pathogenesis.

    PubMed

    Stevens, Whitney W; Lee, Robert J; Schleimer, Robert P; Cohen, Noam A

    2015-12-01

    There are a variety of medical conditions associated with chronic sinonasal inflammation, including chronic rhinosinusitis (CRS) and cystic fibrosis. In particular, CRS can be divided into 2 major subgroups based on whether nasal polyps are present or absent. Unfortunately, clinical treatment strategies for patients with chronic sinonasal inflammation are limited, in part because the underlying mechanisms contributing to disease pathology are heterogeneous and not entirely known. It is hypothesized that alterations in mucociliary clearance, abnormalities in the sinonasal epithelial cell barrier, and tissue remodeling all contribute to the chronic inflammatory and tissue-deforming processes characteristic of CRS. Additionally, the host innate and adaptive immune responses are also significantly activated and might be involved in pathogenesis. Recent advancements in the understanding of CRS pathogenesis are highlighted in this review, with special focus placed on the roles of epithelial cells and the host immune response in patients with cystic fibrosis, CRS without nasal polyps, or CRS with nasal polyps. PMID:26654193

  12. [Pathogenesis of psoriasis].

    PubMed

    Schäkel, K; Schön, M P; Ghoreschi, K

    2016-06-01

    Psoriasis is an inflammatory T cell-mediated autoimmune disease of skin and joints that affects 2-4 % of the adult population and 0.1-1 % of children. Genetic susceptibility, environmental triggering factors, and innate immune processes initiate psoriasis pathogenesis that results in an adaptive autoreactive response. The T cell response is orchestrated by CD 8(+) T cells in the epidermis and by CD 4(+) T cells in the dermis that predominantly produce interleukin-17 (IL‑17). Research of the past 15 years unraveled cellular and molecular mechanisms as well as cytokines like TNF-α or IL‑23 that contribute to psoriatic inflammation. This knowledge has been translated into clinical practice and a number of antipsoriatic small molecules and immunobiologics are now available. Here, we discuss the current principles of psoriasis pathogenesis in the context of modern therapies. PMID:27246016

  13. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  14. Molecular characterization and evaluation of virulence factors of Cryptococcus laurentii and Cryptococcus neoformans strains isolated from external hospital areas.

    PubMed

    Andrade-Silva, Leonardo; Ferreira-Paim, Kennio; Silva-Vergara, Mario León; Pedrosa, André Luiz

    2010-01-01

    Cryptococcosis is a common opportunistic fungal infection that is mainly caused by the species Cryptococcus neoformans and Cryptococcus gattii, but there have recently been several reports of infection by non-neoformans Cryptococcus species. The aims of this study were to genetically characterize Cryptococcus spp. isolated from external hospital areas in Minas Gerais State, Brazil, and to evaluate their pathogenic potential, analyzing their phospholipase and melanin production and the capacity for capsule enlargement. Seventy-three different samples were collected: 62 from bird droppings and 11 from tree detritus. C. neoformans alone was isolated from 43.8% of the samples, Cryptococcus laurentii alone from 23.3% and both fungi were found together in 10.9%. C. laurentii was exclusively isolated from 45% (5/11) of the tree samples (Anacardium occidentale, Guazuma ulmifolia, Mangifera indica and Ficus benjamina). Among the 51 C. neoformans isolates, 47 were classified as type VNI and four as type VNII. All of the C. neoformans isolates were of MATα type. Among the 21 isolates of C. laurentii genotyped using the URA5-RFLP technique, 16 amplified a 1.6kb amplicon which produced a specific restriction profile in 15 isolates. In C. neoformans, 76.4% of the isolates were capable of capsule enlargement in the induction medium and 92.1% were phospholipase producers. In C. laurentii, 7.4% of the isolates were capable of capsule enlargement and 85.1% were phospholipase producers. Characterization of the genotypes and the pathogenic potential of the Cryptococcus spp. isolates studied may contribute towards better understanding of the epidemiology of cryptococcosis and the ecology of agents causing this disease in our region. PMID:20943154

  15. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease

    PubMed Central

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  16. Mitochondria are inherited from the MATa parent in crosses of the basidiomycete fungus Cryptococcus neoformans.

    PubMed Central

    Yan, Zhun; Xu, Jianping

    2003-01-01

    Previous studies demonstrated that mitochondrial DNA (mtDNA) was uniparentally transmitted in laboratory crosses of the pathogenic yeast Cryptococcus neoformans. To begin understanding the mechanisms, this study examined the potential role of the mating-type locus on mtDNA inheritance in C. neoformans. Using existing isogenic strains (JEC20 and JEC21) that differed only at the mating-type locus and a clinical strain (CDC46) that possessed a mitochondrial genotype different from JEC20 and JEC21, we constructed strains that differed only in mating type and mitochondrial genotype. These strains were then crossed to produce hyphae and sexual spores. Among the 206 single spores analyzed from six crosses, all but one inherited mtDNA from the MATa parents. Analyses of mating-type alleles and mtDNA genotypes of natural hybrids from clinical and natural samples were consistent with the hypothesis that mtDNA is inherited from the MATa parent in C. neoformans. To distinguish two potential mechanisms, we obtained a pair of isogenic strains with different mating-type alleles, mtDNA types, and auxotrophic markers. Diploid cells from mating between these two strains were selected and 29 independent colonies were genotyped. These cells did not go through the hyphal stage or the meiotic process. All 29 colonies contained mtDNA from the MATa parent. Because no filamentation, meiosis, or spore formation was involved in generating these diploid cells, our results suggest a selective elimination of mtDNA from the MATalpha parent soon after mating. To our knowledge, this is the first demonstration that mating type controls mtDNA inheritance in fungi. PMID:12702677

  17. Multicenter Comparison of Three Different Analytical Systems for Evaluation of DNA Banding Patterns from Cryptococcus neoformans

    PubMed Central

    Cardinali, Gianluigi; Martini, Alessandro; Preziosi, Roberta; Bistoni, Francesco; Baldelli, Franco

    2002-01-01

    The enormous improvement of molecular typing techniques for epidemiological and clinical studies has not always been matched by an equivalent effort in applying optimal criteria for the analysis of both phenotypic and molecular data. In spite of the availability of a large collection of statistical and phylogenetic methods, the vast majority of commercial packages are limited by using only the unweighted pair group method with arithmetic mean algorithm to construct trees and by considering electrophoretic pattern only as migration distances. The latter method has serious drawbacks when different runs (separate gels) of the same molecular analysis are to be compared. This work presents a multicenter comparison of three different systems of banding pattern analysis on random amplified polymorphic DNA, (GACA)4, and contour-clamped homogeneous electric field patterns from strains of Cryptococcus neoformans var. neoformans isolated in different clinical and geographical situations and a standard Saccharomyces cerevisiae strain employed as an outgroup. The systems considered were evaluated for their actual ability to(i) recognize identities, (ii) define complete differences (i.e., the ability to place S. cerevisiae out of the C. neoformans cluster), and (iii) estimate the extent of similarity among different strains. The ability to cluster strains according to the patient from which they were isolated was also evaluated. The results indicate that different algorithms do indeed produce divergent trees, both in overall topology and in clustering of individual strains, thus suggesting that care must be taken by individual investigators to use the most appropriate procedure and by the scientific community in defining a consensus system. PMID:12037071

  18. The ZIP family zinc transporters support the virulence of Cryptococcus neoformans.

    PubMed

    Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Kronstad, James W; Jung, Won Hee

    2016-08-01

    Zinc is an essential element in living organisms and a cofactor for various metalloproteins. To disseminate and survive, a pathogenic microbe must obtain zinc from the host, which is an environment with extremely limited zinc availability. In this study, we investigated the roles of the ZIP family zinc transporters Zip1 and Zip2 in the human pathogenic fungus Cryptococcus neoformans Zip1 and Zip2 are homologous to Zrt1 and Zrt2 of the model fungus, Saccharomyces cerevisiae, respectively. We found that the expression of ZIP1 was regulated by the zinc concentration in the environment. Furthermore, the mutant lacking ZIP1 displayed a severe growth defect under zinc-limited conditions, while the mutant lacking ZIP2 displayed normal growth. Inductively coupled plasma-atomic emission spectroscopy analysis showed that the absence of Zip1 expression significantly reduced total cellular zinc levels relative to that in the wild type, while overexpression of Zip1 was associated with increased cellular zinc levels. These findings suggested that Zip1 plays roles in zinc uptake in C. neoformans We also constructed a Zip1-FLAG fusion protein and found, by immunofluorescence, not only that the protein was localized to the periphery implying it is a membrane transporter, but also that the protein was N-glycosylated. Furthermore, the mutant lacking ZIP1 showed attenuated virulence in a murine inhalation model of cryptococcosis and reduced survival within murine macrophages. Overall, our data suggest that Zip1 plays essential roles in zinc transport and the virulence of C. neoformans. PMID:27118799

  19. Pathogenesis of Mycoplasma pneumoniae: An update.

    PubMed

    Chaudhry, R; Ghosh, A; Chandolia, A

    2016-01-01

    Genus Mycoplasma, belonging to the class Mollicutes, encompasses unique lifeforms comprising of a small genome of 8,00,000 base pairs and the inability to produce a cell wall under any circumstances. Mycoplasma pneumoniae is the most common pathogenic species infecting humans. It is an atypical respiratory bacteria causing community acquired pneumonia (CAP) in children and adults of all ages. Although atypical pneumonia caused by M. pneumoniae can be managed in outpatient settings, complications affecting multiple organ systems can lead to hospitalization in vulnerable population. M. pneumoniae infection has also been associated with chronic lung disease and bronchial asthma. With the advent of molecular methods of diagnosis and genetic, immunological and ultrastructural assays that study infectious disease pathogenesis at subcellular level, newer virulence factors of M. pneumoniae have been recognized by researchers. Structure of the attachment organelle of the organism, that mediates the crucial initial step of cytadherence to respiratory tract epithelium through complex interaction between different adhesins and accessory adhesion proteins, has been decoded. Several subsequent virulence mechanisms like intracellular localization, direct cytotoxicity and activation of the inflammatory cascade through toll-like receptors (TLRs) leading to inflammatory cytokine mediated tissue injury, have also been demonstrated to play an essential role in pathogenesis. The most significant update in the knowledge of pathogenesis has been the discovery of Community-Acquired Respiratory Distress Syndrome toxin (CARDS toxin) of M. pneumoniae and its ability of adenosine diphosphate (ADP) ribosylation and inflammosome activation, thus initiating airway inflammation. Advances have also been made in terms of the different pathways behind the genesis of extrapulmonary complications. This article aims to comprehensively review the recent advances in the knowledge of pathogenesis of this

  20. Pathogenesis of Necrotizing Enterocolitis

    PubMed Central

    Tanner, Scott M.; Berryhill, Taylor F.; Ellenburg, James L.; Jilling, Tamas; Cleveland, Dava S.; Lorenz, Robin G.; Martin, Colin A.

    2016-01-01

    Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in premature infants. The pathophysiology is likely secondary to innate immune responses to intestinal microbiota by the premature infant's intestinal tract, leading to inflammation and injury. This review provides an updated summary of the components of the innate immune system involved in NEC pathogenesis. In addition, we evaluate the animal models that have been used to study NEC with regard to the involvement of innate immune factors and histopathological changes as compared to those seen in infants with NEC. Finally, we discuss new approaches to studying NEC, including mathematical models of intestinal injury and the use of humanized mice. PMID:25447054

  1. Complement and Viral Pathogenesis

    PubMed Central

    Stoermer, Kristina A.; Morrison, Thomas E.

    2011-01-01

    The complement system functions as an immune surveillance system that rapidly responds to infection. Activation of the complement system by specific recognition pathways triggers a protease cascade, generating cleavage products that function to eliminate pathogens, regulate inflammatory responses, and shape adaptive immune responses. However, when dysregulated, these powerful functions can become destructive and the complement system has been implicated as a pathogenic effector in numerous diseases, including infectious diseases. This review highlights recent discoveries that have identified critical roles for the complement system in the pathogenesis of viral infection. PMID:21292294

  2. Cryptococcus neoformans varieties from material under the canopies of eucalyptus trees and pigeon dropping samples from four major cities in Jordan.

    PubMed

    Hamasha, Akram Mohammad Saad; Yildiran, Sinasi Taner; Gonlum, Ahmet; Saracli, Mehmet Ali; Doganci, Levent

    2004-08-01

    To our best knowledge, any study related to the ecological distribution of Cryptococcus neoformans in Jordan does not exist in the medical literature. In order to determine the environmental occurrence of both varieties of Cryptococcus neoformans in Jordan, pigeon droppings and material under the canopies of eucalyptus trees were collected from four major cities of this country. For the isolation of Cryptococcus neoformans variety gattii from environmental sources, 500 samples of the mixed soil debris, including tree materials, under the eucalyptus trees from cities of Amman, Irbid, Jerash, and Ajlun were collected. Also, 509 samples of pigeon droppings were collected from the same cities for the isolation of Cryptococcus neoformans variety neoformans. After inoculating the samples onto modified Staib agar medium in Petri dishes, a total of 336 melanoid yeast colonies were picked up during screening process. At the end of serial mycological studies, none of these isolates was identified as Cryptococcus neoformans, but all were Cryptococcus species other than C. neoformans. For determining the exact status, more extensive environmental studies need to be done in the future. PMID:15518348

  3. Real-Time Imaging of Interactions of Neutrophils with Cryptococcus neoformans Demonstrates a Crucial Role of Complement C5a-C5aR Signaling

    PubMed Central

    Sun, Donglei; Zhang, Mingshun; Liu, Gongguan; Wu, Hui; Zhu, Xiaoping; Zhou, Hong

    2015-01-01

    Neutrophils have been shown to efficiently kill Cryptococcus neoformans, a causative agent of meningoencephalitis. Here, using live-cell imaging, we characterize the dynamic interactions of neutrophils with C. neoformans and the underlying mechanisms in real time. Neutrophils were directly seen to chase C. neoformans cells and then rapidly internalize them. Complement C5a-C5aR signaling guided neutrophils to migrate to the yeast cells, resulting in optimal phagocytosis and subsequent killing of the organisms. The addition of recombinant complement C5a enhanced neutrophil movement but did not induce chemotaxis, suggesting that the C5a gradient is crucial. Incubation with C. neoformans resulted in enhanced activation of Erk and p38 mitogen-activated protein (MAP) kinases (MAPKs) in neutrophils. Inhibition of the p38 MAPK pathway, but not the Erk pathway, significantly impaired neutrophil migration and its subsequent killing of C. neoformans. Deficiency of CD11b or blocking of CD11b did not affect the migration of neutrophils toward C. neoformans but almost completely abolished phagocytosis and killing of the organisms by neutrophils. C5a-C5aR signaling induced enhanced surface expression of CD11b. Interestingly, the original surface expression of CD11b was essential and sufficient for neutrophils to attach to C. neoformans but was unable to mediate phagocytosis. In contrast, the enhanced surface expression of CD11b induced by C5a-C5aR signaling was essential for neutrophil phagocytosis and subsequent killing of yeast cells. Collectively, this is the first report of the dynamic interactions of neutrophils with C. neoformans, demonstrating a crucial role of C5a-C5aR signaling in neutrophil killing of C. neoformans in real time. PMID:26502909

  4. Update on mucormycosis pathogenesis

    PubMed Central

    Ibrahim, Ashraf S.; Kontoyiannis, Dimitrios P.

    2014-01-01

    Purpose of review Mucormycosis is an increasingly common fungal infection with unacceptably high mortality. The recent sequencing genome projects of Mucorales and the development of gene manipulation have enabled significant advances in understanding the pathogenesis of mucormycosis. Therefore, we review the pathogenesis of mucormycosis and highlight potential development of novel diagnostic and therapeutic modalities against this lethal disease. Recent findings Much of the work has been focused on the role of iron uptake in the virulence of Mucorales. Additionally, host receptors and fungal ligands involved in the process of tissue invasion as well as sporangiospore size and sex loci and their contribution to virulence of Mucorales are discussed. Finally, the role of innate and adaptive immunity in protection against Mucorales and new evidence about drug-induced apoptosis in these fungi are discussed. Summary Recent discoveries introduce several potentially novel diagnostic and therapeutic modalities, which are likely to improve management and outcome for mucormycosis. Future preclinical and clinical research is warranted to develop these diagnostic and therapeutic strategies. PMID:24126718

  5. Pathogenesis of Arrhythmogenic Cardiomyopathy.

    PubMed

    Asimaki, Angeliki; Kleber, Andre G; Saffitz, Jeffrey E

    2015-11-01

    Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease. It is characterized by frequent ventricular arrhythmias and increased risk of sudden cardiac death typically arising as an early manifestation before the onset of significant myocardial remodelling. Myocardial degeneration, often confined to the right ventricular free wall, with replacement by fibrofatty scar tissue, develops in many patients. ACM is a familial disease but genetic penetrance can be low and disease expression is highly variable. Inflammation might promote disease progression. It also appears that exercise increases disease penetrance and accelerates its development. More than 60% of probands harbour mutations in genes that encode desmosomal proteins, which has raised the possibility that defective cell-cell adhesion might play a role in disease pathogenesis. Recent advances have implicated changes in the canonical wingless-type mouse mammary tumour virus integration site (Wnt)/β-catenin and Hippo signalling pathways and defects in forwarding trafficking of ion channels and other proteins to the intercalated disk in cardiac myocytes. In this review we summarize the current understanding of the pathogenesis of ACM and highlight future research directions. PMID:26199027

  6. Effect of Virulence Factors on the Photodynamic Inactivation of Cryptococcus neoformans

    PubMed Central

    Prates, Renato A.; Fuchs, Beth Burgwyn; Mizuno, Kazue; Naqvi, Qurat; Kato, Ilka T.; Ribeiro, Martha S.; Mylonakis, Eleftherios; Tegos, George P.; Hamblin, Michael R.

    2013-01-01

    Opportunistic fungal pathogens may cause an array of superficial infections or serious invasive infections, especially in immunocompromised patients. Cryptococcus neoformans is a pathogen causing cryptococcosis in HIV/AIDS patients, but treatment is limited due to the relative lack of potent antifungal agents. Photodynamic inactivation (PDI) uses the combination of non-toxic dyes called photosensitizers and harmless visible light, which produces singlet oxygen and other reactive oxygen species that produce cell inactivation and death. We report the use of five structurally unrelated photosensitizers (methylene blue, Rose Bengal, selenium derivative of a Nile blue dye, a cationic fullerene and a conjugate between poly-L-lysine and chlorin(e6)) combined with appropriate wavelengths of light to inactivate C. neoformans. Mutants lacking capsule and laccase, and culture conditions that favoured melanin production were used to probe the mechanisms of PDI and the effect of virulence factors. The presence of cell wall, laccase and melanin tended to protect against PDI, but the choice of the appropriate photosensitizers and dosimetry was able to overcome this resistance. PMID:23349872

  7. Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence.

    PubMed

    Bahn, Yong-Sun; Cox, Gary M; Perfect, John R; Heitman, Joseph

    2005-11-22

    The gas carbon dioxide (CO2) plays a critical role in microbial and mammalian respiration, photosynthesis in algae and plants, chemoreception in insects, and even global warming . However, how CO2 is transported, sensed, and metabolized by microorganisms is largely not understood. For instance, CO2 is known to induce production of polysaccharide capsule virulence determinants in pathogenic bacteria and fungi via unknown mechanisms . Therefore, we studied CO2 actions in growth, differentiation, and virulence of the basidiomycetous human fungal pathogen Cryptococcus neoformans. The CAN2 gene encoding beta-carbonic anhydrase in C. neoformans was found to be essential for growth in environmental ambient conditions but dispensable for in vivo proliferation and virulence at the high CO2 levels in the host. The can2Delta mutant in vitro growth defect is largely attributable to defective fatty acid synthesis. CO2 was found to inhibit cell-cell fusion but not filamentation during sexual reproduction. The can2 mutation restored early mating events in high CO2 but not later steps (fruiting body formation, sporulation), indicating a major role for carbonic anhydrase and CO2/HCO3- in this developmental cascade leading to the production of infectious spores. Our studies illustrate diverse roles of an ancient enzyme class in enabling environmental survival of a ubiquitous human pathogen. PMID:16303560

  8. Identification of the galactosyltransferase of Cryptococcus neoformans involved in the biosynthesis of basidiomycete-type glycosylinositolphosphoceramide

    PubMed Central

    Wohlschlager, Therese; Buser, Reto; Skowyra, Michael L; Haynes, Brian C; Henrissat, Bernard; Doering, Tamara L; Künzler, Markus; Aebi, Markus

    2013-01-01

    The pathogenic fungus Cryptococcus neoformans synthesizes a complex family of glycosylinositolphosphoceramide (GIPC) structures. These glycosphingolipids (GSLs) consist of mannosylinositolphosphoceramide (MIPC) extended by β1-6-linked galactose, a unique structure that has to date only been identified in basidiomycetes. Further extension by up to five mannose residues and a branching xylose has been described. In this study, we identified and determined the gene structure of the enzyme Ggt1, which catalyzes the transfer of a galactose residue to MIPC. Deletion of the gene in C. neoformans resulted in complete loss of GIPCs containing galactose, a phenotype that could be restored by the episomal expression of Ggt1 in the deletion mutant. The entire annotated open reading frame, encoding a C-terminal GT31 galactosyltransferase domain and a large N-terminal domain of unknown function, was required for complementation. Notably, this gene does not encode a predicted signal sequence or transmembrane domain. The demonstration that Ggt1 is responsible for the transfer of a galactose residue to a GSL thus raises questions regarding the topology of this biosynthetic pathway and the function of the N-terminal domain. Phylogenetic analysis of the GGT1 gene shows conservation in hetero- and homobasidiomycetes but no homologs in ascomycetes or outside of the fungal kingdom. PMID:23926231

  9. Global Molecular Epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An Atlas of the Molecular Types

    PubMed Central

    Cogliati, Massimo

    2013-01-01

    Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge. PMID:24278784

  10. Cluster of Cryptococcus neoformans Infections in Intensive Care Unit, Arkansas, USA, 2013

    PubMed Central

    Haselow, Dirk; Lloyd, Spencer; Lockhart, Shawn; Moulton-Meissner, Heather; Lester, Laura; Wheeler, Gary; Gladden, Linda; Garner, Kelley; Derado, Gordana; Park, Benjamin; Harris, Julie R.

    2015-01-01

    We investigated an unusual cluster of 6 patients with Cryptococcus neoformans infection at a community hospital in Arkansas during April–December 2013, to determine source of infection. Four patients had bloodstream infection and 2 had respiratory infection; 3 infections occurred within a 10-day period. Five patients had been admitted to the intensive care unit (ICU) with diagnoses other than cryptococcosis; none had HIV infection, and 1 patient had a history of organ transplantation. We then conducted a retrospective cohort study of all patients admitted to the ICU during April–December 2013 to determine risk factors for cryptococcosis. Four patients with C. neoformans infection had received a short course of steroids; this short-term use was associated with increased risk for cryptococcosis (rate ratio 19.1; 95% CI 2.1–170.0; p<0.01). Although long-term use of steroids is a known risk factor for cryptococcosis, the relationship between short-term steroid use and disease warrants further study PMID:26403080

  11. Chemotaxigenesis and activation of the alternative complement pathway by encapsulated and non-encapsulated Cryptococcus neoformans.

    PubMed Central

    Laxalt, K A; Kozel, T R

    1979-01-01

    In the presence of serum, whole cells of encapsulated and non-encapsulated Cryptococcus neoformans generated a chemotactic response by neutrophils. Heat inactivation of serum ablated all chemotactic activity. Cryptococcal polysaccharide was not chemotaxigenic. Assays for alternative complement pathway activation such as depletion of alternative complement pathway factor B or electrophoretic conversion of factor B closely paralleled chemotaxis assays. Cells of encapsulated and non-encapsulated C. neoformans activated the alternative complement pathway, whereas cryptococcal polysaccharide was inactive. Failure of the capsular material to activate the alternative pathway was not due to serotype specificity because polysaccharide of several serotypes failed to achieve activation. The results suggest that chemotaxigenesis and alternative complement pathway activation are functions of the yeast cell wall. The results support our proposal that the cryptococcal capsul does not prevent potential opsonins from reaching binding and activation sites at the yeast cell wall or the release of biologically active soluble cleavage products into the surrounding medium; however, cell wall-bound cleavage products remain bound to the cell wall beneath the capsule. Therefore, they are unable to participate as opsonins in phagocytosis. PMID:397927

  12. Diagnostic Challenges of Cryptococcus neoformans in an Immunocompetent Individual Masquerading as Chronic Hydrocephalus.

    PubMed

    Mahajan, Kedar R; Roberts, Amity L; Curtis, Mark T; Fortuna, Danielle; Dharia, Robin; Sheehan, Lori

    2016-01-01

    Cryptococcus neoformans can cause disseminated meningoencephalitis and evade immunosurveillance with expression of a major virulence factor, the polysaccharide capsule. Direct diagnostic assays often rely on the presence of the cryptococcal glucuronoxylomannan capsular antigen (CrAg) or visualization of the capsule. Strain specific phenotypic traits and environmental conditions influence differences in expression that can thereby compromise detection and timely diagnosis. Immunocompetent hosts may manifest clinical signs and symptoms indolently, often expanding the differential and delaying appropriate treatment and diagnosis. We describe a 63-year-old man who presented with a progressive four-year history of ambulatory dysfunction, headache, and communicating hydrocephalus. Serial lumbar punctures (LPs) revealed elevated protein (153-300 mg/dL), hypoglycorrhachia (19-47 mg/dL), lymphocytic pleocytosis (89-95% lymphocyte, WBC 67-303 mg/dL, and RBC 34-108 mg/dL), and normal opening pressure (13-16 cm H2O). Two different cerebrospinal fluid (CSF) CrAg assays were negative. A large volume CSF fungal culture grew unencapsulated C. neoformans. He was initiated on induction therapy with amphotericin B plus flucytosine and consolidation/maintenance therapy with flucytosine, but he died following discharge due to complications. Elevated levels of CSF Th1 cytokines and decreased IL6 may have affected the virulence and detection of the pathogen. PMID:27525140

  13. Thiazole compounds with activity against Cryptococcus gattii and Cryptococcus neoformans in vitro.

    PubMed

    Pereira de Sá, Nívea; Lino, Cleudiomar Inácio; Fonseca, Nayara Cristina; Borelli, Beatriz Martins; Ramos, Jonas Pereira; Souza-Fagundes, Elaine Maria; Rosa, Carlos Augusto; Santos, Daniel Assis; Barbosa de Oliveira, Renata; Johann, Susana

    2015-09-18

    Human cryptococcosis can occur as a primary or opportunistic infection and develop as an acute, subacute, or chronic, systemic infection involving different host organs. We evaluated the antifungal activity of thirteen compounds against Cryptococcus gattii and Cryptococcus neoformans in vitro, by assessing the toxicity of the compounds showing the greatest antifungal activity in VERO cells and murine macrophages. From these results, four compounds were considered promising for further studies because they displayed low cytotoxicity and significant antifungal activity. The heterocyclic compounds 1b, 1c, 1d, and 1m have antifungal activity levels between that of amphotericin B and fluconazole in vitro. The death curve of Cryptococcus spp. treated with these four compounds was similar to the curve obtained for amphotericin B, in that we observed a significant reduction in cell viability within the first 24 h of treatment. Additionally, we found that there was no effect when these compounds were combined with amphotericin and fluconazole, except for 1c, which antagonized the effect of amphotericin B against C. gattii, also reflected in the reduction of the post-antifungal effect (PAFE); however, this interaction did not alter the ergosterol content. The results shown in this paper reveal the discovery of novel thiazole compounds, which are easy to synthesize, and with potentially exhibit antifungal activity, and display low cytotoxicity in normal mammalian cells. These compounds can be used as prototypes for the design of new antifungal drugs against C. gattii and C. neoformans. PMID:26276437

  14. CHARACTERIZATION OF THE PYROGENICITY OF CANDIDA ALBICANS, SACCHAROMYCES CEREVISIAE, AND CRYPTOCOCCUS NEOFORMANS.

    PubMed

    KOBAYASHI, G S; FRIEDMAN, L

    1964-09-01

    Kobayashi, George S. (Tulane University, New Orleans, La.), and Lorraine Friedman. Characterization of the pyrogenicity of Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans. J. Bacteriol. 88:660-666. 1964.-The intravenous injection into rabbits of 10(9) yeast cells of Candida albicans, Saccharomyces cerevisiae, or Cryptococcus neoformans (both slightly and heavily encapsulated forms) induced a febrile response indistinguishable from that elicited by gram-negative bacterial endotoxin. There was a brisk rise in body temperature which began as early as 30 min after injection, peaked once or twice, and then returned to normal after about 10 hr. With viable C. albicans, the febrile response did not return to normal but remained elevated for several days and terminated at death of the animal. Of three extraction procedures employed in attempts to isolate the endotoxin-like pyrogenically active substances from C. albicans, only one, the phenol extraction method, was successful. Pyrogenic substances were more easily extractable from S. cerevisiae, but extracted cells of both species were still highly pyrogenic. It was concluded that the particulate nature of the yeast cell did not contribute to the induction of fever, for latex particles of a similar size were nonpyrogenic. Viable or heat-killed C. albicans, phenol extract of C. albicans, zymosan, and polystyrene latex particles all failed to induce in rabbits increased dermal reactivity to epinephrine. PMID:14208504

  15. Diagnostic Challenges of Cryptococcus neoformans in an Immunocompetent Individual Masquerading as Chronic Hydrocephalus

    PubMed Central

    Fortuna, Danielle; Dharia, Robin

    2016-01-01

    Cryptococcus neoformans can cause disseminated meningoencephalitis and evade immunosurveillance with expression of a major virulence factor, the polysaccharide capsule. Direct diagnostic assays often rely on the presence of the cryptococcal glucuronoxylomannan capsular antigen (CrAg) or visualization of the capsule. Strain specific phenotypic traits and environmental conditions influence differences in expression that can thereby compromise detection and timely diagnosis. Immunocompetent hosts may manifest clinical signs and symptoms indolently, often expanding the differential and delaying appropriate treatment and diagnosis. We describe a 63-year-old man who presented with a progressive four-year history of ambulatory dysfunction, headache, and communicating hydrocephalus. Serial lumbar punctures (LPs) revealed elevated protein (153–300 mg/dL), hypoglycorrhachia (19–47 mg/dL), lymphocytic pleocytosis (89–95% lymphocyte, WBC 67–303 mg/dL, and RBC 34–108 mg/dL), and normal opening pressure (13–16 cm H2O). Two different cerebrospinal fluid (CSF) CrAg assays were negative. A large volume CSF fungal culture grew unencapsulated C. neoformans. He was initiated on induction therapy with amphotericin B plus flucytosine and consolidation/maintenance therapy with flucytosine, but he died following discharge due to complications. Elevated levels of CSF Th1 cytokines and decreased IL6 may have affected the virulence and detection of the pathogen. PMID:27525140

  16. First isolation of Cryptococcus neoformans var. gattii, serotype C, from the environment in Colombia.

    PubMed

    Callejas, A; Ordoñez, N; Rodriguez, M C; Castañeda, E

    1998-10-01

    The natural habitat of Cryptococcus neoformans var. gattii, serotype B in the environment was established by Australian investigators who demonstrated its association with species of Eucalyptus. The aim of the present study was to search for the habitat of this variety in a city of Colombia, where clinical cases due to this variety occur with great frequency. For a period of 5 months detritus, vegetable material and air samples in and around 68 almond trees (Terminalia catappa) located in the city were studied. C. neoformans var. gattii serotype C was the only variety isolated from two of the 68 trees sampled. These trees were positive for 4 of the 5 months during which they were studied. From the first positive sample kept under refrigeration, it was possible to isolate the fungus up to 3 months later. This is the first report of the isolation of serotype C from the environment. More studies are required in order to establish the ecological significance of this finding. PMID:10075505

  17. Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans.

    PubMed Central

    Mitchell, T G; Perfect, J R

    1995-01-01

    Although Cryptococcus neoformans and cryptococcosis have existed for several millennia, a century has passed since the discovery of this encapsulated yeast and its devastating disease. With the advent of the AIDS pandemic, cryptococcal meningitis has emerged as a leading cause of infectious morbidity and mortality and a frequently life-threatening opportunistic mycosis among patients with AIDS. Both basic and clinical research have accelerated in the 1990s, and this review attempts to highlight some of these advances. The discussion covers recent findings, current concepts, controversies, and unresolved issues related to the ecology and genetics of C. neoformans; the surface structure of the yeast; and the mechanisms of host defense. Regarding cell-mediated immunity, CD4+ T cells are crucial for successful resistance, but CD8+ T cells may also participate significantly in the cytokine-mediated activation of anticryptococcal effector cells. In addition to cell-mediated immunity, monoclonal antibodies to the major capsular polysaccharide, the glucuronoxylomannan, offer some protection in murine models of cryptococcosis. Clinical concepts are presented that relate to the distinctive features of cryptococcosis in patients with AIDS and the diagnosis, treatment, and prevention of cryptococcosis in AIDS patients. PMID:8665468

  18. Activity of sertraline against Cryptococcus neoformans: in vitro and in vivo assays.

    PubMed

    Treviño-Rangel, Rogelio de J; Villanueva-Lozano, Hiram; Hernández-Rodríguez, Pedro; Martínez-Reséndez, Michel F; García-Juárez, Jaime; Rodríguez-Rocha, Humberto; González, Gloria M

    2016-03-01

    Cryptococcus neoformans infection is an important cause of meningitis in HIV/AIDS endemic regions. Antifungals for its management include amphotericin B, flucytosine, and fluconazole. Recently, treatment of this mycosis with sertraline has been studied with variable clinical outcomes. The aim of the study was to assess the in vitro antifungal effect of sertraline against clinical isolates of Cryptococcus spp. as well as its in vivo activity in a murine model of cryptococcal meningoencephalitis. The in vitro susceptibility to fluconazole, amphotericin B, voriconazole and sertraline of 153 Cryptococcus spp. strains were evaluated according to CLSI procedures. Fungal tissue burden, serum antigenaemia and histopathology, together with the therapeutic efficacy of amphotericin B (3 mg/kg), fluconazole (15 mg/kg), and sertraline (3, 10, and 15 mg/kg) were evaluated in mice intracranially inoculated with one isolate of Cryptococcus neoformans. All strains were susceptible to the antifungals studied and exhibited growth inhibition with sertraline at clinically relevant concentrations. Sertraline at a dose of 15 mg/kg reduced the fungal burden in the brain and spleen with an efficacy comparable to that of fluconazole. In conclusion, sertraline exhibited an excellent in vitro-in vivo anti-cryptococcal activity, representing a possible new alternative for the clinical management of meningeal cryptococcosis. PMID:26705833

  19. Managing intracellular transport

    PubMed Central

    Chua, John J.E.; Jahn, Reinhard; Klopfenstein, Dieter R.

    2013-01-01

    Formation and normal function of neuronal synapses are intimately dependent on the delivery to and removal of biological materials from synapses by the intracellular transport machinery. Indeed, defects in intracellular transport contribute to the development and aggravation of neurodegenerative disorders. Despite its importance, regulatory mechanisms underlying this machinery remain poorly defined. We recently uncovered a phosphorylation-regulated mechanism that controls FEZ1-mediated Kinesin-1-based delivery of Stx1 into neuronal axons. Using C. elegans as a model organism to investigate transport defects, we show that FEZ1 mutations resulted in abnormal Stx1 aggregation in neuronal cell bodies and axons. This phenomenon closely resembles transport defects observed in neurodegenerative disorders. Importantly, diminished transport due to mutations of FEZ1 and Kinesin-1 were concomitant with increased accumulation of autophagosomes. Here, we discuss the significance of our findings in a broader context in relation to regulation of Kinesin-mediated transport and neurodegenerative disorders. PMID:24058857

  20. Impact of Resistance to Fluconazole on Virulence and Morphological Aspects of Cryptococcus neoformans and Cryptococcus gattii Isolates

    PubMed Central

    Rossi, Suélen A.; Trevijano-Contador, Nuria; Scorzoni, Liliana; Mesa-Arango, Ana Cecilia; de Oliveira, Haroldo C.; Werther, Karin; de Freitas Raso, Tânia; Mendes-Giannini, Maria J. S.; Zaragoza, Oscar; Fusco-Almeida, Ana M.

    2016-01-01

    Cryptococcus sp. are responsible for around 1 million cases of meningitis every year. Fluconazole (FLU) is commonly used in the treatment of cryptococcosis, mainly in immunocompromised patients and the resistance is usually reported after long periods of treatment. In this study, the morphological characterization and virulence profile of FLU-susceptible and FLU-resistant clinical and environmental isolates of C. neoformans and C. gattii were performed both in vitro and in vivo using the Galleria mellonella model. FLU-susceptible isolates from C. neoformans were significantly more virulent than the FLU-resistant isolates. FLU-susceptible C. gattii isolates showed a different virulence profile from C. neoformans isolates where only the environmental isolate, CL, was more virulent compared with the resistant isolates. Cell morphology and capsule size were analyzed and the FLU-resistant isolates did not change significantly compared with the most sensitive isolates. Growth at 37°C was also evaluated and in both species, the resistant isolates showed a reduced growth at this temperature, indicating that FLU resistance can affect their growth. Based on the results obtained is possible suggest that FLU resistance can influence the morphology of the isolates and consequently changed the virulence profiles. The most evident results were observed for C. neoformans showing that the adaptation of isolates to antifungal selective pressure influenced the loss of virulence. PMID:26909069

  1. Microsatellite Typing of Clinical and Environmental Cryptococcus neoformans var. grubii Isolates from Cuba Shows Multiple Genetic Lineages

    PubMed Central

    Illnait-Zaragozi, Maria-Teresa; Martínez-Machín, Gerardo F.; Fernández-Andreu, Carlos M.; Boekhout, Teun; Meis, Jacques F.; Klaassen, Corné H. W.

    2010-01-01

    Background Human cryptococcal infections have been associated with bird droppings as a likely source of infection. Studies toward the local and global epidemiology of Cryptococcus spp. have been hampered by the lack of rapid, discriminatory, and exchangeable molecular typing methods. Methodology/Principal Findings We selected nine microsatellite markers for high-resolution fingerprinting from the genome of C. neoformans var. grubii. This panel of markers was applied to a collection of clinical (n = 122) and environmental (n = 68; from pigeon guano) C. neoformans var. grubii isolates from Cuba. All markers proved to be polymorphic. The average number of alleles per marker was 9 (range 5–51). A total of 104 genotypes could be distinguished. The discriminatory power of this panel of markers was 0.993. Multiple clusters of related genotypes could be discriminated that differed in only one or two microsatellite markers. These clusters were assigned as microsatellite complexes. The majority of environmental isolates (>70%) fell into 1 microsatellite complex containing only few clinical isolates (49 environmental versus 2 clinical). Clinical isolates were segregated over multiple microsatellite complexes. Conclusions/Significance A large genotypic variation exists in C. neoformans var. grubii. The genotypic segregation between clinical and environmental isolates from pigeon guano suggests additional source(s) of human cryptococcal infections. The selected panel of microsatellite markers is an excellent tool to study the epidemiology of C. neoformans var. grubii. PMID:20161737

  2. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development

    PubMed Central

    Rella, Antonella; Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Shamseddine, Achraf A.; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T.; Luberto, Chiara; Del Poeta, Maurizio

    2015-01-01

    Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4+ T-cells dependent. Immunocompromised mice, which lack CD4+ T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis. PMID:26322039

  3. [Evaluation of a new medium, eggplant (Solanum melongena) agar as a screening medium for Cryptococcus neoformans in environmental samples].

    PubMed

    Sengul, Mustafa; Ergin, Cağrı; Kartal, Tuğba

    2014-04-01

    Cryptococcus neofomans is an encapsulated yeast-like fungus that causes life-threatening infections, especially in immunosuppresive patients. C.neoformans infection is believed to be acquired via inhalation of aerosolized particles from the environment. Avian guano, decaying tree hollows and soil are the related known environmental niches. Brown pigmented yeast growth from the precursors in growth media is an important step for the identification and isolation of C.neoformans. Seeds of plants in nature are preferred owing to easy accessibility and low costs for the preparation of such media. Guizotia abysinicca (Niger seed) as Staib agar, Helianthus annus (Sunflower) as Pal's medium, Brassica nigra (Mustard) agar, tobacco agar, Mucuna pruriens (Velvet bean) seed agar, Perilla frutescens (Beefsteak plant) seed agar, Rubus fruticosus (Blackberry) agar and ground red hot pepper agar are pigment-based selective media for the differentiation of C.neoformans. The aim of this study was to observe the pigment production of C.neoformans in a new medium based on eggplant (Solanum melongena) and also to compare its performance with the simplified Staib, Pal's and tobacco agar for isolation from the environment. Three different eggplant-based medium (S.melongena Melanzaza viserba, S.melongena Pinstripe F1 and S.ovigerum Ivory F1) were included in the study. Pigment-forming eggplant medium, simplified Staib agar, Pal's agar and tobacco agar were used for the cultivation of the environmental swabbed samples from 19 Eucalyptus camaldulensis trunk hollows in continuous colonization region. While pigment formation were observed with S.melongena Melanzaza viserba and S.melongena Pinstripe F1 containing media, S.ovigerum Ivory F1 medium was found to be non-reactive. In colonization area (Gökova-Akyaka, Turkey), 11 (57.9%) out of 19 E.camaldulensis samples were positive with simplified Staib agar, Pal's agar and eggplant agar while 10 (52.6%) of them are positive with tobacco agar. C.neoformans

  4. Environmental predators as models for bacterial pathogenesis.

    PubMed

    Hilbi, Hubert; Weber, Stefan S; Ragaz, Curdin; Nyfeler, Yves; Urwyler, Simon

    2007-03-01

    Environmental bacteria are constantly threatened by bacterivorous predators such as free-living protozoa and nematodes. In the course of their coevolution with environmental predators, some bacteria developed sophisticated defence mechanisms, including the secretion of toxins, or the capacity to avoid lysosomal killing and to replicate intracellularly within protozoa. To analyse the interactions with bacterial pathogens on a molecular, cellular or organismic level, protozoa and other non-mammalian hosts are increasingly used. These include amoebae, as well as genetically tractable hosts, such as the social amoeba Dictyostelium discoideum, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Using these hosts, the virulence mechanisms of opportunistic pathogenic bacteria such as Legionella, Mycobacterium, Pseudomonas or Vibrio were found to be not only relevant for the interactions of the bacteria with protozoa, nematodes and insect phagocytes, but also with mammalian hosts including humans. Thus, non-mammalian model hosts provide valuable insight into the pathogenesis of environmental bacteria. PMID:17298357

  5. Deletion of Cryptococcus neoformans AIF Ortholog Promotes Chromosome Aneuploidy and Fluconazole-Resistance in a Metacaspase-Independent Manner

    PubMed Central

    Semighini, Camile P.; Averette, Anna F.; Perfect, John R.; Heitman, Joseph

    2011-01-01

    Apoptosis is a form of programmed cell death critical for development and homeostasis in multicellular organisms. Apoptosis-like cell death (ALCD) has been described in several fungi, including the opportunistic human pathogen Cryptococcus neoformans. In addition, capsular polysaccharides of C. neoformans are known to induce apoptosis in host immune cells, thereby contributing to its virulence. Our goals were to characterize the apoptotic signaling cascade in C. neoformans as well as its unique features compared to the host machinery to exploit the endogenous fungal apoptotic pathways as a novel antifungal strategy in the future. The dissection of apoptotic pathways revealed that apoptosis-inducing factor (Aif1) and metacaspases (Mca1 and Mca2) are independently required for ALCD in C. neoformans. We show that the apoptotic pathways are required for cell fusion and sporulation during mating, indicating that apoptosis may occur during sexual development. Previous studies showed that antifungal drugs induce ALCD in fungi and that C. neoformans adapts to high concentrations of the antifungal fluconazole (FLC) by acquisition of aneuploidy, especially duplication of chromosome 1 (Chr1). Disruption of aif1, but not the metacaspases, stimulates the emergence of aneuploid subpopulations with Chr1 disomy that are resistant to fluconazole (FLCR) in vitro and in vivo. FLCR isolates in the aif1 background are stable in the absence of the drug, while those in the wild-type background readily revert to FLC sensitivity. We propose that apoptosis orchestrated by Aif1 might eliminate aneuploid cells from the population and defects in this pathway contribute to the selection of aneuploid FLCR subpopulations during treatment. Aneuploid clinical isolates with disomies for chromosomes other than Chr1 exhibit reduced AIF1 expression, suggesting that inactivation of Aif1 might be a novel aneuploidy-tolerating mechanism in fungi that facilitates the selection of antifungal drug resistance

  6. Controversies in dengue pathogenesis.

    PubMed

    Halstead, Scott B

    2012-05-01

    Research into the pathogenesis of dengue fever has exploded over the last half-century, with issues that were considered simple becoming more complex as additional data are found. This has led to the development of a number of controversies that are being studied across the globe and debated in the literature. In this paper, the following six controversies are analysed and, where possible, resolved: the 1997 World Health Organization (WHO) case definition of dengue haemorrhagic fever (DHF) is not useful; DHF is not significantly associated with secondary dengue infection; DHF results from infection with a 'virulent' dengue virus; DHF is owing to abnormal T-cell responses; DHF results from auto-immune responses; and DHF results from direct infection of endothelial cells. PMID:22668442

  7. Molecular pathogenesis of emphysema.

    PubMed

    Taraseviciene-Stewart, Laimute; Voelkel, Norbert F

    2008-02-01

    Emphysema is one manifestation of a group of chronic, obstructive, and frequently progressive destructive lung diseases. Cigarette smoking and air pollution are the main causes of emphysema in humans, and cigarette smoking causes emphysema in rodents. This review examines the concept of a homeostatically active lung structure maintenance program that, when attacked by proteases and oxidants, leads to the loss of alveolar septal cells and airspace enlargement. Inflammatory and noninflammatory mechanisms of disease pathogenesis, as well as the role of the innate and adaptive immune systems, are being explored in genetically altered animals and in exposure models of this disease. These recent scientific advances support a model whereby alveolar destruction resulting from a coalescence of mechanical forces, such as hyperinflation, and more recently recognized cellular and molecular events, including apoptosis, cellular senescence, and failed lung tissue repair, produces the clinically recognized syndrome of emphysema. PMID:18246188

  8. Pathogenesis of glomerular haematuria

    PubMed Central

    Yuste, Claudia; Gutierrez, Eduardo; Sevillano, Angel Manuel; Rubio-Navarro, Alfonso; Amaro-Villalobos, Juan Manuel; Ortiz, Alberto; Egido, Jesus; Praga, Manuel; Moreno, Juan Antonio

    2015-01-01

    Haematuria was known as a benign hallmark of some glomerular diseases, but over the last decade, new evidences pointed its negative implications on kidney disease progression. Cytotoxic effects of oxidative stress induced by hemoglobin, heme, or iron released from red blood cells may account for the tubular injury observed in human biopsy specimens. However, the precise mechanisms responsible for haematuria remain unclear. The presence of red blood cells (RBCs) with irregular contours and shape in the urine indicates RBCs egression from the glomerular capillary into the urinary space. Therefore glomerular haematuria may be a marker of glomerular filtration barrier dysfunction or damage. In this review we describe some key issues regarding epidemiology and pathogenesis of haematuric diseases as well as their renal morphological findings. PMID:25949932

  9. Pathogenesis of Osteoporosis

    PubMed Central

    Khosla, Sundeep

    2013-01-01

    As for most multifactorial disorders, the pathogenesis of osteoporosis is complex, and a different set of mechanisms may be operative in any given individual. However, there are certain common causes of bone loss and increased fracture risk with aging in most people. These include genetic factors contributing to the acquisition of peak bone mass, illnesses affecting skeletal growth and development, sex steroid deficiency following the menopause in women and with aging in men, and intrinsic, age-related changes in bone metabolism. Superimposed on these factors are specific secondary causes of bone loss, such as corticosteroid use or other illnesses affecting bone metabolism that may contribute to fracture risk in individuals exposed to these factors. The past decade has witnessed tremendous advances in our understanding of each of these various causes of bone loss, leading to the development of novel, mechanism-based therapeutic approaches to prevent and treat this important public health disorder. PMID:25243055

  10. Pathogenesis of pituitary tumors.

    PubMed

    Yu, Run; Melmed, Shlomo

    2010-01-01

    Pituitary tumors are common and mostly benign neoplasia which cause excess or deficiency of pituitary hormones and compressive damage to adjacent organs. Oncogene activation [e.g. PTTG (pituitary tumor-transforming gene) and HMGA2], tumor suppressor gene inactivation (e.g. MEN1 and PRKAR1A), epigenetic changes (e.g. methylation) and humoral factors (e.g. ectopic production of stimulating hormones) are all possible pituitary tumor initiators; the micro-environment of pituitary tumors including steroid milieu, angiogenesis and abnormal cell adhesion further promote tumor growth. Senescence, a cellular defence mechanism against malignant transformation, may explain the benign nature of at least some pituitary tumors. We suggest that future research on pituitary tumor pathogenesis should incorporate systems approaches, and address regulatory mechanisms for pituitary cell proliferation, development of new animal models of pituitary tumor and isolation of functional human pituitary tumor cell lines. PMID:20541667

  11. Microbial pathogenesis meets biomechanics.

    PubMed

    Charles-Orszag, Arthur; Lemichez, Emmanuel; Tran Van Nhieu, Guy; Duménil, Guillaume

    2016-02-01

    Introducing concepts from soft matter physics and mechanics has largely contributed to our understanding of a variety of biological processes. In this review, we argue that this holds true for bacterial pathogenesis. We base this argument on three examples of bacterial pathogens and their interaction with host cells during infection: (i) Shigella flexneri exploits actin-dependent forces to come into close contact with epithelial cells prior to invasion of the epithelium; (ii) Neisseria meningitidis manipulates endothelial cells to resist shear stress during vascular colonization; (iii) bacterial toxins take advantage of the biophysical properties of the host cell plasma membrane to generate transcellular macroapertures in the vascular wall. Together, these examples show that a multidisciplinary approach integrating physics and biology is more necessary than ever to understand complex infectious phenomena. Moreover, this avenue of research will allow the exploration of general processes in cell biology, highlighted by pathogens, in the context of other non-communicable human diseases. PMID:26849533

  12. Molecular pathogenesis of emphysema

    PubMed Central

    Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.

    2008-01-01

    Emphysema is one manifestation of a group of chronic, obstructive, and frequently progressive destructive lung diseases. Cigarette smoking and air pollution are the main causes of emphysema in humans, and cigarette smoking causes emphysema in rodents. This review examines the concept of a homeostatically active lung structure maintenance program that, when attacked by proteases and oxidants, leads to the loss of alveolar septal cells and airspace enlargement. Inflammatory and noninflammatory mechanisms of disease pathogenesis, as well as the role of the innate and adaptive immune systems, are being explored in genetically altered animals and in exposure models of this disease. These recent scientific advances support a model whereby alveolar destruction resulting from a coalescence of mechanical forces, such as hyperinflation, and more recently recognized cellular and molecular events, including apoptosis, cellular senescence, and failed lung tissue repair, produces the clinically recognized syndrome of emphysema. PMID:18246188

  13. Pathogenesis of Lassa Fever

    PubMed Central

    Yun, Nadezhda E.; Walker, David H.

    2012-01-01

    Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host’s immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents. PMID:23202452

  14. Pathogenesis of Lassa fever.

    PubMed

    Yun, Nadezhda E; Walker, David H

    2012-10-01

    Lassa virus, an Old World arenavirus (family Arenaviridae), is the etiological agent of Lassa fever, a severe human disease that is reported in more than 100,000 patients annually in the endemic regions of West Africa with mortality rates for hospitalized patients varying between 5-10%. Currently, there are no approved vaccines against Lassa fever for use in humans. Here, we review the published literature on the life cycle of Lassa virus with the specific focus put on Lassa fever pathogenesis in humans and relevant animal models. Advancing knowledge significantly improves our understanding of Lassa virus biology, as well as of the mechanisms that allow the virus to evade the host's immune system. However, further investigations are required in order to design improved diagnostic tools, an effective vaccine, and therapeutic agents. PMID:23202452

  15. Pathogenesis of nasal polyposis

    PubMed Central

    Hulse, K. E.; Stevens, W. W.; Tan, B. K.; Schleimer, R. P.

    2015-01-01

    Summary Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex inflammatory condition that affects a large proportion of the population world-wide and is associated with high cost of management and significant morbidity. Yet, there is a lack of population-based epidemiologic studies using current definitions of CRSwNP, and the mechanisms that drive pathogenesis in this disease remain unclear. In this review, we summarize the current evidence for the plethora of factors that likely contribute to CRSwNP pathogenesis. Defects in the innate function of the airway epithelial barrier, including diminished expression of antimicrobial products and loss of barrier integrity, combined with colonization by fungi and bacteria likely play a critical role in the development of chronic inflammation in CRSwNP. This chronic inflammation is characterized by elevated expression of many key inflammatory cytokines and chemokines, including IL-5, thymic stromal lymphopoietin and CCL11, that help to initiate and perpetuate this chronic inflammatory response. Together, these factors likely combine to drive the influx of a variety of immune cells, including eosinophils, mast cells, group 2 innate lymphoid cells and lymphocytes, which participate in the chronic inflammatory response within the nasal polyps. Importantly, however, future studies are needed to demonstrate the necessity and sufficiency of these potential drivers of disease in CRSwNP. In addition to the development of new tools and models to aid mechanistic studies, the field of CRSwNP research also needs the type of robust epidemiologic data that has served the asthma community so well. Given the high prevalence, costs and morbidity, there is a great need for continued research into CRS that could facilitate the development of novel therapeutic strategies to improve treatment for patients who suffer from this disease. PMID:25482020

  16. Pathogenesis of nasal polyposis.

    PubMed

    Hulse, K E; Stevens, W W; Tan, B K; Schleimer, R P

    2015-02-01

    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex inflammatory condition that affects a large proportion of the population world-wide and is associated with high cost of management and significant morbidity. Yet, there is a lack of population-based epidemiologic studies using current definitions of CRSwNP, and the mechanisms that drive pathogenesis in this disease remain unclear. In this review, we summarize the current evidence for the plethora of factors that likely contribute to CRSwNP pathogenesis. Defects in the innate function of the airway epithelial barrier, including diminished expression of antimicrobial products and loss of barrier integrity, combined with colonization by fungi and bacteria likely play a critical role in the development of chronic inflammation in CRSwNP. This chronic inflammation is characterized by elevated expression of many key inflammatory cytokines and chemokines, including IL-5, thymic stromal lymphopoietin and CCL11, that help to initiate and perpetuate this chronic inflammatory response. Together, these factors likely combine to drive the influx of a variety of immune cells, including eosinophils, mast cells, group 2 innate lymphoid cells and lymphocytes, which participate in the chronic inflammatory response within the nasal polyps. Importantly, however, future studies are needed to demonstrate the necessity and sufficiency of these potential drivers of disease in CRSwNP. In addition to the development of new tools and models to aid mechanistic studies, the field of CRSwNP research also needs the type of robust epidemiologic data that has served the asthma community so well. Given the high prevalence, costs and morbidity, there is a great need for continued research into CRS that could facilitate the development of novel therapeutic strategies to improve treatment for patients who suffer from this disease. PMID:25482020

  17. Transport proteins promoting Escherichia coli pathogenesis

    PubMed Central

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  18. Palatal Actinomycosis and Kaposi Sarcoma in an HIV-Infected Subject with Disseminated Mycobacterium avium-intracellulare Infection

    PubMed Central

    Ablanedo-Terrazas, Yuria; Ormsby, Christopher E.; Reyes-Terán, Gustavo

    2012-01-01

    Actinomyces and Mycobacterium avium-intracellulare are facultative intracellular organisms, members of the bacterial order actinomycetales. Although Actinomyces can behave as copathogen when anatomic barriers are compromised, its coinfection with Mycobacterium avium-intracellulare has not previously been reported. We present the first reported case of palatal actinomycosis co-infection with disseminated MAC, in an HIV-infected subject with Kaposi sarcoma and diabetes. We discuss the pathogenesis of the complex condition of this subject. PMID:22481952

  19. Interleukin 12 is effective treatment for an established systemic intracellular infection: experimental visceral leishmaniasis

    PubMed Central

    1995-01-01

    When administered at or near the initiation of experimental intracellular infection caused by Leishmania major, Toxoplasma gondii, or Cryptococcus neoformans, treatment with the immuno-regulatory cytokine interleukin 12 (IL-12), induces protective antimicrobial activity. In contrast, once infections are established, IL-12 exerts considerably less or no effect in the face of a suppressive Th2 cell- associated response (L. major) or rapidly progressive fatal infection (T. gondii). To test the efficacy of IL-12 in an established intracellular protozoal infection but under quite different immunologic conditions (Th1 cell response, acquired resistance), L. donovani- infected BALB/c mice were treated starting 2 wk after challenge coincident with the onset of the Th1 cell response. In this environment, 7 d of IL-12 treatment reduced liver parasite burdens by 47%, an effect comparable to that induced by exogenous interferon (IFN) gamma. The in vivo mechanism responsive to IL-12 was complex, and required both CD4+ and CD8+ T cells as well as natural killer cells and the action of multiple endogenous antileishmanial cytokines (IFN-gamma, IL-2, tumor necrosis factor alpha). Early treatment with IL-12 before the expression of the Th1 cell response was also effective and induced an accelerated, near-cure response via an IFN-gamma-dependent mechanism. These results extend the antimicrobial-inducing capacity of IL-12 beyond prophylaxis by indicating that IL-12 can exert clear-cut therapeutic activity in an established intracellular infection. PMID:7807019

  20. Pathogenesis of Candida vulvovaginitis.

    PubMed

    Sobel, J D

    1989-01-01

    The occurrence of candida vulvovaginitis (CVV) has been estimated based on statistical data from Great Britain to be an increase to 200/100,000 over 10 years to 1984. CVV in the US is the 2nd commonest cause of vaginal infection, with bacterial vaginosis occurring twice as often. 85-90% of the yeasts isolated from the vagina are candida albicans, based on biotyping rather that the newer methods of DNA hybridization. The pathogenesis of CVV is discussed in terms of the microbiology (virulence factors, adherence, germ tube and mycelium formation, proteinase secretion, and switching colonies), asymptomatic vaginal colonization, transformation to symptomatic vaginitis, host predisposing factors (pregnancy, oral contraceptives, diabetes mellitus, antimicrobes, and other), vaginal defense mechanisms (humoral system, phagocytic system, cell mediated immunity, vaginal flora, other), and pathogenesis of recurrent and chronic CVV (internal reservoir, sexual transmission, vaginal relapse, and experimental models) The discussion of the development of virulent symptoms is capsuled in the following comments. Vaginal cell receptivity varies among individuals, but all strains of C. Albicans adhere to both exfoliated vaginal and buccal epithelial cells, or mucosal surfaces, through the yeast surface mannoprotein. It is suggested from in vitro studies that germ tube and mycelium formation facilitates vaginal mucosal invasion. Exogenous and endogenous factors may enhance germination and precipitate symptomatic vaginitis, or inhibit germination. Increased proteinase secretion may be a result of the transformation from the blastoconidium/colonization phase to the germinated invasive vaginitis stage or an independent virulence factor. It is reported that hereditable spontaneous switching may occur spontaneously in vivo also. Colonizing yeasts with a change in environment can transform to a more virulent phase. Colonization rates vary from 10-25%, and the critical issue is understanding

  1. Nanovehicular intracellular delivery systems.

    PubMed

    Prokop, Ales; Davidson, Jeffrey M

    2008-09-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood-brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list "elementary" phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  2. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  3. Pathogenesis of liver cirrhosis

    PubMed Central

    Zhou, Wen-Ce; Zhang, Quan-Bao; Qiao, Liang

    2014-01-01

    Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions. PMID:24966602

  4. Pathogenesis of rhinitis.

    PubMed

    Eifan, A O; Durham, S R

    2016-09-01

    Rhinitis is a heterogeneous condition that has been associated with inflammatory responses as in allergic rhinitis but can also occur in the absence of inflammation such as in so-called idiopathic (previously 'vasomotor') rhinitis. Allergic rhinitis affects approximately one in four of the population of westernized countries and is characterized by typical symptoms of nasal itching, sneezing, watery discharge and congestion. The intention of this review is to illustrate key concepts of the pathogenesis of rhinitis. Imbalance in innate and adaptive immunity together with environmental factors is likely to play major roles. In allergic rhinitis, initial allergen exposure and sensitization involves antigen-presenting cells, T and B lymphocytes and results in the generation of allergen-specific T cells and allergen-specific IgE antibodies. On re-exposure to relevant allergens, cross-linking of IgE on mast cells results in the release of mediators of hypersensitivity such as histamine and immediate nasal symptoms. Within hours, there is an infiltration by inflammatory cells, particularly Th2 T lymphocytes, eosinophils and basophils into nasal mucosal tissue that results in the late-phase allergic response. Evidence for nasal priming and whether or not remodelling may be a feature of allergic rhinitis will be reviewed. The occurrence of so-called local allergic rhinitis in the absence of systemic IgE will be discussed. Non-allergic (non-IgE-mediated) rhinitis will be considered in the context of inflammatory and non-inflammatory disorders. PMID:27434218

  5. Pathogenesis of Nonalcoholic Steatohepatitis.

    PubMed

    Machado, Mariana Verdelho; Diehl, Anna Mae

    2016-06-01

    Nonalcoholic steatohepatitis (NASH) is a necro-inflammatory response that ensues when hepatocytes are injured by lipids (lipotoxicity). NASH is a potential outcome of nonalcoholic fatty liver (NAFL), a condition that occurs when lipids accumulate in hepatocytes. NASH may be reversible, but it can also result in cirrhosis and primary liver cancer. We are beginning to learn about the mechanisms of progression of NAFL and NASH. NAFL does not inevitably lead to NASH because NAFL is a heterogeneous condition. This heterogeneity exists because different types of lipids with different cytotoxic potential accumulate in the NAFL, and individuals with NAFL differ in their ability to defend against lipotoxicity. There are no tests that reliably predict which patients with NAFL will develop lipotoxicity. However, NASH encompasses the spectrum of wound-healing responses induced by lipotoxic hepatocytes. Differences in these wound-healing responses among individuals determine whether lipotoxic livers regenerate, leading to stabilization or resolution of NASH, or develop progressive scarring, cirrhosis, and possibly liver cancer. We review concepts that are central to the pathogenesis of NASH. PMID:26928243

  6. Pathogenesis of Mucormycosis

    PubMed Central

    Spellberg, Brad; Walsh, Thomas J.; Kontoyiannis, Dimitrios P.

    2012-01-01

    Mucormycosis is a life-threatening infection that occurs in patients who are immunocompromised because of diabetic ketoacidosis, neutropenia, organ transplantation, and/or increased serum levels of available iron. Because of the increasing prevalence of diabetes mellitus, cancer, and organ transplantation, the number of patients at risk for this deadly infection is increasing. Despite aggressive therapy, which includes disfiguring surgical debridement and frequently adjunctive toxic antifungal therapy, the overall mortality rate is high. New strategies to prevent and treat mucormycosis are urgently needed. Understanding the pathogenesis of mucormycosis and the host response to invading hyphae ultimately will provide targets for novel therapeutic interventions. In this supplement, we review the current knowledge about the virulence traits used by the most common etiologic agent of mucormycosis, Rhizopus oryzae. Because patients with elevated serum levels of available iron are uniquely susceptible to mucormycosis and these infections are highly angioinvasive, emphasis is placed on the ability of the organism to acquire iron from the host and on its interactions with endothelial cells lining blood vessels. Several promising therapeutic strategies in preclinical stages are identified. PMID:22247441

  7. Recent progress in melasma pathogenesis.

    PubMed

    Lee, Ai-Young

    2015-11-01

    Melasma is a common skin pigmentation condition. Given therapeutic difficulty as one of the biggest concerns, understanding of the etiology and pathogenesis of melasma becomes essential. UV irradiation, female sex hormones, and inflammatory processes are addressed as triggering factors with genetic predisposition. The mechanism of UV-induced melanogenesis has been extensively investigated as a model system to study melasma pathogenesis. Hitherto, treatment modalities for melasma are similar to other hyperpigmentation disorders. However, individual triggering factors induce a separate pigmentation disease, whose pathogenic mechanisms and clinical phenotypes are different from the ones encountered in melasma. Fortunately, there have been ongoing updates on melasma pathogenesis with regard to major triggering factors. Presence of certain factors working independently of UV exposure and role of dermal factors and microRNAs are being identified as novel discoveries about melasma pathogenesis. In this review, the melasma pathogenesis is reviewed in association with updated and new findings. PMID:26230865

  8. Networks of fibers and factors: regulation of capsule formation in Cryptococcus neoformans.

    PubMed

    Ding, Hao; Mayer, François L; Sánchez-León, Eddy; de S Araújo, Glauber R; Frases, Susana; Kronstad, James W

    2016-01-01

    The ability of the pathogenic fungus Cryptococcus neoformans to cause life-threatening meningoencephalitis in immunocompromised individuals is due in large part to elaboration of a capsule consisting of polysaccharide fibers. The size of the cell-associated capsule is remarkably responsive to a variety of environmental and host conditions, but the mechanistic details of the regulation, synthesis, trafficking, and attachment of the polysaccharides are poorly understood. Recent studies reveal a complex network of transcription factors that influence capsule elaboration in response to several different signals of relevance to disease (e.g., iron deprivation). The emerging complexity of the network is consistent with the diversity of conditions that influence the capsule and illustrates the responsiveness of the fungus to both the environment and mammalian hosts. PMID:27516877

  9. Networks of fibers and factors: regulation of capsule formation in Cryptococcus neoformans

    PubMed Central

    de S. Araújo, Glauber R.; Frases, Susana; Kronstad, James W.

    2016-01-01

    The ability of the pathogenic fungus Cryptococcus neoformans to cause life-threatening meningoencephalitis in immunocompromised individuals is due in large part to elaboration of a capsule consisting of polysaccharide fibers. The size of the cell-associated capsule is remarkably responsive to a variety of environmental and host conditions, but the mechanistic details of the regulation, synthesis, trafficking, and attachment of the polysaccharides are poorly understood. Recent studies reveal a complex network of transcription factors that influence capsule elaboration in response to several different signals of relevance to disease (e.g., iron deprivation). The emerging complexity of the network is consistent with the diversity of conditions that influence the capsule and illustrates the responsiveness of the fungus to both the environment and mammalian hosts. PMID:27516877

  10. All about that fat: Lipid modification of proteins in Cryptococcus neoformans

    PubMed Central

    Santiago-Tirado, Felipe H.; Doering, Tamara L.

    2016-01-01

    Lipid modification of proteins is a widespread, essential process whereby fatty acids, cholesterol, isoprenoids, phospholipids, or glycosylphospholipids are attached to polypeptides. These hydrophobic groups may affect protein structure, function, localization, and/or stability; as a consequence such modifications play critical regulatory roles in cellular systems. Recent advances in chemical biology and proteomics have allowed the profiling of modified proteins, enabling dissection of the functional consequences of lipid addition. The enzymes that mediate lipid modification are specific for both the lipid and protein substrates, and are conserved from fungi to humans. In this article we review these enzymes, their substrates, and the processes involved in eukaryotic lipid modification of proteins. We further focus on its occurrence in the fungal pathogen Cryptococcus neoformans, highlighting unique features that are both relevant for the biology of the organism and potentially important in the search for new therapies. PMID:26920881

  11. How Sweet it is! Cell Wall Biogenesis and Polysaccharide Capsule Formation in Cryptococcus neoformans

    PubMed Central

    Doering, Tamara Lea

    2010-01-01

    Cryptococcus neoformans is a pathogenic fungus responsible for severe opportunistic infections. The most prominent feature of this yeast is its elaborate polysaccharide capsule, a complex structure that is required for virulence. The capsule is intimately associated with the cell wall, which underlies the capsule and offers the organism strength and flexibility in potentially hostile environments. Both structures are primarily composed of polysaccharides, offering a glimpse of the tremendous variation inherent in natural carbohydrate structures and their multiple biological functions. The steps in cell wall and capsule biosynthesis and assembly pose fascinating questions of metabolism, enzymology, cell biology, and regulation; the answers have potential application to treatment of a deadly infection. This article reviews current knowledge of cryptococcal cell wall and capsule biosynthesis and outstanding questions for the future. PMID:19575556

  12. Massive cerebral edema resulting in brain death as a complication of Cryptococcus neoformans meningitis

    PubMed Central

    Orsini, Jose; Blaak, Christa; Mahmoud, Dalia; Young-Gwang, Jeong

    2015-01-01

    Despite the widespread use of highly active antiretroviral therapy, cryptococcal meningoencephalitis has emerged as the second leading cause of infectious morbidity and mortality in HIV-infected patients worldwide. It presents usually as subacute or chronic disease but occasionally may be fulminant. Common clinical presentations included headache, fever, and depressed level of consciousness. The infection affects both the subarachnoid space and brain parenchyma, and is characterized by a paucity of inflammation and a large fungal burden in the cerebrospinal fluid at the time of diagnosis. Infection is usually lethal without treatment, thus the prompt diagnosis and therapy might improve the outcome. We report a case of brain death caused by Cryptococcus neoformans meningitis that was diagnosed based on clinical neurological examinations and supported by the absence of cerebral blood flow on brain angiography. PMID:25656669

  13. Polyethylene sulfonate: a tight-binding inhibitor of 6-phosphogluconate dehydrogenase of Cryptococcus neoformans.

    PubMed

    Niehaus, W G; White, R H; Richardson, S B; Bourne, A; Ray, W K

    1995-12-20

    Polyethylene sulfonate (PES) or polyvinyl sulfonate was found to be a potent inhibitor of a number of fungal enzymes, including 6-phosphogluconate dehydrogenase from Cryptococcus neoformans. The inhibition was apparently competitive versus either NADP or 6-phosphogluconate, with 50% inhibition at PES concentrations below 10 nM. Replots of slopes of double-reciprocal plots versus inhibitor concentration were sharply concave upward, whereas replots of slope versus [PES]3 were linear. The inhibition was freely reversible upon dilution of the enzyme-PES complex. A model is presented that involves initial binding of the long (M(r) 50,000) polyanionic PES at a remote site on the enzyme, followed by interaction of the end of the tethered polymer with the binding site for NADP or for 6-phosphogluconate. PMID:8554324

  14. Antifungal susceptibility of clinical and environmental Cryptococcus neoformans and Cryptococcus gattii isolates in Jabalpur, a city of Madhya Pradesh in Central India

    PubMed Central

    Gutch, Ruchi Sethi; Nawange, Shesh Rao; Singh, Shankar Mohan; Yadu, Ruchika; Tiwari, Aditi; Gumasta, Richa; Kavishwar, Arvind

    2015-01-01

    In this study, we present antifungal susceptibility data of clinical and environmental isolates of Central Indian Cryptococcus neoformans (Serotype A, n = 8 and n = 50 respectively) and Cryptococcus gattii (Serotype B, n = 01 and n = 04 respectively). Susceptibilities to fluconazole, itraconazole and ketoconazole were determined by using NCCLS broth micro-dilution methodology. The total number of resistant strains for fluconazole in case of C. neoformans and C. gattii showed a significant difference by using chi-square test (p < 0.05*), while considering fisher's exact p value was nonsignificant (p > 0.05). However, the total number of resistant strains for itraconazole and ketoconazole was not found statistically significant. A comparison of geometric means of clinical and environmental strains of C. gattii and C. neoformans was not found statistically significant using student ‘t’ test (p value > 0.05 NS). Though less, the antifungal data obtained in this study suggests that primary resistance among environmental and clinical isolates of C. neoformans and C. gattii against tested antifungal was present and C. gattii comparatively was less susceptible than C. neoformans var. grubii isolates to fluconazole than to itraconazole and ketoconazole. A continuous surveillance of antifungal susceptibility of clinical and environmental isolates of C. neoformans and C. gattii is desirable to monitor the emergence of any resistant strains for better management of cryptococcosis patients. PMID:26691471

  15. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans.

    PubMed Central

    Meyer, W; Mitchell, T G; Freedman, E Z; Vilgalys, R

    1993-01-01

    In conventional DNA fingerprinting, hypervariable and repetitive sequences (minisatellite or microsatellite DNA) are detected with hybridization probes. As demonstrated here, these probes can be used as single primers in the polymerase chain reaction (PCR) to generate individual fingerprints. Several conventional DNA fingerprinting probes were used to prime the PCR, yielding distinctive, hypervariable multifragment profiles for different strains of Cryptococcus neoformans. PCR fingerprinting with the oligonucleotide primers (GTG)5, (GACA)4, and the phage M13 core sequence (GAGGGTGGXGGXTCT), but not with (CA)8 or (CT)8, generated DNA polymorphisms with all 42 strains of C. neoformans investigated. PCR fingerprints produced by priming with (GTG)5, (GACA)4, or the M13 core sequence differentiated the two varieties of C. neoformans, C. neoformans var. neoformans (serotypes A and D) and C. neoformans var. gattii (serotypes B and C). Furthermore, strains of serotypes A, D, and B or C could be distinguished from each other by specific PCR fingerprint patterns. These primers, which also successfully amplified hypervariable DNA segments from other species, provide a convenient method of identification at the species or individual level. Amplification of polymorphic DNA patterns by PCR with these primers offers several advantages over classical DNA fingerprinting techniques, appears to be more reliable than other PCR-based methods for detecting polymorphic DNA, such as analysis of random-amplified polymorphic DNA, and should be applicable to many other organisms. Images PMID:8408543

  16. The Cryptococcus neoformans Alkaline Response Pathway: Identification of a Novel Rim Pathway Activator

    PubMed Central

    Ost, Kyla S.; O’Meara, Teresa R.; Huda, Naureen; Esher, Shannon K.; Alspaugh, J. Andrew

    2015-01-01

    The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels. PMID:25859664

  17. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans.

    PubMed

    Sun, Sheng; Billmyre, R Blake; Mieczkowski, Piotr A; Heitman, Joseph

    2014-12-01

    In fungi, unisexual reproduction, where sexual development is initiated without the presence of two compatible mating type alleles, has been observed in several species that can also undergo traditional bisexual reproduction, including the important human fungal pathogens Cryptococcus neoformans and Candida albicans. While unisexual reproduction has been well characterized qualitatively, detailed quantifications are still lacking for aspects of this process, such as the frequency of recombination during unisexual reproduction, and how this compares with bisexual reproduction. Here, we analyzed meiotic recombination during α-α unisexual and a-α bisexual reproduction of C. neoformans. We found that meiotic recombination operates in a similar fashion during both modes of sexual reproduction. Specifically, we observed that in α-α unisexual reproduction, the numbers of crossovers along the chromosomes during meiosis, recombination frequencies at specific chromosomal regions, as well as meiotic recombination hot and cold spots, are all similar to those observed during a-α bisexual reproduction. The similarity in meiosis is also reflected by the fact that phenotypic segregation among progeny collected from the two modes of sexual reproduction is also similar, with transgressive segregation being observed in both. Additionally, we found diploid meiotic progeny were also produced at similar frequencies in the two modes of sexual reproduction, and transient chromosomal loss and duplication likely occurs frequently and results in aneuploidy and loss of heterozygosity that can span entire chromosomes. Furthermore, in both α-α unisexual and a-α bisexual reproduction, we observed biased allele inheritance in regions on chromosome 4, suggesting the presence of fragile chromosomal regions that might be vulnerable to mitotic recombination. Interestingly, we also observed a crossover event that occurred within the MAT locus during α-α unisexual reproduction. Our results

  18. Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and immunogenicity.

    PubMed

    Devi, S J; Schneerson, R; Egan, W; Ulrich, T J; Bryla, D; Robbins, J B; Bennett, J E

    1991-10-01

    We synthesized Cryptococcus neoformans serotype A glucuronoxylomannan (GXM) conjugate vaccines under conditions suitable for human use to prevent disseminated cryptococcosis. The purified, sonicated GXM was derivatized with adipic acid dihydrazide through either hydroxyl or carboxyl groups and then covalently bound to tetanus toxoid (TT) or Pseudomonas aeruginosa exoprotein A (rEPA). The immunogenicity of these conjugates was evaluated in BALB/c and general purpose mice by subcutaneous injection in saline. The conjugates elicited higher GXM antibody responses than GXM alone. Booster immunoglobulin G (IgG) and IgM responses were elicited by all conjugates in BALB/c mice. The conjugates prepared through hydroxyl activation (GXM-TT2 and GXM-rEPA) were more immunogenic than the one prepared through carboxyl activation (GXM-TT1). GXM antibody response was enhanced by the administration of monophosphoryl lipid A 2 days following the injection of GXM-TT2 (P less than 0.03). The conjugates also elicited IgG antibodies to the carrier proteins. Gel diffusion tests using conjugate-induced hyperimmune sera and chemically modified GXMs suggested that the specificity of GXM-TT1-induced antibodies was conferred by the O-acetyl groups. Hyperimmune sera generated by GXM-TT2 precipitated with the chemically unmodified and the de-O-acetylated GXMs but not with the carboxyl-reduced and de-O-acetylated GXM. GXM-TT2-induced hyperimmune serum also precipitated with the capsular polysaccharides of C. neoformans serotypes D, B, and C. The conjugate vaccines prepared through hydroxyl activation of the GXM are sufficiently immunogenic and appear to be suitable for clinical evaluation. PMID:1716613

  19. Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV- individuals.

    PubMed Central

    Deshaw, M; Pirofski, L A

    1995-01-01

    Murine MoAbs to the Cryptococcus neoformans capsular glucuronoxylomannan (GXM) polysaccharide are protective in mice in vivo and in vitro. The prevalence of protective anti-GXM antibodies in human serum is unknown. To provide further insight into the human antibody response to C. neoformans we determined the prevalence, isotype, and IgG subclass utilization of human anti-GXM antibodies in HIV+ and HIV- sera by a sensitive antigen capture FLISA assay. One hundred and twenty-three sera from the Bronx Municipal Hospital Centre serum bank were studied retrospectively. Seventy were from HIV+ individuals, 10 with a history of cryptococcal meningitis (CM), and 53 were from HIV- individuals. Serum GXM determinations were also performed on 61 HIV+ sera. Our results demonstrated that anti-GXM IgG, IgA, and IgM are ubiquitous in both HIV+ (including those with CM), and HIV- sera. Anti-GXM IgA titres and total serum IgA concentration were elevated in HIV+ sera. Anti-GXM IgG antibodies were almost exclusively isotype-restricted to the IgG2 subclass. Our data also demonstrated elevations of anti-bovine serum albumin (BSA) titres in HIV+ sera. Taken together, our findings confirm hypergammaglobulinaemia and expansion of anti-protein (BSA) antibodies in HIV+ individuals and isotype restriction of human anti-carbohydrate (GXM) antibodies to the IgG2 subclass. Our report of ubiquitous anti-GXM antibodies of the IgG and IgA isotypes suggests that anti-GXM antibodies exist before HIV infection. PMID:7882565

  20. The Gamma Interferon Receptor Is Required for the Protective Pulmonary Inflammatory Response to Cryptococcus neoformans

    PubMed Central

    Chen, Gwo-Hsiao; McDonald, Roderick A.; Wells, Jason C.; Huffnagle, Gary B.; Lukacs, Nicholas W.; Toews, Galen B.

    2005-01-01

    Mice with a null deletion mutation in the gamma interferon (IFN-γ) receptor gene were used to study the role of IFN-γ responsiveness during experimental pulmonary cryptococcosis. Cryptococcus neoformans was inoculated intratracheally into mice lacking the IFN-γ receptor gene (IFN-γR−/−) and into control mice (IFN-γR+/+). The numbers of CFU in lung, spleen, and brain were determined to assess clearance; cytokines produced by lung leukocytes were measured, and survival curves were generated. In the present study, we demonstrate the following points. (i) IFN-γR−/− mice are markedly more susceptible to C. neoformans infection than IFN-γR+/+ mice. (ii) In the absence of IFN-γ signaling, pulmonary CFU continue to increase over the course of infection, and the infection disseminates to the brain. (iii) In the absence of IFN-γ receptor, recruitment of inflammatory cells in response to pulmonary cryptococcal infection is not impaired. (iv) At week 5 postinfection, IFN-γR−/− mice have recruited greater numbers of leukocytes into their lungs, with neutrophils, eosinophils, and lymphocytes accounting for this cellular increase. (v) IFN-γ signaling is required for the development of a T1 over a T2 immune response in the lung following cryptococcal infection. These results indicate that in the absence of IFN- γ responsiveness, even though the recruitment of pulmonary inflammatory cells is not impaired and the secretion of IFN-γ is not affected, IFN-γR−/− mice do not have the ability to resolve the cryptococcal infection. In conclusion, our data suggest that proper functional IFN-γ signaling, possibly through a mechanism which inhibits the potentially disease-promoting T2 response, is required for mice to confine the cryptococcal infection. PMID:15731080

  1. Strategies for Intracellular Survival of Burkholderia pseudomallei.

    PubMed

    Allwood, Elizabeth M; Devenish, Rodney J; Prescott, Mark; Adler, Ben; Boyce, John D

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  2. The pathogenesis of sepsis.

    PubMed

    Bone, R C

    1991-09-15

    Sepsis and its sequelae (sepsis syndrome and septic shock) are increasingly common and are still potentially lethal diagnoses. Many mediators of the pathogenesis of sepsis have recently been described. These include tumor necrosis factor alpha (TNF alpha), interleukins, platelet activating factor, leukotrienes, thromboxane A2, and activators of the complement cascade. Neutrophil and platelet activation may also play a role. Other agents that may participate in the sepsis cascade include adhesion molecules, kinins, thrombin, myocardial depressant substance, beta-endorphin, and heat shock proteins. Endothelium-derived relaxing factor and endothelin-1 are released from the endothelium and seem to exert a regulatory effect, counterbalancing each other. A central mediator of sepsis does not seem to exist, although TNF alpha has been commonly proposed for this role. Animal studies are difficult to extrapolate to the clinical setting because of cross-species differences and variations in experimental design. Rather than being caused by any single pathogenic mechanism, it is more likely that sepsis is related to the state of activation of the target cell, the nearby presence of other mediators, and the ability of the target cell to release other mediators. Also important is the downregulation or negative feedback of these mediators or the generation of natural inflammation inhibitors, such as interleukin-4 and interleukin-8. Endothelial damage in sepsis probably results from persistent and repetitive inflammatory insults. Eventually, these insults produce sufficient damage that downregulation can no longer occur; this leads to a state of metabolic anarchy in which the body can no longer control its own inflammatory response. PMID:1872494

  3. Crystal structure of Gib2, a signal-transducing protein scaffold associated with ribosomes in Cryptococcus neoformans

    NASA Astrophysics Data System (ADS)

    Ero, Rya; Dimitrova, Valya Tenusheva; Chen, Yun; Bu, Wenting; Feng, Shu; Liu, Tongbao; Wang, Ping; Xue, Chaoyang; Tan, Suet Mien; Gao, Yong-Gui

    2015-03-01

    The atypical Gβ-like/RACK1 Gib2 protein promotes cAMP signalling that plays a central role in regulating the virulence of Cryptococcus neoformans. Gib2 contains a seven-bladed β transducin structure and is emerging as a scaffold protein interconnecting signalling pathways through interactions with various protein partners. Here, we present the crystal structure of Gib2 at a 2.2-Å resolution. The structure allows us to analyse the association between Gib2 and the ribosome, as well as to identify the Gib2 amino acid residues involved in ribosome binding. Our studies not only suggest that Gib2 has a role in protein translation but also present Gib2 as a physical link at the crossroads of various regulatory pathways important for the growth and virulence of C. neoformans.

  4. High-Throughput Screen in Cryptococcus neoformans Identifies a Novel Molecular Scaffold That Inhibits Cell Wall Integrity Pathway Signaling

    PubMed Central

    2015-01-01

    Cryptococcus neoformans is one of the most important human fungal pathogens; however, no new therapies have been developed in over 50 years. Fungicidal activity is crucially important for an effective anticryptococal agent and, therefore, we screened 361,675 molecules against C. neoformans using an adenylate kinase release assay that specifically detects fungicidal activity. A set of secondary assays narrowed the set of hits to molecules that interfere with fungal cell wall integrity and identified three benzothioureas with low in vitro mammalian toxicity and good in vitro anticryptococcal (minimum inhibitory concentration = 4 μg/mL). This scaffold inhibits signaling through the cell wall integrity MAP kinase cascade. Structure–activity studies indicate that the thiocarbonyl moiety is crucial for activity. Genetic and biochemical data suggest that benzothioureas inhibit signaling upstream of the kinase cascade. Thus, the benzothioureas appear to be a promising new scaffold for further exploration in the search for new anticryptococcal agents. PMID:26807437

  5. A Role for LHC1 in Higher Order Structure and Complement Binding of the Cryptococcus neoformans Capsule

    PubMed Central

    Park, Yoon-Dong; Shin, Soowan; Panepinto, John; Ramos, Jeanie; Qiu, Jin; Frases, Susana; Albuquerque, Patricia; Cordero, Radames J. B.; Zhang, Nannan; Himmelreich, Uwe; Beenhouwer, David; Bennett, John E.; Casadevall, Arturo; Williamson, Peter R.

    2014-01-01

    Polysaccharide capsules are important virulence factors for many microbial pathogens including the opportunistic fungus Cryptococcus neoformans. In the present study, we demonstrate an unusual role for a secreted lactonohydrolase of C. neoformans, LHC1 in capsular higher order structure. Analysis of extracted capsular polysaccharide from wild-type and lhc1Δ strains by dynamic and static light scattering suggested a role for the LHC1 locus in altering the capsular polysaccharide, both reducing dimensions and altering its branching, density and solvation. These changes in the capsular structure resulted in LHC1-dependent alterations of antibody binding patterns, reductions in human and mouse complement binding and phagocytosis by the macrophage-like cell line J774, as well as increased virulence in mice. These findings identify a unique molecular mechanism for tertiary structural changes in a microbial capsule, facilitating immune evasion and virulence of a fungal pathogen. PMID:24789368

  6. Solid-state NMR Reveals the Carbon-based Molecular Architecture of Cryptococcus neoformans Fungal Eumelanins in the Cell Wall*

    PubMed Central

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.

    2015-01-01

    Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492

  7. In Vitro Comparative Efficacy of Voriconazole and Itraconazole against Fluconazole-Susceptible and -Resistant Cryptococcus neoformans Isolates

    PubMed Central

    Nguyen, M. Hong; Yu, Christine Y.

    1998-01-01

    In vitro susceptibility testing for 50 clinical isolates of fluconazole-susceptible or -resistant Cryptococcus neoformans was performed with itraconazole and voriconazole. Voriconazole was more potent than itraconazole for fluconazole-susceptible isolates and as potent as itraconazole for fluconazole-susceptible dose-dependent isolates and for fluconazole-resistant isolates. For fluconazole-resistant isolates, the voriconazole and itraconazole MICs ranged from 1 to 2 μg/ml. PMID:9527812

  8. The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent In Vitro Activity against Cryptococcus neoformans and Cryptococcus gattii.

    PubMed

    Lockhart, Shawn R; Fothergill, Annette W; Iqbal, Naureen; Bolden, Carol B; Grossman, Nina T; Garvey, Edward P; Brand, Stephen R; Hoekstra, William J; Schotzinger, Robert J; Ottinger, Elizabeth; Patterson, Thomas F; Wiederhold, Nathan P

    2016-04-01

    Thein vitroactivities of the novel fungal Cyp51 inhibitor VT-1129 were evaluated against a large panel ofCryptococcus neoformansandCryptococcus gattiiisolates. VT-1129 demonstrated potent activities against bothCryptococcusspecies as demonstrated by low MIC50and MIC90values. ForC. gattii, thein vitropotency was maintained against all genotypes. In addition, significantly lower geometric mean MICs were observed for VT-1129 than for fluconazole againstC. neoformans, including isolates with reduced fluconazole susceptibility. PMID:26787697

  9. Requirement for CD4+ T Lymphocytes in Host Resistance against Cryptococcus neoformans in the Central Nervous System of Immunized Mice

    PubMed Central

    Buchanan, Kent L.; Doyle, Hester A.

    2000-01-01

    The importance of cell-mediated immunity (CMI) and CD4+ T lymphocytes in host resistance against Cryptococcus neoformans is well documented and is exemplified by the high susceptibility to progressive infection with this pathogen of AIDS patients with reduced CD4+ T-cell numbers. Although much has been learned about the role of CMI in the clearance of C. neoformans from the lungs and other internal organs, less is known about the protective mechanisms in the brain, the organ most frequently involved with a fatal outcome of cryptococcosis. We hypothesized that host resistance mechanisms against C. neoformans in the central nervous system (CNS) were similar to those outside the CNS (i.e., gamma interferon [IFN-γ], CD4+ T cells, and others). To test this hypothesis, we used a murine model of cryptococcal meningitis whereby cryptococci are introduced directly into the CNS. In experiments where mice were immunized to mount an anticryptococcal CMI response, our results indicate that immunization induced protective mechanisms that could be detected in the CNS by inhibition of the growth of viable yeast cells. Flow cytometric analyses of leukocytes in brain and spinal cord homogenates revealed that T lymphocytes, macrophages, and neutrophils accumulated in C. neoformans-infected brains of immune mice. In vivo depletion of CD4+ T cells, but not CD8+ T cells, resulted in significantly reduced leukocyte accumulation in the brains of immune mice. Furthermore, depletion of CD4+ T cells or neutralization of IFN-γ exacerbated CNS infection in immune mice, suggesting a critical role for CMI mechanisms in acquired protection in the CNS. PMID:10639404

  10. Cryptococcus-Related Immune Reconstitution Inflammatory Syndrome(IRIS): Pathogenesis and Its Clinical Implications

    PubMed Central

    Wiesner, Darin L; Boulware, David R.

    2011-01-01

    This review provides an overview of Cryptococcus neoformans immunology and focuses on the pathogenesis of Cryptococcus-related paradoxical immune reconstitution inflammatory syndrome (IRIS). Cryptococcal IRIS has three phases: (1) before antiretroviral therapy (ART), with a paucity of cerebrospinal fluid (CSF) inflammation and defects in antigen clearance; (2) during initial ART immune recovery, with pro-inflammatory signaling by antigen-presenting cells without an effector response; and (3) at IRIS, a cytokine storm with a predominant type-1 helper T-cell (Th1) interferon-gamma (IFN-γ) response. Understanding IRIS pathogenesis allows for risk stratification and customization of HIV/AIDS care. In brief, persons at high IRIS risk may benefit from enhancing microbiologic clearance by use of adjunctive agents in combination with amphotericin, prolonging initial induction therapy, and/or increasing the initial consolidation antifungal therapy dose to at least 800 mg of fluconazole daily until the 2-week CSF culture is known to be sterile. Prophylactic anti-inflammatory therapies or undue delay of ART initiation in an attempt to prevent IRIS is unwarranted and may be dangerous. PMID:22389746

  11. Highlights in pathogenesis of vitiligo.

    PubMed

    Mohammed, Ghada F; Gomaa, Amal Ha; Al-Dhubaibi, Mohammed Saleh

    2015-03-16

    Vitiligo is a common pigmentary disorder. Many studies across decades and all over the world have attempted to illustrate the pathogenesis behind it; however, the pathogenesis of vitiligo remains elusive. This review article, we present the findings behind the most and updated theories behind this psychologically debilitating and disfiguring disease. The discussion begun with the role of genetic predisposition followed by neural theory first proposed in the 1950s. We highlight the autoimmune hypothesis, followed by the reactive oxygen species model, zinc-α2-glycoprotein deficiency hypothesis, viral theory, intrinsic theory and biochemical, molecular and cellular alterations accounting for loss of functioning melanocytes in vitiligo. Many theories were elaborated to clarify vitiligo pathogenesis. It is a multifactorial disease involving the interplay of several factors. Future research is needed to clarify the interaction of these factors for better understanding of vitiligo pathogenesis and subsequent successful treatment. PMID:25789295

  12. Highlights in pathogenesis of vitiligo

    PubMed Central

    Mohammed, Ghada F; Gomaa, Amal HA; Al-Dhubaibi, Mohammed Saleh

    2015-01-01

    Vitiligo is a common pigmentary disorder. Many studies across decades and all over the world have attempted to illustrate the pathogenesis behind it; however, the pathogenesis of vitiligo remains elusive. This review article, we present the findings behind the most and updated theories behind this psychologically debilitating and disfiguring disease. The discussion begun with the role of genetic predisposition followed by neural theory first proposed in the 1950s. We highlight the autoimmune hypothesis, followed by the reactive oxygen species model, zinc-α2-glycoprotein deficiency hypothesis, viral theory, intrinsic theory and biochemical, molecular and cellular alterations accounting for loss of functioning melanocytes in vitiligo. Many theories were elaborated to clarify vitiligo pathogenesis. It is a multifactorial disease involving the interplay of several factors. Future research is needed to clarify the interaction of these factors for better understanding of vitiligo pathogenesis and subsequent successful treatment. PMID:25789295

  13. Cryptococcus neoformans Requires the ESCRT Protein Vps23 for Iron Acquisition from Heme, for Capsule Formation, and for Virulence

    PubMed Central

    Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Chan, Vivienne; Liu, Victor

    2013-01-01

    Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans. PMID:23132495

  14. Characterization of Lipids and Proteins Associated to the Cell Wall of the Acapsular Mutant Cryptococcus neoformans Cap 67.

    PubMed

    Longo, Larissa V G; Nakayasu, Ernesto S; Pires, Jhon H S; Gazos-Lopes, Felipe; Vallejo, Milene C; Sobreira, Tiago J P; Almeida, Igor C; Puccia, Rosana

    2015-01-01

    Cryptococcus neoformans is an opportunistic human pathogen that causes life-threatening meningitis. In this fungus, the cell wall is exceptionally not the outermost structure due to the presence of a surrounding polysaccharide capsule, which has been highly studied. Considering that there is little information about C. neoformans cell wall composition, we aimed at describing proteins and lipids extractable from this organelle, using as model the acapsular mutant C. neoformans cap 67. Purified cell wall preparations were extracted with either chloroform/methanol or hot sodium dodecyl sulfate. Total lipids fractionated in silica gel 60 were analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS), while trypsin digested proteins were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We detected 25 phospholipid species among phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid. Two glycolipid species were identified as monohexosyl ceramides. We identified 192 noncovalently linked proteins belonging to different metabolic processes. Most proteins were classified as secretory, mainly via nonclassical mechanisms, suggesting a role for extracellular vesicles (EV) in transwall transportation. In concert with that, orthologs from 86% of these proteins have previously been reported both in fungal cell wall and/or in EV. The possible role of the presently described structures in fungal-host relationship is discussed. PMID:25733123

  15. αADα Hybrids of Cryptococcus neoformans: Evidence of Same-Sex Mating in Nature and Hybrid Fitness

    PubMed Central

    Lin, Xiaorong; Litvintseva, Anastasia P; Nielsen, Kirsten; Patel, Sweta; Floyd, Anna; Mitchell, Thomas G; Heitman, Joseph

    2007-01-01

    Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, α and a. However, the overwhelming predominance of mating type (MAT) α over a in C. neoformans populations limits α–a mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between α isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural αADα hybrids that arose by fusion between two α cells of different serotypes (A and D) were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1α was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed αADα strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population. PMID:17953489

  16. Concepts in viral pathogenesis II

    SciTech Connect

    Notkins, A.L.; Oldstone, M.B.A.

    1986-01-01

    This paper contains papers divided among 10 sections. The section titles are: Viral Structure and Function; Viral Constructs; Oncogenes, Transfection, and Differentiation; Viral Tropism and Entry into Cells; Immune Recognition of Viruses; Evolving Concepts in Viral Pathogenesis Illustrated by Selected Plant and Animal Models; Evolving Concepts in Viral Pathogenesis Illustrated by Selected Diseases in Humans; New Trends in Diagnosis and Epidemiology; and Vaccines and Antiviral Therapy.

  17. Intracellular Sterol Dynamics

    PubMed Central

    Mesmin, Bruno; Maxfield, Frederick R.

    2009-01-01

    We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated. PMID:19286471

  18. Recent advances in understanding the pathogenesis of Lawsonia intracellularis infections.

    PubMed

    Vannucci, F A; Gebhart, C J

    2014-03-01

    Proliferative enteropathy is an infectious disease caused by an obligate intracellular bacterium, Lawsonia intracellularis, and characterized by thickening of the intestinal epithelium due to enterocyte proliferation. The disease is endemic in swine herds and has been occasionally reported in various other species. Furthermore, outbreaks among foals began to be reported on breeding farms worldwide within the past 5 years. Cell proliferation is directly associated with bacterial infection and replication in the intestinal epithelium. As a result, mild to severe diarrhea is the major clinical sign described in infected animals. The dynamics of L. intracellularis infection in vitro and in vivo have been well characterized, but little is known about the genetic basis for the pathogenesis or ecology of this organism. The present review focuses on the recent advances regarding the pathogenesis and host-pathogen interaction of L. intracellularis infections. PMID:24476941

  19. Revisiting old friends: Developments in understanding Histoplasma capsulatum pathogenesis.

    PubMed

    Woods, Jon P

    2016-03-01

    Histoplasma capsulatum is a dimorphic pathogenic fungus and causative agent of histoplasmosis, which is a respiratory and systemic infection that is particularly severe in immunocompromised hosts and represents the fungal homolog of tuberculosis. In highly endemic regions, the majority of individuals have been infected and carry the organism in a persistent latent form that is a danger for reactivation if host defenses are suppressed. H. capsulatum has been a model organism for intracellular pathogenesis and fungal morphogenesis for decades. New genomic information and application of approaches for molecular genetic manipulation are shedding new light on virulence mechanisms. PMID:26920886

  20. Characterization of the Chromosome 4 Genes That Affect Fluconazole-Induced Disomy Formation in Cryptococcus neoformans

    PubMed Central

    Ngamskulrungroj, Popchai; Chang, Yun; Hansen, Bryan; Bugge, Cliff; Fischer, Elizabeth; Kwon-Chung, Kyung J.

    2012-01-01

    Heteroresistance in Cryptococcus neoformans is an intrinsic adaptive resistance to azoles and the heteroresistant phenotype is associated with disomic chromosomes. Two chromosome 1 (Chr1) genes, ERG11, the fluconazole target, and AFR1, a drug transporter, were reported as major factors in the emergence of Chr1 disomy. In the present study, we show Chr4 to be the second most frequently formed disomy at high concentrations of fluconazole (FLC) and characterize the importance of resident genes contributing to disomy formation. We deleted nine Chr4 genes presumed to have functions in ergosterol biosynthesis, membrane composition/integrity or drug transportation that could influence Chr4 disomy under FLC stress. Of these nine, disruption of three genes homologous to Sey1 (a GTPase), Glo3 and Gcs2 (the ADP-ribosylation factor GTPase activating proteins) significantly reduced the frequency of Chr4 disomy in heteroresistant clones. Furthermore, FLC resistant clones derived from sey1Δglo3Δ did not show disomy of either Chr4 or Chr1 but instead had increased the copy number of the genes proximal to ERG11 locus on Chr1. Since the three genes are critical for the integrity of endoplasmic reticulum (ER) in Saccharomyces cerevisiae, we used Sec61ß-GFP fusion as a marker to study the ER in the mutants. The cytoplasmic ER was found to be elongated in sey1Δ but without any discernable alteration in gcs2Δ and glo3Δ under fluorescence microscopy. The aberrant ER morphology of all three mutant strains, however, was discernable by transmission electron microscopy. A 3D reconstruction using Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) revealed considerably reduced reticulation in the ER of glo3Δ and gcs2Δ strains. In sey1Δ, ER reticulation was barely detectable and cisternae were expanded extensively compared to the wild type strains. These data suggest that the genes required for maintenance of ER integrity are important for the formation of disomic chromosomes in C

  1. First report on Cryptococcus neoformans in pigeon excreta from public and residential locations in the metropolitan area of Cuiabá, State of Mato Grosso, Brazil.

    PubMed

    Takahara, Doracilde Terumi; Lazéra, Márcia dos Santos; Wanke, Bodo; Trilles, Luciana; Dutra, Valéria; Paula, Daphine Ariadne Jesus de; Nakazato, Luciano; Anzai, Mariana Caselli; Leite Júnior, Diniz Pereira; Paula, Claudete Rodrigues; Hahn, Rosane Christine

    2013-01-01

    Cryptococcosis is a severe systemic mycosis caused by two species of Cryptococcus that affect humans and animals: C. neoformans and C. gattii. Cosmopolitan and emergent, the mycosis results from the interaction between a susceptible host and the environment. The occurrence of C. neoformans was evaluated in 122 samples of dried pigeon excreta collected in 49 locations in the City of Cuiabá, State of Mato Grosso, Brazil, including public squares (n = 5), churches (n = 4), educational institutions (n = 3), health units (n = 8), open areas covered with asbestos (n = 4), residences (n = 23), factory (n = 1) and a prison (n = 1). Samples collected from July to December of 2010 were seeded on Niger seed agar (NSA). Dark brown colonies were identified by urease test, carbon source assimilation tests and canavanine-glycine-bromothymol blue medium. Polymerase chain reaction primer pairs specific for C. neoformans were also used for identification. Cryptococcus neoformans associated to pigeon excreta was isolated from eight (6.6%) samples corresponding to six (12.2%) locations. Cryptococcus neoformans was isolated from urban areas, predominantly in residences, constituting a risk of acquiring the disease by immunocompromised and immunocompetent individuals. PMID:24213188

  2. Dual Infections with Pigmented and Albino Strains of Cryptococcus neoformans in Patients with or without Human Immunodeficiency Virus Infection in India

    PubMed Central

    Mandal, Piyali; Banerjee, Uma; Casadevall, Arturo; Nosanchuk, Joshua D.

    2005-01-01

    Cryptococcus neoformans is an encapsulated yeast-like fungus of worldwide distribution. Melanin production is an important virulence factor of C. neoformans. We report the identification of distinct cryptococcal isolates with either pigmented or white colony phenotypes on l-dihydroxyphenylalanine agar plates in three patients who presented with meningitis to the All India Institute of Medical Sciences in India. Two of the patients were also infected with human immunodeficiency virus. Biochemical studies, India ink analysis, immunofluorescence with antibodies specific to capsular antigen, and serotyping confirmed that the melanotic and albino strains were C. neoformans serotypes A and D, respectively. Genotyping with M13 and [GACA]4 primers revealed that all the C. neoformans isolates were genetically different. The CNLAC1 gene associated with melanin production was identified in all the strains by PCR. Standard MIC testing revealed that the strains had similar susceptibilities to amphotericin B, but time-kill assays with the antifungal showed reduced susceptibility in melanin-producing strains. Infection studies with A/Jcr mice showed that the melanin-lacking yeast were less virulent than melanin-producing isolates. These findings indicate that these patients had dual infections with pigmented and albino strains of C. neoformans that were phenotypically and biologically different. Continued surveillance of primary isolates from patients with cryptococcosis by analyzing phenotypic differences and by molecular methods may reveal that mixed infections occur more commonly than is currently realized. PMID:16145139

  3. A Flucytosine-Responsive Mbp1/Swi4-Like Protein, Mbs1, Plays Pleiotropic Roles in Antifungal Drug Resistance, Stress Response, and Virulence of Cryptococcus neoformans

    PubMed Central

    Song, Min-Hee; Lee, Jang-Won; Kim, Min Su; Yoon, Ja-Kyung; White, Theodore C.; Floyd, Anna; Heitman, Joseph; Strain, Anna K.; Nielsen, Judith N.; Nielsen, Kirsten

    2012-01-01

    Cryptococcosis, caused by the basidiomycetous fungus Cryptococcus neoformans, is responsible for more than 600,000 deaths annually in AIDS patients. Flucytosine is one of the most commonly used antifungal drugs for its treatment, but its resistance and regulatory mechanisms have never been investigated at the genome scale in C. neoformans. In the present study, we performed comparative transcriptome analysis by employing two-component system mutants (tco1Δ and tco2Δ) exhibiting opposing flucytosine susceptibility. As a result, a total of 177 flucytosine-responsive genes were identified, and many of them were found to be regulated by Tco1 or Tco2. Among these, we discovered an APSES-like transcription factor, Mbs1 (Mbp1- and Swi4-like protein 1). Expression analysis revealed that MBS1 was regulated in response to flucytosine in a Tco2/Hog1-dependent manner. Supporting this, C. neoformans with the deletion of MBS1 exhibited increased susceptibility to flucytosine. Intriguingly, Mbs1 played pleiotropic roles in diverse cellular processes of C. neoformans. Mbs1 positively regulated ergosterol biosynthesis and thereby affected polyene and azole drug susceptibility. Mbs1 was also involved in genotoxic and oxidative stress responses. Furthermore, Mbs1 promoted production of melanin and capsule and thereby was required for full virulence of C. neoformans. In conclusion, Mbs1 is considered to be a novel antifungal therapeutic target for treatment of cryptococcosis. PMID:22080454

  4. Listeria Pathogenesis and Molecular Virulence Determinants

    PubMed Central

    Vázquez-Boland, José A.; Kuhn, Michael; Berche, Patrick; Chakraborty, Trinad; Domínguez-Bernal, Gustavo; Goebel, Werner; González-Zorn, Bruno; Wehland, Jürgen; Kreft, Jürgen

    2001-01-01

    , rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research. PMID:11432815

  5. Antibody-Mediated Immobilization of Cryptococcus neoformans Promotes Biofilm Formation▿ †

    PubMed Central

    Robertson, Emma J.; Casadevall, Arturo

    2009-01-01

    Most microbes, including the fungal pathogen Cryptococcus neoformans, can grow as biofilms. Biofilms confer upon microbes a range of characteristics, including an ability to colonize materials such as shunts and catheters and increased resistance to antibiotics. Here, we provide evidence that coating surfaces with a monoclonal antibody to glucuronoxylomannan, the major component of the fungal capsular polysaccharide, immobilizes cryptococcal cells to a surface support and, subsequently, promotes biofilm formation. We used time-lapse microscopy to visualize the growth of cryptococcal biofilms, generating the first movies of fungal biofilm growth. We show that when fungal cells are immobilized using surface-attached specific antibody to the capsule, the initial stages of biofilm formation are significantly faster than those on surfaces with no antibody coating or surfaces coated with unspecific monoclonal antibody. Time-lapse microscopy revealed that biofilm growth was a dynamic process in which cells shuffled position during budding and was accompanied by emergence of planktonic variant cells that left the attached biofilm community. The planktonic variant cells exhibited mobility, presumably by Brownian motion. Our results indicate that microbial immobilization by antibody capture hastens biofilm formation and suggest that antibody coating of medical devices with immunoglobulins must exclude binding to common pathogenic microbes and the possibility that this effect could be exploited in industrial microbiology. PMID:19251903

  6. Visualizing non-lytic exocytosis of Cryptococcus neoformans from macrophages using digital light microscopy.

    PubMed

    Stukes, Sabriya; Casadevall, Arturo

    2014-01-01

    Many aspects of the infection of macrophages by Cryptococcus neoformans have been extensively studied and well defined. However, one particular interaction that is not clearly understood is non-lytic exocytosis. In this process, yeast cells are released into the extracellular space by a poorly understood mechanism that leaves both the macrophage and Cn viable. Here, we describe how to follow a large number of individually infected macrophages for a 24 hr infection period by time-lapsed microscopy. Infected macrophages are housed in a heating chamber with a CO2 atmosphere attached to a microscope that provides the same conditions as a cell-culture incubator. Live digital microscopy can provide information about the dynamic interactions between a host and pathogen that is not available from static images. Being able to visualize each infected cell can provide clues as to how macrophages handle fungal infections, and vice versa. This technique is a powerful tool in studying the dynamics that are behind a complex phenomenon. PMID:25350860

  7. Intra-strain variability of Cryptococcus neoformans can be detected on phloxin B medium.

    PubMed

    Kucsera, Judit; Yarita, Kyoko; Takeo, Kanji; Yoshida, Soichi; Gácser, Attila; Hamari, Zsuzsanna; Avasi, Zoltán; Kevei, Ferenc

    2002-01-01

    A method was devised for easy detection of intra-strain variability of the human pathogenic yeast Cryptococcus neoformans. Cultivation of strains on a medium containing Phloxin B resulted in different coloured colonies. Generally, colonies were either pink or red; however there were also several colony-colour segregant in which both colours could be observed. A number of these segregants were isolated and analysed. Virulence factors such as the cell and capsule sizes were measured; further temperature sensitivity, growth rates, mating-types and melanin production were also studied. Segregants were examined by random amplified polymorphic DNA (RAPD) fingerprinting and electrophoretic karyotyping by pulsed-field gel electrophoresis (CHEF). They showed both phenotypic and genotypic differences. The main differences appeared in phenotypic characters and RAPD patterns; while the chromosomal patterns remained unchanged. Reversion frequency analysis revealed that the reason for this segregation could be due to phenotypic switching. The physiological reason for the colour changes was also investigated and was attributed to the differential ability of the cells to accumulate Phloxin B either into their capsules or into their cells. The method described here is potentially applicable for the detection of strain heterogeneity in both basic and clinical microbiology laboratories. PMID:11981875

  8. The ESCRT machinery influences haem uptake and capsule elaboration in Cryptococcus neoformans

    PubMed Central

    Hu, Guanggan; Caza, Mélissa; Cadieux, Brigitte; Bakkeren, Erik; Do, Eunsoo; Jung, Won Hee; Kronstad, James W.

    2015-01-01

    Summary Iron availability is a key determinant of virulence in the pathogenic fungus Cryptococcus neoformans. Previous work revealed that the ESCRT (endosomal sorting complex required for transport) protein Vps23 functions in iron acquisition, capsule formation and virulence. Here, we further characterized the ESCRT machinery to demonstrate that defects in the ESCRT-II and III complexes caused reduced capsule attachment, impaired growth on haem and resistance to non-iron metalloprotoporphyrins. The ESCRT mutants shared several phenotypes with a mutant lacking the pH-response regulator Rim101 and, in other fungi, the ESCRT machinery is known to activate Rim101 via proteolytic cleavage. We therefore expressed a truncated and activated version of Rim101 in the ESCRT mutants and found that this allele restored capsule formation but not growth on haem, thus suggesting a Rim101-independent contribution to haem uptake. We also demonstrated that the ESCRT machinery acts downstream of the cAMP/protein kinase A pathway to influence capsule elaboration. Defects in the ESCRT components also attenuated virulence in macrophage survival assays and a mouse model of cryptococcosis to a greater extent than reported for loss of Rim101. Overall, these results indicate that the ESCRT complexes function in capsule elaboration, haem uptake and virulence via Rim101-dependent and independent mechanisms. PMID:25732100

  9. Molecular epidemiology of isolates of the Cryptococcus neoformans species complex from Spain.

    PubMed

    Frasés, Susana; Ferrer, Consuelo; Sánchez, Manuel; Colom-Valiente, María Francisca

    2009-06-30

    To study genetic diversity of Cryptococcus neoformans species complex in Spain, 97 isolates of the yeast recovered from human, animal and environmental samples have been analysed using three molecular epidemiological techniques. One of these, URA5 gene fragment length polymorphism (RFLP) analysis, has been previously described as a molecular epidemiology tool. Thus, standard profiles and reference strains have been defined for it. In addition, 5S rDNA/IGS RFLP and [GACA](4) microsatellite PCR fingerprinting were also used. Our results show five of the previously defined URA5 genotypes with a high frequency (33%) of the VNI type, which is in concordance with other studies. The high presence of VNIII pattern (28.9%) among our strains is remarkable and could be a specific feature of the isolates from our country. 5S rDNA/IGS RFLP showed a low intra-species discriminative power. Three different molecular profiles (S1-3), which showed a good correlation with the different species, varieties and genotypes, were obtained. [GACA](4) microsatellite PCR-fingerprinting analysis showed a high variability of patterns among the studied strains. Molecular profiles represented in a dendrogram clustered strains in four main groups related with the source of the yeast and also in concordance with some of the described genotypes (VNI-IV and VGI). PMID:19631160

  10. Involvement of PDK1, PKC and TOR signaling pathways in basal fluconazole tolerance in Cryptococcus neoformans

    PubMed Central

    Lee, Hyeseung; Lamichhane, Ami Khanal; Garraffo, H. Martin; Kwon-Chung, Kyung J.; Chang, Yun C.

    2012-01-01

    Summary This study shows the importance of PDK1, TOR and PKC signaling pathways to the basal tolerance of Cryptococcus neoformans toward fluconazole, the widely used drug for treatment of cryptococcosis. Mutations in genes integral to these pathway resulted in hypersensitivity to the drug. Upon fluconazole treatment, Mpk1, the downstream target of PKC was phosphorylated and its phosphorylation required Pdk1. We show genetically that the PDK1 and TOR phosphorylation sites in Ypk1 as well as the kinase activity of Ypk1 are required for the fluconazole basal tolerance. The involvement of these pathways in fluconazole basal tolerance was associated with sphingolipid homeostasis. Deletion of PDK1, SIN1, or YPK1 but not MPK1 affected cell viability in the presence of sphingolipid biosynthesis inhibitors. Concurrently, pdk1Δ, sinΔ1, ypk1Δ, and mpk1Δ exhibited altered sphingolipid content and elevated fluconazole accumulation compared with the wild-type. The fluconazole hypersensitivity phenotype of these mutants, therefore, appears to be the result of malfunction of the influx/efflux systems due to modifications of membrane sphingolipid content. Interestingly, the reduced virulence of these strains in mice suggests that the cryptococcal PDK1, PKC, and likely the TOR pathways play an important role in managing stress exerted either by fluconazole or by the host environment. PMID:22339665

  11. The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans.

    PubMed

    Do, Eunsoo; Park, Minji; Hu, Guanggan; Caza, Mélissa; Kronstad, James W; Jung, Won Hee

    2016-09-01

    The lysine biosynthesis pathway via α-aminoadipate in fungi is considered an attractive target for antifungal drugs due to its absence in mammalian hosts. The iron-sulfur cluster-containing enzyme homoaconitase converts homocitrate to homoisocitrate in the lysine biosynthetic pathway, and is encoded by LYS4 in the model yeast Saccharomyces cerevisiae. In this study, we identified the ortholog of LYS4 in the human fungal pathogen, Cryptococcus neoformans, and found that LYS4 expression is regulated by iron levels and by the iron-related transcription factors Hap3 and HapX. Deletion of the LYS4 gene resulted in lysine auxotrophy suggesting that Lys4 is essential for lysine biosynthesis. Our study also revealed that lysine uptake was mediated by two amino acid permeases, Aap2 and Aap3, and influenced by nitrogen catabolite repression (NCR). Furthermore, the lys4 mutant showed increased sensitivity to oxidative stress, agents that challenge cell wall/membrane integrity, and azole antifungal drugs. We showed that these phenotypes were due in part to impaired mitochondrial function as a result of LYS4 deletion, which we propose disrupts iron homeostasis in the organelle. The combination of defects are consistent with our observation that the lys4 mutant was attenuated virulence in a mouse inhalation model of cryptococcosis. PMID:27353379

  12. Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana.

    PubMed

    Chen, Yuan; Litvintseva, Anastasia P; Frazzitta, Aubrey E; Haverkamp, Miriam R; Wang, Liuyang; Fang, Charles; Muthoga, Charles; Mitchell, Thomas G; Perfect, John R

    2015-07-01

    Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans. PMID:26053414

  13. De novo GTP Biosynthesis Is Critical for Virulence of the Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Morrow, Carl A.; Valkov, Eugene; Stamp, Anna; Chow, Eve W. L.; Lee, I. Russel; Wronski, Ania; Williams, Simon J.; Hill, Justine M.; Djordjevic, Julianne T.; Kappler, Ulrike; Kobe, Bostjan; Fraser, James A.

    2012-01-01

    We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus. PMID:23071437

  14. Cryptococcus neoformans Dual GDP-Mannose Transporters and Their Role in Biology and Virulence

    PubMed Central

    Wang, Zhuo A.; Griffith, Cara L.; Skowyra, Michael L.; Salinas, Nichole; Williams, Matthew; Maier, Ezekiel J.; Gish, Stacey R.; Liu, Hong; Brent, Michael R.

    2014-01-01

    Cryptococcus neoformans is an opportunistic yeast responsible for lethal meningoencephalitis in humans. This pathogen elaborates a polysaccharide capsule, which is its major virulence factor. Mannose constitutes over one-half of the capsule mass and is also extensively utilized in cell wall synthesis and in glycosylation of proteins and lipids. The activated mannose donor for most biosynthetic reactions, GDP-mannose, is made in the cytosol, although it is primarily consumed in secretory organelles. This compartmentalization necessitates specific transmembrane transporters to make the donor available for glycan synthesis. We previously identified two cryptococcal GDP-mannose transporters, Gmt1 and Gmt2. Biochemical studies of each protein expressed in Saccharomyces cerevisiae showed that both are functional, with similar kinetics and substrate specificities in vitro. We have now examined these proteins in vivo and demonstrate that cells lacking Gmt1 show significant phenotypic differences from those lacking Gmt2 in terms of growth, colony morphology, protein glycosylation, and capsule phenotypes. Some of these observations may be explained by differential expression of the two genes, but others suggest that the two proteins play overlapping but nonidentical roles in cryptococcal biology. Furthermore, gmt1 gmt2 double mutant cells, which are unexpectedly viable, exhibit severe defects in capsule synthesis and protein glycosylation and are avirulent in mouse models of cryptococcosis. PMID:24747214

  15. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  16. Highly potent intracellular membrane-associated Aβ seeds.

    PubMed

    Marzesco, Anne-Marie; Flötenmeyer, Matthias; Bühler, Anika; Obermüller, Ulrike; Staufenbiel, Matthias; Jucker, Mathias; Baumann, Frank

    2016-01-01

    An early event in Alzheimer's disease (AD) pathogenesis is the formation of extracellular aggregates of amyloid-β peptide (Aβ), thought to be initiated by a prion-like seeding mechanism. However, the molecular nature and location of the Aβ seeds remain rather elusive. Active Aβ seeds are found in crude homogenates of amyloid-laden brains and in the soluble fraction thereof. To analyze the seeding activity of the pellet fraction, we have either separated or directly immunoisolated membranes from such homogenates. Here, we found considerable Aβ seeding activity associated with membranes in the absence of detectable amyloid fibrils. We also found that Aβ seeds on mitochondrial or associated membranes efficiently induced Aβ aggregation in vitro and seed β-amyloidosis in vivo. Aβ seeds at intracellular membranes may contribute to the spreading of Aβ aggregation along neuronal pathways and to the induction of intracellular pathologies downstream of Aβ. PMID:27311744

  17. Intracellular pH Modulates Autophagy and Mitophagy.

    PubMed

    Berezhnov, Alexey V; Soutar, Marc P M; Fedotova, Evgeniya I; Frolova, Maria S; Plun-Favreau, Helene; Zinchenko, Valery P; Abramov, Andrey Y

    2016-04-15

    The specific autophagic elimination of mitochondria (mitophagy) plays the role of quality control for this organelle. Deregulation of mitophagy leads to an increased number of damaged mitochondria and triggers cell death. The deterioration of mitophagy has been hypothesized to underlie the pathogenesis of several neurodegenerative diseases, most notably Parkinson disease. Although some of the biochemical and molecular mechanisms of mitochondrial quality control are described in detail, physiological or pathological triggers of mitophagy are still not fully characterized. Here we show that the induction of mitophagy by the mitochondrial uncoupler FCCP is independent of the effect of mitochondrial membrane potential but dependent on acidification of the cytosol by FCCP. The ionophore nigericin also reduces cytosolic pH and induces PINK1/PARKIN-dependent and -independent mitophagy. The increase of intracellular pH with monensin suppresses the effects of FCCP and nigericin on mitochondrial degradation. Thus, a change in intracellular pH is a regulator of mitochondrial quality control. PMID:26893374

  18. Highly potent intracellular membrane-associated Aβ seeds

    PubMed Central

    Marzesco, Anne-Marie; Flötenmeyer, Matthias; Bühler, Anika; Obermüller, Ulrike; Staufenbiel, Matthias; Jucker, Mathias; Baumann, Frank

    2016-01-01

    An early event in Alzheimer’s disease (AD) pathogenesis is the formation of extracellular aggregates of amyloid-β peptide (Aβ), thought to be initiated by a prion-like seeding mechanism. However, the molecular nature and location of the Aβ seeds remain rather elusive. Active Aβ seeds are found in crude homogenates of amyloid-laden brains and in the soluble fraction thereof. To analyze the seeding activity of the pellet fraction, we have either separated or directly immunoisolated membranes from such homogenates. Here, we found considerable Aβ seeding activity associated with membranes in the absence of detectable amyloid fibrils. We also found that Aβ seeds on mitochondrial or associated membranes efficiently induced Aβ aggregation in vitro and seed β-amyloidosis in vivo. Aβ seeds at intracellular membranes may contribute to the spreading of Aβ aggregation along neuronal pathways and to the induction of intracellular pathologies downstream of Aβ. PMID:27311744

  19. Novel imidazo[2,1-b]-1,3,4-thiadiazoles as promising antifungal agents against clinical isolate of Cryptococcus neoformans.

    PubMed

    Alwan, Wesam S; Karpoormath, Rajshekhar; Palkar, Mahesh B; Patel, Harun M; Rane, Rajesh A; Shaikh, Mahamadhanif S; Kajee, Afsana; Mlisana, Koleka P

    2015-05-01

    We herein report the synthesis and in vitro antimicrobial evaluation of twenty five novel hybrid derivatives of imidazo [2,1-b]-1,3,4-thiadiazole containing chalcones (5a-o) and Schiff bases (6a-j) against three fungal strains (Candida albicans, Cryptococcus neoformans and Aspergillus niger). Most of the tested compounds displayed substantial anti-fungal activity with MICs ranging between 1.56 and 100 μg/mL. Compounds 5a, 5b and 5n exhibited promising activity against C. neoformans at a MIC 1.56 μg/mL. In addition, compound 5n also demonstrated significant antifungal activity against the clinical isolates of C. neoformans at MIC 3.125 μg/mL. However, moderate activity was observed for these compounds against four bacterial strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) and Mycobacterium tuberculosis (H37Rv). PMID:25847769

  20. Mitochondrial dysfunction and intracellular calcium dysregulation in ALS

    PubMed Central

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that affects the aging population. A progressive loss of motor neurons in the spinal cord and brain leads to muscle paralysis and death. As in other common neurodegenerative diseases, aging-related mitochondrial dysfunction is increasingly being considered among the pathogenic factors. Mitochondria are critical for cell survival: they provide energy to the cell, buffer intracellular calcium, and regulate apoptotic cell death. Whether mitochondrial abnormalities are a trigger or a consequence of the neurodegenerative process and the mechanisms whereby mitochondrial dysfunction contributes to disease are not clear yet. Calcium homeostasis is a major function of mitochondria in neurons, and there is ample evidence that intracellular calcium is dysregulated in ALS. The impact of mitochondrial dysfunction on intracellular calcium homeostasis and its role in motor neuron demise are intriguing issues that warrants in depth discussion. Clearly, unraveling the causal relationship between mitochondrial dysfunction, calcium dysregulation, and neuronal death is critical for the understanding of ALS pathogenesis. In this review, we will outline the current knowledge of various aspects of mitochondrial dysfunction in ALS, with a special emphasis on the role of these abnormalities on intracellular calcium handling. PMID:20493207

  1. Caenorhabditis elegans as a model for intracellular pathogen infection

    PubMed Central

    Balla, Keir M.; Troemel, Emily R.

    2014-01-01

    Summary The genetically tractable nematode Caenorhabditis elegans is a convenient host for studies of pathogen infection. With the recent identification of two types of natural intracellular pathogens of C. elegans, this host now provides the opportunity to examine interactions and defence against intracellular pathogens in a whole-animal model for infection. C. elegans is the natural host for a genus of microsporidia, which comprise a phylum of fungal-related pathogens of widespread importance for agriculture and medicine. More recently, C. elegans has been shown to be a natural host for viruses related to the Nodaviridae family. Both microsporidian and viral pathogens infect the C. elegans intestine, which is composed of cells that share striking similarities to human intestinal epithelial cells. Because C. elegans nematodes are transparent, these infections provide a unique opportunity to visualize differentiated intestinal cells in vivo during the course of intracellular infection. Together, these two natural pathogens of C. elegans provide powerful systems in which to study microbial pathogenesis and host responses to intracellular infection. PMID:23617769

  2. Chlamydia cell biology and pathogenesis

    PubMed Central

    Elwell, Cherilyn; Mirrashidi, Kathleen; Engel, Joanne

    2016-01-01

    Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens. PMID:27108705

  3. Decaying wood in tree trunk hollows as a natural substrate for Cryptococcus neoformans and other yeast-like fungi of clinical interest.

    PubMed

    Randhawa, H S; Mussa, A Y; Khan, Z U

    2001-01-01

    The occurrence of Cryptococcus neoformans var. neoformans and other yeast-like fungi of clinical interest in decaying wood inside tree trunk hollows, bark and other plant materials is reported. The var. neoformans was isolated from 3 of 45 (6.6%) wood and one of 390 Eucalyptus bark samples. Two of the positive wood samples came from a tree trunk hollow of Butea monosperma (Family: Papilionaceae) growing in Roshan Ara Garden, Old Delhi whereas the third was from a trunk hollow of Tamarindus indica (Family: Papilionaceae) growing outside of Talkatora Garden, New Delhi. The solitary positive Eucalyptus bark sample originated from Amritsar. The isolations of var. neoformans from decaying wood inside trunk hollows of B. monosperma and T indica constitute the first record of the natural occurrence of this pathogen in association with these trees. The observation reinforces the recent evidence for decaying wood inside trunk hollows of some trees to be a new natural habitat of the variety neoformans. Besides, in consonance with their essentially saprobic character, a number of other yeast-like fungi were sporadically isolated. This includes, Cryptoccus laurentii, Cryptococcus albidus, Candida lusitaniae, C. guilliermondii, C. krusei, C. tropicalis, C. zeylanoides, Trichosporon cutaneum, Rhodotorula mucilaginosa, R. glutinis, Geotrichum capitatum, G. klebahnii and Sporobolomyces salmonicolor. Cryptococcus neoformans var. gattii was not found in any of the 702 samples of plant materials, including the bark and detritus of Eucalyptus camaldulensis and E. tereticornis trees. A more extensive environmental survey, covering divergent climatic regions, is warranted to identify the natural reservoirs of var. gattii in India. PMID:11554580

  4. Importance of the association of molecular and immunological diagnosis in immunocompetent patient with Histoplasma capsulatum and Cryptoccocus neoformans infection: a case report

    PubMed Central

    2014-01-01

    This case reports an immunocompetent 29-year-old woman with suspected pneumonia, suggestive of fungal infection. Immunoblotting analysis reactivity against Histoplasma capsulatum and Paracoccidioides brasiliensis were observed. Nested-PCR in blood employing species-specific primers was positive for H. capsulatum and Cryptococcus neoformans. The evaluation of paucisymptomatic patients with positive results for H. capsulatum and C. neoformans could be relevant for the prevention as well as the possible evaluation of the reactivated quiescent foci. In conclusion, the associated methodology may have contributed to the monitoring endogenous reactivation of these diseases. PMID:25180029

  5. Inheritance of Immune Polarization Patterns Is Linked to Resistance versus Susceptibility to Cryptococcus neoformans in a Mouse Model▿

    PubMed Central

    Chen, Gwo-hsiao; McNamara, David A.; Hernandez, Yadira; Huffnagle, Gary B.; Toews, Galen B.; Olszewski, Michal A.

    2008-01-01

    Genetic background variation between inbred strains accounts for different levels of susceptibility to Cryptococcus neoformans in the mouse infection model. To elucidate the inheritance of immunophenotypic traits and their associations with clearance outcomes during cryptococcal infection, we compared C57BL/6, BALB/c, and their first-generation hybrid, CB6F1 (F1), mice. Mice from each group were infected with C. neoformans (104 CFU) and analyzed at weekly intervals over a 6-week period. BALB/c mice progressively cleared the cryptococcal infection in the lungs and showed a Th1-skewed immune response: a Th1-shifted cytokine profile, modest lung pathology, and no significant elevation in the systemic immunoglobulin E (IgE) level. In contrast, C57BL/6 mice developed a chronic infection with a Th2-skewed immune response: a Th2-shifted cytokine profile, pulmonary eosinophilia, severe lung pathology, elevated serum IgE, fungemia, and cryptococcal dissemination in the central nervous system. F1 mice demonstrated intermediate resistance to C. neoformans, with a stronger resemblance to the immunophenotype of the resistant (BALB/c) mice. F1 mice also demonstrated enhanced pulmonary recruitment of lymphocytes, especially CD8+ T cells, in comparison to both parental strains, suggesting positive heterosis. We conclude that the inheritance of traits responsible for early cytokine induction in the infected lungs and dendritic-cell maturation/activation status in draining nodes is responsible for the intermediate immune response polarization and clearance outcome observed initially in the lungs of F1 mice. The enhanced pulmonary lymphocyte recruitment could be responsible for a gradual shutdown of the undesirable Th2 arm of the immune response and subsequently improved anticryptococcal resistance in F1 mice. PMID:18391002

  6. Lipoxin Signaling in Murine Lung Host Responses to Cryptococcus neoformans Infection.

    PubMed

    Colby, Jennifer K; Gott, Katherine M; Wilder, Julie A; Levy, Bruce D

    2016-01-01

    Lipoxins (LX) are proresolving mediators that augment host defense against bacterial infection. Here, we investigated roles for LX in lung clearance of the fungal pathogen Cryptococcus neoformans (Cne). After intranasal inoculation of 5,000 CFU Cne, C57BL/6 and C.B-17 mice exhibited strain-dependent differences in Cne clearance, immunologic responses, and lipoxin A4 (LXA4) formation and receptor (ALX/FPR2) expression. Compared with C.B-17 mice, C57BL/6 lungs had increased and persistent Cne infection 14 days after inoculation, increased eosinophils, and distinct profiles of inflammatory cytokines. Relative to C.B-17 mice, bronchoalveolar lavage fluid levels of LXA4 were increased before and after infection in C57BL/6. The kinetics for 15-epi-LXA4 production were similar in both strains. Lung basal expression of the LX biosynthetic enzyme Alox12/15 (12/15-lipoxygenase) was increased in C57BL/6 mice and further increased after Cne infection. In contrast, lung basal expression of the LXA4 receptor Alx/Fpr2 was higher in C.B-17 relative to C57BL/6 mice, and after Cne infection, Alx/Fpr2 expression was significantly increased in only C.B-17 mice. Heat-killed Cne initiated lung cell generation of IFN-γ and IL-17 and was further increased in C.B-17 mice by 15-epi-LXA4. A trend toward reduced Cne clearance and IFN-γ production was observed upon in vivo administration of an ALX/FPR2 antagonist. Together, these findings provide the first evidence that alterations in cellular immunity against Cne are associated with differences in LXA4 production and receptor expression, suggesting an important role for ALX/FPR2 signaling in the regulation of pathogen-mediated inflammation and antifungal lung host defense. PMID:26039320

  7. Caspase-11 Modulates Inflammation and Attenuates Toxoplasma gondii Pathogenesis

    PubMed Central

    Coutermarsh-Ott, Sheryl L.; Doran, John T.; Campbell, Caroline; Williams, Tere M.; Lindsay, David S.; Allen, Irving C.

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasite that is the etiologic agent responsible for toxoplasmosis. Infection with T. gondii results in activation of nucleotide binding domain and leucine rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1β and IL-18. Recently, a noncanonical inflammasome has been characterized which functions through caspase-11 and appears to augment many biological functions previously considered to be dependent upon the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome in toxoplasmosis, we utilized Asc−/− and Casp11−/− mice and infected these animals with T. gondii. Our data indicates that caspase-11 modulates the innate immune response to T. gondii through a mechanism which is distinct from that currently described for the canonical inflammasome. Asc−/− mice demonstrated increased disease pathogenesis during the acute phase of T. gondii infection, whereas Casp11−/− mice demonstrated significantly attenuated disease pathogenesis and reduced inflammation. This attenuated host response was associated with reduced local and systemic cytokine production, including diminished IL-1β. During the chronic phase of infection, caspase-11 deficiency resulted in increased neuroinflammation and tissue cyst burden in the brain. Together, our data suggest that caspase-11 functions to protect the host by enhancing inflammation during the early phase of infection in an effort to minimize disease pathogenesis during later stages of toxoplasmosis. PMID:27378827

  8. Caspase-11 Modulates Inflammation and Attenuates Toxoplasma gondii Pathogenesis.

    PubMed

    Coutermarsh-Ott, Sheryl L; Doran, John T; Campbell, Caroline; Williams, Tere M; Lindsay, David S; Allen, Irving C

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasite that is the etiologic agent responsible for toxoplasmosis. Infection with T. gondii results in activation of nucleotide binding domain and leucine rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1β and IL-18. Recently, a noncanonical inflammasome has been characterized which functions through caspase-11 and appears to augment many biological functions previously considered to be dependent upon the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome in toxoplasmosis, we utilized Asc (-/-) and Casp11 (-/-) mice and infected these animals with T. gondii. Our data indicates that caspase-11 modulates the innate immune response to T. gondii through a mechanism which is distinct from that currently described for the canonical inflammasome. Asc (-/-) mice demonstrated increased disease pathogenesis during the acute phase of T. gondii infection, whereas Casp11 (-/-) mice demonstrated significantly attenuated disease pathogenesis and reduced inflammation. This attenuated host response was associated with reduced local and systemic cytokine production, including diminished IL-1β. During the chronic phase of infection, caspase-11 deficiency resulted in increased neuroinflammation and tissue cyst burden in the brain. Together, our data suggest that caspase-11 functions to protect the host by enhancing inflammation during the early phase of infection in an effort to minimize disease pathogenesis during later stages of toxoplasmosis. PMID:27378827

  9. Intracellular auxin transport in pollen

    PubMed Central

    Dal Bosco, Cristina; Dovzhenko, Alexander; Palme, Klaus

    2012-01-01

    Cellular auxin homeostasis is controlled at many levels that include auxin biosynthesis, auxin metabolism, and auxin transport. In addition to intercellular auxin transport, auxin homeostasis is modulated by auxin flow through the endoplasmic reticulum (ER). PIN5, a member of the auxin efflux facilitators PIN protein family, was the first protein to be characterized as an intracellular auxin transporter. We demonstrated that PIN8, the closest member of the PIN family to PIN5, represents another ER-residing auxin transporter. PIN8 is specifically expressed in the male gametophyte and is located in the ER. By combining genetic, physiological, cellular and biochemical data we demonstrated a role for PIN8 in intracellular auxin homeostasis. Although our investigation shed light on intracellular auxin transport in pollen, the physiological function of PIN8 still remains to be elucidated. Here we discuss our data taking in consideration other recent findings. PMID:22990451

  10. Pathogenesis of arenavirus hemorrhagic fevers.

    PubMed

    Moraz, Marie-Laurence; Kunz, Stefan

    2011-01-01

    Viral hemorrhagic fevers (VHFs) caused by arenaviruses belong to the most devastating emerging human diseases and represent serious public health problems. Arenavirus VHFs in humans are acute diseases characterized by fever and, in severe cases, different degrees of hemorrhages associated with a shock syndrome in the terminal stage. Over the past years, much has been learned about the pathogenesis of arenaviruses at the cellular level, in particular their ability to subvert the host cell's innate antiviral defenses. Clinical studies and novel animal models have provided important new information about the interaction of hemorrhagic arenaviruses with the host's adaptive immune system, in particular virus-induced immunosuppression, and have provided the first hints towards an understanding of the terminal hemorrhagic shock syndrome. The scope of this article is to review our current knowledge on arenavirus VHF pathogenesis with an emphasis on recent developments. PMID:21171877

  11. Epigenetics and Colorectal Cancer Pathogenesis

    PubMed Central

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy. PMID:24216997

  12. A 'suicide' CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans.

    PubMed

    Wang, Yu; Wei, Dongsheng; Zhu, Xiangyang; Pan, Jiao; Zhang, Ping; Huo, Liang; Zhu, Xudong

    2016-01-01

    Loss-of-function mutagenesis is an important tool used to characterize gene functions, and the CRISPR-Cas9 system is a powerful method for performing targeted mutagenesis in organisms that present low recombination frequencies, such as the serotype D strains of Cryptococcus neoformans. However, when the CRISPR-Cas9 system persists in the host cells, off-target effects and Cas9 cytotoxicity may occur, which might block subsequent genetic manipulation. Here, we report a method of spontaneously eliminating the CRISPR-Cas9 system without impairing its robust editing function. We successfully expressed single guide RNA under the driver of an endogenous U6 promoter and the human codon-optimized Cas9 endonuclease with an ACT1 promoter. This system can effectively generate an indel mutation and efficiently perform targeted gene disruption via homology-directed repair by electroporation in yeast. We then demonstrated the spontaneous elimination of the system via a cis arrangement of the CRISPR-Cas9 expression cassettes to the recombination construct. After a system-mediated double crossover, the CRISPR-Cas9 cassettes were cleaved and degraded, which was validated by Southern blotting. This 'suicide' CRISPR-Cas9 system enables the validation of gene functions by subsequent complementation and has the potential to minimize off-target effects. Thus, this technique has the potential for use in functional genomics studies of C. neoformans. PMID:27503169

  13. Antifungal activity against Cryptococcus neoformans strains and genotoxicity assessment in human leukocyte cells of Euphorbia tirucalli L

    PubMed Central

    de Oliveira, Luís Flávio Souza; Fuentefria, Alexandre Meneghello; Klein, Fernanda da Silva; Machado, Michel Mansur

    2014-01-01

    In the last times, focus on plant research has increased all over the world. Euphorbia tirucalli L., a plant known popularly as Aveloz, and originally used in Africa, has been drawing attention for its use in the United States and Latin America, both for use as an ornamental plant and as a medicinal plant. E. tirucalli L. is a member of the family Euphorbiaceae and contains many diterpenoids and triterpenoids, in particular phorbol esters, apparently the main constituent of this plant, which are assumed to be responsible for their activities in vivo and in vitro. The in vitro antifungal activities of Euphorbia tirucalli (L.) against opportunistic yeasts were studied using microbroth dilution assay. The results showed that aqueous extract and latex preparation were effective against ten clinical strains of Cryptococcus neoformans in vitro (Latex and extract MIC range of 3.2 – > 411 μg/mL). Aiming the safe use in humans, the genotoxic effects of E. tirucalli were evaluated in human leukocytes cells. Our data show that both aqueous extract and latex preparation have no genotoxic effect in human leukocytes cells in vitro. Although the results cannot be extrapolated by itself for use in vivo, they suggest a good perspective for a therapeutic application in future. In conclusion, our results show that the aqueous extract and latex preparation from E. tirucalli L. are antifungal agents effectives against several strains of C. neoformans and do not provoke DNA damage in human leukocyte cells, considering the concentrations tested. PMID:25763040

  14. Serotyping of 467 Cryptococcus neoformans Isolates from Clinical and Environmental Sources in Brazil: Analysis of Host and Regional Patterns

    PubMed Central

    Nishikawa, Marília M.; Lazera, Márcia S.; Barbosa, Glaucia G.; Trilles, Luciana; Balassiano, Beatriz R.; Macedo, Regina C. L.; Bezerra, Cláudia C. F.; Pérez, Maurício A.; Cardarelli, Paola; Wanke, Bodo

    2003-01-01

    Cryptococcus neoformans is an important zoopathogen, and it is one of the most prevalent lethal mycotic agents. Its polysaccharide capsule, synthesized in vivo and in vitro, is a virulence factor, contains predominantly glucuronoxylomannan, and is responsible for the antigenic differentiation of serotypes A, B, C, D, and AD. A total of 467 isolates of C. neoformans obtained from clinical and environmental sources from Brazilian regions were studied serologically by using the Crypto Check Iatron RM 304-K kit. Serotyping of the clinical isolates showed the following prevalences of the serotypes: A (77.95%), followed by B (18.2%), AD (1.3%), D (0.4%), C (0.2%), and untypeable (1.93%). The epidemiology of serotype A in the Brazilian southern and southeastern regions reproduces the picture observed worldwide. In contrast, serotype B was the most frequent agent of cryptococcosis in the northeastern region, occurring nearly equally in male and female healthy hosts. Among the isolates from environmental sources, serotypes A and B were found to occur in the hollows of tropical trees of the genera Cassia, Ficus, and Moquillea. The few isolates from Eucalyptus camaldulensis debris were serotypes A and B and untypeable. Overall, no association with a specific host tree was identified for these serotypes, denoting a distinct ecoepidemiological regional pattern. The one serotype C isolate was recovered from a human immunodeficiency virus-negative host. Serotype AD predominated over serotype D among both clinical and environmental isolates. PMID:12517828

  15. Serotyping of 467 Cryptococcus neoformans isolates from clinical and environmental sources in Brazil: analysis of host and regional patterns.

    PubMed

    Nishikawa, Marília M; Lazera, Márcia S; Barbosa, Glaucia G; Trilles, Luciana; Balassiano, Beatriz R; Macedo, Regina C L; Bezerra, Cláudia C F; Pérez, Maurício A; Cardarelli, Paola; Wanke, Bodo

    2003-01-01

    Cryptococcus neoformans is an important zoopathogen, and it is one of the most prevalent lethal mycotic agents. Its polysaccharide capsule, synthesized in vivo and in vitro, is a virulence factor, contains predominantly glucuronoxylomannan, and is responsible for the antigenic differentiation of serotypes A, B, C, D, and AD. A total of 467 isolates of C. neoformans obtained from clinical and environmental sources from Brazilian regions were studied serologically by using the Crypto Check Iatron RM 304-K kit. Serotyping of the clinical isolates showed the following prevalences of the serotypes: A (77.95%), followed by B (18.2%), AD (1.3%), D (0.4%), C (0.2%), and untypeable (1.93%). The epidemiology of serotype A in the Brazilian southern and southeastern regions reproduces the picture observed worldwide. In contrast, serotype B was the most frequent agent of cryptococcosis in the northeastern region, occurring nearly equally in male and female healthy hosts. Among the isolates from environmental sources, serotypes A and B were found to occur in the hollows of tropical trees of the genera Cassia, Ficus, and MOQUILLEA: The few isolates from Eucalyptus camaldulensis debris were serotypes A and B and untypeable. Overall, no association with a specific host tree was identified for these serotypes, denoting a distinct ecoepidemiological regional pattern. The one serotype C isolate was recovered from a human immunodeficiency virus-negative host. Serotype AD predominated over serotype D among both clinical and environmental isolates. PMID:12517828

  16. A ‘suicide’ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans

    PubMed Central

    Wang, Yu; Wei, Dongsheng; Zhu, Xiangyang; Pan, Jiao; Zhang, Ping; Huo, Liang; Zhu, Xudong

    2016-01-01

    Loss-of-function mutagenesis is an important tool used to characterize gene functions, and the CRISPR-Cas9 system is a powerful method for performing targeted mutagenesis in organisms that present low recombination frequencies, such as the serotype D strains of Cryptococcus neoformans. However, when the CRISPR-Cas9 system persists in the host cells, off-target effects and Cas9 cytotoxicity may occur, which might block subsequent genetic manipulation. Here, we report a method of spontaneously eliminating the CRISPR-Cas9 system without impairing its robust editing function. We successfully expressed single guide RNA under the driver of an endogenous U6 promoter and the human codon-optimized Cas9 endonuclease with an ACT1 promoter. This system can effectively generate an indel mutation and efficiently perform targeted gene disruption via homology-directed repair by electroporation in yeast. We then demonstrated the spontaneous elimination of the system via a cis arrangement of the CRISPR-Cas9 expression cassettes to the recombination construct. After a system-mediated double crossover, the CRISPR-Cas9 cassettes were cleaved and degraded, which was validated by Southern blotting. This ‘suicide’ CRISPR-Cas9 system enables the validation of gene functions by subsequent complementation and has the potential to minimize off-target effects. Thus, this technique has the potential for use in functional genomics studies of C. neoformans. PMID:27503169

  17. Using Solid-state NMR to Monitor the Molecular Consequences of Cryptococcus neoformans Melanization with Different Catecholamine Precursors

    PubMed Central

    Chatterjee, Subhasish; Prados-Rosales, Rafael; Frases, Susana; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.

    2012-01-01

    Melanins are a class of natural pigments associated with a wide range of biological functions, including microbial virulence, energy transduction, and protection against solar radiation. Because of their insolubility and structural heterogeneity, solid-state nuclear magnetic resonance (NMR) spectroscopy provides an unprecedented means to define the molecular architecture of these enigmatic pigments. The requirement of obligatory catecholamines for melanization of the pathogenic fungus Cryptococcus neoformans also offers unique opportunities for investigating melanin development. In the current study, pigments produced with L-dopa, methyl-L-dopa, epinephrine, and norepinephrine precursors are compared structurally using 13C and 1H magic-angle spinning (MAS) NMR. Striking structural differences were observed for both aromatic and aliphatic molecular constituents of the mature fungal pigment assemblies, thus making it possible to redefine the molecular prerequisites for formation of the aromatic domains of insoluble indole-based biopolymers, to rationalize their distinctive physical characteristics, and to delineate the role of cellular constituents in assembly of the melanized macromolecules with polysaccharides and fatty acyl chain-containing moieties. By achieving an augmented understanding of the mechanisms of C. neoformans melanin biosynthesis and cellular assembly, such studies can guide future drug discovery efforts related to melanin-associated virulence, resistance to tumor therapy, and production of melanin mimetics under cell-free conditions. PMID:22765382

  18. Variable Region Identical IgA and IgE to Cryptococcus neoformans Capsular Polysaccharide Manifest Specificity Differences*

    PubMed Central

    Janda, Alena; Eryilmaz, Ertan; Nakouzi, Antonio; Pohl, Mary Ann; Bowen, Anthony; Casadevall, Arturo

    2015-01-01

    In recent years several groups have shown that isotype switching from IgM to IgG to IgA can affect the affinity and specificity of antibodies sharing identical variable (V) regions. However, whether the same applies to IgE is unknown. In this study we compared the fine specificity of V region-identical IgE and IgA to Cryptococcus neoformans capsular polysaccharide and found that these differed in specificity from each other. The IgE and IgA paratopes were probed by nuclear magnetic resonance spectroscopy with 15N-labeled peptide mimetics of cryptococcal polysaccharide antigen (Ag). IgE was found to cleave the peptide at a much faster rate than V region-identical IgG subclasses and IgA, consistent with an altered paratope. Both IgE and IgA were opsonic for C. neoformans and protected against infection in mice. In summary, V-region expression in the context of the ϵ constant (C) region results in specificity changes that are greater than observed for comparable IgG subclasses. These results raise the possibility that expression of certain V regions in the context of α and ϵ C regions affects their function and contributes to the special properties of those isotypes. PMID:25778397

  19. A synthetic strategy to xylose-containing thioglycoside tri- and tetrasaccharide building blocks corresponding to Cryptococcus neoformans capsular polysaccharide structures.

    PubMed

    Guazzelli, Lorenzo; Ulc, Rebecca; Rydner, Lina; Oscarson, Stefan

    2015-06-21

    As part of an ongoing project aimed at developing vaccine candidates against Cryptococcus neoformans the preparation of tri- and tetrasaccharide thioglycoside building blocks, to be used in construction of structurally defined part structures of C. neoformans GXM capsular polysaccharide, was investigated. Using a naphthalenylmethyl (NAP) ether as a temporary protecting group and trichloroacetimidate donors in optimized glycosylations the target building blocks, ethyl 6-O-acetyl-2,4-di-O-benzyl-3-O-(2-naphthalenylmethyl)-α-D-mannopyranosyl-(1→3)-[2,3,4-tri-O-benzyl-β-D-xylopyranosyl-(1→2)]-4,6-di-O-benzyl-1-thio-α-D-mannopyranoside (16) and ethyl 2,3,4-tri-O-benzyl-β-D-xylopyranosyl-(1→2)-4,6-di-O-benzyl-3-O-(2-naphthalenylmethyl)-α-D-mannopyranosyl-(1→3)-[2,3,4-tri-O-benzyl-β-D-xylopyra-nosyl-(1→2)]-6-O-acetyl-4-O-benzyl-1-thio-α-D-mannopyranoside (21), were efficiently prepared. These synthesized thiosaccharide building blocks were then used as donors in high-yielding (~90%) DMTST promoted glycosylations to a spacer-containing acceptor to, after deprotection, afford GXM polysaccharide part structures ready for protein conjugation to give vaccine candidates. Also, the NAP groups in the building blocks were removed to obtain tri- and tetrasaccharide acceptors suitable for further elongation towards larger thiosaccharide building blocks. PMID:25986781

  20. Spondyloarthritis: update on pathogenesis and management.

    PubMed

    Reveille, John D; Arnett, Frank C

    2005-06-01

    A great deal of progress has occurred in the past few years in elucidating the causes and designing new treatments for ankylosing spondylitis and other types of spondyloarthritis. In addition to the human leukocyte antigen (HLA)-B27 and other major histocompatibility complex (MHC) genes, chromosomal regions and genes elsewhere in the genome are being implicated both in disease susceptibility and severity. The various ways HLA-B27 may function in causing spondyloarthritis now are better understood to encompass not only antigen presentation but also other mechanisms, possibly all being operative in pathogenesis (misfolding of the HLA-B27 molecule, impaired intracellular killing of bacteria, and HLA-B27 itself serving as an autoantigen). Specific enteric and sexually acquired infections can trigger reactive arthritis, though no specific microbe has been identified in other forms of spondyloarthritis. Intestinal inflammation with impairment of the gut:blood barrier may be operative in driving ankylosing spondylitis and enteropathic arthritis. A number of treatments have been tried in spondyloarthritis, including older agents such as methotrexate and sulfasalazine but also newer drugs such as pamindronate. The recent introduction of tumor necrosis factor (TNF) blockers in the treatment of spondyloarthritis has offered the most hope in not only relieving symptoms and signs of both peripheral arthritis and enthesitis but also spinal disease, which often has been refractory to other agents. Their high cost and considerable side effect profile, however, have necessitated the establishment of guidelines for their use in these diseases in order to target the patient in whom they are likely to have the most benefit. PMID:15922688

  1. Antifungal Activity of Plasmacytoid Dendritic Cells against Cryptococcus neoformans In Vitro Requires Expression of Dectin-3 (CLEC4D) and Reactive Oxygen Species.

    PubMed

    Hole, Camaron R; Leopold Wager, Chrissy M; Mendiola, Andrew S; Wozniak, Karen L; Campuzano, Althea; Lin, Xin; Wormley, Floyd L

    2016-09-01

    Conventional dendritic cells (cDCs) are critical for protection against pulmonary infection with the opportunistic fungal pathogen Cryptococcus neoformans; however, the role of plasmacytoid dendritic cells (pDCs) is unknown. We show for the first time that murine pDCs have direct activity against C. neoformans via reactive oxygen species (ROS), a mechanism different from that employed to control Aspergillus fumigatus infections. The anticryptococcal activity of murine pDCs is independent of opsonization but appears to require the C-type lectin receptor Dectin-3, a receptor not previously evaluated during cryptococcal infections. Human pDCs can also inhibit cryptococcal growth by a mechanism similar to that of murine pDCs. Experimental pulmonary infection of mice with a C. neoformans strain that induces protective immunity demonstrated that recruitment of pDCs to the lungs is CXCR3 dependent. Taken together, our results show that pDCs inhibit C. neoformans growth in vitro via the production of ROS and that Dectin-3 is required for optimal growth-inhibitory activity. PMID:27324480

  2. Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis.

    PubMed

    Wang, Yufei; Ke, Yuehua; Xu, Jie; Wang, Ligui; Wang, Tongkun; Liang, Hui; Zhang, Wei; Gong, Chunli; Yuan, Jiuyun; Zhuang, Yubin; An, Chang; Lei, Shuangshuang; Du, Xinying; Wang, Zhoujia; Li, Wenna; Yuan, Xitong; Huang, Liuyu; Yang, Xiaoli; Chen, Zeliang

    2015-01-01

    Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival. PMID:25852653

  3. Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis

    PubMed Central

    Wang, Yufei; Ke, Yuehua; Xu, Jie; Wang, Ligui; Wang, Tongkun; Liang, Hui; Zhang, Wei; Gong, Chunli; Yuan, Jiuyun; Zhuang, Yubin; An, Chang; Lei, Shuangshuang; Du, Xinying; Wang, Zhoujia; Li, Wenna; Yuan, Xitong; Huang, Liuyu; Yang, Xiaoli; Chen, Zeliang

    2015-01-01

    Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival. PMID:25852653

  4. KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    PubMed Central

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-01-01

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the

  5. Expression of inducible nitric oxide synthase in rat pulmonary Cryptococcus neoformans granulomas.

    PubMed Central

    Goldman, D.; Cho, Y.; Zhao, M.; Casadevall, A.; Lee, S. C.

    1996-01-01

    Rats, like humans, have extremely effective immune mechanisms for controlling pulmonary Cryptococcus neoformans infection. The mechanism(s) responsible for efficient immunity in rat experimental infection is unknown. Recently, induction of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) have been implicated as an important microbicidal mechanism by which activated macrophages effect cytotoxicity against microbes. In this report, we investigated the expression of iNOS in rat pulmonary cryptococcosis. Localization and regulation of NO production was studied by immunohistochemistry for iNOS in conjunction with immunohistochemistry for cell markers, cytokines, and cryptococcal capsular polysaccharide. iNOS immunoreactivity was detected in macrophages, neutrophils, vascular endothelium, and respiratory epithelium. Double-immunolabeling studies revealed that the most prominent iNOS immunoreactivity was localized to epithelioid macrophages (CD11b/c+) within granulomas; CD4+ and CD8+ T cells were numerous around granulomas but did not express iNOS. iNOS immunoreactivity was detected in a selective population of epithelioid macrophages within some granulomas but not others. iNOS- granulomas were identical to iNOS+ granulomas with respect to morphology and immunohistochemical profiles. Macrophage iNOS immunoreactivity was detected 1 week after infection in one out of four rats and was strongly expressed in all rats at 2 weeks (in up to 50 percent of the granulomas) but declined considerably by 25 days. iNOS expression coincided with granuloma formation and preceded a decrease in lung fungal burden, suggesting an anticryptococcal role for NO. By double labeling, cytokines that have been shown to promote (interferon-gamma, granulocyte/macrophage colony-stimulating factor) and inhibit (transforming growth factor-beta) macrophage iNOS expression were detected around iNOS+ granuloma. iNOS immunoreactivity was expressed in selected neutrophils (1 and 2 weeks) and

  6. FAMMM syndrome: pathogenesis and management.

    PubMed

    Czajkowski, Rafał; Placek, Waldemar; Drewa, Gerard; Czajkowska, Aldona; Uchańska, Grazyna

    2004-02-01

    Familial atypical multiple mole melanoma (FAMMM) syndrome is an autosomal dominant disorder with variable incomplete penetrance of the clinical phenotypes. Pathogenesis of this syndrome has not been fully investigated. Across multiple studies, germline mutations in the INK4a antioncogene encoding p16 protein were found on average in approximately 40% of the FAMMM syndrome. Patients with the FAMMM syndrome are genetically loaded with an increased risk of developing melanoma and other malignant neoplasms, for example, a pancreatic cancer. Melanoma can develop from numerous atypical moles as well as de novo. A proper diagnosis of the syndrome and early application of prophylactics decreases the risk of neoplastic transformation of melanocytes. PMID:14871223

  7. Biology and pathogenesis of Acanthamoeba

    PubMed Central

    2012-01-01

    Acanthamoeba is a free-living protist pathogen, capable of causing a blinding keratitis and fatal granulomatous encephalitis. The factors that contribute to Acanthamoeba infections include parasite biology, genetic diversity, environmental spread and host susceptibility, and are highlighted together with potential therapeutic and preventative measures. The use of Acanthamoeba in the study of cellular differentiation mechanisms, motility and phagocytosis, bacterial pathogenesis and evolutionary processes makes it an attractive model organism. There is a significant emphasis on Acanthamoeba as a Trojan horse of other microbes including viral, bacterial, protists and yeast pathogens. PMID:22229971

  8. Molecular pathogenesis of hereditary hemochromatosis.

    PubMed

    Liu, Jingqi; Pu, Chunwen; Lang, Lang; Qiao, Liang; Abdullahi, Mohanud Abukar Haji; Jiang, Chunmeng

    2016-08-01

    Hereditary hemochromatosis (HH) is an inherited iron overload disorder characterized by normal iron-driven erythropoiesis and abnormal iron metabolism, leading to excess iron deposited in parenchymal cells of liver, heart, and endocrine glands. Iron hormone, hepcidin, plays a critical role in iron homeostasis through interaction with ferroportin (FPN), a major cellular iron exporter. Hepcidin is encoded by hepcidin antimicrobial peptide (HAMP). Mutations in hepcidin and any genes that regulate the biology of hepcidin, including hemochromatosis genes (HFE), Hemojuvelin (HJV), transferring receptor 2 (TFR2) and FPN, result in hemochromatosis. The identification of hepcidin and its role will provide a better understanding for pathogenesis of HH. PMID:27031690

  9. [Pathogenesis of atypical femoral fracture].

    PubMed

    Iwata, Ken; Mashiba, Tasuku

    2016-01-01

    We demonstrated microdamage accumulation in the fracture sites in the patients of subtrochanteric atypical femoral fracture with long term bisphosphonate therapy and of incomplete shaft fracture of lateral femoral bowing without bisphosphonate therapy. Based on these findings, pathogenesis of atypical femoral fracture is revealed stress fracture caused by accumulation of microdamages between distal to the lesser trochanter and proximal to the supracondylar flare in the femur in association with severely suppressed bone turnover and/or abnormal lower limb alignment, that causes stress concentration on the lateral side cortex of the femur. PMID:26728533

  10. Pathogenesis of Alcoholic Liver Disease.

    PubMed

    Dunn, Winston; Shah, Vijay H

    2016-08-01

    Alcoholic liver disease includes a broad clinical-histological spectrum from simple steatosis, cirrhosis, acute alcoholic hepatitis with or without cirrhosis to hepatocellular carcinoma as a complication of cirrhosis. The pathogenesis of alcoholic liver disease can be conceptually divided into (1) ethanol-mediated liver injury, (2) inflammatory immune response to injury, (3) intestinal permeability and microbiome changes. Corticosteroids may improve outcomes, but this is controversial and probably only impacts short-term survival. New pathophysiology-based therapies are under study, including antibiotics, caspase inhibition, interleukin-22, anakinra, FXR agonist and others. These studies provide hope for better future outcomes for this difficult disease. PMID:27373608

  11. Pathogenesis of chronic rhinosinusitis: inflammation.

    PubMed

    Van Crombruggen, Koen; Zhang, Nan; Gevaert, Philippe; Tomassen, Peter; Bachert, Claus

    2011-10-01

    Chronic rhinosinusitis (CRS) is a heterogeneous group of inflammatory diseases of the nasal and paranasal cavities either accompanied by polyp formation (CRSwNP) or without polyps (CRSsNP). CRSsNP and CRSwNP are prevalent medical conditions associated with substantial impaired quality of life, reduced workplace productivity, and serious medical treatment costs. Despite recent research evidence that contributes to further unveiling the pathophysiology of these chronic airway conditions, the cause remains poorly understood and appears to be multifactorial. A diverse spectrum of alterations involving histopathology, inflammatory cell and T-cell patterns, remodeling parameters (eg, TGF-β), eicosanoid and IgE production, microorganisms, and epithelial barrier malfunctions is reported in the search to describe the pathogenesis of this heterogeneous group of upper airway diseases. Furthermore, novel evidence indicates considerable heterogeneity within the CRSwNP subgroup determining the risk of comorbid asthma. The characterization of specific disease subgroups is a challenging scientific and clinical task of utmost importance in the development of diagnostic tools and application of individualized treatments. This review focuses on recent evidence that sheds new light on our current knowledge regarding the inflammatory process of CRS to further unravel its pathogenesis. PMID:21868076

  12. Molecular pathogenesis of intrahepatic cholangiocarcinoma.

    PubMed

    Andersen, Jesper B

    2015-02-01

    Cholangiocarcinoma (CCA) is an orphan cancer of the hepatobiliary tract, the incidence of which has increased in the past decade. The molecular pathogenesis of this treatment-refractory disease is poorly understood. Desmoplasia is a key causal feature of CCA; however, a majority of tumors develop with no apparent etiological background. The impact of the stromal compartment on tumor progression as well as resistance to therapy is in vogue, and the epithelial-stromal crosstalk may present a target for novel treatment strategies. As such, the complexity of tumor cellularity and the molecular mechanisms underlying the diversity of growth patterns of this malignancy remain a clinical concern. It is crucial to advance our present understanding of the molecular pathogenesis of CCA to improve current clinical strategies and patient outcome. This will facilitate the delineation of patient subsets and individualization for precision therapies. Many questions persevere as to the evolutionary process and cellular origin of the initial transforming event, the context of intratumoral plasticity and the causal driver action. Next-generation sequencing has begun to underline the persistent alterations, which may be the trigger of acquired drug resistance, and the cause of metastasis and disease recurrence. A complex issue that remains is to account for the heterogeneous pool of "backseat" aberrations, which in chromosomal proximity to the causative variant are likely to influence, for example, drug response. This review explores the recent advances in defining the molecular pathways implicated in the development of this devastating disease and, which present putative clinical strategies. PMID:25174625

  13. Pathogenesis of Varicelloviruses in primates

    PubMed Central

    Ouwendijk, Werner J.D.; Verjans, Georges M.G.M.

    2014-01-01

    Varicelloviruses in primates comprise the prototypic human varicella-zoster virus (VZV) and its non-human primate homologue simian varicella virus (SVV). Both viruses cause varicella as a primary infection, establish latency in ganglionic neurons and reactivate later in life to cause herpes zoster in their respective hosts. VZV is endemic worldwide and although varicella is usually a benign disease in childhood, VZV reactivation is a significant cause of neurological disease in the elderly and in immunocompromised individuals. The pathogenesis of VZV infection remains ill-defined, mostly due to the species restriction of VZV that impedes studies in experimental animal models. SVV infection of non-human primates parallels virological, clinical, pathological and immunological features of human VZV infection, thereby providing an excellent model to study the pathogenesis of varicella and herpes zoster in its natural host. In this review, we discuss recent studies that provided novel insight in both the virus and host factors involved in the three elementary stages of Varicellovirus infection in primates: primary infection, latency and reactivation. PMID:25255989

  14. Arterivirus molecular biology and pathogenesis.

    PubMed

    Snijder, Eric J; Kikkert, Marjolein; Fang, Ying

    2013-10-01

    Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection. PMID:23939974

  15. ROS and intracellular ion channels.

    PubMed

    Kiselyov, Kirill; Muallem, Shmuel

    2016-08-01

    Oxidative stress is a well-known driver of numerous pathological processes involving protein and lipid peroxidation and DNA damage. The resulting increase of pro-apoptotic pressure drives tissue damage in a host of conditions, including ischemic stroke and reperfusion injury, diabetes, death in acute pancreatitis and neurodegenerative diseases. Somewhat less frequently discussed, but arguably as important, is the signaling function of oxidative stress stemming from the ability of oxidative stress to modulate ion channel activity. The evidence for the modulation of the intracellular ion channels and transporters by oxidative stress is constantly emerging and such evidence suggests new regulatory and pathological circuits that can be explored towards new treatments for diseases in which oxidative stress is an issue. In this review we summarize the current knowledge on the effects of oxidative stress on the intracellular ion channels and transporters and their role in cell function. PMID:26995054

  16. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  17. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  18. The Zinc Finger Protein Mig1 Regulates Mitochondrial Function and Azole Drug Susceptibility in the Pathogenic Fungus Cryptococcus neoformans.

    PubMed

    Caza, Mélissa; Hu, Guanggan; Price, Michael; Perfect, John R; Kronstad, James W

    2016-01-01

    The opportunistic pathogen Cryptococcus neoformans causes fungal meningoencephalitis in immunocompromised individuals. In previous studies, we found that the Hap complex in this pathogen represses genes encoding mitochondrial respiratory functions and tricarboxylic acid (TCA) cycle components under low-iron conditions. The orthologous Hap2/3/4/5 complex in Saccharomyces cerevisiae exerts a regulatory influence on mitochondrial functions, and Hap4 is subject to glucose repression via the carbon catabolite repressor Mig1. In this study, we explored the regulatory link between a candidate ortholog of the Mig1 protein and the HapX component of the Hap complex in C. neoformans. This analysis revealed repression of MIG1 by HapX and activation of HAPX by Mig1 under low-iron conditions and Mig1 regulation of mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Consistently with these regulatory functions, a mig1Δ mutant had impaired growth on inhibitors of mitochondrial respiration and inducers of ROS. Furthermore, deletion of MIG1 provoked a dysregulation in nutrient sensing via the TOR pathway and impacted the pathway for cell wall remodeling. Importantly, loss of Mig1 increased susceptibility to fluconazole, thus further establishing a link between azole antifungal drugs and mitochondrial function. Mig1 and HapX were also required together for survival in macrophages, but Mig1 alone had a minimal impact on virulence in mice. Overall, these studies provide novel insights into a HapX/Mig1 regulatory network and reinforce an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs. IMPORTANCE Fungal pathogens of humans are difficult to treat, and there is a pressing need to identify new targets for antifungal drugs and to obtain a detailed understanding of fungal proliferation in

  19. The Zinc Finger Protein Mig1 Regulates Mitochondrial Function and Azole Drug Susceptibility in the Pathogenic Fungus Cryptococcus neoformans

    PubMed Central

    Caza, Mélissa; Hu, Guanggan; Price, Michael; Perfect, John R.

    2016-01-01

    ABSTRACT The opportunistic pathogen Cryptococcus neoformans causes fungal meningoencephalitis in immunocompromised individuals. In previous studies, we found that the Hap complex in this pathogen represses genes encoding mitochondrial respiratory functions and tricarboxylic acid (TCA) cycle components under low-iron conditions. The orthologous Hap2/3/4/5 complex in Saccharomyces cerevisiae exerts a regulatory influence on mitochondrial functions, and Hap4 is subject to glucose repression via the carbon catabolite repressor Mig1. In this study, we explored the regulatory link between a candidate ortholog of the Mig1 protein and the HapX component of the Hap complex in C. neoformans. This analysis revealed repression of MIG1 by HapX and activation of HAPX by Mig1 under low-iron conditions and Mig1 regulation of mitochondrial functions, including respiration, tolerance for reactive oxygen species, and expression of genes for iron consumption and iron acquisition functions. Consistently with these regulatory functions, a mig1Δ mutant had impaired growth on inhibitors of mitochondrial respiration and inducers of ROS. Furthermore, deletion of MIG1 provoked a dysregulation in nutrient sensing via the TOR pathway and impacted the pathway for cell wall remodeling. Importantly, loss of Mig1 increased susceptibility to fluconazole, thus further establishing a link between azole antifungal drugs and mitochondrial function. Mig1 and HapX were also required together for survival in macrophages, but Mig1 alone had a minimal impact on virulence in mice. Overall, these studies provide novel insights into a HapX/Mig1 regulatory network and reinforce an association between mitochondrial dysfunction and drug susceptibility that may provide new targets for the development of antifungal drugs. IMPORTANCE Fungal pathogens of humans are difficult to treat, and there is a pressing need to identify new targets for antifungal drugs and to obtain a detailed understanding of fungal

  20. Intracellular replication is essential for the virulence of Salmonella typhimurium.

    PubMed

    Leung, K Y; Finlay, B B

    1991-12-15

    Salmonella typhimurium is a facultative intracellular parasite, capable of penetrating, surviving, and multiplying within diverse eukaryotic cell types, including epithelial and phagocytic cells. We have been studying intracellular replication of S. typhimurium and found that it is essential in the pathogenesis of this bacterium. A total of 45,000 independent mini-Mu MudJ transposon mutants in S. typhimurium SL1344 were screened in Madin-Darby canine kidney (MDCK) epithelial cells with a beta-lactam, cefotaxime, to enrich for mutants defective for intracellular replication. Ten different auxotrophic (purine, pyrimidine, purine/methionine, and valine/isoleucine) and three prototrophic replication-defective mutants (Rep-) were identified. All Rep- mutants showed no differences in aerobic and anaerobic growth patterns, motility, serum sensitivity, mouse macrophage survival, iron uptake, and phosphate requirements. All Rep- mutants were unable to multiply inside MDCK, HeLa, and Caco-2 epithelial cells. When required nutrients for various auxotrophs were supplemented, auxotrophs then replicated inside MDCK cells. Although the parental strain multiplies in large vacuoles inside MDCK cells that distort the host cells, MDCK cells infected with the Rep- mutants appeared relatively normal and few bacteria were seen inside vacuoles. The purine auxotrophs and the three prototrophic Rep- mutants were highly attenuated in mice, and oral and intraperitoneal LD50 levels were 3 to 4 orders of magnitude higher than the wild type level. The three prototrophs were invasive and persisted in the murine organs such as livers and spleens for at least 3 weeks. Therefore, these prototrophic genes are needed for intracellular replication and are essential to the virulence of S. typhimurium. PMID:1763061

  1. Cch1 Restores Intracellular Ca2+ in Fungal Cells during Endoplasmic Reticulum Stress*

    PubMed Central

    Hong, Min-Pyo; Vu, Kiem; Bautos, Jennifer; Gelli, Angie

    2010-01-01

    Pathogens endure and proliferate during infection by exquisitely coping with the many stresses imposed by the host to prevent pathogen survival. Recent evidence has shown that fungal pathogens and yeast respond to insults to the endoplasmic reticulum (ER) by initiating Ca2+ influx across their plasma membrane. Although the high affinity Ca2+ channel, Cch1, and its subunit Mid1, have been suggested as the protein complex responsible for mediating Ca2+ influx, a direct demonstration of the gating mechanism of the Cch1 channel remains elusive. In this first mechanistic study of Cch1 channel activity we show that the Cch1 channel from the model human fungal pathogen, Cryptococcus neoformans, is directly activated by the depletion of intracellular Ca2+ stores. Electrophysiological analysis revealed that agents that enable ER Ca2+ store depletion promote the development of whole cell inward Ca2+ currents through Cch1 that are effectively blocked by La3+ and dependent on the presence of Mid1. Cch1 is permeable to both Ca2+ and Ba2+; however, unexpectedly, in contrast to Ca2+ currents, Ba2+ currents are steeply voltage-dependent. Cch1 maintains a strong Ca2+ selectivity even in the presence of high concentrations of monovalent ions. Single channel analysis indicated that Cch1 channel conductance is small, similar to that reported for the Ca2+ current ICRAC. This study demonstrates that Cch1 functions as a store-operated Ca2+-selective channel that is gated by intracellular Ca2+ depletion. The inability of cryptococcal cells that lacked the Cch1-Mid1 channel to survive ER stress suggests that Cch1 and its co-regulator, Mid1, are critical players in the restoration of Ca2+ homeostasis. PMID:20123986

  2. Cryptococcal meningitis due to Cryptococcus neoformans genotype AFLP1/VNI in Iran: a review of the literature.

    PubMed

    Badali, Hamid; Alian, Shahriar; Fakhim, Hamed; Falahatinejad, Mahsa; Moradi, Ali; Mohammad Davoudi, Mehrnaz; Hagen, Ferry; Meis, Jacques F

    2015-12-01

    Cryptococcal meningitis is the most important opportunistic fungal infection with a high mortality in HIV-patients in less developed regions. Here, we report a case of cryptococcal meningitis in a 49-year-old HIV-positive female due to Cryptococcus neoformans (serotype A, mating-type alpha, genotype AFLP1/VNI) in Sari, Iran. In vitro antifungal susceptibility tests showed MICs of isavuconazole (0.016 μg ml(-1) ), voriconazole (0.031 μg ml(-1) ), posaconazole (0.031 μg ml(-1) ), itraconazole (0.063 μg ml(-1) ), amphotericin B (0.125 μg ml(-1) ) and fluconazole (8 μg ml(-1) ). Despite immediate antifungal therapy, the patient died 4 days later due to respiratory failure. Cryptococcal infections have been infrequently reported from Iran and therefore we analysed all published cases of cryptococcosis in Iran since the first reported case from 1969. PMID:26444438

  3. Dithiocarbamates are strong inhibitors of the beta-class fungal carbonic anhydrases from Cryptococcus neoformans, Candida albicans and Candida glabrata.

    PubMed

    Monti, Simona Maria; Maresca, Alfonso; Viparelli, Francesca; Carta, Fabrizio; De Simone, Giuseppina; Mühlschlegel, Fritz A; Scozzafava, Andrea; Supuran, Claudiu T

    2012-01-15

    A series of N-mono- and N,N-disubstituted dithiocarbamates have been investigated as inhibitors of three β-carbonic anhydrases (CAs, EC 4.2.1.1) from the fungal pathogens Cryptococcus neoformans, Candida albicans and Candida glabrata, that is, Can2, CaNce103 and CgNce103, respectively. These enzymes were inhibited with efficacies between the subnanomolar to the micromolar range, depending on the substitution pattern at the nitrogen atom from the dithiocarbamate zinc-binding group. This new class of β-CA inhibitors may have the potential for developing antifungal agents with a diverse mechanism of action compared to the clinically used drugs for which drug resistance was reported, and may also explain the efficacy of dithiocarbamates as agricultural antifungal agents. PMID:22209456

  4. A potent specific inhibitor of 6-phosphogluconate dehydrogenase of Cryptococcus neoformans and of certain other fungal enzymes.

    PubMed

    Niehaus, W G; Flynn, T

    1993-09-01

    A particular lot of the zwitterionic buffer, 2(N-morpholino) ethane sulfonic acid (MES), contained a contaminant that inhibited a number of fungal NADP-dependent dehydrogenases. Enzymes that were particularly sensitive include 6-phosphogluconate dehydrogenases from Cryptococcus neoformans and Schizophyllum commune and glucose-6-phosphate dehydrogenase from Schizophyllum commune. A number of NADP-dependent dehydrogenases of animal origin were tested and all were completely insensitive to inhibition except for rat liver 6-phosphogluconate dehydrogenase, which was 10-fold less sensitive than the Cryptococcal enzyme. The pattern of inhibition in all cases was linear competitive versus NADP. The inhibitor has been purified and identified as an ethylenesulfonic acid oligomer. This inhibitor holds promise as a model compound for the development of a specific antifungal agent. PMID:8302365

  5. Pathogenesis of Brain Arteriovenous Malformations

    PubMed Central

    KOMIYAMA, Masaki

    2016-01-01

    Brain arteriovenous malformations (bAVMs) represent a high risk of intracranial hemorrhages, which are substantial causes of morbidity and mortality of bAVMs, especially in children and young adults. Although a variety of factors leading to hemorrhages of bAVMs are investigated extensively, their pathogenesis is still not well elucidated. The author has reviewed the updated data of genetic aspects of bAVMs, especially focusing on clinical and experimental knowledge from hereditary hemorrhagic telangiectasia, which is the representative genetic disease presenting with bAVMs caused by loss-of-function in one of the two genes: endoglin and activin receptor-like kinase 1. This knowledge may allow us to infer the pathogensis of sporadic bAVMs and in the development of new medical therapies for them. PMID:27076383

  6. Neuroblastoma: Molecular Pathogenesis and Therapy

    PubMed Central

    Louis, Chrystal U; Shohet, Jason M

    2015-01-01

    Neuroblastoma is a developmental tumor of young children arising from the embryonic sympathoadrenal lineage of the neural crest. Currently neuroblastoma is the primary cause of death from pediatric cancer for children between the age of 1 and 5 years and accounts for approximately 13% of all pediatric cancer mortality. Its clinical impact and its unique biology have made this aggressive malignancy the focus of a large concerted translational research effort. New insights into tumor biology are driving the development of new classification schemas; novel targeted therapeutic approaches include small molecule inhibitors, epigenetic, non-coding RNA, and cell-based immunologic therapies. Recent insights regarding the pathogenesis and biology of neuroblastoma will be placed in context with the current understanding of tumor biology and tumor/host interactions. Systematic classification of patients coupled with therapeutic advances point to a future of improved clinical outcomes for this biologically distinct and highly aggressive pediatric malignancy. PMID:25386934

  7. Henipavirus pathogenesis and antiviral approaches.

    PubMed

    Mathieu, Cyrille; Horvat, Branka

    2015-03-01

    Hendra virus and Nipah virus are closely related, recently emerged zoonotic paramyxoviruses, belonging to the Henipavirus genus. Both viruses induce generalized vasculitis affecting particularly the respiratory tract and CNS. The exceptionally broad species tropism of Henipavirus, the high case fatality rate and person-to-person transmission associated with Nipah virus outbreaks emphasize the necessity of effective antiviral strategies for these intriguing threatening pathogens. Current therapeutic approaches, validated in animal models, target early steps in viral infection; they include the use of neutralizing virus-specific antibodies and blocking membrane fusion with peptides that bind the viral fusion protein. A better understanding of Henipavirus pathogenesis is critical for the further advancement of antiviral treatment, and we summarize here the recent progress in the field. PMID:25634624

  8. The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence

    PubMed Central

    de Gontijo, Fabiano Assis; Pascon, Renata C.; Fernandes, Larissa; Machado, Joel; Alspaugh, J. Andrew; Vallim, Marcelo A

    2015-01-01

    Fungal infections are often difficult to treat due to the inherent similarities between fungal and animal cells and the resulting host toxicity from many antifungal compounds. Cryptococcus neoformans is an opportunistic fungal pathogen of humans that causes life-threatening disease, primarily in immunocompromised patients. Since antifungal therapy for this microorganism is limited, many investigators have explored novel drug targets aim at virulence factors, such as the ability to grow at mammalian physiological temperature (37°C). To address this issue, we used the Agrobacterium tumefaciens gene delivery system to create a random insertion mutagenesis library that was screened for altered growth at elevated temperatures. Among several mutants unable to grow at 37°C, we explored one bearing an interruption in the URA4 gene. This gene encodes dihydroorotase (DHOase) that is involved in the de novo synthesis of pyrimidine ribonucleotides. Loss of the C. neoformans Ura4 protein, by targeted gene interruption, resulted in an expected uracil/uridine auxotrophy and an unexpected high temperature growth defect. In addition, the ura4 mutant displayed phenotypic defects in other prominent virulence factors (melanin, capsule and phospholipase) and reduced stress response compared to wild type and reconstituted strains. Accordingly, this mutant had a decreased survival rate in macrophages and attenuated virulence in a murine model of cryptococcal infection. Quantitative PCR analysis suggests that this biosynthetic pathway is induced during the transition from 30°C to 37°C, and that transcriptional regulation of de novo and salvage pyrimidine pathway are under the control of the Ura4 protein. PMID:25011011

  9. The Homeostasis of Iron, Copper, and Zinc in Paracoccidioides Brasiliensis, Cryptococcus Neoformans Var. Grubii, and Cryptococcus Gattii: A Comparative Analysis

    PubMed Central

    Silva, Mirelle Garcia; Schrank, Augusto; Bailão, Elisa Flávia L.C.; Bailão, Alexandre Melo; Borges, Clayton Luiz; Staats, Charley Christian; Parente, Juliana Alves; Pereira, Maristela; Salem-Izacc, Silvia Maria; Mendes-Giannini, Maria José Soares; Oliveira, Rosely Maria Zancopé; Silva, Lívia Kmetzsch Rosa e; Nosanchuk, Joshua D.; Vainstein, Marilene Henning; de Almeida Soares, Célia Maria

    2011-01-01

    Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensis Pb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways. PMID:21833306

  10. Use of a Suspension Array for Rapid Identification of the Varieties and Genotypes of the Cryptococcus neoformans Species Complex

    PubMed Central

    Diaz, Mara R.; Fell, Jack W.

    2005-01-01

    Cryptococcus neoformans is an encapsulated fungal pathogen known to cause severe disease in immunocompromised patients. The disease, cryptococcosis, is mostly acquired by inhalation and can result in a chronic meningoencephalitis, which can be fatal. Here, we describe a molecular method to identify the varieties and genotypic groups within the C. neoformans species complex from culture-based assays. The method employs a novel flow cytometer with a dual laser system that allows the simultaneous detection of different target sequences in a multiplex and high-throughput format. The assay uses a liquid suspension hybridization format with specific oligonucleotide probes that are covalently bound to the surface of fluorescent color-coded microspheres. Biotinylated target amplicons, which hybridized to their complementary probe sequences, are quantified by the addition of the conjugate, streptavidin R-phycoerythrin. In this study we developed and validated eight probes derived from sequence analysis of the intergenic spacer region of the rRNA gene region. The assay proved to be specific and sensitive, allowed discrimination of a 1-bp mismatch with no apparent cross-reactivity, and detected 101 to 103 genome copies. The described protocol, which can be used directly with yeast cells or isolated DNA, can be undertaken in less than 1 h following PCR amplification and permits identification of species in a multiplex format. In addition to a multiplex capability, the assay allows the simultaneous detection of target sequences in a single reaction. The accuracy, speed, flexibility, and sensitivity of this technology are a few of the advantages that will make this assay useful for the diagnosis of human cryptococcal infections and other pathogenic diseases. PMID:16081894

  11. Sterylglucoside Catabolism in Cryptococcus neoformans with Endoglycoceramidase-related Protein 2 (EGCrP2), the First Steryl-β-glucosidase Identified in Fungi*

    PubMed Central

    Watanabe, Takashi; Ito, Tomoharu; Goda, Hatsumi M.; Ishibashi, Yohei; Miyamoto, Tomofumi; Ikeda, Kazutaka; Taguchi, Ryo; Okino, Nozomu; Ito, Makoto

    2015-01-01

    Cryptococcosis is an infectious disease caused by pathogenic fungi, such as Cryptococcus neoformans and Cryptococcus gattii. The ceramide structure (methyl-d18:2/h18:0) of C. neoformans glucosylceramide (GlcCer) is characteristic and strongly related to its pathogenicity. We recently identified endoglycoceramidase-related protein 1 (EGCrP1) as a glucocerebrosidase in C. neoformans and showed that it was involved in the quality control of GlcCer by eliminating immature GlcCer during the synthesis of GlcCer (Ishibashi, Y., Ikeda, K., Sakaguchi, K., Okino, N., Taguchi, R., and Ito, M. (2012) Quality control of fungus-specific glucosylceramide in Cryptococcus neoformans by endoglycoceramidase-related protein 1 (EGCrP1). J. Biol. Chem. 287, 368–381). We herein identified and characterized EGCrP2, a homologue of EGCrP1, as the enzyme responsible for sterylglucoside catabolism in C. neoformans. In contrast to EGCrP1, which is specific to GlcCer, EGCrP2 hydrolyzed various β-glucosides, including GlcCer, cholesteryl-β-glucoside, ergosteryl-β-glucoside, sitosteryl-β-glucoside, and para-nitrophenyl-β-glucoside, but not α-glucosides or β-galactosides, under acidic conditions. Disruption of the EGCrP2 gene (egcrp2) resulted in the accumulation of a glycolipid, the structure of which was determined following purification to ergosteryl-3β-glucoside, a major sterylglucoside in fungi, by mass spectrometric and two-dimensional nuclear magnetic resonance analyses. This glycolipid accumulated in vacuoles and EGCrP2 was detected in vacuole-enriched fraction. These results indicated that EGCrP2 was involved in the catabolism of ergosteryl-β-glucoside in the vacuoles of C. neoformans. Distinct growth arrest, a dysfunction in cell budding, and an abnormal vacuole morphology were detected in the egcrp2-disrupted mutants, suggesting that EGCrP2 may be a promising target for anti-cryptococcal drugs. EGCrP2, classified into glycohydrolase family 5, is the first steryl

  12. Intracellular targeting with engineered proteins.

    PubMed

    Miersch, Shane; Sidhu, Sachdev S

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  13. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  14. Intracellular ion channels and cancer.

    PubMed

    Leanza, Luigi; Biasutto, Lucia; Managò, Antonella; Gulbins, Erich; Zoratti, Mario; Szabò, Ildikò

    2013-01-01

    Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K(+) channels (Ca(2+)-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K(+) channel-3 (TASK-3)), Ca(2+) uniporter MCU, Mg(2+)-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca(2+) depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca(2+) channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment. PMID:24027528

  15. Importance of Branched-Chain Amino Acid Utilization in Francisella Intracellular Adaptation

    PubMed Central

    Gesbert, Gael; Ramond, Elodie; Tros, Fabiola; Dairou, Julien; Frapy, Eric; Barel, Monique

    2014-01-01

    Intracellular bacterial pathogens have adapted their metabolism to optimally utilize the nutrients available in infected host cells. We recently reported the identification of an asparagine transporter required specifically for cytosolic multiplication of Francisella. In the present work, we characterized a new member of the major super family (MSF) of transporters, involved in isoleucine uptake. We show that this transporter (here designated IleP) plays a critical role in intracellular metabolic adaptation of Francisella. Inactivation of IleP severely impaired intracellular F. tularensis subsp. novicida multiplication in all cell types tested and reduced bacterial virulence in the mouse model. To further establish the importance of the ileP gene in F. tularensis pathogenesis, we constructed a chromosomal deletion mutant of ileP (ΔFTL_1803) in the F. tularensis subsp. holarctica live vaccine strain (LVS). Inactivation of IleP in the F. tularensis LVS provoked comparable intracellular growth defects, confirming the critical role of this transporter in isoleucine uptake. The data presented establish, for the first time, the importance of isoleucine utilization for efficient phagosomal escape and cytosolic multiplication of Francisella and suggest that virulent F. tularensis subspecies have lost their branched-chain amino acid biosynthetic pathways and rely exclusively on dedicated uptake systems. This loss of function is likely to reflect an evolution toward a predominantly intracellular life style of the pathogen. Amino acid transporters should be thus considered major players in the adaptation of intracellular pathogens. PMID:25332124

  16. Update on Legionnaires’ disease: pathogenesis, epidemiology, detection and control

    PubMed Central

    Hilbi, Hubert; Jarraud, Sophie; Hartland, Elizabeth; Buchrieser, Carmen

    2010-01-01

    Summary Legionellosis or Legionnaires’ disease is an emerging and often-fatal form of pneumonia that is most severe in elderly and immunocompromised people, an ever-increasing risk group for infection. In recent years, the genomics of Legionella spp. has significantly increased our knowledge of the pathogenesis of this disease by providing new insights into the evolution and genetic and physiological basis of Legionella–host interactions. The 7th international conference on Legionella, Legionella 2009, illustrated many recent conceptual advances in epidemiology, pathogenesis and ecology. Experts in different fields presented new findings on basic mechanisms of pathogen–host interactions and bacterial evolution, as well as the clinical management and environmental prevalence and persistence of Legionella. The presentations revealed remarkable facts about the genetic and metabolic basis of the intracellular lifestyle of Legionella and reported on its striking ability to manipulate host cell processes by molecular mimicry. Together, these investigations will lead to new approaches for the treatment and prevention of Legionnaires’ disease. PMID:20149105

  17. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  18. Intruders below the Radar: Molecular Pathogenesis of Bartonella spp.

    PubMed Central

    Harms, Alexander

    2012-01-01

    Summary: Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease. PMID:22232371

  19. Intracellular Events and Cell Fate in Filovirus Infection

    PubMed Central

    Olejnik, Judith; Ryabchikova, Elena; Corley, Ronald B.; Mühlberger, Elke

    2011-01-01

    Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and dendritic cells. The infection spreads to the liver, spleen and later other organs by blood and lymph flow. A hallmark of filovirus infection is the depletion of non-infected lymphocytes; however, the molecular mechanisms leading to the observed bystander lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the fate of infected cells in filovirus disease. In this review we will explore what is known about the intracellular events leading to virus amplification and cell damage in filovirus infection. Furthermore, we will discuss how cellular dysfunction and cell death may correlate with disease pathogenesis. PMID:21927676

  20. Cryptococcus neoformans var. grubii Infection in HIV-Seronegative Patients from Northeast India: Report of Two Cases with Review of Literature.

    PubMed

    Nath, Reema; Laskar, Basanta; Ahmed, Jishan; Das, Subhalakshmi; Timung, Longminder; Saikia, Lahari

    2016-04-01

    Cryptococcus neoformans infection can occur in a wide range of hosts ranging from those who are severely immunosuppressed to those who are apparently immunocompetent. Two apparently immunocompetent HIV-seronegative patients with cryptococcal meningitis and multiple skin lesions, both due to C. neoformans var. grubii, are reported. Pregnancy was found as an associated factor in cryptococcal meningitis in a 20-year-old female patient from Arunachal Pradesh. Multiple skin lesions were the presenting feature of an 18-year-old male patient from Dibrugarh, eastern Assam. The organism was identified both phenotypically and by sequencing of ITS1 and ITS2 regions of rRNA gene. The cases are reported because of rarity of this infection in non-HIV-infected patients. PMID:26677012

  1. Endothelial Glycocalyx: Shedding Light on Malaria Pathogenesis.

    PubMed

    Hempel, Casper; Pasini, Erica M; Kurtzhals, Jørgen A L

    2016-06-01

    Malaria is estimated to kill 438 000 people annually, mostly due to severe malaria, which is closely associated with microcirculatory vasculopathy, although its pathogenesis remains incompletely understood. Here, we propose that the largely ignored glycocalyx of the vascular endothelium plays an important role in facilitating the pathogenesis of severe malaria. PMID:27161599

  2. Molecular epidemiology and in vitro antifungal susceptibility testing of 108 clinical Cryptococcus neoformans sensu lato and Cryptococcus gattii sensu lato isolates from Denmark.

    PubMed

    Hagen, Ferry; Hare Jensen, Rasmus; Meis, Jacques F; Arendrup, Maiken Cavling

    2016-09-01

    Cryptococcosis is mainly caused by members of the Cryptococcus gattii/Cryptococcus neoformans species complexes. Here, we report the molecular characterisation and in vitro antifungal susceptibility of Danish clinical cryptococcal isolates. Species, genotype, serotype and mating type were determined by amplified fragment length polymorphism (AFLP) fingerprinting and qPCR. EUCAST E.Def 7.2 MICs were determined for amphotericin B, flucytosine, fluconazole, voriconazole and isavuconazole. Most isolates were C. neoformans (serotype A; n = 66) and belonged to genotype AFLP1/VNI (n = 61) or AFLP1B/VNII (n = 5) followed by Cryptococcus deneoformans (serotype D; genotype AFLP2, n = 20), C. neoformans × C. deneoformans hybrids (serotype AD; genotype AFLP3, n = 13) and Cryptococcus curvatus (n = 2). Six isolates were C. gattii sensu lato, and one isolate was a C. deneoformans × C. gattii hybrid (genotype AFLP8). All isolates were amphotericin B susceptible. Flucytosine susceptibility was uniform MIC50 of 4-8 mg l(-1) except for C. curvatus (MICs >32 mg l(-1) ). Cryptococcus gattii sensu lato isolates were somewhat less susceptible to the azoles. MICs of fluconazole (>32 mg l(-1) ), voriconazole (≥0.5 mg l(-1) ) and isavuconazole (0.06 and 0.25 mg l(-1) respectively) were elevated compared to the wild-type population for 1/19 C. deneoformans and 1/2 C. curvatus isolates. Flucytosine MIC was elevated for 1/61 C. neoformans (>32 mg l(-1) ). Antifungal susceptibility revealed species-specific differential susceptibility, but suggested acquired resistance was an infrequent phenomenon. PMID:27061834

  3. Does the Capsule Interfere with Performance of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Cryptococcus neoformans and Cryptococcus gattii?

    PubMed Central

    Grenfell, Rafaella C.; Vidal, Monica S. M.; Giudice, Mauro C.; Del Negro, Gilda M. B.; Juliano, Luiz; Benard, Gil; de Almeida Júnior, João N.

    2015-01-01

    We described the impact of the capsule size for Cryptococcus neoformans and Cryptococcus gattii identification at the species level by Bruker matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). After experimental capsule size modulation, we observed that reducing the capsule size resulted in improved identification by Bruker MALDI-TOF MS across all of the reference strains analyzed. PMID:26659203

  4. Does the Capsule Interfere with Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Cryptococcus neoformans and Cryptococcus gattii?

    PubMed

    Thomaz, Danilo Y; Grenfell, Rafaella C; Vidal, Monica S M; Giudice, Mauro C; Del Negro, Gilda M B; Juliano, Luiz; Benard, Gil; de Almeida Júnior, João N

    2016-02-01

    We described the impact of the capsule size for Cryptococcus neoformans and Cryptococcus gattii identification at the species level by Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). After experimental capsule size modulation, we observed that reducing the capsule size resulted in improved identification by Bruker MALDI-TOF MS across all of the reference strains analyzed. PMID:26659203

  5. Pathogenesis of Helicobacter pylori infection.

    PubMed

    Backert, Steffen; Neddermann, Matthias; Maubach, Gunter; Naumann, Michael

    2016-09-01

    Helicobacter pylori is estimated to infect more than half of the worlds human population and represents a major risk factor for chronic gastritis, peptic ulcer disease, MALT lymphoma, and gastric adenocarcinoma. H. pylori infection and clinical consequences are controlled by highly complex interactions between the host, colonizing bacteria, and environmental parameters. Important bacterial determinants linked with gastric disease development include the cag pathogenicity island encoding a type IV secretion system (T4SS), the translocated effector protein CagA, vacuolating cytotoxin VacA, adhesin BabA, urease, serine protease HtrA, secreted outer membrane vesicles, and many others. The high quantity of these factors and allelic changes in the corresponding genes reveals a sophisticated picture and problems in evaluating the impact of each distinct component. Extensive work has been performed to pinpoint molecular processes related to H. pylori-triggered pathogenesis using Mongolian gerbils, mice, primary tissues, as well as novel in vitro model systems such as gastroids. The manipulation of host signaling cascades by the bacterium appears to be crucial for inducing pathogenic downstream activities and gastric disease progression. Here, we review the most recent advances in this important research area. PMID:27531534

  6. Candida albicans, plasticity and pathogenesis.

    PubMed

    Poulain, Daniel

    2015-06-01

    The yeast Candida albicans has emerged as a major public health problem during the past two decades. The spectrum of diseases caused by this species ranges from vaginal infections, which affect up to 75% of the women at least once in their lifetime, to deep infections in hospitalized patients which lead to high morbidity and mortality rates. Candida albicans may also play a role in the persistence or worsening of some chronic inflammatory bowel diseases. Active research is now improving our understanding of the molecular mechanisms and genetic factors in the yeast and its host which influence the development of disease. Despite these advances and the availability of a more extensive therapeutic arsenal, current progress in the control of nosocomial infections due to Candida remains limited, mainly due to the difficulties in diagnosing these infections. The biologist has a key role to play in establishing a dialogue with the clinician in order to identify the saprophyte/pathogen transition in patients as early as possible. This review provides a quick synopsis of the modern concepts of Candida pathogenesis with some representative examples illustrating the specifics traits of this yeast in terms of pathogenic adaptation. PMID:23962107

  7. CELLULAR PATHOGENESIS OF DIABETIC GASTROENTEROPATHY

    PubMed Central

    Ördög, Tamás; Hayashi, Yujiro; Gibbons, Simon J.

    2010-01-01

    SUMMARY Gastroenteropathy manifesting in upper gastrointestinal symptoms, delayed gastric emptying, constipation, diarrhea and fecal incontinence occurs frequently in patients with diabetes mellitus and represents a significant health care burden. Current treatments are largely symptomatic and ineffective. Better understanding of the cellular and molecular pathogenesis of these disorders is required for the development of more effective therapies. Recent advances in our understanding of the inherent, high-level complexities of the control systems that execute and regulate gastrointestinal motility, together with the utilization of new experimental models and sophisticated physiological, morphological and molecular techniques have lead to the realization that diabetic gastroenteropathies cannot be ascribed to any singular defect or dysfunction. In fact, these disorders are multifactorial and involve a spectrum of metabolic and dystrophic changes that can potentially affect all key components of motor control including the systemic autonomic and enteric nervous systems, interstitial cells of Cajal and smooth muscle cells. Candidate pathomechanisms are also varied and include imbalance between pro- and anti-oxidative factors, altered trophic stimuli to mature cells and their progenitors, and, possibly, autoimmune factors. The goal of this paper is to review the cellular changes underlying diabetic gastroenteropathies and their potential causes, with particular focus on functional interactions between various cell types. It is proposed that diabetic gastroenteropathies should be considered a form of gastrointestinal neuromuscular dystrophy rather than a “functional” disorder. Future research should identify ways to block cytotoxic factors, support the regeneration of damaged cells and translate the experimental findings into new treatment modalities. PMID:19829287

  8. Pathogenesis of benign adrenocortical tumors.

    PubMed

    Vezzosi, Delphine; Bertherat, Jérôme; Groussin, Lionel

    2010-12-01

    Most adrenocortical tumors (ACT) are benign unilateral adrenocortical adenomas, often discovered incidentally. Exceptionally, ACT are bilateral. However bilateral ACT have been very helpful to progress in the pathophysiology of ACT. Although most ACT are of sporadic origin, they may also be part of syndromic and/or hereditary disorders. The identification of the genetics of familial diseases associated with benign ACT has been helpful to define somatic alterations in sporadic ACT: for example, identification of PRKAR1A mutations in Carney complex or alterations of the Wnt/β-catenin pathway in Familial Adenomatous Polyposis Coli. Components of the cAMP signaling pathway-for example, adrenocorticotropic-hormone receptors and other membrane receptors, Gs protein, phosphodiesterases and protein kinase A-can be altered to various degrees in benign cortisol-secreting ACT. These progress have been important for the understanding of the pathogenesis of benign ACT, but already have profound implications for clinical management, for example in unraveling the genetic origin of disease in some patients with ACT. They also have therapeutic consequences, and should help to develop new therapeutic options. PMID:21115158

  9. Pathogenicity Islands in Bacterial Pathogenesis

    PubMed Central

    Schmidt, Herbert; Hensel, Michael

    2004-01-01

    In this review, we focus on a group of mobile genetic elements designated pathogenicity islands (PAI). These elements play a pivotal role in the virulence of bacterial pathogens of humans and are also essential for virulence in pathogens of animals and plants. Characteristic molecular features of PAI of important human pathogens and their role in pathogenesis are described. The availability of a large number of genome sequences of pathogenic bacteria and their benign relatives currently offers a unique opportunity for the identification of novel pathogen-specific genomic islands. However, this knowledge has to be complemented by improved model systems for the analysis of virulence functions of bacterial pathogens. PAI apparently have been acquired during the speciation of pathogens from their nonpathogenic or environmental ancestors. The acquisition of PAI not only is an ancient evolutionary event that led to the appearance of bacterial pathogens on a timescale of millions of years but also may represent a mechanism that contributes to the appearance of new pathogens within a human life span. The acquisition of knowledge about PAI, their structure, their mobility, and the pathogenicity factors they encode not only is helpful in gaining a better understanding of bacterial evolution and interactions of pathogens with eukaryotic host cells but also may have important practical implications such as providing delivery systems for vaccination, tools for cell biology, and tools for the development of new strategies for therapy of bacterial infections. PMID:14726454

  10. FVIII inhibitors: pathogenesis and avoidance

    PubMed Central

    2015-01-01

    The pathogenesis of inhibitory antibodies has been the focus of major scientific interest over the last decades, and several studies on underlying immune mechanisms and risk factors for formation of these antibodies have been performed with the aim of improving the ability to both predict and prevent their appearance. It seems clear that the decisive factors for the immune response to the deficient factor are multiple and involve components of both a constitutional and therapy-related nature. A scientific concern and obstacle for research in the area of hemophilia is the relatively small cohorts available for studies and the resulting risk of confounded and biased results. Careful interpretation of data is recommended to avoid treatment decisions based on a weak scientific platform. This review will summarize current concepts of the underlying immunological mechanisms and risk factors for development of inhibitory antibodies in patients with hemophilia A and discuss how these findings may be interpreted and influence our clinical management of patients. PMID:25712994

  11. Systems approaches to coronavirus pathogenesis

    PubMed Central

    Schäfer, Alexandra; Baric, Ralph S.; Ferris, Martin T.

    2014-01-01

    Coronaviruses comprise a large group of emergent human and animal pathogens, including the highly pathogenic SARS-CoV and MERS-CoV strains that cause significant morbidity and mortality in infected individuals, especially the elderly. As emergent viruses may cause episodic outbreaks of disease over time, human samples are limited. Systems biology and genetic technologies maximize opportunities for identifying critical host and viral genetic factors that regulate susceptibility and virus-induced disease severity. These approaches provide discovery platforms that highlight and allow targeted confirmation of critical targets for prophylactics and therapeutics, especially critical in an outbreak setting. Although poorly understood, it has long been recognized that host regulation of virus-associated disease severity is multigenic. The advent of systems genetic and biology resources provide new opportunities for deconvoluting the complex genetic interactions and expression networks that regulate pathogenic or protective host response patterns following virus infection. Using SARS-CoV as a model, dynamic transcriptional network changes and disease-associated phenotypes have been identified in different genetic backgrounds, leading to the promise of population-wide discovery of the underpinnings of Coronavirus pathogenesis. PMID:24842079

  12. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light.

    PubMed

    Martinez, Luis R; Casadevall, Arturo

    2007-07-01

    The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. We describe the characteristics of C. neoformans biofilm development using a microtiter plate model, microscopic examinations, and a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay to observe the metabolic activity of cryptococci within a biofilm. A strong correlation between XTT and CFU assays was demonstrated. Chemical analysis of the exopolymeric material revealed sugar composition consisting predominantly of xylose, mannose, and glucose, indicating the presence of other polysaccharides in addition to glucurunoxylomannan. Biofilm formation was affected by surface support differences, conditioning films on the surface, characteristics of the medium, and properties of the microbial cell. A specific antibody to the capsular polysaccharide of this fungus was used to stain the extracellular polysaccharide matrix of the fungal biofilms using light and confocal microscopy. Additionally, the susceptibility of C. neoformans biofilms and planktonic cells to environmental stress was investigated using XTT reduction and CFU assays. Biofilms were less susceptible to heat, cold, and UV light exposition than their planktonic counterparts. Our findings demonstrate that fungal biofilm formation is dependent on support surface characteristics and that growth in the biofilm state makes fungal cells less susceptible to potential environmental stresses. PMID:17513597

  13. Comparative Transcriptome Analysis Reveals Novel Roles of the Ras and Cyclic AMP Signaling Pathways in Environmental Stress Response and Antifungal Drug Sensitivity in Cryptococcus neoformans ▿ †

    PubMed Central

    Maeng, Shinae; Ko, Young-Joon; Kim, Gyu-Bum; Jung, Kwang-Woo; Floyd, Anna; Heitman, Joseph; Bahn, Yong-Sun

    2010-01-01

    The cyclic AMP (cAMP) pathway plays a central role in the growth, differentiation, and virulence of pathogenic fungi, including Cryptococcus neoformans. Three upstream signaling regulators of adenylyl cyclase (Cac1), Ras, Aca1, and Gpa1, have been demonstrated to control the cAMP pathway in C. neoformans, but their functional relationship remains elusive. We performed a genome-wide transcriptome analysis with a DNA microarray using the ras1Δ, gpa1Δ, cac1Δ, aca1Δ, and pka1Δ pka2Δ mutants. The aca1Δ, gpa1Δ, cac1Δ, and pka1Δ pka2Δ mutants displayed similar transcriptome patterns, whereas the ras1Δ mutant exhibited transcriptome patterns distinct from those of the wild type and the cAMP mutants. Interestingly, a number of environmental stress response genes are modulated differentially in the ras1Δ and cAMP mutants. In fact, the Ras signaling pathway was found to be involved in osmotic and genotoxic stress responses and the maintenance of cell wall integrity via the Cdc24-dependent signaling pathway. Notably, the Ras and cAMP mutants exhibited hypersensitivity to a polyene drug, amphotericin B, without showing effects on ergosterol biosynthesis, which suggested a novel method of antifungal combination therapy. Among the cAMP-dependent gene products that we characterized, two small heat shock proteins, Hsp12 and Hsp122, were found to be involved in the polyene antifungal drug susceptibility of C. neoformans. PMID:20097740

  14. Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation

    PubMed Central

    Janbon, Guilhem; Ormerod, Kate L.; Paulet, Damien; Byrnes, Edmond J.; Yadav, Vikas; Chatterjee, Gautam; Mullapudi, Nandita; Hon, Chung-Chau; Billmyre, R. Blake; Brunel, François; Bahn, Yong-Sun; Chen, Weidong; Chen, Yuan; Chow, Eve W. L.; Coppée, Jean-Yves; Floyd-Averette, Anna; Gaillardin, Claude; Gerik, Kimberly J.; Goldberg, Jonathan; Gonzalez-Hilarion, Sara; Gujja, Sharvari; Hamlin, Joyce L.; Hsueh, Yen-Ping; Ianiri, Giuseppe; Jones, Steven; Kodira, Chinnappa D.; Kozubowski, Lukasz; Lam, Woei; Marra, Marco; Mesner, Larry D.; Mieczkowski, Piotr A.; Moyrand, Frédérique; Nielsen, Kirsten; Proux, Caroline; Rossignol, Tristan; Schein, Jacqueline E.; Sun, Sheng; Wollschlaeger, Carolin; Wood, Ian A.; Zeng, Qiandong; Neuvéglise, Cécile; Newlon, Carol S.; Perfect, John R.; Lodge, Jennifer K.; Idnurm, Alexander; Stajich, Jason E.; Kronstad, James W.; Sanyal, Kaustuv; Heitman, Joseph; Fraser, James A.; Cuomo, Christina A.; Dietrich, Fred S.

    2014-01-01

    Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence. PMID:24743168

  15. The formation of titan cells in Cryptococcus neoformans depends on the mouse strain and correlates with induction of Th2-type responses.

    PubMed

    García-Barbazán, Irene; Trevijano-Contador, Nuria; Rueda, Cristina; de Andrés, Belén; Pérez-Tavárez, Raquel; Herrero-Fernández, Inés; Gaspar, María Luisa; Zaragoza, Oscar

    2016-01-01

    Cryptococcus neoformans is a pathogenic yeast that can form titan cells in the lungs, which are fungal cells of abnormal enlarged size. Little is known about the factors that trigger titan cells. In particular, it is not known how the host environment influences this transition. In this work, we describe the formation of titan cells in two mouse strains, CD1 and C57BL/6J. We found that the proportion of C. neoformans titan cells was significantly higher in C57BL/6J mice than in CD1. This higher proportion of titan cells was associated with a higher dissemination of the yeasts to the brain. Histology sections demonstrated eosinophilia in infected animals, although it was significantly lower in the CD1 mice which presented infiltration of lymphocytes. Both mouse strains presented infiltration of granulocytes, but the amount of eosinophils was higher in C57BL/6J. CD1 mice showed a significant accumulation of IFN-γ, TNF-α and IL17, while C57BL/BL mice had an increase in the anti-inflammatory cytokine IL-4. IgM antibodies to the polysaccharide capsule and total IgE were more abundant in the sera from C57BL/6J, confirming that these animals present a Th2-type response. We conclude that titan cell formation in C. neoformans depends, not only on microbe factors, but also on the host environment. PMID:26243235

  16. Application of the DiversiLab system for tracing the source of the mixed infections caused by Cryptococcus neoformans var. grubii from a patient with systemic lupus erythematosus.

    PubMed

    Dou, Hongtao; Xu, Yingchun; Li, Taisheng

    2015-03-01

    Two strains of Cryptococcus neoformans (PU 66 and PU112) were simultaneously isolated from a patient with systemic lupus erythematosus. We aimed to trace the source of the mixed infections. Multi-locus sequence typing (MLST) and the DiversiLab system analyses were performed on the 2 clinical and 23 environmental C. neoformans from pigeon droppings, 11 from the home (H1) the patient visited, 12 from another home (H2) as control. All the strains were uniformly genotyped as C. neoformans var. grubii VNI. Clinical strain PU66 and all the H1 isolates had the same sequence type (ST) - ST5, while for PU112 a new ST was observed - ST265. However, there was only one single base of 7 MLST loci difference between PU66 and PU112. Sequence types of the H2 strains were ST31 and ST297. DiversiLab analysis showed that strain similarity between the two clinical strains was 96.7%. In relation to environmental samples, the highest strain similarity (99.3%) was observed for PU66 and PU70 (H1). However, none of the environmental isolates had similarity over 98.6% comparing to PU112. One source of the mixed infections has been detected, but another needs further investigation. PMID:25591136

  17. Rethinking Mechanisms of Autoimmune Pathogenesis

    PubMed Central

    Pillai, Shiv

    2016-01-01

    Why exactly some individuals develop autoimmune disorders remains unclear. The broadly accepted paradigm is that genetic susceptibility results in some break in immunological tolerance, may enhance the availability of autoantigens, and may enhance inflammatory responses. Some environmental insults that occur on this background of susceptibility may then contribute to autoimmunity. In this review we discuss some aspects related to inhibitory signaling and rare genetic variants, as well as additional factors that might contribute to autoimmunity including the possible role of clonal somatic mutations, the role of epigenetic events and the contribution of the intestinal microbiome. Genetic susceptibility alleles generally contribute to the loss of immunological tolerance, the increased availability of asutoantigens, or an increase in inflammation. Apart from common genetic variants, rare loss-of-function genetic variants may also contribute to the pathogenesis of autoimmunity. Studies of an inhibitory signaling pathway in B cells helped identify a negative regulatory enzyme called sialic acid acetyl esterase. The study of rare genetic variants of this enzyme provides an illustrative example showing the importance of detailed functional analyses of variant alleles and the need to exclude functionally normal common or rare genetic variants from analysis. It has also become clear that pathways that are functionally impacted by either common or rare defective variants can also be more significantly compromised by gene expression changes that may result from epigenetic alterations. Another important and evolving area that has been discussed relates to the role of the intestinal microbiome in influencing helper T cell polarization and the development of autoimmunity. PMID:23809879

  18. Capsule independent uptake of the fungal pathogen Cryptococcus neoformans into brain microvascular endothelial cells.

    PubMed

    Sabiiti, Wilber; May, Robin C

    2012-01-01

    Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following 'trapping' within capillary beds of the BBB. PMID:22530025

  19. Classification of Cryptococcus neoformans and yeast-like fungus isolates from pigeon droppings by colony phenotyping and ITS genotyping and their seasonal variations in Korea.

    PubMed

    Chae, H S; Jang, G E; Kim, N H; Son, H R; Lee, J H; Kim, S H; Park, G N; Jo, H J; Kim, J T; Chang, K S

    2012-03-01

    Cryptococcus neoformans (C neoformans) is a frequent cause of invasive fungal disease in immunocompromised human hosts. Ninety-eight samples of pigeon droppings were collected from the pigeon shelters in Seoul, and cultured on birdseed agar (BSA) and Sabouraud dextrose agar (SDA). One hundred yeast-like colonies were selected and identified via phenotype characteristics, such as colony morphology and biochemical characteristics. This was then followed with genotyping via sequencing of the internal transcribed spacer (ITS) region. The colonies were classified into four kinds of colony color types: brown type (BrT), beige type (BeT), pink type (PT), and white type (WT). Numbers of isolated BrT, BeT, PT, and WT colonies were 22 (22%), 30 (30%), 19 (19%), and 39 (39%), respectively. All BrT colonies were identified as C neoformans. BeT were identified as 19 isolates of Cryptococcus laurentii, 10 isolates of Malassezia furfur, and 1 isolate of Cryptococcus uniguttulatus. PT was divided into two colony color types: light-PT (l-PT) and deep-PT (d-PT). Eighteen of l-PT and one of d-PT were identified as Rhodotorula glutinis and Rhodotorula mucilaginosa, respectively. WT were identified as 34 isolates of Cryptococcus guilliermondii, 3 isolates of Cryptococcus zeylanoides, 1 isolate of Cryptococcus sake, and 1 isolate of Stephanoascus ciferrii. Most strains were classified identically with the use of either phenotype or genotyping techniques, but C uniguttulatus and C sake classified by phenotyping were Pseudozyma aphidis and Cryptococcus famata by genotyping. This rapid screening technique of pathogenic yeast-like fungi by only colony characteristics is also expected to be very useful for primary yeast screening. Additionally, we investigated the seasonal variations of C neoformans and other yeast-like fungi from 379 pigeon-dropping samples that were collected from February 2011 to March 2011. We isolated 685 yeast-like fungi from the samples. Almost all C neoformans and

  20. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions.

    PubMed

    de Figueiredo, Paul; Ficht, Thomas A; Rice-Ficht, Allison; Rossetti, Carlos A; Adams, L Garry

    2015-06-01

    This review of Brucella-host interactions and immunobiology discusses recent discoveries as the basis for pathogenesis-informed rationales to prevent or treat brucellosis. Brucella spp., as animal pathogens, cause human brucellosis, a zoonosis that results in worldwide economic losses, human morbidity, and poverty. Although Brucella spp. infect humans as an incidental host, 500,000 new human infections occur annually, and no patient-friendly treatments or approved human vaccines are reported. Brucellae display strong tissue tropism for lymphoreticular and reproductive systems with an intracellular lifestyle that limits exposure to innate and adaptive immune responses, sequesters the organism from the effects of antibiotics, and drives clinical disease manifestations and pathology. Stealthy brucellae exploit strategies to establish infection, including i) evasion of intracellular destruction by restricting fusion of type IV secretion system-dependent Brucella-containing vacuoles with lysosomal compartments, ii) inhibition of apoptosis of infected mononuclear cells, and iii) prevention of dendritic cell maturation, antigen presentation, and activation of naive T cells, pathogenesis lessons that may be informative for other intracellular pathogens. Data sets of next-generation sequences of Brucella and host time-series global expression fused with proteomics and metabolomics data from in vitro and in vivo experiments now inform interactive cellular pathways and gene regulatory networks enabling full-scale systems biology analysis. The newly identified effector proteins of Brucella may represent targets for improved, safer brucellosis vaccines and therapeutics. PMID:25892682

  1. Ophthalmic lymphoma: epidemiology and pathogenesis.

    PubMed

    Sjö, Lene Dissing

    2009-02-01

    with relapse. Furthermore, we found that the frequency of translocations involving the MALT1- and IGH-gene loci is low in ocular region MALT lymphoma (2 of 42, 5%), but may predict increased risk of relapse (Sjo et al. 2008b). In conclusion the incidence of ophthalmic lymphoma is increasing at a high rate in Denmark. Ophthalmic lymphoma consists primarily of MALT lymphoma. The molecular pathogenesis of MALT lymphoma arising in the ocular region rarely involves translocations in the MALT1- and IGH-gene loci. PMID:19178392

  2. An Odyssey to Viral Pathogenesis.

    PubMed

    Oldstone, Michael B A

    2016-05-23

    polishing by Karl Habel (a superb senior virologist who left the National Institutes of Health and came to Scripps), and the gifted postdoctoral fellows who joined my laboratory over four decades form the log of my scientific voyage. The strong friendships and collaborations developed with other young but growing experimentalists like Bernie Fields and Abner Notkins are the fabric of the tale I will weave and were pivotal in the establishment of viral pathogenesis as a discipline. PMID:26514062

  3. Pathogenesis and Management of Buerger's Disease.

    PubMed

    Liew, Ngoh Chin; Lee, Limi; Nor Hanipah, Zubaidah; Gee, Tikfu; Jabar, Mohd Faisal

    2015-09-01

    Buerger's disease or thromboangiitis obliterans causes pain, ulceration, or gangrene in the lower or upper extremity. It is associated with chronic cigarette smoking and is believed to be an immune mediated vasculitis. The pathogenesis is still unknown but recent postulate of its association with odontal bacteria has generated much renewed interest. Despite its recognition more than a century ago, little progress has been made in its treatment. Until the pathogenesis is elucidated, abstinence from cigarette is the only effective therapy. PMID:26264874

  4. Secretome of obligate intracellular Rickettsia

    PubMed Central

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  5. Dynamics of intracellular information decoding

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya J.; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  6. Intracellular signalling during neutrophil recruitment.

    PubMed

    Mócsai, Attila; Walzog, Barbara; Lowell, Clifford A

    2015-08-01

    Recruitment of leucocytes such as neutrophils to the extravascular space is a critical step of the inflammation process and plays a major role in the development of various diseases including several cardiovascular diseases. Neutrophils themselves play a very active role in that process by sensing their environment and responding to the extracellular cues by adhesion and de-adhesion, cellular shape changes, chemotactic migration, and other effector functions of cell activation. Those responses are co-ordinated by a number of cell surface receptors and their complex intracellular signal transduction pathways. Here, we review neutrophil signal transduction processes critical for recruitment to the site of inflammation. The two key requirements for neutrophil recruitment are the establishment of appropriate chemoattractant gradients and the intrinsic ability of the cells to migrate along those gradients. We will first discuss signalling steps required for sensing extracellular chemoattractants such as chemokines and lipid mediators and the processes (e.g. PI3-kinase pathways) leading to the translation of extracellular chemoattractant gradients to polarized cellular responses. We will then discuss signal transduction by leucocyte adhesion receptors (e.g. tyrosine kinase pathways) which are critical for adhesion to, and migration through the vessel wall. Finally, additional neutrophil signalling pathways with an indirect effect on the neutrophil recruitment process, e.g. through modulation of the inflammatory environment, will be discussed. Mechanistic understanding of these pathways provide better understanding of the inflammation process and may point to novel therapeutic strategies for controlling excessive inflammation during infection or tissue damage. PMID:25998986

  7. Autophagy in lung disease pathogenesis and therapeutics

    PubMed Central

    Ryter, Stefan W.; Choi, Augustine M.K.

    2015-01-01

    Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy) may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics. PMID:25617802

  8. Enhanced binding of capsular polysaccharides of Cryptococcus neoformans to polystyrene microtitration plates for enzyme-linked immunosorbent assay.

    PubMed

    Cherniak, R; Cheeseman, M M; Reyes, G H; Reiss, E; Todaro, F

    1988-01-01

    A sensitive enzyme-linked immunosorbent assay (ELISA) to measure antibodies against capsular polysaccharide was developed, based on the enhanced binding of polysaccharide to polystyrene microtitration plates. The wells of the microtitration plate were primed with an adipic acid dihydrazide derivative of bovine serum albumin (AH-BSA) (100 micrograms/mL, 0.01 M NaPO4-0.14 M NaCl, pH 7.2 (PBS]. Capsular polysaccharide, the glucuronoxylomannan of Cryptococcus neoformans serotype A, was oxidized with NaIO4 for 5 min; the reaction was then quenched with ethylene glycol. The partially oxidized polysaccharide was dialyzed vs. PBS, and its concentration was adjusted to 50 micrograms/mL with PBS. This solution (100 microL/well) was covalently bound to the AH-BSA primed microtitration plates through formation of a Schiff base between the hydrazide group on the AH-BSA and the aldehyde groups on the polysaccharide. Antimouse IgG-alkaline phosphatase conjugate was used in an indirect ELISA to measure captured murine monoclonal antibodies directed against glucuronoxylomannan. Mean absorbances, after 15 min, were 0.13 in negative control wells, and greater than 0.7 in test wells. No intermediate steps were required to block nonspecific binding of antibody. PMID:3064947

  9. Enhanced virulence of Histoplasma capsulatum through transfer and surface incorporation of glycans from Cryptococcus neoformans during co-infection

    PubMed Central

    Cordero, Radames J. B.; Liedke, Susie Coutinho; de S. Araújo, Glauber R.; Martinez, Luis R.; Nimrichter, Leonardo; Frases, Susana; Peralta, Jose Mauro; Casadevall, Arturo; Rodrigues, Marcio L.; Nosanchuk, Joshua D.; Guimaraes, Allan J.

    2016-01-01

    Cryptococcus neoformans (Cn) and Histoplasma capsulatum (Hc) co-exist in the environment and occasionally co-infect individuals, which can lead to severe disease/lethal outcomes. We investigated specific interactions between Cn-Hc to determine the impact of synchronous infection in virulence and disease. Co-infected mice had significantly higher mortality than infection with either species or acapsular Cn-Hc. Coating of Hc with cryptococcal glycans (Cn-gly) resulted in higher pulmonary fungal burden in co-infected animals relative to control. Co-cultivation or addition of Cn-gly resulted in enhanced pellicle formation with a hybrid polysaccharide matrix with higher reactivity to GXM mAbs. Transfer and incorporation of Cn polysaccharide onto Hc surface was time and temperature dependent. Cn-gly transfer altered the zeta potential of Hc and was associated with increased resistance to phagocytosis and killing by macrophages. Mice infected with Hc and subsequently injected with purified Cn-gly died significantly more rapidly than Hc alone infected, establishing the precedent that virulence factors from one fungus can enhance the virulence of unrelated species. These findings suggest a new mechanism of microbial interaction involving the transfer of virulence traits that translates into enhanced lethality during mixed fungal infections and highlights the importance of studying heterogeneous microbial populations in the setting of infection. PMID:26908077

  10. Enhanced virulence of Histoplasma capsulatum through transfer and surface incorporation of glycans from Cryptococcus neoformans during co-infection.

    PubMed

    Cordero, Radames J B; Liedke, Susie Coutinho; de S Araújo, Glauber R; Martinez, Luis R; Nimrichter, Leonardo; Frases, Susana; Peralta, Jose Mauro; Casadevall, Arturo; Rodrigues, Marcio L; Nosanchuk, Joshua D; Guimaraes, Allan J

    2016-01-01

    Cryptococcus neoformans (Cn) and Histoplasma capsulatum (Hc) co-exist in the environment and occasionally co-infect individuals, which can lead to severe disease/lethal outcomes. We investigated specific interactions between Cn-Hc to determine the impact of synchronous infection in virulence and disease. Co-infected mice had significantly higher mortality than infection with either species or acapsular Cn-Hc. Coating of Hc with cryptococcal glycans (Cn-gly) resulted in higher pulmonary fungal burden in co-infected animals relative to control. Co-cultivation or addition of Cn-gly resulted in enhanced pellicle formation with a hybrid polysaccharide matrix with higher reactivity to GXM mAbs. Transfer and incorporation of Cn polysaccharide onto Hc surface was time and temperature dependent. Cn-gly transfer altered the zeta potential of Hc and was associated with increased resistance to phagocytosis and killing by macrophages. Mice infected with Hc and subsequently injected with purified Cn-gly died significantly more rapidly than Hc alone infected, establishing the precedent that virulence factors from one fungus can enhance the virulence of unrelated species. These findings suggest a new mechanism of microbial interaction involving the transfer of virulence traits that translates into enhanced lethality during mixed fungal infections and highlights the importance of studying heterogeneous microbial populations in the setting of infection. PMID:26908077

  11. Prostaglandin E2 blockade enhances the pulmonary anti-Cryptococcus neoformans immune reaction via the induction of TLR-4.

    PubMed

    Shen, Liyun; Liu, Ying

    2015-09-01

    The present study aimed to explore whether the inhibition of prostaglandin E2 enhances pulmonary anti-Cryptococcus neoformans immunity. Lung colony forming unit (CFU) assays demonstrated that the cryptococcal infection was dramatically depressed in mice given EP2 and EP4 or single EP antagonist treatment compared to the untreated wild type mice (p<0.05), leading to the increased survival of the infected mice by 8-9 days or 2-4 days, respectively. RT-PCR and flow cytometry assays showed that the expression of IFN-γ, IL-17, IL-22 in M1 macrophages and IL-10 in M2 macrophages increased significantly at 1 week post-infection in mice with either EP2 or EP4 blockade (p<0.05). The polarization of alveolar macrophages showed that, at 1 week post infection, the alveolar macrophages in untreated wild type mice, TLR4(-/-) mice and TLR4(-/-) mice with EP2 and EP4 blockade were strongly M2 polarized, whereas the alveolar macrophages in wild type mice with EP2 and EP4 blockade were M1 polarized. In conclusion, the blockade of EP2 and EP4 promotes mouse survival after cryptococcus infection by promoting the production of cytokines via TLR4, as well as the enhanced M1 polarization of alveolar macrophages. PMID:26122137

  12. Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide.

    PubMed Central

    Schlageter, A M; Kozel, T R

    1990-01-01

    A family of immunoglobulin isotype-switch variants was isolated by sib selection from a murine hybridoma which produced an immunoglobulin G subclass 1 (IgG1) antibody specific for the capsular polysaccharide of Cryptococcus neoformans. Antibodies of the IgG1, IgG2a, and IgG2b isotypes had similar serotype specificity patterns in double immunodiffusion assays which used polysaccharides of the four cryptococcal serotypes as antigens. A quantitative difference in the ability of the isotypes to form a precipitate with the polysaccharide was observed in a double immunodiffusion assay and confirmed in a quantitative precipitin assay. The relative precipitating activity of the antibodies was IgG2a greater than IgG1 much greater than IgG2b. Analysis by enzyme-linked immunosorbent assay of the reactivity of the three isotypes with cryptococcal polysaccharide showed identical titers and slopes, suggesting that the variable region of the class-switch antibodies was unaltered. This system allowed us to examine the effect of the Fc portion of the antibody on opsonization of encapsulated cryptococci. Yeast cells were precoated with antibodies of each isotype and incubated with murine macrophages or cultured human monocytes. Antibodies of all three isotypes exhibited a dose-dependent opsonization for phagocytosis by both human and murine phagocytes. The relative opsonic activity of the antibodies was IgG2a greater than IgG1 greater than IgG2b. Images PMID:2187813

  13. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  14. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism

    PubMed Central

    Ceni, Elisabetta; Mello, Tommaso; Galli, Andrea

    2014-01-01

    Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell

  15. Insights from late-onset familial parkinsonism on the pathogenesis of idiopathic Parkinson's disease.

    PubMed

    Volta, Mattia; Milnerwood, Austen J; Farrer, Matthew J

    2015-10-01

    Disease-modifying therapies that slow or halt the progression of Parkinson's disease are an unmet clinical need. Many hypotheses have been put forward to explain the pathogenesis of the disease, but none has led to the development of disease-modifying drugs. Here we focus on familial forms of late-onset parkinsonism that most closely resemble idiopathic Parkinson's disease and present a synthesis of emerging molecular advances. Genetic discoveries and mechanistic investigations have highlighted early alterations to synaptic function, endosomal maturation, and protein sorting that might lead to an intracellular proteinopathy. We propose that these cellular processes constitute one pathway to pathogenesis and suggest that neuroprotection, as an adjunct to current symptomatic treatments, need not remain an elusive goal. PMID:26376970

  16. Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis.

    PubMed

    Franker, Mariella A M; Hoogenraad, Casper C

    2013-06-01

    Microtubule-based transport is essential for neuronal function because of the large distances that must be traveled by various building blocks and cellular materials. Recent studies in various model systems have unraveled several regulatory mechanisms and traffic rules that control the specificity, directionality and delivery of neuronal cargos. Local microtubule cues, opposing motor activity and cargo-adaptors that regulate motor activity control microtubule-based transport in neurons. Impairment of intracellular transport is detrimental to neurons and has emerged as a common factor in several neurological disorders. Genetic approaches have revealed strong links between intracellular transport processes and the pathogenesis of neurological diseases in both the central and peripheral nervous system. This Commentary highlights recent advances in these areas and discusses the transport defects that are associated with the development of neurological diseases. PMID:23729742

  17. Members of the Francisella tularensis Phagosomal Transporter Subfamily of Major Facilitator Superfamily Transporters Are Critical for Pathogenesis

    PubMed Central

    Marohn, Mark E.; Santiago, Araceli E.; Shirey, Kari Ann; Lipsky, Michael; Vogel, Stefanie N.

    2012-01-01

    Francisella tularensis is the causative agent of tularemia. Due to its aerosolizable nature and low infectious dose, F. tularensis is classified as a category A select agent and, therefore, is a priority for vaccine development. Survival and replication in macrophages and other cell types are critical to F. tularensis pathogenesis, and impaired intracellular survival has been linked to a reduction in virulence. The F. tularensis genome is predicted to encode 31 major facilitator superfamily (MFS) transporters, and the nine-member Francisella phagosomal transporter (Fpt) subfamily possesses homology with virulence factors in other intracellular pathogens. We hypothesized that these MFS transporters may play an important role in F. tularensis pathogenesis and serve as good targets for attenuation and vaccine development. Here we show altered intracellular replication kinetics and attenuation of virulence in mice infected with three of the nine Fpt mutant strains compared with wild-type (WT) F. tularensis LVS. The vaccination of mice with these mutant strains was protective against a lethal intraperitoneal challenge. Additionally, we observed pronounced differences in cytokine profiles in the livers of mutant-infected mice, suggesting that alterations in in vivo cytokine responses are a major contributor to the attenuation observed for these mutant strains. These results confirm that this subset of MFS transporters plays an important role in the pathogenesis of F. tularensis and suggest that a focus on the development of attenuated Fpt subfamily MFS transporter mutants is a viable strategy toward the development of an efficacious vaccine. PMID:22508856

  18. Autophagy and checkpoints for intracellular pathogen defense

    PubMed Central

    Paulus, Geraldine L.C.; Xavier, Ramnik J.

    2015-01-01

    Purpose of review Autophagy plays a crucial role in intracellular defense against various pathogens. Xenophagy is a form of selective autophagy that targets intracellular pathogens for degradation. In addition, several related yet distinct intracellular defense responses depend on autophagy-related (ATG) genes. This review gives an overview of these processes, pathogen strategies to subvert them, and their crosstalk with various cell death programs. Recent findings The recruitment of ATG proteins plays a key role in multiple intracellular defense programs, specifically xenophagy, LC3-associated phagocytosis (LAP), and the IFNγ-mediated elimination of pathogens such as Toxoplasma gondii and murine norovirus. Recent progress has revealed methods employed by pathogens to resist these intracellular defense mechanisms and/or persist in spite of them. The intracellular pathogen load can tip the balance between cell survival and cell death. Further, it was recently observed that LAP is indispensable for the efficient clearance of dying cells. Summary Autophagy-dependent and ATG gene-dependent pathways are essential in intracellular defense against a broad range of pathogens. PMID:25394238

  19. Stochastic resonance in an intracellular genetic perceptron.

    PubMed

    Bates, Russell; Blyuss, Oleg; Zaikin, Alexey

    2014-03-01

    Intracellular genetic networks are more intelligent than was first assumed due to their ability to learn. One of the manifestations of this intelligence is the ability to learn associations of two stimuli within gene-regulating circuitry: Hebbian-type learning within the cellular life. However, gene expression is an intrinsically noisy process; hence, we investigate the effect of intrinsic and extrinsic noise on this kind of intracellular intelligence. We report a stochastic resonance in an intracellular associative genetic perceptron, a noise-induced phenomenon, which manifests itself in noise-induced increase of response in efficiency after the learning event under the conditions of optimal stochasticity. PMID:24730883

  20. Visualization of Intracellular Tyrosinase Activity in vitro

    PubMed Central

    Setty, Subba Rao Gangi

    2016-01-01

    Melanocytes produce the melanin pigments in melanosomes and these organelles protect the skin against harmful ultraviolet rays. Tyrosinase is the key cuproenzyme which initiates the pigment synthesis using its substrate amino acid tyrosine or L-DOPA (L-3, 4-dihydroxyphenylalanine). Moreover, the activity of tyrosinase directly correlates to the cellular pigmentation. Defects in tyrosinase transport to melanosomes or mutations in the enzyme or reduced intracellular copper levels results in loss of tyrosinase activity in melanosomes, commonly observed in albinism. Here, we described a method to detect the intracellular activity of tyrosinase in mouse melanocytes. This protocol will visualize the active tyrosinase present in the intracellular vesicles or organelles including melanosomes. PMID:27231711

  1. Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans.

    PubMed

    Yamamoto, Hideki; Nakamura, Yuri; Sato, Ko; Takahashi, Yurie; Nomura, Toshiki; Miyasaka, Tomomitsu; Ishii, Keiko; Hara, Hiromitsu; Yamamoto, Natsuo; Kanno, Emi; Iwakura, Yoichiro; Kawakami, Kazuyoshi

    2014-04-01

    Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor molecule signal that is critical for NF-κB activation and is triggered through C-type lectin receptors (CLRs), which are pattern recognition receptors that recognize carbohydrate structures. Previous studies have reported that Cryptococcus neoformans, a fungal pathogen that causes meningoencephalitis in AIDS patients, is recognized through some CLRs, such as mannose receptors or DC-SIGN. However, the role of CARD9 in the host defense against cryptococcal infection remains to be elucidated. In the present study, we analyzed the role of CARD9 in the host defense against pulmonary infection with C. neoformans. CARD9 gene-disrupted (knockout [KO]) mice were highly susceptible to this infection, as shown by the reduced fungal clearance in the infected lungs of CARD9 KO mice, compared to that in wild-type (WT) mice. Gamma interferon (IFN-γ) production was strongly reduced in CARD9 KO mice during the innate-immunity phase of infection. Reduced IFN-γ synthesis was due to impaired accumulation of NK and memory phenotype T cells, which are major sources of IFN-γ innate-immunity-phase production; a reduction in the accumulation of these cells was correlated with reduced CCL4, CCL5, CXCL9, and CXCL10 synthesis. However, differentiation of Th17 cells, but not of Th1 cells, was impaired at the adaptive-immunity phase in CARD9 KO mice compared to WT mice, although there was no significant difference in the infection susceptibility between interleukin 17A (IL-17A) KO and WT mice. These results suggest that CARD9 KO mice are susceptible to C. neoformans infection probably due to the reduced accumulation of IFN-γ-expressing NK and memory phenotype T cells at the early stage of infection. PMID:24470469

  2. Differences between Cryptococcus neoformans and Cryptococcus gattii in the Molecular Mechanisms Governing Utilization of D-Amino Acids as the Sole Nitrogen Source

    PubMed Central

    Chang, Yun C.; Khanal Lamichhane, Ami; Bradley, James; Rodgers, Laura; Ngamskulrungroj, Popchai; Kwon-Chung, Kyung J.

    2015-01-01

    The ability to grow on media containing certain D-amino acids as a sole nitrogen source is widely utilized to differentiate Cryptococcus gattii from C. neoformans. We used the C. neoformans H99 and C. gattii R265 strains to dissect the mechanisms of D-amino acids utilization. We identified three putative D-amino acid oxidase (DAO) genes in both strains and showed that each DAO gene plays different roles in D-amino acid utilization in each strain. Deletion of DAO2 retarded growth of R265 on eleven D-amino acids suggesting its prominent role on D-amino acid assimilation in R265. All three R265 DAO genes contributed to growth on D-Asn and D-Asp. DAO3 was required for growth and detoxification of D-Glu by both R265 and H99. Although growth of H99 on most D-amino acids was poor, deletion of DAO1 or DAO3 further exacerbated it on four D-amino acids. Overexpression of DAO2 or DAO3 enabled H99 to grow robustly on several D-amino acids suggesting that expression levels of the native DAO genes in H99 were insufficient for growth on D-amino acids. Replacing the H99 DAO2 gene with a single copy of the R265 DAO2 gene also enabled its utilization of several D-amino acids. Results of gene and promoter swaps of the DAO2 genes suggested that enzymatic activity of Dao2 in H99 might be lower compared to the R265 strain. A reduction in virulence was only observed when all DAO genes were deleted in R265 but not in H99 indicating a pathobiologically exclusive role of the DAO genes in R265. These results suggest that C. neoformans and C. gattii divergently evolved in D-amino acid utilization influenced by their major ecological niches. PMID:26132227

  3. A Ric8/Synembryn Homolog Promotes Gpa1 and Gpa2 Activation To Respectively Regulate Cyclic AMP and Pheromone Signaling in Cryptococcus neoformans

    PubMed Central

    Gong, Jinjun; Grodsky, Jacob D.; Zhang, Zhengguang

    2014-01-01

    The G protein α subunits Gpa1, Gpa2, and Gpa3 mediate signal transduction and are important in the growth and virulence of Cryptococcus neoformans. To understand how Gpa1 functions without a conventional Gβ subunit, we characterized a resistance to inhibitors of cholinesterase 8 (Ric8) homolog from C. neoformans, which shares amino acid sequence homology with other Ric8 proteins that exhibit guanine nucleotide exchange factor (GEF) activity toward Gα. We found that the ric8 mutant was reduced in capsule size and melanin formation, which could be suppressed by cyclic AMP (cAMP) supplementation or by introducing the activated GPA1Q284L allele. Consistent with the fact that Ric8 participates in cAMP signaling to regulate virulence, the ric8 mutant was attenuated in virulence toward mice. Interestingly, disruption of RIC8 also resulted in opposing effects on pheromone signaling, as the ric8 mutant showed reduced mating but an enhanced ability to induce the pheromone response in the mating partner. To identify Ric8 functional mechanisms, we examined the interactions between Ric8 and the three Gα proteins. Ric8 interacted with Gpa1 and Gpa2, but not Gpa3. The presence of Gpa1Q284L negatively affected its interaction with Ric8, whereas the activated Gpa2Q203L allele abolished the interaction. Collectively, these findings suggest that Ric8 functions as a GEF to facilitate the activation of Gpa1-cAMP signaling and to promote Gpa2, affecting mating efficiency. Our study highlights the distinct and conserved characteristics associated with G protein signaling and contributes to our overall understanding of how G protein α subunits function with or without a canonical Gβ partner in C. neoformans. PMID:25084863

  4. Th2 but Not Th1 Immune Bias Results in Altered Lung Functions in a Murine Model of Pulmonary Cryptococcus neoformans Infection▿

    PubMed Central

    Jain, Aditya V.; Zhang, Yanmei; Fields, W. Bradley; McNamara, David A.; Choe, Mun Y.; Chen, Gwo-hsiao; Erb-Downward, John; Osterholzer, John J.; Toews, Galen B.; Huffnagle, Gary B.; Olszewski, Michal A.

    2009-01-01

    Changes in airway dynamics have been reported in the rat model of pulmonary cryptococcosis. However, it is not known if Cryptococcus neoformans-induced changes in lung functions are related to the immunophenotype that develops in response to cryptococcal infection in the lungs. In this study we performed a parallel analysis of the immunophenotype and airway resistance (standard resistance of the airways [SRAW]) in BALB/c mice infected with highly virulent C. neoformans strain H99 and moderately virulent strain 52D. H99 infection evoked a Th2 response and was associated with increased SRAW, while the SRAW for 52D infection, which resulted in a predominantly Th1-skewed response, did not differ from the SRAW for uninfected mice. We found that an altered SRAW in mice did not positively or negatively correlate with the pulmonary fungal burden, the magnitude of inflammatory response, the numbers of T cells, eosinophils or eosinophil subsets, neutrophils, or monocytes/macrophages, or the levels of cytokines (interleukin-4 [IL-4], IL-10, gamma interferon, or IL-13) produced by lung leukocytes. However, the level of a systemic Th2 marker, serum immunoglobulin E (IgE), correlated significantly with SRAW, indicating that the changes in lung functions were proportional to the level of Th2 skewing in this model. These data also imply that IgE may contribute to the altered SRAW observed in H99-infected mice. Lung histological analysis revealed severe allergic bronchopulmonary mycosis pathology in H99-infected mice and evidence of protective responses in 52D-infected mice with well-marginalized lesions. Taken together, the data show that C. neoformans can significantly affect airflow physiology, particularly in the context of a Th2 immune response with possible involvement of IgE as an important factor. PMID:19752036

  5. Altered Cholesterol Intracellular Trafficking and the Development of Pathological Hallmarks of Sporadic AD

    PubMed Central

    Chen, Xuesong; Hui, Liang; Soliman, Mahmoud L; Geiger, Jonathan D.

    2014-01-01

    Compared to the rare familial early onset Alzheimer’s disease (AD) that results from gene mutations in AbPP and presenilin-1, the pathogenesis of sporadic AD is much more complex and is believed to result from complex interactions between nutritional, environmental, epigenetic and genetic factors. Among those factors, the presence APOE4 is still the single strongest genetic risk factor for sporadic AD. However, the exact underlying mechanism whereby apoE4 contributes to the pathogenesis of sporadic AD remains unclear. Here, we discuss how altered cholesterol intracellular trafficking as a result of apoE4 might contribute to the development of pathological hallmarks of AD including brain deposition of amyloid beta (Ab), neurofibrillary tangles, and synaptic dysfunction. PMID:25621310

  6. Correlation of natural killer cell activity and clearance of Cryptococcus neoformans from mice after adoptive transfer of splenic nylon wool-nonadherent cells.

    PubMed

    Hidore, M R; Murphy, J W

    1986-02-01

    Previous reports demonstrate that natural killer (NK) cells inhibit the growth of Cryptococcus neoformans in vitro, but conclusive evidence supporting the effectiveness of NK cells in host resistance to cryptococci is not available. The objective of these studies was to assess the ability of NK cells to clear C. neoformans from the lungs, livers, and spleens of infected mice. CBA/J mice were depleted of NK cells, as well as other natural effector cells, by an intraperitoneal injection of cyclophosphamide (Cy), 240 mg/kg of body weight. One day later, 7.5 X 10(7) nylon wool-nonadherent (NWN) spleen cells, either untreated or treated with anti-asialo GM1 and complement to remove NK cells, were adoptively transferred to Cy-pretreated mice. On day 2 after Cy treatment, the mice were injected intravenously with 2 X 10(4) cryptococci. At 4 and 6 days after Cy treatment, tissues were assayed for NK reactivity, using a 4-h 51Cr-release assay, and for in vivo clearance of cryptococci as reflected by mean log10 CFU per organ. We observed that Cy treatment depleted NK activity against YAC-1 targets and reduced in vivo clearance of C. neoformans from the tissues of infected mice. Additionally, Cy treatment depleted the total lung and spleen cellularity and the total number of peripheral blood lymphocytes when compared with those in normal untreated control mice. Also, spleen weights were significantly decreased in comparison with those of untreated animals 4 days after Cy treatment. Adoptive transfer of untreated NWN spleen cells into Cy-depressed mice restored the NK cell activity which correlated with enhanced clearance of cryptococci from lungs, livers, and spleens. In contrast, treatment of NWN spleen cells with anti-asialo GM1 and complement before adoptive transfer abrogated the ability of these cells to restore NK activity or reduce the numbers of cryptococci present in tissues of infected mice. Taken together, these data indicate that NK cells are the cells effective

  7. Polymer physics of intracellular phase transitions

    NASA Astrophysics Data System (ADS)

    Brangwynne, Clifford P.; Tompa, Peter; Pappu, Rohit V.

    2015-11-01

    Intracellular organelles are either membrane-bound vesicles or membrane-less compartments that are made up of proteins and RNA. These organelles play key biological roles, by compartmentalizing the cell to enable spatiotemporal control of biological reactions. Recent studies suggest that membrane-less intracellular compartments are multicomponent viscous liquid droplets that form via phase separation. Proteins that have an intrinsic tendency for being conformationally heterogeneous seem to be the main drivers of liquid-liquid phase separation in the cell. These findings highlight the relevance of classical concepts from the physics of polymeric phase transitions for understanding the assembly of intracellular membrane-less compartments. However, applying these concepts is challenging, given the heteropolymeric nature of protein sequences, the complex intracellular environment, and non-equilibrium features intrinsic to cells. This provides new opportunities for adapting established theories and for the emergence of new physics.

  8. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  9. Axotomy Depletes Intracellular Calcium Stores in Primary Sensory Neurons

    PubMed Central

    Rigaud, Marcel; Gemes, Geza; Weyker, Paul D.; Cruikshank, James M.; Kawano, Takashi; Wu, Hsiang-En; Hogan, Quinn H.

    2010-01-01

    Background The cellular mechanisms of neuropathic pain are inadequately understood. Previous investigations have revealed disrupted Ca2+ signaling in primary sensory neurons after injury. We therefore examined the effect of injury on intracellular Ca2+ stores of the endoplasmic reticulum, which critically regulate the Ca2+ signal and neuronal function. Methods Intracellular Ca2+ levels were measured with Fura-2 or mag-Fura-2 microfluorometry in axotomized fifth lumbar (L5) dorsal root ganglion neurons and adjacent L4 neurons isolated from hyperalgesic rats following L5 spinal nerve ligation, compared to neurons from control animals. Results Endoplasmic reticulum Ca2+ stores released by the ryanodine-receptor agonist caffeine decreased by 46% in axotomized small neurons. This effect persisted in Ca2+-free bath solution that removes the contribution of store-operated membrane Ca2+ channels, and after blockade of both the mitochondrial, sarco-endoplasmic Ca2+-ATPase, and the plasma membrane Ca2+ ATPase pathways. Ca2+ released by the sarco-endoplasmic Ca2+-ATPase blocker thapsigargin and by the Ca2+-ionophore ionomycin was also diminished by 25% and 41%, respectively. In contrast to control neurons, Ca2+ stores in axotomized neurons were not expanded by neuronal activation by K+ depolarization, and the proportionate rate of refilling by sarco-endoplasmic Ca2+-ATPase was normal. Luminal Ca2+ concentration was also reduced by 38% in axotomized neurons in permeabilized neurons. The adjacent neurons of the L4 dorsal root ganglia showed modest and inconsistent changes after L5 spinal nerve ligation. Conclusions Painful nerve injury leads to diminished releasable endoplasmic reticulum Ca2+ stores and a reduced luminal Ca2+ concentration. Depletion of Ca2+ stores may contribute to the pathogenesis of neuropathic pain. PMID:19602958

  10. Mechanisms of Defense against Intracellular Pathogens Mediated by Human Macrophages.

    PubMed

    Bloom, Barry R; Modlin, Robert L

    2016-06-01

    The key question our work has sought to address has been, "What are the necessary and sufficient conditions that engender protection from intracellular pathogens in the human host?" The origins of this work derive from a long-standing interest in the mechanisms of protection against two such paradigmatic intracellular pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, that have brilliantly adapted to the human host. It was obvious that these pathogens, which cause chronic diseases and persist in macrophages, must have acquired subtle strategies to resist host microbicidal mechanisms, yet since the vast majority of individuals infected with M. tuberculosis do not develop disease, there must be some potent human antimicrobial mechanisms. What follows is not a comprehensive review of the vast literature on the role of human macrophages in protection against infectious disease, but a summary of the research in our two laboratories with collaborators that we hope has contributed to some understanding of mechanisms of resistance and pathogenesis. While mouse models revealed some necessary conditions for protection, e.g., innate immunity, Th1 cells and their cytokines, and major histocompatibility complex class I-restricted T cells, here we emphasize multiple antimicrobial mechanisms that exist in human macrophages that differ from those of most experimental animals. Prominent here is the vitamin D-dependent antimicrobial pathway common to human macrophages activated by innate and acquired immune responses, mediated by antimicrobial peptides, e.g., cathelicidin, through an interleukin-15- and interleukin-32-dependent common pathway that is necessary for macrophage killing of M. tuberculosis in vitro. PMID:27337485

  11. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth

    PubMed Central

    Cuomo, Christina A.; Desjardins, Christopher A.; Bakowski, Malina A.; Goldberg, Jonathan; Ma, Amy T.; Becnel, James J.; Didier, Elizabeth S.; Fan, Lin; Heiman, David I.; Levin, Joshua Z.; Young, Sarah; Zeng, Qiandong; Troemel, Emily R.

    2012-01-01

    Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time course of N. parisii infection. Examination of pathogen gene expression revealed compact transcripts and a dramatic takeover of host cells by Nematocida. We also performed phylogenomic analyses of Nematocida and other microsporidian genomes to refine microsporidian phylogeny and identify evolutionary events of gene loss, acquisition, and modification. In particular, we found that all microsporidia lost the tumor-suppressor gene retinoblastoma, which we speculate could accelerate the parasite cell cycle and increase the mutation rate. We also found that microsporidia acquired transporters that could import nucleosides to fuel rapid growth. In addition, microsporidian hexokinases gained secretion signal sequences, and in a functional assay these were sufficient to export proteins out of the cell; thus hexokinase may be targeted into the host cell to reprogram it toward biosynthesis. Similar molecular changes appear during formation of cancer cells and may be evolutionary strategies adopted independently by microsporidia to proliferate rapidly within host cells. Finally, analysis of genome polymorphisms revealed evidence for a sexual cycle that may provide genetic diversity to alleviate problems caused by clonal growth. Together these events may explain the emergence and success of these diverse intracellular parasites. PMID:22813931

  12. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth.

    PubMed

    Cuomo, Christina A; Desjardins, Christopher A; Bakowski, Malina A; Goldberg, Jonathan; Ma, Amy T; Becnel, James J; Didier, Elizabeth S; Fan, Lin; Heiman, David I; Levin, Joshua Z; Young, Sarah; Zeng, Qiandong; Troemel, Emily R

    2012-12-01

    Microsporidia comprise a large phylum of obligate intracellular eukaryotes that are fungal-related parasites responsible for widespread disease, and here we address questions about microsporidia biology and evolution. We sequenced three microsporidian genomes from two species, Nematocida parisii and Nematocida sp1, which are natural pathogens of Caenorhabditis nematodes and provide model systems for studying microsporidian pathogenesis. We performed deep sequencing of transcripts from a time course of N. parisii infection. Examination of pathogen gene expression revealed compact transcripts and a dramatic takeover of host cells by Nematocida. We also performed phylogenomic analyses of Nematocida and other microsporidian genomes to refine microsporidian phylogeny and identify evolutionary events of gene loss, acquisition, and modification. In particular, we found that all microsporidia lost the tumor-suppressor gene retinoblastoma, which we speculate could accelerate the parasite cell cycle and increase the mutation rate. We also found that microsporidia acquired transporters that could import nucleosides to fuel rapid growth. In addition, microsporidian hexokinases gained secretion signal sequences, and in a functional assay these were sufficient to export proteins out of the cell; thus hexokinase may be targeted into the host cell to reprogram it toward biosynthesis. Similar molecular changes appear during formation of cancer cells and may be evolutionary strategies adopted independently by microsporidia to proliferate rapidly within host cells. Finally, analysis of genome polymorphisms revealed evidence for a sexual cycle that may provide genetic diversity to alleviate problems caused by clonal growth. Together these events may explain the emergence and success of these diverse intracellular parasites. PMID:22813931

  13. Molecular Pathogenesis of Infections Caused by Legionella pneumophila

    PubMed Central

    Newton, Hayley J.; Ang, Desmond K. Y.; van Driel, Ian R.; Hartland, Elizabeth L.

    2010-01-01

    Summary: The genus Legionella contains more than 50 species, of which at least 24 have been associated with human infection. The best-characterized member of the genus, Legionella pneumophila, is the major causative agent of Legionnaires' disease, a severe form of acute pneumonia. L. pneumophila is an intracellular pathogen, and as part of its pathogenesis, the bacteria avoid phagolysosome fusion and replicate within alveolar macrophages and epithelial cells in a vacuole that exhibits many characteristics of the endoplasmic reticulum (ER). The formation of the unusual L. pneumophila vacuole is a feature of its interaction with the host, yet the mechanisms by which the bacteria avoid classical endosome fusion and recruit markers of the ER are incompletely understood. Here we review the factors that contribute to the ability of L. pneumophila to infect and replicate in human cells and amoebae with an emphasis on proteins that are secreted by the bacteria into the Legionella vacuole and/or the host cell. Many of these factors undermine eukaryotic trafficking and signaling pathways by acting as functional and, in some cases, structural mimics of eukaryotic proteins. We discuss the consequences of this mimicry for the biology of the infected cell and also for immune responses to L. pneumophila infection. PMID:20375353

  14. A new insight into the pathogenesis of filarial disease.

    PubMed

    Taylor, Mark J

    2002-05-01

    Filariasis is a major public health problem throughout many regions of the tropics. The disease is caused by several species of filarial nematode including Wuchereria bancrofti and Brugia malayi, the agents of lymphatic filariasis, and Onchocerca volvulus, the cause of 'riverblindness'. Disease caused by these worms varies depending on the tissue location of the parasite, and is associated with episodes of acute and chronic inflammation. These pathologies, including elephantiasis and blindness, rank among the most disabling in the world. Studies aimed at characterizing the molecular nature of the inflammatory stimuli derived from filarial nematodes uncovered a long forgotten secret, their symbiont Wolbachia. LPS-like molecules from these intracellular bacteria are responsible for potent inflammatory responses from macrophages and in animal models of filarial disease. Wolbachia has also been associated with severe inflammatory reactions to filarial chemotherapy, being released into the blood following the death of the parasite. Recent studies in animal models even implicate Wolbachia in the onset of lymphodema and blindness. Taken together these studies suggest a major role for Wolbachia in the pathogenesis of filarial disease. It may be possible, through the use of antibiotic therapy, to clear worms of their bacteria, in the hope that this will prevent the onset and development of filarial pathology. PMID:12041732

  15. Clostridium difficile colitis: pathogenesis and host defence.

    PubMed

    Abt, Michael C; McKenney, Peter T; Pamer, Eric G

    2016-10-01

    Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis. PMID:27573580

  16. Design, synthesis, and biological evaluation of aminothiazole derivatives against the fungal pathogens Histoplasma capsulatum and Cryptococcus neoformans

    PubMed Central

    Khalil, Ahmed; Edwards, Jessica A.; Rappleye, Chad A.; Tjarks, Werner

    2014-01-01

    Invasive fungal disease constitutes a growing health burden and development of novel antifungal drugs with high potency and selectivity against new fungal molecular targets are urgently needed. Previously, an aminothiazole derivative, designated as 41F5, was identified in our laboratories as highly active against Histoplasma yeast (MIC50 0.4-0.8 µM) through phenotypic high-throughput screening of a commercial library of 3600 purine mimicking compounds (Edwards, JA et al. Antimicrob. Agents Chemother. 2013, 57:4349-5359). Consequently, 68 analogues of 41F5 were designed and synthesized or obtained from commercial sources and their MIC50s of growth inhibition were evaluated in Histoplasma capsulatum to establish a basic Structure-Activity-Relationship (SAR) for this potentially new class of antifungals. The growth inhibiting potentials of smaller subsets of this library were also evaluated in Cryptococcus neoformans and human hepatocyte HepG2 cells, the latter to obtain Selectivity Indices (SIs). The results indicate that a thiazole core structure with a naphth-1-ylmethyl group at the 5-position and cyclohexylamide-, cyclohexylmethylamide-, or cyclohexylethylamide substituents at the 2-position caused the highest growth inhibition of Histoplasma yeast with MIC50s of 0.4 µM. For these analogues, SIs of 92 - >100 indicated generally low host toxicity. Substitution at the 3- and 4-position decreased antifungal activity. Similarities and differences were observed between Histoplasma and Cryptococcus SARs. For Cryptococcus, the naphth-1-ylmethyl substituent at the 5-position and smaller cyclopentylamide or cyclohexylamide groups at the 2-position were important for activity. In contrast, slightly larger cyclohexylmethyl- and cyclohexylethyl substituents markedly decreased activity. PMID:25543205

  17. Virulence Attributes and Hyphal Growth of C. neoformans Are Quantitative Traits and the MATα Allele Enhances Filamentation

    PubMed Central

    Lin, Xiaorong; Huang, Johnny C; Mitchell, Thomas G; Heitman, Joseph

    2006-01-01

    Cryptococcus neoformans is a fungal human pathogen with a bipolar mating system. It undergoes a dimorphic transition from a unicellular yeast to hyphal filamentous growth during mating and monokaryotic fruiting. The traditional sexual cycle that leads to the production of infectious basidiospores involves cells of both α and a mating type. Monokaryotic fruiting is a modified form of sexual reproduction that involves cells of the same mating type, most commonly α, which is the predominant mating type in both the environment and clinical isolates. However, some a isolates can also undergo monokaryotic fruiting. To determine whether mating type and other genetic loci contribute to the differences in fruiting observed between α and a cells, we applied quantitative trait loci (QTL) mapping to an inbred population of F2 progeny. We discovered that variation in hyphal length produced during fruiting is a quantitative trait resulting from the combined effects of multiple genetic loci, including the mating type (MAT) locus. Importantly, the α allele of the MAT locus enhanced hyphal growth compared with the a allele. Other virulence traits, including melanization and growth at 39 °C, also are quantitative traits that share a common QTL with hyphal growth. The Mac1 transcription factor, encoded in this common QTL, regulates copper homeostasis. MAC1 allelic differences contribute to phenotypic variation, and mac1Δ mutants exhibit defects in filamentation, melanin production, and high temperature growth. Further characterization of these QTL regions will reveal additional quantitative trait genes controlling biological processes central to fungal development and pathogenicity. PMID:17112316

  18. Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence.

    PubMed

    Almirón, M; Martínez, M; Sanjuan, N; Ugalde, R A

    2001-10-01

    Brucella spp. are pathogenic bacteria that cause brucellosis, an animal disease which can also affect humans. Although understanding the pathogenesis is important for the health of animals and humans, little is known about virulence factors associated with it. In order for chronic disease to be established, Brucella spp. have developed the ability to survive inside phagocytes by evading cell defenses. It hides inside vacuoles, where it then replicates, indicating that it has an active metabolism. The purpose of this work was to obtain better insight into the intracellular metabolism of Brucella abortus. During a B. abortus genomic sequencing project, a clone coding a putative gene homologous to hemH was identified and sequenced. The amino acid sequence revealed high homology to members of the ferrochelatase family. A knockout mutant displayed auxotrophy for hemin, defective intracellular survival inside J774 and HeLa cells, and lack of virulence in BALB/c mice. This phenotype was overcome by complementing the mutant strain with a plasmid harboring wild-type hemH. These data demonstrate that B. abortus synthesizes its own heme and also has the ability to use an external source of heme; however, inside cells, there is not enough available heme to support its intracellular metabolism. It is concluded that ferrochelatase is essential for the multiplication and intracellular survival of B. abortus and thus for the establishment of chronic disease as well. PMID:11553564

  19. Ferrochelatase Is Present in Brucella abortus and Is Critical for Its Intracellular Survival and Virulence

    PubMed Central

    Almirón, Marta; Martínez, Marcela; Sanjuan, Norberto; Ugalde, Rodolfo A.

    2001-01-01

    Brucella spp. are pathogenic bacteria that cause brucellosis, an animal disease which can also affect humans. Although understanding the pathogenesis is important for the health of animals and humans, little is known about virulence factors associated with it. In order for chronic disease to be established, Brucella spp. have developed the ability to survive inside phagocytes by evading cell defenses. It hides inside vacuoles, where it then replicates, indicating that it has an active metabolism. The purpose of this work was to obtain better insight into the intracellular metabolism of Brucella abortus. During a B. abortus genomic sequencing project, a clone coding a putative gene homologous to hemH was identified and sequenced. The amino acid sequence revealed high homology to members of the ferrochelatase family. A knockout mutant displayed auxotrophy for hemin, defective intracellular survival inside J774 and HeLa cells, and lack of virulence in BALB/c mice. This phenotype was overcome by complementing the mutant strain with a plasmid harboring wild-type hemH. These data demonstrate that B. abortus synthesizes its own heme and also has the ability to use an external source of heme; however, inside cells, there is not enough available heme to support its intracellular metabolism. It is concluded that ferrochelatase is essential for the multiplication and intracellular survival of B. abortus and thus for the establishment of chronic disease as well. PMID:11553564

  20. Depletion of Rab32 decreases intracellular lipid accumulation and induces lipolysis through enhancing ATGL expression in hepatocytes.

    PubMed

    Li, Qing; Wang, Jun; Wan, Ying; Chen, Dongfeng

    2016-03-18

    Nonalcoholic fatty liver disease (NAFLD) is a disease caused by the accumulation of lipids in hepatocytes. To date, however, the pathogenesis of NAFLD is still unclear. Recent studies have shown that Rab GTPases, a major protein family in vesicle trafficking, are associated with intracellular lipid accumulation. Here, we show that Rab32, the only Rab GTPase located in mitochondria, participates in hepatic steatosis. Ablation of Rab32 can decrease intracellular lipid accumulation in hepatocytes (HepG2, L02). Further studying the possible mechanism, we found that knockdown of Rab32 can enhance lipolysis instead of lipogenesis via inducing the expression of adipose triglyceride lipase (ATGL), a key enzyme on the surface of lipid droplets which has been proved to be significant in controlling intracellular lipid accumulation. Co-immunoprecipitation shows that Rab32 and ATGL are not directly associated. These findings suggest that knockdown of Rab32 indirectly affects lipolysis through increasing the expression of ATGL. Taken together, our study reveals that Rab32 can participate in regulating intracellular lipid accumulation and that knockdown of Rab32 can decrease intracellular lipid accumulation in hepatocytes. We also demonstrated that ablation of Rab32 can induce intracellular lipolysis by enhancing the expression of ATGL. PMID:26882978

  1. Pathogenesis of Burkholderia pseudomallei and Burkholderia mallei.

    PubMed

    Larsen, Joseph C; Johnson, Nathan H

    2009-06-01

    Burkholderia pseudomallei and mallei are biological agents of military significance. There has been significant research in recent years to develop medical countermeasures for these organisms. This review summarizes work which details aspects of the pathogenesis of B. pseudomallei and mallei and discusses key scientific questions and directions for future research. PMID:19585782

  2. Osteoporosis in liver disease: pathogenesis and management

    PubMed Central

    Handzlik-Orlik, Gabriela; Holecki, Michał; Wilczyński, Krzysztof; Duława, Jan

    2016-01-01

    Osteoporosis affects a substantial proportion of patients with chronic liver disease. Pathologic fracture in osteoporosis significantly affects quality of life and life expectancy. By some estimates, 40% of patients with chronic liver disease may experience osteoporotic fracture. In this study we review the pathogenesis, diagnosis and treatment of specific liver disease entities and their relation to osteoporosis. PMID:27293541

  3. Genomic analysis of aspergillus flavus pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus and Fusarium verticillioides colonize developing maize seeds and contaminate them with mycotoxins. Maize genotypes differ in resistance to these fungi, but incorporation of adequate resistance into desirable hybrids has been challenging.Little is known about pathogenesis of seeds...

  4. Pathogenesis of Machupo virus infection in primates*

    PubMed Central

    Eddy, G. A.; Scott, S. K.; Wagner, F. S.; Brand, O. M.

    1975-01-01

    Experimental Machupo virus infection of rhesus and cynomolgus monkeys produced a severe illness consisting of an initial clinical phase and a later neurological phase. Cumulative mortality during the two phases was 80% and 95% respectively. Attempts to alter the pathogenesis with decomplementation or immunosuppression resulted in earlier deaths of the monkeys. PMID:182402

  5. Autoimmune Pathogenesis of Chagas Heart Disease

    PubMed Central

    Bonney, Kevin M.; Engman, David M.

    2016-01-01

    Chagas heart disease is an inflammatory cardiomyopathy that develops in approximately one-third of individuals infected with the protozoan parasite Trypanosoma cruzi. Since the discovery of T. cruzi by Carlos Chagas >100 years ago, much has been learned about Chagas disease pathogenesis; however, the outcome of T. cruzi infection is highly variable and difficult to predict. Many mechanisms have been proposed to promote tissue inflammation, but the determinants and the relative importance of each have yet to be fully elucidated. The notion that some factor other than the parasite significantly contributes to the development of myocarditis was hypothesized by the first physician-scientists who noted the conspicuous absence of parasites in the hearts of those who succumbed to Chagas disease. One of these factors—autoimmunity—has been extensively studied for more than half a century. Although questions regarding the functional role of autoimmunity in the pathogenesis of Chagas disease remain unanswered, the development of autoimmune responses during infection clearly occurs in some individuals, and the implications that this autoimmunity may be pathogenic are significant. In this review, we summarize what is known about the pathogenesis of Chagas heart disease and conclude with a view of the future of Chagas disease diagnosis, pathogenesis, therapy, and prevention, emphasizing recent advances in these areas that aid in the management of Chagas disease. PMID:25857229

  6. Psoriasis: Pathogenesis, Assessment, and Therapeutic Update.

    PubMed

    Schleicher, Stephen M

    2016-07-01

    Psoriasis is a chronic condition that affects more than 7 million Americans. This article explores the pathogenesis and physical signs of psoriasis. Over the past 2 decades enhanced understanding of the immunologic basis of psoriasis has led to the development of new systemic agents that have revolutionized the management of this disease, and these modalities, along with traditional therapies, are described. PMID:27215156

  7. Autophagy Induced by Intracellular Infection of Propionibacterium acnes

    PubMed Central

    Nakamura, Teruko; Furukawa, Asuka; Uchida, Keisuke; Ogawa, Tomohisa; Tamura, Tomoki; Sakonishi, Daisuke; Wada, Yuriko; Suzuki, Yoshimi; Ishige, Yuki; Minami, Junko; Akashi, Takumi

    2016-01-01

    Background Sarcoidosis is caused by Th1-type immune responses to unknown agents, and is linked to the infectious agent Propionibacterium acnes. Many strains of P. acnes isolated from sarcoid lesions cause intracellular infection and autophagy may contribute to the pathogenesis of sarcoidosis. We examined whether P. acnes induces autophagy. Methods Three cell lines from macrophages (Raw264.7), mesenchymal cells (MEF), and epithelial cells (HeLa) were infected by viable or heat-killed P. acnes (clinical isolate from sarcoid lymph node) at a multiplicity of infection (MOI) of 100 or 1000 for 1 h. Extracellular bacteria were killed by washing and culturing infected cells with antibiotics. Samples were examined by colony assay, electron-microscopy, and fluorescence-microscopy with anti-LC3 and anti-LAMP1 antibodies. Autophagy-deficient (Atg5-/-) MEF cells were also used. Results Small and large (≥5 μm in diameter) LC3-positive vacuoles containing few or many P. acnes cells (LC3-positive P. acnes) were frequently found in the three cell lines when infected by viable P. acnes at MOI 1000. LC3-positive large vacuoles were mostly LAMP1-positive. A few small LC3-positive/LAMP1-negative vacuoles were consistently observed in some infected cells for 24 h postinfection. The number of LC3-positive P. acnes was decreased at MOI 100 and completely abolished when heat-killed P. acnes was used. LC3-positive P. acnes was not found in autophagy-deficient Atg5-/- cells where the rate of infection was 25.3 and 17.6 times greater than that in wild-type Atg5+/+ cells at 48 h postinfection at MOI 100 and 1000, respectively. Electron-microscopic examination revealed bacterial cells surrounded mostly by a single-membrane including the large vacuoles and sometimes a double or multi-layered membrane, with occasional undigested bacterial cells in ruptured late endosomes or in the cytoplasm. Conclusion Autophagy was induced by intracellular P. acnes infection and contributed to intracellular

  8. Interaction of Caveolin-3 and HCN is involved in the pathogenesis of diabetic cystopathy

    PubMed Central

    Dong, Xingyou; Song, Qixiang; Zhu, Jingzhen; Zhao, Jiang; Liu, Qian; Zhang, Teng; Long, Zhou; Li, Jia; Wu, Chao; Wang, Qingqing; Hu, Xiaoyan; Damaser, Margot; Li, Longkun

    2016-01-01

    A growing body of research suggests that impaired bladder Cajal-like interstitial cells (ICCs) are a important component in the pathogenesis of diabetes-induced bladder dysfunction, although the molecular mechanisms have not been illustrated completely. The purpose of this study was to examine whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in ICCs-DM were responsible for the detrusor weak contractility of Diabetic cystopathy (DCP) and to study the possible mechanism of regulating the expression and function of HCN channels. HCN channels expression were decreased at the mRNA and protein levels. Forskolin (FSK), which can elevate intracellular cAMP levels, increased the density of the hyperpolarization-activated current and intracellular calcium concentration in both normal control (NC) rats and DCP rats, but the sensitivity of FSK on HCN channels was clearly down-regulated in DCP rats. The loss of caveolae and caveolin was in accordance with the decrease in HCN channels. Caveolin-3 co-localizes with and affects the expression and function of HCN. Taken together, these results indicate that the loss of caveolae and HCN channels in ICCs-DM is important in the pathogenesis of DCP. Increasing the number of caveolae to enhance the function of HCN channels may represent a viable target for the pharmacological treatment of DCP. PMID:27122250

  9. Hepatitis E: Molecular Virology and Pathogenesis

    PubMed Central

    Panda, Subrat K.; Varma, Satya P.K.

    2013-01-01

    Hepatitis E virus is a single, positive-sense, capped and poly A tailed RNA virus classified under the family Hepeviridae. Enteric transmission, acute self-limiting hepatitis, frequent epidemic and sporadic occurrence, high mortality in affected pregnants are hallmarks of hepatitis E infection. Lack of an efficient culture system and resulting reductionist approaches for the study of replication and pathogenesis of HEV made it to be a less understood agent. Early studies on animal models, sub-genomic expression of open reading frames (ORF) and infectious cDNA clones have helped in elucidating the genome organization, important stages in HEV replication and pathogenesis. The genome contains three ORF's and three untranslated regions (UTR). The 5′ distal ORF, ORF1 is translated by host ribosomes in a cap dependent manner to form the non-structural polyprotein including the viral replicase. HEV replicates via a negative-sense RNA intermediate which helps in the formation of the positive-sense genomic RNA and a single bi-cistronic sub-genomic RNA. The 3′ distal ORF's including the major structural protein pORF2 and the multifunctional host interacting protein pORF3 are translated from the sub-genomic RNA. Pathogenesis in HEV infections is not well articulated, and remains a concern due to the many aspects like host dependent and genotype specific variations. Animal HEV, zoonosis, chronicity in immunosuppressed patients, and rapid decompensation in affected chronic liver diseased patients warrants detailed investigation of the underlying pathogenesis. Recent advances about structure, entry, egress and functional characterization of ORF1 domains has furthered our understanding about HEV. This article is an effort to review our present understanding about molecular biology and pathogenesis of HEV. PMID:25755485

  10. Synthesis of a Glucuronic Acid-Containing Thioglycoside Trisaccharide Building Block and Its Use in the Assembly of Cryptococcus Neoformans Capsular Polysaccharide Fragments.

    PubMed

    Guazzelli, Lorenzo; Ulc, Rebecca; Oscarson, Stefan

    2015-12-01

    As part of an ongoing project aimed at identifying protective capsular polysaccharide epitopes for the development of vaccine candidates against the fungal pathogen Cryptococcus neoformans, the synthesis and glycosylation properties of a naphthalenylmethyl (NAP) orthogonally protected trisaccharide thioglycoside, a common building block for construction of serotype B and C capsular polysaccharide structures, were investigated. Ethyl (benzyl 2,3,4-tri-O-benzyl-β-d-glucopyranosyl- uronate)-(1→2)-[2,3,4-tri-O-benzyl-β-d-xylopyranosyl-(1→4)]-6-O-benzyl-3-O-(2-naphthalenylmethyl)-1-thio-α-d-mannopyranoside was prepared and used both as a donor and an acceptor in glycosylation reactions to obtain spacer equipped hexa- and heptasaccharide structures suitable either for continued elongation or for deprotection and printing onto a glycan array or conjugation to a carrier protein. The glycosylation reactions proceeded with high yields and α-selectivity, proving the viability of the building block approach also for construction of 4-O-xylosyl-containing C. neoformans CPS structures. PMID:27308199

  11. Cryptococcus neoformans Yop1, an ER curvature-stabilizing protein, participates with Sey1 in influencing fluconazole-induced disomy formation

    PubMed Central

    Ngamskulrungroj, Popchai; Chang, Yun; Hansen, Bryan; Bugge, Cliff; Fischer, Elizabeth; Kwon-Chung, Kyung J.

    2012-01-01

    Cryptococcus neoformans, an opportunistic fungal pathogen, manifests an intrinsic adaptive mechanism of resistance toward fluconazole (FLC) termed heteroresistance. Heteroresistance is characterized by the emergence of minor resistant subpopulations at levels of FLC that are higher than the strain’s minimum inhibitory concentration. The heteroresistant clones that tolerate high concentrations of FLC often contain disomic chromosome 4 (Chr4). SEY1, GLO3 and GCS2 on Chr4 are responsible for ER integrity and important for Chr4 disomy formation under FLC stress. We sought an evidence of a direct relationship between ER morphology and Chr4 disomy formation. Deletion of the YOP1 gene on Chr7, which encodes an ER curvature-stabilizing protein that interacts with Sey1, perturbed ER morphology without affecting FLC susceptibility or the frequency of FLC-induced disomies. However, deletion of both YOP1 and SEY1, not only perturbed ER morphology more severely than in sey1Δ or yop1Δ strains but also abrogated the FLC-induced disomy. Although the heteroresistance phenotype was retained in the sey1Δyop1Δ strains, tolerance to FLC appeared to have resulted not from chromosome duplication but from gene amplification restricted to the region surrounding ERG11 on Chr1. These data support the importance of ER integrity in C. neoformans for the formation of disomy under FLC stress. PMID:22731401

  12. KRE genes are required for β-1,6-glucan synthesis, maintenance of capsule architecture and cell wall protein anchoring in Cryptococcus neoformans

    PubMed Central

    Gilbert, Nicole M.; Donlin, Maureen J.; Gerik, Kimberly J.; Specht, Charles A.; Djordjevic, Julianne T.; Wilson, Christabel F.; Sorrell, Tania C.; Lodge, Jennifer K.

    2010-01-01

    Summary The polysaccharide β-1,6-glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β-1,6-glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β-1,6-glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI-anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β-1,6-glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer. PMID:20384682

  13. Synthesis of a Glucuronic Acid‐Containing Thioglycoside Trisaccharide Building Block and Its Use in the Assembly of Cryptococcus Neoformans Capsular Polysaccharide Fragments†

    PubMed Central

    Guazzelli, Lorenzo; Ulc, Rebecca

    2015-01-01

    Abstract As part of an ongoing project aimed at identifying protective capsular polysaccharide epitopes for the development of vaccine candidates against the fungal pathogen Cryptococcus neoformans, the synthesis and glycosylation properties of a naphthalenylmethyl (NAP) orthogonally protected trisaccharide thioglycoside, a common building block for construction of serotype B and C capsular polysaccharide structures, were investigated. Ethyl (benzyl 2,3,4‐tri‐O‐benzyl‐β‐d‐glucopyranosyl‐ uronate)‐(1→2)‐[2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl‐(1→4)]‐6‐O‐benzyl‐3‐O‐(2‐naphthalenylmethyl)‐1‐thio‐α‐d‐mannopyranoside was prepared and used both as a donor and an acceptor in glycosylation reactions to obtain spacer equipped hexa‐ and heptasaccharide structures suitable either for continued elongation or for deprotection and printing onto a glycan array or conjugation to a carrier protein. The glycosylation reactions proceeded with high yields and α‐selectivity, proving the viability of the building block approach also for construction of 4‐O‐xylosyl‐containing C. neoformans CPS structures. PMID:27308199

  14. Noncanoncial signal recognition particle RNAs in a major eukaryotic phylum revealed by purification of SRP from the human pathogen Cryptococcus neoformans

    PubMed Central

    Dumesic, Phillip A.; Rosenblad, Magnus A.; Samuelsson, Tore; Nguyen, Tiffany; Moresco, James J.; Yates, John R.; Madhani, Hiten D.

    2015-01-01

    Despite conservation of the signal recognition particle (SRP) from bacteria to man, computational approaches have failed to identify SRP components from genomes of many lower eukaryotes, raising the possibility that they have been lost or altered in those lineages. We report purification and analysis of SRP in the human pathogen Cryptococcus neoformans, providing the first description of SRP in basidiomycetous yeast. The C. neoformans SRP RNA displays a predicted structure in which the universally conserved helix 8 contains an unprecedented stem-loop insertion. Guided by this sequence, we computationally identified 152 SRP RNAs throughout the phylum Basidiomycota. This analysis revealed additional helix 8 alterations including single and double stem-loop insertions as well as loop diminutions affecting RNA structural elements that are otherwise conserved from bacteria to man. Strikingly, these SRP RNA features in Basidiomycota are accompanied by phylum-specific alterations in the RNA-binding domain of Srp54, the SRP protein subunit that directly interacts with helix 8. Our findings reveal unexpected fungal SRP diversity and suggest coevolution of the two most conserved SRP features—SRP RNA helix 8 and Srp54—in basidiomycetes. Because members of this phylum include important human and plant pathogens, these noncanonical features provide new targets for antifungal compound development. PMID:26275773

  15. GABAAergic stimulation modulates intracellular protein arginine methylation.

    PubMed

    Denman, Robert B; Xie, Wen; Merz, George; Sung, Ying-Ju

    2014-06-20

    Changes in cytoplasmic pH are known to regulate diverse cellular processes and influence neuronal activities. In neurons, the intracellular alkalization is shown to occur after stimulating several channels and receptors. For example, it has previously demonstrated in P19 neurons that a sustained intracellular alkalinization can be mediated by the Na(+)/H(+) antiporter. In addition, the benzodiazepine binding subtypes of the γ-amino butyric acid type A (GABAA) receptor mediate a transient intracellular alkalinization when they are stimulated. Because the activities of many enzymes are sensitive to pH shift, here we investigate the effects of intracellular pH modulation resulted from stimulating GABAA receptor on the protein arginine methyltransferases (PRMT) activities. We show that the major benzodiazepine subtype (2α1, 2β2, 1γ2) is constitutively expressed in both undifferentiated P19 cells and retinoic acid (RA) differentiated P19 neurons. Furthermore stimulation with diazepam and, diazepam plus muscimol produce an intracellular alkalinization that can be detected ex vivo with the fluorescence dye. The alkalinization results in significant perturbation in protein arginine methylation activity as measured in methylation assays with specific protein substrates. Altered protein arginine methylation is also observed when cells are treated with the GABAA agonist muscimol but not an antagonist, bicuculline. These data suggest that pH-dependent and pH-independent methylation pathways can be activated by GABAAergic stimulation, which we verified using hippocampal slice preparations from a mouse model of fragile X syndrome. PMID:24793772

  16. Chemical development of intracellular protein heterodimerizers.

    PubMed

    Erhart, Dominik; Zimmermann, Mirjam; Jacques, Olivier; Wittwer, Matthias B; Ernst, Beat; Constable, Edwin; Zvelebil, Marketa; Beaufils, Florent; Wymann, Matthias P

    2013-04-18

    Cell activation initiated by receptor ligands or oncogenes triggers complex and convoluted intracellular signaling. Techniques initiating signals at defined starting points and cellular locations are attractive to elucidate the output of selected pathways. Here, we present the development and validation of a protein heterodimerization system based on small molecules cross-linking fusion proteins derived from HaloTags and SNAP-tags. Chemical dimerizers of HaloTag and SNAP-tag (HaXS) show excellent selectivity and have been optimized for intracellular reactivity. HaXS force protein-protein interactions and can translocate proteins to various cellular compartments. Due to the covalent nature of the HaloTag-HaXS-SNAP-tag complex, intracellular dimerization can be easily monitored. First applications include protein targeting to cytoskeleton, to the plasma membrane, to lysosomes, the initiation of the PI3K/mTOR pathway, and multiplexed protein complex formation in combination with the rapamycin dimerization system. PMID:23601644

  17. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  18. Endosomal escape: a bottleneck in intracellular delivery.

    PubMed

    Shete, Harshad K; Prabhu, Rashmi H; Patravale, Vandana B

    2014-01-01

    With advances in therapeutic science, apart from drugs, newer bioactive moieties like oligonucleotides, proteins, peptides, enzymes and antibodies are constantly being introduced for the betterment of therapeutic efficacy. These moieties have intracellular components of the cells like cytoplasm and nucleus as one of their pharmacological sites for exhibiting therapeutic activity. Despite their promising efficacy, their intracellular bioavailability has been critically hampered leading to failure in the treatment of numerous diseases and disorders. The endosomal uptake pathway is known to be a rate-limiting barrier for such systems. Bioactive molecules get trapped in the endosomal vesicles and degraded in the lysosomal compartment, necessitating the need for effective strategies that facilitate the endosomal escape and enhance the cytosolic bioavailability of bioactives. Microbes like viruses and bacteria have developed their innate mechanistic tactics to translocate their genome and toxins by efficiently penetrating the host cell membrane. Understanding this mechanism and exploring it further for intracellular delivery has opened new avenues to surmount the endosomal barrier. These strategies include membrane fusion, pore formation and proton sponge effects. On the other hand, progress in designing a novel smart polymeric carrier system that triggers endosomal escape by undergoing modulations in the intracellular milieu has further led to an improvement in intracellular delivery. These comprise pH, enzyme and temperature-induced modulators, synthetic cationic lipids and photo-induced physical disruption. Each of the aforementioned strategies has its own unique mechanism to escape the endosome. This review recapitulates the numerous strategies designed to surmount the bottleneck of endosomal escape and thereby achieve successful intracellular uptake of bioactives. PMID:24730275

  19. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments

    PubMed Central

    Keravis, Thérèse; Lugnier, Claire

    2012-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) that specifically inactivate the intracellular messengers cAMP and cGMP in a compartmentalized manner represent an important enzyme class constituted by 11 gene-related families of isozymes (PDE1 to PDE11). Downstream receptors, PDEs play a major role in controlling the signalosome at various levels of phosphorylations and protein/protein interactions. Due to the multiplicity of isozymes, their various intracellular regulations and their different cellular and subcellular distributions, PDEs represent interesting targets in intracellular pathways. Therefore, the investigation of PDE isozyme alterations related to various pathologies and the design of specific PDE inhibitors might lead to the development of new specific therapeutic strategies in numerous pathologies. This manuscript (i) overviews the different PDEs including their endogenous regulations and their specific inhibitors; (ii) analyses the intracellular implications of PDEs in regulating signalling cascades in pathogenesis, exemplified by two diseases affecting cell cycle and proliferation; and (iii) discusses perspectives for future therapeutic developments. PMID:22014080

  20. Mitochondrial toxic effects of Aβ through mitofusins in the early pathogenesis of Alzheimer's disease.

    PubMed

    Wu, Zhaofei; Zhu, Yushan; Cao, Xingshui; Sun, Shufeng; Zhao, Baolu

    2014-12-01

    Mitochondrial dysfunction has been implicated in the pathogenesis of Alzheimer's disease (AD). However, it is obscure how amyloid-beta (Aβ) can impair mitochondria in the early stage of AD pathology. Using PrP-hAPP/hPS1 double-transgenic AD mouse model, we find that abnormal mitochondrial morphology and damaged mitochondrial structure in hippocampal neurons appear in the early stage of AD-like disease development. We also find consistent mitochondrial abnormalities in the SH-SY5Y cells, which express amyloid precursor protein (APP) Swedish mutation (APPsw) and have been used as a cell model of the early-onset AD. Significant changes of mitofusin GTPases (Mfn1 and Mfn2) were detected both in the PrP-hAPP/hPS1 brains and SH-SY5Y cells. Moreover, our results show that Aβ accumulation in neurons of PrP-hAPP/hPS1 mice can affect the neurogenesis prior to plaque formation. These findings suggest that mitochondrial impairment is a very early event in AD pathogenesis and abnormal expression of Mfn1 and Mfn2 caused by excessive intracellular Aβ is the possible molecular mechanism. Interestingly, L-theanine has significant effects on regulating mitochondrial fusion proteins in SH-SY5Y (APPsw) cells. Overall, our results not only suggest a new early mechanism of AD pathogenesis but also propose a preventive candidate, L-theanine, for the treatment of AD. PMID:24710686

  1. Multiplexed imaging of intracellular protein networks.

    PubMed

    Grecco, Hernán E; Imtiaz, Sarah; Zamir, Eli

    2016-08-01

    Cellular functions emerge from the collective action of a large number of different proteins. Understanding how these protein networks operate requires monitoring their components in intact cells. Due to intercellular and intracellular molecular variability, it is important to monitor simultaneously multiple components at high spatiotemporal resolution. However, inherent trade-offs narrow the boundaries of achievable multiplexed imaging. Pushing these boundaries is essential for a better understanding of cellular processes. Here the motivations, challenges and approaches for multiplexed imaging of intracellular protein networks are discussed. © 2016 International Society for Advancement of Cytometry. PMID:27183498

  2. Peroxisome is a reservoir of intracellular calcium.

    PubMed

    Raychaudhury, Bikramjit; Gupta, Shreedhara; Banerjee, Shouvik; Datta, Salil C

    2006-07-01

    We have examined fura 2-loaded purified peroxisomes under confocal microscope to prove that this mammalian organelle is a store of intracellular calcium pool. Presence of calcium channel and vanadate sensitive Ca(2+)-ATPase in the purified peroxisomal membrane has been demonstrated. We have further observed that machineries to maintain calcium pool in this mammalian organelle are impaired during infection caused by Leishmania donovani. Results reveal that peroxisomes have a merit to play a significant role in the metabolism of intracellular calcium. PMID:16713100

  3. Pathology and pathogenesis of Buerger's disease.

    PubMed

    Tanaka, K

    1998-10-01

    Since Buerger's disease, which is also called 'thromboangiitis obliterans', was proposed in 1908 (Buerger, Am J Med Soc 1908;136:567), more cases have been reported from the United States, Europe, and especially from the Orient. However the pathogenesis of this disease remains unclarified, and its acceptance as a specific disease entity has been disputed (Gore and Burrows, Am J Clin Pathol 1958;29:319; Wessler et al., N Engl J Med 1960;262:1149). We histologically examined the surgically resected arterial specimens from 113 cases, 109 males and four females, clinically diagnosed as Buerger's disease in 1975-1976 and reported the results in 1978 (Kurozumi and Tanaka, Vasc Surg 1978;12:63) and proposed that the term 'Buerger's disease' should be replaced by 'Buerger's syndrome'. We reexamined the above-mentioned cases and will report the pathology and propose the possible pathogenesis of Buerger's disease. PMID:9951825

  4. The epigenetic paradigm in periodontitis pathogenesis

    PubMed Central

    Lavu, Vamsi; Venkatesan, Vettriselvi; Rao, Suresh Ranga

    2015-01-01

    Epigenome refers to “epi” meaning outside the “genome.” Epigenetics is the field of study of the epigenome. Epigenetic modifications include changes in the promoter CpG Islands, modifications of histone protein structure, posttranslational repression by micro-RNA which contributes to the alteration of gene expression. Epigenetics provides an understanding of the role of gene-environment interactions on disease phenotype especially in complex multifactorial diseases. Periodontitis is a chronic inflammatory disorder that affects the supporting structures of the tooth. The role of the genome (in terms of genetic polymorphisms) in periodontitis pathogenesis has been examined in numerous studies, and chronic periodontitis has been established as a polygenic disorder. The potential role of epigenetic modifications in the various facets of pathogenesis of periodontitis is discussed in this paper based on the available literature. PMID:26015662

  5. [Research Advances on Pathogenesis of Myelodysplastic Syndrome].

    PubMed

    Xu, Ming; Lu, Jia-Hui

    2015-12-01

    Myelodysplastic syndrome (MDS) is a clonal marrow stem cell disorder, characterized by ineffective haemopoiesis leading to blood cytopenias. As a disease of grey zone, along with the development of research, the exploration on its pathogenesis have been shifted from molecular genetics and the feature of immunophenotype to the epigenetic and micro environment. But at present, the pathogenesis of MDS is still not clear, the research of the molecular genetics and immunophenotype can not meet the needs of experimental and clinical application any longer. The hematopoietic stem cells, cytokines, epigenetic studies, however, have made a lot of achievements. Targeted medicine such as azacitidine and decitabine had promising response in treating MDS patients. In this article the abnormality of stromal cells, cytokines and epigenetic changes in hematopoietic microenvironment of MDS are reviewed in order to optimize the monitoring MDS progress and guide its clinical medication strategy. PMID:26708914

  6. Autophagy in the pathogenesis of ankylosing spondylitis.

    PubMed

    Ciccia, Francesco; Haroon, Nigil

    2016-06-01

    The pathogenesis of ankylosing spondylitis (AS) is not well understood, and treatment options have met with limited success. Autophagy is a highly conserved mechanism of controlled digestion of damaged organelles within a cell. It helps in the maintenance of cellular homeostasis. The process of autophagy requires the formation of an isolation membrane. They form double-membraned vesicles called "autophagosomes" that engulf a portion of the cytoplasm. Beyond the role in maintenance of cellular homeostasis, autophagy has been demonstrated as one of the most remarkable tools employed by the host cellular defense against bacteria invasion. Autophagy also affects the immune system and thus is implicated in several rheumatic disease processes. In this article, we explore the potential role of autophagy in the pathogenesis of AS. PMID:27075464

  7. Acne Scars: Pathogenesis, Classification and Treatment

    PubMed Central

    Fabbrocini, Gabriella; Annunziata, M. C.; D'Arco, V.; De Vita, V.; Lodi, G.; Mauriello, M. C.; Pastore, F.; Monfrecola, G.

    2010-01-01

    Acne has a prevalence of over 90% among adolescents and persists into adulthood in approximately 12%–14% of cases with psychological and social implications. Possible outcomes of the inflammatory acne lesions are acne scars which, although they can be treated in a number of ways, may have a negative psychological impact on social life and relationships. The main types of acne scars are atrophic and hypertrophic scars. The pathogenesis of acne scarring is still not fully understood, but several hypotheses have been proposed. There are numerous treatments: chemical peels, dermabrasion/microdermabrasion, laser treatment, punch techniques, dermal grafting, needling and combined therapies for atrophic scars: silicone gels, intralesional steroid therapy, cryotherapy, and surgery for hypertrophic and keloidal lesions. This paper summarizes acne scar pathogenesis, classification and treatment options. PMID:20981308

  8. Lupus anticoagulants: pathogenesis and laboratory diagnosis.

    PubMed

    Court, E L

    1997-12-01

    The pathogenesis of the lupus anticoagulant (LA) has been the focus of much research over the past decade, and a plethora of laboratory tests have been developed to detect it. This essay reviews the nature of LA and its pathogenesis, and a number of approaches employed in its diagnosis. These range from well established tests such as the kaolin clotting time (KCT), activated partial thromboplastin time (APTT) and tissue thromboplastin inhibition test (TTI), to the 'newer' tests such as the dilute Russell's viper venom time (DRVVT) and more recent snake venom tests such as the textarin/ecarin ratio and Taipan snake venom time (TSVT). The criteria for diagnosis are discussed, including pre-analytical variables such as sample preparation, and the effects of therapeutic anticoagulants used to treat thrombotic manifestations of the syndrome or an underlying disease process. PMID:9624740

  9. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis

    PubMed Central

    Dagenais, Taylor R. T.; Keller, Nancy P.

    2009-01-01

    Summary: Aspergillus species are globally ubiquitous saprophytes found in a variety of ecological niches. Almost 200 species of aspergilli have been identified, less than 20 of which are known to cause human disease. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis (IA) in the immunocompromised patient population. IA is a devastating illness, with mortality rates in some patient groups reaching as high as 90%. Studies identifying and assessing the roles of specific factors of A. fumigatus that contribute to the pathogenesis of IA have traditionally focused on single-gene deletion and mutant characterization. In combination with recent large-scale approaches analyzing global fungal responses to distinct environmental or host conditions, these studies have identified many factors that contribute to the overall pathogenic potential of A. fumigatus. Here, we provide an overview of the significant findings regarding A. fumigatus pathogenesis as it pertains to invasive disease. PMID:19597008

  10. Vaccines, reverse vaccinology, and bacterial pathogenesis.

    PubMed

    Delany, Isabel; Rappuoli, Rino; Seib, Kate L

    2013-05-01

    Advances in genomics and innovative strategies such as reverse vaccinology have changed the concepts and approaches to vaccine candidate selection and design. Genome mining and blind selection of novel antigens provide a novel route to investigate the mechanisms that underpin pathogenesis. The resulting lists of novel candidates are revealing new aspects of pathogenesis of target organisms, which in turn drives the rational design of optimal vaccine antigens. Here we use the discovery, characterization, and exploitation of fHbp, a vaccine candidate and key virulence factor of meningococcus, as an illustrative case in point. Applying genomic approaches to study both the pathogen and host will ultimately increase our fundamental understanding of pathogen biology, mechanisms responsible for the development of protective immunity, and guide next-generation vaccine design. PMID:23637311

  11. Inflammatory bowel disease pathogenesis: where are we?

    PubMed

    Fiocchi, Claudio

    2015-03-01

    Inflammatory bowel disease (IBD) is presently one of the most investigated human disorders. Expansion of knowledge of its pathophysiology has helped in developing novel medications to combat gut inflammation with a considerably degree of success. Despite this progress, much more remains to be done in regard to gaining a more profound understanding of IBD pathogenesis, detecting inflammation before it clinically manifests, implementing lifestyle modifications, and developing agents that can modify the natural course of the disease. One of the limitations to achieve these goals is the lack of integration of the major components of IBD pathogenesis, that is the exposome, the genome, the gut microbiome, and the immunome. An "IBD integrome" approach that takes advantage of all functional information derived from the detailed investigation of each single pathogenic component through the use of systems biology may offer the solution to understand IBD and cure it. PMID:25827798

  12. Facial Dysostoses: Etiology, Pathogenesis and Management

    PubMed Central

    Trainor, Paul A.; Andrews, Brian T.

    2013-01-01

    Approximately 1% of all live births exhibit a minor or major congenital anomaly. Of these approximately one-third display craniofacial abnormalities which are a significant cause of infant mortality and dramatically affect national health care budgets. To date, more than 700 distinct craniofacial syndromes have been described and in this review, we discuss the etiology, pathogenesis and management of facial dysostoses with a particular emphasis on Treacher Collins, Nager and Miller syndromes. As we continue to develop and improve medical and surgical care for the management of individual conditions, it is essential at the same time to better characterize their etiology and pathogenesis. Here we describe recent advances in our understanding of the development of facial dysostosis with a view towards early in-utero identification and intervention which could minimize the manifestation of anomalies prior to birth. The ultimate management for any craniofacial anomaly however, would be prevention and we discuss this possibility in relation to facial dysostosis. PMID:24123981

  13. Pathogenesis, Diagnosis, and Treatment of Hepatic Encephalopathy

    PubMed Central

    Atluri, Dileep K; Prakash, Ravi; Mullen, Kevin D

    2011-01-01

    Hepatic encephalopathy (HE) is a neuropsychiatric disorder seen in patients with advanced liver disease or porto-systemic shunts. Based on etiology and severity of HE, the World Congress of Gastroenterology has divided HE into categories and sub-categories. Many user-friendly computer-based neuropsychiatric tests are being validated for diagnosing covert HE. Currently, emphasis is being given to view HE deficits as a continuous spectrum rather than distinct stages. Ammonia is believed to play crucial role in pathogenesis of HE via astrocyte swelling and cerebral edema. However, evidence has been building up which supports the synergistic role of oxidative stress, inflammation and neurosteroids in pathogenesis of HE. At present, treatment of HE aims at decreasing the production and intestinal absorption of ammonia. But as the role of new pathogenetic mechanisms becomes clear, many potential new treatment strategies may become available for clinician. PMID:25755319

  14. Pancreatic cancer: Pathogenesis, prevention and treatment

    SciTech Connect

    Sarkar, Fazlul H. Banerjee, Sanjeev; Li, Yiwei

    2007-11-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States with a very low survival rate of 5 years. To better design new preventive and/or therapeutic strategies for the fight against pancreatic cancer, the knowledge of the pathogenesis of pancreatic cancer at the molecular level is very important. It has been known that the development and the progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways among which the EGFR, Akt, and NF-{kappa}B pathways appear to be most relevant. Therefore, the strategies targeting EGFR, Akt, NF-{kappa}B, and their downstream signaling could be promising for the prevention and/or treatment of pancreatic cancer. In this brief review, we will summarize the current knowledge regarding the pathogenesis, prevention, and treatment of pancreatic cancer.

  15. Theories on the pathogenesis of endometriosis.

    PubMed

    Sourial, Samer; Tempest, Nicola; Hapangama, Dharani K

    2014-01-01

    Endometriosis is a common, chronic inflammatory disease defined by the presence of extrauterine endometrial tissue. The aetiology of endometriosis is complex and multifactorial, where several not fully confirmed theories describe its pathogenesis. This review examines existing theories on the initiation and propagation of different types of endometriotic lesions, as well as critically appraises the myriad of biologically relevant evidence that support or oppose each of the proposed theories. The current literature suggests that stem cells, dysfunctional immune response, genetic predisposition, and aberrant peritoneal environment may all be involved in the establishment and propagation of endometriotic lesions. An orchestrated scientific and clinical effort is needed to consider all factors involved in the pathogenesis of this multifaceted disease and to propose novel therapeutic targets to reach effective treatments for this distressing condition. PMID:25763392

  16. Theories on the Pathogenesis of Endometriosis

    PubMed Central

    Sourial, Samer; Hapangama, Dharani K.

    2014-01-01

    Endometriosis is a common, chronic inflammatory disease defined by the presence of extrauterine endometrial tissue. The aetiology of endometriosis is complex and multifactorial, where several not fully confirmed theories describe its pathogenesis. This review examines existing theories on the initiation and propagation of different types of endometriotic lesions, as well as critically appraises the myriad of biologically relevant evidence that support or oppose each of the proposed theories. The current literature suggests that stem cells, dysfunctional immune response, genetic predisposition, and aberrant peritoneal environment may all be involved in the establishment and propagation of endometriotic lesions. An orchestrated scientific and clinical effort is needed to consider all factors involved in the pathogenesis of this multifaceted disease and to propose novel therapeutic targets to reach effective treatments for this distressing condition. PMID:25763392

  17. Neonatal alloimmune thrombocytopenia: pathogenesis, diagnosis and management

    PubMed Central

    Peterson, Julie A.; McFarland, Janice G.; Curtis, Brian R.; Aster, Richard H.

    2014-01-01

    Summary Neonatal alloimmune thrombocytopenia, (NAIT) is caused by maternal antibodies raised against alloantigens carried on fetal platelets. Although many cases are mild, NAIT is a significant cause of morbidity and mortality in newborns and is the most common cause of intracranial haemorrhage in full-term infants. In this report, we review the pathogenesis, clinical presentation, laboratory diagnosis and prenatal and post-natal management of NAIT and highlight areas of controversy that deserve the attention of clinical and laboratory investigators. PMID:23384054

  18. Pathogenesis of human urinary bladder cancer

    PubMed Central

    Bryan, George T.

    1983-01-01

    The pathogenesis of bladder cancer is being analyzed at several levels of biological organization, i.e., population groups, individual whole animal, tissue, cell, molecule, etc. Each of these levels provides opportunities for mechanistic studies. Yet the integration of these several levels into a cohesive fabric is incomplete. From a clinical point of view, the following seem of importance to human bladder cancer pathogenesis. The initiation, promotion, and progression of bladder cancer involves several factors acting concurrently or sequentially. These factors appear to be naturally occurring or synthetically created chemicals present in the external environment. Human exposures to these agents may begin in utero, and varying, dynamic qualitative and quantitative exposure patterns continue through developmental and adult life. Apparent latent periods of development of clinical bladder cancer may be as short as one, or as long as 50 years or more. Individuals may exhibit differential susceptibility to vesical carcinogens, perhaps through phenotypic differences in quantitative biotransformation routes. Differences in bladder epithelial cell susceptibilities probably also occur, as well as varying local tissue and generalized resistance to neoplasia formation. Older individuals do not appear to be more resistant to bladder carcinogenesis. A number of animal model systems have been developed for the study of the in vivo, cellular, and molecular pathogenesis of bladder cancer. These models replicate many of the known salient features of human bladder cancer. Through use of appropriate whole animal models in conjunction with investigations of human and animal bladder cells and tissues in culture, controlled mechanistic and quantitative studies of bladder cancer pathogenesis should rapidly develop. PMID:6832092

  19. Pathogenesis of Chronic Urticaria: An Overview

    PubMed Central

    Jain, Sanjiv

    2014-01-01

    The pathogenesis of chronic urticaria is not well delineated and the treatment is palliative as it is not tied to the pathomechanism. The centrality of mast cells and their inappropriate activation and degranulation as the key pathophysiological event are well established. The triggering stimuli and the complexity of effector mechanisms remain speculative. Autoimmune origin of chronic urticaria, albeit controversial, is well documented. Numerical and behavioral alterations in basophils accompanied by changes in signaling molecule expression and function as well as aberrant activation of extrinsic pathway of coagulation are other alternative hypotheses. It is also probable that mast cells are involved in the pathogenesis through mechanisms that extend beyond high affinity IgE receptor stimulation. An increasing recognition of chronic urticaria as an immune mediated inflammatory disorder related to altered cytokine-chemokine network consequent to immune dysregulation resulting from disturbed innate immunity is emerging as yet another pathogenic explanation. It is likely that these different pathomechanisms are interlinked rather than independent cascades, acting either synergistically or sequentially to produce clinical expression of chronic urticaria. Insights into the complexities of pathogenesis may provide an impetus to develop safer, efficacious, and targeted immunomodulators and biological treatment for severe, refractory chronic urticaria. PMID:25120565

  20. Update on pathogenesis and treatment of CLE

    PubMed Central

    Privette, Emily D.; Werth, Victoria P.

    2014-01-01

    Purpose of review Cutaneous Lupus Erythematous (CLE) is an autoimmune disease in which patients may present with isolated skin findings or have CLE associated with underlying systemic disease. The most significant recent studies on its pathogenesis and therapeutic management are reviewed here. Recent findings Patients with subacute and Discoid Lupus Erythematous had elevated IFN score, about a third of all cases of SCLE could be attributed to previous drug exposure, and smoking may be more closely associated with CLE than Systemic Lupus Erythematous (SLE). An underlying genetic defect in some subsets of CLE patients may also be shared with SLE. Efficacy of antimalarial therapy is enhanced by increasing treatment duration or maintaining higher blood drug concentrations. Combination antimalarials that include quinacrine, thalidomide analogs, and Mycophenalate Mofetil may also be effective in refractory CLE. Summary The pathogenesis of CLE remains unclear, and is likely multifactorial. Identified associations with subsets of CLE suggest future research questions in CLE pathogenesis. Subsets of CLE associated with interface dermatitis may share an underlying genetic defect in interferon signaling with SLE. The Cutaneous Lupus Disease Area and Severity Index is a valuable and widely used tool allowing for standardized assessment and reporting of cutaneous disease activity and damage. More evidence is available to guide treatment of refractory CLE, but larger studies are needed. PMID:23872903

  1. Autoimmune pathogenesis in dengue virus infection.

    PubMed

    Lin, Chiou-Feng; Wan, Shu-Wen; Cheng, Hsien-Jen; Lei, Huan-Yao; Lin, Yee-Shin

    2006-01-01

    The pathogenic mechanisms of dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) caused by dengue virus (DV) infection remain unresolved. Patients with DHF/DSS are characterized by several manifestations, including severe thrombocytopenia, vascular leakage, and hepatomegaly. In addition to the effect of virus load and virus variation, abnormal immune responses of the host after DV infection may also account for the progression of DHF/DSS. Actually, viral autoimmunity is involved in the pathogenesis of numerous viral infections, such as human immunodeficiency virus, human hepatitis C virus, human cytomegalovirus, herpes simplex virus, Epstein- Barr virus, and DV. In this review, we discuss the implications of autoimmunity in dengue pathogenesis. Antibodies directed against DV nonstructural protein 1 (NS1) showed cross-reactivity with human platelets and endothelial cells, which lead to platelet and endothelial cell damage and inflammatory activation. Based on these findings, we hypothesize that anti-DV NS1 is involved in the pathogenesis of DF and DHF/DSS, and this may provide important information in dengue vaccine development. PMID:16817755

  2. A Mouse Model of Zika Virus Pathogenesis.

    PubMed

    Lazear, Helen M; Govero, Jennifer; Smith, Amber M; Platt, Derek J; Fernandez, Estefania; Miner, Jonathan J; Diamond, Michael S

    2016-05-11

    The ongoing Zika virus (ZIKV) epidemic and unexpected clinical outcomes, including Guillain-Barré syndrome and birth defects, has brought an urgent need for animal models. We evaluated infection and pathogenesis with contemporary and historical ZIKV strains in immunocompetent mice and mice lacking components of the antiviral response. Four- to six-week-old Irf3(-/-)Irf5(-/-)Irf7(-/-) triple knockout mice, which produce little interferon α/β, and mice lacking the interferon receptor (Ifnar1(-/-)) developed neurological disease and succumbed to ZIKV infection, whereas single Irf3(-/-), Irf5(-/-), and Mavs(-/-) knockout mice exhibited no overt illness. Ifnar1(-/-) mice sustained high viral loads in the brain and spinal cord, consistent with evidence that ZIKV causes neurodevelopmental defects in human fetuses. The testes of Ifnar1(-/-) mice had the highest viral loads, which is relevant to sexual transmission of ZIKV. This model of ZIKV pathogenesis will be valuable for evaluating vaccines and therapeutics as well as understanding disease pathogenesis. PMID:27066744

  3. Proteomic Profiling of the Outer Membrane Fraction of the Obligate Intracellular Bacterial Pathogen Ehrlichia ruminantium

    PubMed Central

    Moumène, Amal; Marcelino, Isabel; Ventosa, Miguel; Gros, Olivier; Lefrançois, Thierry; Vachiéry, Nathalie

    2015-01-01

    The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia’s OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs

  4. The Steroid Catabolic Pathway of the Intracellular Pathogen Rhodococcus equi Is Important for Pathogenesis and a Target for Vaccine Development

    PubMed Central

    van der Geize, R.; Grommen, A. W. F.; Hessels, G. I.; Jacobs, A. A. C.; Dijkhuizen, L.

    2011-01-01

    Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551), ipdB (rv3552), fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD) and 3aα-H-4α(3′-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP). Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections. PMID:21901092

  5. Role of HLA typing on Crohn's disease pathogenesis

    PubMed Central

    Mahdi, Batool Mutar

    2015-01-01

    Crohn's disease (CD) is the main type of chronic inflammatory bowel disease of unknown etiology. Evidence from family and twin studies suggests that genetics plays a significant role in predisposing an individual to develop Crohn's disease. A susceptibility locus for Crohn's disease has been mapped 3 to chromosome 16: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators which is expressed in hematopoietic compartment cells and intestinal epithelial cells as well as in paneth cells, where NOD2 may play an important role in the pathogenesis of Crohn disease in the gastrointestinal system. This leads to alteration the structure of either the leucine-rich repeat domain of the protein or the adjacent region. NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has two functions, first an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens. Thus, NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in intestinal epithelial cells as well as in paneth cells. Further confirmation of a genetic predisposition comes from studies of the association between the human leukocyte antigen (HLA) system and CD. The immunogenetic predisposition may be considered an important requirement for the development of CD, as several alleles of human major histocompatibility complex had an association with CD. Although it is difficult to estimate the importance of this region in determining overall genetic susceptibility in a population, studies of HLA allele sharing within families suggest that this region contributes between 10% and 33% of the total genetic risk of Crohn's disease. PMID:26288728

  6. The Role of the spv Genes in Salmonella Pathogenesis.

    PubMed

    Guiney, Donald G; Fierer, Joshua

    2011-01-01

    Salmonella strains cause three main types of diseases in people: gastroenteritis, enteric (typhoid) fever, and non-typhoid extra-intestinal disease with bacteremia. Genetic analysis indicates that each clinical syndrome requires distinct sets of virulence genes, and Salmonella isolates differ in their constellation of virulence traits. The spv locus is strongly associated with strains that cause non-typhoid bacteremia, but are not present in typhoid strains. The spv region contains three genes required for the virulence phenotype in mice: the positive transcriptional regulator spvR and two structural genes spvB and spvC. SpvB and SpvC are translocated into the host cell by the Salmonella pathogenicity island-2 type-three secretion system. SpvB prevents actin polymerization by ADP-ribosylation of actin monomers, while SpvC has phosphothreonine lyase activity and has been shown to inhibit MAP kinase signaling. The exact mechanisms by which SpvB and SpvC act in concert to enhance virulence are still unclear. SpvB exhibits a cytotoxic effect on host cells and is required for delayed cell death by apoptosis following intracellular infection. Strains isolated from systemic infections of immune compromised patients, particularly HIV patients, usually carry the spv locus, strongly suggesting that CD4 T cells are required to control disease due to Salmonella that are spv positive. This association is not seen with typhoid fever, indicating that the pathogenesis and immunology of typhoid have fundamental differences from the syndrome of non-typhoid bacteremia. PMID:21716657

  7. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease.

    PubMed

    Haas, Laura T; Salazar, Santiago V; Kostylev, Mikhail A; Um, Ji Won; Kaufman, Adam C; Strittmatter, Stephen M

    2016-02-01

    Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  8. Inflammatory Bowel Disease: Genetics, Epigenetics, and Pathogenesis

    PubMed Central

    Loddo, Italia; Romano, Claudio

    2015-01-01

    Inflammatory bowel diseases (IBDs) are complex, multifactorial disorders characterized by chronic relapsing intestinal inflammation. Although etiology remains largely unknown, recent research has suggested that genetic factors, environment, microbiota, and immune response are involved in the pathogenesis. Epidemiological evidence for a genetic contribution is defined: 15% of patients with Crohn’s Disease (CD) have an affected family member with IBD, and twin studies for CD have shown 50% concordance in monozygotic twins compared to <10% in dizygotics. The most recent and largest genetic association studies, which employed genome-wide association data for over 75,000 patients and controls, identified 163 susceptibility loci for IBD. More recently, a trans-ethnic analysis, including over 20,000 individuals, identified an additional 38 new IBD loci. Although most cases are correlated with polygenic contribution toward genetic susceptibility, there is a spectrum of rare genetic disorders that can contribute to early-onset IBD (before 5 years) or very early onset IBD (before 2 years). Genetic variants that cause these disorders have a wide effect on gene function. These variants are so rare in allele frequency that the genetic signals are not detected in genome-wide association studies of patients with IBD. With recent advances in sequencing techniques, ~50 genetic disorders have been identified and associated with IBD-like immunopathology. Monogenic defects have been found to alter intestinal immune homeostasis through many mechanisms. Candidate gene resequencing should be carried out in early-onset patients in clinical practice. The evidence that genetic factors contribute in small part to disease pathogenesis confirms the important role of microbial and environmental factors. Epigenetic factors can mediate interactions between environment and genome. Epigenetic mechanisms could affect development and progression of IBD. Epigenomics is an emerging field, and

  9. [General concepts and pathogenesis of the spondyloarthropathies].

    PubMed

    Nissen, Michael J

    2016-03-01

    The spondyloarthritides are a group of interrelated diseases with a close association with the HLA-B27 antigen that share many common articular and extra-articular features. This paper summarizes the different classification criteria that are currently in use. While the exact pathogenesis of these diseases is not yet clearly elucidated, there are a number of hypotheses relating to HLA-B27, modifications of the microbiome and biomechanical stresses. This in turn leads to upregulation of various proinflammatory cytokines such as TNF-alpha, IL-17, IL-22 and IL-23, which results in further inflammation and osteoproliferation. PMID:27089636

  10. Pathogenesis of postoperative oral surgical pain.

    PubMed Central

    Ong, Cliff K. S.; Seymour, R. A.

    2003-01-01

    Pain is a major postoperative symptom in many oral surgical procedures. It is a complex and variable phenomenon that can be influenced by many factors. Good management of oral surgical pain requires a detailed understanding of the pathogenesis of surgical pain. This article aims at reviewing postoperative pain from a broad perspective by looking into the nociception, neuroanatomy, neurophysiology, and neuropharmacology of pain. Therapeutic recommendations are made after reviewing the evidence from the literature for maximizing the efficacy of pain management techniques for oral surgical pain. PMID:12722900

  11. Pathogenesis of tendinopathies: inflammation or degeneration?

    PubMed Central

    Abate, Michele; Gravare-Silbernagel, Karin; Siljeholm, Carl; Di Iorio, Angelo; De Amicis, Daniele; Salini, Vincenzo; Werner, Suzanne; Paganelli, Roberto

    2009-01-01

    The intrinsic pathogenetic mechanisms of tendinopathies are largely unknown and whether inflammation or degeneration has the prominent role is still a matter of debate. Assuming that there is a continuum from physiology to pathology, overuse may be considered as the initial disease factor; in this context, microruptures of tendon fibers occur and several molecules are expressed, some of which promote the healing process, while others, including inflammatory cytokines, act as disease mediators. Neural in-growth that accompanies the neovessels explains the occurrence of pain and triggers neurogenic-mediated inflammation. It is conceivable that inflammation and degeneration are not mutually exclusive, but work together in the pathogenesis of tendinopathies. PMID:19591655

  12. Recent advances in understanding norovirus pathogenesis.

    PubMed

    Karst, Stephanie M; Tibbetts, Scott A

    2016-11-01

    Noroviruses constitute a family of ubiquitous and highly efficient human pathogens. In spite of decades of dedicated research, human noroviruses remain a major cause of gastroenteritis and severe diarrheal disease around the world. Recent findings have begun to unravel the complex mechanisms that regulate norovirus pathogenesis and persistent infection, including the important interplay between the virus, the host immune system, and commensal bacteria. Herein, we will summarize recent research developments regarding norovirus cell tropism, the use of M cells, and commensal bacteria to facilitate norovirus infection, and virus, host, and bacterial determinants of persistent norovirus infections. J. Med. Virol. 88:1837-1843, 2016. © 2016 Wiley Periodicals, Inc. PMID:27110852

  13. Pathogenesis of nasal polyps: an update.

    PubMed

    Pawliczak, Rafal; Lewandowska-Polak, Anna; Kowalski, Marek L

    2005-11-01

    The cause of nasal polyp formation is still unknown. Genetic predisposition has been suggested, but there are scanty data to support such theories. Activated epithelial cells may be the major source of mediators inducing influx of inflammatory cells (mostly eosinophils) and proliferation and activation of fibroblasts leading to nasal polyp formation. Infectious agents (including viruses, bacteria, or fungi) may be potential primary factors activating nasal epithelial cells. Proinflammatory cytokines and growth factors play important roles in the persistence of mucosal inflammation associated with nasal polyps. Arachidonic acid metabolites seem to be particularly important in the pathogenesis of nasal polyps in patients with aspirin hypersensitivity rhinosinusitis/asthma syndrome. PMID:16216171