Science.gov

Sample records for neointimal formational pattern

  1. Vasohibin prevents arterial neointimal formation through angiogenesis inhibition

    SciTech Connect

    Yamashita, Hiroshi; Abe, Mayumi; Watanabe, Kazuhide; Shimizu, Kazue; Moriya, Takuya; Sato, Akira; Satomi, Susumu; Ohta, Hideki; Sonoda, Hikaru; Sato, Yasufumi . E-mail: y-sato@idac.tohoku.ac.jp

    2006-07-07

    Vasohibin is a VEGF-inducible angiogenesis inhibitor in vascular endothelium. Here we examined the presence of vasohibin in human arterial wall, and found it in endothelium of adventitial microvessels in atherosclerotic lesion. Adventitial angiogenesis is involved in the progression of neointimal formation. Even in the presence of endogenous angiogenesis inhibitors, pathological angiogenesis persists. However, the supplementation of exogenous angiogenesis inhibitors can prevent pathological angiogenesis. We evaluated the potential role of vasohibin in neointimal formation. Adenovirus-mediated human vasohibin gene transfer in mouse liver resulted in the release of vasohibin in plasma and exhibited anti-angiogenic effects at remote sites. This gene transfer inhibited adventitial angiogenesis, macrophage infiltration, and neointimal formation after cuff placement on mouse femoral artery. Vasohibin exhibited no direct effect on migration and proliferation of smooth muscle cells. Thus, vasohibin has an activity to prevent neointimal formation by inhibiting adventitial angiogenesis.

  2. Perivascular mast cells regulate vein graft neointimal formation and remodeling

    PubMed Central

    Grassia, Gianluca; Cambrook, Helen; Ialenti, Armando; MacRitchie, Neil; Carberry, Jaclyn; Lawrence, Catherine

    2015-01-01

    Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling. PMID:26312183

  3. Smooth Muscle Cell-targeted RNA Aptamer Inhibits Neointimal Formation.

    PubMed

    Thiel, William H; Esposito, Carla L; Dickey, David D; Dassie, Justin P; Long, Matthew E; Adam, Joshua; Streeter, Jennifer; Schickling, Brandon; Takapoo, Maysam; Flenker, Katie S; Klesney-Tait, Julia; Franciscis, Vittorio de; Miller, Francis J; Giangrande, Paloma H

    2016-04-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by drug eluting stents has markedly reduced intimal hyperplasia and subsequent in-stent restenosis. However, the effects of antiproliferative drugs on endothelial cells (EC) contribute to delayed re-endothelialization and late stent thrombosis. Cell-targeted therapies to inhibit VSMC remodeling while maintaining EC health are necessary to allow vascular healing while preventing restenosis. We describe an RNA aptamer (Apt 14) that functions as a smart drug by preferentially targeting VSMCs as compared to ECs and other myocytes. Furthermore, Apt 14 inhibits phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) and VSMC migration in response to multiple agonists by a mechanism that involves inhibition of platelet-derived growth factor receptor (PDGFR)-β phosphorylation. In a murine model of carotid injury, treatment of vessels with Apt 14 reduces neointimal formation to levels similar to those observed with paclitaxel. Importantly, we confirm that Apt 14 cross-reacts with rodent and human VSMCs, exhibits a half-life of ~300 hours in human serum, and does not elicit immune activation of human peripheral blood mononuclear cells. We describe a VSMC-targeted RNA aptamer that blocks cell migration and inhibits intimal formation. These findings provide the foundation for the translation of cell-targeted RNA therapeutics to vascular disease. PMID:26732878

  4. Muscle-derived follistatin-like 1 functions to reduce neointimal formation after vascular injury

    PubMed Central

    Miyabe, Megumi; Ohashi, Koji; Shibata, Rei; Uemura, Yusuke; Ogura, Yasuhiro; Yuasa, Daisuke; Kambara, Takahiro; Kataoka, Yoshiyuki; Yamamoto, Takashi; Matsuo, Kazuhiro; Joki, Yusuke; Enomoto, Takashi; Hayakawa, Satoko; Hiramatsu-Ito, Mizuho; Ito, Masanori; Van Den Hoff, Maurice J.B.; Walsh, Kenneth; Murohara, Toyoaki; Ouchi, Noriyuki

    2014-01-01

    Aims It is well-established that exercise diminishes cardiovascular risk, but whether humoral factors secreted by muscle confer these benefits has not been conclusively shown. We have shown that the secreted protein follistatin-like 1 (Fstl1) has beneficial actions on cardiac and endothelial function. However, the role of muscle-derived Fstl1 in proliferative vascular disease remains largely unknown. Here, we investigated whether muscle-derived Fstl1 modulates vascular remodelling in response to injury. Methods and results The targeted ablation of Fstl1 in muscle led to an increase in neointimal formation following wire-induced arterial injury compared with control mice. Conversely, muscle-specific Fstl1 transgenic (TG) mice displayed a decrease in the neointimal thickening following arterial injury. Muscle-specific Fstl1 ablation and overexpression increased and decreased, respectively, the frequency of BrdU-positive proliferating cells in injured vessels. In cultured human aortic smooth muscle cells (HASMCs), treatment with human FSTL1 protein decreased proliferation and migration induced by stimulation with PDGF-BB. Treatment with FSTL1 enhanced AMPK phosphorylation, and inhibition of AMPK abrogated the inhibitory actions of FSTL1 on HASMC responses to PDGF-BB. The injured arteries of Fstl1-TG mice exhibited an increase in AMPK phosphorylation, and administration of AMPK inhibitor reversed the anti-proliferative actions of Fstl1 on the vessel wall. Conclusion Our findings indicate that muscle-derived Fstl1 attenuates neointimal formation in response to arterial injury by suppressing SMC proliferation through an AMPK-dependent mechanism. Thus, the release of protein factors from muscle, such as Fstl1, may partly explain why the maintenance of muscle function can have a therapeutic effect on the cardiovascular system. PMID:24743592

  5. Conditional expression of the type 2 angiotensin II receptor in mesenchymal stem cells inhibits neointimal formation after arterial injury.

    PubMed

    Feng, Jian; Liu, Jian-Ping; Miao, Li; He, Guo-Xiang; Li, De; Wang, Hai-Dong; Jing, Tao

    2014-10-01

    Percutaneous coronary interventions (PCIs) are an effective treatment for obstructive coronary artery diseases. However, the procedure's success is limited by remodeling and formation of neointima. In the present study, we engineered rat mesenchymal stem cells (MSCs) to express type 2 angiotensin II receptor (AT2R) using a tetracycline-regulated system that can strictly regulate AT2R expression. We tested the ability of the modified MSCs to reduce neointima formation following arterial injury. We subjected rats to balloon injury, and reverse transcriptase polymerase chain reaction (RT-PCR) indicated no significant AT2R expression in normal rat arteries. Low expression of AT2R was observed at 28 days after balloon-induced injury. Interestingly, MSCs alone were unable to reduce neointimal hyperplasia after balloon-induced injury; after transplantation of modified MSCs, doxycycline treatment significantly upregulated neointimal AT2R expression and inhibited osteopontin mRNA expression, as well as neointimal formation. Taken together, these results suggest that transplantation of MSCs conditionally expressing AT2R could effectively suppress neointimal hyperplasia following balloon-induced injury. Therefore, MSCs with a doxycycline-controlled gene induction system may be useful for the management of arterial injury after PCI. PMID:25119854

  6. Mebendazole Reduces Vascular Smooth Muscle Cell Proliferation and Neointimal Formation Following Vascular Injury in Mice

    PubMed Central

    Wang, Jintao; Wang, Hui; Guo, Chiao; Luo, Wei; Lawler, Alyssa; Reddy, Aswin; Wang, Julia; Sun, Eddy B.; Eitzman, Daniel T.

    2014-01-01

    Mebendazole is an antihelminthic drug that exerts its effects via interference with microtubule function in parasites. To determine the utility of mebendazole as a potential treatment for vascular diseases involving proliferation of vascular smooth muscle cells, the effects of mebendazole on vascular smooth muscle cell proliferation were tested in vitro and in a mouse model of arterial injury. In vitro, mebendazole inhibited proliferation and migration of murine vascular smooth muscle cells and this was associated with altered intracellular microtubule organization. To determine in vivo effects of mebendazole following vascular injury, femoral arterial wire injury was induced in wild-type mice treated with either mebendazole or placebo control. Compared with placebo-treated mice, mebendazole-treated mice formed less neointima at the site of injury. Mebendazole is effective at inhibiting vascular smooth muscle cell proliferation and migration, and neointimal formation following arterial injury in mice. PMID:24587248

  7. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  8. Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: comparing histology with in silico modelling

    PubMed Central

    Tahir, Hannan; Bona-Casas, Carles; Narracott, Andrew James; Iqbal, Javaid; Gunn, Julian; Lawford, Patricia; Hoekstra, Alfons G.

    2014-01-01

    Re-establishing a functional endothelium following endovascular treatment is an important factor in arresting neointimal proliferation. In this study, both histology (in vivo) and computational simulations (in silico) are used to evaluate neointimal growth patterns within coronary arteries along the axial direction of the stent. Comparison of the growth configurations in vivo and in silico was undertaken to identify candidate mechanisms for endothelial repair. Stent, lumen and neointimal areas were measured from histological sections obtained from eight right coronary stented porcine arteries. Two re-endothelialization scenarios (endothelial cell (EC) random seeding and EC growth from proximal and distal ends) were implemented in silico to evaluate their influence on the morphology of the simulated lesions. Subject to the assumptions made in the current simulations, comparison between in vivo and in silico results suggests that endothelial growth does not occur from the proximal and distal ends alone, but is more consistent with the assumption of a random seeding process. This may occur either from the patches of endothelium which survive following stent implantation or from attachment of circulating endothelial progenitor cells. PMID:24621816

  9. Decreased Neointimal Extracellular Matrix Formation in RAGE-Knockout Mice After Microvascular Denudation

    SciTech Connect

    Groezinger, Gerd Schmehl, Joerg Bantleon, Ruediger Kehlbach, Rainer; Mehra, Tarun; Claussen, Claus Wiesinger, Benjamin

    2012-12-15

    Purpose: To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model. Materials and Methods: Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types of immunostaining (proliferating cell nuclear antigen, {alpha}-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P < 0.05 was considered statistically significant. Results: Four weeks after denudation, WT mice showed a 49.6% loss of luminal area compared with 14.9% loss of luminal area in RAGE-deficient mice (sham = 0% loss) (P < 0.001). The neointima was 18.2 (*1000 {mu}m{sup 2} [n = 15) in the WT group compared with only 8.4 (*1000 {mu}m{sup 2} [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein. Conclusion: RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.

  10. Morelloflavone blocks injury-induced neointimal formation by inhibiting vascular smooth muscle cell migration

    PubMed Central

    Pinkaew, Decha; Cho, Sung Gook; Hui, David Y.; Wiktorowicz, John E.; Hutadilok-Towatana, Nongporn; Mahabusarakam, Wilawan; Tonganunt, Moltira; Stafford, Lewis J.; Phongdara, Amornrat; Liu, Mingyao; Fujise, Ken

    2014-01-01

    Background In-stent restenosis, or renarrowing within a coronary stent, is the most ominous complication of percutaneous coronary intervention, caused by vascular smooth muscle cell (VSMC) migration into and proliferation in the intima. Although drug-eluting stents reduce restenosis, they delay the tissue healing of the injured arteries. No promising alternative anti-restenosis treatments are currently on the horizon. Methods & Results In endothelium-denudated mouse carotid arteries, oral morelloflavone—an active ingredient of the Thai medicinal plant Garcinia dulcis—significantly decreased the degree of neointimal hyperplasia, without affecting neointimal cell cycle progression or apoptosis as evaluated by Ki-67 and TUNEL staining, respectively. At the cellular level, morelloflavone robustly inhibited VSMC migration as shown by both scratch wound and invasion assays. In addition, morelloflavone prevented VSMCs from forming lamellipodia, a VSMC migration apparatus. Mechanistically, the inhibition by morelloflavone of VSMC migration was through its negative regulatory effects on several migration-related kinases, including FAK, Src, ERK, and RhoA. Consistently with the animal data, morelloflavone did not affect VSMC cell cycle progression or induce apoptosis. Conclusion These data suggest that morelloflavone blocks injury-induced neointimal hyperplasia via the inhibition of VSMC migration, without inducing apoptosis or cell cycle arrest. General Significance We propose morelloflavone to be a viable oral agent for the prevention of restenosis, without compromising effects on the integrity and healing of the injured arteries. PMID:18930785

  11. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation.

    PubMed

    Qiao, Yong; Tang, Chengchun; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-09-01

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K(+) channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention. PMID:27387235

  12. Pattern Formation

    NASA Astrophysics Data System (ADS)

    Hoyle, Rebecca

    2006-03-01

    From the stripes of a zebra and the spots on a leopard's back to the ripples on a sandy beach or desert dune, regular patterns arise everywhere in nature. The appearance and evolution of these phenomena has been a focus of recent research activity across several disciplines. This book provides an introduction to the range of mathematical theory and methods used to analyse and explain these often intricate and beautiful patterns. Bringing together several different approaches, from group theoretic methods to envelope equations and theory of patterns in large-aspect ratio-systems, the book also provides insight behind the selection of one pattern over another. Suitable as an upper-undergraduate textbook for mathematics students or as a fascinating, engaging, and fully illustrated resource for readers in physics and biology, Rebecca Hoyle's book, using a non-partisan approach, unifies a range of techniques used by active researchers in this growing field. Accessible description of the mathematical theory behind fascinating pattern formation in areas such as biology, physics and materials science Collects recent research for the first time in an upper level textbook Features a number of exercises - with solutions online - and worked examples

  13. Ceramide 1-phosphate induces neointimal formation via cell proliferation and cell cycle progression upstream of ERK1/2 in vascular smooth muscle cells

    SciTech Connect

    Kim, Tack-Joong; Kang, Yeo-Jin; Lim, Yong; Lee, Hyoung-Woo; Bae, Kiho; Lee, Youn-Sun; Yoo, Jae-Myung; Yoo, Hwan-Soo; Yun, Yeo-Pyo

    2011-08-15

    Ceramide 1-phosphate (C1P) is a novel bioactive sphingolipid formed by ceramide kinase (CERK)-catalyzed phosphorylation of ceramide. It has been implicated in the regulation of such vital pathophysiological functions as phagocytosis and inflammation, but there have been no reports ascribing a biological function to CERK in vascular disorders. Here the potential role of CERK/C1P in neointimal formation was investigated using rat aortic vascular smooth muscle cells (VSMCs) in primary culture and a rat carotid injury model. Exogenous C8-C1P stimulated cell proliferation, DNA synthesis, and cell cycle progression of rat aortic VSMCs in primary culture. In addition, wild-type CERK-transfected rat aortic VSMCs induced a marked increase in rat aortic VSMC proliferation and [{sup 3}H]-thymidine incorporation when compared to empty vector transfectant. C8-C1P markedly activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) within 5 min, and the activation could be prevented by U0126, a MEK inhibitor. Also, K1, a CERK inhibitor, decreased the ERK1/2 phosphorylation and cell proliferation on platelet-derived growth factor (PDGF)-stimulated rat aortic VSMCs. CERK expression and C1P levels were found to be potently increased during neointimal formation using a rat carotid injury model. However, ceramide levels decreased during the neointimal formation process. These findings suggest that C1P can induce neointimal formation via cell proliferation through the regulation of the ERK1/2 protein in rat aortic VSMCs and that CERK/C1P may regulate VSMC proliferation as an important pathogenic marker in the development of cardiovascular disorders.

  14. BMSCs Interactions with Adventitial Fibroblasts Display Smooth Muscle Cell Lineage Potential in Differentiation and Migration That Contributes to Neointimal Formation.

    PubMed

    Wendan, Y; Changzhu, J; Xuhong, S; Hongjing, C; Hong, S; Dongxia, Y; Fang, X

    2016-01-01

    In this study a model of simulated vascular injury in vitro was used to study the characterization of bone-marrow-derived mesenchymal stem cells (BMSCs) morphology and to investigate the differentiation and migration of BMSCs in the presence of adventitial fibroblasts. BMSCs from rats were indirectly cocultured with adventitial fibroblasts in a transwell chamber apparatus for 7 days, and clonogenic assays demonstrated that BMSCs could be differentiated into smooth muscle-like cells with this process, including smooth muscle α-actin (α-SMA) expression by immunofluorescence staining. Cell morphology of BMSCs was assessed by inverted microscope, while cell proliferation was assessed by MTT assay. The expressions of TGF-β1, MMP-1, and NF-κB were detected by immunofluorescence staining and Smad3 mRNA was measured by reverse transcription PCR. Migration ability of BMSCs with DAPI-labeled nuclei was measured by laser confocal microscopy. Our results demonstrate that indirect interactions with adventitial fibroblasts can induce proliferation, differentiation, and migration of BMSCs that can actively participate in neointimal formation. Our results indicate that the pathogenesis of vascular remodeling might perform via TGF-β1/Smad3 signal transduction pathways. PMID:26880952

  15. BMSCs Interactions with Adventitial Fibroblasts Display Smooth Muscle Cell Lineage Potential in Differentiation and Migration That Contributes to Neointimal Formation

    PubMed Central

    Wendan, Y.; Changzhu, J.; Xuhong, S.; Hongjing, C.; Hong, S.; Dongxia, Y.; Fang, X.

    2016-01-01

    In this study a model of simulated vascular injury in vitro was used to study the characterization of bone-marrow-derived mesenchymal stem cells (BMSCs) morphology and to investigate the differentiation and migration of BMSCs in the presence of adventitial fibroblasts. BMSCs from rats were indirectly cocultured with adventitial fibroblasts in a transwell chamber apparatus for 7 days, and clonogenic assays demonstrated that BMSCs could be differentiated into smooth muscle-like cells with this process, including smooth muscle α-actin (α-SMA) expression by immunofluorescence staining. Cell morphology of BMSCs was assessed by inverted microscope, while cell proliferation was assessed by MTT assay. The expressions of TGF-β1, MMP-1, and NF-κB were detected by immunofluorescence staining and Smad3 mRNA was measured by reverse transcription PCR. Migration ability of BMSCs with DAPI-labeled nuclei was measured by laser confocal microscopy. Our results demonstrate that indirect interactions with adventitial fibroblasts can induce proliferation, differentiation, and migration of BMSCs that can actively participate in neointimal formation. Our results indicate that the pathogenesis of vascular remodeling might perform via TGF-β1/Smad3 signal transduction pathways. PMID:26880952

  16. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury

    SciTech Connect

    Shishido, Tetsuro . E-mail: Tetsuro_Shishido@URMC.Rochester.edu; Nozaki, Naoki; Takahashi, Hiroki; Arimoto, Takanori; Niizeki, Takeshi; Koyama, Yo; Abe, Jun-ichi; Takeishi, Yasuchika; Kubota, Isao

    2006-07-14

    Background: It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo. Methods and results: Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-{alpha}, interleukin-1{beta} (IL-1{beta}), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury. Conclusions: These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.

  17. Detecting DNA synthesis of neointimal formation after catheter balloon injury in GK and in Wistar rats: using 5-ethynyl-2'-deoxyuridine

    PubMed Central

    2012-01-01

    Background Neointimal formation plays an important role in the pathogenesis of coronary restenosis after percutaneous coronary intervention (PCI), especially in patients with diabetes mellitus. Recently, some studies have shown that 5-ethynyl-2'-deoxyuridine (EdU) incorporation can serve as a novel alternative to the 5-bromo-2'-deoxyuridine (BrdU) antibody detection method for detection of DNA synthesis in regenerating avian cochlea, chick embryo and the adult nervous system. However, few studies have been performed to assess the suitability of EdU for detecting DNA synthesis in vascular neointima. Methods The carotid artery balloon injury model was established in Goto-Kakizaki (GK) and Wistar rats. A Cell-LightTM EdU Kit was used to detect EdU-labeled cell nuclei of common carotid arteries at day 7 after catheter balloon injury. Different methods of injecting EdU were tested. The protein levels of proliferating cell nuclear antigen (PCNA) and p-Akt (Ser473), as well as the mRNA levels of PCNA were evaluated by Western blotting and quantitative real-time PCR (qRT-PCR), respectively. Immunohistochemical staining was also employed to visualize PCNA-positive cells. Results At day 7 after catheter balloon injury, far more EdU-positive and PCNA-positive cells were observed in GK rats. When comparing groups that received different EdU doses, it was found that the percentage of EdU-positive cells at a dose of 100 mg/kg body weight was than at doses of 25 mg/kg and 50 mg/kg. The number of positive cells was significantly higher in the repeated injection group compared to the single injection group. Further, after balloon injury DNA synthesis in GK rats was more notable than in Wistar rats. Neointimal formation in GK rats was more obvious than in Wistar rats. The protein levels of PCNA and p-Akt (Ser473) and the mRNA levels of PCNA were increased in injured rats as compared to uninjured rats, and were significantly higher in GK rats than in Wistar rats. Conclusion By

  18. Progressive vascular remodeling and reduced neointimal formation after placement of a thermoelastic self-expanding nitinol stent in an experimental model.

    PubMed

    Carter, A J; Scott, D; Laird, J R; Bailey, L; Kovach, J A; Hoopes, T G; Pierce, K; Heath, K; Hess, K; Farb, A; Virmani, R

    1998-06-01

    Despite the improvements afforded by intracoronary stenting, restenosis remains a significant problem. The optimal physical properties of a stent have not been defined. We compared the vascular response to a thermoelastic self-expanding nitinol stent with a balloon-expandable tubular slotted stainless steel stent in normal porcine coronary arteries. Twenty-two stents (11 nitinol and 11 tubular slotted) were implanted in 11 miniature swine. The nitinol stents were deployed using the intrinsic thermal properties of the metal, without adjunctive balloon dilation. The tubular slotted stents were implanted using a noncompliant balloon with a mean inflation pressure of 12 atm. Intravascular ultrasound (IVUS) and histology were used to evaluate the vascular response to the stents. The mean cross-sectional area (CSA) of the nitinol stents (mm2) as measured by IVUS increased from 8.13 +/- 1.09 at implant to 9.10 +/- 0.99 after 28 days (P = 0.038), while the mean CSA of the tubular slotted stents was unchanged (7.84 +/- 1.39 mm2 vs. 7.10 +/- 1.07 mm2, P = 0.25). On histology at 3 days, the tubular slotted stents had more inflammatory cells adjacent to the stent wires (5.7 +/- 1.5 cells/0.1 mm2) than the nitinol (3.9 +/- 1.3 cells/0.1 mm2, P = 0.016). The tubular slotted also had increased thrombus thickness (83 +/- 85 microm) than the nitinol stents (43 +/- 25 microm, P = 0.0014). After 28 days, the vessel injury score was similar for the nitinol (0.6 +/- 0.3) and the tubular slotted (0.5 +/- 0.1, P = 0.73) designs. The mean neointimal area (0.97 +/- 0.46 mm2 vs. 1.96 +/- 0.34 mm2, P = 0.002) and percent area stenosis (15 +/- 7 vs. 33 +/- 7, P = 0.003) were significantly lower in the nitinol than in the tubular slotted stents, respectively. We conclude that a thermoelastic nitinol stent exerts a more favorable effect on vascular remodeling, with less neointimal formation, than a balloon-expandable design. Progressive intrinsic stent expansion after implant does not appear to

  19. Pattern Formation in Materials

    NASA Astrophysics Data System (ADS)

    Karma, Alain

    2011-04-01

    Pattern formation is ubiquitous in nature, from sand ripples formed by wind to the development of a complex biological organism with different organs and a central nervous system. In the realm of materials, patterns are formed invariably when matter is transformed between different solid, liquid or gaseous states far from thermodynamic equilibrium. Material failure is itself mediated by the propagation of cracks that form intricate patterns. Understanding how patterns form and evolve is key to design materials with desired properties and to optimize their performance and safety. This talk will discuss recent progress made to understand three distinct class of patterns including the highly branched snow-flake-like dendritic patterns formed during the solidification process, polycrystalline patterns shaped by grain boundaries, and crack patterns.

  20. Pattern formation today

    PubMed Central

    Chuong, Cheng-Ming; Richardson, Michael K.

    2010-01-01

    Patterns are orders embedded in randomness. They may appear as spatial arrangements or temporal series, and the elements may appear identical or with variations. Patterns exist in the physical world as well as in living systems. In the biological world, patterns can range from simple to complex, forming the basic building blocks of life. The process which generates this ordering in the biological world was termed pattern formation. Since Wolpert promoted this concept four decades ago, scientists from molecular biology, developmental biology, stem cell biology, tissue engineering, theoretical modeling and other disciplines have made remarkable progress towards understanding its mechanisms. It is time to review and re-integrate our understanding. Here, we explore the origin of pattern formation, how the genetic code is translated into biological form, and how complex phenotypes are selected over evolutionary time. We present four topics: Principles, Evolution, Development, and Stem Cells and Regeneration. We have interviewed several leaders in the field to gain insight into how their research and the field of pattern formation have shaped each other. We have learned that both molecular process and physico-chemical principles are important for biological pattern formation. New understanding will emerge through integration of the analytical approach of molecular-genetic manipulation and the systemic approach of model simulation. We regret that we could not include every major investigator in the field, but hope that this Special Issue of the Int. J. Dev. Biol. represents a sample of our knowledge of pattern formation today, which will help to stimulate more research on this fundamental process. PMID:19557673

  1. Pattern formation during vasculogenesis.

    PubMed

    Czirok, Andras; Little, Charles D

    2012-06-01

    Vasculogenesis, the assembly of the first vascular network, is an intriguing developmental process that yields the first functional organ system of the embryo. In addition to being a fundamental part of embryonic development, vasculogenic processes also have medical importance. To explain the organizational principles behind vascular patterning, we must understand how morphogenesis of tissue level structures can be controlled through cell behavior patterns that, in turn, are determined by biochemical signal transduction processes. Mathematical analyses and computer simulations can help conceptualize how to bridge organizational levels and thus help in evaluating hypotheses regarding the formation of vascular networks. Here, we discuss the ideas that have been proposed to explain the formation of the first vascular pattern: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and sprouting guided by cell-cell contacts. PMID:22692888

  2. Dynamics of interfacial pattern formation

    NASA Technical Reports Server (NTRS)

    Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.

    1983-01-01

    A phenomenological model of dendritic solidification incorporating interfacial kinetics, crystalline anisotropy, and a local approximation for the dynamics of the thermal diffusion field is proposed. The preliminary results are in qualitative agreement with natural dendrite-like pattern formation.

  3. c-Kit signaling determines neointimal hyperplasia in arteriovenous fistulae

    PubMed Central

    Skartsis, Nikolaos; Martinez, Laisel; Duque, Juan Camilo; Tabbara, Marwan; Velazquez, Omaida C.; Asif, Arif; Andreopoulos, Fotios; Salman, Loay H.

    2014-01-01

    Stenosis of arteriovenous (A-V) fistulae secondary to neointimal hyperplasia (NIH) compromises dialysis delivery, which worsens patients' quality of life and increases medical costs associated with the maintenance of vascular accesses. In the present study, we evaluated the role of the receptor tyrosine kinase c-Kit in A-V fistula neointima formation. Initially, c-Kit was found in the neointima and adventitia of human brachiobasilic fistulae, whereas it was barely detectable in control veins harvested at the time of access creation. Using the rat A-V fistula model to study venous vascular remodeling, we analyzed the spatial and temporal pattern of c-Kit expression in the fistula wall. Interestingly, c-Kit immunoreactivity increased with time after anastomosis, which concurred with the accumulation of cells in the venous intima. In addition, c-Kit expression in A-V fistulae was positively altered by chronic kidney failure conditions. Both blockade of c-Kit with imatinib mesylate (Gleevec) and inhibition of stem cell factor production with a specific short hairpin RNA prevented NIH in the outflow vein of experimental fistulae. In agreement with these data, impaired c-Kit activity compromised the development of NIH in A-V fistulae created in c-KitW/Wv mutant mice. These results suggest that targeting of the c-Kit signaling pathway may be an effective approach to prevent postoperative NIH in A-V fistulae. PMID:25186298

  4. Pattern formation in multiplex networks

    PubMed Central

    Kouvaris, Nikos E.; Hata, Shigefumi; Guilera, Albert Díaz-

    2015-01-01

    The advances in understanding complex networks have generated increasing interest in dynamical processes occurring on them. Pattern formation in activator-inhibitor systems has been studied in networks, revealing differences from the classical continuous media. Here we study pattern formation in a new framework, namely multiplex networks. These are systems where activator and inhibitor species occupy separate nodes in different layers. Species react across layers but diffuse only within their own layer of distinct network topology. This multiplicity generates heterogeneous patterns with significant differences from those observed in single-layer networks. Remarkably, diffusion-induced instability can occur even if the two species have the same mobility rates; condition which can never destabilize single-layer networks. The instability condition is revealed using perturbation theory and expressed by a combination of degrees in the different layers. Our theory demonstrates that the existence of such topology-driven instabilities is generic in multiplex networks, providing a new mechanism of pattern formation. PMID:26042606

  5. Pattern Formation in Convective Instabilities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Bestehorn, M.; Haken, H.

    The present article reviews recent progress in the study of pattern formation in convective instabilities. After a brief discussion of the relevant basic hydrodynamic equations as well as a short outline of the mathematical treatment of pattern formation in complex systems the self-organization of spatial and spatio-temporal structures due to convective instabilities is considered. The formation of various forms of convective patterns arising in the Bénard experiment, i.e. in a horizontal fluid layer heated from below, is discussed. Then the review considers pattern formation in the Bénard instability in spherical geometries. In that case it can be demonstrated how the interaction among several convective cells may lead to time dependent as well as chaotic evolution of the spatial structures. Finally, the convective instability in a binary fluid mixture is discussed. In contrast to the instability in a single component fluid the instability may be oscillatory. In that case convection sets in in the form of travelling wave patterns which in addition to a complicated and chaotic temporal behaviour exhibit more or less spatial irregularity already close to threshold.

  6. Pattern formation in the geosciences

    PubMed Central

    Goehring, Lucas

    2013-01-01

    Pattern formation is a natural property of nonlinear and non-equilibrium dynamical systems. Geophysical examples of such systems span practically all observable length scales, from rhythmic banding of chemical species within a single mineral crystal, to the morphology of cusps and spits along hundreds of kilometres of coastlines. This article briefly introduces the general principles of pattern formation and argues how they can be applied to open problems in the Earth sciences. Particular examples are then discussed, which summarize the contents of the rest of this Theme Issue. PMID:24191107

  7. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. PMID:26852668

  8. Zonal flow as pattern formation

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-01

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  9. Zonal flow as pattern formation

    SciTech Connect

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-15

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  10. Epothilones Suppress Neointimal Thickening in the Rat Carotid Balloon-Injury Model by Inducing Vascular Smooth Muscle Cell Apoptosis through p53-Dependent Signaling Pathway

    PubMed Central

    Son, Dong Ju; Jung, Jae Chul; Hong, Jin Tae

    2016-01-01

    Microtubule stabilizing agents (MTSA) are known to inhibit vascular smooth muscle cell (VSMC) proliferation and migration, and effectively reduce neointimal hyperplasia and restenosis. Epothilones (EPOs), non-taxane MTSA, have been found to be effective in the inhibition of VSMC proliferation and neointimal formation by cell cycle arrest. However, effect of EPOs on apoptosis in hyper-proliferated VSMCs as a possible way to reduce neointimal formation and its action mechanism related to VSMC viability has not been suited yet. Thus, the purposes of the present study was to investigate whether EPOs are able to inhibit neointimal formation by inducing apoptosis within the region of neointimal hyperplasia in balloon-injured rat carotid artery, as well as underlying action mechanism. Treatment of EPO-B and EPO-D significantly induced apoptotic cell death and mitotic catastrophe in hyper-proliferated VSMCs, resulting in cell growth inhibition. Further, EPOs significantly suppressed VSMC proliferation and induced apoptosis by activation of p53-dependent apoptotic signaling pathway, Bax/cytochrome c/caspase-3. We further demonstrated that the local treatment of carotid arteries with EPOs potently inhibited neointimal lesion formation by induction of apoptosis in rat carotid injury model. Our findings demonstrate a potent anti-neointimal hyperplasia property of EPOs by inducing p53-depedent apoptosis in hyper-proliferated VSMCs. PMID:27218463

  11. Egr-1 Expression During Neointimal Development in Flow-Associated Pulmonary Hypertension

    PubMed Central

    Dickinson, Michael G.; Bartelds, Beatrijs; Molema, Grietje; Borgdorff, Marinus A.; Boersma, Bibiche; Takens, Janny; Weij, Michel; Wichers, Pieter; Sietsma, Hannie; Berger, Rolf M.F.

    2011-01-01

    In flow-associated pulmonary arterial hypertension (PAH), increased pulmonary blood flow is an essential trigger for neointimal formation. Using microarray analysis, we recently found that the early growth response protein 1 (Egr-1) transcription factor is increased in experimental flow-associated end-stage PAH. Its role in PAH development is unknown. Here, we assessed the spatiotemporal expression of Egr-1 during neointimal development in flow-associated PAH. Flow-associated PAH was produced in rats by combining monocrotaline administration with an aortocaval shunt. Animals were sacrificed 1 day before or 1 day, 1 week, or 4 to 5 weeks after flow addition. Egr-1 expression was spatiotemporally assessed using laser microdissection, quantitative real-time PCR and immunohistochemistry. In addition, Egr-1 expression was assessed in a non-neointimal pulmonary hypertension model and in human PAH associated with congenital shunt. In 4 to 5 weeks, rats subjected to increased flow developed PAH with neointimal lesions. Egr-1 mRNA was increased 1 day after flow addition and in end-stage PAH, whereas monocrotaline only did not result in increased Egr-1 mRNA. Directly after flow addition, Egr-1 was expressed in endothelial cells. During disease development, Egr-1 protein expression increased and migrated throughout the vessel wall. In PAH patients, Egr-1 was expressed in vessels with media hypertrophy and neointimal lesions, including plexiform lesions. Thus, Egr-1 may be an important regulator in the development of pulmonary neointimal lesions induced by increased pulmonary blood flow. PMID:21924231

  12. Egr-1 expression during neointimal development in flow-associated pulmonary hypertension.

    PubMed

    Dickinson, Michael G; Bartelds, Beatrijs; Molema, Grietje; Borgdorff, Marinus A; Boersma, Bibiche; Takens, Janny; Weij, Michel; Wichers, Pieter; Sietsma, Hannie; Berger, Rolf M F

    2011-11-01

    In flow-associated pulmonary arterial hypertension (PAH), increased pulmonary blood flow is an essential trigger for neointimal formation. Using microarray analysis, we recently found that the early growth response protein 1 (Egr-1) transcription factor is increased in experimental flow-associated end-stage PAH. Its role in PAH development is unknown. Here, we assessed the spatiotemporal expression of Egr-1 during neointimal development in flow-associated PAH. Flow-associated PAH was produced in rats by combining monocrotaline administration with an aortocaval shunt. Animals were sacrificed 1 day before or 1 day, 1 week, or 4 to 5 weeks after flow addition. Egr-1 expression was spatiotemporally assessed using laser microdissection, quantitative real-time PCR and immunohistochemistry. In addition, Egr-1 expression was assessed in a non-neointimal pulmonary hypertension model and in human PAH associated with congenital shunt. In 4 to 5 weeks, rats subjected to increased flow developed PAH with neointimal lesions. Egr-1 mRNA was increased 1 day after flow addition and in end-stage PAH, whereas monocrotaline only did not result in increased Egr-1 mRNA. Directly after flow addition, Egr-1 was expressed in endothelial cells. During disease development, Egr-1 protein expression increased and migrated throughout the vessel wall. In PAH patients, Egr-1 was expressed in vessels with media hypertrophy and neointimal lesions, including plexiform lesions. Thus, Egr-1 may be an important regulator in the development of pulmonary neointimal lesions induced by increased pulmonary blood flow. PMID:21924231

  13. Magnetic Assisted Colloidal Pattern Formation

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  14. Pattern formation in centrosome assembly.

    PubMed

    Mahen, Robert; Venkitaraman, Ashok R

    2012-02-01

    A striking but poorly explained feature of cell division is the ability to assemble and maintain organelles not bounded by membranes, from freely diffusing components in the cytosol. This process is driven by information transfer across biological scales such that interactions at the molecular scale allow pattern formation at the scale of the organelle. One important example of such an organelle is the centrosome, which is the main microtubule organising centre in the cell. Centrosomes consist of two centrioles surrounded by a cloud of proteins termed the pericentriolar material (PCM). Profound structural and proteomic transitions occur in the centrosome during specific cell cycle stages, underlying events such as centrosome maturation during mitosis, in which the PCM increases in size and microtubule nucleating capacity. Here we use recent insights into the spatio-temporal behaviour of key regulators of centrosomal maturation, including Polo-like kinase 1, CDK5RAP2 and Aurora-A, to propose a model for the assembly and maintenance of the PCM through the mobility and local interactions of its constituent proteins. We argue that PCM structure emerges as a pattern from decentralised self-organisation through a reaction-diffusion mechanism, with or without an underlying template, rather than being assembled from a central structural template alone. Self-organisation of this kind may have broad implications for the maintenance of mitotic structures, which, like the centrosome, exist stably as supramolecular assemblies on the micron scale, based on molecular interactions at the nanometer scale. PMID:22245706

  15. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  16. Pattern formation with proportionate growth

    NASA Astrophysics Data System (ADS)

    Dhar, Deepak

    It is a common observation that as baby animals grow, different body parts grow approximately at same rate. This property, called proportionate growth is remarkable in that it is not encountered easily outside biology. The models of growth that have been studied in Physics so far, e.g diffusion -limited aggregation, surface deposition, growth of crystals from melt etc. involve only growth at the surface, with the inner structure remaining frozen. Interestingly, patterns formed in growing sandpiles provide a very wide variety of patterns that show proportionate growth. One finds patterns with different features, with sharply defined boundaries. In particular, even with very simple rules, one can produce patterns that show striking resemblance to those seen in nature. We can characterize the asymptotic pattern exactly in some special cases. I will discuss in particular the patterns grown on noisy backgrounds. Supported by J. C. Bose fellowship from DST (India).

  17. Pattern formation in quantum networks

    NASA Astrophysics Data System (ADS)

    Kim, Ilki; Mahler, Günter

    1999-03-01

    We investigate the iteration of a sequence of local and pair unitary transformations (quantum gate approximation), which can be interpreted to result from a Turing-head (pseudo-spin S) rotating along a closed Turing-tape (M additional pseudo-spins). The dynamical evolution of the Bloch-vector of S, which can be decomposed into 2M primitive pure state Turing-head trajectories, gives rise to fascinating geometrical patterns reflecting the entanglement between head and tape. For specific initial states ("input"), these patterns ("output") can be easily calculated for any tape size. We thus show intuitive examples for quantum parallelism and, at the same time, means for local testing of quantum network dynamics.

  18. Blood drop patterns: Formation and applications.

    PubMed

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. PMID:26988066

  19. Pattern Formation in Driven Systems

    NASA Astrophysics Data System (ADS)

    Klymko, Katherine

    Model colloidal particles of two types, driven in opposite directions, will in two dimensions segregate into lanes, a phenomenon studied extensively by Lowen and co-workers [Dzubiella et al. Phys. Rev. E 65, 021402 (2002)]. We have simulated mixtures of oppositely-driven particles using three numerical protocols. We find that laning results from enhanced diffusion, in the direction perpendicular to the drive, of particles surrounded by particles of the opposite type, consistent with the observation of Vissers et al. [Soft Matter 7, 6, 2352 (2011)]. By comparing protocols we find that enhanced diffusion follows from a simple geometrical constraint: oppositely-driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This constraint implies that the effective lateral diffusion constant grows linearly with drive speed and as the square root of the packing fraction, a prediction supported by our numerics. By invoking an analogy between hard particles with environment-dependent mobilities and mutually attractive particles we argue that there exists an equilibrium system whose pattern-forming properties are similar to those of the driven system. Katherine Klymko acknowledges support from the NSF Graduate Research Fellowship.

  20. Pattern Formation in Excitable Media

    NASA Astrophysics Data System (ADS)

    Reynolds, William Nash

    1992-01-01

    The phenomenon of excitability is observed in a wide variety of physical and biological systems. In this work, spatially extended excitable systems are examined from several different perspectives. First, a pedagogical introduction is used to motivate the derivation of the dynamics of one dimensional excitable pulses. In the second part, coupled map techniques for numerical simulation of excitable media and other interfacial systems are described. Examples are given for both excitable media and crystal growth. The third chapter addresses the phenomenon of spiral formation in excitable media. Exact rotating solutions are found for a class of models of excitable media. The solutions consist of two regions: an outer region, consisting of the spiral proper, which exhibits a singularity at its tip, and the core region, obtained by rescaling space in the vicinity of the tip. The tip singularity is resolved in the core region, leading to a consistent solution in all of space. The stability of both the spiral and the core is investigated, with the result that the spiral is found to be stable, and the core unstable. Finally, the stability of excitable waves of the chemical cAMP traveling over aggregating colonies of the slime mold Dictyostelium discoideum is examined by coupling the excitable dynamics of the cAMP signalling system to a simple model of chemotaxis, with result that cellular motion is found to destabilize the waves, causing the initially uniform field of cells to break up into streams.

  1. New Developments in Our Understanding of Neointimal Hyperplasia.

    PubMed

    Lee, Timmy; Ul Haq, Naveed

    2015-11-01

    The vascular access remains the lifeline for the hemodialysis patient. The most common etiology of vascular access dysfunction is venous stenosis at the vein-artery anastomosis in arteriovenous fistula and at the vein-graft anastomosis in arteriovenous grafts (AVG). This stenotic lesion is typically characterized on histology as aggressive venous neointimal hyperplasia in both arteriovenous fistula and AVG. In recent years, we have advanced our knowledge and understanding of neointimal hyperplasia in vascular access and begun testing several novel therapies. This article will (1) review recent developments in our understanding of the pathophysiology of neointimal hyperplasia development in AVG and fistula failure, (2) discuss atypical factors leading to neointimal hyperplasia development, (3) highlight key novel therapies that have been evaluated in clinical trials, and (4) discuss future opportunities and challenges to improve our understanding of vascular access dysfunction and translate this knowledge into novel and innovative therapies. PMID:26524947

  2. Drumlins: A Classic Example of Pattern Formation.

    NASA Astrophysics Data System (ADS)

    Ely, Jeremy C.; Clark, Chris D.; Spagnolo, Matteo; Hahn, Ute; Hughes, Anna L. C.

    2014-05-01

    Drumlins are elongate streamlined hills, typically 250-1000 m long and 120-300 m wide, formed beneath ice sheets. They occur in fields or swarms, covering vast swathes of previously glaciated terrain, and are the most common variant of a continuum of subglacial bedforms. The processes of drumlin formation are currently elusive and contentious, hindering our understanding of the ice-bed interface. Yet, insight into drumlin formation can be gained through studying their spatial distribution and morphometric properties. When viewed from above, drumlins display striking regularity and self-similarity, suggesting that they form through a self-organising pattern forming process. However, the difficulty of observing drumlins forming in situ (i.e. beneath an ice sheet), and a focus upon individual drumlin forms, has hindered both the recognition and understanding of drumlin pattern formation. Hence, the nature of drumlin patterning is poorly understood, especially in comparison to bedforms generated by other geomorphic agents (e.g. dunes and ripples). To address these issues, here we analyse the morphometric properties of a large database of drumlins mapped from palaeo-ice sheet beds at a variety of geological and glaciological settings. Spatial statistical point pattern tests suggest that drumlins are regularly spaced across drumlin fields. However, defects to this regularity occur due to differences in preservation and initial formation conditions. Furthermore, drumlin morphometric parameters frequently conform to a log-normal distribution, common for phenomena which experience incremental growth or fragmentation. Hence, drumlin morphometrics can provide us with insight into how drumlin patterns have evolved. Between separate drumlin fields, variations in patterning and morphometrics vary, highlighting the response of drumlin patterning to local glaciological and geological factors. Hence, we suggest that many of the patterning principles which have been applied to other

  3. Theory of ocular dominance pattern formation

    NASA Astrophysics Data System (ADS)

    Scherf, O.; Pawelzik, K.; Wolf, F.; Geisel, T.

    1999-06-01

    We investigate a general and analytically tractable model for the activity-dependent formation of neuronal connectivity patterns. Previous models are contained as limiting cases. As an important example we analyze the formation of ocular dominance patterns in the visual cortex. A linear stability analysis reveals that the model undergoes a Turing-type instability as a function of interaction range and receptive field size. The phase transitions is of second order. After the linear instability the patterns may reorganize which we analyze in terms of a potential for the dynamics. Our analysis demonstrates that the experimentally observed dependency of ocular dominance patterns on interocular correlations of visual experience during development can emerge according to two generic scenarios: either the system is driven through the phase transition during development thereby selecting and stabilizing the first unstable mode or a primary pattern reorganizes towards larger wavelength according their lower energy. Experimentally observing the time course of ocular dominance pattern formation will decide which scenario is realized in the brain.

  4. Rear Polarization of the Microtubule-Organizing Center in Neointimal Smooth Muscle Cells Depends on PKCα, ARPC5, and RHAMM

    PubMed Central

    Silverman-Gavrila, Rosalind; Silverman-Gavrila, Lorelei; Hou, Guangpei; Zhang, Ming; Charlton, Milton; Bendeck, Michelle P.

    2011-01-01

    Directed migration of smooth muscle cells (SMCs) from the media to the intima in arteries occurs during atherosclerotic plaque formation and during restenosis after angioplasty or stent application. The polarized orientation of the microtubule-organizing center (MTOC) is a key determinant of this process, and we therefore investigated factors that regulate MTOC polarity in vascular SMCs. SMCs migrating in vivo from the medial to the intimal layer of the rat carotid artery following balloon catheter injury were rear polarized, with the MTOC located posterior of the nucleus. In tissue culture, migrating neointimal cells maintained rear polarization, whereas medial cells were front polarized. Using phosphoproteomic screening and mass spectrometry, we identified ARPC5 and RHAMM as protein kinase C (PKC)-phosphorylated proteins associated with rear polarization of the MTOC in neointimal SMCs. RNA silencing of ARPC5 and RHAMM, PKC inhibition, and transfection with a mutated nonphosphorylatable ARPC5 showed that these proteins regulate rear polarization by organizing the actin and microtubule cytoskeletons in neointimal SMCs. Both ARPC5 and RHAMM, in addition to PKC, were required for migration of neointimal SMCs. PMID:21281821

  5. Taming contact line instability for pattern formation.

    PubMed

    Deblais, A; Harich, R; Colin, A; Kellay, H

    2016-01-01

    Coating surfaces with different fluids is prone to instability producing inhomogeneous films and patterns. The contact line between the coating fluid and the surface to be coated is host to different instabilities, limiting the use of a variety of coating techniques. Here we take advantage of the instability of a receding contact line towards cusp and droplet formation to produce linear patterns of variable spacings. We stabilize the instability of the cusps towards droplet formation by using polymer solutions that inhibit this secondary instability and give rise to long slender cylindrical filaments. We vary the speed of deposition to change the spacing between these filaments. The combination of the two gives rise to linear patterns into which different colloidal particles can be embedded, long DNA molecules can be stretched and particles filtered by size. The technique is therefore suitable to prepare anisotropic structures with variable properties. PMID:27506626

  6. Taming contact line instability for pattern formation

    PubMed Central

    Deblais, A.; Harich, R.; Colin, A.; Kellay, H.

    2016-01-01

    Coating surfaces with different fluids is prone to instability producing inhomogeneous films and patterns. The contact line between the coating fluid and the surface to be coated is host to different instabilities, limiting the use of a variety of coating techniques. Here we take advantage of the instability of a receding contact line towards cusp and droplet formation to produce linear patterns of variable spacings. We stabilize the instability of the cusps towards droplet formation by using polymer solutions that inhibit this secondary instability and give rise to long slender cylindrical filaments. We vary the speed of deposition to change the spacing between these filaments. The combination of the two gives rise to linear patterns into which different colloidal particles can be embedded, long DNA molecules can be stretched and particles filtered by size. The technique is therefore suitable to prepare anisotropic structures with variable properties. PMID:27506626

  7. Taming contact line instability for pattern formation

    NASA Astrophysics Data System (ADS)

    Deblais, A.; Harich, R.; Colin, A.; Kellay, H.

    2016-08-01

    Coating surfaces with different fluids is prone to instability producing inhomogeneous films and patterns. The contact line between the coating fluid and the surface to be coated is host to different instabilities, limiting the use of a variety of coating techniques. Here we take advantage of the instability of a receding contact line towards cusp and droplet formation to produce linear patterns of variable spacings. We stabilize the instability of the cusps towards droplet formation by using polymer solutions that inhibit this secondary instability and give rise to long slender cylindrical filaments. We vary the speed of deposition to change the spacing between these filaments. The combination of the two gives rise to linear patterns into which different colloidal particles can be embedded, long DNA molecules can be stretched and particles filtered by size. The technique is therefore suitable to prepare anisotropic structures with variable properties.

  8. Mechanisms of scaling in pattern formation

    PubMed Central

    Umulis, David M.; Othmer, Hans G.

    2013-01-01

    Many organisms and their constituent tissues and organs vary substantially in size but differ little in morphology; they appear to be scaled versions of a common template or pattern. Such scaling involves adjusting the intrinsic scale of spatial patterns of gene expression that are set up during development to the size of the system. Identifying the mechanisms that regulate scaling of patterns at the tissue, organ and organism level during development is a longstanding challenge in biology, but recent molecular-level data and mathematical modeling have shed light on scaling mechanisms in several systems, including Drosophila and Xenopus. Here, we investigate the underlying principles needed for understanding the mechanisms that can produce scale invariance in spatial pattern formation and discuss examples of systems that scale during development. PMID:24301464

  9. Pattern Formation and Functionality in Swarm Models

    NASA Astrophysics Data System (ADS)

    Rauch, Erik; Millonas, Mark; Chialvo, Dante

    1996-03-01

    We explore a simplified class of models we call swarms, which are inspired by the collective behavior of social insects. We perform a mean-field type stability analysis and numerical simulations of the model. Several interesting types of functional behavior appear in the vicinity of a second order phase transition, including the formation of stable lines of traffic flow, memory consolidation, and bootstrapping. In addition to providing an understanding of certain classes of biological behavior, these models bear a generic resemblence to a number of pattern formation processes in the physical sciences.

  10. Pattern formation in Active Polar Fluids

    NASA Astrophysics Data System (ADS)

    Gopinath, Arvind; Hagan, Michael; Baskaran, Aparna

    2011-03-01

    Systems such as bacterial suspensions or cytoskeletal filaments and motility assays can be described within the paradigm of active polar fluids. These systems have been shown to exhibit pattern formation raging from asters and vortices to traveling stripes. A coarse-grained description of such a fluid is given by a scalar density field and a vector polarization field. We study such a macroscopic description of the system using weakly nonlinear analysis and numerical simulations to map out the emergent pattern formation as a function of the hydrodynamic parameters in the context of two specific microscopic models - a quasi-2D suspension of cytoskeletal filaments and motor proteins and a system of self propelled hard rods that interact through excluded volume interactions. The authors thank the Brandeis MRSEC center for financial support.

  11. Cellular pattern formation during Dictyostelium aggregation

    NASA Astrophysics Data System (ADS)

    Höfer, Thomas; Sherratt, Jonathan A.; Maini, Philip K.

    The development of multicellularity in the life cycle of Dictyostelium discoideum provides a paradigm model system for biological pattern formation. Previously, mathematical models have shown how a collective pattern of cell communication by waves of the messenger molecule cyclic adenosine 3‧5‧-monophosphate (cAMP) arises from excitable local cAMP kinetics and cAMP diffusion. Here we derive a model of the actual cell aggregation process by considering the chemotactic cell response to cAMP and its interplay with the cAMP dynamics. Cell density, which previously has been treated as a spatially homogeneous parameter, is a crucial variable of the aggregation model. We find that the coupled dynamics of cell chemotaxis and cAMP reaction-diffusion lead to the break-up of the initially uniform cell layer and to the formation of the striking cell stream morphology which characterizes the aggregation process in situ. By a combination of stability analysis and two-dimensional simulations of the model equations, we show cell streaming to be the consequence of the growth of a small-amplitude pattern in cell density forced by the large-amplitude cAMP waves, thus representing a novel scenario of spatial patterning in a cell chemotaxis system. The instability mechanism is further analysed by means of an analytic caricature of the model, and the condition for chemotaxis-driven instability is found to be very similar to the one obtained for the standard (non-oscillatory) Keller-Segel system. The growing cell stream pattern feeds back into the cAMP dynamics, which can explain in some detail experimental observations on the time evolution of the cAMP wave pattern, and suggests the characterization of the Dictyostelium aggregation field as a self-organized excitable medium.

  12. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  13. Pattern Formation on Networks: from Localised Activity to Turing Patterns.

    PubMed

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  14. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    NASA Astrophysics Data System (ADS)

    McCullen, Nick; Wagenknecht, Thomas

    2016-06-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system.

  15. Geometry-induced protein pattern formation

    PubMed Central

    Thalmeier, Dominik; Halatek, Jacob; Frey, Erwin

    2016-01-01

    Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in Δ EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems. PMID:26739566

  16. Pattern formation in drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, D.; Sobac, B.; Loquet, B.; Sampol, J.

    2011-01-01

    The drying of a drop of human blood exhibits coupled physical mechanisms, such as Marangoni flow, evaporation and wettability. The final stage of a whole blood drop evaporation reveals regular patterns with a good reproducibility for a healthy person. Other experiments on anaemic and hyperlipidemic people were performed, and different patterns were revealed. The flow motion inside the blood drop is observed and analyzed with the use of a digital camera: the influence of the red blood cells (RBCs) motion is revealed at the drop periphery as well as its consequences on the final stage of drying. The mechanisms which lead to the final pattern of the dried blood drops are presented and explained on the basis of fluid mechanics in conjunction with the principles of haematology. The blood drop evaporation process is evidenced to be driven only by Marangoni flow. The same axisymetric pattern formation is observed, and can be forecast for different blood drop diameters. The evaporation mass flux can be predicted with a good agreement, assuming only the knowledge of the colloids mass concentration.

  17. Electrically induced structure formation and pattern transfer

    NASA Astrophysics Data System (ADS)

    Schäffer, Erik; Thurn-Albrecht, Thomas; Russell, Thomas P.; Steiner, Ullrich

    2000-02-01

    The wavelength of light represents a fundamental technological barrier to the production of increasingly smaller features on integrated circuits. New technologies that allow the replication of patterns on scales less than 100nm need to be developed if increases in computing power are to continue at the present rate. Here we report a simple electrostatic technique that creates and replicates lateral structures in polymer films on a submicrometre length scale. Our method is based on the fact that dielectric media experience a force in an electric field gradient. Strong field gradients can produce forces that overcome the surface tension in thin liquid films, inducing an instability that features a characteristic hexagonal order. In our experiments, pattern formation takes place in polymer films at elevated temperatures, and is fixed by cooling the sample to room temperature. The application of a laterally varying electric field causes the instability to be focused in the direction of the highest electric field. This results in the replication of a topographically structured electrode. We report patterns with lateral dimensions of 140nm, but the extension of the technique to pattern replication on scales smaller than 100nm seems feasible.

  18. Pattern formation during early floral development.

    PubMed

    Vaddepalli, Prasad; Scholz, Sebastian; Schneitz, Kay

    2015-06-01

    Flowers are central to sexual reproduction in plants. The study of floral development proved tremendously successful in obtaining key insight into processes, such as fate determination, pattern formation, and growth regulation. Recent advances relate to the complex mechanisms underlying the crosstalk between phytohormone signaling, cell and tissue mechanics, and regulatory gene networks that positions floral buds at the apex and directs floral specification, initiation and outgrowth. Furthermore, progress has been made in elucidating the intercellular communication and temporal coordination necessary to organize the behavior of the various functional subdomains within the young flower. PMID:25687790

  19. Optical Coherence Tomographic Observation of Morphological Features of Neointimal Tissue after Drug-Eluting Stent Implantation

    PubMed Central

    Lee, Seung-Yul; Shin, Dong-Ho; Kim, Jung-Sun; Kim, Byeong-Keuk; Ko, Young-Guk; Choi, Donghoon; Jang, Yangsoo

    2014-01-01

    Purpose The impacts of different time courses and the degree of neointimal growth on neointimal morphology have not yet been sufficiently investigated. Therefore, we evaluated the morphological features of neointimal tissue after drug-eluting stent (DES) implantation using optical coherence tomography (OCT). Materials and Methods The morphological features of neointimal tissue in stented segments with a maximal percentage of cross-sectional area (CSA) stenosis of neointima were evaluated in 507 DES-treated lesions with >100 µm mean neointimal thickness on follow-up OCT. Neointimal tissue was categorized as homogeneous, heterogeneous, layered, or neoatherosclerotic. Results In lesions with <50% of neointimal CSA stenosis, homogeneous neointima (68.2%) was predominant, followed by heterogeneous neointima (14.1%) and layered neointima (14.1%). In lesions with ≥50% of neointimal CSA stenosis, layered neointima was most frequently observed (68.3%), followed by neoatherosclerotic neointima (25.2%). In subgroup analysis of lesions with ≥50% of neointimal CSA stenosis, 89.5% of the lesions with a stent age <30 months were layered neointima, while 62.3% of the lesions with a stent age ≥30 months were neoatherosclerotic neointima. Conclusion This study suggests that the OCT-detected morphology of DES neointimal tissue was different according to the follow-up time course and degree of neointimal hyperplasia. PMID:24954322

  20. Pattern formation, logistics, and maximum path probability

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-05-01

    The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are

  1. Local delivery of dexamethasone for prevention of neointimal proliferation in a rat model of balloon angioplasty.

    PubMed Central

    Villa, A E; Guzman, L A; Chen, W; Golomb, G; Levy, R J; Topol, E J

    1994-01-01

    A periadventitial polymer system is an alternative local drug delivery technique to obtain and maintain high tissue levels of the drug at the site of vascular injury. To determine if local periadventitial delivery of dexamethasone decreases neointimal proliferation after balloon vascular injury, in three groups of Sprague-Dawley rats, 5% dexamethasone, 0.5% dexamethasone, and placebo silicone polymers were implanted around the left common carotid artery after balloon injury. In a fourth group, placebo polymers were implanted without balloon injury. Dexamethasone serum and tissue levels after polymer implantation were significantly higher in the 5% dexamethasone group compared with the 0.5% dexamethasone group. There was no neointima formation in any of the arterial segments covered with placebo polymers for 3 wk, but without balloon injury. In the arterial segments covered by the 5 and 0.5% dexamethasone polymers, there was a 76 and 75% reduction in intima/media ratios, respectively, compared with the placebo group (5% dexamethasone, 0.26 +/- 0.04; 0.5% dexamethasone, 0.27 +/- 0.03; placebo, 1.09 +/- 0.16, respectively; P < 0.0001). These results suggest that: (a) silicone polymers wrapped around the common carotid arteries for 3 wk did not, without balloon injury, stimulate neointimal proliferation in the rat model; (b) the activity of the drug-eluting polymer for suppressing intimal proliferation was chiefly, but not exclusively, site specific; and (c) transadventitial local delivery of dexamethasone at two different doses markedly inhibits neointimal proliferation after balloon vascular injury. Images PMID:8132764

  2. Pattern formation in confined chemical gardens

    NASA Astrophysics Data System (ADS)

    De Wit, Anne; Haudin, Florence; Brau, Fabian; Cartwright, Julyan

    2014-05-01

    Chemical gardens are plant-like mineral structures first described in the seventeenth century and popularly known from chemistry sets for children. They are classically grown in three-dimensional containers by placing a solid metal-salt seed into a silicate solution. When the metal salt starts dissolving in the silicate solution, a semi-permeable membrane forms by precipitation across which water is pumped by osmosis from the silicate solution into the metal salt solution, further dissolving the salt. Above a given pressure, the membrane breaks. The dissolved metal salt solution being generally less dense than the reservoir silicate solution, it rises as a buoyant jet through the broken membrane and further precipitates in contact with the silicate solution, producing a collection of mineral forms that resemble a garden. Such gardens are the subject of increased interest as a model system to understand pattern formation in sea-ice brinicles and hydrothermal vents on the seafloor, among others. All these self-organized precipitation structures at the interface between chemistry, fluid dynamics and mechanics share indeed common chemical, mechanical and electrical properties. In this framework, we study experimentally spatial patterns resulting from the growth of chemical gardens in confined quasi-two-dimensional (2D) geometries upon radial injection of a metallic salt solution into a silicate solution in a horizontal Hele-Shaw cell. We find a large variety of patterns including spirals, fingers, worms, filiform tubes, and flower-like patterns. By exploring the phase space of reactant concentrations and injection flow rates, we observe transitions between these spatio-temporal structures resulting from a coupling between the precipitation reaction, mechanical effects and hydrodynamic instabilities.

  3. Patterning and Compartment Formation in the Diencephalon

    PubMed Central

    Chatterjee, Mallika; Li, James Y. H.

    2012-01-01

    The diencephalon gives rise to structures that play an important role in connecting the anterior forebrain with the rest of the central nervous system. The thalamus is the major diencephalic derivative that functions as a relay station between the cortex and other lower order sensory systems. Almost two decades ago, neuromeric/prosomeric models were proposed describing the subdivision and potential segmentation of the diencephalon. Unlike the laminar structure of the cortex, the diencephalon is progressively divided into distinct functional compartments consisting principally of thalamus, epithalamus, pretectum, and hypothalamus. Neurons generated within these domains further aggregate to form clusters called nuclei, which form specific structural and functional units. We review the recent advances in understanding the genetic mechanisms that are involved in the patterning and compartment formation of the diencephalon. PMID:22593732

  4. Effects of patterned topography on biofilm formation

    NASA Astrophysics Data System (ADS)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  5. Instabilities and pattern formation in crystal growth

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    1980-01-01

    Several common modes of crystal growth provide particularly simple and elegant examples of spontaneous pattern formation in nature. Phenomena of interest here are those in which an advancing nonfaceted solidification front suffers an instability and subsequently reorganizes itself into a more complex mode of behavior. The purpose of this essay is to examine several such situations and, in doing this, to identify a few new theoretical ideas and a larger number of outstanding problems. The systems studied are those in which solidification is controlled entirely by a single diffusion process, either the flow of latent heat away from a moving interface or the analogous redistribution of chemical constituents. Convective effects are ignored, as are most effects of crystalline anisotropy. The linear theory of the Mullins-Sekerka instability is reviewed for simple planar and spherical cases and also for a special model of directional solidification. These techniques are then extended to the case of a freely growing dendrite, and it is shown how this analysis leads to an understanding of sidebranching and tip-splitting instabilities. A marginal-stability hypothesis is introduced; and it is argued that this intrinsically nonlinear theory, if valid, permits aone to use results of linear-stability analysis to predict dendritic growth rates. The review concludes with a discussion of nonlinear effects in directional solidication. The nonplanar, cellular interfaces which emerge in this situation have much in common with convection patterns in hydrodynamics. The cellular stability problem is discussed briefly, and some preliminary attempts to do calculations in the strongly nonlinear regime are summarized.

  6. Pattern formation in a sandpile of ternary granular mixtures.

    PubMed

    Shimokawa, Michiko; Suetsugu, Yuki; Hiroshige, Ryoma; Hirano, Takeru; Sakaguchi, Hidetsugu

    2015-06-01

    Pattern formation in a sandpile is investigated by pouring a ternary mixture of grains into a vertical narrow cell. Size segregation in avalanches causes the formation of patterns. Four kinds of patterns emerge: stratification, segregation, upper stratification-lower segregation, and upper segregation-lower stratification. A phase diagram is constructed in a parameter space of θ(11)/θ(33) and θ(22)/θ(33), where θ(11),θ(22), and θ(33) are the repose angles of small, intermediate, and large grains, respectively. To qualitatively understand pattern formation, a phenomenological model based on a roll-or-stay rule is proposed. A similar pattern formation is found in a numerical simulation of the phenomenological model. These results suggest that the ratios of the repose angles of three kinds of grains are important for pattern formation in a sandpile. PMID:26172703

  7. Pattern formation in a sandpile of ternary granular mixtures

    NASA Astrophysics Data System (ADS)

    Shimokawa, Michiko; Suetsugu, Yuki; Hiroshige, Ryoma; Hirano, Takeru; Sakaguchi, Hidetsugu

    2015-06-01

    Pattern formation in a sandpile is investigated by pouring a ternary mixture of grains into a vertical narrow cell. Size segregation in avalanches causes the formation of patterns. Four kinds of patterns emerge: stratification, segregation, upper stratification-lower segregation, and upper segregation-lower stratification. A phase diagram is constructed in a parameter space of θ11/θ33 and θ22/θ33 , where θ11,θ22 , and θ33 are the repose angles of small, intermediate, and large grains, respectively. To qualitatively understand pattern formation, a phenomenological model based on a roll-or-stay rule is proposed. A similar pattern formation is found in a numerical simulation of the phenomenological model. These results suggest that the ratios of the repose angles of three kinds of grains are important for pattern formation in a sandpile.

  8. Tongxinluo inhibits vascular inflammation and neointimal hyperplasia through blockade of the positive feedback loop between miR-155 and TNF-α.

    PubMed

    Zhang, Ruo-nan; Zheng, Bin; Li, Li-min; Zhang, Jing; Zhang, Xin-hua; Wen, Jin-kun

    2014-08-15

    Tongxinluo (TXL), a traditional Chinese medicine, has multiple vasoprotective effects, including anti-inflammation. MicroRNA-155 (miR-155) is involved in vascular inflammation and atherosclerosis. However, a direct relationship between TXL and miR-155 in the development of vascular inflammation and remodeling had not yet been shown. The objective of the present study was to investigate whether TXL exerts an inhibitory effect on the vascular inflammatory response and neointimal hyperplasia by regulating miR-155 expression. Using the carotid artery ligation model in mice, we have shown that TXL dose dependently inhibited neointimal formation and reduced the vascular inflammatory response by inhibiting inflammatory cytokine production and macrophage infiltration. miR-155 was induced by carotid artery ligation, and neointimal hyperplasia was strongly reduced in miR-155(−/−) mice. In contrast, miR-155 overexpression partly reversed the inhibitory effect of TXL on neointimal hyperplasia. In bone marrow-derived macrophages, miR-155 and TNF-α formed a positive feedback loop to promote the inflammatory response, which could be blocked by TXL. Furthermore, TXL increased Akt1 protein expression and phosphorylation in TNF-α-stimulated marrow-derived macrophages, and knockdown of Akt1 abrogated the TXL-induced suppression of miR-155. In conclusion, TXL inhibits the vascular inflammatory response and neointimal hyperplasia induced by carotid artery ligation in mice. Suppression of miR-155 expression mediated by Akt1 and blockade of the feedback loop between miR-155 and TNF-α are important pathways whereby TXL exerts its vasoprotective effects. PMID:24951754

  9. Pattern formation by a moving morphogen source

    NASA Astrophysics Data System (ADS)

    Zartman, Jeremiah J.; Cheung, Lily S.; Niepielko, Matthew G.; Bonini, Christine; Haley, Benjamin; Yakoby, Nir; Shvartsman, Stanislav Y.

    2011-08-01

    During Drosophila melanogaster oogenesis, the follicular epithelium that envelops the germline cyst gives rise to an elaborate eggshell, which houses the future embryo and mediates its interaction with the environment. A prominent feature of the eggshell is a pair of dorsal appendages, which are needed for embryo respiration. Morphogenesis of this structure depends on broad, a zinc-finger transcription factor, regulated by the EGFR pathway. While much has been learned about the mechanisms of broad regulation by EGFR, current understanding of processes that shape the spatial pattern of broad expression is incomplete. We propose that this pattern is defined by two different phases of EGFR activation: an early, posterior-to-anterior gradient of EGFR signaling sets the posterior boundary of broad expression, while the anterior boundary is set by a later phase of EGFR signaling, distributed in a dorsoventral gradient. This model can explain the wild-type pattern of broad in D. melanogaster, predicts how this pattern responds to genetic perturbations, and provides insight into the mechanisms driving diversification of eggshell patterning. The proposed model of the broad expression pattern can be used as a starting point for the quantitative analysis of a large number of gene expression patterns in Drosophila oogenesis.

  10. Pattern formation in flowing electrorheological fluids.

    PubMed

    von Pfeil, Karl; Graham, Michael D; Klingenberg, Daniel J; Morris, Jeffrey F

    2002-05-01

    A two-fluid continuum model is developed to describe mass transport in electro- and magnetorheological suspensions. The particle flux is related to the field-induced stresses. Solutions of the resulting mass balance show column formation in the absence of flow, and stripe formation when a suspension is subjected simultaneously to an applied electric field and shear flow. PMID:12005727

  11. Neointimal Hyperplasia in Low-Profile Nitinol Stents, Palmaz Stents, and Wallstents: A Comparative Experimental Study

    SciTech Connect

    Schuermann, Karl; Vorwerk, Dierk; Kulisch, Arthur; Stroehmer-Kulisch, Eva; Biesterfeld, Stefan; Stopinski, Tadeusz; Guenther, Rolf W.

    1996-04-15

    Purpose: To compare neointima formation following insertion of low-profile Nitinol stents, Palmaz stents, and Wallstents. Methods: Nitinol stents, Palmaz stents, and Wallstents similar in size were transfemorally inserted into the iliac arteries of 12 sheep. Four stents per sheep were deployed; the position of the stents was varied so that each type of stent was placed in each position (right or left, proximal or distal) with equal frequency. Stent patency was followed by angiography. Six sheep were euthanized after 1 month, and the remaining six after 6 months. Iliac arteries were removed en bloc and prepared for histological examination. Neointimal and medial thickness were measured by light microscopy, and measurements were analyzed statistically. Results: Mean neointimal thickness both over (NO) and between (NB) the stent struts was greater in Wallstents (NO = 0.341 mm, NB = 0.368 mm) than in the Nitinol (NO = 0.260 mm, NB = 0.220 mm) and Palmaz stents (NO = 0.199 mm, NB = 0.204 mm), but differences were not significant (p> 0.05). Medial atrophy in the area between the stent struts was greater in Wallstents compared with Nitinol and Palmaz stents (p < 0.007 and p < 0.02, respectively); in the area under the stent struts there was a significant difference only between Palmaz stents and Wallstents (p < 0.02). Conclusion: Under defined experimental conditions, none of the three types of stent appears to be preferable to the others regarding neointima formation in the short- to mid-term follow-up period.

  12. Pattern formation in oscillatory media without lateral inhibition.

    PubMed

    Ali, Rehman; Harris, Jeremy; Ermentrout, Bard

    2016-07-01

    Spontaneous symmetry breaking instabilities are the most common mechanism for how biological, chemical, and physical systems produce spatial patterns. Beginning with Turing's original paper, so-called lateral inhibition-in which negative feedback has greater spread than positive feedback-has been the underlying mechanism for pattern formation in biological models. Despite this, there are many biological systems that exhibit pattern formation but do not have lateral inhibition. In this paper, we present an example of such a system that is able to generate robust patterns emerging from a spatially homogeneous state. In fact, patterns can arise when there is only spatial spread of the activator. Unlike classic Turing pattern formation, these patterns arise from a spatially homogeneous oscillation rather than from a constant steady state. PMID:27575169

  13. Cellular pattern formation in circular domains.

    PubMed

    Palacios, Antonio; Gunaratne, Gemunu H.; Gorman, Michael; Robbins, Kay A.

    1997-09-01

    An analysis of stationary and nonstationary cellular patterns observed in premixed flames on a circular, porous plug burner is presented. A phenomenological model is introduced, that exhibits patterns similar to the experimental states. The primary modes of the model are combinations of Fourier-Bessel functions, whose radial parts have neighboring zeros. This observation explains several features of patterns, such as the existence of concentric rings of cells and the weak coupling between rings. Properties of rotating rings of cells, including the existence of modulated rotations and heteroclinic cycles can be deduced using mode coupling. For nonstationary patterns, the modal decomposition of experimental data can be carried out using the Karhunen-Loeve (KL) analysis. Experimental states are used to demonstrate the possibility of using KL analysis to differentiate between uniform and nonuniform rotations. The methodology can be extended to study more complicated nonstationary patterns. In particular, it is shown how the complexity of "hopping states" can be unraveled through the analysis. (c) 1997 American Institute of Physics. PMID:12779674

  14. Pattern Formation in Growing Polar Bacteria

    NASA Astrophysics Data System (ADS)

    Yang, Xingbo; Marchetti, M.; Marenduzzo, Davide

    2013-03-01

    We analyze a continuum model of a bacterial suspension that includes motility suppression from steric repulsion, polar alignment, and bacteria reproduction and death. Using a combination of linear stability analysis and numerical solution of the nonlinear equations, we demonstrate that the model exhibits a rich variety of emergent structures, corresponding to generic patterns seen in experiments. Motility suppression in a crowded environment gives rise to a density phase separation, regulated by the growth/death of the bacteria, as demonstrated earlier by Cates et al. [PNAS 107, 11715-11720(2010)], with spherically symmetric patterns similar to those observed in S. typhimurium. The addition of polar alignment yields new ring/band and swirl/spiral structures resembling those observed in E.coli colonies. The stationary/traveling nature of the patterns and their symmetry is classified and summarized in a phase diagram. This work was supported by the NSF through grant DMR-1004789.

  15. Pattern Formation Exhibited by Biofilm Formation within Microfluidic Chambers

    PubMed Central

    Cogan, N.G.; Donahue, M.R.; Whidden, Mark; De La Fuente, Leonardo

    2013-01-01

    This article investigates the dynamics of an important bacterial pathogen, Xylella fastidiosa, within artificial plant xylem. The bacterium is the causative agent of a variety of diseases that strike fruit-bearing plants including Pierce’s disease of grapevine. Biofilm colonization within microfluidic chambers was visualized in a laboratory setting, showing robust, regular spatial patterning. We also develop a mathematical model, based on a multiphase approach that is able to capture the spacing of the pattern and points to the role of the exopolymeric substance as the main source of control of the pattern dynamics. We concentrate on estimating the attachment/detachment processes within the chamber because these are two mechanisms that have the potential to be engineered by applying various chemicals to prevent or treat the disease. PMID:23663829

  16. Pattern formation exhibited by biofilm formation within microfluidic chambers.

    PubMed

    Cogan, N G; Donahue, M R; Whidden, Mark; De La Fuente, Leonardo

    2013-05-01

    This article investigates the dynamics of an important bacterial pathogen, Xylella fastidiosa, within artificial plant xylem. The bacterium is the causative agent of a variety of diseases that strike fruit-bearing plants including Pierce's disease of grapevine. Biofilm colonization within microfluidic chambers was visualized in a laboratory setting, showing robust, regular spatial patterning. We also develop a mathematical model, based on a multiphase approach that is able to capture the spacing of the pattern and points to the role of the exopolymeric substance as the main source of control of the pattern dynamics. We concentrate on estimating the attachment/detachment processes within the chamber because these are two mechanisms that have the potential to be engineered by applying various chemicals to prevent or treat the disease. PMID:23663829

  17. Dendrites, viscous fingers, and the theory of pattern formation

    NASA Technical Reports Server (NTRS)

    Langer, J. S.

    1989-01-01

    Recent developments in the theory of pattern formation in dendritic crystal growth and viscous fingering in fluids are reviewed. Consideration is given to the discovery that weak capillary forces act as singular perturbations which lead to selection mechanisms in dendritic crystal growth and fingering patterns. Other topics include the conventional thermodynamic model of the solidification of a pure substance from its melt, fingering instability, pattern selection, the solvability theory, dendritic growth rates, the bubble effect discovered by Couder et al. (1986), the dynamics of pattern-forming systems, and snowflake formation.

  18. Leukotriene-C4 Synthase, a Critical Enzyme in the Activation of Store-independent Orai1/Orai3 Channels, Is Required for Neointimal Hyperplasia*

    PubMed Central

    Zhang, Wei; Zhang, Xuexin; González-Cobos, José C.; Stolwijk, Judith A.; Matrougui, Khalid; Trebak, Mohamed

    2015-01-01

    Leukotriene-C4 synthase (LTC4S) generates LTC4 from arachidonic acid metabolism. LTC4 is a proinflammatory factor that acts on plasma membrane cysteinyl leukotriene receptors. Recently, however, we showed that LTC4 was also a cytosolic second messenger that activated store-independent LTC4-regulated Ca2+ (LRC) channels encoded by Orai1/Orai3 heteromultimers in vascular smooth muscle cells (VSMCs). We showed that Orai3 and LRC currents were up-regulated in medial and neointimal VSMCs after vascular injury and that Orai3 knockdown inhibited LRC currents and neointimal hyperplasia. However, the role of LTC4S in neointima formation remains unknown. Here we show that LTC4S knockdown inhibited LRC currents in VSMCs. We performed in vivo experiments where rat left carotid arteries were injured using balloon angioplasty to cause neointimal hyperplasia. Neointima formation was associated with up-regulation of LTC4S protein expression in VSMCs. Inhibition of LTC4S expression in injured carotids by lentiviral particles encoding shRNA inhibited neointima formation and inward and outward vessel remodeling. LRC current activation did not cause nuclear factor for activated T cells (NFAT) nuclear translocation in VSMCs. Surprisingly, knockdown of either LTC4S or Orai3 yielded more robust and sustained Akt1 and Akt2 phosphorylation on Ser-473/Ser-474 upon serum stimulation. LTC4S and Orai3 knockdown inhibited VSMC migration in vitro with no effect on proliferation. Akt activity was suppressed in neointimal and medial VSMCs from injured vessels at 2 weeks postinjury but was restored when the up-regulation of either LTC4S or Orai3 was prevented by shRNA. We conclude that LTC4S and Orai3 altered Akt signaling to promote VSMC migration and neointima formation. PMID:25540197

  19. Annular gel reactor for chemical pattern formation

    DOEpatents

    Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  20. Hypoxic adipocytes pattern early heterotopic bone formation.

    PubMed

    Olmsted-Davis, Elizabeth; Gannon, Francis H; Ozen, Mustafa; Ittmann, Michael M; Gugala, Zbigniew; Hipp, John A; Moran, Kevin M; Fouletier-Dilling, Christine M; Schumara-Martin, Shannon; Lindsey, Ronald W; Heggeness, Michael H; Brenner, Malcolm K; Davis, Alan R

    2007-02-01

    The factors contributing to heterotopic ossification, the formation of bone in abnormal soft-tissue locations, are beginning to emerge, but little is known about microenvironmental conditions promoting this often devastating disease. Using a murine model in which endochondral bone formation is triggered in muscle by bone morphogenetic protein 2 (BMP2), we studied changes near the site of injection of BMP2-expressing cells. As early as 24 hours later, brown adipocytes began accumulating in the lesional area. These cells stained positively for pimonidazole and therefore generated hypoxic stress within the target tissue, a prerequisite for the differentiation of stem cells to chondrocytes and subsequent heterotopic bone formation. We propose that aberrant expression of BMPs in soft tissue stimulates production of brown adipocytes, which drive the early steps of heterotopic endochondral ossification by lowering oxygen tension in adjacent tissue, creating the correct environment for chondrogenesis. Results in misty gray lean mutant mice not producing brown fat suggest that white adipocytes convert into fat-oxidizing cells when brown adipocytes are unavailable, providing a compensatory mechanism for generation of a hypoxic microenvironment. Manipulation of the transcriptional control of adipocyte fate in local soft-tissue environments may offer a means to prevent or treat development of bone in extraskeletal sites. PMID:17255330

  1. Pattern formation in quantum Turing machines

    NASA Astrophysics Data System (ADS)

    Kim, Ilki; Mahler, Günter

    1999-07-01

    We investigate the iteration of a sequence of local and pair unitary transformations, which can be interpreted to result from a Turing-head (pseudospin S) rotating along a closed Turing tape (M additional pseudospins). The dynamical evolution of the Bloch vector of S, which can be decomposed into 2M primitive pure state Turing-head trajectories, gives rise to fascinating geometrical patterns reflecting the entanglement between head and tape. These machines thus provide intuitive examples for quantum parallelism and, at the same time, means for local testing of quantum network dynamics.

  2. Pattern formation and coarsening in crystalline membranes

    NASA Astrophysics Data System (ADS)

    Vega, Daniel A.; Pezzutti, Aldo D.

    2011-03-01

    We study through a Brazovskii-Helfrich Hamiltonian the process of defect formation, annealing and coarsening of two dimensional crystalline membranes. In good agreement with the cosmological model of Kibble and Zurek, proposed to determine the density of topological defects at the onset of a symmetry breaking phase transition, we found that the collision of orientationally uncorrelated domains produces a structure of grains with an average density of topological defects controlled by the temperature of the quench. The strain field of the dislocations and disclinations generated during the phase separation process can induce the buckling of the membrane, slowing down the Lifshitz-Safran mechanism of coarsening observed in flat systems.

  3. Turing pattern formation in the Brusselator system with nonlinear diffusion

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Lombardo, M. C.; Sammartino, M.; Sciacca, V.

    2013-10-01

    In this work we investigate the effect of density-dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in one-dimensional and two-dimensional spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supercritical and subcritical Turing patterns with multiple branches of stable solutions leading to hysteresis. Moreover, we consider traveling patterning waves: When the domain size is large, the pattern forms sequentially and traveling wave fronts are the precursors to patterning. We derive the Ginzburg-Landau equation and describe the traveling front enveloping a pattern which invades the domain. We show the emergence of radially symmetric target patterns, and, through a matching procedure, we construct the outer amplitude equation and the inner core solution.

  4. Spatial pattern formation in the lung

    PubMed Central

    Donovan, Graham M.; Kritter, Thibaut

    2014-01-01

    Clustered ventilation defects are a hallmark of asthma, typically seen via imaging studies during asthma attacks. The mechanisms underlying the formation of these clusters is of great interest in understanding asthma. Because the clusters vary from event to event, many researchers believe they occur due to dynamic, rather than structural, causes. To study the formation of these clusters, we formulate and analyze a lattice-based model of the lung, considering both the role of airway bistability and a mechanism for organizing the spatial structure. Within this model we show how and why the homogeneous ventilation solution becomes unstable, and under what circumstances the resulting heterogeneous solution is a clustered solution. The size of the resulting clusters is shown to arise from structure of the eigenvalues and eigenvectors of the system, admitting not only clustered solutions but also (aphysical) checkerboard solutions. We also consider the breathing efficiency of clustered solutions in severely constricted lungs, showing that stabilizing the homogeneous solution may be advantageous in some circumstances. Extensions to hexagonal and cubic lattices are also studied. PMID:24810407

  5. Instability-induced pattern formation of photoactivated functional polymers

    PubMed Central

    Ambrosio, Antonio; Maddalena, Pasqualino; Schenker, Iwan; Spolenak, Ralph; Capasso, Federico

    2014-01-01

    Since the pioneering work of Turing on the formation principles of animal coat patterns [Turing AM (1952) Phil Trans R Soc Lond B 237(641):37–72], such as the stripes of a tiger, great effort has been made to understand and explain various phenomena of self-assembly and pattern formation. Prominent examples are the spontaneous demixing in emulsions, such as mixtures of water and oil [Herzig EM, et al. (2007) Nat Mater 6:966–971]; the distribution of matter in the universe [Kibble TWB (1976) J Phys A: Math Gen 9(8):1387]; surface reconstruction in ionic crystals [Clark KW, et al. (2012) Nanotechnol 23(18):185306]; and the pattern formation caused by phase transitions in metal alloys, polymer mixtures and binary Bose–Einstein condensates [Sabbatini J, et al. (2011) Phys Rev Lett 107:230402]. Photoactivated pattern formation in functional polymers has attracted major interest due to its potential applications in molecular electronics and photoresponsive systems. Here we demonstrate that photoactivated pattern formation on azobenzene-containing polymer films can be entirely explained by the physical concept of phase separation. Using experiments and simulations, we show that phase separation is caused by an instability created by the photoactivated transitions between two immiscible states of the polymer. In addition, we have shown in accordance with theory, that polarized light has a striking effect on pattern formation indicated by enhanced phase separation. PMID:25404346

  6. Instability-induced pattern formation of photoactivated functional polymers.

    PubMed

    Galinski, Henning; Ambrosio, Antonio; Maddalena, Pasqualino; Schenker, Iwan; Spolenak, Ralph; Capasso, Federico

    2014-12-01

    Since the pioneering work of Turing on the formation principles of animal coat patterns [Turing AM (1952) Phil Trans R Soc Lond B 237(641):37-72], such as the stripes of a tiger, great effort has been made to understand and explain various phenomena of self-assembly and pattern formation. Prominent examples are the spontaneous demixing in emulsions, such as mixtures of water and oil [Herzig EM, et al. (2007) Nat Mater 6:966-971]; the distribution of matter in the universe [Kibble TWB (1976) J Phys A: Math Gen 9(8):1387]; surface reconstruction in ionic crystals [Clark KW, et al. (2012) Nanotechnol 23(18):185306]; and the pattern formation caused by phase transitions in metal alloys, polymer mixtures and binary Bose-Einstein condensates [Sabbatini J, et al. (2011) Phys Rev Lett 107:230402]. Photoactivated pattern formation in functional polymers has attracted major interest due to its potential applications in molecular electronics and photoresponsive systems. Here we demonstrate that photoactivated pattern formation on azobenzene-containing polymer films can be entirely explained by the physical concept of phase separation. Using experiments and simulations, we show that phase separation is caused by an instability created by the photoactivated transitions between two immiscible states of the polymer. In addition, we have shown in accordance with theory, that polarized light has a striking effect on pattern formation indicated by enhanced phase separation. PMID:25404346

  7. Effect of methanolic extract of Piper sarmentosum leaves on neointimal foam cell infiltration in rabbits fed with high cholesterol diet

    PubMed Central

    Amran, Adel A.; Zakaria, Zaiton; Othman, Faizah; Das, Srijit; Al-Mekhlafi, Hesham M.; Raj, Santhana; Nordin, Nor-Anita MM

    2012-01-01

    Previous research has shown the beneficial effects of aqueous extract of Piper sarmentosum (P.s) on atherosclerosis. The first stage in atherosclerosis is the formation of foam cell. The aim of this study was to investigate the effect of the methanol extract of P.s on fatty streaks by calculating neointimal foam cell infiltration in rabbits fed with high cholesterol diet. Thirty six male New Zealand white rabbits were divided equally into six groups: (i) C: control group fed normal rabbit chow; (ii) CH: cholesterol diet (1 % cholesterol); (iii) PM1: 1 % cholesterol with methanol extract of P.s (62.5 mg/kg); (iv) PM2: 1 % cholesterol with methanol extract of P.s (125 mg/kg); (v) PM3: 1 % cholesterol with methanol extract of P.s (250 mg/kg); (vi) SMV group fed 1 % cholesterol supplemented with Simvistatin drug (1.2 mg/kg). All animals were treated for 10 weeks. At the end of the treatment, the rabbits were fasted and sacrificed and the aortic tissues were collected for histological studies to measure the area of the neointimal foam cell infiltration using software. The thickening of intima ratio of atherosclerosis and morphological changes by scanning electron microscope were measured. The results showed that the atherosclerotic group had significantly bigger area of fatty streak compared to the control group. The area of fatty streak in the abdominal aorta was significantly reduced in the treatment groups which were similar with the SMV group. Similarly, there was a reduction in the number of foam cell in the treatment groups compared to the atherosclerotic group as seen under scanning microscope. In conclusion, histological study demonstrated that the methanol extract of the P.s could reduce the neointimal foam cell infiltration in the lumen of the aorta and the atherosclerotic lesion. PMID:27366140

  8. Geological pattern formation by growth and dissolution in aqueous systems

    SciTech Connect

    Paul Meakin

    2010-03-01

    Although many geological processes take place on time scales that are very long compared with the human experience, essentially all geological processes, fast or slow, are far from equilibrium processes. Surprisingly often, geological processes lead to the formation of quite simple and distinctive patterns, which hint at an underlying simplicity in many complex geological systems.. The ability to predict the seasons was critically important to early human society, and Halley’s prediction of the return of the comet that bears his name is still considered to be a scientific milestone. Spatial patterns have also attracted attention because of their aesthetic appeal, which depends in subtle ways on a combination of regularity and irregularity. In recent decades, rapid growth in the capabilities of digital computers has facilitated the simulation of pattern formation processes, and computer simulations have become an important tool for evaluating theoretical concepts and for scientific discovery. Computer technology in combination with other technologies such as high resolution digital cameras, scanning microprobes (atomic force microscopy AFM), confocal microscopy, and scanning tunneling microscopy (STM), for example) has facilitated the quantitative characterization of patterns over a wide range of scales and has enabled rapid advances in our ability to understand the links between large scale pattern formation and microscopic processes. The ability to quantitatively characterize patterns is important because it enables a more rigorous comparison between the predictions of computer models and real world patterns and their formation.In some cases, the idea that patterns with a high degree of regularity have simple origins appears to be justified, but in other cases, such as the formation of almost perfectly circular stone rings due to freeze-thaw cycles simple patterns appear to be the consequence of quite complex processes. In other cases, it has been shown that

  9. Comparison of neointimal coverage and extra-stent lumen between sirolimus and everolimus-eluting stent using optical coherence tomography.

    PubMed

    Oda, Takamasa; Okamura, Takayuki; Yamada, Jutaro; Miyagi, Naoto; Uehara, Hiroki; Nao, Tomoko; Tateishi, Hiroki; Maeda, Takao; Nakamura, Takeshi; Shiraishi, Kohzoh; Nakashima, Tadamitsu; Nishimura, Shigehiko; Miura, Toshiro; Matsuzaki, Masunori; Yano, Masafumi

    2016-04-01

    The external lumen of a stent [defined as extra-stent lumen (ESL)] assessed by optical coherence tomography (OCT) may be related to the risk of thrombus formation after sirolimus-eluting stent (SES) implantation. An everolimus-eluting stent (EES) might provide relatively minimal inflammatory reaction and appropriate neointimal coverage. The purpose of this study was to compare the neointimal thickness and ESL between SES and EES. Patients who underwent OCT examination more than 7 months after either SES or EES implantation were enrolled. Stent area (SA), lumen area (LA), neointimal area (NIA) and neointimal thickness (NIT) of each strut were measured at 1-mm intervals between stented segments. The area, angle (summation per cross-section) and depth (maximum distance from adjacent vessel surface to the outline of stent) of ESL were analyzed. A total of 49 lesions were included (SES n = 20, EES n = 29). Mean follow-up period was 11 months. A total of 998 cross-sections and 9874 struts were analyzed. There were no differences in stent area, lumen area and neointimal area (SA: 6.01 ± 1.60 vs. 6.02 ± 1.40 mm(2), p = 0.572, LA: 5.37 ± 1.52 vs. 5.29 ± 1.34 mm(2), p = 0.692, NIA: 0.64 ± 0.49 vs. 0.72 ± 0.37 mm(2), p = 0.493). Mean NIT of SES and EES were 0.11 ± 0.05 and 0.10 ± 0.05 mm, respectively (p = 0.367). Conversely, area, angle and depth of ESL in SES group were significantly greater than those in EES group (0.20 ± 0.39 vs. 0.03 ± 0.09 mm(2), p < 0.001, 56.2 ± 59.1° vs. 20.1 ± 41.9°, p < 0.001, 0.10 ± 0.09 vs. 0.03 ± 0.03 mm, p < 0.001). OCT showed that the efficacy of neointimal growth suppression is similar between SES and EES, whereas the adverse vascular response after EES implantation is smaller than that after SES implantation. PMID:25614415

  10. Chiral pattern formation in compact microbial colonies

    NASA Astrophysics Data System (ADS)

    Korolev, Kirill; Bino George, Ashish

    Chirality is ubiquitous in biology from single molecules to entire populations. Yet, we are still lacking a detailed understanding of how chiral patterns emerge from cell competition and growth, even in simple microbial colonies. Although many microbes grow as dense colonies with no apparent chirality, recent experiments with Escherichia coli have demonstrated that internal dynamics in such populations can be in fact chiral. We show that there is a unique way to extend the commonly-used reaction-diffusion models of colony growth to account for the emergent chirality. This new model connects microscopic and macroscopic chirality and explains the origin of logarithmic spirals separating different sub-populations in a colony. We also show that chirality is substantially enhanced by the cooperation among the cells at the expansion frontier. In heterogeneous populations composed of strains with different chiralities and growth rates, our model predicts a very rich set of possible dynamics. For example, different chiralities can result in either sharp boundaries between the strains or promote their intermixing depending on the preferred twisting directions of the strains.

  11. Optical pattern formation with a two-level nonlinearity

    NASA Astrophysics Data System (ADS)

    Camara, A.; Kaiser, R.; Labeyrie, G.; Firth, W. J.; Oppo, G.-L.; Robb, G. R. M.; Arnold, A. S.; Ackemann, T.

    2015-07-01

    We present an experimental and theoretical investigation of spontaneous pattern formation in the transverse section of a single retroreflected laser beam passing through a cloud of cold rubidium atoms. In contrast to previously investigated systems, the nonlinearity at work here is that of a two-level atom, which realizes the paradigmatic situation considered in many theoretical studies of optical pattern formation. In particular, we are able to observe the disappearance of the patterns at high intensity due to the intrinsic saturable character of two-level atomic transitions.

  12. Single cell pattern formation and transient cytoskeletal arrays

    PubMed Central

    Bement, William M.; von Dassow, George

    2015-01-01

    A major goal of developmental biology is to explain the emergence of pattern in cell layers, tissues and organs. Developmental biologists now accept that reaction diffusion-based mechanisms are broadly employed in developing organisms to direct pattern formation. Here we briefly consider these mechanisms and then apply some of the concepts derived from them to several processes that occur in single cells: wound repair, yeast budding, and cytokinesis. Two conclusions emerge from this analysis: first, there is considerable overlap at the level of general mechanisms between developmental and single cell pattern formation; second, dynamic structures based on the actin cytoskeleton may be far more ordered than is generally recognized. PMID:24529246

  13. Neural pattern formation in networks with dendritic structure

    NASA Astrophysics Data System (ADS)

    Bressloff, P. C.; De Souza, B.

    1998-04-01

    We present a detailed analysis of a recently proposed model of neural pattern formation that is based on the combined effect of diffusion along a neuron's dendritic tree and recurrent interactions along axo-dendritic synaptic connections. For concreteness, we consider a one-dimensional array of analog neurons with the dendritic tree idealized as a one-dimensional cable. Linear stability analysis and bifurcation theory together with numerical simulations are used to establish conditions for the onset of a Turing instability leading to the formation of stable spatial patterns of network output activity. It is shown that the presence of dendritic structure can induce dynamic (time-periodic) spatial pattern formation. Moreover, correlations between the dendritic location of a synapse and the relative positions of neurons in the network are shown to result in spatially oscillating patterns of activity along the dendrites of each neuron.

  14. Pattern formation in a minimal model of continuum dislocation plasticity

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Zaiser, Michael

    2015-09-01

    The spontaneous emergence of heterogeneous dislocation patterns is a conspicuous feature of plastic deformation and strain hardening of crystalline solids. Despite long-standing efforts in the materials science and physics of defect communities, there is no general consensus regarding the physical mechanism which leads to the formation of dislocation patterns. In order to establish the fundamental mechanism, we formulate an extremely simplified, minimal model to investigate the formation of patterns based on the continuum theory of fluxes of curved dislocations. We demonstrate that strain hardening as embodied in a Taylor-type dislocation density dependence of the flow stress, in conjunction with the structure of the kinematic equations that govern dislocation motion under the action of external stresses, is already sufficient for the formation of dislocation patterns that are consistent with the principle of similitude.

  15. Pattern Formation in Drying Drops of Polystyrene/Water nanofluids

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin

    2011-11-01

    We study the pattern formation and the evaporation dynamics of drying drops of polystyrene/water based nanofluids with concentrations ranging from 0.01% to 6%. Cracks formation is evidenced to depend on the nanoparticles concentration. The dynamics of evaporation is recorded using an electronic balance with an accuracy of 10 μg. A top view recording enables to analyze the pattern formation in relation with the mass evolution. We determine several key parameters such as the time of evaporation, the wetting diameter, the final solid deposition diameter, the number and the spacing of the cracks. We evidence a ring formation above a critical concentration. We evidenced by change of the surrounding humidity in the range of 10 to 90% that this pattern remains constant. The pattern formation is influenced by the liquid phase evaporation dynamics but only depends on the concentration in nanoparticles. These results are of great interest regarding the formation of droplets in several areas such as inkjet printing, pharmacology...

  16. Physical Mechanisms of Pattern Formation in the Early Chick Embryo

    NASA Astrophysics Data System (ADS)

    Balter, Ariel; Glazier, James; Zaitlen, Benji; Chaplain, Mark; Weijer, Cornelis

    2007-03-01

    Gastrulation marks a critical step in early embryogenesis when the first recognizable patterns are laid down. Although the genome maintains ultimate responsibility for this pattern formation, it cannot actually control the organization of individual cells. The robustness of embryogenic pattern formation suggests that a few simple, physical mechanisms are unleashed and that self-organization results. We perform numerical simulations of early chick gastrulation using an agent based method in which individual cells interact via a handful of behaviors including adhesivity, secretion and chemotaxis. Through these simulations we have identified certain behaviors as being important for various stages and morphological events. For instance, experimental results on primitive streak formation are best reproduced by a model in which the Kohler's Sickle secretes a chemo repellant for streak tip cells, and cell polarization appears to be important for initiating polonaise motion during streak elongation.

  17. Pattern formation via intermittence from microscopic deterministic dynamics

    NASA Astrophysics Data System (ADS)

    Hernández, Marco; Escaff, Daniel; Finger, Ricardo

    2012-05-01

    We propose a one-dimensional lattice model, inspired by population dynamics interaction. The model combines a variable coupling range with the Allee effect. The system is capable of exhibiting pattern formation that is similar to what occurs in similar continuous models for population dynamics. However, the formation features are quite different; in this case the pattern emerges from a disorder state via intermittence. We analytically estimated the selected wavelength of the formed pattern and numerically studied fluctuations around the mean wavelength. We also comment on the relationship between intermittence and the edge of chaos as well as sensitivity to initial conditions. Next, we present an analytical prediction of the influence of the world size on the intermittent regime which is in good agreement with the numerical observations. Moreover, the last calculation provided us an alternative way to compute the pattern wavelength. Finally, we discuss the continuous limit of our lattice model.

  18. On the mechanical theory for biological pattern formation

    NASA Astrophysics Data System (ADS)

    Bentil, D. E.; Murray, J. D.

    1993-02-01

    We investigate the pattern-forming potential of mechanical models in embryology proposed by Oster, Murray and their coworkers. We show that the presence of source terms in the tissue extracellular matrix and cell density equations give rise to spatio-temporal oscillations. An extension of one such model to include ‘biologically realistic long range effects induces the formation of stationary spatial patterns. Previous attempts to solve the full system were in one dimension only. We obtain solutions in one dimension and extend our simulations to two dimensions. We show that a single mechanical model alone is capable of generating complex but regular spatial patterns rather than the requirement of model interaction as suggested by Nagorcka et al. and Shaw and Murray. We discuss some biological applications of the models among which are would healing and formation of dermatoglyphic (fingerprint) patterns.

  19. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model.

    PubMed

    Schwartz, R S; Huber, K C; Murphy, J G; Edwards, W D; Camrud, A R; Vlietstra, R E; Holmes, D R

    1992-02-01

    Restenosis is a reparative response to arterial injury occurring with percutaneous coronary revascularization. However, the quantitative characteristics of the relation between vessel injury and the magnitude of restenotic response remain unknown. This study was thus performed to determine the relation between severity of vessel wall injury and the thickness of resulting neointimal proliferation in a porcine model of coronary restenosis. Twenty-six porcine coronary artery segments in 24 pigs were subjected to deep arterial injury with use of overexpanded, percutaneously delivered tantalum wire coils. The vessels were studied microscopically 4 weeks after coil implantation to measure the relation between the extent of injury and the resulting neointimal thickness. For each wire site, a histopathologic score proportional to injury depth and the neointimal thicknesses at that site were determined. Mean injury scores were compared with both mean neointimal thickness and planimetry-derived area percent lumen stenosis. The severity of vessel injury strongly correlated with neointimal thickness and percent diameter stenosis (p less than 0.001). Neointimal proliferation resulting from a given wire was related to injury severity in adjacent wires, suggesting an interaction among effects at injured sites. If the results in this model apply to human coronary arteries, restenosis may depend on the degree of vessel injury sustained during angioplasty. PMID:1732351

  20. Pattern Formation in Nature: What Could Be Behind It

    NASA Astrophysics Data System (ADS)

    Kenkre, V. M.

    2012-10-01

    Pattern formation in nature is a ubiquitous and fascinating phenomenon. A simple description will be given of one possible mechanism among many: spatial nonlocality in competitive interactions [1-2]. A tutorial explanation will be presented of random walks or diffusion, then of the logistic equation, then of their combination to produce the Fisher equation, and finally of a generalization of the Fisher equation with spatial nonlocality which is capable of producing patterns. The role of diffusion in the pattern formation process will be discussed with possibilities of a remarkable shape shifting consequence of controlled motion that we have discovered recently [3].[4pt] [1] Nonlocal Interaction Effects on Pattern Formation in Population Dynamics, M. A. Fuentes, M. N. Kuperman, and V.M. Kenkre: Phys. Rev. Lett. 91, 158104-1 (2003).[2] Analytical Considerations in the Study of Spatial Patterns Arising from Nonlocal Interaction Effects, M. A. Fuentes, M. Kuperman, and V. M. Kenkre: J. Phys. Chem. B 108, 10505-10508(2004).[3] Shape Shifting in Patterns Produced by Control of Diffusion: Theoretical Considerations, M. Kuperman and V. M. Kenkre, Consortium Preprint, UNM (2012).

  1. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    PubMed Central

    López-Vaca, Oscar Rodrigo; Garzón-Alvarado, Diego Alexander

    2012-01-01

    We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification. PMID:23193429

  2. Turing pattern formation in fractional activator-inhibitor systems.

    PubMed

    Henry, B I; Langlands, T A M; Wearne, S L

    2005-08-01

    Activator-inhibitor systems of reaction-diffusion equations have been used to describe pattern formation in numerous applications in biology, chemistry, and physics. The rate of diffusion in these applications is manifest in the single parameter of the diffusion constant, and stationary Turing patterns occur above a critical value of d representing the ratio of the diffusion constants of the inhibitor to the activator. Here we consider activator-inhibitor systems in which the diffusion is anomalous subdiffusion; the diffusion rates are manifest in both a diffusion constant and a diffusion exponent. A consideration of this problem in terms of continuous-time random walks with sources and sinks leads to a reaction-diffusion system with fractional order temporal derivatives operating on the spatial Laplacian. We have carried out an algebraic stability analysis of the homogeneous steady-state solution in fractional activator-inhibitor systems, with Gierer-Meinhardt reaction kinetics and with Brusselator reaction kinetics. For each class of reaction kinetics we identify a Turing instability bifurcation curve in the two-dimensional diffusion parameter space. The critical value of d , for Turing instabilities, decreases monotonically with the anomalous diffusion exponent between unity (standard diffusion) and zero (extreme subdiffusion). We have also carried out numerical simulations of the governing fractional activator-inhibitor equations and we show that the Turing instability precipitates the formation of complex spatiotemporal patterns. If the diffusion of the activator and inhibitor have the same anomalous scaling properties, then the surface profiles of these patterns for values of d slightly above the critical value varies from smooth stationary patterns to increasingly rough and nonstationary patterns as the anomalous diffusion exponent varies from unity towards zero. If the diffusion of the activator is anomalous subdiffusion but the diffusion of the inhibitor

  3. How does tidal flow affect pattern formation in mussel beds?

    PubMed

    Sherratt, Jonathan A; Mackenzie, Julia J

    2016-10-01

    In the Wadden Sea, mussel beds self-organise into spatial patterns consisting of bands parallel to the shore. A leading explanation for this phenomenon is that mussel aggregation reduces losses from dislodgement and predation, because of the adherence of mussels to one another. Previous mathematical modelling has shown that this can lead to spatial patterning when it is coupled to the advection from the open sea of algae-the main food source for mussels in the Wadden Sea. A complicating factor in this process is that the advection of algae will actually oscillate with the tidal flow. This has been excluded from previous modelling studies, and the present paper concerns the implications of this oscillation for pattern formation. The authors initially consider piecewise constant ("square-tooth") oscillations in advection, which enables analytical investigation of the conditions for pattern formation. They then build on this to study the more realistic case of sinusoidal oscillations. Their analysis shows that future research on the details of pattern formation in mussel beds will require an in-depth understanding of how the tides affect long-range inhibition among mussels. PMID:27343625

  4. Pattern formation in miniature: the female gametophyte of flowering plants.

    PubMed

    Sundaresan, Venkatesan; Alandete-Saez, Monica

    2010-01-01

    Plant reproduction involves gamete production by a haploid generation, the gametophyte. For flowering plants, a defining characteristic in the evolution from the 'naked-seed' plants, or gymnosperms, is a reduced female gametophyte, comprising just seven cells of four different types--a microcosm of pattern formation and gamete specification about which only little is known. However, several genes involved in the differentiation, fertilization and post-fertilization functions of the female gametophyte have been identified and, recently, the morphogenic activity of the plant hormone auxin has been found to mediate patterning and egg cell specification. This article reviews recent progress in understanding the pattern formation, maternal effects and evolution of this essential unit of plant reproduction. PMID:20040485

  5. Vinpocetine Attenuates Neointimal Hyperplasia in Diabetic Rat Carotid Arteries after Balloon Injury

    PubMed Central

    Peng, Wenhui; Li, Hailing; Zhuang, Jianhui; Lu, Yuyan; Liu, Baoxin; Li, Xiankai; Li, Weiming; Xu, Yawei

    2014-01-01

    Background Diabetes exacerbates abnormal vascular smooth muscle cell (VSMC) accumulation in response to arterial wall injury. Vinpocetine has been shown to improve vascular remolding; however, little is known about the direct effects of vinpocetine on vascular complications mediated by diabetes. The objective of this study was to determine the effects of vinpocetine on hyperglycemia-facilitated neointimal hyperplasia and explore its possible mechanism. Materials and Methods Nondiabetic and diabetic rats were subjected to balloon injury of the carotid artery followed by 3-week treatment with either vinpocetine (10 mg/kg/day) or saline. Morphological analysis and proliferating cell nuclear antigen (PCNA) immunostaining were performed on day 21. Rat VSMCs proliferation was determined with 5-ethynyl-20-deoxyuridine cell proliferation assays. Chemokinesis was monitored with scratch assays, and production of reactive oxygen species (ROS) was assessed using a 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) flow cytometric assay. Apoptosis was detected by annexin V-FITC/PI flow cytometric assay. Cell signaling was assessed by immunblotting. Results Vinpocetine prevented intimal hyperplasia in carotid arteries in both normal (I/M ratio: 93.83 ± 26.45% versus 143.2 ± 38.18%, P<0.05) and diabetic animals (I/M ratio: 120.5 ± 42.55% versus 233.46 ± 33.98%, P<0.05) when compared to saline. The in vitro study demonstrated that vinpocetine significantly inhibited VSMCs proliferation and chemokinesis as well as ROS generation and apoptotic resistance, which was induced by high glucose (HG) treatment. Vinpocetine significantly abolished HG-induced phosphorylation of Akt and JNK1/2 without affecting their total levels. For downstream targets, HG-induced phosphorylation of IκBα was significantly inhibited by vinpocetine. Vinpocetine also attenuated HG-enhanced expression of PCNA, cyclin D1 and Bcl-2. Conclusions Vinpocetine attenuated neointimal formation in diabetic

  6. Pattern formation in wet granular matter under vertical vibrations.

    PubMed

    Butzhammer, Lorenz; Völkel, Simeon; Rehberg, Ingo; Huang, Kai

    2015-07-01

    Experiments on a thin layer of cohesive wet granular matter under vertical vibrations reveal kink-separated domains that collide with the container at different phases. Due to the strong cohesion arising from the formation of liquid bridges between adjacent particles, the domains move collectively upon vibrations. Depending on the periodicity of this collective motion, the kink fronts may propagate, couple with each other, and form rotating spiral patterns in the case of period tripling or stay as standing wave patterns in the case of period doubling. Moreover, both patterns may coexist with granular "gas bubbles"-phase separation into a liquidlike and a gaslike state. Stability diagrams for the instabilities measured with various granular layer mass m and container height H are presented. The onsets for both types of patterns and their dependency on m and H can be quantitatively captured with a model considering the granular layer as a single particle colliding completely inelastically with the container. PMID:26274155

  7. A new mechanism for dendritic pattern formation in dense systems

    NASA Astrophysics Data System (ADS)

    Oikawa, Noriko; Kurita, Rei

    2016-06-01

    Patterns are often formed when particles cluster: Since patterns reflect the connectivity of different types of material, the emergence of patterns affects the physical and chemical properties of systems and shares a close relationship to their macroscopic functions. A radial dendritic pattern (RDP) is observed in many systems such as snow crystals, polymer crystals and biological systems. Although most of these systems are considered as dense particle suspensions, the mechanism of RDP formation in dense particle systems is not yet understood. It should be noted that the diffusion limited aggregation model is not applicable to RDP formation in dense systems, but in dilute particle systems. Here, we propose a simple model that exhibits RDP formation in a dense particle system. The model potential for the inter-particle interaction is composed of two parts, a repulsive and an attractive force. The repulsive force is applied to all the particles all the time and the attractive force is exerted only among particles inside a circular domain, which expands at a certain speed as a wave front propagating from a preselected centre. It is found that an RDP is formed if the velocity of the wave front that triggers the attractive interaction is of the same order of magnitude as the time scale defined by the aggregation speed.

  8. A new mechanism for dendritic pattern formation in dense systems.

    PubMed

    Oikawa, Noriko; Kurita, Rei

    2016-01-01

    Patterns are often formed when particles cluster: Since patterns reflect the connectivity of different types of material, the emergence of patterns affects the physical and chemical properties of systems and shares a close relationship to their macroscopic functions. A radial dendritic pattern (RDP) is observed in many systems such as snow crystals, polymer crystals and biological systems. Although most of these systems are considered as dense particle suspensions, the mechanism of RDP formation in dense particle systems is not yet understood. It should be noted that the diffusion limited aggregation model is not applicable to RDP formation in dense systems, but in dilute particle systems. Here, we propose a simple model that exhibits RDP formation in a dense particle system. The model potential for the inter-particle interaction is composed of two parts, a repulsive and an attractive force. The repulsive force is applied to all the particles all the time and the attractive force is exerted only among particles inside a circular domain, which expands at a certain speed as a wave front propagating from a preselected centre. It is found that an RDP is formed if the velocity of the wave front that triggers the attractive interaction is of the same order of magnitude as the time scale defined by the aggregation speed. PMID:27353447

  9. A new mechanism for dendritic pattern formation in dense systems

    PubMed Central

    Oikawa, Noriko; Kurita, Rei

    2016-01-01

    Patterns are often formed when particles cluster: Since patterns reflect the connectivity of different types of material, the emergence of patterns affects the physical and chemical properties of systems and shares a close relationship to their macroscopic functions. A radial dendritic pattern (RDP) is observed in many systems such as snow crystals, polymer crystals and biological systems. Although most of these systems are considered as dense particle suspensions, the mechanism of RDP formation in dense particle systems is not yet understood. It should be noted that the diffusion limited aggregation model is not applicable to RDP formation in dense systems, but in dilute particle systems. Here, we propose a simple model that exhibits RDP formation in a dense particle system. The model potential for the inter-particle interaction is composed of two parts, a repulsive and an attractive force. The repulsive force is applied to all the particles all the time and the attractive force is exerted only among particles inside a circular domain, which expands at a certain speed as a wave front propagating from a preselected centre. It is found that an RDP is formed if the velocity of the wave front that triggers the attractive interaction is of the same order of magnitude as the time scale defined by the aggregation speed. PMID:27353447

  10. PDGF-D contributes to neointimal hyperplasia in rat model of vessel injury

    SciTech Connect

    Chen Jingzhou; Han Yu; Lin Chunxia; Zhen Yisong; Song Xiaodong; Teng Siyong; Chen Chen; Chen Yu; Zhang Yinhui; Hui Rutai . E-mail: huirutai@sglab.org

    2005-04-15

    In this study, we determined the role of PDGF-D, a new member of the PDGF family, in a rat model of balloon injured artery made with a 2F catheter in Sprague-Dawley male rats. PDGF-D expression was studied in the injured and control segments of abdominal aorta. The function of PDGF-D was evaluated in rat vascular smooth muscle cells stably transfected with PDGF-D gene. We found that in normal abdominal aorta, PDGF-D was highly expressed in adventia, moderate in endothelia, and unidentified in media. Stable transfection of PDGF-D gene into vascular smooth muscle cells increased the cell migration by 2.2-fold, and the proliferation by 2.3-fold, respectively, and MMP-2 production and activity as well. These results support the fact that PDGF-D is involved in the formation of neointimal hyperplasia induced by balloon catheter injury and may serve as a target in preventing vascular restenosis after coronary angioplasty.

  11. Wavenumber Locking And Pattern Formation In Spatially Forced Systems

    SciTech Connect

    Hagberg, Aric; Meron, Ehud; Manor, Rotem

    2008-01-01

    We study wavenumber locking and pattern formation resulting from weak spatially periodic one-dimensional forcing of two-dimensional systems. We consider systems that support stationary or traveling stripe patterns in the absence of the forcing, and assume that the one-dimensional forcing is aligned with the direction of the stripe patterns. When the forcing wavenumber is about twice as large as the wavenumber of the unforced system we find that the forcing can either select or stabilize a resonant stripe solution at half the forcing wavenumber, or create a new resonant solution. When the wavenumber mismatch is high we find that the wave-vector component of the pattern in the direction of the forcing can stilI lock at half the forcing wavenumber, but a wave-vector component in the orthogonal direction develops to compensate for the total wavenumber. As a result stationary two-dimensional rectangular and oblique patterns form. When the unforced system supports traveling waves resonant rectangular patterns remain stationary but the oblique patterns travel in a direction orthogonal to the traveling-waves.

  12. Perspective: network-guided pattern formation of neural dynamics.

    PubMed

    Hütt, Marc-Thorsten; Kaiser, Marcus; Hilgetag, Claus C

    2014-10-01

    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics. PMID:25180302

  13. Poly(ADP-ribose) polymerase inhibition combined with irradiation: A dual treatment concept to prevent neointimal hyperplasia after endarterectomy

    SciTech Connect

    Beller, Carsten J. . E-mail: Carsten.Beller@urz.uni-heidelberg.de; Kosse, Jens; Radovits, Tamas; Geroe, Domokos; Krempien, Robert; Gross, Marie-Luise; Berger, Irina; Hagl, Siegfried; Szabo, Csaba; Szabo, Gabor

    2006-11-01

    Purpose: In a rat model of endarterectomy we investigated the potential role of the peroxynitrite-poly(ADP-ribose) polymerase (PARP) pathway in neointima formation and the effects of irradiation, pharmacologic inhibition of PARP, or combined pharmacologic inhibition of PARP and irradiation on vascular remodeling. Methods and Materials: Carotid endarterectomy was performed by incision of the left carotid artery with removal of intima in Sprague-Dawley rats. Six groups were studied: sham-operated rats (n = 10), control endarterectomized rats (n = 10), or endarterectomized rats irradiated with 15 Gy (n = 10), or treated with PARP inhibitor, INO-1001 (5 mg/kg/day) (n = 10), or with combined treatment with INO-1001 and irradiation with 5 Gy (n = 10) or with 15 Gy (n = 10). After 21 days, neointima formation and vascular remodeling were assessed. Results: Neointima formation after endarterectomy was inhibited by postoperative irradiation with 15 Gy and was attenuated by PARP inhibition. However, in parallel to inhibition of neointimal hyperplasia, activation of the peroxynitrite-PARP pathway in the outer vessel wall layers was triggered by postoperative irradiation. Combined pharmacologic PARP inhibition and irradiation with 15 Gy significantly reduced both neointimal hyperplasia and activation of the peroxynitrite-PARP pathway in the outer vessel wall layers. Combination of PARP inhibition and irradiation with 5 Gy was less effective than both PARP inhibition or irradiation with 15 Gy alone. Conclusions: We conclude, that combined PARP inhibition and irradiation with 15 Gy may be a new dual strategy for prevention of restenosis after surgical vessel reconstruction: combining the strong antiproliferative effect of irradiation and ameliorating irradiation-induced side effects caused by excessive PARP activation.

  14. Nonequilibrium breakdown of a correlated insulator through pattern formation

    NASA Astrophysics Data System (ADS)

    Ribeiro, Pedro; Antipov, Andrey E.; Rubtsov, Alexey N.

    2016-04-01

    We study the breakdown of an interaction-induced insulator under an imposed bias voltage. A rich voltage-temperature phase diagram is found that contains phases with a spatially patterned charge gap. Nonequilibrium conditions are shown to be able to change the antiferromagnetic nature of the equilibrium correlations. Above a threshold voltage, smaller than the charge gap, the formation of patterns occurs together with the emergence of midgap states yielding a finite conductance. We discuss the experimental implications of this proposed scenario for the breakdown of the insulating state.

  15. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    SciTech Connect

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

  16. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGESBeta

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  17. Boundary-layer model of pattern formation in solidification

    NASA Technical Reports Server (NTRS)

    Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.

    1984-01-01

    A model of pattern formation in crystal growth is proposed, and its analytic properties are investigated. The principal dynamical variables in this model are the curvature of the solidification front and the thickness (or heat content) of a thermal boundary layer, both taken to be functions of position along the interface. This model is mathematically much more tractable than the realistic, fully nonlocal version of the free-boundary problem, and still recaptures many of the features that seem essential for studying dendritic behavior, for example. Preliminary numerical solutions produce snowflakelike patterns similar to those seen in nature.

  18. Controlling Pattern Formation in Nanoparticle Assemblies via Directed Solvent Dewetting

    NASA Astrophysics Data System (ADS)

    Martin, Christopher P.; Blunt, Matthew O.; Pauliac-Vaujour, Emmanuelle; Stannard, Andrew; Moriarty, Philip; Vancea, Ioan; Thiele, Uwe

    2007-09-01

    We have achieved highly localized control of pattern formation in two-dimensional nanoparticle assemblies by direct modification of solvent dewetting dynamics. A striking dependence of nanoparticle organization on the size of atomic force microscope-generated surface heterogeneities is observed and reproduced in numerical simulations. Nanoscale features induce a rupture of the solvent-nanoparticle film, causing the local flow of solvent to carry nanoparticles into confinement. Microscale heterogeneities instead slow the evaporation of the solvent, producing a remarkably abrupt interface between different nanoparticle patterns.

  19. Controlling pattern formation in nanoparticle assemblies via directed solvent dewetting.

    PubMed

    Martin, Christopher P; Blunt, Matthew O; Pauliac-Vaujour, Emmanuelle; Stannard, Andrew; Moriarty, Philip; Vancea, Ioan; Thiele, Uwe

    2007-09-14

    We have achieved highly localized control of pattern formation in two-dimensional nanoparticle assemblies by direct modification of solvent dewetting dynamics. A striking dependence of nanoparticle organization on the size of atomic force microscope-generated surface heterogeneities is observed and reproduced in numerical simulations. Nanoscale features induce a rupture of the solvent-nanoparticle film, causing the local flow of solvent to carry nanoparticles into confinement. Microscale heterogeneities instead slow the evaporation of the solvent, producing a remarkably abrupt interface between different nanoparticle patterns. PMID:17930453

  20. Dynamic Phases, Pinning, and Pattern Formation for Driven Dislocation Assemblies

    PubMed Central

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-01

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems. PMID:25613839

  1. Dynamic Phases, Pinning, and Pattern Formation for Driven Dislocation Assemblies

    NASA Astrophysics Data System (ADS)

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; Beyerlein, Irene J.

    2015-01-01

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.

  2. Clustering and Pattern Formation in Chemorepulsive Active Colloids

    NASA Astrophysics Data System (ADS)

    Liebchen, Benno; Marenduzzo, Davide; Pagonabarraga, Ignacio; Cates, Michael E.

    2015-12-01

    We demonstrate that migration away from self-produced chemicals (chemorepulsion) generates a generic route to clustering and pattern formation among self-propelled colloids. The clustering instability can be caused either by anisotropic chemical production, or by a delayed orientational response to changes of the chemical environment. In each case, chemorepulsion creates clusters of a self-limiting area which grows linearly with self-propulsion speed. This agrees with recent observations of dynamic clusters in Janus colloids (albeit not yet known to be chemorepulsive). More generally, our results could inform design principles for the self-assembly of chemorepulsive synthetic swimmers and/or bacteria into nonequilibrium patterns.

  3. Clustering and Pattern Formation in Chemorepulsive Active Colloids.

    PubMed

    Liebchen, Benno; Marenduzzo, Davide; Pagonabarraga, Ignacio; Cates, Michael E

    2015-12-18

    We demonstrate that migration away from self-produced chemicals (chemorepulsion) generates a generic route to clustering and pattern formation among self-propelled colloids. The clustering instability can be caused either by anisotropic chemical production, or by a delayed orientational response to changes of the chemical environment. In each case, chemorepulsion creates clusters of a self-limiting area which grows linearly with self-propulsion speed. This agrees with recent observations of dynamic clusters in Janus colloids (albeit not yet known to be chemorepulsive). More generally, our results could inform design principles for the self-assembly of chemorepulsive synthetic swimmers and/or bacteria into nonequilibrium patterns. PMID:26722949

  4. Impact of Age on Stent Strut Coverage and Neointimal Remodeling as Assessed by Optical Coherence Tomography.

    PubMed

    Han, Zhigang; Feng, Linxing; Du, Hongwei; Sun, Zhao; Hu, Sining; Dai, Jiannan; Sun, Meng; Xing, Lei; Hou, Jingbo; Zhang, Shaosong; Yu, Bo

    2015-12-01

    While older age associates with adverse percutaneous coronary intervention (PCI) outcomes, detailed information relating age to stent strut coverage and neointimal characteristics is lacking. One hundred nineteen patients with 123 sirolimus-eluting stents (SESs) were divided into 3 groups: group A (≤55 years), group B (56-65 years), and group C (>65 years). At 6 and 12 months of follow-up, optical coherence tomography was performed to assess strut coverage and neointimal remodeling. At 6 months, the proportion of uncovered struts increased with age: 6.1% in group A versus 7.3% in group B versus 11.7% in group C (P < 0.001) while the proportion of embedded struts decreased: 72.1% versus 57.0% vs. 55.0%, respectively (P < 0.001). Mean neointimal thicknesses were 90  μm versus 60  μm versus 60  μm, respectively (P < 0.001), and neointimal areas were 0.82  mm2 versus 0.52  mm2 versus 0.57  mm2 (P < 0.001). At 12 months, the proportion of uncovered struts increased with age (3.9% vs. 3.3% vs. 4.9 %; P < 0.001), while mean neointimal thicknesses were 100 versus 70 versus 80  μm (P < 0.001) and neointimal areas were 0.87 versus 0.60 versus 0.67  mm2 (P < 0.001). Patients ≤55 years receiving SES showed highest strut coverage and neointimal repair rate compared with the other 2 groups. A "catch-up phenomenon" appeared to occur in the oldest patients, as in the first 6 months the neointima showed lowest endothelial cell coverage and lowest neointimal proliferation rate, whereas from 6 to 12 months, the highest neointimal proliferation rate was seen in the oldest patients. PMID:26683940

  5. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation.

    PubMed

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C; Oliveira, Osvaldo N; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  6. Evaporation-Induced Pattern Formation of Decanol Droplets.

    PubMed

    Čejková, Jitka; Štěpánek, František; Hanczyc, Martin M

    2016-05-17

    Pattern formation in far-from-equilibrium systems is observed in several disciplines including biology, geophysics, and reaction-diffusion chemistry, comprising both living and nonliving systems. We aim to study such nonequilibrium dynamics on the laboratory scale with materials of simple composition. We present a novel system based on a 1-decanol droplet placed in a solution of alkaline decanoate. Previously, we showed the short time scale behavior of this system, which included chemotaxis and maze solving. Here we explore long time scale dynamics of the system (several hours) when open to the environment. We observe dramatic morphological changes in the droplet including long tentacular structures, and we analyze the morphology of these structures at both the macroscopic and microscopic scales across a large range of initial conditions. Such reproducible morphological changes in simple droplets open a path to the exploration of shape-based effects in larger-scale pattern-formation studies. PMID:27116007

  7. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation

    PubMed Central

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C.; Oliveira, Osvaldo N.; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  8. Modeling in pattern formation with applications to electrochemical phenomena

    NASA Astrophysics Data System (ADS)

    Stanton, Liam G.

    In this work, we examine pattern formation as a generic phenomenon as well as its occurrence in electrochemical systems. First, a global feedback control of pattern formation in a wide class of systems described by the Swift-Hohenberg (SH) equation is investigated theoretically, by means of stability analysis and numerical simulations. Two cases are considered: (i) feedback control of the competition between hexagon and roll patterns described by a supercritical SH equation, and (ii) the use of feedback control to suppress the blow-up in a system described by a subcritical SH equation. In case (i), it is shown that feedback control can change the hexagon and roll stability regions in the parameter space as well as cause a transition from up- to down-hexagons and stabilize a skewed (mixed mode) hexagonal pattern. In case (ii), it is demonstrated that feedback control can suppress blow-up and lead to the formation of spatially-localized patterns in the weakly nonlinear regime. The effects of a delayed feedback are also investigated for both cases, and it is shown that delay can induce temporal oscillations as well as blow-up. Next, pattern formation resulting from the self-organization of porous nanostructures in anodic metal oxide is considered. Two possible mechanisms are proposed: (i) elastic stress caused by electrostrictive effects, and (ii) electrochemical transport of oxygen ions within the oxide layer. In each case, a mathematical model is developed which also incorporates the chemical reactions at the metal-oxide and oxide-electrolyte interfaces. It is then shown through linear stability analysis that a short-wave instability exists in certain parameter regimes for both cases which can lead to the formation of hexagonally ordered pores observed in anodized aluminum oxide. Numerical simulations of case (ii) validate these results. Finally, we consider the self-organization of intercalating particles within crystals induced by spinodal decomposition and the

  9. Pattern formation during the CO-oxidation involving subsurface oxygen

    NASA Astrophysics Data System (ADS)

    Rotermund, Harm Hinrich; Pollmann, Michael; Kevrekidis, Ioannis G.

    2002-03-01

    This paper focuses on subsurface oxygen and its influence on pattern formation during CO-oxidation on platinum surfaces. For the observation of spatiotemporal pattern formation during catalytic reactions the photoelectron emission microscope (PEEM) has proven to be an excellent real-time imaging instrument, capable of tracking local work function changes. The existence of subsurface oxygen on platinumlike surfaces has been extensively discussed and for palladium its presence has been clearly established during rate oscillations. Subsurface oxygen is defined at this point as an atomic O species located directly underneath the uppermost metal crystal layer; its dipole moment therefore considerably lowers the work function of the surface. Here we review some of the investigations involving subsurface oxygen, focusing on the role subsurface oxygen might play in pattern formation during CO-oxidation on platinum. We will also present some new results, where this species clearly interacts with chemisorbed oxygen under restrictions by boundary conditions on the Pt(110) single crystal. These previously (through microlithography) constructed domain boundaries on the surface are made out of Rh or Pd, and they are acting as an additional source of CO molecules for the Pt surface.

  10. Pattern formation gains interest in the Earth sciences

    NASA Astrophysics Data System (ADS)

    Durant, Dolores G.

    A huge diversity of intricate patterns can be found in our environment, ranging from zoned crystals, sand ripples, and columnar basalts to multiringed meteorite impact craters.Fundamental concepts of pattern formation in the Earth sciences can be traced back through time from Jean Perrin to Mandelbrot, and their studies of the lengths of coastlines. Similar concepts of fractal dimensions, multifractals, and diffusion-limited aggregation models can be applied to the study of many phenomena including the random walk of molecules in gases and liquids, avalanche dynamics, three-dimensional basin modeling, salt tectonics, and the spontaneous self-organization of sand grains. The largest terrestrial pattern is that of the Earth itself, forming from an undifferentiated solar dust cloud into the well-organized Earth of today (P. Ortoleva).

  11. Spontaneous Pattern Formation in an Antiferromagnetic Quantum Gas

    SciTech Connect

    Kronjaeger, Jochen; Bongs, Kai; Becker, Christoph; Soltan-Panahi, Parvis; Sengstock, Klaus

    2010-08-27

    In this Letter we report on the spontaneous formation of surprisingly regular periodic magnetic patterns in an antiferromagnetic Bose-Einstein condensate (BEC). The structures evolve within a quasi-one-dimensional BEC of {sup 87}Rb atoms on length scales of a millimeter with typical periodicities of 20...30 {mu}m, given by the spin healing length. We observe two sets of characteristic patterns which can be controlled by an external magnetic field. We identify these patterns as linearly unstable modes within a mean-field approach and calculate their mode structure as well as time and energy scales, which we find to be in good agreement with observations. These investigations open new prospects for controlled studies of symmetry breaking and complex quantum magnetism in bulk BEC.

  12. Capillary-mediated interface perturbations: Deterministic pattern formation

    NASA Astrophysics Data System (ADS)

    Glicksman, Martin E.

    2016-09-01

    Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.

  13. Dynamics and pattern formation in a cancer network with diffusion

    NASA Astrophysics Data System (ADS)

    Zheng, Qianqian; Shen, Jianwei

    2015-10-01

    Diffusion is ubiquitous inside cells, and it is capable of inducing spontaneous pattern formation in reaction-diffusion systems on a spatially homogeneous domain. In this paper, we investigate the dynamics of a diffusive cancer network regulated by microRNA and obtain the condition that the network undergoes a Hopf bifurcation and a Turing pattern bifurcation. In addition, we also develop the amplitude equation of the network model by using Taylor series expansion, multi-scaling and further expansion in powers of a small parameter. As a result of these analyses, we obtain the explicit condition on how the dynamics of the diffusive cancer network evolve. These results reveal that this system has rich dynamics, such as spotted stripe and hexagon patterns. The bifurcation diagram helps us understand the biological mechanism in the cancer network. Finally, numerical simulations confirm our analytical results.

  14. A Model of Filamentous Cyanobacteria Leading to Reticulate Pattern Formation

    PubMed Central

    Tamulonis, Carlos; Kaandorp, Jaap

    2014-01-01

    The filamentous cyanobacterium, Pseudanabaena, has been shown to produce reticulate patterns that are thought to be the result of its gliding motility. Similar fossilized structures found in the geological record constitute some of the earliest signs of life on Earth. It is difficult to tie these fossils, which are billions of years old, directly to the specific microorganisms that built them. Identifying the physicochemical conditions and microorganism properties that lead microbial mats to form macroscopic structures can lead to a better understanding of the conditions on Earth at the dawn of life. In this article, a cell-based model is used to simulate the formation of reticulate patterns in cultures of Pseudanabaena. A minimal system of long and flexible trichomes capable of gliding motility is shown to be sufficient to produce stable patterns consisting of a network of streams. Varying model parameters indicate that systems with little to no cohesion, high trichome density and persistent movement are conducive to reticulate pattern formation, in conformance with experimental observations. PMID:25370380

  15. Rimming flows and pattern formation inside rapidly rotating cylinder

    NASA Astrophysics Data System (ADS)

    Polezhaev, Denis; Dyakova, Veronika; Kozlov, Victor

    2014-11-01

    The dynamics of fluid and granular medium in a rotating horizontal cylinder is experimentally studied. In a rapidly rotating cylinder liquid and granular medium coat the cylindrical wall under centrifugal force. In the cavity frame gravity field performs rotation and produces oscillatory fluid flow which is responsible for the series of novel effects of pattern formation, namely, axial segregation of heavy particles and pattern formation in the form of sand regular hills extended along the axis of rotation. At least two types of axial segregation are found: a) patterns of spatial period of the same order of magnitude as fluid layer thickness which induced by steady flows generated by inertial waves; b) fine patterns which manifests Gortler - Taylor vortices developing as a consequence of centrifugal instability of viscous boundary layer near the cylindrical wall. Under gravity, intensive fluid shear flow induces partial fluidization of annular layer of granular medium. The oscillatory motion is followed by onset of regular ripples extended along the axis of rotation. The work is supported by Russian Scientific Foundation (project 14-11-00476).

  16. Multiscale analysis of pattern formation via intercellular signalling.

    PubMed

    O'Dea, R D; King, J R

    2011-06-01

    Lateral inhibition, a juxtacrine signalling mechanism by which a cell adopting a particular fate inhibits neighbouring cells from doing likewise, has been shown to be a robust mechanism for the formation of fine-grained spatial patterns (in which adjacent cells in developing tissues diverge to achieve contrasting states of differentiation), provided that there is sufficiently strong feedback. The fine-grained nature of these patterns poses problems for analysis via traditional continuum methods since these require that significant variation takes place only over lengthscales much larger than an individual cell and such systems have therefore been investigated primarily using discrete methods. Here, however, we apply a multiscale method to derive systematically a continuum model from the discrete Delta-Notch signalling model of Collier et al. (J.R. Collier, N.A.M. Monk, P.K. Maini, J.H. Lewis, Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signalling, J. Theor. Biol., 183, 1996, 429-446) under particular assumptions on the parameters, which we use to analyse the generation of fine-grained patterns. We show that, on the macroscale, the contact-dependent juxtacrine signalling interaction manifests itself as linear diffusion, motivating the use of reaction-diffusion-based models for such cell-signalling systems. We also analyse the travelling-wave behaviour of our system, obtaining good quantitative agreement with the discrete system. PMID:21385590

  17. How to Build Transcriptional Network Models of Mammalian Pattern Formation

    PubMed Central

    Kioussi, Chrissa; Gross, Michael K.

    2008-01-01

    Background Genetic regulatory networks of sequence specific transcription factors underlie pattern formation in multicellular organisms. Deciphering and representing the mammalian networks is a central problem in development, neurobiology, and regenerative medicine. Transcriptional networks specify intermingled embryonic cell populations during pattern formation in the vertebrate neural tube. Each embryonic population gives rise to a distinct type of adult neuron. The homeodomain transcription factor Lbx1 is expressed in five such populations and loss of Lbx1 leads to distinct respecifications in each of the five populations. Methodology/Principal Findings We have purified normal and respecified pools of these five populations from embryos bearing one or two copies of the null Lbx1GFP allele, respectively. Microarrays were used to show that expression levels of 8% of all transcription factor genes were altered in the respecified pool. These transcription factor genes constitute 20–30% of the active nodes of the transcriptional network that governs neural tube patterning. Half of the 141 regulated nodes were located in the top 150 clusters of ultraconserved non-coding regions. Generally, Lbx1 repressed genes that have expression patterns outside of the Lbx1-expressing domain and activated genes that have expression patterns inside the Lbx1-expressing domain. Conclusions/Significance Constraining epistasis analysis of Lbx1 to only those cells that normally express Lbx1 allowed unprecedented sensitivity in identifying Lbx1 network interactions and allowed the interactions to be assigned to a specific set of cell populations. We call this method ANCEA, or active node constrained epistasis analysis, and think that it will be generally useful in discovering and assigning network interactions to specific populations. We discuss how ANCEA, coupled with population partitioning analysis, can greatly facilitate the systematic dissection of transcriptional networks that

  18. Heating hydrocarbon containing formations in a checkerboard pattern staged process

    SciTech Connect

    de Rouffignac, Eric Pierre; Pingo-Almada, Monica M; Miller, David Scott

    2009-06-02

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to two or more first sections of the formation with one or more first heaters in two or more of the first sections. The provided heat may mobilize first hydrocarbons in two or more of the first sections. At least some of the mobilized first hydrocarbons are produced through production wells located in two or more second sections of the formation. The first sections and the second sections are arranged in a checkerboard pattern. A portion of at least one of the second sections proximate at least one production well is provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second sections with one or more second heaters in the second sections to further heat the second sections.

  19. Multiple stable states and pattern formation in tidal environments

    NASA Astrophysics Data System (ADS)

    Marani, M.

    2012-12-01

    Tidal environments display typical and widely occurring patterns on several scales. At the large scale, characteristic tidal morphological structures can be identified: subtidal areas, which are permanently flooded, tidal flats, usually non-vegetated expanses located between mean low water level and mean sea level, and tidal marshes, vegetated landforms located between mean sea level and mean high water level. At a smaller scale, marshes display zonation patterns, patches of nearly homogeneous vegetation species characterized by very sharp transitions in species composition and in the associated soil elevation. This contribution describes modelling and observational results which identify a common mechanism for the emergence of bio-geomorphic patterns in tidal environments. Our analyses show that the coupled dynamics of inorganic sediment transport and local biogenic soil formation leads to multiple stable states. Such states correspond to distinct geomorphic structures at the large scale (subtidal platforms, tidal flats, and marshes) and to zonation patterns at the marsh scale. In both cases the interaction between biotic and biotic processes turns out to be crucial for the emergence of the observed patterns.

  20. Whorl morphogenesis in the dasycladalean algae: the pattern formation viewpoint.

    PubMed Central

    Dumais, J; Harrison, L G

    2000-01-01

    The dasycladalean algae produce diverse whorled structures, among which the best known are the vegetative and reproductive whorls of Acetabularia acetabulum. In this paper, we review the literature pertaining to the origin of these structures. The question is addressed in terms of the necessary pattern-forming events and the possible mechanisms involved, an outlook we call the pattern formation viewpoint. The pattern-forming events involved in the morphogenesis of the vegetative and reproductive whorls of Acetabularia have been used to define five and six morphogenetic stages, respectively. We discuss three published mechanisms which account, at least in part, for the pattern-forming events. The mechanisms are mechanical buckling of the cell wall, reaction-diffusion of morphogen molecules along the cell membrane, and mechanochemical interactions between Ca2+ ions and the cytoskeleton in the cytosol. The numerous differences between these mechanisms provide experimental grounds to test their validity. To date, the results of these experiments point towards reaction diffusion as the most likely patterning mechanism. Finally, we consider the evolutionary origin of the vegetative and reproductive whorls and provide mechanistic explanations for some of the major evolutionary advances. PMID:10724462

  1. Neuropilins 1 and 2 mediate neointimal hyperplasia and re-endothelialization following arterial injury

    PubMed Central

    Pellet-Many, Caroline; Mehta, Vedanta; Fields, Laura; Mahmoud, Marwa; Lowe, Vanessa; Evans, Ian; Ruivo, Jorge; Zachary, Ian

    2015-01-01

    Aims Neuropilins 1 and 2 (NRP1 and NRP2) play crucial roles in endothelial cell migration contributing to angiogenesis and vascular development. Both NRPs are also expressed by cultured vascular smooth muscle cells (VSMCs) and are implicated in VSMC migration stimulated by PDGF-BB, but it is unknown whether NRPs are relevant for VSMC function in vivo. We investigated the role of NRPs in the rat carotid balloon injury model, in which endothelial denudation and arterial stretch induce neointimal hyperplasia involving VSMC migration and proliferation. Methods and results NRP1 and NRP2 mRNAs and proteins increased significantly following arterial injury, and immunofluorescent staining revealed neointimal NRP expression. Down-regulation of NRP1 and NRP2 using shRNA significantly reduced neointimal hyperplasia following injury. Furthermore, inhibition of NRP1 by adenovirally overexpressing a loss-of-function NRP1 mutant lacking the cytoplasmic domain (ΔC) reduced neointimal hyperplasia, whereas wild-type (WT) NRP1 had no effect. NRP-targeted shRNAs impaired, while overexpression of NRP1 WT and NRP1 ΔC enhanced, arterial re-endothelialization 14 days after injury. Knockdown of either NRP1 or NRP2 inhibited PDGF-BB-induced rat VSMC migration, whereas knockdown of NRP2, but not NRP1, reduced proliferation of cultured rat VSMC and neointimal VSMC in vivo. NRP knockdown also reduced the phosphorylation of PDGFα and PDGFβ receptors in rat VSMC, which mediate VSMC migration and proliferation. Conclusion NRP1 and NRP2 play important roles in the regulation of neointimal hyperplasia in vivo by modulating VSMC migration (via NRP1 and NRP2) and proliferation (via NRP2), independently of the role of NRPs in re-endothelialization. PMID:26410366

  2. Role of macrophage colony-stimulating factor in the development of neointimal thickening following arterial injury.

    PubMed

    Mishra, Vivek; Sinha, Satyesh K; Rajavashisth, Tripathi B

    2016-01-01

    Evidence suggests that macrophage colony-stimulating factor (M-CSF) participates critically in atherosclerosis; little is known about the role of M-CSF in the development of neointimal hyperplasia following mechanical vascular injury. We examined the expression of M-CSF and its receptor, c-fms, in rodent and rabbit models of arterial injury. Injured rat carotid arteries expressed 3- to 10-fold higher levels of M-CSF and c-fms mRNA and protein following balloon injury as compared to uninjured arteries. In the rabbit, M-CSF protein expression was greatest in neointimal smooth muscle cells (SMCs) postinjury, with some expression in medial SMCs. M-CSF-positive SMCs exhibited markers of proliferation. At 30days postinjury, neointimal SMCs in the adjacent healed area near the border between injured and uninjured zone lost both proliferative activity and overexpression of M-CSF. The presence of induced M-CSF and c-fms expression correlated with the initiation of SMCs proliferation. M-CSF stimulated incorporation of [(3)H] thymidine in human aortic smooth muscle cells in a concentration-dependent manner. Serum-free conditioned medium from aortic SMCs also promoted DNA synthesis, and this effect was blocked by M-CSF specific antibody. To test further the role of M-CSF in vivo, we induced arterial injury by placing a periadventitial collar around the carotid arteries in compound mutant mice lacking apolipoprotein apoE (apoE(-/-)) and M-CSF. Loss of M-CSF abolished the neointimal hyperplastic response to arterial injury in apoE(-/-) mice. Local delivery of M-CSF to the injured artery restored neointimal proliferation, suggesting a critical role of M-CSF for the development of neointimal thickening following arterial injury. PMID:27135205

  3. Dynamics of laser induced metal nanoparticle and pattern formation

    SciTech Connect

    Peláez, R. J. Kuhn, T.; Rodríguez, C. E.; Afonso, C. N.

    2015-02-09

    Discontinuous metal films are converted into either almost round, isolated, and randomly distributed nanoparticles (NPs) or fringed patterns of alternate non transformed film and NPs by exposure to single pulses (20 ns pulse duration and 193 nm wavelength) of homogeneous or modulated laser beam intensity. The dynamics of NPs and pattern formation is studied by measuring in real time the transmission and reflectivity of the sample upon homogeneous beam exposure and the intensity of the diffraction orders 0 and 1 in transmission configuration upon modulated beam exposure. The results show that laser irradiation induces melting of the metal either completely or at regions around intensity maxima sites for homogeneous and modulated beam exposure, respectively, within ≤10 ns. The aggregation and/or coalescence of the initially irregular metal nanostructures is triggered upon melting and continues after solidification (estimated to occur at ≤80 ns) for more than 1 μs. The present results demonstrate that real time transmission rather than reflectivity measurements is a valuable and easy-to-use tool for following the dynamics of NPs and pattern formation. They provide insights on the heat-driven processes occurring both in liquid and solid phases and allow controlling in-situ the process through the fluence. They also evidence that there is negligible lateral heat release in discontinuous films upon laser irradiation.

  4. Flow-driven instabilities during pattern formation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.

    2015-06-01

    The slime mold Dictyostelium discoideum is a well known model system for the study of biological pattern formation. In the natural environment, aggregating populations of starving Dictyostelium discoideum cells may experience fluid flows that can profoundly change the underlying wave generation process. Here we study the effect of advection on the pattern formation in a colony of homogeneously distributed Dictyostelium discoideum cells described by the standard Martiel-Goldbeter model. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. The evolution of small perturbations in cAMP concentrations is studied analytically in the linear regime and by corresponding numerical simulations. We show that flow can significantly influence the dynamics of the system and lead to a flow-driven instability that initiate downstream traveling cAMP waves. We also show that boundary conditions have a significant effect on the observed patterns and can lead to a new kind of instability.

  5. Formation of Arbitrary Patterns in Ultraviolet Cured Polymer Film via Electrohydrodynamic Patterning

    PubMed Central

    2014-01-01

    Electrohydrodynamic patterning of arbitrary patterns is achieved by optimizing the critical parameters (applied voltage and spacer height). The applied voltage has a great influence on the fidelity of L-shaped line structures with different sizes. The L-shaped line structures with high fidelity are obtained by using the moderate applied voltage. The spacer height has a great influence on the fidelity of square structures with different sizes. The square structures with high fidelity are obtained by using the low height spacer. The multi-field coupling transient finite element simulation demonstrates that the lack of polymer owing to the high height spacer leads to the formation of defects. PMID:24723831

  6. Pattern formation in transparent media using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Thomas, J.; Bernard, R.; Alti, K.; Dharmadhikari, A. K.; Dharmadhikari, J. A.; Bhatnagar, A.; Santhosh, C.; Mathur, D.

    2013-09-01

    We report results of a systematic study of the morphology of laser-written structures within transparent media like fused silica, borosilicate glass (BK7), and polymethylmethylacrylate (PMMA) using a high-energy, 5.1 MHz repetition rate, femtosecond laser oscillator. Depending on experimental conditions, both smooth channels as well as dot patterns can be laser-written. The periodicity of the written dots is readily controlled by the energy dose, a single parameter that encompasses laser energy, translation speed at fixed repetition rate, and focusing conditions. We discover the importance of the direction in which laser-writing is carried out: the periodicity of the dot patterns written at fixed energy dose but with opposite writing directions is significantly different. In PMMA, extremely large rod-like structures (˜200 µm) are observed whose formation is also dependent on writing direction. We quantify guidance of 632 nm and 830 nm light in structures written in BK7.

  7. The theory of pattern formation on directed networks

    NASA Astrophysics Data System (ADS)

    Asllani, Malbor; Challenger, Joseph D.; Pavone, Francesco Saverio; Sacconi, Leonardo; Fanelli, Duccio

    2014-07-01

    Dynamical processes on networks have generated widespread interest in recent years. The theory of pattern formation in reaction-diffusion systems defined on symmetric networks has often been investigated, due to its applications in a wide range of disciplines. Here we extend the theory to the case of directed networks, which are found in a number of different fields, such as neuroscience, computer networks and traffic systems. Owing to the structure of the network Laplacian, the dispersion relation has both real and imaginary parts, at variance with the case for a symmetric, undirected network. The homogeneous fixed point can become unstable due to the topology of the network, resulting in a new class of instabilities, which cannot be induced on undirected graphs. Results from a linear stability analysis allow the instability region to be analytically traced. Numerical simulations show travelling waves, or quasi-stationary patterns, depending on the characteristics of the underlying graph.

  8. Localised pattern formation in a model for dryland vegetation.

    PubMed

    Dawes, J H P; Williams, J L M

    2016-07-01

    We analyse the model for vegetation growth in a semi-arid landscape proposed by von Hardenberg et al. (Phys. Rev. Lett. 87:198101, 2001), which consists of two parabolic partial differential equations that describe the evolution in space and time of the water content of the soil and the level of vegetation. This model is a generalisation of one proposed by Klausmeier but it contains additional terms that capture additional physical effects. By considering the limit in which the diffusion of water in the soil is much faster than the spread of vegetation, we reduce the system to an asymptotically simpler parabolic-elliptic system of equations that describes small amplitude instabilities of the uniform vegetated state. We carry out a thorough weakly nonlinear analysis to investigate bifurcations and pattern formation in the reduced model. We find that the pattern forming instabilities are subcritical except in a small region of parameter space. In the original model at large amplitude there are localised solutions, organised by homoclinic snaking curves. The resulting bifurcation structure is well known from other models for pattern forming systems. Taken together our results describe how the von Hardenberg model displays a sequence of (often hysteretic) transitions from a non-vegetated state, to localised patches of vegetation that exist with uniform low-level vegetation, to periodic patterns, to higher-level uniform vegetation as the precipitation parameter increases. PMID:26454759

  9. The physics of pattern formation at liquid interfaces

    SciTech Connect

    Maher, J.V.

    1992-06-01

    During the past year we have submitted six papers for publication, three related to the dynamics of macroscopic interfaces, and ultimately all related to solidification, and three related to the internal structure of disorderly materials, with possible applications to the processing of composite materials. In addition to completing all these projects during the past year, we have begun two new projects, one on pattern formation and one on aggregation within a composite system. A brief description is given of this research in this paper.

  10. Changing patterns of marriage and household formation in Peninsular Malaysia.

    PubMed

    Tan, P C; Jones, G W

    1990-01-01

    "Based on surveys conducted among different ethnic groups in rural and urban settings in Peninsular Malaysia in 1981-82, this paper analyses changes in patterns of marriage and household formation among Malays, Chinese, and Indians. Aspects covered include social mixing before marriage, choice of spouse, comparison of spouses' characteristics, and place of residence after marriage. There are important cultural differences between the main Malaysian ethnic groups in matters related to marriage, but in many important respects, attitudes and practice are tending to converge...." PMID:12283691

  11. Pattern formation in granular binary mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier

    2013-04-01

    We study numerically the formation and evolution of bed forms using a binary granular mixture. The two types of particles may have different dynamic properties and angle of repose. We associate these changes to two different grain sizes, the so-called coarse and thin particles. Our computation are based on a real-space cellular automaton that combines a model of sediment transport with a lattice-gas cellular automaton. Thus, we implement the permanent feedbacks between fluid flow and topography. Keeping constant the strength of the flow, we explore a parameter-space by varying the size of the coarse particles and their proportion within the bed. As a result of avalanches and sediment transport, we systematically find regions of segregation and stratification. In a vast majority of cases, we also observe the formation of an armoring layer mainly composed of coarse particles. Its depth is mainly controlled by the proportion of coarse grains and not by the size of these larger particles. When there is a larger proportion of thin particles, transverse dunes develop on the top of the armoring layer. As this proportion decreases, we may observe barchans or even no clear bed forms. We conclude that the main control parameter for dune pattern formation is the thin sediment availability. Finally, we discuss the processes responsible for the formation of the armoring layer and show how it controls the overall sediment transport.

  12. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus

    PubMed Central

    Starruß, Jörn; Peruani, Fernando; Jakovljevic, Vladimir; Søgaard-Andersen, Lotte; Deutsch, Andreas; Bär, Markus

    2012-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional reversals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies, depending on their nutritional status. To ultimately understand these two pattern-formation processes and the contributions by the two motility machineries, as well as the cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains: (i) a mutant that moves unidirectionally without reversing by the A-motility system only, (ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the wild-type that, in addition to the two motility systems, occasionally reverses its direction of movement. The mutant moving by means of the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria owing to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results in vortex formation at very high densities. These findings are consistent with what is known from self-propelled rod models, which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern-formation mechanism leading to the observed phenomena. On the other hand, we learn that when cells occasionally reverse

  13. Pattern formation in electrohydrodynamic convection of a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Nadina

    2003-10-01

    The first part of this dissertation is a study of the selection mechanism for the dendritic growth pattern of electrohydrodynamic convection (EHC) in a nematic liquid crystal (NLC). The cell gap d, the magnetic field H, and the voltage V are systematically varied. The transition from the non-convective state to the convective state is first order-like, although in this case it occurs in a nonequilibrium one-phase system. In the layer plane, the two-fold dendritic pattern grows about the only anisotropy direction, perpendicular to the homogeneous director alignment. While for crystalline dendrites the tip radius of curvature rho and the growth speed v are sharply selected, these dendrites show partial selection. At fixed d, H, and V, rho or v for different dendrites varies each within a band. There is no systematic dependence of rho on V. Thus, these dendrites represent an entirely new selection problem for pattern formation. The non-convective state is anisotropic in the plane of the pattern within a (magnetic coherence) length xim of each substrate. The degree of anisotropy decays with xim/d and the selection becomes less sharp. In contrast to sharply interfaced solidification patterns, these dendrites are outlined by a diffuse boundary, which width w ˜ 2xim. While anisotropic surface tension stabilizes crystalline growth, the magnetic field stabilizes this dendritic growth. Finding where and what scale convection first starts is important for understanding pattern selection in EHC. In the second part of this dissertation, fluorescence confocal polarizing microscopy (FCPM) is employed to study normal dielectric rolls (NDRs) in a NLC. While polarizing microscopy gives a two-dimensional information of the integrated three-dimensional (3D) pattern of optical birefringence, FCPM can uniquely map 3D orientational patterns in LC. FCPM visualizes the intensity of polarized fluorescence light emitted by the dye molecules aligned by the LC molecules. The fluorescence

  14. G-jitter Effects on Transport and Pattern Formation

    NASA Technical Reports Server (NTRS)

    Schatz, Michael F.

    2003-01-01

    The research performed under this grant has led to an number of new insights into two general categories of fluid flows in the presence of time-dependent acceleration, as outlined briefly below. These results have been widely communicated in the scientific community through seven presentations at international conferences (4 invited, 3 contributed), five published papers (4 journal articles and 1 conference proceeding), and images from the research featured on the cover of all 2003 editions of the research journal, Nonlinearity. The work performed under this proposal also contained a substantial educational component by contributed significantly to the scientific training of one postdoctoral associate, one Ph.D. student and five undergraduate researchers. One main area of focus in this research was convective flow with time-dependent acceleration. Convection is one class of behavior that can arise from g-jitter effects. Our research focused on studies of Rayleigh-Benard system, which is an important model for understanding thermal convection; studies of this problem in the presence of acceleration modulations provided insight into the nature of g-jitter induced flow and of the effects of modulation and noise on non-equilibrium pattern formation. Our experiments on vertically vibrated Rayleigh-Benard convection demonstrated the existence of two classes of pure flow patterns (synchronous & subharmonic) patterns) that had long been predicted by theory but never before observed experimentally. Detailed studies of ranges of parameters where both classes of patterns exist simultaneously led to the discovery of a new type of patterns (called superlattices) in systems driven out of thermodynamic equilibrium.

  15. Interfacial pattern formation in confined power-law fluids

    NASA Astrophysics Data System (ADS)

    Brandão, Rodolfo; Fontana, João V.; Miranda, José A.

    2014-07-01

    The interfacial pattern formation problem in an injection-driven radial Hele-Shaw flow is studied for the situation in which a Newtonian fluid of negligible viscosity displaces a viscous non-Newtonian power-law fluid. By utilizing a Darcy-law-like formulation, we tackle the fluid-fluid interface evolution problem perturbatively, and we derive second-order mode-coupling equations that describe the time evolution of the perturbation amplitudes. This allows us to investigate analytically how the non-Newtonian nature of the dislocated fluid determines the morphology of the emerging interfacial patterns. If the pushed fluid is shear-thinning, our results indicate the development of side-branching structures. On the other hand, if the displaced fluid is shear-thickening, one detects the formation of petal-like shapes, markedly characterized by strong tip-splitting events. Finally, a time-dependent injection protocol is presented that is able to restrain finger proliferation via side-branching and tip-splitting. This permits the emergence of symmetric n-fold interfacial shapes for which the number of fingers remains fixed as time progresses. This procedure generalizes existing controlling strategies for purely Newtonian flow circumstances to the case of a non-Newtonian, displaced power-law fluid.

  16. Pattern formation of Rho GTPases in single cell wound healing

    PubMed Central

    Simon, Cory M.; Vaughan, Emily M.; Bement, William M.; Edelstein-Keshet, Leah

    2013-01-01

    The Rho GTPases—Rho, Rac, and Cdc42—control an enormous variety of processes, many of which reflect activation of these GTPases in spatially confined and mutually exclusive zones. By using mathematical models and experimental results to establish model parameters, we analyze the formation and segregation of Rho and Cdc42 zones during Xenopus oocyte wound repair and the role played by Abr, a dual guanine nucleotide exchange factor–GTPase-activating protein, in this process. The Rho and Cdc42 zones are found to be best represented as manifestations of spatially modulated bistability, and local positive feedback between Abr and Rho can account for the maintenance and dynamic properties of the Rho zone. In contrast, the invocation of an Abr-independent positive feedback loop is required to account for Cdc42 spatial bistability. In addition, the model replicates the results of previous in vivo experiments in which Abr activity is manipulated. Further, simulating the model with two closely spaced wounds made nonintuitive predictions about the Rho and Cdc42 patterns; these predictions were confirmed by experiment. We conclude that the model is a useful tool for analysis of Rho GTPase signaling and that the Rho GTPases can be fruitfully considered as components of intracellular pattern formation systems. PMID:23264464

  17. Chemical Pattern Formation in Far-From Systems.

    NASA Astrophysics Data System (ADS)

    Pearson, John Evan

    The diffusive instability was proposed as a mechanism for pattern formation in chemical systems, in the context of biological morphogenesis, by Alan Turing in 1952. The instability gives rise to a chemical pattern with an intrinsic "chemical wavelength" that is independent of the system size. Since 1952, the diffusive instability, or Turing bifurcation, has been invoked to explain pattern formation in a variety of fields. To date there has been no unambiguous observation of such an instability. Model studies of the instability are usually carried out on systems containing two variables. Such works do not address issues that are of fundamental importance in experimental studies. How does one go about finding Turing bifurcations in systems with many parameters and for which the chemical kinetics are only partially known? What is the chemical wavelength? Turing bifurcations cannot occur in systems with all diffusion coefficients exactly equal. How unequal must the diffusion coefficients be for a system to undergo a Turing bifurcation?. Reacting and diffusing systems obey a partial -differential equation which is a sum of a diffusion term and a reaction term. Dropping the diffusion term results in an ordinary differential equation describing the reaction kinetics in a well-mixed system. In this dissertation it is shown that, for systems with an arbitrary number of variables, Turing bifurcations can occur with diffusion coefficients arbitrarily close to equal, provided the corresponding well-mixed system is sufficiently close to a point of coalescence of Hopf and saddle-node bifurcations. Since the bifurcation set can be obtained directly from experiments, one does not need a detailed microscopic theory of the reaction kinetics. Similarly, the chemical wavelength can be estimated from experimental measurements without knowledge of the reaction kinetics.

  18. Pattern formation and mass transfer under stationary solutal Marangoni instability.

    PubMed

    Schwarzenberger, Karin; Köllner, Thomas; Linde, Hartmut; Boeck, Thomas; Odenbach, Stefan; Eckert, Kerstin

    2014-04-01

    According to the seminal theory by Sternling and Scriven, solutal Marangoni convection during mass transfer of surface-active solutes may occur as either oscillatory or stationary instability. With strong support of Manuel G. Velarde, a combined initiative of experimental works, in particular to mention those of Linde, Wierschem and coworkers, and theory has enabled a classification of dominant wave types of the oscillatory mode and their interactions. In this way a rather comprehensive understanding of the nonlinear evolution of the oscillatory instability could be achieved. A comparably advanced state-of-the-art with respect to the stationary counterpart seemed to be out of reach a short time ago. Recent developments on both the numerical and experimental side, in combination with assessing an extensive number of older experiments, now allow one to draw a more unified picture. By reviewing these works, we show that three main building blocks exist during the nonlinear evolution: roll cells, relaxation oscillations and relaxation oscillations waves. What is frequently called interfacial turbulence results from the interaction between these partly coexisting basic patterns which may additionally occur in different hierarchy levels. The second focus of this review lies on the practical importance of such convection patterns concerning their influence on mass transfer characteristics. Particular attention is paid here to the interaction between Marangoni and buoyancy effects which frequently complicates the pattern formation even more. To shed more light on these dependencies, new simulations regarding the limiting case of stabilizing density stratification and vanishing buoyancy are incorporated. PMID:24456800

  19. One-dimensional daisyworld: spatial interactions and pattern formation.

    PubMed

    Adams, B; Carr, J; Lenton, T M; White, A

    2003-08-21

    The zero-dimensional daisyworld model of Watson and Lovelock (1983) demonstrates that life can unconsciously regulate a global environment. Here that model is extended to one dimension, incorporating a distribution of incoming solar radiation and diffusion of heat consistent with a spherical planet. Global regulatory properties of the original model are retained. The daisy populations are initially restricted to hospitable regions of the surface but exert both global and local feedback to increase this habitable area, eventually colonizing the whole surface. The introduction of heat diffusion destabilizes the coexistence equilibrium of the two daisy types. In response, a striped pattern consisting of blocks of all black or all white daisies emerges. There are two mechanisms behind this pattern formation. Both are connected to the stability of the system and an overview of the mathematics involved is presented. Numerical experiments show that this pattern is globally determined. Perturbations in one region have an impact over the whole surface but the regulatory properties of the system are not compromised by transient perturbations. The relevance of these results to the Earth and the wider climate modelling field is discussed. PMID:12875827

  20. Non-linear pattern formation in bone growth and architecture.

    PubMed

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  1. Non-Linear Pattern Formation in Bone Growth and Architecture

    PubMed Central

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic non-linear pattern formation (NPF) – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of “group intelligence” exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called “particle swarm optimization” (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating “socially” in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or “feedback” between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the

  2. Endogenously Generated Omega‐3 Fatty Acids Attenuate Vascular Inflammation and Neointimal Hyperplasia by Interaction With Free Fatty Acid Receptor 4 in Mice

    PubMed Central

    Li, Xinzhi; Ballantyne, Laurel L.; Che, Xinghui; Mewburn, Jeffrey D.; Kang, Jing X.; Barkley, Robert M.; Murphy, Robert C.; Yu, Ying; Funk, Colin D.

    2015-01-01

    Background Omega‐3 polyunsaturated fatty acids (ω3 PUFAs) suppress inflammation through activation of free fatty acid receptor 4 (FFAR4), but this pathway has not been explored in the context of cardiovascular disease. We aimed to elucidate the involvement of FFAR4 activation by ω3 PUFAs in the process of vascular inflammation and neointimal hyperplasia in mice. Methods and Results We used mice with disruption of FFAR4 (Ffar4−/−), along with a strain that synthesizes high levels of ω3 PUFAs (fat‐1) and a group of crossed mice (Ffar4−/−/fat‐1), to elucidate the role of FFAR4 in vascular dysfunction using acute and chronic thrombosis/vascular remodeling models. The presence of FFAR4 in vascular‐associated cells including perivascular adipocytes and macrophages, but not platelets, was demonstrated. ω3 PUFAs endogenously generated in fat‐1 mice (n=9), but not in compound Ffar4−/−/fat‐1 mice (n=9), attenuated femoral arterial thrombosis induced by FeCl3. Neointimal hyperplasia and vascular inflammation in the common carotid artery were significantly curtailed 4 weeks after FeCl3 injury in fat‐1 mice (n=6). This included greater luminal diameter and enhanced blood flow, reduced intima:media ratio, and diminished macrophage infiltration in the vasculature and perivascular adipose tissue compared with control mice. These effects were attenuated in the Ffar4−/−/fat‐1 mice. Conclusions These results indicate that ω3 PUFAs mitigate vascular inflammation, arterial thrombus formation, and neointimal hyperplasia by interaction with FFAR4 in mice. Moreover, the ω3 PUFA–FFAR4 pathway decreases inflammatory responses with dampened macrophage transmigration and infiltration. PMID:25845931

  3. Pattern formation in granular binary mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Gao, X.; Narteau, C.; Rozier, O.

    2012-12-01

    Polydisperse granular materials are ubiquitous in the field of geomorphology. Nevertheless, it remains a challenge to address the impact of segregation, stratification and mixing on landscape dynamics and sediment transport. Here, we study numerically the formation and evolution of bed forms using a binary granular mixture. The two types of particles may have different dynamic properties and angle of repose. We associate these changes to two different grain sizes, the so-called coarse and thin particles. Our computation are based on a real-space cellular automaton that combines a model of sediment transport with a lattice-gas cellular automaton. Thus, we implement the permanent feedbacks between fluid flow and topography. Keeping constant the strength of the flow, we explore a parameter-space by varying the size of the coarse particles and their proportion within the bed. As a result of avalanches and sediment transport, we systematically find regions of segregation and stratification. In a vast majority of cases, we also observe the formation of an armoring layer mainly composed of coarse particles. Its depth is mainly controlled by the proportion of coarse grains and not by the size of these larger particles. When there is a larger proportion of thin particles, transverse dunes develop on the top of the armoring layer. As this proportion decreases, we may observe barchans or even no clear bed forms. Not surprisingly, we conclude that the main control parameter for dune pattern formation is the thin sediment availability. Finally, we discuss the processes responsible for the formation of the armoring layer and show how it controls the overall sediment transport.

  4. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  5. Topology-generating interfacial pattern formation during liquid metal dealloying

    PubMed Central

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-01-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics. PMID:26582248

  6. Topology-generating interfacial pattern formation during liquid metal dealloying.

    PubMed

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-01-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics. PMID:26582248

  7. Topology-generating interfacial pattern formation during liquid metal dealloying

    NASA Astrophysics Data System (ADS)

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  8. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE PAGESBeta

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  9. Topology-generating interfacial pattern formation during liquid metal dealloying

    SciTech Connect

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  10. Time-Dependence and Pattern Formation in Flowing Granular Media.

    NASA Astrophysics Data System (ADS)

    Baxter, George William, III

    1990-01-01

    We study the time dependence and pattern formation of gravity driven flows of granular media in three experiments. In three dimensional flows of sand, the normal stress on the wall of a conical hopper is measured. There is no evidence of characteristic time scales predicted by a linear stability analysis of a current continuum theory of granular media. Instead, the signal is characterized by a power law power spectrum, and the time variation of the normal stress obeys a scaling law consistent with fractional Brownian motion with H ~ 0.2. As one of the best examples to date of fractional Brownian motion in a physical experiment, this provides a unique opportunity for a study of the theory's application. In digital subtraction radiography studies of sand flow through a thin (nearly two dimensional) wedge, density waves are found. The formation and motion of these depends on the geometry of the wedge and the roughness of the sand grains. The waves form in rough sand but not in smooth sand of the same approximate size, demonstrating that grain structure has a dramatic effect on the flow. Also, the position of stagnant regions along the sides of the wedge is found to scale as a power law of the wedge angle. Neither the density waves nor the position of the stagnant regions are predicted by current theories. Finally, a cellular automata model is proposed to model the two dimensional flow of ellipsoidal grains (such as grass seed) through a wedge. By including particle shape and orientation as degrees of freedom, this model is able to capture many features of real physical flows. In sum, these experiments demonstrate that flows of even simple materials like sand or grass seed contain time dependent patterns that are not predicted by current theoretical models. This demonstrates the need to include particle structure and orientation. Finally, the cellular automata model shows that even relatively simple models which include these added degrees of freedom can reproduce the

  11. Quantifying Contributions of Climate Feedbacks to Global Warming Pattern Formation

    NASA Astrophysics Data System (ADS)

    Song, X.; Zhang, G. J.; Cai, M.

    2013-12-01

    The ';';climate feedback-response analysis method'' (CFRAM) was applied to the NCAR CCSM3.0 simulation to analyze the strength and spatial distribution of climate feedbacks and to quantify their contributions to global and regional surface temperature changes in response to a doubling of CO2. Instead of analyzing the climate sensitivity, the CFRAM directly attributes the temperature change to individual radiative and non-radiative feedbacks. The radiative feedback decomposition is based on hourly model output rather than monthly mean data that are commonly used in climate feedback analysis. This gives a more accurate quantification of the cloud and albedo feedbacks. The process-based decomposition of non-radiative feedback enables us to understand the roles of GCM physical and dynamic processes in climate change. The pattern correlation, the centered root-mean-square (RMS) difference and the ratio of variations (represented by standard deviations) between the partial surface temperature change due to each feedback process and the total surface temperature change in CCSM3.0 simulation are examined to quantify the roles of each feedback process in the global warming pattern formation. The contributions of climate feedbacks to the regional warming are also discussed.

  12. Ternary eutectic dendrites: Pattern formation and scaling properties.

    PubMed

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations. PMID:25903891

  13. Ternary eutectic dendrites: Pattern formation and scaling properties

    SciTech Connect

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  14. Territorial pattern formation in the absence of an attractive potential.

    PubMed

    Potts, Jonathan R; Lewis, Mark A

    2016-01-01

    Territoriality is a phenomenon exhibited throughout nature. On the individual level, it is the processes by which organisms exclude others of the same species from certain parts of space. On the population level, it is the segregation of space into separate areas, each used by subsections of the population. Proving mathematically that such individual-level processes can cause observed population-level patterns to form is necessary for linking these two levels of description in a non-speculative way. Previous mathematical analysis has relied upon assuming animals are attracted to a central area. This can either be a fixed geographical point, such as a den- or nest-site, or a region where they have previously visited. However, recent simulation-based studies suggest that this attractive potential is not necessary for territorial pattern formation. Here, we construct a partial differential equation (PDE) model of territorial interactions based on the individual-based model (IBM) from those simulation studies. The resulting PDE does not rely on attraction to spatial locations, but purely on conspecific avoidance, mediated via scent-marking. We show analytically that steady-state patterns can form, as long as (i) the scent does not decay faster than it takes the animal to traverse the terrain, and (ii) the spatial scale over which animals detect scent is incorporated into the PDE. As part of the analysis, we develop a general method for taking the PDE limit of an IBM that avoids destroying any intrinsic spatial scale in the underlying behavioral decisions. PMID:25822451

  15. Tree island pattern formation in the Florida Everglades

    USGS Publications Warehouse

    Carr, Joel; D'Odorico, P.; Engel, Victor C.; Redwine, Jed

    2016-01-01

    The Florida Everglades freshwater landscape exhibits a distribution of islands covered by woody vegetation and bordered by marshes and wet prairies. Known as “tree islands”, these ecogeomorphic features can be found in few other low gradient, nutrient limited freshwater wetlands. In the last few decades, however, a large percentage of tree islands have either shrank or disappeared in apparent response to altered water depths and other stressors associated with human impacts on the Everglades. Because the processes determining the formation and spatial organization of tree islands remain poorly understood, it is still unclear what controls the sensitivity of these landscapes to altered conditions. We hypothesize that positive feedbacks between woody plants and soil accretion are crucial to emergence and decline of tree islands. Likewise, positive feedbacks between phosphorus (P) accumulation and trees explain the P enrichment commonly observed in tree island soils. Here, we develop a spatially-explicit model of tree island formation and evolution, which accounts for these positive feedbacks (facilitation) as well as for long range competition and fire dynamics. It is found that tree island patterns form within a range of parameter values consistent with field data. Simulated impacts of reduced water levels, increased intensity of drought, and increased frequency of dry season/soil consuming fires on these feedback mechanisms result in the decline and disappearance of tree islands on the landscape.

  16. Segment formation in Annelids: patterns, processes and evolution.

    PubMed

    Balavoine, Guillaume

    2014-01-01

    The debate on the origin of segmentation is a central question in the study of body plan evolution in metazoans. Annelids are the most conspicuously metameric animals as most of the trunk is formed of identical anatomical units. In this paper, I summarize the various patterns of evolution of the metameric body plan in annelids, showing the remarkable evolvability of this trait, similar to what is also found in arthropods. I then review the different modes of segment formation in the annelid tree, taking into account the various processes taking place in the life histories of these animals, including embryogenesis, post-embryonic development, regeneration and asexual reproduction. As an example of the variations that occur at the cellular and genetic level in annelid segment formation, I discuss the processes of teloblastic growth or posterior addition in key groups in the annelid tree. I propose a comprehensive definition for the teloblasts, stem cells that are responsible for sequential segment addition. There are a diversity of different mechanisms used in annelids to produce segments depending on the species, the developmental time and also the life history processes of the worm. A major goal for the future will be to reconstitute an ancestral process (or several ancestral processes) in the ancestor of the whole clade. This in turn will provide key insights in the current debate on ancestral bilaterian segmentation. PMID:25690963

  17. Pattern formation and morphology transitions in bacterial systems

    NASA Astrophysics Data System (ADS)

    Arouh, Scott

    Bacteria grown on a semi-solid agar surface have been observed to form branching, chiral, and ring patterns as the colony envelope propagates outward. We model transitions between the branching and chiral patterns, analyze the effect of directed bacterial motion (chemotaxis) on the branching instability, and analyze a model for ring generation. Our model for transitions between branching and chiral patterns is a variant of Ben-Jacob's Communicating Walkers Models. We demonstrate that arbitrarily small nucleation regions of the new phase may be sufficient for the transformation to proceed. We also illustrate the phase transformations with plots of the colony envelope velocities as a function of environmental parameters. Based on the appearance of simulated colony patterns, we propose that experimentally observed global morphology transitions may be the result of single genetic mutations, and we predict biological values for the corresponding mutation rate. Our analysis of the effect of chemotaxis on a branching instability starts with an existing model for a branching instability. This instability is fundamentally caused by the need for limited nutrient to diffuse towards the colony. We add to this model the effect of bacteria moving chemotactically in response to the nutrient gradient. Our results show that this additional effect has a tendency to suppress the instability. Although we perform our calculations within the context of a simple "cutoff" model of colony dynamics, we expect our results to apply for more complex and hence more realistic approaches. We also analyze a model proposed by Medvedev, Kaper, and Kopell for ring formation. We perform a linear stability calculation for the model equations and find critical spatial decay rates to stability, but we later find that these are not relevant to the ring generation mechanism. By observing numerical bacterial density profiles near the colony edge, we identify a consolidation front distinct from the colony

  18. Complete vascular healing and sustained suppression of neointimal thickening after local delivery of advanced c-myc antisense at six months follow-up in a rabbit balloon injury model

    SciTech Connect

    Kipshidze, Nicholas; Iversen, Patrick; Keane, Eamon; Stein, David; Chawla, Paramjith; Skrinska, Victor; Shankar, Latha Raja; Mehran, Roxana; Chekanov, Valerie; Dangas, George; Komorowski, Richard; Haudenschild, Christian; Khanna, Ashwani; Leon, Martin; Keelan, Michael H.; Moses, Jeffrey

    2002-03-01

    Background: Neointimal hyperplasia following percutaneous transluminal coronary angioplasty (PTCA) is one of the major components of the process of restenosis. We evaluated the long-term impact of local delivery of c-myc neutrally charged antisense oligonucleotides (Resten-NG) upon neointimal formation following PTCA in a rabbit model.Methods:PTCA was performed in the iliac arteries of 10 New Zealand white rabbits at 8 atm for 30 s, three times. An infusion of 500 {mu}g Resten-NG (n=6) or saline (n=4) was delivered to the site at 2 atm via the outer balloon pores of the transport{sup TM} catheter over 2 min. The diet was supplemented with 0.25% cholesterol for 10 days before and 6 months following PTCA.Results:After 6 months, animals were sacrificed and vessels were fixed in formalin, processed and stained with hematoxylin, eosin, and movat. Histological analysis revealed complete vascular healing in both groups of animals. Planimetry showed that intimal areas were 1.71{+-}0.25 and 0.65{+-}0.36 mm{sup 2} in the control and antisense delivery groups, respectively (P<.05).Conclusion:We conclude that local delivery of Resten-NG significantly inhibited neointimal thickening following PTCA in a rabbit for up to 6 months.

  19. Pathological pattern formation and cortical propagation of epileptic seizures

    PubMed Central

    Kramer, Mark A; Kirsch, Heidi E; Szeri, Andrew J

    2005-01-01

    The stochastic partial differential equations (SPDEs) stated by Steyn-Ross and co-workers constitute a model of mesoscopic electrical activity of the human cortex. A simplification in which spatial variation and stochastic input are neglected yields ordinary differential equations (ODEs), which are amenable to analysis by techniques of dynamical systems theory. Bifurcation diagrams are developed for the ODEs with increased subcortical excitation, showing that the model predicts oscillatory electrical activity in a large range of parameters. The full SPDEs with increased subcortical excitation produce travelling waves of electrical activity. These model results are compared with electrocortical data recorded at two subdural electrodes from a human subject undergoing a seizure. The model and observational results agree in two important respects during seizure: (i) the average frequency of maximum power, and (ii) the speed of spatial propagation of voltage peaks. This suggests that seizing activity on the human cortex may be understood as an example of pathological pattern formation. Included is a discussion of the applications and limitations of these results. PMID:16849171

  20. Transcriptional Switches Direct Plant Organ Formation and Patterning

    PubMed Central

    Moreno-Risueno, Miguel A.; Van Norman, Jaimie M.; Benfey, Philip N.

    2013-01-01

    Development of multicellular organisms requires specification of diverse cell types. In plants, development is continuous and because plant cells are surrounded by rigid cell walls, cell division and specification of daughter cell fate must be carefully orchestrated. During embryonic and postembryonic plant development, the specification of cell types is determined both by positional cues and cell lineage. The establishment of distinct transcriptional domains is a fundamental mechanism for determining different cell fates. In this review, we focus on four examples from recent literature of switches operating in cell fate decisions that are regulated by transcriptional mechanisms. First, we highlight a transcriptional mechanism involving a mobile transcription factor in formation of the two ground tissue cell types in roots. Specification of vascular cell types is then discussed, including new details about xylem cell-type specification via a mobile microRNA. Next, transcriptional regulation of two key embryonic developmental events is considered: establishment of apical–basal polarity in the single-celled zygote and specification of distinct root and shoot stem cell populations in the plant embryo. Finally, a dynamic transcriptional mechanism for lateral organ positioning that integrates spatial and temporal information into a repeating pattern is summarized. PMID:22305165

  1. Spatial pattern formation facilitates eradication of infectious diseases.

    PubMed

    Eisinger, Dirk; Thulke, Hans-Hermann

    2008-04-01

    Control of animal-born diseases is a major challenge faced by applied ecologists and public health managers. To improve cost-effectiveness, the effort required to control such pathogens needs to be predicted as accurately as possible. In this context, we reviewed the anti-rabies vaccination schemes applied around the world during the past 25 years.We contrasted predictions from classic approaches based on theoretical population ecology (which governs rabies control to date) with a newly developed individual-based model. Our spatially explicit approach allowed for the reproduction of pattern formation emerging from a pathogen's spread through its host population.We suggest that a much lower management effort could eliminate the disease than that currently in operation. This is supported by empirical evidence from historic field data. Adapting control measures to the new prediction would save one-third of resources in future control programmes.The reason for the lower prediction is the spatial structure formed by spreading infections in spatially arranged host populations. It is not the result of technical differences between models.Synthesis and applications. For diseases predominantly transmitted by neighbourhood interaction, our findings suggest that the emergence of spatial structures facilitates eradication. This may have substantial implications for the cost-effectiveness of existing disease management schemes, and suggests that when planning management strategies consideration must be given to methods that reflect the spatial nature of the pathogen-host system. PMID:18784795

  2. Family formation patterns among migrant women in Sydney.

    PubMed

    Yusuf, F; Siedlecky, S

    1996-01-01

    A demographic survey among a probability sample of 980 married migrant women was carried out in Sydney in 1988. The sample included 507 Lebanese, 250 Turkish and 223 Vietnamese women. The study revealed differences in family formation patterns within and between the three groups and between them and the general population. Family size had declined among all three groups compared with their family of origin, and it was clear that the younger women would not achieve the same family sizes as the older women. Migrant women tended to marry earlier than the general population and to start their families earlier. While they showed a strong preference for their children to marry within their own ethnic and religious group, nearly one-third said it was up to the choice of the individual. Overall, the future family size of younger migrant women is expected to converge towards the Australian norm. Migrant families are in a state of transition between two cultures which needs to be recognised by health and family planning service providers. PMID:8690746

  3. Neutrophil, not macrophage, infiltration precedes neointimal thickening in balloon-injured arteries.

    PubMed

    Welt, F G; Edelman, E R; Simon, D I; Rogers, C

    2000-12-01

    Macrophages are abundant after stent-induced arterial injury. Inhibition of macrophage recruitment blocks neointimal growth in this model. In contrast, after superficial injury from balloon endothelial denudation, macrophages are sparse. However, many anti-inflammatory therapies remain effective against neointimal growth after balloon injury. To investigate further the role of leukocytes after injury, 41 New Zealand White rabbits underwent iliac artery balloon denudation. In 18, subcutaneous pumps were placed to deliver intravenous heparin (0.3 mg/kg per hour). Arteries were harvested at 6 hours and at 3, 7, and 14 days. In 8 animals, either M1/70 (a monoclonal antibody [mAb] against adhesion molecule Mac-1) or a nonspecific IgG was given (5 mg/kg IV bolus and then 1 mg/kg SC QOD), and arteries were harvested at 6 hours and 3 days. Computer-aided morphometry was performed as was immunohistochemistry to assess smooth muscle cell (SMC) proliferation (bromodeoxyuridine-positive cells), neutrophil content (RPN357, mAb against rabbit neutrophil/thymocyte), and macrophage content (RAM-11, mAb against rabbit macrophage). Heparin inhibited neointimal growth at 7 and 14 days (64% and 32.5% reduction, respectively; P:<0.05). Neutrophils were observed in the media early after balloon injury, and heparin and M1/70 inhibited this infiltration (82% and 83% reduction, respectively; P:<0.05 each) with a coincident inhibition of medial SMC proliferation at 3 days (49% and 84% reduction, respectively; P:<0.05 each). Macrophages were absent at all time points. Neutrophil, but not macrophage, infiltration occurs early after endothelial denudation. Inhibition of this process is associated with a reduction in medial SMC proliferation. These data suggest a central role for neutrophils in restenosis and help to explain prior reports of an inhibitory effect of anti-inflammatory therapies on neointimal growth after balloon injury. PMID:11116052

  4. Instabilities and pattern formation on the pore scale

    NASA Astrophysics Data System (ADS)

    Juel, Anne

    What links a baby's first breath to adhesive debonding, enhanced oil recovery, or even drop-on-demand devices? All these processes involve moving or expanding bubbles displacing fluid in a confined space, bounded by either rigid or elastic walls. In this talk, we show how spatial confinement may either induce or suppress interfacial instabilities and pattern formation in such flows. We demonstrate that a simple change in the bounding geometry can radically alter the behaviour of a fluid-displacing air finger both in rigid and elastic vessels. A rich array of propagation modes, including steady and oscillatory fingers, is uncovered when air displaces oil from axially uniform tubes that have local variations in flow resistance within their cross-sections. Moreover, we show that the experimentally observed states can all be captured by a two-dimensional depth-averaged model for bubble propagation through wide channels. Viscous fingering in Hele-Shaw cells is a classical and widely studied fluid-mechanical instability: when air is injected into the narrow, liquid-filled gap between parallel rigid plates, the axisymmetrically expanding air-liquid interface tends to be unstable to non-axisymmetric disturbances. We show how the introduction of wall elasticity (via the replacement of the upper bounding plate by an elastic membrane) can weaken or even suppress the fingering instability by allowing changes in cell confinement through the flow-induced deflection of the boundary. The presence of a deformable boundary also makes the system prone to additional solid-mechanical instabilities, and these wrinkling instabilities can in turn enhance viscous fingering. The financial support of EPSRC and the Leverhulme Trust is gratefully acknowledged.

  5. Auxin distribution and transport during embryonic pattern formation in wheat.

    PubMed

    Fischer-Iglesias, C; Sundberg, B; Neuhaus, G; Jones, A M

    2001-04-01

    Inhibitors of auxin polar transport disrupt normal embryogenesis and thus specific spatial auxin distribution due to auxin movement may be important in establishing embryonic pattern formation in plants. In the present study, the distribution of the photoaffinity labeling agent tritiated 5-azidoindole-3-acetic acid ([3H],5-N3IAA), an analog of indole-3-acetic acid (IAA), was visualized in zygotic wheat (Triticum aestivum L.) embryos grown in vitro and in planta, and used to deduce auxin transport pathways in these embryos. This study provides the first direct evidence that the distribution of auxin, here [3H],5-N3IAA, is heterogeneous and changes during embryo development. In particular, the shift from radial to bilateral symmetry was correlated with a redistribution of [3H],5-N3IAA in the embryo. Furthermore, in bilaterally symmetrical embryos, that is, embryos in the late transition stage or older, the localization of [3H],5-N3IAA was altered by N-1-naphthylphthalamic acid, a specific inhibitor of auxin polar transport. No significant effect was observed in radially symmetrical embryos, that is, globular embryos, or very early transition embryos. Thus, the shift from radial to bilateral symmetry is associated with the onset of active, directed auxin transport involved in auxin redistribution. A change in the distribution of [3H],5-N3IAA was also observed in morphologically abnormal embryos induced on media supplemented with auxin or auxin polar transport inhibitors. By means of a microscale technique, free IAA concentration was measured in in vitro- and in planta-grown embryos and was found to increase during development. Therefore, IAA may be synthesized or released from conjugates in bilaterally symmetrical embryos, although import from surrounding tissues cannot be excluded. PMID:11389754

  6. MicroRNA-24 Attenuates Neointimal Hyperplasia in the Diabetic Rat Carotid Artery Injury Model by Inhibiting Wnt4 Signaling Pathway

    PubMed Central

    Yang, Jian; Fan, Zhixing; Yang, Jun; Ding, Jiawang; Yang, Chaojun; Chen, Lihua

    2016-01-01

    The long-term stimulation of hyperglycemia greatly increases the incidence of vascular restenosis (RS) after angioplasty. Neointimal hyperplasia after vascular injury is the pathological cause of RS, but its mechanism has not been elucidated. MicroRNA-24 (miR-24) has low expression in the injured carotid arteries of diabetic rats. However, the role of miR-24 in the vascular system is unknown. In this study, we explore whether over-expression of miR-24 could attenuate neointimal formation in streptozotocin (STZ)-induced diabetic rats. Adenovirus (Ad-miR-24-GFP) was used to deliver the miR-24 gene to injured carotid arteries in diabetic rats. The level of neointimal hyperplasia was examined by hematoxylin-eosin (HE) staining. Vascular smooth muscle cell (VSMC) proliferation in the neointima was evaluated by immunostaining for proliferating cell nuclear antigen (PCNA). The mRNA levels of miR-24, PCNA, wingless-type MMTV integration site family member 4 (Wnt4), disheveled-1 (Dvl-1), β-catenin and cell cycle-associated molecules (Cyclin D1, p21) were determined by Quantitative Real-Time PCR (qRT-PCR). PCNA, Wnt4, Dvl-1, β-catenin, Cyclin D1 and p21 protein levels were measured by Western blotting analysis. STZ administration decreased plasma insulin and increased fasting blood glucose in Sprague-Dawley (SD) rats. The expression of miR-24 was decreased in the carotid artery after a balloon injury in diabetic rats, and adenoviral transfection (Ad-miR-24-GFP) increased the expression of miR-24. Over-expression of miR-24 suppressed VSMC proliferation and neointimal hyperplasia in diabetic rats at 14 days. Furthermore, compared with Sham group, the mRNA and protein levels of PCNA, Wnt4, Dvl-1, β-catenin, and Cyclin D1 were strikingly up-regulated in the carotid arteries of diabetic rats after a balloon injury. Interestingly, up-regulation of miR-24 significantly reduced the mRNA and protein levels of these above molecules. In contrast, the change trend in p21 mRNA and

  7. Pattern formation in polymer via electrohydrodynamic instabilities and glassy fracture

    NASA Astrophysics Data System (ADS)

    Pease, Leonard Franklin, III

    Fabrication of micro and nano structures from polymeric materials has attracted significant attention due to their promise of inexpensive, fast throughput and ease of integration into existing fabrication processes. This dissertation describes our contributions to two such processes. In the first process, electrohydrodynamic flow drives a thin polymer film sandwiched between electrodes with an intervening gap into multidomained, hexagonally packed pillars or concentric rings. We model the initial stages of formation by performing a linear stability analysis under the lubrication approximation. We find the presence of free charge at the free interface both decreases the pillar-to-pillars spacing and increases the growth rate. We examined the possible sources of electrostatic field in the absence of an applied voltage to find static charge to be the most likely candidate. In practice, however, the lubrication approximation may not strictly apply in the situations of greatest interest. Accordingly, we contrasted results of the linear stability analysis with and without the lubrication approximation to show that the approximation fails where surface tension is small and electric fields are large, typical of experiments with a polymer/organic liquid instead of air in the gap---precisely the conditions that predict the smallest pillar arrays. Motivated by the discovery of concentric rings, we adapted the form of the perturbation from sinusoids to Bessel functions to predict constant ring-to-ring spacings, constant annular widths and growth rates in agreement with experiment. In the second patterning technique, a thin film sandwiched between two substrates fractures into periodic ridges upon insertion of a razor blade. We investigated the conditions that selected for the presence or absence of the gratings, their fractional coverage, their period, and their alignment. Our key findings indicated that the gratings form from all glassy materials tested with periods of

  8. Pattern formation in plastic liquid films on elastomers by ratcheting.

    PubMed

    Huang, Jiangshui; Yang, Jiawei; Jin, Lihua; Clarke, David R; Suo, Zhigang

    2016-04-20

    Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates. Because the patterns develop progressively under cyclic loads, we call this phenomenon as "patterning by ratcheting". We observe the phenomenon in plastic liquids of several kinds, and studied the effects of thickness, the cyclic frequency of the stretch, and the range of the stretch. Finite element simulations show that the ratcheting phenomenon can occur in materials described by a commonly used model of elastic-plastic deformation. PMID:27008927

  9. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  10. Dynamics of skeletal pattern formation in developing chick limb.

    PubMed

    Newman, S A; Frisch, H L

    1979-08-17

    During development of the embryonic chick limb the skeletal pattern is laid out as cartilaginous primordia, which emerge in a proximodistal sequence over a period of 4 days. The differentiation of cartilage is preceded by changes in cellular contacts at specific locations in the precartilage mesenchyme. Under realistic assumptions, the biosynthesis and diffusion through the extracellular matrix of a cell surface protein, such as fibronectin, will lead to spatial patterns of this molecule that could be the basis of the emergent primordia. As cellular differentiation proceeds, the size of the mesenchymal diffusion chamber is reduced in descrete steps, leading to sequential reorganizations of the morphogen pattern. The successive patterns correspond to observed rows of skeletal elements, whose emergence, in theory and in practice, depends on the maintenance of a unique boundary condition at the limb bud apex. PMID:462174

  11. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    PubMed

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern. PMID:23857825

  12. Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs

    PubMed Central

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2012-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312

  13. Pattern Formation in Mississippi Valley-Type Deposits

    NASA Astrophysics Data System (ADS)

    Kelka, Ulrich; Koehn, Daniel

    2015-04-01

    Alternating, monomineralic dark and white bands are common features of ore hosting dolostones which are generally termed Zebra textures. These structures consist of coarse grained light and fine grained dark layers and accompany ore bodies of the Mississippi Valley-Type (MVT) worldwide. These deposits frequently develop in large hydrothermal systems, located in the flanks of foreland basins or in fold and thrust belts. The microstructural- and microchemical analysis in this study were performed on samples which were collected in the San Vicente mine. This large MVT deposit is hosted in Triassic/Jurassic Platform Carbonates located in an east-vergent fold and thrust belt of the Peruvian Andes. The thin sections were analyzed with petrographic- and scanning electron microscope. It is observed that one common striking feature is the high density of second-phase particles in the dark bands, whereas the coarser grained layers are virtually particle free. Furthermore, the particle distribution is found to be non-random. The highest particle densities in the samples occur on grain boundaries in the dark bands implying that grain boundaries can capture particles. Based on recent theories and the additional analytical findings, we developed a numerical simulation to study the pattern formation. The modelling is performed in 2D at the scale of a thin section, using a boundary-model coupled with a lattice-particle-code. During the simulation two processes are active, first a reaction takes place that replaces calcite with dolomite driven by a fluid that infiltrates the model, followed by a grain growth processes with an average grain size increase as a function of surface energy reduction. Fluid infiltration in the rock is modelled assuming Darcy Flow and an advection-diffusion equation coupled with a reaction which is a function of concentration. The reaction increases permeability of the solid and thus enhances infiltration. The reaction front in the model shifts particles

  14. Biological pattern formation: from basic mechanisms to complex structures

    SciTech Connect

    Koch, A.J.; Meinhardt, H. )

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of [ital Drosophila] and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  15. Pattern formation of underwater sand ripples with a skewed drive.

    PubMed

    Bundgaard, F; Ellegaard, C; Scheibye-Knudsen, K; Bohr, T; Sams, T

    2004-12-01

    In this paper we present an experimental study of the dynamics of underwater sand ripples when a regular pattern of ripples is subjected to a skewed oscillatory flow, i.e., one not perpendicular to the direction of the ripple crests. Striking patterns with new, superposed ripples on top of the original ones occur very quickly with a characteristic angle, which is, in general, not perpendicular to the flow. A slower, more complex transition then follows, leading to the final state where the ripples are again perpendicular to the flow. We investigate the variation of the superposed pattern as a function of the direction, amplitude, and frequency of the drive, and as a function of the viscosity (by changing the temperature). We quantify the dynamics of the entire transition process and finally study the grain motion around idealized (solid) skewed ripples. This leads to a characteristic mean path of a single particle. The path has a shape close to a parallelogram, with no apparent connection to the pattern of real, superposed ripples. On the other hand, a thin layer of sand sprinkled on the solid ripples leads to qualitatively similar patterns. PMID:15697484

  16. Characteristics of pattern formation and evolution in approximations of Physarum transport networks.

    PubMed

    Jones, Jeff

    2010-01-01

    Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation. PMID:20067403

  17. Effect of gel network on pattern formation in the ferrocyanide-iodate-sulfite reaction.

    PubMed

    Ueno, Tomonaga; Yoshida, Ryo

    2011-06-01

    Stationary patterns have been researched experimentally since the discovery of the Turing pattern in the chlorite-iodide-malonic acid (CIMA) reaction and the self-replicating spot pattern in the ferrocyanide-iodate-sulfite (FIS) reaction. In this study, we reproduced the pattern formation in the FIS reaction by using poly(acrylamide) gels. Gels with different swelling ratios were prepared to use as a medium. The effect of the swelling ratio was compared with the effect of thickness. It was found that the swelling ratio greatly influenced pattern formation. Oscillating spot patterns appeared at high swelling ratios, and lamellar patterns appeared at a low swelling ratio. Self-replicating spot patterns appeared in between the two areas. The front velocities, which were observed in the initial stage of pattern formation, depended on the swelling ratio. Furthermore, this dependence obeys the free volume theory of diffusion. These results provide evidence that the change in front velocities is caused by a change in diffusion. Pattern formation can be controlled not only by thickness but also by swelling ratio, which may be useful for creating novel pattern templates. PMID:21557556

  18. Mathematical study on robust tissue pattern formation in growing epididymal tubule.

    PubMed

    Hirashima, Tsuyoshi

    2016-10-21

    Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. PMID:27396360

  19. Pattern formation in solutal convection: vermiculated rolls and isolated cells

    NASA Astrophysics Data System (ADS)

    Cartwright, Julyan H. E.; Piro, Oreste; Villacampa, Ana I.

    2002-11-01

    Observations of the peculiar behaviour of a drink of liqueur topped with cream led us to perform experiments showing that the instability is a convection phenomenon that arises through destabilizing surface-tension forces. The convection is solutal: driven by gradients of concentration of a solute, rather than by heat gradients as in the more commonly studied thermal convection. The convective patterns, vermiculated rolls and isolated cells, are quite unlike the usual planforms. They are associated with an elastic surface film, and the Marangoni number is high, characteristic of solutal convection. We have conducted further experiments that reproduce these patterns in simpler working fluids.

  20. Delayed inhaled carbon monoxide mediates the regression of established neointimal lesions

    PubMed Central

    Madigan, Michael; Entabi, Fateh; Zuckerbraun, Brian; Loughran, Patricia; Tzeng, Edith

    2014-01-01

    Objective Intimal hyperplasia (IH) contributes to the failure of vascular interventions. While many investigational therapies inhibit the development of IH in animal models, few of these potential therapies can reverse established lesions. Inhaled carbon monoxide (CO) dramatically inhibits IH in both rats and pigs when given peri-operatively. It also prevented the development of pulmonary arterial hypertension in rodents. Interestingly, CO could reverse pulmonary artery structural changes and right heart hemodynamic changes when administered after the establishment of pulmonary hypertension. Thus, we hypothesize that inhaled CO may mediate the regression of established neointimal lesions. Methods Rats underwent carotid artery balloon angioplasty injury. Carotid arteries were collected at 2 and 4 weeks after injury for morphometric analysis of the neointima. Another group was treated with inhaled CO (250 PPM) for 1 hour daily from week 2 until week 4. Additional rats were sacrificed 3 days after initiating CO treatment and the carotid arteries were examined for apoptosis by TUNEL, proliferation by Ki67 staining, and autophagy by LC3 I/II staining. Results At 2 weeks following injury, sizable neointimal lesions had developed (intimal/media = 0.92 ± 0.22). By 4 weeks, lesion size remained stable (0.80 ± 0.09). Delayed inhaled CO treatment greatly reduced neointimal lesion size versus the 2 and 4 week control mice (0.38 ± 0.05, p <0.05). Arteries from the CO treated rats exhibited significantly reduced apoptosis compared to control vessels (3.18 ± 1.94% vs 16.26 ± 5.91%; p = 0.036). Proliferation was also dramatically reduced in the CO treated animals (2.98 ± 1.55 vs 10.37 ± 2.80; p = 0.036). No difference in autophagy between control and CO treated rats was detected. Conclusion Delayed administration of inhaled CO reduced established neointimal lesion size. This effect was mediated by the antiproliferative effect of CO on medial and intimal smooth muscle cells

  1. Neointimal hyperplasia persists at six months after sirolimus-eluting stent implantation in diabetic porcine

    PubMed Central

    Zhang, Qi; Lu, Lin; Pu, LiJin; Zhang, RuiYan; Shen, Jie; Zhu, ZhengBing; Hu, Jian; Yang, ZhenKun; Chen, QiuJin; Shen, WeiFeng

    2007-01-01

    Background Observational clinical studies have shown that patients with diabetes have less favorable results after percutaneous coronary intervention compared with the non-diabetic counterparts, but its mechanism remains unclear. The aim of this study was to examine the changes of neointimal hyperplasia after sirolimus-eluting stent (SES) implantation in a diabetic porcine model, and to evaluate the impact of aortic inflammation on this proliferative process. Methods Diabetic porcine model was created with an intravenous administration of a single dose of streptozotocin in 15 Chinese Guizhou minipigs (diabetic group); each of them received 2 SES (Firebird, Microport Co, China) implanted into 2 separated major epicardial coronary arteries. Fifteen non-diabetic minipigs with SES implantation served as controls (control group). At 6 months, the degree of neointimal hyperplasia was determined by repeat coronary angiography, intravascular ultrasound (IVUS) and histological examination. Tumor necrosis factor (TNF)-α protein level in the aortic intima was evaluated by Western blotting, and TNF-α, interleukin (IL)-1β and IL-6 mRNA levels were assayed by reverse transcription and polymerase chain reaction. Results The distribution of stented vessels, diameter of reference vessels, and post-procedural minimal lumen diameter were comparable between the two groups. At 6-month follow-up, the degree of in-stent restenosis (40.4 ± 24.0% vs. 20.2 ± 17.7%, p < 0.05), late lumen loss (0.33 ± 0.19 mm vs. 0.10 ± 0.09 mm, p < 0.001) by quantitative angiography, percentage of intimal hyperplasia in the stented area (26.7 ± 19.2% vs. 7.3 ± 6.1%, p < 0.001) by IVUS, and neointimal area (1.59 ± 0.76 mm2 vs. 0.41 ± 0.18 mm2, p < 0.05) by histological examination were significantly exacerbated in the diabetic group than those in the controls. Significant increases in TNF-α protein and TNF-α, IL-1β and IL-6 mRNA levels were observed in aortic intima in the diabetic group

  2. LETTER: Self-organized pattern formation and noise-induced control based on particle computations

    NASA Astrophysics Data System (ADS)

    Rohlf, Thimo; Bornholdt, Stefan

    2005-12-01

    We propose a new non-equilibrium model for spatial pattern formation based on local information transfer. Unlike most standard models of pattern formation it is not based on the Turing instability or initially laid down morphogen gradients. Information is transmitted through the system via particle-like excitations whose collective dynamics results in pattern formation and control. Here, a simple problem of domain formation is addressed by means of this model in an implementation as stochastic cellular automata, and then generalized to a system of coupled dynamical networks. One observes stable pattern formation, even in the presence of noise and cell flow. Noise contributes through the production of quasi-particles to de novo pattern formation as well as to robust control of the domain boundary position. Pattern proportions are scale independent as regards system size. The dynamics of pattern formation is stable over large parameter ranges, with a discontinuity at vanishing noise and a second-order phase transition at increased cell flow.

  3. Pattern formation in the wake of triggered pushed fronts

    NASA Astrophysics Data System (ADS)

    Goh, Ryan; Scheel, Arnd

    2016-08-01

    Pattern-forming fronts are often controlled by an external stimulus which progresses through a stable medium at a fixed speed, rendering it unstable in its wake. By controlling the speed of excitation, such stimuli, or ‘triggers’, can mediate pattern forming fronts which freely invade an unstable equilibrium and control which pattern is selected. In this work, we analytically and numerically study when the trigger perturbs an oscillatory pushed free front. In such a situation, the resulting patterned front, which we call a pushed trigger front, exhibits a variety of phenomenon, including snaking, non-monotonic wave-number selection, and hysteresis. Assuming the existence of a generic oscillatory pushed free front, we use heteroclinic bifurcation techniques to prove the existence of trigger fronts in an abstract setting motivated by the spatial dynamics approach. We then derive a leading order expansion for the selected wave-number in terms of the trigger speed. Furthermore, we show that such a bifurcation curve is governed by the difference of certain strong-stable and weakly-stable spatial eigenvalues associated with the decay of the free pushed front. We also study prototypical examples of these phenomena in the cubic-quintic complex Ginzburg Landau equation and a modified Cahn–Hilliard equation.

  4. Pattern Formations in Polymer-Molecular Motor Networks

    NASA Astrophysics Data System (ADS)

    Smith, David; Humphrey, David; Duggan, Cynthia; Käs, Josef

    2001-03-01

    In previous studies with the microtubule-kinesin system, organized patterns such as asters and rotating vortices have been seen (Nedelec et al, Nature 1997), which were of a dynamic nature and dependent on active motors. A similar system was constructed using actin and myosin, which displays similar patterns, however, with drastically different dynamics. These patterns arise independent of the initial amount of immediate use energy (in the form of ATP), assembling only upon the near exhaustion of available ATP. Further studies have clearly shown that in fact these patterns are not dependent upon the motor activity of the myosin but its propensity to serve as a cross-linking element in an actin network, with the motor activity serving to prevent the arising of order in the system. We believe the dynamic differences inherent between the two polymer-motor systems studied lies primarily in the structural nature of the motor complexes, with the kinesin complex ordering the system by pushing multiple filaments in a parallel direction, and the myosin complexes disordering the system by pushing filaments in an antiparallel manner.

  5. Temporal control of self-organized pattern formation without morphogen gradients in bacteria

    PubMed Central

    Payne, Stephen; Li, Bochong; Cao, Yangxiaolu; Schaeffer, David; Ryser, Marc D; You, Lingchong

    2013-01-01

    Diverse mechanisms have been proposed to explain biological pattern formation. Regardless of their specific molecular interactions, the majority of these mechanisms require morphogen gradients as the spatial cue, which are either predefined or generated as a part of the patterning process. However, using Escherichia coli programmed by a synthetic gene circuit, we demonstrate here the generation of robust, self-organized ring patterns of gene expression in the absence of an apparent morphogen gradient. Instead of being a spatial cue, the morphogen serves as a timing cue to trigger the formation and maintenance of the ring patterns. The timing mechanism enables the system to sense the domain size of the environment and generate patterns that scale accordingly. Our work defines a novel mechanism of pattern formation that has implications for understanding natural developmental processes. PMID:24104480

  6. Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies

    PubMed Central

    Baker, Ruth E.; Schnell, Santiago; Maini, Philip K.

    2014-01-01

    In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes. PMID:19557684

  7. Effect of Salt Concentration on the Pattern Formation of Colloidal Suspension

    NASA Astrophysics Data System (ADS)

    Ma, Wenjie; Wang, Yuren

    We study the effect of salt concentration on the drying process and pattern of thin liquid layer colloidal suspension. Panasonic camera is used to capture the drying process and macroscopic pattern. Microscopic patterns are analyzed by optical microscopy. It is shown that broad-ring pattern is avoided by adding little amount of sodium chloide into colloidal suspension. with the increase of salt concentraion, convection strength and interface instability are weakened, thus the edge of film becomes smooth and more homogeneous film forms. Beautiful microscopic patterns demonstrate that the cooperative interaction between sodium chloide and silica spheres has important influence on the pattern formation.

  8. Neutrophil-derived cathelicidin protects from neointimal hyperplasia

    PubMed Central

    Soehnlein, Oliver; Wantha, Sarawuth; Simsekyilmaz, Sakine; Döring, Yvonne; Megens, Remco T. A.; Mause, Sebastian F.; Drechsler, Maik; Smeets, Ralf; Weinandy, Stefan; Schreiber, Fabian; Gries, Thomas; Jockenhoevel, Stefan; Möller, Martin; Vijayan, Santosh; van Zandvoort, Marc A. M. J.; Agerberth, Birgitta; Pham, Christine T.; Gallo, Richard L.; Hackeng, Tilman M.; Liehn, Elisa A.; Zernecke, Alma; Klee, Doris; Weber, Christian

    2011-01-01

    Percutaneous transluminal angioplasty with stent implantation is used to dilate of arteries narrowed by atherosclerotic plaques and to revascularize coronary arteries occluded by atherothrombosis in myocardial infarction. Commonly applied drug-eluting stents release anti-proliferative or anti-inflammatory agents to reduce the incidence of in-stent stenosis. However, these stents may lead to in-stent stenosis and increase the rate late stent thrombosis, an obstacle to optimal revascularization possibly related to endothelial recovery. Here we examined the contribution of neutrophils and neutrophilic granule proteins to arterial healing after injury. We found that neutrophil-born cathelicidin (mouse CRAMP, human LL-37) promoted re-endothelization and thereby limited neointima formation after stent implantation. We then translated these findings, generating a neutrophil-instructing biofunctionalized miniaturized Nitinol stent coated with LL-37. This stent reduced in-stent stenosis in a mouse model of atherosclerosis, suggesting that LL-37 may promote vascular healing after interventional therapy. PMID:21974936

  9. MicroRNA-30 inhibits neointimal hyperplasia by targeting Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ)

    PubMed Central

    Liu, Yong Feng; Spinelli, Amy; Sun, Li-Yan; Jiang, Miao; Singer, Diane V.; Ginnan, Roman; Saddouk, Fatima Z.; Van Riper, Dee; Singer, Harold A.

    2016-01-01

    The multifunctional Ca2+/calmodulin-dependent protein kinase II δ-isoform (CaMKIIδ) promotes vascular smooth muscle (VSM) proliferation, migration, and injury-induced vascular wall neointima formation. The objective of this study was to test if microRNA-30 (miR-30) family members are endogenous regulators of CaMKIIδ expression following vascular injury and whether ectopic expression of miR-30 can inhibit CaMKIIδ-dependent VSM cell function and neointimal VSM hyperplasia induced by vascular injury. The CaMKIIδ 3′UTR contains a consensus miR-30 binding sequence that is highly conserved across species. A significant decrease in miR-30 family members and increase in CaMKIIδ2 protein expression, with no change in CaMKIIδ mRNA expression, was observed in medial layers of VSM 7 days post-injury. In vitro, overexpression of miR-30c or miR-30e inhibited CaMKIIδ2 protein expression by ~50% in cultured rat aortic VSM cells, and inhibited VSM cell proliferation and migration. In vivo, lenti-viral delivery of miR-30c into injured rat carotid arteries prevented the injury-induced increase in CaMKIIδ2. Furthermore, neointima formation was dramatically inhibited by lenti-viral delivery of miR-30c in the injured medial smooth muscle. These studies define a novel mechanism for regulating CaMKIIδ expression in VSM and provide a new potential therapeutic strategy to reduce progression of vascular proliferative diseases, including atherosclerosis and restenosis. PMID:27199283

  10. Pattern formation induced by a differential Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Stucchi, L.; Vasquez, D. A.

    2014-12-01

    Differential advection, where a reactant is advected while another one is immobilized, leads to instabilities in reaction-advection-diffusion systems. In particular, a homogeneous steady state looses stability for strong enough flows, leading to chemical patterns moving in the direction of the flow. In this paper we study the effects of differential advection due to a two-dimensional Poiseuille flow. We carry out a linear stability analysis on a homogeneous state using an activator-inhibitor reaction. We find that shear dispersion induced by the Poiseuille flow may lead to instabilities at slower flow rates. We find that contrary to the one-dimensional system, the instability depends on which substance is advected. We find a critical average flow speed for instability depending on tube size. Numerical solutions of the nonlinear reaction-advection-diffusion result in patterns of constant shape propagating along the tube.

  11. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly.

    PubMed

    Moore, Tyler G; Garzon, Max H; Deaton, Russell J

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are "strong" assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems

  12. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly

    PubMed Central

    Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self

  13. Pattern formation in Dictyostelium discoideum aggregates in confined microenvironments

    NASA Astrophysics Data System (ADS)

    Hallou, Adrien; Hersen, Pascal; di Meglio, Jean-Marc; Kabla, Alexandre

    Dictyostelium Discoideum (Dd) is often viewed as a model system to study the complex collective cell behaviours which shape an embryo. Under starvation, Dd cells form multicellular aggregates which soon elongate, starting to display an anterior-posterior axis by differentiating into two distinct cell populations; prestalk (front) and prespore (rear) cells zones. Different models, either based on positional information or on differentiation followed up by cell sorting, have been proposed to explain the origin and the regulation of this spatial pattern.To decipher between the proposed hypotheses, we have developed am experimental platform where aggregates, made of genetically engineered Dd cells to express fluorescent reporters of cell differentiation in either prestalk or prespore cells, are allowed to develop in 20 to 400 μm wide hydrogel channels. Such a setup allows us to both mimic Dd confined natural soil environment and to follow the patterning dynamics using time-lapse microscopy. Tracking cell lineage commitments and positions in space and time, we demonstrate that Dd cells differentiate first into prestalk and prespore cells prior to sorting into an organized spatial pattern on the basis of collective motions based on differential motility and adhesion mechanisms. A. Hallou would like to thank the University of Cambridge for the Award of an ``Oliver Gatty Studentship in Biophysical and Colloid Science''.

  14. Self-organized pattern formation in motor-microtubule mixtures

    NASA Astrophysics Data System (ADS)

    Sankararaman, Sumithra; Menon, Gautam I.; Sunil Kumar, P. B.

    2004-09-01

    We model the stable self-organized patterns obtained in the nonequilibrium steady states of mixtures of molecular motors and microtubules. In experiments [Nédélec , Nature (London) 389, 305 (1997); Surrey , Science 292, 1167 (2001)] performed in a quasi-two-dimensional geometry, microtubules are oriented by complexes of motor proteins. This interaction yields a variety of patterns, including arrangements of asters, vortices, and disordered configurations. We model this system via a two-dimensional vector field describing the local coarse-grained microtubule orientation and two scalar density fields associated to molecular motors. These scalar fields describe motors which either attach to and move along microtubules or diffuse freely within the solvent. Transitions between single aster, spiral, and vortex states are obtained as a consequence of confinement, as parameters in our model are varied. For systems in which the effects of confinement can be neglected, we present a map of nonequilibrium steady states, which includes arrangements of asters and vortices separately as well as aster-vortex mixtures and fully disordered states. We calculate the steady state distribution of bound and free motors in aster and vortex configurations of microtubules and compare these to our simulation results, providing qualitative arguments for the stability of different patterns in various regimes of parameter space. We study the role of crowding or “saturation” effects on the density profiles of motors in asters, discussing the role of such effects in stabilizing single asters. We also comment on the implications of our results for experiments.

  15. Relation of Internal Elastic Lamellar Layer Disruption to Neointimal Cellular Proliferation and Type III Collagen Deposition in Human Peripheral Artery Restenosis.

    PubMed

    Krishnan, Prakash; Purushothaman, K-Raman; Purushothaman, Meerarani; Baber, Usman; Tarricone, Arthur; Vasquez, Miguel; Wiley, Jose; Kini, Annapoorna; Sharma, Samin K; O'Connor, William N; Moreno, Pedro R

    2016-04-01

    Smooth muscle cell proliferation and extracellular matrix formation are responsible for disease progression in de novo and restenotic atherosclerosis. Internal elastic lamella (IEL) layer maintains the structural integrity of intima, and disruption of IEL may be associated with alterations in neointima, type III collagen deposition, and lesion progression in restenosis. Nineteen restenotic plaques (12 patients) procured during peripheral interventions were compared with 13 control plaques (12 patients) without restenosis. Hematoxylin & Eosin and elastic trichrome stains were used to measure length and percentage of IEL disruption, cellularity, and inflammation score. Type I and III collagens, smooth muscle cell (smc), fibroblast density, and nuclear proliferation (Ki67) percentage were evaluated by immunohistochemistry. IEL disruption percentage (28 ± 3.6 vs 6.1 ± 2.4; p = 0.0006), type III collagen content (0.33 ± 0.06 vs 0.17 ± 0.07; p = 0.0001), smc density (2014 ± 120 vs 923 ± 150; p = 0.0001), fibroblast density (2,282 ± 297 vs 906 ± 138; p = 0.0001), and Ki67 percentage (21.6 ± 2 vs 8.2 ± 0.65; p = 0.0001) were significantly increased in restenotic plaques compared to de novo plaques. Logistic regression analysis identified significant correlation between IEL disruption and neointimal smc density (r = 0.45; p = 0.01) and with type III collagen deposition (r = 0.61; p = 0.02) in restenosis. Increased IEL disruption may trigger cellular proliferation, altering collagen production, and enhancing restenotic neointima. In conclusion, understanding the pathologic and molecular basis of restenosis and meticulous-guided interventions oriented to minimize IEL damage may aid to reduce neointimal proliferation and the occurrence of restenosis. PMID:26857165

  16. Miniaturized pattern formation in elastic films cast on sinusoidally patterned substrates.

    PubMed

    Annepu, Hemalatha; Sarkar, Jayati

    2014-10-21

    The various morphologies that are formed when van der Waals forces or electric field is induced between film cast on a sinusoidal substrate and in contact proximity with a contactor or electrode are studied. Remarkably smaller length scales are achieved (λc < 2.96h) than those obtained with films cast on flat substrates. With van der Waals interactions, the patterns are uniformly formed throughout the film but are not regularly ordered. When electric field is used at critical voltage, more ordered, localized patterns are formed at the zones of large local interaction strengths. When these patterns are evolved by increasing the applied voltage, coexistence of all three phases-cavities, stripes, and columns-is observed throughout the film. The localized patterns that are initially formed vary with the voltage applied and strongly dictate the phases of evolution. A patterned substrate/patterned contactor assembly can be made to operate like its unpatterned counterpart by making the interaction strength same everywhere and yet yield uniform, regularly ordered, highly miniaturized patterns. Such patterns are very useful in various applications like microfluidics; they are formed with great ease and can be morphologically tuned by tuning the externally applied electric field. PMID:25238212

  17. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  18. Pattern Formation and Growth Kinetics in Eutectic Systems

    SciTech Connect

    Teng, Jing

    2007-01-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  19. Jamming and pattern formation in models of segregation

    NASA Astrophysics Data System (ADS)

    Rogers, Tim; McKane, Alan J.

    2012-04-01

    We investigate the Schelling model of social segregation, formulated as an intrinsically nonequilibrium system, in which the agents occupy districts (or patches) rather than sites on a grid. We show that this allows the equations governing the dynamical behavior of the model to be derived. Analysis of these equations reveals a jamming transition in the regime of low-vacancy density, and inclusion of a spatial dimension in the model leads to a pattern forming instability. Both of these phenomena exhibit unusual characteristics which may be studied through our approach.

  20. [The physics of pattern formation of liquid interfaces

    SciTech Connect

    Not Available

    1993-01-01

    Energy consumption in fabrication of materials for all applications is process dependent. Improvements in the ability to process materials are of great importance to the DOE mission. This project addresses basic science questions related to the processing of materials and is aimed at understanding growth of interfaces and evolution of patterns on interfaces, both macroscopic and microscopic. Three laboratory experiments are proposed: A study of the changes in patterns available to the growth of a macroscopic interface when that interface is grown over one of a variety of microscopic'' lattices; a study of reversible aggregation of colloidal particles in a mixed solvent, and of the interactions and relaxations of both solvent and suspended particles when thermodynamic conditions are changed for a liquid matrix with suspended particles or fibres; and, an investigation of the sedimentation of particles in a quasi-two-dimensional viscous fluid, with attention both to the dynamics of the flow and to the roughness of the resulting surface of settled particles.

  1. [The physics of pattern formation of liquid interfaces

    SciTech Connect

    Not Available

    1993-05-01

    Energy consumption in fabrication of materials for all applications is process dependent. Improvements in the ability to process materials are of great importance to the DOE mission. This project addresses basic science questions related to the processing of materials and is aimed at understanding growth of interfaces and evolution of patterns on interfaces, both macroscopic and microscopic. Three laboratory experiments are proposed: A study of the changes in patterns available to the growth of a macroscopic interface when that interface is grown over one of a variety of ``microscopic`` lattices; a study of reversible aggregation of colloidal particles in a mixed solvent, and of the interactions and relaxations of both solvent and suspended particles when thermodynamic conditions are changed for a liquid matrix with suspended particles or fibres; and, an investigation of the sedimentation of particles in a quasi-two-dimensional viscous fluid, with attention both to the dynamics of the flow and to the roughness of the resulting surface of settled particles.

  2. Pattern Formation of Bacterial Colonies by Escherichia coli

    NASA Astrophysics Data System (ADS)

    Tokita, Rie; Katoh, Takaki; Maeda, Yusuke; Wakita, Jun-ichi; Sano, Masaki; Matsuyama, Tohey; Matsushita, Mitsugu

    2009-07-01

    We have studied the morphological diversity and change in bacterial colonies, using the bacterial species Escherichia coli, as a function of both agar concentration Ca and nutrient concentration Cn. We observed various colony patterns, classified them into four types by pattern characteristics and established a morphological diagram by dividing it into four regions. They are regions A [diffusion-limited aggregation (DLA)-like], B (Eden-like), C (concentric-ring), and D (fluid-spreading). In particular, we have observed a concentric-ring colony growth for E. coli. We focused on the periodic growth in region C and obtained the following results: (i) A colony grows cyclically with the growing front repeating an advance (migration phase) and a momentary rest (consolidation phase) alternately. (ii) The growth width L and the bulge width W in one cycle decrease asymptotically to certain values, when Ca is increased. (iii) L does not depend on Cn, while W is an increasing function of Cn. Plausible mechanisms are proposed to explain the experimental results, by comparing them with those obtained for other bacterial species such as Proteus mirabilis and Bacillus subtilis.

  3. Pattern formation in a gene network model with boundary shape dependence

    NASA Astrophysics Data System (ADS)

    Diambra, Luis; da Fontoura Costa, Luciano

    2006-03-01

    A fundamental task in developmental biology is to identify the mechanisms which drive morphogenesis. Traditionally pattern formation have been modeled mainly using Turing-type mechanisms, where complex patterns arise by symmetry breaking. However, there is a growing experimental evidence that the influence of signals derived from surrounding tissues can contribute to the patterning processes. In this paper, we show that the interplay between the shape of surrounding tissues and a hierarchically organized gene regulatory network can be able to induce stable complex patterns. The rise of these patterns depends strongly on the shape of the surrounding tissues.

  4. Pattern formation in a gene network model with boundary shape dependence.

    PubMed

    Diambra, Luis; Costa, Luciano da Fontoura

    2006-03-01

    A fundamental task in developmental biology is to identify the mechanisms which drive morphogenesis. Traditionally pattern formation have been modeled mainly using Turing-type mechanisms, where complex patterns arise by symmetry breaking. However, there is a growing experimental evidence that the influence of signals derived from surrounding tissues can contribute to the patterning processes. In this paper, we show that the interplay between the shape of surrounding tissues and a hierarchically organized gene regulatory network can be able to induce stable complex patterns. The rise of these patterns depends strongly on the shape of the surrounding tissues. PMID:16605568

  5. Pattern formation in the thiourea-iodate-sulfite system: Spatial bistability, waves, and stationary patterns

    NASA Astrophysics Data System (ADS)

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2010-06-01

    We present a detailed study of the reaction-diffusion patterns observed in the thiourea-iodate-sulfite (TuIS) reaction, operated in open one-side-fed reactors. Besides spatial bistability and spatio-temporal oscillatory dynamics, this proton autoactivated reaction shows stationary patterns, as a result of two back-to-back Turing bifurcations, in the presence of a low-mobility proton binding agent (sodium polyacrylate). This is the third aqueous solution system to produce stationary patterns and the second to do this through a Turing bifurcation. The stationary pattern forming capacities of the reaction are explored through a systematic design method, which is applicable to other bistable and oscillatory reactions. The spatio-temporal dynamics of this reaction is compared with that of the previous ferrocyanide-iodate-sulfite mixed Landolt system.

  6. Patterns of Family Formation in Response to Sex Ratio Variation.

    PubMed

    Schacht, Ryan; Kramer, Karen L

    2016-01-01

    The impact that unbalanced sex ratios have on health and societal outcomes is of mounting contemporary concern. However, it is increasingly unclear whether it is male- or female-biased sex ratios that are associated with family and social instability. From a socio-demographic perspective, male-biased sex ratios leave many men unable to find a mate, elevating competition among males, disrupting family formation and negatively affecting social stability. In contrast, from a mating-market perspective, males are expected to be less willing to marry and commit to a family when the sex ratio is female-biased and males are rare. Here we use U.S. data to evaluate predictions from these competing frameworks by testing the relationship between the adult sex ratio and measures of family formation. We find that when women are rare men are more likely to marry, be part of a family and be sexually committed to a single partner. Our results do not support claims that male-biased sex ratios lead to negative family outcomes due to a surplus of unmarried men. Rather, our results highlight the need to pay increased attention to female-biased sex ratios. PMID:27556401

  7. Patterns of Family Formation in Response to Sex Ratio Variation

    PubMed Central

    Schacht, Ryan; Kramer, Karen L.

    2016-01-01

    The impact that unbalanced sex ratios have on health and societal outcomes is of mounting contemporary concern. However, it is increasingly unclear whether it is male- or female-biased sex ratios that are associated with family and social instability. From a socio-demographic perspective, male-biased sex ratios leave many men unable to find a mate, elevating competition among males, disrupting family formation and negatively affecting social stability. In contrast, from a mating-market perspective, males are expected to be less willing to marry and commit to a family when the sex ratio is female-biased and males are rare. Here we use U.S. data to evaluate predictions from these competing frameworks by testing the relationship between the adult sex ratio and measures of family formation. We find that when women are rare men are more likely to marry, be part of a family and be sexually committed to a single partner. Our results do not support claims that male-biased sex ratios lead to negative family outcomes due to a surplus of unmarried men. Rather, our results highlight the need to pay increased attention to female-biased sex ratios. PMID:27556401

  8. STELLAR ELEMENTAL ABUNDANCE PATTERNS: IMPLICATIONS FOR PLANET FORMATION

    SciTech Connect

    Chambers, J. E.

    2010-11-20

    The solar photosphere is depleted in refractory elements compared to most solar twins, with the degree of depletion increasing with an element's condensation temperature. Here, I show that adding 4 Earth masses of Earth-like and carbonaceous-chondrite-like material to the solar convection zone brings the Sun's composition into line with the mean value for the solar twins. The observed solar composition could have arisen if the Sun's convection zone accreted material from the solar nebula that was depleted in refractory elements due to the formation of the terrestrial planets and ejection of rocky protoplanets from the asteroid belt. Most solar analogs are missing 0-10 Earth masses of rocky material compared to the most refractory-rich stars, providing an upper limit to the mass of rocky terrestrial planets that they possess. The missing mass is correlated with stellar metallicity. This suggests that the efficiency of planetesimal formation increases with stellar metallicity. Stars with and without known giant planets show a similar distribution of abundance trends. If refractory depletion is a signature of the presence of terrestrial planets, this suggests that there is not a strong correlation between the presence of terrestrial and giant planets in the same system.

  9. Morphology-Induced Collective Behaviors: Dynamic Pattern Formation in Water-Floating Elements

    PubMed Central

    Nakajima, Kohei; Ngouabeu, Aubery Marchel Tientcheu; Miyashita, Shuhei; Göldi, Maurice; Füchslin, Rudolf Marcel; Pfeifer, Rolf

    2012-01-01

    Complex systems involving many interacting elements often organize into patterns. Two types of pattern formation can be distinguished, static and dynamic. Static pattern formation means that the resulting structure constitutes a thermodynamic equilibrium whose pattern formation can be understood in terms of the minimization of free energy, while dynamic pattern formation indicates that the system is permanently dissipating energy and not in equilibrium. In this paper, we report experimental results showing that the morphology of elements plays a significant role in dynamic pattern formation. We prepared three different shapes of elements (circles, squares, and triangles) floating in a water-filled container, in which each of the shapes has two types: active elements that were capable of self-agitation with vibration motors, and passive elements that were mere floating tiles. The system was purely decentralized: that is, elements interacted locally, and subsequently elicited global patterns in a process called self-organized segregation. We showed that, according to the morphology of the selected elements, a different type of segregation occurs. Also, we quantitatively characterized both the local interaction regime and the resulting global behavior for each type of segregation by means of information theoretic quantities, and showed the difference for each case in detail, while offering speculation on the mechanism causing this phenomenon. PMID:22715370

  10. Lateral inhibition-induced pattern formation controlled by the size and geometry of the cell.

    PubMed

    Seirin Lee, Sungrim

    2016-09-01

    Pattern formation in development biology is one of the fundamental processes by which cells change their functions. It is based on the communication of cells via intra- and intercellular dynamics of biochemicals. Thus, the cell is directly involved in biochemical interactions. However, many theoretical approaches describing biochemical pattern formation have usually neglected the cell's role or have simplified the subcellular process without considering cellular aspects despite the cell being the environment where biochemicals interact. On the other hand, recent experimental observations suggest that a change in the physical conditions of cell-to-cell contact can result in a change in cell fate and tissue patterning in a lateral inhibition system. Here we develop a mathematical model by which biochemical dynamics can be directly observed with explicitly expressed cell structure and geometry in higher dimensions, and reconsider pattern formation by lateral inhibition of the Notch-Delta signaling pathway. We explore how the physical characteristic of cell, such as cell geometry or size, influences the biochemical pattern formation in a multi-cellular system. Our results suggest that a property based on cell geometry can be a novel mechanism for symmetry breaking inducing cell asymmetry. We show that cell volume can critically influence cell fate determination and pattern formation at the tissue level, and the surface area of the cell-to-cell contact can directly affect the spatial range of patterning. PMID:27229622

  11. Pattern formation in crystal growth under parabolic shear flow.

    PubMed

    Ueno, K

    2003-08-01

    Morphological instability of the solid-liquid interface occurring in a crystal growing from an undercooled thin liquid bounded on one side by a free surface and flowing down inclined plane, is investigated by a linear stability analysis under shear flow. It is found that restoring forces due to gravity and surface tension is an important factor for stabilization of the solid-liquid interface on long length scales. This is a stabilizing effect different from the Gibbs-Thomson effect. A particular long wavelength mode of about 1 cm of wavy pattern, observed on the surface of icicles covered with a thin layer of flowing water is obtained from the dispersion relation, including the effect of flow and restoring forces. PMID:14524982

  12. Noise-induced pattern formation in a semiconductor nanostructure.

    PubMed

    Stegemann, G; Balanov, A G; Schöll, E

    2005-01-01

    We investigate the influence of noise upon the dynamics of the current density distribution in a model of a semiconductor nanostructure, namely, a double barrier resonant tunneling diode. We fix the parameters of the device below the Hopf bifurcation, where the only stable state of the system is a spatially inhomogeneous "filamentary" steady state. We show that the addition of weak Gaussian white noise to the system gives rise to spatially inhomogeneous oscillations that can be quite coherent. As the noise intensity grows, the oscillations tend to become more and more spatially homogeneous, while simultaneously the temporal correlation of the oscillations decreases. Thus, while on one hand noise destroys temporal coherence, on the other hand it enhances the spatial coherence of the current density pattern. PMID:15697712

  13. Experimental study of pattern formation during carbon dioxide mineralization

    NASA Astrophysics Data System (ADS)

    Schuszter, Gabor; Brau, Fabian; de Wit, Anne

    2015-11-01

    Injection of supercritical carbon dioxide in deep porous aquifers, where mineral carbonation takes place via chemical reactions, is one of the possible long-term storage of this greenhouse gas. This mineralization process is investigated experimentally under controlled conditions in a confined horizontal Hele-Shaw geometry where an aqueous solution of sodium carbonate is injected radially into a solution of calcium chloride. Precipitation of calcium carbonate in various finger, flower or tube-like patterns is observed in the mixing zone between the two solutions. These precipitation structures and their growth dynamics are studied quantitatively as a function of the parameters of the problem, which are the injection rate and the reactant concentrations. In particular, we show the existence of critical concentrations of reactants above which the amount of the calcium carbonate precipitate produced drops significantly.

  14. Formation and control of Turing patterns in a coherent quantum fluid

    PubMed Central

    Ardizzone, Vincenzo; Lewandowski, Przemyslaw; Luk, M. H.; Tse, Y. C.; Kwong, N. H.; Lücke, Andreas; Abbarchi, Marco; Baudin, Emmanuel; Galopin, Elisabeth; Bloch, Jacqueline; Lemaitre, Aristide; Leung, P. T.; Roussignol, Philippe; Binder, Rolf; Tignon, Jerome; Schumacher, Stefan

    2013-01-01

    Nonequilibrium patterns in open systems are ubiquitous in nature, with examples as diverse as desert sand dunes, animal coat patterns such as zebra stripes, or geographic patterns in parasitic insect populations. A theoretical foundation that explains the basic features of a large class of patterns was given by Turing in the context of chemical reactions and the biological process of morphogenesis. Analogs of Turing patterns have also been studied in optical systems where diffusion of matter is replaced by diffraction of light. The unique features of polaritons in semiconductor microcavities allow us to go one step further and to study Turing patterns in an interacting coherent quantum fluid. We demonstrate formation and control of these patterns. We also demonstrate the promise of these quantum Turing patterns for applications, such as low-intensity ultra-fast all-optical switches. PMID:24145394

  15. Formation and control of Turing patterns in a coherent quantum fluid

    NASA Astrophysics Data System (ADS)

    Ardizzone, Vincenzo; Lewandowski, Przemyslaw; Luk, M. H.; Tse, Y. C.; Kwong, N. H.; Lücke, Andreas; Abbarchi, Marco; Baudin, Emmanuel; Galopin, Elisabeth; Bloch, Jacqueline; Lemaitre, Aristide; Leung, P. T.; Roussignol, Philippe; Binder, Rolf; Tignon, Jerome; Schumacher, Stefan

    2013-10-01

    Nonequilibrium patterns in open systems are ubiquitous in nature, with examples as diverse as desert sand dunes, animal coat patterns such as zebra stripes, or geographic patterns in parasitic insect populations. A theoretical foundation that explains the basic features of a large class of patterns was given by Turing in the context of chemical reactions and the biological process of morphogenesis. Analogs of Turing patterns have also been studied in optical systems where diffusion of matter is replaced by diffraction of light. The unique features of polaritons in semiconductor microcavities allow us to go one step further and to study Turing patterns in an interacting coherent quantum fluid. We demonstrate formation and control of these patterns. We also demonstrate the promise of these quantum Turing patterns for applications, such as low-intensity ultra-fast all-optical switches.

  16. The formation of labyrinths, spots and stripe patterns in a biochemical approach to cardiovascular calcification

    NASA Astrophysics Data System (ADS)

    Yochelis, A.; Tintut, Y.; Demer, L. L.; Garfinkel, A.

    2008-05-01

    Calcification and mineralization are fundamental physiological processes, yet the mechanisms of calcification, in trabecular bone and in calcified lesions in atherosclerotic calcification, are unclear. Recently, it was shown in in vitro experiments that vascular-derived mesenchymal stem cells can display self-organized calcified patterns. These patterns were attributed to activator/inhibitor dynamics in the style of Turing, with bone morphogenetic protein 2 acting as an activator, and matrix GLA protein acting as an inhibitor. Motivated by this qualitative activator inhibitor dynamics, we employ a prototype Gierer Meinhardt model used in the context of activator inhibitor-based biological pattern formation. Through a detailed analysis in one and two spatial dimensions, we explore the pattern formation mechanisms of steady state patterns, including their dependence on initial conditions. These patterns range from localized holes to labyrinths and localized peaks, or in other words, from dense to sparse activator distributions (respectively). We believe that an understanding of the wide spectrum of activator inhibitor patterns discussed here is prerequisite to their biochemical control. The mechanisms of pattern formation suggest therapeutic strategies applicable to bone formation in atherosclerotic lesions in arteries (where it is pathological) and to the regeneration of trabecular bone (recapitulating normal physiological development).

  17. The formation of labyrinths, spots and stripe patterns in a biochemical approach to cardiovascular calcification

    NASA Astrophysics Data System (ADS)

    Yochelis, A.; Tintut, Y.; Demer, L. L.; Garfinkel, A.

    2008-05-01

    Calcification and mineralization are fundamental physiological processes, yet the mechanisms of calcification, in trabecular bone and in calcified lesions in atherosclerotic calcification, are unclear. Recently, it was shown in in vitro experiments that vascular-derived mesenchymal stem cells can display self-organized calcified patterns. These patterns were attributed to activator/inhibitor dynamics in the style of Turing, with bone morphogenetic protein 2 acting as an activator, and matrix GLA protein acting as an inhibitor. Motivated by this qualitative activator-inhibitor dynamics, we employ a prototype Gierer-Meinhardt model used in the context of activator-inhibitor-based biological pattern formation. Through a detailed analysis in one and two spatial dimensions, we explore the pattern formation mechanisms of steady state patterns, including their dependence on initial conditions. These patterns range from localized holes to labyrinths and localized peaks, or in other words, from dense to sparse activator distributions (respectively). We believe that an understanding of the wide spectrum of activator-inhibitor patterns discussed here is prerequisite to their biochemical control. The mechanisms of pattern formation suggest therapeutic strategies applicable to bone formation in atherosclerotic lesions in arteries (where it is pathological) and to the regeneration of trabecular bone (recapitulating normal physiological development).

  18. Prevention of neointimal hyperplasia in balloon-injured rat carotid artery via small interference RNA mediated downregulation of osteopontin gene.

    PubMed

    Xu, Jian; Sun, Yingxian; Wang, Tairan; Liu, Guinan

    2013-05-01

    The aim of the present study was to take osteopontin (OPN) as molecular target to study its effects on injured intima model of carotid artery in rat using perivascular transfer of OPN-small interference RNA (siRNA). OPN mRNA in cultured VSMCs was quantified by real-time RT-PCR, and OPN-siRNA-002 was determined as the most sensitive sequence and used as transfected siRNA in the subsequent animal experiments. We established rat carotid arterial intima-injured model with balloon-injured method, and then perivascularly transfected OPN-siRNA-002 to study the role of OPN-siRNA in regulating several related genes including proliferating cell nuclear antigen (PCNA), transforming growth factor β1(TGF-β1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-14 (MMP-14), as well as its role in neointimal formation. OPN mRNA and protein decreased about 50 % with corresponding decrease in intima thickness after transfecting with specific OPN-siRNA-002 compared with Pluronic control group and OPN-SCR-siRNA group on each time point (n = 6, p < 0.001), and this inhibiting effects persisted up to 14 days after balloon injury. PCNA, TGF-β1, MMP-2, and MMP-14 mRNA and protein correlated directly with the respective levels of OPN, suggesting its functions via regulating these downstream factors (n = 6, p < 0.001). OPN may be a potential target gene in reducing the risk for arterial restenosis after vascular intervention. PMID:23467880

  19. Pattern formation in stromatolites: insights from mathematical modelling

    PubMed Central

    Cuerno, R.; Escudero, C.; García-Ruiz, J. M.; Herrero, M. A.

    2012-01-01

    To this day, computer models for stromatolite formation have made substantial use of the Kardar–Parisi–Zhang (KPZ) equation. Oddly enough, these studies yielded mutually exclusive conclusions about the biotic or abiotic origin of such structures. We show in this paper that, at our current state of knowledge, a purely biotic origin for stromatolites can neither be proved nor disproved by means of a KPZ-based model. What can be shown, however, is that whatever their (biotic or abiotic) origin might be, some morphologies found in actual stromatolite structures (e.g. overhangs) cannot be formed as a consequence of a process modelled exclusively in terms of the KPZ equation and acting over sufficiently large times. This suggests the need to search for alternative mathematical approaches to model these structures, some of which are discussed in this paper. PMID:21993008

  20. Two-dimensional colloidal fluids exhibiting pattern formation

    NASA Astrophysics Data System (ADS)

    Chacko, Blesson; Chalmers, Christopher; Archer, Andrew J.

    2015-12-01

    Fluids with competing short range attraction and long range repulsive interactions between the particles can exhibit a variety of microphase separated structures. We develop a lattice-gas (generalised Ising) model and analyse the phase diagram using Monte Carlo computer simulations and also with density functional theory (DFT). The DFT predictions for the structures formed are in good agreement with the results from the simulations, which occur in the portion of the phase diagram where the theory predicts the uniform fluid to be linearly unstable. However, the mean-field DFT does not correctly describe the transitions between the different morphologies, which the simulations show to be analogous to micelle formation. We determine how the heat capacity varies as the model parameters are changed. There are peaks in the heat capacity at state points where the morphology changes occur. We also map the lattice model onto a continuum DFT that facilitates a simplification of the stability analysis of the uniform fluid.

  1. Genetic oscillations. A Doppler effect in embryonic pattern formation.

    PubMed

    Soroldoni, Daniele; Jörg, David J; Morelli, Luis G; Richmond, David L; Schindelin, Johannes; Jülicher, Frank; Oates, Andrew C

    2014-07-11

    During embryonic development, temporal and spatial cues are coordinated to generate a segmented body axis. In sequentially segmenting animals, the rhythm of segmentation is reported to be controlled by the time scale of genetic oscillations that periodically trigger new segment formation. However, we present real-time measurements of genetic oscillations in zebrafish embryos showing that their time scale is not sufficient to explain the temporal period of segmentation. A second time scale, the rate of tissue shortening, contributes to the period of segmentation through a Doppler effect. This contribution is modulated by a gradual change in the oscillation profile across the tissue. We conclude that the rhythm of segmentation is an emergent property controlled by the time scale of genetic oscillations, the change of oscillation profile, and tissue shortening. PMID:25013078

  2. Formation of periodic and localized patterns in an oscillating granular layer.

    SciTech Connect

    Aranson, I.; Tsimring, L. S.; Materials Science Division; Bar Ilan Univ.; Univ. of California at San Diego

    1998-02-01

    A simple phenomenological model for pattern formation in a vertically vibrated layer of granular particles is proposed. This model exhibits a variety of stable cellular patterns including standing rolls and squares as well as localized excitations (oscillons and worms), similar to recent experimental observations (Umbanhowar et al., 1996). The model is an order parameter equation for the parametrically excited waves coupled to the mass conservation law. The structure and dynamics of the solutions resemble closely the properties of patterns observed in the experiments.

  3. Exploring Formative E-Assessment: Using Case Stories and Design Patterns

    ERIC Educational Resources Information Center

    Daly, Caroline; Pachler, Norbert; Mor, Yishay; Mellar, Harvey

    2010-01-01

    This article presents key findings from a Joint Information Systems Committee-funded project, which aimed to identify existing practices where technologies contribute to formative assessment and identify processes that take place around formative assessment where technologies play a significant role. Using a design pattern methodology, the project…

  4. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  5. Instability and pattern formation in electrifield liquid layers

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Papageorgiou, Demetrios

    2015-11-01

    The stability and axisymmetric deformation of two immiscible, viscous, perfect or leaky dielectric fluids confined in the annulus between two concentric cylinders are studied in the presence of radial electric fields. The fields are set up by imposing a constant voltage potential difference between the inner and outer cylinders. We derive a set of equations for the interface in the long-wavelength approximation which retains the essential physics of the system and allows for interfacial deformations to be as large as the annular gap hence accounting for possible touchdown at the inner or outer electrode. As the layer thickness is asymptotically small, the system recovers the standard (modified) Hammond equation in the absence (presence) of electric fields. For both perfect and leaky dielectric liquids, the full nonlinear system is investigated numerically. It is shown that a two-side touching solution is possible for both the non-electrified and perfect dielectric cases, while only one-side touching is found in the case of leaky dielectric liquids, where the flattened interface shape resembles the pattern solutions found in literature. Meanwhile the finite-time singular solution agrees qualitatively with the experiments.

  6. Towards understanding speckle pattern formation in optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Demidov, Valentin; Meglinski, Igor; Doronin, Alexander; Vitkin, I. Alex

    2016-03-01

    We consider the mechanism of speckle patterns formation in time-domain and swept source optical coherence tomography (OCT), and introduce a Monte Carlo based model for simulating OCT signals and images. The model takes into account polarization and coherent properties of light, mutual interference of the back-scattering light, and its interference with the reference beam. The developed model is employed to generate OCT images, and to analyze the resultant OCT speckle pattern properties. The model simulation results are compared with experimental measurements, and an interpretation of the speckle patterns formation in terms of its underlying physics is provided.

  7. One-dimensional pattern of Au nanodots by ion-beam sputtering: formation and mechanism.

    PubMed

    Kim, J-H; Ha, N-B; Kim, J-S; Joe, M; Lee, K-R; Cuerno, R

    2011-07-15

    Highly ordered one-dimensional arrays of nanodots, or nanobeads, are fabricated by forming nanoripples and nanodots in sequence, entirely by ion-beam sputtering (IBS) of Au(001). This demonstrates the capability of IBS for the fabrication of sophisticated nanostructures via hierarchical self-assembly. The intricate nanobead pattern ideally serves to identify the governing mechanisms for the pattern formation: nonlinear effects, especially local redeposition and surface-confined transport, are essential both for the formation and the preservation of the one-dimensional order of the nanobead pattern. PMID:21625038

  8. Formation of spatially patterned colloidal photonic crystals through the control of capillary forces and template recognition.

    PubMed

    Brozell, Adrian M; Muha, Michelle A; Parikh, Atul N

    2005-12-01

    We report the formation of microscopic patterns of substrate-supported, 3D planar colloidal crystals using physical confinement in conjunction with surfaces displaying predetermined binary patterns of hydropholicity. The formation process involves a primary self-assembly wherein nano- and microscale colloids order into a photonic fcc lattice via capillary interactions followed by a secondary template-induced crystal cleavage step. Following this method, arbitrary arrays of pattern elements, which preserve structural and orientational properties of the parent crystal, can be easily obtained. PMID:16316085

  9. Spontaneous pattern formation in a thin film of bacteriorhodopsin with mixed absorptive-dispersive nonlinearity

    NASA Astrophysics Data System (ADS)

    Glückstad, J.; Saffman, M.

    1995-03-01

    We have observed the spontaneous formation of transverse spatial patterns in a thin film of bacteriorhodopsin with a feedback mirror. Bacteriorhodopsin has a mixed absorptive-dispersive nonlinearity at the wavelength used in the experiments (633 nm). Threshold values of the incident intensity for observation of pattern formation are found from a linear stability analysis of a model that describes bacteriorhodopsin as a sluggish saturable nonlinear medium with a complex Kerr coefficient. The calculated threshold intensity is in good agreement with the experimental observations, and the patterns are predicted to be frequency offset from the pump radiation.

  10. Things fall apart: Topics in biophysics and pattern formation

    NASA Astrophysics Data System (ADS)

    Betterton, Meredith Diane

    2000-11-01

    This thesis is made up of three distinct projects. Chapter 2 considers the effect of electrostatics on the stability of a charged membrane. We show that at low ionic strength and high surface charge density, repulsion between membrane charges renders it unstable to the formation of holes. An edge is unstable to modulations with wavelength longer than the Debye screening length. Hence at low ionic strength, membranes will disintegrate into vesicles. We use these results-to interpret experiments on stable holes in red blood cell ghosts. Chapter 3 discusses cylindrical chemotactic collapse. Under special conditions bacteria excrete an attractant and aggregate. The high density regions initially collapse into cylindrical structures, which subsequently destabilize into spherical aggregates. We present a theoretical description of this process. We show that cylindrical collapse involves a balance in which bacterial attraction and diffusion nearly cancel, leading to corrections to the collapse laws expected from dimensional analysis. The cylinder instability is composed of two stages: Initially, slow modulations to the cylinder develop, which correspond to a variation of the collapse time along the cylinder axis. Ultimately, one point on the cylinder pinches off. At this final stage, a front propagates from the pinch into the remainder of the cylinder. The spacing of the resulting spherical aggregates is determined by the front propagation. Chapter 4 describes penitentes, columns of snow several meters tall which form on glaciers at high altitudes. They form by reflection of sunlight: depressions in the snow receive more reflected sunlight than the top edges, and therefore melt more quickly. Although this explanation is accepted in the literature, no one has previously formulated a mathematical model of penitente formation. This work models the process, aiming to quantify the ideas in the literature. We describe what size and shape penitentes appear, and how this depends