Science.gov

Sample records for neonatal rat ventricular

  1. Calcium-sensing receptor induces rat neonatal ventricular cardiomyocyte apoptosis

    SciTech Connect

    Sun Yihua; Liu Meina; Li Hong; Shi Sa; Zhao Yajun; Wang Rui; Xu Changqing . E-mail: syh200415@yahoo.com.cn

    2006-12-01

    The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, Physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl{sub 3}) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca{sup 2+}]{sub i}) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl{sub 3} increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal protein kinases (JNK), and p38. GdCl{sub 3} also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca{sup 2+}]{sub i}. In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.

  2. Calcium current in isolated neonatal rat ventricular myocytes.

    PubMed Central

    Cohen, N M; Lederer, W J

    1987-01-01

    1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004

  3. Electrotonic suppression of early afterdepolarizations in the neonatal rat ventricular myocyte monolayer

    PubMed Central

    Himel, Herman D; Garny, Alan; Noble, Penelope J; Wadgoankar, Raj; Savarese, Joseph; Liu, Nian; Bub, Gil; El-Sherif, Nabil

    2013-01-01

    Pathologies that result in early afterdepolarizations (EADs) are a known trigger for tachyarrhythmias, but the conditions that cause surrounding tissue to conduct or suppress EADs are poorly understood. Here we introduce a cell culture model of EAD propagation consisting of monolayers of cultured neonatal rat ventricular myocytes treated with anthopleurin-A (AP-A). AP-A-treated monolayers display a cycle length dependent prolongation of action potential duration (245 ms untreated, vs. 610 ms at 1 Hz and 1200 ms at 0.5 Hz for AP-A-treated monolayers). In contrast, isolated single cells treated with AP-A develop prominent irregular oscillations with a frequency of 2.5 Hz, and a variable prolongation of the action potential duration of up to several seconds. To investigate whether electrotonic interactions between coupled cells modulates EAD formation, cell connectivity was reduced by RNA silencing gap junction Cx43. In contrast to well-connected monolayers, gap junction silenced monolayers display bradycardia-dependent plateau oscillations consistent with EADs. Further, simulations of a cell displaying EADs electrically connected to a cell with normal action potentials show a coupling strength-dependent suppression of EADs consistent with the experimental results. These results suggest that electrotonic effects may play a critical role in EAD-mediated arrhythmogenesis. PMID:24018945

  4. Frataxin deficiency in neonatal rat ventricular myocytes targets mitochondria and lipid metabolism.

    PubMed

    Obis, Èlia; Irazusta, Verónica; Sanchís, Daniel; Ros, Joaquim; Tamarit, Jordi

    2014-08-01

    Friedreich ataxia (FRDA) is a hereditary disease caused by deficient frataxin expression. This mitochondrial protein has been related to iron homeostasis, energy metabolism, and oxidative stress. Patients with FRDA experience neurologic alterations and cardiomyopathy, which is the leading cause of death. The specific effects of frataxin depletion on cardiomyocytes are poorly understood because no appropriate cardiac cellular model is available to researchers. To address this research need, we present a model based on primary cultures of neonatal rat ventricular myocytes (NRVMs) and short-hairpin RNA interference. Using this approach, frataxin was reduced down to 5 to 30% of control protein levels after 7 days of transduction. At this stage the activity and amount of the iron-sulfur protein aconitase, in vitro activities of several OXPHOS components, levels of iron-regulated mRNAs, and the ATP/ADP ratio were comparable to controls. However, NRVMs exhibited markers of oxidative stress and a disorganized mitochondrial network with enlarged mitochondria. Lipids, the main energy source of heart cells, also underwent a clear metabolic change, indicated by the increased presence of lipid droplets and induction of medium-chain acyl-CoA dehydrogenase. These results indicate that mitochondria and lipid metabolism are primary targets of frataxin deficiency in NRVMs. Therefore, they contribute to the understanding of cardiac-specific mechanisms occurring in FRDA and give clues for the design of cardiac-specific treatment strategies for FRDA. PMID:24751525

  5. Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes.

    PubMed Central

    Xiao, Y F; Kang, J X; Morgan, J P; Leaf, A

    1995-01-01

    Recent evidence indicates that polyunsaturated long-chain fatty acids (PUFAs) prevent lethal ischemia-induced cardiac arrhythmias in animals and probably in humans. To increase understanding of the mechanism(s) of this phenomenon, the effects of PUFAs on Na+ currents were assessed by the whole-cell patch-clamp technique in cultured neonatal rat ventricular myocytes. Extracellular application of the free 5,8,11,14,17-eicosapentaenoic acid (EPA) produced a concentration-dependent suppression of ventricular, voltage-activated Na+ currents (INa). After cardiac myocytes were treated with 5 or 10 microM EPA, the peak INa (elicited by a single-step voltage change with pulses from -80 to -30 mV) was decreased by 51% +/- 8% (P < 0.01; n = 10) and 64% +/- 5% (P < 0.001; n = 21), respectively, within 2 min. Likewise, the same concentrations of 4,7,10,16,19-docosahexaenoic acid produced the same inhibition of INa. By contrast, 5 and 10 microM arachidonic acid (AA) caused less inhibition of INa, but both n - 6 and n - 3 PUFAs inhibited INa significantly. A monounsaturated fatty acid and a saturated fatty acid did not. After washing out EPA, INa returned to the control level. Raising the concentration of EPA to 40 microM completely blocked INa. The IC50 of EPA was 4.8 microM. The inhibition of this Na+ channel was found to be dose and time, but not use dependent. Also, the EPA-induced inhibition of INa was voltage dependent, since 10 microM EPA produced 83% +/- 7% and 29% +/- 5% inhibition of INa elicited by pulses from -80 to -30 mV and from -150 to -30 mV, respectively, in single-step voltage changes. A concentration of 10 microM EPA shifted the steady-state inactivation curve of INa by -19 +/- 3 mV (n = 7; P < 0.01). These effects of PUFAs on INa may be important for their antiarrhythmic effect in vivo. PMID:7479925

  6. Glucose-Insulin-Potassium Solution Protects Ventricular Myocytes of Neonatal Rat in an In Vitro Coverslip Ischemia/Reperfusion Model

    PubMed Central

    Chun, Woo-Jung; Bae, Jun-Ho; Chung, Jin-Wook; Lee, HyunSook; Moon, Il Soo

    2015-01-01

    Background and Objectives The benefit of high glucose-insulin-potassium (GIK) solution in clinical applications is controversial. We established a neonatal rat ventricular myocyte (NRVM) in vitro coverslip ischemia/reperfusion (I/R) model and investigated the effects of GIK solution on suppressing reactive oxygen species (ROS) and upregulating O-GlcNacylation, which protects cells from ischemic injury. Materials and Methods NRVMs were isolated from postnatal day 3-4 Sprague-Dawley rat pups and grown in Dulbecco's modified Eagle's medium containing high glucose (4.5 g/L), fetal bovine serum, and penicillin/streptomycin. The effects of the GIK solution on ROS production, apoptosis, and expression of O-GlcNAc and O-GlcNAc transferase (OGT) were investigated in the coverslip I/R model. Results Covering the 24-well culture plates for 3 hr with 12 mm diameter coverslips resulted in the appropriate ischemic shock. Glucose and insulin synergistically reduced ROS production, protected NRVM dose-dependently from apoptosis, and altered O-GlcNAc and OGT expression. Conclusion The high GIK solution protected NRVM from I/R injury in vitro by reducing ROS and altering O-GlcNacylation. PMID:26023312

  7. Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes.

    PubMed

    Graff, Donald W; Cascio, Wayne E; Brackhan, Joseph A; Devlin, Robert B

    2004-05-01

    Soluble particulate matter (PM) components (e.g., metals) have the potential to be absorbed into the bloodstream and transported to the heart where they might induce the expression of inflammatory cytokines and remodel electrical properties. We exposed cultured rat ventricular myocytes to similar concentrations of two metals [zinc (Zn) and vanadium (V)] found commonly in PM and measured changes in spontaneous beat rate. We found statistically significant reductions in spontaneous beat rate after both short-term (4-hr) and long-term (24-hr) exposures, with a more substantial effect seen with Zn. We also measured the expression of genes associated with inflammation and a number of sarcolemmal proteins associated with electrical impulse conduction. Exposure to Zn or V (6.25-50 microM) for 6 hr produced significant increases in IL-6, IL-1 alpha, heat shock protein 70, and connexin 43 (Cx43). After 24 hr exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvLQt (potassium channel proteins), the alpha 1 subunit of the L-type calcium channel, and Cx43, as well as IL-6 and IL-1 alpha. In contrast, V produced a greater effect on Cx43 and affected only one ion channel (KvLQT1). These results show that exposure of rat cardiac myocytes to noncytotoxic concentrations of Zn and V alter spontaneous beat rate as well as the expression of ion channels and sarcolemmal proteins relevant to electrical remodeling and slowing of spontaneous beat rate, with Zn producing a more profound effect. As such, these data suggest that the cardiac effects of PM are largely determined by the relative metal composition of particles. PMID:15159208

  8. The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes.

    PubMed

    Hewawasam, Ruwani P; Liu, Dan; Casarotto, Marco G; Board, Philip G; Dulhunty, Angela F

    2016-01-01

    The cardiac ryanodine receptor (RyR2) is an intracellular ion channel that regulates Ca2+ release from the sarcoplasmic reticulum (SR) during excitation-contraction coupling in the heart. The glutathione transferases (GSTs) are a family of phase II detoxification enzymes with additional functions including the selective inhibition of RyR2, with therapeutic implications. The C-terminal half of GSTM2 (GSTM2C) is essential for RyR2 inhibition, and mutations F157A and Y160A within GSTM2C prevent the inhibitory action. Our objective in this investigation was to determine whether GSTM2C can enter cultured rat neonatal ventricular cardiomyocytes and influence contractility. We show that oregon green-tagged GSTM2C (at 1 μM) is internalized into the myocytes and it reduces spontaneous contraction frequency and myocyte shortening. Field stimulation of myocytes evoked contraction in the same percentage of myocytes treated either with media alone or media plus 15 μM GSTM2C. Myocyte shortening during contraction was significantly reduced by exposure to 15 μM GSTM2C, but not 5 and 10 μM GSTM2C and was unaffected by exposure to 15 μM of the mutants Y160A or F157A. The amplitude of the Ca2+ transient in the 15 μM GSTM2C - treated myocytes was significantly decreased, the rise time was significantly longer and the decay time was significantly shorter than in control myocytes. The Ca2+ transient was not altered by exposure to Y160A or F157A. The results are consistent with GSTM2C entering the myocytes and inhibiting RyR2, in a manner that indicates a possible therapeutic potential for treatment of arrhythmia in the neonatal heart. PMID:27612301

  9. Role of inositol-1,4,5-trisphosphate receptor in the regulation of calcium transients in neonatal rat ventricular myocytes.

    PubMed

    Zeng, Zheng; Zhang, Heping; Lin, Na; Kang, Man; Zheng, Yuanyuan; Li, Chen; Xu, Pingxiang; Wu, Yongquan; Luo, Dali

    2014-01-01

    This study determined the regulatory effect of inositol 1,4,5-trisphosphate receptors (IP3Rs) on the basal Ca(2+) transients in cardiomyocytes. In cultured neonatal rat ventricular myocytes (NRVMs) at different densities, we used confocal microscopy to assess the effect of IP3Rs on the endogenous spontaneous Ca(2+) oscillations through specific activation of IP3Rs with myo-IP3 hexakis (butyryloxymethyl) ester (IP3BM), a membrane permeable IP3, and interference of IP3R expression with shRNA. We found that NRVMs at the monolayer state displayed coordinated Ca(2+) transients with less rate, shorter duration, and higher amplitude compared to single NRVMs. In addition, monolayer NRVMs exhibited 4 or 10 times more increased Ca(2+) transients in response to phenylephrine, an α-adrenergic receptor agonist, or IP3BM than single NRVMs did, while the transient pattern remained unaltered, suggesting that the sensitivity of intracellular Ca(2+) response to IP3R activation is different between single and monolayer NRVMs. However, interference of IP3R expression with shRNA reduced the frequency and amplitude of the spontaneous Ca(2+) fluctuates similarly in both densities of NRVMs, resembling the effects of ryanodine receptor inhibition by ryanodine or tetracaine. Our findings suggest that IP3Rs are involved, in part, in the regulation of native Ca(2+) transients, in profiles of their initiation and Ca(2+) release extent, in developing cardiomyocytes. In addition, caution should be paid in evaluating the behavior of Ca(2+) signaling in primary cultured cardiomyocytes at different densities. PMID:25242084

  10. Tribulosin suppresses apoptosis via PKC epsilon and ERK1/2 signaling pathway during hypoxia/reoxygenation in neonatal rat ventricular cardiac myocytes.

    PubMed

    Zhang, Shuang; Li, Hong; Yang, Shi-Jie

    2011-12-01

    Tribulosin (tigogenin 3-O-β-D-xylopyranosyl(1-2)-[β-D-xylopyranosyl (1-3)]-β-D-glucopyranosyl (1-4)-[a-L-rhamnopyranosyl(1-2)]-β-D-galactopyranoside), a component of gross saponins of Tribulus terrestris, has been shown to produce cytoprotective effects in heart. Yet, the precise mechanisms are not fully understood. We examined the mechanisms of tribulosin on myocardial protection. Ventricular myocytes were isolated from the heart of neonatal rats and were exposed to 3 h of hypoxia followed by 2 h reoxygenation. Apoptosis was induced by hypoxia/reoxygenation (H/R), and the expression of protein kinase C epsilon (PKCϵ) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured neonatal rat cardiac myocytes was detected. The results indicated that treatment with tribulosin in the culture medium protected cardiac myocytes against apoptosis induced by H/R. PKCϵ and ERK1/2 expression increased after pretreated with tribulosin. In the presence of PKCϵ inhibitor co-treated with tribulosin, the expression of ERK1/2 was decreased in H/R cardiac myocytes. While preconditioned with PD98059, ERK1/2 inhibitor, no effects on the expression of PKCϵ were detected. Tribulosin has protective effects on cardiac myocytes against apoptosis induced by H/R injury via PKCϵ and ERK1/2 signaling pathway. PMID:22115037

  11. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    SciTech Connect

    Sun, Yi-hua; Li, Yong-quan; Feng, Shan-li; Li, Bao-xin; Pan, Zhen-wei; Xu, Chang-qing; Li, Ting-ting; Yang, Bao-feng

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  12. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering.

    PubMed

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-12-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE. PMID:27263018

  13. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  14. Abnormal ventricular development in preterm neonates with visually normal MRIs

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Wang, Yalin; Lao, Yi; Ceschin, Rafael; Mi, Liang; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha

    2015-12-01

    Children born preterm are at risk for a wide range of neurocognitive and neurobehavioral disorders. Some of these may stem from early brain abnormalities at the neonatal age. Hence, a precise characterization of neonatal neuroanatomy may help inform treatment strategies. In particular, the ventricles are often enlarged in neurocognitive disorders, due to atrophy of surrounding tissues. Here we present a new pipeline for the detection of morphological and relative pose differences in the ventricles of premature neonates compared to controls. To this end, we use a new hyperbolic Ricci flow based mapping of the ventricular surfaces of each subjects to the Poincaré disk. Resulting surfaces are then registered to a template, and a between group comparison is performed using multivariate tensor-based morphometry. We also statistically compare the relative pose of the ventricles within the brain between the two groups, by performing a Procrustes alignment between each subject's ventricles and an average shape. For both types of analyses, differences were found in the left ventricles between the two groups.

  15. Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1α/CXC chemokine receptor 4 pathway

    PubMed Central

    ZHOU, HAO; YANG, JUNJIE; XIN, TING; ZHANG, TAO; HU, SHUNYIN; ZHOU, SHANSHAN; CHEN, GUANGHUI; CHEN, YUNDAI

    2015-01-01

    Adipose-derived stem cells (ADSCs) are considered a suitable source of cells for the repair of tissue following acute myocardial infarction (AMI); however, the transplantation efficiency of ADSCs remains low. Therefore, identification of an efficient method to enhance the migration of engrafted cells to the target site is required. The present study used exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, to optimize the migratory capacity of ADSCs. The aim was to determine the effect and mechanisms of Ex-4 on the migration of ADSCs to neonatal rat ventricular cardiomyocyte-derived conditioned medium (NRVC-CM). The ADSCs and cardiomyocytes were cultured in vitro. Following incubation of the ADSCs with Ex-4, cell proliferation was measured using an MTT assay and the expression levels of CXC chemokine receptor 4 (CXCR4) were investigated by reverse transctiption quantitative polymerase chain reaction (RT-qPCR), western blot analysis and flow cytometry. In addition, the expression levels of stromal cell-derived factor-1α (SDF-1α) were evaluated in the NRVC-CM treated with Ex-4 by ELISA, RT-qPCR and western blot analysis. The migration of the ADSCs to the NRVC-CM was examined using a Transwell assay. Changes in the protein expression levels of phosphorylated (p−)Akt were examined in the two types of cell by western blot analysis. The results suggested that Ex-4 promoted the proliferation and expression of CXCR4 in the ADSCs, increased the secretion of SDF-1α in the cardiomyocytes and increased the expression levels of p-Akt in both cells. However, the alterations to the SDF-1α/C XC R4 cascade in the cells were abrogated following pretreatment with LY-294002, a phosphoinositide 3-kinase(PI3K) inhibitor. Furthermore, a Transwell migration assay revealed marked translocation of the ADSCs through the membranes, towards the NRVC-CM, following treatment with Ex-4. However, these effects were reduced significantly by pretreatment of the cells with the SDF-1

  16. EVALUATION OF RENAL FUNCTION IN NEONATAL RATS

    EPA Science Inventory

    The ontogenetic profile of several parameters of neonatal renal development in the rat is presented. Nephrogenesis was observed to continue at a rapid pace between birth and 8 days of age and to be virtually complete by 11 days of age. The activity of alkaline phosphatase, a brus...

  17. Metabolic neural mapping in neonatal rats

    SciTech Connect

    DiRocco, R.J.; Hall, W.G.

    1981-01-01

    Functional neural mapping by /sup 14/C-deoxyglucose autoradiography in adult rats has shown that increases in neural metabolic rate that are coupled to increased neurophysiological activity are more evident in axon terminals and dendrites than neuron cell bodies. Regions containing architectonically well-defined concentrations of terminals and dendrites (neuropil) have high metabolic rates when the neuropil is physiologically active. In neonatal rats, however, we find that regions containing well-defined groupings of neuron cell bodies have high metabolic rates in /sup 14/C-deoxyglucose autoradiograms. The striking difference between the morphological appearance of /sup 14/C-deoxyglucose autoradiograms obtained from neonatal and adult rats is probably related to developmental changes in morphometric features of differentiating neurons, as well as associated changes in type and locus of neural work performed.

  18. Mesenchymal stem cells preserve neonatal right ventricular function in a porcine model of pressure overload.

    PubMed

    Wehman, Brody; Sharma, Sudhish; Pietris, Nicholas; Mishra, Rachana; Siddiqui, Osama T; Bigham, Grace; Li, Tieluo; Aiello, Emily; Murthi, Sarah; Pittenger, Mark; Griffith, Bartley; Kaushal, Sunjay

    2016-06-01

    Limited therapies exist for patients with congenital heart disease (CHD) who develop right ventricular (RV) dysfunction. Bone marrow-derived mesenchymal stem cells (MSCs) have not been evaluated in a preclinical model of pressure overload, which simulates the pathophysiology relevant to many forms of CHD. A neonatal swine model of RV pressure overload was utilized to test the hypothesis that MSCs preserve RV function and attenuate ventricular remodeling. Immunosuppressed Yorkshire swine underwent pulmonary artery banding to induce RV dysfunction. After 30 min, human MSCs (1 million cells, n = 5) or placebo (n = 5) were injected intramyocardially into the RV free wall. Serial transthoracic echocardiography monitored RV functional indices including 2D myocardial strain analysis. Four weeks postinjection, the MSC-treated myocardium had a smaller increase in RV end-diastolic area, end-systolic area, and tricuspid vena contracta width (P < 0.01), increased RV fractional area of change, and improved myocardial strain mechanics relative to placebo (P < 0.01). The MSC-treated myocardium demonstrated enhanced neovessel formation (P < 0.0001), superior recruitment of endogenous c-kit+ cardiac stem cells to the RV (P < 0.0001) and increased proliferation of cardiomyocytes (P = 0.0009) and endothelial cells (P < 0.0001). Hypertrophic changes in the RV were more pronounced in the placebo group, as evidenced by greater wall thickness by echocardiography (P = 0.008), increased cardiomyocyte cross-sectional area (P = 0.001), and increased expression of hypertrophy-related genes, including brain natriuretic peptide, β-myosin heavy chain and myosin light chain. Additionally, MSC-treated myocardium demonstrated increased expression of the antihypertrophy secreted factor, growth differentiation factor 15 (GDF15), and its downstream effector, SMAD 2/3, in cultured neonatal rat cardiomyocytes and in the porcine RV myocardium. This is the first report of the use of MSCs as a therapeutic

  19. A neonate with ectodermal dysplasia ectrodactyly clefting syndrome and ventricular septal defect.

    PubMed

    Ram, S P; Noor, A R; Ariffin, W A; Ariffin, N A

    1994-04-01

    A 37-week gestation male boy was born to a gravida seven para six mother by spontaneous vertex delivery at home. The baby cried at birth. On day 3 of life, he was admitted for respiratory distress. Physical examination revealed ectrodactyly, thin dry skin, anomalous tear duct with cardiomegaly. X-ray revealed absent radii, cardiomegaly and hemivertebra at L1. Echocardiogram revealed perimembranous type of ventricular septal defect. A diagnosis of Ectodermal Dysplasia Ectrodactyly Clefting Syndrome with ventricular septal defect was made. He was managed conservatively in the nursery. However, he expired on day 27 of life following short spell of fever apnoeic episode due to neonatal sepsis. PMID:7939823

  20. Hair growth in neonatally undernourished rats.

    PubMed

    Salas, M; Pulido, S; Torrero, C; Regalado, M; Loranca, A

    1995-01-01

    Interaction between neonatal undernutrition and the increased self-grooming activity upon hair growth of several body areas was analyzed in rats of 10, 20 and 30 days of age. Light microscopic observations on methylene blue impregnated hairs showed that these perinatal influences delayed the growth of hair follicles and thickness and length of hair measurements of the head and thoracic areas. The hair growth of lateral abdominal regions was less affected. Data suggest that hair alterations are primarily related to food deprivation since hair follicle measures of all skin areas were more affected than the distal hair measurements. Moreover, the distribution of impaired hair growth on different body areas correlates well with the increased self-grooming components associated to neonatal undernourishment. PMID:8914627

  1. Specific heart granules and natriuretic peptide in the developing myocardium of fetal and neonatal rats and hamsters.

    PubMed Central

    Navaratnam, V; Woodward, J M; Skepper, J N

    1989-01-01

    The ontogenesis of specific heart granules and of the related natriuretic peptide activity in heart muscle was studied in fetal and neonatal rats and golden hamsters by ultrastructural analysis including immunogold labelling for ANP-28 and by radioimmunoassay. In both species, immunoreactive granules first appear in the myocardial sleeve of the embryonic heart tube during the looping stages which precede chamber formation and the peptide becomes detectable by radioimmunoassay two or three days later by which time the chambers are identifiable. Granule density and ANP concentration in the rat are higher than in the hamster at all stages of development. Almost all atrial myocytes express ANP in fetal hearts whereas, in the ventricular wall, cells containing immunoreactive granules are scattered. The density of granules in atrial myocytes increases during further stages of fetal and neonatal development, while it decreases markedly even in those ventricular myocytes which are immunoreactive. Changes in the ultrastructural appearance of ventricular SHG suggest that the mode of production of ANP changes in ventricular myocytes after birth but does not change in atrial cells. There is no correlation between the distribution of immunoreactive ventricular myocytes and that of the conducting system. In both species, the concentration of ANP in the atrial well is higher than ventricular levels from the outset and the disparity becomes exaggerated with development till, in six months old adult animals, the atrial to ventricular concentration ratio is about 3 x 10(3):1 in the rat and 1.5 x 10(3): 1 in the hamster. In the hamster, a distinct gradient of ANP concentration between the right and left atria is already established in the early fetal period and it becomes enhanced in the neonatal period. In the rat, however, a slight difference becomes discernible only after birth. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:2532637

  2. Neonatal ventricular fibrillation and an elusive ALCAPA: things are not always as they seem.

    PubMed

    Walker, Tracie C; Renno, Markus S; Parra, David A; Guthrie, Scott O

    2016-01-01

    An anomalous left coronary artery from the pulmonary artery (ALCAPA) is a rare congenital cardiac condition that typically presents with poor feeding and failure to thrive from progressive myocardial ischaemia. Previous reports of ALCAPA presenting with ventricular fibrillation (VF) have suggested a causative relationship. In this case, we present a neonate with VF without apparent cause after an extensive evaluation. Following implantable cardioverter-defibrillator placement for presumed idiopathic VF, at which time she also underwent surgical ligation of a patent ductus arteriosus (PDA), the neonate developed haemodynamic instability that ultimately was found to be due to ALCAPA. Numerous echocardiograms had missed the ALCAPA in the setting of mildly elevated pulmonary artery pressure. We discuss the limitations of current ultrasound technology in diagnosing ALCAPA in the setting of pulmonary hypertension and explain why the relationship between this patient's diagnosis of ALCAPA and her episode of VF is not clearly causative. PMID:27033289

  3. Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts.

    PubMed

    He, Quan; Wang, Miao; Harris, Nicole; Han, Xianlin

    2013-11-01

    Mutation of the mitochondrial protein tafazzin causes dilated cardiomyopathy in Barth syndrome. Previous studies have shown that tafazzin knockdown promotes hypertrophy of neonatal cardiac myocytes. The current investigation was designed to show whether tafazzin knockdown affects cardiac fibroblast proliferation and collagen secretion, which contribute to fibrosis in dilated cardiomyopathy. In primary cultures of neonatal ventricular fibroblasts (NVFs) transduced with a tafazzin short hairpin RNA adenovirus, tafazzin knockdown increased production of reactive oxygen species and activation of mitogen-activated protein kinases and induced protein and DNA synthesis via cell cycle regulators. It also reduced intracellular ATP, activated AMPK, and caused multinucleation, hypertrophy, and enhanced collagen secretion. We concluded that tafazzin knockdown interrupts the NVF cell cycle and this in turn may contribute to fibrosis and dilated cardiomyopathy in Barth syndrome. PMID:23997105

  4. Isolation and Cryopreservation of Neonatal Rat Cardiomyocytes

    PubMed Central

    Vandergriff, Adam C.; Hensley, Michael Taylor; Cheng, Ke

    2016-01-01

    Cell culture has become increasingly important in cardiac research, but due to the limited proliferation of cardiomyocytes, culturing cardiomyocytes is difficult and time consuming. The most commonly used cells are neonatal rat cardiomyocytes (NRCMs), which require isolation every time cells are needed. The birth of the rats can be unpredictable. Cryopreservation is proposed to allow for cells to be stored until needed, yet freezing/thawing methods for primary cardiomyocytes are challenging due to the sensitivity of the cells. Using the proper cryoprotectant, dimethyl sulfoxide (DMSO), cryopreservation was achieved. By slowly extracting the DMSO while thawing the cells, cultures were obtained with viable NRCMs. NRCM phenotype was verified using immunocytochemistry staining for α-sarcomeric actinin. In addition, cells also showed spontaneous contraction after several days in culture. Cell viability after thawing was acceptable at 40–60%. In spite of this, the methods outlined allow one to easily cryopreserve and thaw NRCMs. This gives researchers a greater amount of flexibility in planning experiments as well as reducing the use of animals. PMID:25938862

  5. Impaired antipneumococcal activity of bronchoalveolar lining material of neonatal rats.

    PubMed Central

    Coonrod, J D; Jarrells, M C

    1989-01-01

    Pulmonary clearance of inhaled pneumococci is markedly impaired in neonatal rats compared with that in adult rats. To determine whether this impairment is due to a deficiency of extracellular bactericidal factors, the antipneumococcal activity of free fatty acids (FFA) in lung surfactant and the levels of lysozyme and transferrin in lavage fluids were quantified. Surfactant from adult rats averaged 68 U of antipneumococcal activity per g (dry weight) of lung, compared with less than 0.25 U for rats less than 1 week old (P less than 0.001). The kinds of FFA in surfactant of neonatal and adult rats were essentially identical, and the antipneumococcal activity of highly purified FFA from surfactant of neonatal and adult rats was also the same. However, the quantity of FFA in surfactant varied significantly with age, and rats less than 3 weeks old had much lower levels of surfactant FFA than did adults (P less than 0.001). In addition, lavage fluids from neonatal rats inhibited the antipneumococcal activity of surfactant FFA more than lavage fluids from adults did (P less than 0.02). This inhibitory activity did not appear to be due to protein binding. Lavage fluids from neonates showed an age-related deficiency of lysozyme (P less than 0.001), but lysozyme appeared to play no role in pneumococcal killing by the surfactant fraction of lavage fluids in vitro. Transferrin levels in lavage fluids were similar for neonates and adults. It was concluded that lung surfactant from neonatal rats was deficient in antipneumococcal activity, due mostly to low levels of FFA and to a lesser degree to increased levels of inhibitor(s) in lavage fluids. PMID:2912894

  6. PHARMACOLOGIC PROBING OF RENAL DEVELOPMENT IN THE NEONATAL RAT

    EPA Science Inventory

    The study was designed to examine the ontogeny of renal functions in the neonatal rat using various pharmacologic agents as probes. The renal responses of 2, 6, and 10 day old rats to diuretic agents known to act on proximal tubules, loops of Henle and distal tubules were assesse...

  7. TRIETHYLTIN-INDUCED NEURONAL DAMAGE IN NEONATALLY EXPOSE RATS

    EPA Science Inventory

    Neuropathological and biochemical effects of neonatal exposure to the alkyl metal triethyltin were examined in Long Evans juvenile male rats. Rats were injected intraperitoneally on post-natal day 5 with 6 mk/kg of triethyltin bromide and sampled on day 20. The brains of tin-trea...

  8. The neurological effects of brevetoxin on neonatal rats

    SciTech Connect

    Tapley, S.R.; Ramsdell, J.S.; Xi, D.

    1994-12-31

    We have investigated the neuroexcitatory and neurodegenerative effects of brevetoxin on neonatal rats. Brevetoxin, a marine-biotoxin that has been implicated in several seafood poisoning incidents, is produced by the dinoflagellate Gymnodinium brevis. Four studies were done: dose response, northern analysis, immunohistochemistry and neurodegeneration. We found that neonatal rats are much more sensitive to brevetoxin than adult rats. The effectiveness of c-fos as a biomarker is being investigated, because of the high basal expression in young animals. The neurodegeneration, although not available yet, should provide valuable information.

  9. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  10. Evaluation of right ventricular function using single-beat three-dimensional echocardiography in neonate.

    PubMed

    Watanabe, Kazuhiro; Hashimoto, Ikuo; Ibuki, Keijiro; Okabe, Mako; Kaneda, Hisashi; Ichida, Fukiko

    2015-06-01

    Aim of our study was to evaluate right ventricular (RV) systolic function in neonate using newly developed single-beat three-dimensional echocardiography (sb3DE). We enrolled 15 healthy or premature neonates (0-53 days after birth). We scanned one beat full volume using Siemens ACUSON SC2000 (Siemens AG) echocardiography with 4Z1c full-volume transducer without ECG gating. RV end-diastolic volume (RVEDV) and RV end-systolic volume (RVESV) were computed with special software dedicated to analysis for RV volume. RV ejection fraction (RVEF) and RV stroke volume (3D-RVSV) were calculated. And RV stroke volume was also determined from the recordings of ejection blood flow velocity and diameter at the level of the pulmonary orifice in RV outflow tract (Doppler-RVSV). Tricuspid annular plane systolic excursion (TAPSE) was also measured by 2D echocardiography. RVEDV ranged from 5.1 to 10.7 ml (average 7.5 ml), RVESV ranged from 2.3 to 5.8 ml (average 3.9 ml). There was a good correlation between 3D-RVSV and Doppler-RVSV (r = 0.77). Bland-Altman plot revealed that 3D-RVSV became underestimation of an average of 1.78 ml compared to Doppler-RVSV. And TAPSE positively correlated with 3D-RVEF (r = 0.58, P = 0.038). Newly developed sb3DE enables us to perform three-dimensional acquisition of RV volume without ECG gating even in neonate. However, 3D-RVSV currently tends to be underestimated in neonatal measurement. PMID:25588573

  11. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes.

    PubMed Central

    Takahashi, N; Calderone, A; Izzo, N J; Mäki, T M; Marsh, J D; Colucci, W S

    1994-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is a peptide growth factor that may play a role in the myocardial response to hypertrophic stimuli. However, the cellular distribution, mechanism of induction, and source of increased TGF-beta 1 in response to hypertrophic stimuli are not known. We tested the hypothesis that the cardiac myocyte responds to hypertrophic stimuli with the increased expression of TGF-beta 1. In adult rat ventricular myocardium freshly dissociated into myocyte and nonmyocyte cellular fractions, the preponderance of TGF-beta 1 mRNA visualized by Northern hybridization was in the nonmyocyte fraction. Abdominal aortic constriction (7 d) and subcutaneous norepinephrine infusion (36 h) each caused ventricular hypertrophy associated with 3.1-fold and 3.8-fold increases, respectively, in TGF-beta 1 mRNA in the myocyte fraction, but had no effect on the level of TGF-beta 1 mRNA in the nonmyocyte fraction. In ventricular myocytes, norepinephrine likewise caused a 4.1-fold increase in TGF-beta 1 mRNA associated with an increase in TGF-beta bioactivity. This induction of TGF-beta 1 mRNA occurred at norepinephrine concentrations as low as 1 nM and was blocked by prazosin, but not propranolol. NE did not increase the TGF-beta 1 mRNA level in nonmyocytes, primarily fibroblasts, cultured from neonatal rat ventricle. Thus, the cardiac myocyte responds to two hypertrophic stimuli, pressure overload and norepinephrine, with the induction of TGF-beta 1. These data support the view that TGF-beta 1, released by myocytes and acting in an autocrine and/or paracrine manner, is involved in myocardial remodeling by hypertrophic stimuli. Images PMID:7929822

  12. Resveratrol reduces intracellular free calcium concentration in rat ventricular myocytes.

    PubMed

    Liu, Zheng; Zhang, Li-Ping; Ma, Hui-Jie; Wang, Chuan; Li, Ming; Wang, Qing-Shan

    2005-10-25

    Resveratrol (trans-3, 4', 5-trihydroxy stilbene), a phytoalexin found in grape skins and red wine, has been reported to have a wide range of biological and pharmacological properties. It has been speculated that resveratrol may have cardioprotective activity. The objective of our study was to investigate the effects of resveratrol on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular myocytes. [Ca(2+)](i) was detected by laser scanning confocal microscopy. The results showed that resveratrol (15~60 mumol/L) reduced [Ca(2+)](i) in normal and Ca(2+)-free Tyrode's solution in a concentration-dependent manner. The effects of resveratrol on [Ca(2+)](i) in normal Tyrode's solution was partially inhibited by pretreatment with sodium orthovanadate (Na3VO4, 1.0 mmol/L, P<0.01), an inhibitor of protein tyrosine phosphatase, or L-type Ca(2+) channel agonist Bay K8644 (10 mumol/L, P<0.05), but could not be antagonized by NO synthase inhibitor L-NAME (1.0 mmol/L). Resveratrol also markedly inhibited the ryanodine-induced [Ca(2+)](i) increase in Ca(2+)-free Tyrode's solution (P<0.01). When Ca(2+) waves were produced by increasing extracellular Ca(2+) concentration from 1 to 10 mmol/L, resveratrol (60 mumol/L) could reduce the velocity and duration of propagating waves, and block the propagating waves of elevated [Ca(2+)](i). These results suggest that resveratrol may reduce the [Ca(2+)](i) in isolated rat ventricular myocytes. The inhibition of voltage-dependent Ca(2+) channel and tyrosine kinase, and alleviation of Ca(2+) release from sarcoplasmic reticulum (SR) are possibly involved in the effects of resveratrol on rat ventricular myocytes. These findings could help explain the protective activity of resveratrol against cardiovascular disease. PMID:16220198

  13. Oral Everolimus for Treatment of a Giant Left Ventricular Rhabdomyoma in a Neonate-Rapid Tumor Regression Documented by Real Time 3D Echocardiography.

    PubMed

    Wagner, Robert; Riede, Frank Thomas; Seki, Hiroshi; Hornemann, Frauke; Syrbe, Steffen; Daehnert, Ingo; Weidenbach, Michael

    2015-12-01

    The presented case reports on successful treatment with everolimus in a neonate with left ventricular giant rhabdomyoma. The authors used a different dosage regime compared to literature and documented rapid tumor regression by 3D echocardiography. PMID:26199144

  14. Functional characteristics of neonatal rat β cells with distinct markers.

    PubMed

    Martens, G A; Motté, E; Kramer, G; Stangé, G; Gaarn, L W; Hellemans, K; Nielsen, J H; Aerts, J M; Ling, Z; Pipeleers, D

    2014-02-01

    Neonatal β cells are considered developmentally immature and hence less glucose responsive. To study the acquisition of mature glucose responsiveness, we compared glucose-regulated redox state, insulin synthesis, and secretion of β cells purified from neonatal or 10-week-old rats with their transcriptomes and proteomes measured by oligonucleotide and LC-MS/MS profiling. Lower glucose responsiveness of neonatal β cells was explained by two distinct properties: higher activity at low glucose and lower activity at high glucose. Basal hyperactivity was associated with higher NAD(P)H, a higher fraction of neonatal β cells actively incorporating (3)H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had twofold lower expression of malate/aspartate-NADH shuttle and most glycolytic enzymes. Genome-wide profiling situated neonatal β cells at a developmental crossroad: they showed advanced endocrine differentiation when specifically analyzed for their mRNA/protein level of classical neuroendocrine markers. On the other hand, discrete neonatal β cell subpopulations still expressed mRNAs/proteins typical for developing/proliferating tissues. One example, delta-like 1 homolog (DLK1) was used to investigate whether neonatal β cells with basal hyperactivity corresponded to a more immature subset with high DLK1, but no association was found. In conclusion, the current study supports the importance of glycolytic NADH-shuttling in stimulus function coupling, presents basal hyperactivity as novel property of neonatal β cells, and provides potential markers to recognize intercellular developmental differences in the endocrine pancreas. PMID:24049066

  15. Dietary salt restriction in hyperthyroid rats. Differential influence on left and right ventricular mass.

    PubMed

    Wangensteen, Rosemary; Rodríguez-Gómez, Isabel; Perez-Abud, Rocío; Quesada, Andrés; Montoro-Molina, Sebastián; Osuna, Antonio; Vargas, Félix

    2015-01-01

    This study assessed the impact of salt restriction on cardiac morphology and biochemistry and its effects on hemodynamic and renal variables in experimental hyperthyroidism. Four groups of male Wistar rats were used: control, hyperthyroid, and the same groups under low salt intake. Body weight, blood pressure (BP), and heart rate (HR) were recorded weekly for 4 weeks. Morphologic, metabolic, plasma, cardiac, and renal variables were also measured. Low salt intake decreased BP in T(4)-treated rats but not in controls. Low salt intake reduced relative left ventricular mass but increased absolute right ventricular weight and right ventricular weight/BW ratio in both control and hyperthyroid groups. Low salt intake increased Na(+)/H(+) exchanger-1 (NHE-1) protein abundance in both ventricles in normal rats but not in hyperthyroid rats, independently of its effect on ventricular mass. Mammalian target of rapamycin (mTOR) protein abundance was not related to left or right ventricular mass in hyperthyroid or controls rats under normal or low salt conditions. Proteinuria was increased in hyperthyroid rats and attenuated by low salt intake. In this study, low salt intake produced an increase in right ventricular mass in normal and hyperthyroid rats. Changes in the left or right ventricular mass of control and hyperthyroid rats under low salt intake were not explained by the NHE-1 or mTOR protein abundance values observed. In hyperthyroid rats, low salt intake also slightly reduced BP and decreased HR, proteinuria, and water and sodium balances. PMID:25030483

  16. Mitochondrial integrity in a neonatal bovine model of right ventricular dysfunction.

    PubMed

    Bruns, Danielle R; Brown, R Dale; Stenmark, Kurt R; Buttrick, Peter M; Walker, Lori A

    2015-01-15

    Right ventricular (RV) function is a key determinant of survival in patients with both RV and left ventricular (LV) failure, yet the mechanisms of RV failure are poorly understood. Recent studies suggest cardiac metabolism is altered in RV failure in pulmonary hypertension (PH). Accordingly, we assessed mitochondrial content, dynamics, and function in hearts from neonatal calves exposed to hypobaric hypoxia (HH). This model develops severe PH with concomitant RV hypertrophy, dilation, and dysfunction. After 2 wk of HH, pieces of RV and LV were obtained along with samples from age-matched controls. Comparison with control assesses the effect of hypoxia, whereas comparison between the LV and RV in HH assesses the additional impact of RV overload. Mitochondrial DNA was unchanged in HH, as was mitochondrial content as assessed by electron microscopy. Immunoblotting for electron transport chain subunits revealed a small increase in mitochondrial content in HH in both ventricles. Mitochondrial dynamics were largely unchanged. Activity of individual respiratory chain complexes was reduced (complex I) or unchanged (complex V) in HH. Key enzymes in the glycolysis pathway were upregulated in both HH ventricles, alongside upregulation of hypoxia-inducible factor-1α protein. Importantly, none of the changes in expression or activity were different between ventricles, suggesting the changes are in response to HH and not RV overload. Upregulation of glycolytic modulators without chamber-specific mitochondrial dysfunction suggests that mitochondrial capacity and activity are maintained at the onset of PH, and the early RV dysfunction in this model results from mechanisms independent of the mitochondria. PMID:25416385

  17. A Neonate with Susceptibility to Long QT Syndrome Type 6 who Presented with Ventricular Fibrillation and Sudden Unexpected Infant Death

    PubMed Central

    Sauer, Charles W.; Marc-Aurele, Krishelle L.

    2016-01-01

    Patient: Female, 19-day Final Diagnosis: 19 day old neonate with susceptibility to Long QT syndrome • ventricular fibrillation Symptoms: Cardiac arrest • cardiac arrhythmia • encephalopathy Medication: — Clinical Procedure: Cardioversion Specialty: Pediatrics and Neonatology Objective: Rare disease Background: This is a case of a neonate with susceptibility to long QT syndrome (LQTS) who presented with a sudden unexpected infant death. Experts continue to debate whether universal electrocardiogram (ECG) screening of all newborns is feasible, practical, and cost-effective. Case Report: A 19-day-old neonate was found unresponsive by her mother. ECG showed ventricular fibrillation and a combination of a lidocaine drip plus multiple defibrillations converted the rhythm to normal sinus. Unfortunately, MRI brain imaging showed multiple infarcts and EEG showed burst suppression pattern with frequent seizures; life supportive treatment was stopped and the infant died. Genetic testing revealed two mutations in the KCNE2 gene consistent with susceptibility to LQTS type 6. Conclusions: We believe this case is the first to demonstrate both a precipitating electrocardiographic and genetic cause of death for an infant with LQTS, showing a cause-and-effect relationship between LQTS mutation, ventricular arrhythmia, and death. We wonder whether universal ECG newborn screening to prevent LQTS death could have saved this baby. PMID:27465075

  18. Right ventricular cyclic nucleotide signaling is decreased in hyperoxia-induced pulmonary hypertension in neonatal mice

    PubMed Central

    Heilman, Rachel P.; Lagoski, Megan B.; Lee, Keng Jin; Taylor, Joann M.; Kim, Gina A.; Berkelhamer, Sara K.; Steinhorn, Robin H.

    2015-01-01

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 25–35% of premature infants with significant bronchopulmonary dysplasia (BPD), increasing morbidity and mortality. We sought to determine the role of phosphodiesterase 5 (PDE5) in the right ventricle (RV) and left ventricle (LV) in a hyperoxia-induced neonatal mouse model of PH and RVH. After birth, C57BL/6 mice were placed in room air (RA) or 75% O2 (CH) for 14 days to induce PH and RVH. Mice were euthanized at 14 days or recovered in RA for 14 days or 42 days prior to euthanasia at 28 or 56 days of age. Some pups received sildenafil or vehicle (3 mg·kg−1·dose−1 sc) every other day from P0. RVH was assessed by Fulton's index [RV wt/(LV + septum) wt]. PDE5 protein expression was analyzed via Western blot, PDE5 activity was measured by commercially available assay, and cGMP was measured by enzyme-linked immunoassay. Hyperoxia induced RVH in mice after 14 days, and RVH did not resolve until 56 days of age. Hyperoxia increased PDE5 expression and activity in RV, but not LV + S, after 14 days. PDE5 expression normalized by 28 days of age, but PDE5 activity did not normalize until 56 days of age. Sildenafil given during hyperoxia prevented RVH, decreased RV PDE5 activity, and increased RV cGMP levels. Mice with cardiac-specific overexpression of PDE5 had increased RVH in RA. These findings suggest normal RV PDE5 function is disrupted by hyperoxia, and elevated PDE5 contributes to RVH and remodeling. Therefore, in addition to impacting the pulmonary vasculature, sildenafil also targets PDE5 in the neonatal mouse RV and decreases RVH. PMID:25862831

  19. Development of play behavior in neonatally undernourished rats.

    PubMed

    Loranca, A; Torrero, C; Salas, M

    1999-03-01

    The effects of neonatal food and sensory deprivation on play social behavior (boxing, wrestling, and pinning) were studied in male and female Wistar strain rats from 20 to 60 days of age. Data showed that the mean frequency of total play was markedly increased in neonatally underfed subjects. Play did also increase in the females and during the interaction in pairs and in the play that occurred during the prepuberal period. These findings suggest that early food restriction and the unavoidable sensory deprivation associated to the undernourishing procedure, interfere with the neuroendocrine maturational processes of central and peripheral modulatory mechanisms underlying play behavior. PMID:10222466

  20. Norwood Stage 1 With Surgical Ventricular Reconstruction and Mitral Valve Repair for Neonatal Idiopathic Left Ventricular Dilated Cardiomyopathy.

    PubMed

    Myers, Patrick O; Sologashvili, Tornike; Beghetti, Maurice; Tissot, Cécile

    2016-07-01

    A newborn girl presented with a prenatal diagnosis of dilated left ventricular cardiomyopathy, mitral valve regurgitation, and ductal-dependent circulation. The left ventricle was severely dilated and hypokinetic. The patient underwent Norwood stage 1 single ventricle palliation with a Damus-Kaye-Stansel anastomosis, atrioseptectomy, and a modified Blalock-Taussig shunt. The left ventricle was managed with Batista surgical ventricular reconstruction, with resection of the dilated and thinned ventricular myocardium, along with periventricular Alfieri repair of the mitral valve. The patient had an uneventful postoperative recovery, followed by stage 2 bidirectional Glenn and tricuspid valvuloplasty at 2.75 months of age. PMID:27343520

  1. Electrical stimulation of primary neonatal rat ventricular cardiomyocytes using pacemakers.

    PubMed

    Martherus, Ruben S R M; Zeijlemaker, Volkert A; Ayoubi, Torik A Y

    2010-01-01

    The study of gene regulation in cardiac myocytes requires a reliable in vitro model. However, monolayer cultures used for this purpose are typically not exposed to electrical stimulation, though this has been shown to strongly affect cardiomyocyte gene expression. Based on pacemakers for clinical use, we developed an easy-to-use portable system that allows the user to perform electro-stimulation of cardiomyocyte cultures in standard tissue incubators without the need for bulky equipment. In addition, we present a refined protocol for culturing high-purity cardiomyocyte cultures with excellent contractile properties for a wide variety of applications. PMID:20078430

  2. Altered ovarian responsiveness to gonadotropins in neonatally irradiated immature rats

    SciTech Connect

    Freud, A.; Sod-Moriah, U.A.

    1988-01-01

    Female rats which were exposed to a single low dose of gamma irradiation (6R or 15R) at the age of 8 days produce smaller litters when mature than untreated controls. In order to study the possibility that such an impaired reproductive performance could result from a reduced ovulation rate, neonatally irradiated females were treated with PMSG (12 iu/rat) at the age of 26 days. Another group of rats, similarly treated, was further injected with hCG (5 iu/rat) 48 hours later. Animals were killed 48, 55, 60 and 72 hours after PMSG treatment or 72 and 120 after hCG injection. The results indicated that PMSG treatment increased the ovarian weight of non-irradiated controls as well as of irradiated rats and in all animals induced a proestrus like profile of LH. Only a combined treatment of PMSG and hCG resulted in ovulation and corpora lutea formation with significantly increased numbers of corpora lutea in the ovaries of the irradiated rats. The latter was associated with higher progesterone plasma levels not correlated to the number of corpora lutea. The gradual decrease in the number of ovarian binding sites for hCG with increased radiation dose and the increased association constant in the 15R group could not explain the increased sensitivity of the ovary to exogenous gonadotropins which results from neonatal exposure to low doses of gamma irradiation.

  3. CHARACTERIZATION OF RESPIRATORY DISEASE IN RATS FOLLOWING NEONATAL INOCULATION WITH A RAT-ADAPTED INFLUENZA VIRUS

    EPA Science Inventory

    Neonatal F344 rats were infected with a rat-adapted influenza virus (RAIV) as a potential model to study the combined effects of early life viral respiratory infection with air pollutant dosimetry and toxic responses, as well as on the development of respiratory disease and incre...

  4. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure

    PubMed Central

    Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.

    2015-01-01

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0–4 or 0–10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  5. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure.

    PubMed

    Goss, Kara N; Cucci, Anthony R; Fisher, Amanda J; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S; Ahlfeld, Shawn K; Lahm, Tim

    2015-04-15

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0-4 or 0-10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  6. Organ Explant Culture of Neonatal Rat Ventricles: A New Model to Study Gene and Cell Therapy

    PubMed Central

    den Haan, A. Dénise; Veldkamp, Marieke W.; Bakker, Diane; Boink, Geert J. J.; Janssen, Rob B.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2013-01-01

    Testing cardiac gene and cell therapies in vitro requires a tissue substrate that survives for several days in culture while maintaining its physiological properties. The purpose of this study was to test whether culture of intact cardiac tissue of neonatal rat ventricles (organ explant culture) may be used as a model to study gene and cell therapy. We compared (immuno) histology and electrophysiology of organ explant cultures to both freshly isolated neonatal rat ventricular tissue and monolayers. (Immuno) histologic studies showed that organ explant cultures retained their fiber orientation, and that expression patterns of α-actinin, connexin-43, and α-smooth muscle actin did not change during culture. Intracellular voltage recordings showed that spontaneous beating was rare in organ explant cultures (20%) and freshly isolated tissue (17%), but common (82%) in monolayers. Accordingly, resting membrane potential was -83.9±4.4 mV in organ explant cultures, −80.5±3.5 mV in freshly isolated tissue, and −60.9±4.3 mV in monolayers. Conduction velocity, measured by optical mapping, was 18.2±1.0 cm/s in organ explant cultures, 18.0±1.2 cm/s in freshly isolated tissue, and 24.3±0.7 cm/s in monolayers. We found no differences in action potential duration (APD) between organ explant cultures and freshly isolated tissue, while APD of monolayers was prolonged (APD at 70% repolarization 88.8±7.8, 79.1±2.9, and 134.0±4.5 ms, respectively). Organ explant cultures and freshly isolated tissue could be paced up to frequencies within the normal range for neonatal rat (CL 150 ms), while monolayers could not. Successful lentiviral (LV) transduction was shown via Egfp gene transfer. Co-culture of organ explant cultures with spontaneously beating cardiomyocytes increased the occurrence of spontaneous beating activity of organ explant cultures to 86%. We conclude that organ explant cultures of neonatal rat ventricle are structurally and electrophysiologically similar to

  7. Homeostatic control of manganese excretion in the neonatal rat

    SciTech Connect

    Ballatori, N.; Miles, E.; Clarkson, T.W.

    1987-05-01

    Previous studies in neonatal and suckling animals showed that immature animals have a greatly diminished capacity to excrete manganese and therefore were considered to be unable to regulate tissue manganese concentrations. In contrast, the present studies indicate that suckling rats have the capacity to excrete excess manganese at rates nearly comparable to those of adults. Eight- to 10-day-old rats given a tracer dose of /sup 54/MnCl/sub 2/ (essentially carrier free), either via gavage or by intraperitoneal injection showed little elimination of the /sup 54/Mn until the 18-19th day of life, when there was an abrupt increase in the rate of the metal's excretion. However, when manganese was given in doses of 1 and 10 mg/kg, the young animals excreted from 30-70% of the dose in only 4 days, at which time a new rate of excretion was achieved. This enhanced rate of excretion remained constant until the 18-19th day of life, when it was again accelerated. Biliary excretion of manganese, the primary route for the elimination of the metal, was only 30-60% lower in 14-day-old rats compared with adults at doses ranging from tracer to 10 mg /sup 54/Mn/kg. For both the 14-day-old and adult rats, an apparent biliary transport maximum was reached at a dose of 10 mg Mn/kg. These studies indicate that the excretory pathways for manganese are well developed in the neonatal rat. The avid retention of tracer quantities of manganese by the neonate may be a consequence of the scarcity of this essential trace metal in its diet.

  8. Evidence of ventricular contamination of the optical signal in preterm neonates with post hemorrhagic ventricle dilation

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; Diop, M.; McLachlan, P.; de Ribaupierre, S.; Lee, D. S. C.; St. Lawrence, K.

    2015-03-01

    Dilation of the cerebral ventricles is a common condition in preterm neonates with intraventricular hemorrhage (IVH). This post hemorrhagic ventricle dilation (PHVD) can lead to lifelong neurological impairment through ischemic injury due to increased intracranial pressure (ICP). Interventions, such as ventricular tapping to remove cerebrospinal fluid (CSF), are used to prevent injury, but determining the optimal time for treatment is difficult as clinical signs of increased ICP lack sensitivity. There is a growing interest in using near-infrared spectroscopy (NIRS) because of its ability to monitor cerebral oxygen saturation (StO2) at the bedside. However, the accuracy of NIRS may be affected by signal contamination from enlarged ventricles, especially if there are blood breakdown products (bbp) in CSF following IVH. To investigate this, serial NIR spectra from the head and from CSF samples were acquired over a month from seven IVH patients undergoing treatment for PHVD. Over time, the visual appearance of the CSF samples progressed from dark brown ("tea color") to clear yellow, reflecting the reduction in bbp concentration as confirmed by the stronger absorption around 760 nm at the earlier time points. All CSF samples contained strong absorption at 960 nm due to water. More importantly the same trend in these absorption features was observed in the in vivo spectra, and Monte Carlo simulations confirmed the potential for signal contamination from enlarged ventricles. These findings highlight the challenges of accurately measuring StO2 in this patient population and the necessity of using a hyperspectral NIRS system to resolve the additional chromophores.

  9. Neurotoxin-induced neuropeptide perturbations in striatum of neonatal rats.

    PubMed

    Karlsson, Oskar; Kultima, Kim; Wadensten, Henrik; Nilsson, Anna; Roman, Erika; Andrén, Per E; Brittebo, Eva B

    2013-04-01

    The cyanobacterial toxin β-N-methylamino-l-alanine (BMAA) is suggested to play a role in neurodegenerative disease. We have previously shown that although the selective uptake of BMAA in the rodent neonatal striatum does not cause neuronal cell death, exposure during the neonatal development leads to cognitive impairments in adult rats. The aim of the present study was to characterize the changes in the striatal neuropeptide systems of male and female rat pups treated neonatally (postnatal days 9-10) with BMAA (40-460 mg/kg). The label-free quantification of the relative levels of endogenous neuropeptides using mass spectrometry revealed that 25 peptides from 13 neuropeptide precursors were significantly changed in the rat neonatal striatum. The exposure to noncytotoxic doses of BMAA induced a dose-dependent increase of neurosecretory protein VGF-derived peptides, and changes in the relative levels of cholecystokinin, chromogranin, secretogranin, MCH, somatostatin and cortistatin-derived peptides were observed at the highest dose. In addition, the results revealed a sex-dependent increase in the relative level of peptides derived from the proenkephalin-A and protachykinin-1 precursors, including substance P and neurokinin A, in female pups. Because several of these peptides play a critical role in the development and survival of neurons, the observed neuropeptide changes might be possible mediators of BMAA-induced behavioral changes. Moreover, some neuropeptide changes suggest potential sex-related differences in susceptibility toward this neurotoxin. The present study also suggests that neuropeptide profiling might provide a sensitive characterization of the BMAA-induced noncytotoxic effects on the developing brain. PMID:23410195

  10. Rutaecarpine attenuates hypoxia-induced right ventricular remodeling in rats.

    PubMed

    Li, Wen-Qun; Li, Xiao-Hui; Du, Jie; Zhang, Wang; Li, Dai; Xiong, Xiao-Ming; Li, Yuan-Jian

    2016-07-01

    Rutaecarpine has been shown to exhibit wide pharmacological effects in the cardiovascular system via stimulation of calcitonin gene-related peptide (CGRP) release. In the present study, the effect of rutaecarpine on hypoxia-induced right ventricular (RV) remodeling and the underlying mechanisms were evaluated. RV remodeling was induced by hypoxia (10 % O2, 3 weeks) in rats. Rats were treated with rutaecarpine (20 or 40 mg/kg) by intragastric administration. Proliferation of cardiac fibroblasts was induced by TGF-β1 (5 ng/mL) and determined by MTS and EdU incorporation method. Cardiac fibroblasts were treated with exogenous CGRP (10 or 100 nM). The concentrations of CGRP and TGF-β1 in plasma were measured by ELISA. The expression of eIF3a, p27, α-SMA, collagen-I/III, ANP, and BNP were measured by real-time PCR or western blot. Hypoxia induced an increase of right ventricle systolic pressure (RVSP), ration of RV/LV+S, and RV/tibial length in rats, while cardiac hypertrophy, apoptosis, and fibrosis were detected. The expression of ANP, BNP, α-SMA, collagen-I, collagen-III, eIF3a, and TGF-β1 was up-regulated, and the expression of p27 was down-regulated in the right ventricle of hypoxia-treated rats. The plasma concentration of CGRP was decreased and TGF-β1 was increased in hypoxia-treated rats. All of these effects induced by hypoxia were attenuated by rutaecarpine in a dose-dependent manner. In cultured cardiac fibroblasts, TGF-β1 significantly promoted the proliferation and up-regulated the expression of α-SMA and collagen-I/III, while the expression of eIF3a was up-regulated and the expression of p27 was down-regulated. The effects of TGF-β1 were attenuated by CGRP. CGRP8-37, a selective CGRP receptor antagonist, abolished the effects of CGRP. Rutaecarpine attenuates hypoxia-induced RV remodeling via stimulation of CGRP release, and the effects of rutaecarpine involve the eIF3a/p27 pathway. PMID:27052575

  11. Physiological pathway of magnesium influx in rat ventricular myocytes.

    PubMed

    Tashiro, Michiko; Inoue, Hana; Konishi, Masato

    2014-11-01

    Cytoplasmic free Mg(2+) concentration ([Mg(2+)]i) was measured in rat ventricular myocytes with a fluorescent indicator furaptra (mag-fura-2) introduced by AM-loading. By incubation of the cells in a high-K(+) (Ca(2+)- and Mg(2+)-free) solution, [Mg(2+)]i decreased from ? 0.9 mM to 0.2 to 0.5 mM. The lowered [Mg(2+)]i was recovered by perfusion with Ca(2+)-free Tyrode's solution containing 1 mM Mg(2+). The time course of the [Mg(2+)]i recovery was fitted by a single exponential function, and the first derivative at time 0 was analyzed as being proportional to the initial Mg(2+) influx rate. The Mg(2+) influx rate was inversely related to [Mg(2+)]i, being higher at low [Mg(2+)]i. The Mg(2+) influx rate was augmented by the high extracellular Mg(2+) concentration (5 mM), whereas it was greatly reduced by cell membrane depolarization caused by high K(+). Known inhibitors of TRPM7 channels, 2-aminoethoxydiphenyl borate (2-APB), NS8593, and spermine reduced the Mg(2+) influx rate with half inhibitory concentrations (IC50) of, respectively, 17 ?M, 2.0 ?M, and 22 ?M. We also studied Ni(2+) influx by fluorescence quenching of intracellular furaptra by Ni(2+). The Ni(2+) influx was activated by lowering intra- and extracellular Mg(2+) concentrations, and it was inhibited by 2-APB and NS8593 with IC50 values comparable with those for the Mg(2+) influx. Intracellular alkalization (caused by pulse application of NH4Cl) enhanced, whereas intracellular acidification (induced after the removal of NH4Cl) slowed the Mg(2+) influx. Under the whole-cell patch-clamp configuration, the removal of intracellular and extracellular divalent cations induced large inward and outward currents, MIC (Mg-inhibited cation) currents or IMIC, carried by monovalent cations likely via TRPM7 channels. IMIC measured at -120 mV was diminished to ? 50% by 100 ?M 2-APB or 10 ?M NS8593. These results suggest that TRPM7/MIC channels serve as a major physiological pathway of Mg(2+) influx in rat

  12. A Neonate with Susceptibility to Long QT Syndrome Type 6 who Presented with Ventricular Fibrillation and Sudden Unexpected Infant Death.

    PubMed

    Sauer, Charles W; Marc-Aurele, Krishelle L

    2016-01-01

    BACKGROUND This is a case of a neonate with susceptibility to long QT syndrome (LQTS) who presented with a sudden unexpected infant death. Experts continue to debate whether universal electrocardiogram (ECG) screening of all newborns is feasible, practical, and cost-effective. CASE REPORT A 19-day-old neonate was found unresponsive by her mother. ECG showed ventricular fibrillation and a combination of a lidocaine drip plus multiple defibrillations converted the rhythm to normal sinus. Unfortunately, MRI brain imaging showed multiple infarcts and EEG showed burst suppression pattern with frequent seizures; life supportive treatment was stopped and the infant died. Genetic testing revealed two mutations in the KCNE2 gene consistent with susceptibility to LQTS type 6. CONCLUSIONS We believe this case is the first to demonstrate both a precipitating electrocardiographic and genetic cause of death for an infant with LQTS, showing a cause-and-effect relationship between LQTS mutation, ventricular arrhythmia, and death. We wonder whether universal ECG newborn screening to prevent LQTS death could have saved this baby. PMID:27465075

  13. The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure

    PubMed Central

    Bae, Hyun Kyung; Lee, Hyeryon; Kim, Kwan Chang

    2016-01-01

    Purpose Pulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF. Methods The rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed. Results The mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-α, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4. Conclusion Sildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function. PMID:27462355

  14. Role of cyclooxygenase-2 in intestinal injury in neonatal rats

    PubMed Central

    LU, HUI; ZHU, BING

    2014-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature neonates. The pathogenesis of NEC remains poorly understood. The present study aimed to investigate the dynamic change and role of cyclooxygenase-2 (COX-2) in neonatal rats with intestinal injury. Wistar rats, <24 h in age, received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileal tissues were collected at 1, 3, 6, 12 and 24 h following the LPS challenge for histological evaluation of NEC and for measurements of COX-2 mRNA. The correlation between the degree of intestinal injury and expression of COX-2 mRNA was determined. The LPS-injected pups showed a significant increase in injury scores compared to the control, and the most deteriorating change was at 12 h. COX-2 mRNA expression was upregulated following LPS injection. There was a significantly positive correlation between COX-2 mRNA and the grade of intestinal injury within 12 h, whereas COX-2 mRNA expression had a significantly negative correlation with the severity of intestinal injury at 24 h. COX-2 plays an important role in LPS-induced intestinal injury and the repair processes. Caution should be exerted concerning the potential therapeutic uses of COX-2 inhibitors or promoters in NEC. PMID:25279162

  15. Prenatal cocaine exposure increases apoptosis of neonatal rat heart and heart susceptibility to ischemia–reperfusion injury in 1-month-old rat

    PubMed Central

    Bae, Soochan; Zhang, Lubo

    2005-01-01

    Maternal cocaine administration during pregnancy increased apoptosis in near-term fetal rat heart. The present study tested the hypothesis that prenatal cocaine exposure increases the heart susceptibility to ischemia/reperfusion injury in the offspring. Pregnant Sprague–Dawley rats received cocaine (30 mg kg−1 day−1) or saline from days 15 to 21 of gestational age. Maternal body weights were not significantly different at the end of cocaine treatment, but body weights of offspring were decreased slightly at ages of 1, 3, and 7 days. Although heart-to-body weight ratio was not affected at all ages examined, prenatal cocaine significantly increased left ventricular myocyte size at an age of 30 days. Additionally, prenatal cocaine increased DNA fragmentation measured in the hearts isolated from offspring of 1, 3, 7, and 21 days, but not of 30 days, with the peak at 3-day neonates. Antiapoptotic (Bcl-2 and Bcl-XL) and proapoptotic (Bax and Bad) proteins were expressed in neonatal rat hearts of both groups. Prenatal cocaine exposure decreased levels of Bcl-2 in 21-day and increased Bax in 21- and 30-day rat hearts. In addition, hearts of 30-day-old male progeny were studied using the Langendorff preparation, and were subjected to 25 min of ischemia and 60 min of reperfusion. Preischemic baseline values of left ventricular (LV) function were the same between the two groups. However, prenatal cocaine exposure significantly attenuated postischemic recovery of LV function, and significantly increased elevated LV end diastolic pressure during reperfusion. This was associated with a significant increase in ischemia/reperfusion-induced LV myocardial infarct size. The results suggest that prenatal cocaine exposure induces abnormal apoptosis and myocyte hypertrophy in postnatal heart, leading to an increased heart susceptibility to ischemic insults in postnatal life. PMID:15685203

  16. l-Arginine currents in rat cardiac ventricular myocytes

    PubMed Central

    Peluffo, R Daniel

    2007-01-01

    l-Arginine (l-Arg) is a basic amino acid that plays a central role in the biosynthesis of nitric oxide, creatine, agmantine, polyamines, proline and glutamate. Most tissues, including myocardium, must import l-Arg from the circulation to ensure adequate intracellular levels of this amino acid. This study reports novel l-Arg-activated inward currents in whole-cell voltage-clamped rat ventricular cardiomyocytes. Ion-substitution experiments identified extracellular l-Arg as the charge-carrying cationic species responsible for these currents, which, thus, represent l-Arg import into cardiac myocytes. This result was independently confirmed by an increase in myocyte nitric oxide production upon extracellular application of l-Arg. The inward movement of Arg molecules was found to be passive and independent of Na2+, K2+, Ca2+ and Mg2+. The process displayed saturation and membrane potential (Vm)-dependent kinetics, with a K0.5 for l-Arg that increased from 5 mm at hyperpolarizing Vm to 20 mm at +40 mV. l-Lysine and l-ornithine but not d-Arg produced currents with characteristics similar to that activated by l-Arg indicating that the transport process is stereospecific for cationic l-amino acids. l-Arg current was fully blocked after brief incubation with 0.2 mmN-ethylmaleimide. These features suggest that the activity of the low-affinity, high-capacity CAT-2A member of the y2+ family of transporters is responsible for l-Arg currents in acutely isolated cardiomyocytes. Regardless of the mechanism, we hypothesize that a low-affinity arginine transport process in heart, by ensuring substrate availability for sustained NO production, might play a cardio-protective role during catabolic states known to increase Arg plasma levels severalfold. PMID:17303641

  17. Effects of hindlimb unloading on neuromuscular development of neonatal rats

    NASA Technical Reports Server (NTRS)

    Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.

    2000-01-01

    We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.

  18. Effects of acrylamide on primary neonatal rat astrocyte functions.

    PubMed

    Aschner, Michael; Wu, Qi; Friedman, Marvin A

    2005-08-01

    The present study assessed biochemical endpoints indicative of acrylamide toxicity in astrocyte cultures derived from neonatal rat pups. Given earlier reports on the possible ability of acrylamide to induce astrocytomas in the Fischer 344 rat, we performed studies in neonatal rat astrocyte cultures from the Fischer 344 to assess the ability of acrylamide to induce astrocytic proliferation. Measurements on astrocytic proliferation included [3H]-leucine incorporation, [3H]-thymidine incorporation, and changes in proliferating cell nuclear antigen (PCNA). Although acrylamide (0.1 and 1 mM for 7, 11, 15, or 20 days) did not significantly (P > 0.05) affect [3H]-leucine or [3H]-thymidine incorporation, it significantly (P < 0.05) increased PCNA protein expression in astrocytes exposed to acrylamide for 15 and 20 days. Additional studies revealed that this effect on PCNA protein expression was not associated with activation of dopamine-2 (D2) receptors, given that quinpirole (10 microM added to cultures for the last hour of 7, 11, 15, or 20 days in culture), a selective D2 receptor agonist, did not produce results analogous to those seen with acrylamide treatment. Cotreatment of astrocytes with acrylamide (7, 11, 15, or 20 days) and the D2 receptor antagonist, sulpiride (1 microM for the last 6 h of exposure), also failed to reverse acrylamide's effect on PCNA protein induction. Taken together, these studies suggest that acrylamide promotes astrocytic cell proliferation in the CNS even though DNA synthesis did not appear stimulated. PMID:16179551

  19. Buyanghuanwu Tang therapy for neonatal rats with hypoxic ischemic encephalopathy

    PubMed Central

    Liu, Xiyao; Min, Yue; Gu, Weiwang; Wang, Yujue; Tian, Yuguang

    2015-01-01

    Background: Neonatal hypoxic-ischemic encephalopathy (HIE) is a clinical syndrome manifested by neurological symptoms in the first days of life in term infants. Purpose: To investigate the therapy effect of Buyanghuanwu Tang (BYHWT), a decoction with 7 herbal ingredients, on neonatal rats with hypoxic ischemic encephalopathy (HIE) and its mechanism. Methods: 50 3-week male Sprague-Dawley rats were divided into normal control group, model group, BYHWT 1d group, BYHWT 3d group and BYHWT 7d group, 10 rats in each group. The HIE model of was established in later 4 groups. The later 3 groups were treated with BYHWT for 1, 3 and 7 days, respectively, and the normal control group and model group were treated with PBS. The Morris water maze test and dynamic 18F-FDG-PET/CT imaging were performed. The changes of hippocampal tissue observed by histopathologic examination, and the expressions of JNK1/JNK2 and TNF-α protein were observed western blotting. Results: Compared with model group, the impaired performance on distance and latency parameters was mitigated in BYHWT 1d group, BYHWT 3d group and BYHWT 7d group (P < 0.01), the FDG uptake was decreased in BYHWT 3d group and BYHWT 7d group, the apoptotic cells and inflammatory cells were significantly decreased in BYHWT 3d group and BYHWT 7d group, and the expressions of JNK1/JNK2 and TNF-α protein were significantly decreased in BYHWT 7d group (P < 0.05). Conclusion: BYHWT can delay the HIE onset and preserve the motor function, primarily by regulating inflammation, apoptosis and inhibition by mediating JNK signaling. PMID:26770451

  20. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium.

    PubMed

    Majumder, Rupamanjari; Engels, Marc C; de Vries, Antoine A F; Panfilov, Alexander V; Pijnappels, Daniël A

    2016-01-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity. PMID:27072041

  1. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium

    NASA Astrophysics Data System (ADS)

    Majumder, Rupamanjari; Engels, Marc C.; de Vries, Antoine A. F.; Panfilov, Alexander V.; Pijnappels, Daniël A.

    2016-04-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity.

  2. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium

    PubMed Central

    Majumder, Rupamanjari; Engels, Marc C.; de Vries, Antoine A. F.; Panfilov, Alexander V.; Pijnappels, Daniël A.

    2016-01-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity. PMID:27072041

  3. Developmental plasticity of the hypoxic ventilatory response in rats induced by neonatal hypoxia

    PubMed Central

    Bavis, R W; Olson, E B; Vidruk, E H; Fuller, D D; Mitchell, G S

    2004-01-01

    Neonatal hypoxia alters the development of the hypoxic ventilatory response in rats and other mammals. Here we demonstrate that neonatal hypoxia impairs the hypoxic ventilatory response in adult male, but not adult female, rats. Rats were raised in 10% O2 for the first postnatal week, beginning within 12 h after birth. Subsequently, ventilatory responses were assessed in 7- to 9-week-old unanaesthetized rats via whole-body plethysmography. In response to 12% O2, male rats exposed to neonatal hypoxia increased ventilation less than untreated control rats (mean ±s.e.m. 35.2 ± 7.7%versus 67.4 ± 9.1%, respectively; P = 0.01). In contrast, neonatal hypoxia had no lasting effect on hypoxic ventilatory responses in female rats (67.9 ± 12.6%versus 61.2 ± 11.7% increase in hypoxia-treated and control rats, respectively; P > 0.05). Normoxic ventilation was unaffected by neonatal hypoxia in either sex at 7–9 weeks of age (P > 0.05). Since we hypothesized that neonatal hypoxia alters the hypoxic ventilatory response at the level of peripheral chemoreceptors or the central neural integration of chemoafferent activity, integrated phrenic responses to isocapnic hypoxia were investigated in urethane-anaesthetized, paralysed and ventilated rats. Phrenic responses were unaffected by neonatal hypoxia in rats of either sex (P > 0.05), suggesting that neonatal hypoxia-induced plasticity occurs between the phrenic nerve and the generation of airflow (e.g. neuromuscular junction, respiratory muscles or respiratory mechanics) and is not due to persistent changes in hypoxic chemosensitivity or central neural integration. The basis of sex differences in this developmental plasticity is unknown. PMID:15020695

  4. Neuroprotection by Melatonin after Germinal Matrix Hemorrhage in Neonatal Rats

    PubMed Central

    Lekic, Tim; Manaenko, Anatol; Rolland, William; Virbel, Kelly; Hartman, Richard; Tang, Jiping

    2013-01-01

    Background Germinal matrix hemorrhage (GMH) is a devastating neurological disorder of very low birth weight premature infants that leads to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Melatonin is a potent antioxidant known to reverse free-radical mediated injury in the brain. This study investigated the effect of melatonin treatment after GMH injury. Methods Clostridial collagenase was infused into the right germinal matrix region of neonatal rats with stereotaxic technique. Cognitive function, sensorimotor ability, cerebral, cardiac and splenic growths were measured in juvenile animals. Results Systemic melatonin treatment ameliorated cognitive and sensorimotor dysfunction at the juvenile developmental stage. This hormone also normalized brain atrophy, splenomegaly, and cardiac hypertrophy consequences at 1 month after injury. Conclusion This study supports the role of free radicals in acute neonatal hemorrhagic brain injury. Melatonin is an effective antioxidant that can protect the infant’s brain from the post-hemorrhagic consequences of mental retardation and cerebral palsy. Further mechanistic studies are warranted to determine the mechanisms behind these neuroprotective effects. PMID:21725756

  5. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    PubMed Central

    2010-01-01

    Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics

  6. The relationship between contraction and intracellular sodium in rat and guinea-pig ventricular myocytes.

    PubMed Central

    Harrison, S M; McCall, E; Boyett, M R

    1992-01-01

    1. The contraction, measured optically, and the intracellular Na+ activity (aNai), measured with the Na(+)-sensitive fluorescent dye SBFI, have been recorded simultaneously in rat and guinea-pig ventricular myocytes. 2. In rat and guinea-pig ventricular myocytes at rest, aNai was 7.8 +/- 0.3 mM (n = 4) and 5.1 +/- 0.3 mM (n = 16), respectively. 3. When both rat and guinea-pig ventricular myocytes were stimulated at 1 Hz after a rest there was usually a gradual increase in twitch shortening (referred to as a 'staircase') over several minutes accompanied by an increase in aNai over a similar time course. Twitch shortening increased by 21 +/- 3% (n = 6) and 20 +/- 4% (n = 16) (of steady-state twitch shortening during 1 Hz stimulation) per millimolar rise in aNai in rat and guinea-pig ventricular myocytes, respectively. 4. When rat and guinea-pig ventricular myocytes were exposed to strophanthidin to block the Na(+)-K+ pump, there were increases in twitch shortening and aNai over similar time courses. Twitch shortening increased by 24 +/- 4% (n = 5) and 20 +/- 3% (n = 10) (of control twitch shortening) per millimolar rise in aNai in rat and guinea-pig ventricular myocytes respectively. 5. The inotropic effect of cardiac glycosides, such as strophanthidin, is widely regarded to be principally the result of the rise in aNai. The similarity of the relation between twitch shortening and aNai during the staircase and on application of strophanthidin suggests that the progressive increase in the strength of contraction during the staircase was also linked to the rise in aNai. 6. In guinea-pig, but not rat, ventricular myocytes there was hysteresis in the relation between twitch shortening and aNai on application and wash-off of strophanthidin. This indicates that strophanthidin has another inotropic action in guinea-pig ventricular myocytes. 7. A computer model of excitation-contraction coupling has been developed to simulate the staircase and the action of cardiac glycoside

  7. A Case of Neonatal Heart Failure Caused by Left Ventricular Diverticulum: Successful ECMO Support Application.

    PubMed

    Gocen, Ugur; Atalay, Atakan; Salih, Orhan Kemal

    2016-01-01

    Congenital left ventricular diverticulum is a rare cardiac anomaly. During the newborn period, symptomatic patients are diagnosed with heart failure findings. We present a 23-day-old male newborn with congenital left ventricular diverticulum diagnosed during fetal echocardiographic examination. After the birth, the patient had heart failure symptoms and his echocardiographic examination showed low cardiac ejection fraction. Diverticulum was operated with endoventricular circular patch plasty (DOR) technique, and after, cardiopulmonary bypass venoarterial extracorporeal membrane oxygenation (ECMO) support was performed because of low cardiac output syndrome. On postoperative day 17, he was discharged with no problem. PMID:27585200

  8. GESTATIONAL MERCURY VAPOR EXPOSURE AND DIET CONTRIBUTE TO MERCURY ACCUMULATION IN NEONATAL RATS.

    EPA Science Inventory

    Exposure of pregnant Long-Evans rats to elemental mercury (Hg0) vapor resulted in a significant

    accumulation of Hg in tissues of neonates. Because elevated Hg in neonatal tissues may adversely

    affect growth and development, we were interested in how rapidly Hg was...

  9. Vitamin D supply to the rat fetus and neonate.

    PubMed Central

    Clements, M R; Fraser, D R

    1988-01-01

    The prevention of neonatal rickets by oral supplementation with vitamin D2 (ergocalciferol) has tended to obscure our ignorance of the natural mechanism by which young mammals receive an adequate supply of vitamin D. To investigate the possibility of specific intrauterine transfer and storage of vitamin D in fetal tissues, vitamin D-deficient female rats were given depot injections of 3H- or 14C-labeled vitamin D3 (cholecalciferol) before mating and the 3H-labeled animals were killed at stages during the last third of gestation. Analysis of lipid extracts from whole fetuses revealed a linear increase in the concentration of 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, and D3 itself between days 14 and 19 of gestation. During this period the elimination half-time of 3H-labeled molecules in maternal plasma fell from 27.1 to 4.4 d, suggesting that a specific mechanism was transferring vitamin D molecules into the fetuses. The vitamin was stored predominantly as 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3, with the highest concentrations in fetal muscle. Immediately after birth, pups from 3H- and 14C-labeled mothers were exchanged and later killed after 1-3 wk of suckling. Analysis of total lipid extracts for 3H and 14C content determined the relative contributions of vitamin D supplied before birth via the placenta and after birth in the maternal milk. The vitamin D content of the rat milk was relatively high, between 1.0 and 3.5 micrograms/liter. Nevertheless, the supply of vitamin D in utero, rather than from milk, was the main determinant of vitamin D status in early neonatal life. This is the first indication in a mammal of a specific transfer mechanism that allows the fetus to accumulate vitamin D from the mother during the last third of gestation. PMID:2838521

  10. Outcome of prolonged ventricular fibrillation and CPR in a rat model of chronic ischemic left ventricular dysfunction.

    PubMed

    Fang, Xiangshao; Huang, Lei; Sun, Shijie; Weil, Max Harry; Tang, Wanchun

    2013-01-01

    Patients with chronic left ventricular (LV) dysfunction are assumed to have a lower chance of successful CPR and lower likelihood of ultimate survival. However, these assumptions have rarely been documented. Therefore, we investigated the outcome of prolonged ventricular fibrillation (VF) and CPR in a rat model of chronic LV dysfunction. Sprague-Dawley rats were randomized to (1) chronic LV dysfunction: animals underwent left coronary artery ligation; and (2) sham control. Echocardiography was used to measure cardiac performance before surgery and 4 weeks after surgery. Four weeks after surgical intervention, 8 min of VF was induced and defibrillation was delivered after 8 min of CPR. LV dilation and low ejection fraction were observed 4 weeks after coronary ligation. With optimal chest compressions, coronary perfusion pressure values during CPR were well maintained and indistinguishable between groups. There were no differences in resuscitability and numbers of shock required for successful resuscitation between groups. Despite the significantly decreased cardiac index in LV dysfunction animals before induction of VF, no differences in cardiac index were observed between groups following resuscitation, which was associated with the insignificant difference in postresuscitation survival. In conclusion, the outcomes of CPR were not compromised by the preexisting chronic LV dysfunction. PMID:24455704

  11. Stroma Cell-Derived Factor-1α Signaling Enhances Calcium Transients and Beating Frequency in Rat Neonatal Cardiomyocytes

    PubMed Central

    Hadad, Ielham; Veithen, Alex; Springael, Jean–Yves; Sotiropoulou, Panagiota A.; Mendes Da Costa, Agnès; Miot, Françoise; Naeije, Robert

    2013-01-01

    Stroma cell-derived factor-1α (SDF-1α) is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency. Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R) blocker, but not with a ryanodine receptor (RyR) antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax. These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect. PMID:23460790

  12. Stroma cell-derived factor-1α signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes.

    PubMed

    Hadad, Ielham; Veithen, Alex; Springael, Jean-Yves; Sotiropoulou, Panagiota A; Mendes Da Costa, Agnès; Miot, Françoise; Naeije, Robert; De Deken, Xavier; Entee, Kathleen Mc

    2013-01-01

    Stroma cell-derived factor-1α (SDF-1α) is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency.Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R) blocker, but not with a ryanodine receptor (RyR) antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax.These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect. PMID:23460790

  13. Neonatal dexamethasone treatment increases susceptibility to experimental autoimmune disease in adult rats.

    PubMed

    Bakker, J M; Kavelaars, A; Kamphuis, P J; Cobelens, P M; van Vugt, H H; van Bel, F; Heijnen, C J

    2000-11-15

    Major concern has emerged about the possible long term adverse effects of glucocorticoid treatment, which is frequently used for the prevention of chronic lung disease in preterm infants. Here we show that neonatal glucocorticoid treatment of rats increases the severity (p< or = 0.01) and incidence (p< or =0.01) of the inflammatory autoimmune disease experimental autoimmune encephalomyelitis in adult life. In search of possible mechanisms responsible for the increased susceptibility to experimental autoimmune encephalomyelitis, we investigated the reactivity of the hypothalamo-pituitary-adrenal axis and of immune cells in adult rats after neonatal glucocorticoid treatment. We observed that neonatal glucocorticoid treatment reduces the corticosterone response after an LPS challenge in adult rats (p< or =0.001). Interestingly, LPS-stimulated macrophages of glucocorticoid-treated rats produce less TNF-alpha and IL-1beta in adult life than control rats (p<0.05). In addition, splenocytes obtained from adult rats express increased mRNA levels of the proinflammatory cytokines IFN-gamma (p<0.01) and TNF-beta (p<0.05) after neonatal glucocorticoid treatment. Apparently, neonatal glucocorticoid treatment has permanent programming effects on endocrine as well as immune functioning in adult life. In view of the frequent clinical application of glucocorticoids to preterm infants, our data demonstrate that neonatal glucocorticoid treatment may be a risk factor for the development of (auto)immune disease in man. PMID:11067955

  14. Cardio-protecteffect of qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction

    PubMed Central

    Liang, Tuo; Zhang, Yuhui; Yin, Shijie; Gan, Tianyi; An, Tao; Zhang, Rongcheng; Wang, Yunhong; Huang, Yan; Zhou, Qiong; Zhang, Jian

    2016-01-01

    Background: Qiliqiangxin (QL) capsule is a traditional Chinese medicine which has been approved for the treatment of chronic heart failure. Evidences proved that QL capsules further reduced the NT-proBNP levels and improved left ventricular ejection fraction in CHF patients but the evidence supporting its underlying mechanism is still unclear. Methods and Results: Myocardial infarction (MI) -Heart failure (HF) Sprague-Dawley ratsmodel and neonatal rat cardiac myocytes (NRCMs) were used. Animals were assigned into 4 groups, normal group (n=6), shame-operation group (n=6), MI rats 4 weeks after left anterior descending coronary artery ligation were randomized into vehicle group (n=8), QL group (n=8). QL significantly attenuated cardiac dysfunction and ventricle remodeling as echocardiography and hemodynamic measurements showed improvement in left ventricular ejection fraction, fractional shortening, ±dp/dt and left ventricular end diastolic and systolic diameters in QL treated group compared with the vehicle group. Improvements ininterstitial fibrosisand mitochondrial structures were also exhibited by Sirius Red staining, RT-PCR and electron microscopy. QL treatment improved apoptosis and VEGF expression in rats marginal infract area. Complementary experiments analyzed the improved apoptosis and up-regulate of VEGF in ischemia-hypoxia cultivated NRCMs is in an Akt dependent manner and can be reversed by Akt inhibitor. Conclusion: QL capsule can improve cardiac dysfunction and ventricular remodeling in MI-HF ratsmodel, this cardiac protective efficacy may be concerned with attenuated apoptosis and cardiac fibrosis. Up-regulated VEGF expression and Akt phosphorylation may take part in this availability. PMID:27347313

  15. [Rat cardiomyocyte remodeling after neonatal cryptosporidiosis. II. Elongation, excessive polyploidization and HIF-1alpha overexpression].

    PubMed

    Anatskaia, O V; Sidorenko, N V; Matveev, I V; Kropotov, A V; Vinogradov, A E

    2012-01-01

    Retrospective epidemyological studies evidence that infant diseases leave survivors with an increased susceptibility to cardiovascular diseases in later life. At the same time, the mechanisms of this link remain poorly understood. Based on medical statistics reporting that infectious gastroenteritis is the most common cause of maladies in babies, infants and children, we analysed the effects of moderate cryptosporidial gastroenteritis on the heart and ventricular cardiomyocyte remodelling in rats of the first month of life. The disease was challenged by a worldwide human protozoic pathogen Cryptosporidium parvum (Apicomplexa, Sporozoa). The main symptoms manifested in the growth retardation moderate diarrhea. Using real-time PCR, cytophotometry, confocal microscopy and image analysis, we indicated that cryptosporidiosis was associated, with the atrophy heart and the elongation, narrowing, protein content decrease and hyperpolyploidization of cardiomyocytes and the moderate overexpression of hypoxia inducible factor 1alpha (HIF-1alpha) mRNA. Cardiomyocyte shape remodeling and heart atrophy presented in all age groups. The severity of these changes, hovewer, declined gradually from younger to older groups. In contrast, hyperpolyploidization and HIF-1alpha mRNA overexpression were registered mainly among animals aged between 6 and 13 days, and were barely detected and non-significant in older age groups. In the rat the time period covering 6-13 days after birth is known to coincide with the intensive cardiomyocyte polyploidization and the switch from proliferation to hypertrophy. Thus, our data indicate that neonatal cryptosporidiosis may be potential cardiovascular diseases risk factor and that one of the critical time windows for the growing heart covers the time period when cardiomyocyte undergo polyploidization. PMID:23074852

  16. The importance of hybrid stage I palliation for neonates with critical aortic stenosis and reduced left ventricular function.

    PubMed

    Misumi, Yusuke; Hoashi, Takaya; Kagisaki, Koji; Yazaki, Satoshi; Kitano, Masataka; Kurosaki, Kenichi; Shiraishi, Isao; Ichikawa, Hajime

    2015-04-01

    The optimal management strategy for neonates with congenital aortic stenosis, two balanced ventricles, and duct-dependent systemic circulation (critical aortic stenosis) is still controversial. Thirteen patients with critical aortic stenosis underwent balloon aortic valvotomy (BAV) between 1996 and 2013, at the median age of 1 day old (range 0-28). Since 2010, bilateral pulmonary artery banding with ductal stenting following BAV was conducted for patients with reduced left ventricular (LV) function as a hybrid stage I palliation for the bridge to decision for further treatment. A follow-up was completed on all patients and the median follow-up period was 3.3 years (max 16.0). The overall survival rate at 15 years was 67.1 %. Six of the seven patients with maintained LV function could go on to the definitive Ross or Konno-aortic valve replacement at the median duration of 311 days after initial BAV, without any mortality. Three of four patients with reduced LV function died before 2010 with conventional treatment. With use of a hybrid stage I palliation, one of two patients ultimately underwent Fontan completion at 38 months of age and the other successfully underwent the definitive Ross-Konno operation at 9 months of age after recovery of the LV function. Although a statistically significant improvement has not been observed yet, the application of hybrid stage I palliation following BAV would be a favorable alternative for patients with reduced LV function to avoid a high-risk neonatal Ross or Norwood-type operation, and also to determine further treatment carefully. PMID:25480352

  17. ALKYTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM NEONATAL AND ADULT RATS

    EPA Science Inventory

    The effects of triethyltin (TET) on ATPase activities in brain and liver homogenates and subcellular fractions were compared in neonatal and adult rats. n 5 day old rats, relative sensitivities to TET inhibition were: brain and liver mitochondrial ATPase >> rain Na+/K+ ATPase > b...

  18. Mechanisms by which neonatal testosterone exposure mediates sex differences in impulsivity in prepubertal rats.

    PubMed

    Bayless, Daniel W; Darling, Jeffrey S; Daniel, Jill M

    2013-11-01

    Neonatal testosterone, either acting directly or through its conversion to estradiol, can exert organizational effects on the brain and behavior. The goal of the current study was to examine sex differences and determine the role of neonatal testosterone on prefrontal cortex-dependent impulsive choice behavior in prepubertal rats. Male and female prepubertal rats were tested on the delay-based impulsive choice task. Impulsive choice was defined as choosing an immediate small food reward over a delayed large reward. In a first experiment to examine sex differences, males made significantly more impulsive choices than did females. In a second experiment to examine the organizational effects of testosterone, females treated with neonatal testosterone made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. In a third experiment to determine if the effect of testosterone on performance is due to the actions of androgens or estrogens through its conversion to estradiol, males treated neonatally with the aromatase inhibitor formestane, which blocks the conversion of testosterone to estradiol, females treated neonatally with the non-aromatizable androgen dihydrotestosterone, and females treated neonatally with estradiol made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. Results indicate that male pubertal rats display increased impulsive choice behavior as compared to females, that this sex difference results from organizing actions of testosterone during the neonatal period, and that this effect can result from both androgenic and estrogenic actions. PMID:24126137

  19. Structural characterization of rat ventricular tissue exposed to the smoke of two types of waterpipe

    PubMed Central

    Al-Awaida, Wajdy; Najjar, Hossam; Shraideh, Ziad

    2015-01-01

    Objective(s): this study focused on the effect of waterpipe smoke exposure toxicity on the structure of albino rat’s ventricular tissue and their recovery. Materials and Methods: Albino rats were divided into three groups: control, flavored, and unflavored. The control group was exposed to normal air while the flavored and unflavored groups were exposed to waterpipe smoke for a period of 90 days. Each group was followed by a period of 90 days of fresh air exposure. Following each period, the ventricular tissue was removed for biochemical and histopathological studies. Results: The ventricular tissues of waterpipe exposed rats showed some degree of separation between cardiac muscle fibers, infiltration of lymphocytes, and congestion of blood vessel. Also, thin cross sections of ventricular cells revealed pleomorphic mitochondria with partially disrupted cristae, partial disruption of the myofibrils, and deposited toxic materials. The unflavored waterpipe has more deleterious effects on heart ventricular tissues than the flavored one. Waterpipe smoke didn’t induce apoptosis in the ventricular tissue. We also found very high levels of plasma thiocyanate after exposure to smoke in the flavored and unflavored groups, while the control group showed no increase. After the recovery period, those tissues showed partial recovery. Conclusion: Waterpipe smoke induces structural changes in the heart ventricle tissues, causing a negative impact on the capacity of the cardiac muscle for pumping blood and may lead to heart attack due to accumulation of free radicals and tissue inflammation. Cessation of smoking is important in returning most of these changes to their normal structure. PMID:26730327

  20. Derangement of autonomic nerve control in rat with right ventricular failure.

    PubMed

    Sanyal, S N.; Ono, K

    2002-06-01

    The effects of right ventricular hypertrophy and eventual right ventricular failure on autonomic nerve regulation of heart rate variability were investigated using rats with monocrotaline (MCT)-induced pulmonary hypertension. ECG signals were obtained from a radio transmitter placed into the subcutaneous pouch in the back of the male MCT-treated and control rats for 30 min every 6 h at a sample rate of 5 kHz with or without injection of atropine (2 mg/kg I.P.) or propranolol (4 mg/kg I.P.), in a room equipped with a climate controller. Heart rate (HR) and HR variability (HRV) were analyzed in each group by power spectrograms obtained by the fast-Fourier transform algorithm. The RR interval, total power (TP), low-frequency (LF) power (0.04-0.73 Hz), high-frequency (HF) power (0.73-2 Hz) and LF/HF (L/H) ratio were measured. HR was significantly increased in the MCT-treated rats (P<0.001), which also presented lower HRV than that of the control Wistar rats; TP (P<0.05) and HF (P<0.05) power, but not the L/H ratio, were significantly lower than that of the control rats. Responses of these parameters to a muscarinic antagonist (atropine: 2 mg/kg) and a beta-adrenergic antagonist (propranolol: 4 mg/kg), however, remained intact in the MCT-treated rats. Only the parasympathetic component of autonomic nervous controls of HRV was deranged in rats with MCT-induced right ventricular failure. PMID:12039652

  1. TROPHIC CONTROL OF THE ORNITHINE DECARBOXYLASE/POLYAMINE SYSTEM IN NEONATAL RAT CEREBELLUM: REGIONALLY-SELECTIVE EFFECTS OF NEONATAL LESIONS CAUSED BY 6-HYDROXYDOPAMINE

    EPA Science Inventory

    Norepinephrine has been hypothesized as a trophic factor influencing postnatal development of the cerebellum. n the current study, neonatal rats were given 6-hydroxydopanine (6-OHDA) to destroy noradrenergic projections and the effects on the ornithine decarboxylase (ODC)/polyami...

  2. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization.

    PubMed

    Soares, Sandra Sofia; Henao, Fernando; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2008-03-01

    Besides the well-known inotropic effects of vanadium in cardiac muscle, previous studies have shown that vanadate can stimulate cell growth or induce cell death. In this work, we studied the toxicity to neonatal rat ventricular myocytes (cardiomyocytes) of two vanadate solutions containing different oligovanadates distribution, decavanadate (containing decameric vanadate, V 10) and metavanadate (containing monomeric vanadate and also di-, tetra-, and pentavanadate). Incubation for 24 h with decavanadate or metavanadate induced necrotic cell death of cardiomyocytes, without significant caspase-3 activation. Only 10 microM total vanadium of either decavanadate (1 microM V 10) or metavanadate (10 microM total vanadium) was needed to produce 50% loss of cell viability after 24 h (assessed with MTT and propidium iodide assays). Atomic absorption spectroscopy showed that vanadium accumulation in cardiomyocytes after 24 h was the same when incubation was done with decavanadate or metavanadate. A decrease of 75% of the rate of mitochondrial superoxide anion generation, monitored with dihydroethidium, and a sustained rise of cytosolic calcium (monitored with Fura-2-loaded cardiomyocytes) was observed after 24 h of incubation of cardiomyocytes with decavanadate or metavanadate concentrations close to those inducing 50% loss of cell viability produced. In addition, mitochondrial membrane depolarization within cardiomyocytes, monitored with tetramethylrhodamine ethyl esther or with 3,3',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, were observed after only 6 h of incubation with decavanadate or metavanadate. The concentration needed for 50% mitochondrial depolarization was 6.5 +/- 1 microM total vanadium for both decavanadate (0.65 microM V 10) and metavanadate. In conclusion, mitochondrial membrane depolarization was an early event in decavanadate- and monovanadate-induced necrotic cell death of cardiomyocytes. PMID:18251508

  3. Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes.

    PubMed

    Tigchelaar, Wardit; de Jong, Anne Margreet; Bloks, Vincent W; van Gilst, Wiek H; de Boer, Rudolf A; Silljé, Herman H W

    2016-08-01

    Cardiac hypertrophy is associated with growth and functional changes of cardiomyocytes, including mitochondrial alterations, but the latter are still poorly understood. Here we investigated mitochondrial function and dynamic localization in neonatal rat ventricular cardiomyocytes (NRVCs) stimulated with insulin like growth factor 1 (IGF1) or phenylephrine (PE), mimicking physiological and pathological hypertrophic responses, respectively. A decreased activity of the mitochondrial electron transport chain (ETC) (state 3) was observed in permeabilized NRVCs stimulated with PE, whereas this was improved in IGF1 stimulated NRVCs. In contrast, in intact NRVCs, mitochondrial oxygen consumption rate (OCR) was increased in PE stimulated NRVCs, but remained constant in IGF1 stimulated NRVCs. After stimulation with PE, mitochondria were localized to the periphery of the cell. To study the differences in more detail, we performed gene array studies. IGF1 and PE stimulated NRVCs did not reveal major differences in gene expression of mitochondrial encoding proteins, but we identified a gene encoding a motor protein implicated in mitochondrial localization, kinesin family member 5b (Kif5b), which was clearly elevated in PE stimulated NRVCs but not in IGF1 stimulated NRVCs. We confirmed that Kif5b gene and protein expression were elevated in animal models with pathological cardiac hypertrophy. Silencing of Kif5b reverted the peripheral mitochondrial localization in PE stimulated NRVCs and diminished PE induced increases in mitochondrial OCR, indicating that KIF5B dependent localization affects cellular responses to PE stimulated NRVCs. These results indicate that KIF5B contributes to mitochondrial localization and function in cardiomyocytes and may play a role in pathological hypertrophic responses in vivo. PMID:27094714

  4. Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes.

    PubMed

    Pentassuglia, Laura; Heim, Philippe; Lebboukh, Sonia; Morandi, Christian; Xu, Lifen; Brink, Marijke

    2016-05-01

    Nrg1β is critically involved in cardiac development and also maintains function of the adult heart. Studies conducted in animal models showed that it improves cardiac performance under a range of pathological conditions, which led to its introduction in clinical trials to treat heart failure. Recent work also implicated Nrg1β in the regenerative potential of neonatal and adult hearts. The molecular mechanisms whereby Nrg1β acts in cardiac cells are still poorly understood. In the present study, we analyzed the effects of Nrg1β on glucose uptake in neonatal rat ventricular myocytes and investigated to what extent mTOR/Akt signaling pathways are implicated. We show that Nrg1β enhances glucose uptake in cardiomyocytes as efficiently as IGF-I and insulin. Nrg1β causes phosphorylation of ErbB2 and ErbB4 and rapidly induces the phosphorylation of FAK (Tyr(861)), Akt (Thr(308) and Ser(473)), and its effector AS160 (Thr(642)). Knockdown of ErbB2 or ErbB4 reduces Akt phosphorylation and blocks the glucose uptake. The Akt inhibitor VIII and the PI3K inhibitors LY-294002 and Byl-719 abolish Nrg1β-induced phosphorylation and glucose uptake. Finally, specific mTORC2 inactivation after knockdown of rictor blocks the Nrg1β-induced increases in Akt-p-Ser(473) but does not modify AS160-p-Thr(642) or the glucose uptake responses to Nrg1β. In conclusion, our study demonstrates that Nrg1β enhances glucose uptake in cardiomyocytes via ErbB2/ErbB4 heterodimers, PI3Kα, and Akt. Furthermore, although Nrg1β activates mTORC2, the resulting Akt-Ser(473) phosphorylation is not essential for glucose uptake induction. These new insights into pathways whereby Nrg1β regulates glucose uptake in cardiomyocytes may contribute to the understanding of its regenerative capacity and protective function in heart failure. PMID:26979522

  5. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.

    1997-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.

  6. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.

    1994-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.

  7. Early Life Triclocarban Exposure During Lactation Affects Neonate Rat Survival

    PubMed Central

    Kennedy, Rebekah C. M.; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A.; Hu, Pan; Bae, Jiyoung; Gee, Nancy A.; Lasley, Bill L.; Zhao, Ling

    2015-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  8. Early life triclocarban exposure during lactation affects neonate rat survival.

    PubMed

    Kennedy, Rebekah C M; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A; Hu, Pan; Bae, Jiyoung; Gee, Nancy A; Lasley, Bill L; Zhao, Ling; Chen, Jiangang

    2015-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  9. Effect of Wenxin Granule on Ventricular Remodeling and Myocardial Apoptosis in Rats with Myocardial Infarction

    PubMed Central

    Wu, Aiming; Zhai, Jianying; Zhang, Dongmei; Lou, Lixia; Zhu, Haiyan; Gao, Yonghong; Chai, Limin; Xing, Yanwei; Lv, Xiying; Zhu, Lingqun; Zhao, Mingjing; Wang, Shuoren

    2013-01-01

    Aim. To determine the effect of a Chinese herbal compound named Wenxin Granule on ventricular remodeling and myocardial apoptosis in rats with myocardial infarction (MI). Methods. Male Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the model group, the metoprolol group, and the Wenxin Granule group (WXKL group) with sample size (n) of 7 rats in each group. An MI model was established in all rats by occlusion of the left anterior descending coronary artery (the control group was without occlusion). Wenxin Granule (1.35 g/kg/day), metoprolol (12 mg/kg/day), and distilled water (5 mL/kg/day for the control and model groups) were administered orally for 4 weeks. Ultrasonic echocardiography was used to examine cardiac structural and functional parameters. Myocardial histopathological changes were observed using haematoxylin and eosin (H&E) dyeing. Myocardial apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Serum angiotensin II (Ang II) concentration was measured using the enzyme-linked immunosorbent assay (ELISA). Results. It was found that Wenxin Granule could partially reverse ventricular remodeling, improve heart function, alleviate the histopathological damage, inhibit myocardial apoptosis, and reduce Ang II concentration in rats with MI. Conclusions. The results of the current study suggest that Wenxin Granule may be a potential alternative and complementary medicine for the treatment of MI. PMID:23997803

  10. Inhibition of carnitine synthesis protects against left ventricular dysfunction in rats with myocardial ischemia.

    PubMed

    Aoyagi, T; Sugiura, S; Eto, Y; Yonekura, K; Matsumoto, A; Yokoyama, I; Kobayakawa, N; Omata, M; Kirimoto, T; Hayashi, Y; Momomura, S

    1997-10-01

    During myocardial ischemia, inhibition of the carnitine-mediated transportation of fatty acid may be beneficial because it facilitates glucose utilization and prevents an accumulation of fatty acid metabolites. We orally administered 3-(2,2,2-trimethyl hydrazinium) propionate (MET), an inhibitor of carnitine synthesis, for 20 days to rats. Then we evaluated left ventricular (LV) function during brief ischemia by using a buffer-perfused isovolumic heart model. After 15 min of reoxygenation after the transient ischemia, LV peak systolic pressure (PSP) almost completely returned to the baseline level in rats given MET (96 +/- 4%), whereas it was only partially (77 +/- 16%) recovered in the placebo-treated rats. We induced myocardial infarction in other rats by ligating the left anterior descending coronary artery. Then the animals were given MET for 20 days, and LV function was compared. In the placebo-treated rats (with myocardial infarction, but without drug treatment), LVPSP was lower than that in the sham group [108 +/- 19 (n = 10) vs. 136 +/- 15 mm Hg (n = 13); p < 0.05], and the time constant (T) of LV pressure decay was elongated (36 +/- 4 vs. 30 +/- 7 ms; p < 0.05). In MET-treated groups, however, neither PSP nor T differed from those in the sham group. In conclusion, inhibition of the carnitine-mediated transportation of fatty acid by MET protected against left ventricular dysfunction in acute and chronic myocardial ischemia. PMID:9335406

  11. Hypercholesterolemic diet applied to rat dams protects their offspring against cognitive deficits. Simulated neonatal anoxia model.

    PubMed

    Bohr, Iwo

    2004-09-30

    There is accumulating data suggesting a neuroprotective activity of cholesterol, especially in stroke and Alzheimer's disease (AD). In the present study, a protective activity of this lipid in simulated neonatal anoxia was investigated. Rats were subjected to high cholesterol by feeding their dams with a diet enriched with cholesterol. Half of these rats were subjected to anoxia. One and a half months later, the rats were tested for their ability to acquire a spatial memory, one group on the linear maze and the other on the Morris water maze. After these assessments, the level of total plasma cholesterol was measured. Rats from dams subjected to neonatal anoxia on standard diet performed worse than control rats in both types of behavioral experiments, whereas anoxic rats from dams were housed on hypercholesterolemic diet performed as control animals. It suggests that dietetic cholesterol applied by their dams protected rats against cognitive deficits elicited by neonatal anoxia. Furthermore, offspring of anoxic rats housed on standard diet had elevated levels of blood cholesterol in relation to control animals. Generally, anoxia affected the concentration of this lipid much stronger than hypercholesterolemic diet of their dams. It might mean that the anoxia-related rise of cholesterol could be involved in physiological phenomenon being an adaptive response to neurotoxic processes. This concept is discussed in relation to pathological mechanisms in AD. PMID:15327920

  12. The effect of hexane on the ventricular fibrillation threshold of the isolated perfused rat heart.

    PubMed

    Khedun, S M; Maharaj, B; Leary, W P; Lockett, C J

    1992-01-01

    This investigation was conducted to determine the influence of hexane on the ventricular fibrillation threshold of the isolated perfused rat heart and myocardial electrolyte levels. Ventricular fibrillation threshold was measured using the Langendorff perfusion apparatus. Heart rate was measured by a universal digital counter and the cardiac flow by collecting the outflow of the heating chamber below the heart into a graduated measuring cylinder. Magnesium and zinc were measured by atomic absorption spectrophotometry and potassium by flame photometry. Two groups of rats were studied; those in the experimental group were given 0.2 ml of hexane and the control group 0.2 ml olive oil subcutaneously for 90 days. Their hearts were removed under anaesthesia. Half of the experimental and control hearts were mounted on the Langendorff perfusion apparatus and the heart rate, coronary flow and ventricular fibrillation threshold were measured. The hearts of the other half were used to measure myocardial electrolyte levels. In the experimental group the ventricular fibrillation threshold decreased (4.72 (S.D. +/- 1.87) vs 9.48 (S.D. +/- 2.98); P less than 0.001). There was no change in the coronary flow and heart rate in between the groups. The mean myocardial potassium levels (2586 (S.D. +/- 162) vs 2968 (S.D. +/- 218) micrograms/g; P less than 0.001), magnesium levels (164 (S.D. +/- 28) vs 208 (S.D. +/- 18) micrograms/g; P less than 0.001) and zinc levels (19.6 (S.D. +/- 4) vs 33.8 (S.D. +/- 6.8) micrograms/g; P less than 0.001) were significantly lower in the hexane-treated group compared to controls. Hexane, a constituent of glue and benzine, is cardiotoxic; marked derangement in myocardial electrolytes and a reduced ventricular fibrillation threshold, indicating an increased myocardial vulnerability to arrhythmias, was noted in the experimental animals. PMID:1729763

  13. Short-term vagal nerve stimulation improves left ventricular function following chronic heart failure in rats

    PubMed Central

    LI, YAN; XUAN, YAN-HUA; LIU, SHUANG-SHUANG; DONG, JING; LUO, JIA-YING; SUN, ZHI-JUN

    2015-01-01

    Increasing numbers of animal and clinical investigations have demonstrated the effectiveness of long-term electrical vagal nerve stimulation (VNS) on chronic heart failure (CHF). The present study investigated the effects of short-term VNS on the hemodynamics of cardiac remodeling and cardiac excitation-contraction coupling (ECP) in an animal model of CHF following a large myocardial infarction. At 3 weeks subsequent to ligation of the left coronary artery, the surviving rats were randomized into vagal and sham-stimulated groups. The right vagal nerve of the CHF rats was stimulated for 72 h. The vagal nerve was stimulated with rectangular pulses of 40 ms duration at 1 Hz, 5 V. The treated rats, compared with the untreated rats, had significantly higher left ventricular ejection fraction (54.86±9.73, vs. 45.60±5.51%; P=0.025) and left ventricular fractional shortening (25.31±6.30, vs. 15.42±8.49%; P=0.013), and lower levels of brain natriuretic peptide (10.07±2.63, vs. 19.95±5.22 ng/ml; P=0.001). The improvement in cardiac pumping function was accompanied by a decrease in left ventricular end diastolic volume (1.11±0.50, vs. 1.54±0.57 cm3; P=0.032) and left ventricular end systolic volume (0.50±0.28, vs. 0.87±0.36 cm3; P=0.007). Furthermore, the expression levels of ryanodine receptor type 2 (RyR2) and sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2) were significantly higher in the treated rats compared with the untreated rats (P=0.011 and P=0.001 for RyR2 and SERCA2, respectively). Therefore, VNS was beneficial to the CHF rats through the prevention of cardiac remodeling and improvement of cardiac ECP. PMID:25873055

  14. Memantine delayed N-methyl-D-aspartate -induced convulsions in neonatal rats.

    PubMed

    Dhir, Ashish; Chopra, Kanwaljit

    2015-02-01

    Memantine (1-amino-3,5-dimethyladamantane) is a moderate-affinity uncompetitive antagonist of N-methyl-d-aspartate (NMDA) receptors. In this study, we have explored the effect of memantine against N-methyl-d-aspartate (NMDA)-induced seizures in neonatal rats. Here, we evaluated various behavioral seizure abnormalities in neonatal rats (Sprague-Dawley; postnatal day 9) after an intraperitoneal administration of NMDA. Further, we explored whether an acute administration of memantine could protect these neonates against different phases of convulsions induced by NMDA. In a separate study, we have compared the effect of levetiracetam in the same animal model. Exogenous administration of NMDA (30 mg/kg., i.p.) in neonatal rats resulted in arrest of activity, emprosthotonos curvature (trunk is bent forward by the entire muscles), myoclonic jerks, and forelimb/hindlimb clonus. The clonus phase in neonates was followed by loss of righting reflex and continuous seizures (for more than 5 min) suggesting status epilepticus, tonic extension, and death. Pretreatment of memantine hydrochloride (10-30 mg/kg., i.p.) dose-dependently delayed the onset of different phases of convulsions induced by NMDA. Memantine at the highest dose was found to be ataxic in rat neonates, while lower doses were free of any observed behavioral signs of toxicity. Levetiracetam (25 mg/kg., i.p.) when administered 30 min before the NMDA challenge blocked only the jerk phase and did not affect other phases of NMDA-induced convulsions. These data indicated that memantine and other safer uncompetitive NMDA receptor antagonists may be protective in the management of neonatal seizures. PMID:25196574

  15. Protective effect of atrial natriuretic peptide on electrical-field-stimulated rat ventricular strips during hypoxia.

    PubMed

    Ljusegren, M E; Andersson, R G

    1994-12-01

    We have previously shown that atrial natriuretic peptide reduces lactate accumulation in non-beating rat ventricular myocardium exposed to hypoxic conditions, and that hypoxia induces release of atrial natriuretic peptide from isolated rat atrial tissue. In these studies we suggested that atrial natriuretic peptide may be physiologically important for protection of the myocardium during periods of oxygen deficit. In the present study, we used isolated strips of rat right ventricle, contracted by electrical-field-stimulation, as a model of a beating myocardium. After contraction stabilization, hypoxic conditions were introduced through aeration with 20% O2, held for 20 or 30 min., and then interrupted by reoxygenation with 95% O2. The contractile force was recorded and the percentage regain of the contractions after reoxygenation was considered as an indication of the amount of cell damage induced during the period of hypoxia. The results show that after 30 min. of hypoxia and subsequent reoxygenation, ventricular strips treated with atrial natriuretic peptide (0.1 microM) recovered 67.9 +/- 2.8% of the prehypoxic force of contraction; control strips from the same ventricle regained 44.9 +/- 4.4% (P = 0.015) of their initial contractile activity. After 20 min. of hypoxia followed by reoxygenation, a ventricular strip incubated together with an atrium regained 78.6 +/- 2.4% of the prehypoxic force of contraction as compared to a 60.2 +/- 2.7% regain (P = 0.002) for the control strip. We conclude that atrial natriuretic peptide protects the working ventricular myocardium during hypoxia, which further supports our previously reported suggestion that the effect on myocardial metabolism is physiologically relevant during situations of oxygen deficit in heart muscle. PMID:7899254

  16. Neonatal Cystitis-Induced Colonic Hypersensitivity in Adult Rats: A Model of Viscero-Visceral Convergence

    PubMed Central

    Miranda, Adrian; Mickle, Aaron; Schmidt, Jamie; Zhang, Zhihong; Shaker, Reza; Banerjee, Banani; Sengupta, Jyoti N.

    2011-01-01

    Background The objective of this study was to determine if neonatal cystitis alters colonic sensitivity later in life and to investigate the role of peripheral mechanisms. Methods Neonatal rats received intravesical zymosan, normal saline, or anesthesia only for three consecutive days (postnatal days 14th–16th). The estrous cycle phase was determined prior to recording the visceromotor response (VMR) to colorectal distension (CRD) in adult rats. Eosinophils and mast cells were examined from colon and bladder tissue. CRD or urinary bladder distension (UBD)-sensitive pelvic nerve afferents (PNAs) were identified and their responses to distension were examined. The relative expression of N-methyl-D-aspartic acid (NMDA) NR1 subunit in the L6-S1 spinal cord was examined using Western blot. Results The VMR to CRD (≥10mmHg) in the neonatal zymosan group was significantly higher than control in both the diestrus, estrus phase and in all phases combined. There was no difference in the total number of eosinophils, mast cells or number of degranulated mast cells between groups. The spontaneous firing of UBD, but not CRD-sensitive PNAs from the zymosan rats was significantly higher than the control. However, the mechanosensitive properties of PNAs to CRD or UBD were no different between groups (p > 0.05). The expression of spinal NR1 subunit was significantly higher in zymosan-treated rats compared to saline treated rats (p <0.05). Conclusion Neonatal cystitis results in colonic hypersensitivity in adult rats without changing tissue histology or the mechanosensitive properties of CRD-sensitive PNAs. Neonatal cystitis does results in overexpression of spinal NR1 subunit in adult rats. PMID:21592255

  17. A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique.

    PubMed

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Gazmuri, Raúl J

    2015-01-01

    A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes - but is not limited to - hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation. PMID:25938619

  18. Neonatal capsaicin treatment in rats induces chronic hyperthermia resulting in infectious disease

    PubMed Central

    JEONG, KEUN-YEONG; KIM, HWAN MOOK

    2015-01-01

    Treatment of neonatal animals with capsaicin has previously been associated with long-lasting hyperthermia and severe cutaneous lesions. The present study analyzed the effects of capsaicin-induced hyperthermia on the occurrence of infectious disease and pruritic dermatitis in a rat model. Pregnant Sprague-Dawley (SD) rats were obtained 1 week prior to parturition. Pups from each litter were randomly assigned to the following experimental groups: Capsaicin-treated (cap-treated; n=10) or vehicle-treated (n=5). Capsaicin (50 mg/kg) or vehicle were systemically administered to the SD rat pups (age, 48 h), after which body temperature was measured using a biotelemetry system, and the effects of hyperthermia on the ability of the rat pups to resist bacterial infection were analyzed. Furthermore, pruritus-induced scratching behavior and dermatitis were assessed, and changes in interleukin (IL)-4- and IL-13-induced immunoglobulin E expression were measured. Treatment of neonatal rats with capsaicin resulted in chronic hyperthermia, which had negative effects on the host immune defense response. The expression levels of T-helper type 2 cell-associated cytokines were significantly increased (P<0.01) in the cap-treated rats following bacterial infection with Staphylococcus aureus or Streptococcus agalactiae. Furthermore, cap-treated rats exhibited pruritus-induced scratching behavior and dermatitis. The results of the present study suggested that treatment of neonatal rats with capsaicin induces chronic hyperthermia and decreases the effectiveness of the host defense system. Therefore, a cap-treated neonatal rat model may be considered useful when investigating the association between hyperthermia and infectious disease. PMID:26668650

  19. Aspects of the Development of Housing for the Spaceflight of Pregnant and Lactating Rats with Neonates

    NASA Technical Reports Server (NTRS)

    Hinds, William E.; Mayer, David J.; Evans, Juli; Spratt, Shahn; Lane, Philip K.; Rodriguez, Shari L.; Navidi, Meena; Armstrong, Rachel; Lemos, Bonnie; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    Recent and upcoming spaceflights are investigating the effect of weightlessness on developing neural and organ systems. Pregnant rats and dams with neonates have to be accommodated in cages that support the special requirements of these animals. Extensive ground testing of cage concepts, the effect of launch and landing stresses on the maintenance of pregnancy and maternal behavior at different neonatal ages, and techniques for monitoring adaptability to change are discussed. A spaceflight opportunity for the NlH.R3 payload of rat families at three different postnatal ages demonstrated that the survival of very young animals was not good but that older newborns could be returned to Earth in reasonably good health. The development of cages for the Research Animal Holding Facility (RAHF) to support the flight of neonates on Neurolab was continued and incorporated modifications that were demonstrated by the NIH.R3 flight. Other modifications to the RAHF are discussed. Data from biocompatibility and experiment verification testing are presented.

  20. PHARMACOLOGIC PROBING OF AMPHOTERICIN B-INDUCED RENAL DYSFUNCTION IN THE NEONATAL RAT

    EPA Science Inventory

    Pharmacologic Probing of Amphotericin B-Induced Renal Dysfunction in the Neonatal Rat. Gray, J.A., and Kavlock, R.J. (1988). Toxicol. Appl. Pharmacol. 93, 360-368. Acetazolamide, furosemide, chlorothiazide, and amiloride pharmacologic agents that act primarily in the proximal tub...

  1. Enhancement of Sexual Behavior in Female Rats by Neonatal Transplantation of Brain Tissue from Males

    NASA Astrophysics Data System (ADS)

    Arendash, Gary W.; Gorski, Roger A.

    1982-09-01

    Transplantation of preoptic tissue from male rat neonates into the preoptic area of female littermates increased masculine and feminine sexual behavior in the recipients during adulthood. This suggests that functional connections develop between the transplanted neural tissue and the host brain. A new intraparenchymal brain transplantation technique was used to achieve these results.

  2. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    PubMed Central

    Sifringer, Marco; von Haefen, Clarissa; Krain, Maria; Paeschke, Nadine; Bendix, Ivo; Bührer, Christoph; Spies, Claudia D.; Endesfelder, Stefanie

    2015-01-01

    Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight) and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable. PMID:25653737

  3. EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS

    EPA Science Inventory

    EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS. M.N. Logan1, J.R. Thibodeaux2, R.G. Hanson2, C. Lau2. 1North Carolina Central University, Durham, NC, 2Reprod. Tox. Div. NHEERL, US EPA, Research Triangle Park, NC.

    Perfluor...

  4. REPEATED MATERNAL SEPARATION IN THE NEONATAL RAT: CELLULAR MECHANISMS CONTRIBUTING TO BRAIN GROWTH SPARING

    EPA Science Inventory

    Separation of rat neonates from their dam has been shown to evoke acutely a variety of biochemical and physiological responses. n the current study, we examined whether these responses were extended to pups who were subject to daily episodes of maternal deprivation, and whether t...

  5. Dysregulation of neonatal hippocampal cell genesis in the androgen insensitive Tfm rat

    PubMed Central

    Waddell, Jaylyn; Bowers, J. Michael; Edwards, N. Shalon; Jordan, Cynthia L.; McCarthy, Margaret M.

    2013-01-01

    The first two weeks of life are a critical period for hippocampal development. At this time gonadal steroid exposure organizes sex differences in hippocampal sensitivity to activational effects of steroids, hippocampal cell morphology and hippocampus dependent behaviors. Our laboratory has characterized a robust sex difference in neonatal neurogenesis in the hippocampus that is mediated by estradiol. Here, we extend our knowledge of this sex difference by comparing the male and female hippocampus to the androgen insensitive testicular feminized mutant (Tfm) rat. In the neonatal Tfm rat hippocampus, fewer newly generated cells survive compared to males or females. This deficit in cell genesis is partially recovered with the potent androgen DHT, but is more completely recovered following estradiol administration. Tfm rats do not differ from males or females in the level of endogenous estradiol in the neonatal hippocampus, suggesting other mechanisms mediate a differential sensitivity to estradiol in male, female and Tfm hippocampus. We also demonstrate disrupted performance on a hippocampal-dependent contextual fear discrimination task. Tfm rats generalize fear across contexts, and do not exhibit significant loss of fear during extinction exposure. These results extend prior reports of exaggerated response to stress in Tfm rats, and following gonadectomy in normal male rats. PMID:23747829

  6. Citrobacter koseri Brain Abscess in the Neonatal Rat: Survival and Replication within Human and Rat Macrophages

    PubMed Central

    Townsend, Stacy M.; Pollack, Harvey A.; Gonzalez-Gomez, Ignacio; Shimada, Hiroyuki; Badger, Julie L.

    2003-01-01

    A unique feature of Citrobacter koseri is the extremely high propensity to initiate brain abscesses during neonatal meningitis. Previous clinical reports and studies on infant rats have documented many Citrobacter-filled macrophages within the ventricles and brain abscesses. It has been hypothesized that intracellular survival and replication within macrophages may be a mechanism by which C. koseri subverts the host response and elicits chronic infection, resulting in brain abscess formation. In this study, we showed that C. koseri causes meningitis and brain abscesses in the neonatal rat model, and we utilized histology and magnetic resonance imaging technology to visualize brain abscess formation. Histology and electron microscopy (EM) revealed that macrophages (and not fibroblasts, astrocytes, oligodendrocytes, or neurons) were the primary target for long-term C. koseri infection. To better understand C. koseri pathogenesis, we have characterized the interactions of C. koseri with human macrophages. We found that C. koseri survives and replicates within macrophages in vitro and that uptake of C. koseri increases in the presence of human pooled serum in a dose-dependent manner. EM studies lend support to the hypothesis that C. koseri uses morphologically different methods of uptake to enter macrophages. FcγRI blocking experiments show that this receptor primarily facilitates the entry of opsonized C. koseri into macrophages. Further, confocal fluorescence microscopy demonstrates that C. koseri survives phagolysosomal fusion and that more than 90% of intracellular C. koseri organisms are colocalized within phagolysosomes. The ability of C. koseri to survive phagolysosome fusion and replicate within macrophages may contribute to the establishment of chronic central nervous system infection including brain abscesses.   PMID:14500508

  7. Effect of diazepam on sociability of rats submitted to neonatal seizures.

    PubMed

    Leite, Ingrid Stanize; Castelhano, Adelissandra S S; Cysneiros, Roberta M

    2016-06-01

    Status epilepticus (SE), an acute condition characterized by repetitive or ongoing seizures activity, may produce long-term deleterious consequences. Previous data demonstrated that Wistar rats subjected to neonatal SE displayed autistic behavior, characterized by social play impairment, low preference by novelty, deficit in social discrimination; anxiety related behavior and stereotyped behavior with no changes in locomotor activity (doi: http://dx.doi.org/10.1007/s00702-010-0460-1, doi: http://dx.doi.org/10.3389/fnbeh.2013.00036, doi: http://dx.doi.org/10.1007/s00702-014-1291-2[1], [2], [3]). Taking into account the bi-directional relationship between the state of anxiety and social interaction (doi: http://dx.doi.org/10.1007/s10567-009-0062-3[4]), we evaluated the impact of the state of anxiety on social interaction. Male Wistar rats at postnatal day 9 were subjected to pilocarpine-induced neonatal SE (380 mg/kg, ip) and the controls received 0.9% saline (0.1 ml/10 g). The groups received saline or diazepam (1.0 mg/kg) 45 min prior each behavioral testing that started from 60 days of postnatal life. In the open field, rats subjected to neonatal seizure exhibited less central zone activity as compared to animals treated with diazepam, with no changes in the total locomotor activity. In elevated plus maze, rats subjected to neonatal seizure and treated with diazepam exhibited higher locomotor activity and spent more time on the open arms as compared to untreated animals. In approach phase of sociability paradigm, animals subjected to neonatal seizures similarly to controls, regardless the treatment, spent more time with social stimulus as compared to non social stimulus. In social novelty phase of sociability paradigm, animals subjected to neonatal seizures differently of controls, regardless the treatment, spent similar time with familiar and novel stimulus. PMID:27054178

  8. Neonatal endotoxin exposure changes neuroendocrine, cardiovascular function and mortality during polymicrobial sepsis in adult rats.

    PubMed

    Saia, Rafael Simone; Oliveira-Pelegrin, Gabriela Ravanelli; da Silva, Maria Emília Nadaletto Bonifácio; Aguila, Fábio Alves; Antunes-Rodrigues, José; Rocha, Maria José Alves; Cárnio, Evelin Capellari

    2011-08-01

    Our aim was to investigate whether neonatal LPS challenge may improve hormonal, cardiovascular response and mortality, this being a beneficial adaptation when adult rats are submitted to polymicrobial sepsis by cecal ligation and puncture (CLP). Fourteen days after birth, pups received an intraperitoneal injection of lipopolysaccharide (LPS; 100μg/kg) or saline. After 8-12 weeks, they were submitted to CLP, decapitated 4, 6 or 24h after surgery and blood was collected for vasopressin (AVP), corticosterone and nitrate measurement, while AVP contents were measured in neurohypophysis, supra-optic (SON) and paraventricular (PVN) nuclei. Moreover, rats had their mean arterial pressure (MAP) and heart rate (HR) evaluated, and mortality and bacteremia were determined at 24h. Septic animals with neonatal LPS exposure had higher plasma AVP and corticosterone levels, and higher c-Fos expression in SON and PVN at 24h after surgery when compared to saline treated rats. The LPS pretreated group showed increased AVP content in SON and PVN at 6h, while we did not observe any change in neurohypophyseal AVP content. The nitrate levels were significantly reduced in plasma at 6 and 24h after surgery, and in both hypothalamic nuclei only at 6h. Septic animals with neonatal LPS exposure showed increase in MAP during the initial phase of sepsis, but HR was not different from the neonatal saline group. Furthermore, neonatally LPS exposed rats showed a significant decrease in mortality rate as well as in bacteremia. These data suggest that neonatal LPS challenge is able to promote beneficial effects on neuroendocrine and cardiovascular responses to polymicrobial sepsis in adulthood. PMID:21549159

  9. Comparative effects of oral chlorpyrifos exposure on cholinesterase activity and muscarinic receptor binding in neonatal and adult rat heart.

    PubMed

    Howard, Marcia D; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N

    2007-09-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M(2) muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M(2) receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor-mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M(2) receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age-related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac cholinesterase (ChE) activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1x LD(10): neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1x LD(10), relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (approximately 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC(50) values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that

  10. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    PubMed Central

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  11. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats

    SciTech Connect

    Doerge, Daniel R.; Twaddle, Nathan C.; Vanlandingham, Michelle; Fisher, Jeffrey W.

    2010-09-01

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 {mu}g/kg bw. Evidence for enterohepatic recirculation of conjugated, but not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 {mu}g/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.

  12. Neonatal hyperoxia alters the pulmonary alveolar and capillary structure of 40-day-old rats.

    PubMed Central

    Randell, S. H.; Mercer, R. R.; Young, S. L.

    1990-01-01

    High inspired oxygen concentrations during the neonatal period profoundly inhibit rat lung development, an effect that is partly reversed during recovery in air. Persistent effects of neonatal hyperoxia on the size and number of alveoli or the structure of pulmonary capillaries have not been well defined. Using light and electron microscopic morphometry plus quantitative three-dimensional reconstructions of alveoli, we examined the lungs of 40-day-old rats that were exposed to more than 95% oxygen for the first 7 days after birth. Neonatal hyperoxia administered to rats resulted in abnormally enlarged air spaces at age 40 days. The fraction of the lung consisting of parenchyma was significantly increased and alveolar surface area was 13% lower than controls. There was an abnormal enlargement of alveolar ducts, which reduced by 24% the relative amount of air in the alveoli, compared to that in the alveolar ducts. The number of alveoli per lung and the mean volume of an alveolus were not different between the groups, but alveolar size class distributions were different, with significantly more very small and very large alveoli in 40-day-old rats after neonatal hyperoxia. By scanning electron microscopy, the alveolar surface of the exposed animals had a corrugated appearance, which was especially evident along alveolar ducts. Transmission electron microscopy revealed a greater density of capillaries, particularly in the alveolar regions close to terminal airways. Based on a random sample of the entire parenchymal region, capillary blood volume per cm2 of alveolar basal lamina was 18% greater. The results demonstrate that neonatal exposure to hyperoxia can cause abnormalities in the pulmonary alveolar and capillary structure of 40-day-old rats, and that these changes are similar to some features of broncho-pulmonary dysplasia. Images Figure 1 Figure 4 Figure 5 PMID:2356858

  13. Measurement of cardiac left ventricular pressure in conscious rats using a fluid-filled catheter.

    PubMed

    Schenk, J; Hebden, A; McNeill, J H

    1992-05-01

    A fluid-filled catheter consisting of 100 cm of PE50 polyethylene tubing welded to 7 cm of PE10 polyethylene tubing (PE50/PE10) was constructed for the purpose of measuring the rate of left ventricular pressure development (+dP/dt) in conscious, freely moving rats. Prior to in vivo experiments, four PE50/PE10 catheters were randomly selected, and their natural frequencies and damping ratios were determined using a square wave impact. The mean (n = 4), natural frequency of these catheters was shown to be 35.0 +/- 5.5 Hz, and the mean damping ratio was 0.83 +/- 0.10. Natural frequency plotted against increasing PE50 tubing length was shown to have a slope of -0.44 Hz/cm with a correlation coefficient of 0.99. The effect of the 7-cm PE10 tubing segment on the catheter damping ratio was also demonstrated. One of the four PE50/PE10 type catheters exhibited a damping ratio of 0.74 +/- 0.09. When the 7-cm PE10 tube was removed, the damping ratio was reduced to 0.31 +/- 0.04. Left ventricular +dP/dt obtained in conscious rats with a PE50/PE10 catheter (n = 7; 6300 +/- 300 mmHg/sec) was significantly less than the +dP/dt obtained using a 100-cm PE50 catheter (n = 6; 9400 +/- 400 mmHg/sec). The results of this study make it clear that the PE50/PE10 catheter is suitable for the measurement of left ventricular +dP/dt in the conscious rat, and that catheter design has a profound influence on both the catheter natural frequency and damping ratio. PMID:1498344

  14. Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes.

    PubMed Central

    Yuan, W; Ginsburg, K S; Bers, D M

    1996-01-01

    1. Fundamental properties of Ca2+ channel currents in rat and rabbit ventricular myocytes were measured using whole cell voltage clamp. 2. In rat, as compared with rabbit myocytes, Ca2+ channel current (ICa) was half-activated at about 10 mV more negative potential, decayed slower, was half-inactivated (in steady state) at about 5 mV more positive potential, and recovered faster from inactivation. 3. These features result in a larger steady-state window current in rat, and also suggest that under comparable voltage clamp conditions, including action potential (AP) clamp, more Ca2+ influx would be expected in rat myocytes. 4. Ca2+ channel current carried by Na+ and Cs+ in the absence of divalent ions (Ins) also activated at more negative potential and decayed more slowly in rat. 5. The reversal potential for Ins was 6 mV more positive in rabbit, consistent with a larger permeability ratio (PNa/PCs) in rabbit than in rat. ICa also reversed at slightly more positive potentials in rabbit (such that PCa/PCs might also be higher). 6. Ca2+ influx was calculated by integration of ICa evoked by voltage clamp pulses (either square pulses or pulses based on recorded rabbit or rat APs). For a given clamp waveform, the Ca2+ influx was up to 25% greater in rat, as predicted from the fundamental properties of ICa and Ins. 7. However, the longer duration of the AP in rabbit myocytes compensated for the difference in influx, such that the integrated Ca2+ influx via ICa in response to the species-appropriate waveform was about twice as large as that seen in rat. PMID:8799895

  15. Pulmonary vascular responsiveness in rats following neonatal exposure to high altitude or carbon monoxide

    SciTech Connect

    Tucker, A.; Penney, D.G. Wayne State Univ., Detroit, MI )

    1993-01-01

    Exposure of adult and neonatal rats to high altitude increases pulmonary vascular responsiveness during the exposure. A study was undertaken to determine if a short exposure of neonatal rats to either high-altitude or carbon monoxide (CO) hypoxia would cause persistent alterations in pulmonary vascular responsiveness postexposure. One-day-old male Sprague-Dawley rats were obtained as 16 litters of 10-12 pups each. At 2 days of age, 4 litters were exposed to CO (500 ppm) for 32 days, and 4 litters were exposed to ambient air (AIR) in Detroit (200 m). Another 4 litters were exposed to 3500 m altitude (ALT) in a chamber for 32 days, and 3 litters were exposed to ambient conditions in Fort Collins (CON, 1524 m). After the exposures, all rats were maintained at 1524 m. At 2, 40, 76 and 112 days postexposure, lungs were isolated and perfused with Earle's salt solution (+Ficoll, 4 g%). Pulmonary vascular responsiveness was assessed by dose responses to angiotensin II (AII, 0.025-0.40 [mu]g) and acute hypoxia (3% O[sub 2] for 3 min). AII responses were higher in ALT vs CON rats at 2 and 40 days postexposure, but no differences were noted between CO and AIR rats. Baseline pulmonary vascular resistance and pulmonary arterial pressure (in isolated lungs) were higher in ALT rats at all four ages compared to the other three groups. Both the ALT and CO rats displayed hypertrophy of the right ventricle (RV) and the left ventricle (LV) at the termination of treatment and elevated hematocrit. LV hypertrophy and polycythemia regressed with time, but RV hypertrophy remained significant in the ALT rats through 112 days postexposure. The results indicate that neonatal exposure to ALT, but no CO, causes a persistent increase in pulmonary vascular responsiveness and RV hypertrophy for at least 112 days after termination of the exposure. 40 refs., 3 figs., 2 tabs.

  16. Sensory deprivation stress and supplemental stimulation in the rat pup and preterm human neonate.

    PubMed

    Schanberg, S M; Field, T M

    1987-12-01

    This article reviews the literature and presents data from our laboratories on sensory deprivation stress and supplemental stimulation of the rat pup and the preterm neonate. The data suggest that the effects of maternal deprivation in the rat pup (suppression of growth hormone release and protein synthesis) are regulated by a specific form of tactile stimulation: only brush stroking of maternally deprived rat pups returned growth parameters to normal; other forms of stimulation, including kinesthetic and vestibular stimulation, were ineffective in restoring normal functions. Other data are presented demonstrating that very small preterm neonates given tactile-kinesthetic stimulation gain more weight per day, spend more time awake and active, and show more mature habituation, orientation, motor, and range of state behaviors on the Brazelton assessment. PMID:3691193

  17. Chronic nonocclusive coronary artery constriction in rats. Beta-adrenoceptor signal transduction and ventricular failure.

    PubMed Central

    Meggs, L G; Huang, H; Li, P; Capasso, J M; Anversa, P

    1991-01-01

    To determine the effects of chronic coronary artery constriction on the relationship between cardiac function and regulation of beta-adrenoceptor signal transduction, the left main coronary artery was narrowed in rats and the animals were killed 5 mo later. An average reduction in coronary luminal diameter of 44% was obtained and this change resulted in an increase in left ventricular end-diastolic pressure and a decrease in positive and negative dP/dt. Significant increases in left and right ventricular weights indicative of global cardiac hypertrophy were observed. Radioligand binding studies of beta-adrenoreceptors, agonist-stimulated adenylate cyclase activity, and ADP ribosylation of 45-kD substrate by cholera toxin were all depressed in the failing left ventricle. In contrast, in the hypertrophic non-failing right ventricle, beta-adrenoreceptor density was preserved and receptor antagonist affinity was increased. In spite of these findings at the receptor level, agonist stimulated cyclic AMP generation was reduced in the right ventricular myocardium. The quantity of the 45-kD substrate was also decreased. In conclusion, longterm nonocclusive coronary artery stenosis of moderate degree has profound detrimental effects on the contractile performance of the heart in association with marked attenuation of adrenergic support mechanisms. Images PMID:1661293

  18. Therapeutic Effect of Agaricus brasiliensis on Phenylhydrazine-Induced Neonatal Jaundice in Rats

    PubMed Central

    Zhang, Lan; Yuan, Bo; Wang, HuiPing; Gao, Ya

    2015-01-01

    The present study was designed to investigate the effect of Agaricus brasiliensis extract (ABE) on phenylhydrazine-induced neonatal jaundice in rats. Administration of ABE dose-dependently reduced the elevated bilirubin level induced by phenylhydrazine. It can be somewhat supported from the results of in vitro bilirubin degradation experiment. ABE treatment also reduced the total antioxidant status (TAOS), cascade O2−/SOD, level of NF-κB protein, and adrenomedullin (AM). Overall, the results of this study demonstrated that Agaricus brasiliensis extract may be beneficial to reducing bilirubin level without causing hepatotoxicity in neonatal jaundice. PMID:25883968

  19. Therapeutic effect of Agaricus brasiliensis on phenylhydrazine-induced neonatal jaundice in rats.

    PubMed

    Zhang, Lan; Yuan, Bo; Wang, HuiPing; Gao, Ya

    2015-01-01

    The present study was designed to investigate the effect of Agaricus brasiliensis extract (ABE) on phenylhydrazine-induced neonatal jaundice in rats. Administration of ABE dose-dependently reduced the elevated bilirubin level induced by phenylhydrazine. It can be somewhat supported from the results of in vitro bilirubin degradation experiment. ABE treatment also reduced the total antioxidant status (TAOS), cascade O2(-)/SOD, level of NF-κB protein, and adrenomedullin (AM). Overall, the results of this study demonstrated that Agaricus brasiliensis extract may be beneficial to reducing bilirubin level without causing hepatotoxicity in neonatal jaundice. PMID:25883968

  20. Human neonatal hepatocyte transplantation induces long-term rescue of unconjugated hyperbilirubinemia in the Gunn rat.

    PubMed

    Tolosa, Laia; López, Silvia; Pareja, Eugenia; Donato, María Teresa; Myara, Anne; Nguyen, Tuan Huy; Castell, José Vicente; Gómez-Lechón, María José

    2015-06-01

    Crigler-Najjar type 1 disease is a rare inherited metabolic disease characterized by high levels of unconjugated bilirubin due to the complete absence of hepatic uridine diphosphoglucuronate-glucuronosyltransferase activity. Hepatocyte transplantation (HT) has been proposed as an alternative treatment for Crigler-Najjar syndrome, but it is still limited by the quality and the low engraftment and repopulation ability of the cells used. Because of their attachment capability and expression of adhesion molecules as well as the higher proportion of hepatic progenitor cells, neonatal hepatocytes may have an advantage over adult cells. Adult or neonatal hepatocytes were transplanted into Gunn rats, a model for Crigler-Najjar disease. Engraftment and repopulation were studied and compared by immunofluorescence (IF). Additionally, the serum bilirubin levels, the presence of bilirubin conjugates in rat serum, and the expression of uridine diphosphate glucuronosyltransferase 1 family polypeptide A1 (UGT1A1) in rat liver samples were also analyzed. Here we show that neonatal HT results in long-term correction in Gunn rats. In comparison with adult cells, neonatal cells showed better engraftment and repopulation capability 3 days and 6 months after transplantation, respectively. Bilirubinemia decreased in the transplanted animals during the whole experimental follow-up (6 months). Bilirubin conjugates were also present in the serum of the transplanted animals. Western blots and IF confirmed the presence and expression of UGT1A1 in the liver. This work is the first to demonstrate the advantage of using neonatal hepatocytes for the treatment of Crigler-Najjar in vivo. PMID:25821167

  1. Current-Voltage Relationship for Late Na(+) Current in Adult Rat Ventricular Myocytes.

    PubMed

    Clark, R B; Giles, W R

    2016-01-01

    It is now well established that the slowly inactivating component of the Na(+) current (INa-L) in the mammalian heart is a significant regulator of the action potential waveform. This insight has led to detailed studies of the role of INa-L in a number of important and challenging pathophysiological settings. These include genetically based ventricular arrhythmias (LQT 1, 2, and 3), ventricular arrhythmias arising from progressive cardiomyopathies (including diabetic), and proarrhythmic abnormalities that develop during local or global ventricular ischemia. Inhibition of INa-L may also be a useful strategy for management of atrial flutter and fibrillation. Many important biophysical parameters that characterize INa-L have been identified; and INa-L as an antiarrhythmia drug target has been studied extensively. However, relatively little information is available regarding (1) the ion transfer or current-voltage relationship for INa-L or (2) the time course of its reactivation at membrane potentials similar to the resting or diastolic membrane potential in mammalian ventricle. This chapter is based on our preliminary findings concerning these two very important physiological/biophysical descriptors for INa-L. Our results were obtained using whole-cell voltage clamp methods applied to enzymatically isolated rat ventricular myocytes. A chemical agent, BDF 9148, which was once considered to be a drug candidate in the Na(+)-dependent inotropic agent category has been used to markedly enhance INa-L current. BDF acts in a potent, selective, and reversible fashion. These BDF 9148 effects are compared and contrasted with the prototypical activator of INa-L, a sea anemone toxin, ATX II. PMID:27586292

  2. Plakophilin-2 and the migration, differentiation and transformation of cells derived from the epicardium of neonatal rat hearts

    PubMed Central

    Matthes, Stephanie A.; Taffet, Steven; Delmar, Mario

    2011-01-01

    During development, epicardial cells act as progenitors for a large fraction of non-myocyte cardiac cells. Expression and function of molecules of the desmosome in the postnatal epicardium has not been studied. The objective of this study was to assess the expression of desmosomal molecules, and the functional importance of the desmosomal protein plakophilin-2 (PKP2), in epicardial and epicardium-derived cells. Epicardial explants were obtained from neonatal rat hearts. Presence of mechanical junction proteins was assessed by immunocytochemistry. Explants after PKP2 knockdown showed increased abundance of alpha smooth muscle actin-positive cells, increased abundance of lipid markers, enhanced cell migration velocity and increased abundance of a marker of cell proliferation. We conclude that a population of non-excitable, cardiac-resident cells express desmosomal molecules and, in vitro, show functional properties (including lipid accumulation) that depend on PKP2 expression. The possible relevance of our data to the pathophysiology of arrhythmogenic right ventricular cardiomyopathy, is discussed. PMID:21985446

  3. Activation of chloride current by P2-purinoceptors in rat ventricular myocytes.

    PubMed Central

    Kaneda, M.; Fukui, K.; Doi, K.

    1994-01-01

    1. Rat ventricular myocytes were dissociated and their responses to extracellularly applied ATP were recorded using patch pipettes under the whole cell configuration. 2. ATP initially induced an inward current followed by an outward current at -50 mV. With a Cs-rich pipette solution the late outward current was blocked, leaving a sustained inward current (IATPs) suggesting that a K+ conductance underlies the late response. 3. When the extracellular Cl- concentration was changed, the reversal potential of IATPs corresponded well to the shift of the Cl- equilibrium potential. IATPs was reversibly blocked by the chloride channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). 4. The concentration-response curve of IATPs had a Hill coefficient of 0.98 and an EC50 value of 5.2 x 10(-6) M. 5. ATP was more potent than ADP, while AMP and adenosine were ineffective, suggesting that P2-purinoceptor activation induced IATPs. 6. The activation of IATPs was depressed by depleting the extracellular Mg2+ and increased by adding Mg2+. 7. Our results strongly suggest that P2-purinoceptor activation by ATP induces both a Cl(-)-conductance (IATPs) and a K(+)-conductance in rat ventricular myocytes. PMID:8032621

  4. [Effects of neonatal fluvoxamine administration to white rats and their correction by semax treatment].

    PubMed

    Volodina, M A; Merchieva, S A; Sebentsova, E A; Glazova, N Iu; Manchenko, D M; Andreeva, L A; Levickaia, N G; Kamenskiĭ, A A; Miasoedov, N F

    2014-01-01

    The aim of this work was to study the delayed effects of chronic neonatal administration of the selective serotonin reuptake inhibitor fluvoxamine (FA) to white rat pups and to estimate the possibility to correct these effects by treatment with semax. Fluvoxamine was injected intraperitoneally at a dose of 10 mg/kg from postnatal days 1 to 14, and semax was injected intranasally at a dose of 0.05 mg/kg from postnatal days 15 to 28. It was shown that neonatal FA administration produced a significant delay in animal somatic growth. A loss in body weight was detected both during FA administration and 4-6 weeks after the last injection. Furthermore, FA administration increased the anxiety level and disturbed the learning ability of animals. The negative consequences of neonatal FA administration were largely compensated by Semax. PMID:25735182

  5. Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats.

    PubMed

    Lestari, Bayu; Permatasari, Nur; Rohman, Mohammad Saifur

    2016-01-01

    The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (-); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats. PMID:26941790

  6. Low-Dose Bisphenol A and Estrogen Increase Ventricular Arrhythmias Following Ischemia-Reperfusion in Female Rat Hearts

    PubMed Central

    Yan, Sujuan; Song, Weizhong; Chen, Yamei; Hong, Kui; Rubinstein, Jack; Wang, Hong-Sheng

    2013-01-01

    Bisphenol A (BPA) is an environmental estrogenic endocrine disruptor that may have adverse health impacts on a range of tissue/systems. In previous studies, we reported that BPA rapidly promoted arrhythmias in female rodent hearts through alteration of myocyte calcium handling. In the present study we investigated the acute effects of BPA on ventricular arrhythmias and infarction following ischemia-reperfusion in rat hearts. Rat hearts were subjected to 20 minutes of global ischemia followed by reperfusion. In female, but not male hearts, acute exposure to 1 nM BPA, either alone or combined with 1 nM 17β-estradiol (E2), during reperfusion resulted in a marked increase in the duration of sustained ventricular arrhythmias. BPA plus E2 increased the duration ventricular fibrillation, and the duration of VF as a fraction of total duration of sustained ventricular arrhythmia. The pro-arrhythmic effects of estrogens were abolished by MPP combined with PHTPP, suggesting the involvements of both ERα and ERβ signaling. In contrast to their pro-arrhythmic effects, BPA and E2 reduced infarction size, agreeing with previously described protective effect of estrogen against cardiac infarction. In conclusion, rapid exposure to low dose BPA, particularly when combined with E2, exacerbates ventricular arrhythmia following IR injury in female rat hearts. PMID:23429042

  7. Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats

    PubMed Central

    Lestari, Bayu; Permatasari, Nur; Rohman, Mohammad Saifur

    2016-01-01

    The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (—); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats. PMID:26941790

  8. Congenital Viral Infections of the Brain: Lessons Learned from Lymphocytic Choriomeningitis Virus in the Neonatal Rat

    PubMed Central

    Bonthius, Daniel J; Perlman, Stanley

    2007-01-01

    The fetal brain is highly vulnerable to teratogens, including many infectious agents. As a consequence of prenatal infection, many children suffer severe and permanent brain injury and dysfunction. Because most animal models of congenital brain infection do not strongly mirror human disease, the models are highly limited in their abilities to shed light on the pathogenesis of these diseases. The animal model for congenital lymphocytic choriomeningitis virus (LCMV) infection, however, does not suffer from this limitation. LCMV is a well-known human pathogen. When the infection occurs during pregnancy, the virus can infect the fetus, and the developing brain is particularly vulnerable. Children with congenital LCMV infection often have substantial neurological deficits. The neonatal rat inoculated with LCMV is a superb model system of human congenital LCMV infection. Virtually all of the neuropathologic changes observed in humans congenitally infected with LCMV, including microencephaly, encephalomalacia, chorioretinitis, porencephalic cysts, neuronal migration disturbances, periventricular infection, and cerebellar hypoplasia, are reproduced in the rat model. Within the developing rat brain, LCMV selectively targets mitotically active neuronal precursors. Thus, the targets of infection and sites of pathology depend on host age at the time of infection. The rat model has further shown that the pathogenic changes induced by LCMV infection are both virus-mediated and immune-mediated. Furthermore, different brain regions simultaneously infected with LCMV can undergo widely different pathologic changes, reflecting different brain region–virus–immune system interactions. Because the neonatal rat inoculated with LCMV so faithfully reproduces the diverse neuropathology observed in the human counterpart, the rat model system is a highly valuable tool for the study of congenital LCMV infection and of all prenatal brain infections In addition, because LCMV induces delayed

  9. Neonatal glucocorticoid treatment increased depression-like behaviour in adult rats.

    PubMed

    Ko, Meng-Chang; Hung, Yu-Hui; Ho, Pei-Yin; Yang, Yi-Ling; Lu, Kwok-Tung

    2014-12-01

    Synthetic glucocorticoid dexamethasone (DEX) is frequently used as a therapeutic agent to lessen the morbidity of chronic lung disease in premature infants. Previous studies suggested that neonatal DEX treatment altered brain development and cognitive function. It has been recognized that the amygdala is involved in emotional processes and also a critical site of neuronal plasticity for fear conditioning. Little is known about the possible long-term adverse effect of neonatal DEX treatment on amygdala function. The present study was aimed to evaluate the possible effect of neonatal DEX treatment on the synaptic function of amygdala in adult rats. Newborn Wistar rats were subjected to subcutaneous tapering-dose injections of DEX (0.5, 0.3 and 0.1 mg/kg) from post-natal day one to three, PN1-PN3. Animals were then subjected to a forced swimming test (FST) and electrophysiological recording aged eight weeks. The results of the FST showed neonatal DEX treatment increased depression-like behaviour in adulthood. After acute stress evoking, the percentage of time spent free floating is significantly increased in the DEX treated group compared with the control animals. Furthermore, neonatal DEX treatment elevated long-term potentiation (LTP) response and the phosphorylation level of MAPK in the lateral nucleus of amygdala (LA). Intracerebroventricular infusion of the MAPK inhibitor, PD98059, showed significant rescue effects including reduced depression-like behaviour and restoration of LTP to within normal range. In conclusion, our results suggested that MAPK signalling cascade in the LA plays an important role in the adverse effect of neonatal DEX treatment on amygdala function, which may result in adverse consequences in adult age, such as the enhancement of susceptibility for a depressive disorder in later life. PMID:24945924

  10. Alterations in cytochrome P-450 levels in adult rats following neonatal exposure to xenobiotics

    SciTech Connect

    Zangar, R.C. Pacific Northwest Laboratories, Richland, WA ); Springer, D.L. ); Buhler, D.R. )

    1993-01-01

    Neonatal exposure to certain xenobiotics has been shown to alter hepatic metabolism in adult rats in a manner that indicates long-term changes in enzyme regulation. Previously, the authors have observed changes in adult testosterone metabolism and in cytochrome P-450 (P-450) mRNA levels in animals neonatally exposed to phenobarbital (PB) or diethylstilbestrol (DES). In order to test for other enzyme alterations, they used Western blot procedures for specific P-450s to analyze hepatic microsomes from adult rats (24 wk old) that had been exposed neonatally to DES, PB, 7,12-dimethylbenz[a]anthracene (DMBA), or pregnenolone 16[alpha]-carbonitrile (PCN). The most striking effects were observed in the DES-treated males: P-4502C6 and an immunologically similar protein were increased 60 and 90%, respectively, relative to control values, but P-4503A2 was decreased by 44%. No changes were observed in the DES-treated males in levels of P-4502E1, P-4502B, or the male-specific P-4502C13. Adult males neonatally treated with PB had 150% increase in levels of anti-P4502B-reactive protein without significant changes in the other enzymes. The DES- and DMBA-treated females had increased levels of the female-specific P-4502C12 of 38 and 48%, respectively, but no other observed alterations. The results confirm that neonatal exposure to DES or PB can cause alterations in adult hepatic cytochrome P-450 levels but show that these chemicals act on different enzymes. Neonatal DMBA resulted in changes in adult females similar to those produced by the synthetic estrogen DES, but did so at about two-thirds lower dose. 37 refs., 5 figs.

  11. Neonatal immune challenge exacerbates seizure-induced hippocampus-dependent memory impairment in adult rats.

    PubMed

    Yin, Ping; Li, Zhen; Wang, Ying-Yan; Qiao, Na-Na; Huang, Shan-Ying; Sun, Ruo-Peng; Wang, Ji-Wen

    2013-04-01

    Our aim was to examine whether neonatal lipopolysaccharide (LPS) exposure is associated with changes in microglia and whether these alternations could influence later seizure-induced neurobehavioral outcomes. Male pups were first injected intraperitoneally with either LPS or saline on postnatal day 3 (P3) and postnatal day 5 (P5). Immunohistochemical analysis showed that LPS-treated animals exhibited increased microglia activation that persisted into adolescence. At P45, seizures were induced in rats by intraperitoneal injection of kainic acid (KA). Rats treated with LPS neonatally showed significantly greater proinflammatory responses and performed significantly worse in the Y-maze, Morris water maze, and inhibitory avoidance tasks after KA insult. Treatment with minocycline at the time of neonatal LPS exposure to block LPS-induced microglia alternation attenuated the exaggerated neuroinflammatory responses and alleviated memory impairment associated with the KA insult. Our findings suggest that neonatal immune activation can predispose the brain to exacerbated behavioral deficits following seizures in adulthood, possibly by priming microglia. PMID:23353000

  12. Protective Effect of Hydrogen Gas Therapy After Germinal Matrix Hemorrhage in Neonatal Rats

    PubMed Central

    Lekic, Tim; Manaenko, Anatol; Rolland, William; Fathali, Nancy; Peterson, Mathew; Tang, Jiping

    2013-01-01

    Background Germinal matrix hemorrhage (GMH) is a neurological disease of very low birth weight premature infants leading to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Hydrogen (H2) is a potent antioxidant shown to selectively reverse cytotoxic oxygen-radical injury in the brain. This study investigated the therapeutic effect of hydrogen gas after neonatal GMH injury. Methods Neonatal rats underwent stereotaxic infusion of clostridial collagenase into the right germinal matrix brain region. Cognitive function was assessed at 3 weeks, and then sensorimotor function, cerebral, cardiac and splenic growths were measured 1 week thereafter. Results Hydrogen gas inhalation markedly suppressed mental retardation and cerebral palsy outcomes in rats at the juvenile developmental stage. The administration of H2 gas, early after neonatal GMH, also normalized the brain atrophy, splenomegaly and cardiac hypertrophy 1 month after injury. Conclusion This study supports the role of cytotoxic oxygen-radical injury in early neonatal GMH. Hydrogen gas inhalation is an effective strategy to help protect the infant brain from the post-hemorrhagic consequences of brain atrophy, mental retardation and cerebral palsy. Further studies are necessary to determine the mechanistic basis of these protective effects. PMID:21725762

  13. Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells

    PubMed Central

    Jermendy, A.; Toschi, E.; Aye, T.; Koh, A.; Aguayo-Mazzucato, C.; Sharma, A.; Weir, G. C.; Sgroi, D.

    2011-01-01

    Aims/hypothesis Fetal and neonatal beta cells have poor glucose-induced insulin secretion and only gain robust glucose responsiveness several weeks after birth. We hypothesise that this unresponsiveness is due to a generalised immaturity of the metabolic pathways normally found in beta cells rather than to a specific defect. Methods Using laser-capture microdissection we excised beta cell-enriched cores of pancreatic islets from day 1 (P1) neonatal and young adult Sprague–Dawley rats in order to compare their gene-expression profiles using Affymetrix U34A microarrays (neonatal, n=4; adult, n=3). Results Using dChip software for analysis, 217 probe sets for genes/38 expressed sequence tags (ESTs) were significantly higher and 345 probe sets for genes/33 ESTs significantly lower in beta cell-enriched cores of neonatal islets compared with those of adult islets. Among the genes lower in the neonatal beta cells were key metabolic genes including mitochondrial shuttles (malate dehydrogenase, glycerol-3-phosphate dehydrogenase and glutamate oxalacetate transaminase), pyruvate carboxylase and carnitine palmitoyl transferase 2. Differential expression of these enzyme genes was confirmed by quantitative PCR on RNA from isolated neonatal (P2 until P28) and adult islets and with immunostaining of pancreas. Even by 28 days of age some of these genes were still expressed at lower levels than in adults. Conclusions/interpretation The lack of glucose responsiveness in neonatal islets is likely to be due to a generalised immaturity of the metabolic specialisation of pancreatic beta cells. PMID:21240476

  14. Efficient central nervous system AAVrh10-mediated intrathecal gene transfer in adult and neonate rats.

    PubMed

    Hordeaux, J; Dubreil, L; Deniaud, J; Iacobelli, F; Moreau, S; Ledevin, M; Le Guiner, C; Blouin, V; Le Duff, J; Mendes-Madeira, A; Rolling, F; Cherel, Y; Moullier, P; Colle, M-A

    2015-04-01

    Intracerebral administration of recombinant adeno-associated vector (AAV) has been performed in several clinical trials. However, delivery into the brain requires multiple injections and is not efficient to target the spinal cord, thus limiting its applications. To assess widespread and less invasive strategies, we tested intravenous (IV) or intrathecal (that is, in the cerebrospinal fluid (CSF)) delivery of a rAAVrh10-egfp vector in adult and neonate rats and studied the effect of the age at injection on neurotropism. IV delivery is more efficient in neonates and targets predominantly Purkinje cells of the cerebellum and sensory neurons of the spinal cord and dorsal root ganglia. A single intra-CSF administration of AAVrh10, single strand or oversized self-complementary, is efficient for the targeting of neurons in the cerebral hemispheres, cerebellum, brainstem and spinal cord. Green fluorescent protein (GFP) expression is more widespread in neonates when compared with adults. More than 50% of motor neurons express GFP in the three segments of the spinal cord in neonates and in the cervical and thoracic regions in adults. Neurons are almost exclusively transduced in neonates, whereas neurons, astrocytes and rare oligodendrocytes are targeted in adults. These results expand the possible routes of delivery of AAVrh10, a serotype that has shown efficacy and safety in clinical trials concerning neurodegenerative diseases. PMID:25588740

  15. Simultaneous measurement of arterial and left ventricular pressure in conscious freely moving rats by telemetry.

    PubMed

    Segreti, Jason A; Polakowski, James S; Blomme, Eric A; King, Andrew J

    2016-01-01

    Comprehensive cardiovascular assessment in conscious rodents by utilizing telemetry has been limited by the restriction of current devices to one pressure channel. The purpose of this study was to test and validate a dual pressure transmitter that allows the simultaneous measurement of arterial pressure (AP) and left ventricular pressure (LVP) in conscious freely moving rats. Six rats were surgically implanted with dual pressure transmitters. Baseline hemodynamics and circadian rhythm were observed to return within 7days. AP, heart rate (HR), LVP and indices of left ventricular contractility were stable and demonstrated a prominent circadian rhythm over a two-week period of uninterrupted recordings. Administration of the vasodilator nifedipine produced the anticipated dose-dependent decrease in AP which was accompanied by a baroreflex mediated increase in HR and cardiac contractility. The negative inotrope verapamil produced the expected dose-dependent decreases in AP and cardiac contractility. Finally, a terminal validation of the dual pressure transmitter was performed under anesthesia by measuring AP and LVP simultaneously via telemetry and from a fluid filled arterial catheter and an intraventricular Millar catheter, respectively. A range of pressures and cardiac contractility were studied by administering sequential intravenous infusions of the positive inotrope dobutamine followed by verapamil. Linear regression analysis revealed a high level of agreement between pressures measured by the dual pressure transmitter and the exteriorized catheters. Histopathologic analysis of the heart revealed mild peri-catheter fibrosis. In conclusion, the simultaneous measurement of AP and LVP offers the potential for more detailed cardiovascular assessment in conscious rats. PMID:26778372

  16. Establishment and identification of a hypoxia-ischemia brain damage model in neonatal rats

    PubMed Central

    YAO, DAN; ZHANG, WEIRAN; HE, XUE; WANG, JINHU; JIANG, KEWEN; ZHAO, ZHENGYAN

    2016-01-01

    The present study was designed to set up a reliable model of severe hypoxia-ischemia brain damage (HIBD) in neonatal rats and several methods were used to identify whether the model was successful. A total of 40 healthy 7-day-old Sprague-Dawley rats were randomly divided into 2 groups: The sham-surgery group (n=18) and the HIBD model group (n=22). The HIBD model was produced according to the traditional Rice method. The rats were anesthetized with ethyl ether. The left common carotid artery (CCA) was exposed, ligated and cut. Following this, the rats were exposed to hypoxia in a normobaric chamber filled with 8% oxygen and 92% nitrogen for 2 h. In the sham-surgery group, the left CCA was exposed but was not ligated, cut or exposed to hypoxia. The neurobehavioral changes of the rats were observed in the 24 h after HIBD. The brains were collected after 72 h to observe the pathological morphological changes of the brain tissue. The behavioral ability and neurobehavioral changes were studied in each group. The water maze test was used for evaluating the learning-memory ability when the rats were 28 days old. Compared with the sham-surgery group, all the HIBD model rats had a lag of motor development. The rats had evident changes in anatomy and Nissl staining, and cognitive impairment was shown through the result of the water maze. Therefore, the model of HIBD in neonatal rats is feasible and provides a reliable model for subsequent studies. PMID:27073628

  17. Bax inhibiting peptide reduces apoptosis in neonatal rat hypoxic-ischemic brain damage

    PubMed Central

    Sun, Meng-Ya; Cui, Kai-Jie; Yu, Mao-Min; Zhang, Hui; Peng, Xiang-Li; Jiang, Hong

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) has been reported to induce apoptosis in neonates. We, therefore, analyzed the ability of Bax-inhibiting peptide (BIP) to provide neuroprotective effects during hypoxic-ischemic brain damage (HIBD). Seven-day-old wistar rat pups (n = 198) were randomly divided into a sham-operated group (Group S, n = 18), saline group (Group C, n = 90) and BIP group (Group B, n = 90). Pathological changes in the cerebral tissues of rat pups were analyzed using hematoxylin and eosin stain, TUNEL and Western blot. The expression of cytochrome c and caspase-3 was determined using western blot technique. Rat pups demonstrated neurobehavioral alteration in Groups C and B. TUNEL-positive cells in the left hippocampus were significantly increased in Group C and Group B after HIBD (P < 0.01) when compared with Group S. There was a marked reduction in TUNEL positive cells in subgroups B1 through B4 when compared with the respective subgroups C1 through C5. Compared with Group S, the expression of caspase-3 and cytochrome c was significantly increased in Groups C and B (P < 0.01). The difference in expression of caspase-3 and cytochrome c between subgroups B1 through B4 and C1 through C4 was significant (P < 0.01). In conclusions, the neuro-protective effect of BIP was due to a reduction of nerve cell apoptosis in our neonatal HIE rat model. We propose that BIP has potential as a neuro-protective drug in neonatal HIE cases. PMID:26823794

  18. Lithium Treatment Prevents Apoptosis in Neonatal Rat Hippocampus Resulting from Sevoflurane Exposure.

    PubMed

    Zhou, Xue; da Li, Wen-; Yuan, Bao-Long; Niu, Li-Jun; Yang, Xiao-Yu; Zhou, Zhi-Bin; Chen, Xiao-Hui; Feng, Xia

    2016-08-01

    We aimed to observe the therapeutic effects of lithium on inhalational anesthetic sevoflurane-induced apoptosis in immature brain hippocampus. From postnatal day 5 (P5) to P28, male Sprague-Dawley pups were intraperitoneally injected with lithium chloride or 0.9 % sodium chloride. On P7 after the injection, pups were exposed to 2.3 % sevoflurane or air for 6 h. Brain tissues were harvested 12 h and 3 weeks after exposure. Cleaved caspase-3, nNOS protein, GSK-3β,p-GSK-3β were assessed by Western blot, and histopathological changes were assessed using Nissl stain and TUNEL stain. From P28, we used the eight-arm radial maze test and step-through test to evaluate the influence of sevoflurane exposure on the learning and memory of juvenile rats. The results showed that neonatal sevoflurane exposure induced caspase-3 activation and histopathological changes in hippocampus can be attenuated by lithium chloride. Sevoflurane increased GSK-3β activity while pretreatment of lithium decreased GSK-3β activity. Moreover, sevoflurane showed possibly slight but temporal influence on the spatial learning and the memory of juvenile rats, and chronic use of lithium chloride might have the therapeutic effect. Our current study suggests that lithium attenuates sevoflurane induced neonatal hippocampual damage by GSK-3β pathway and might improve learning and memory deficits in rats after neonatal exposure. PMID:27068032

  19. Noradrenaline depletion blocks behavioral sparing and alters cortical morphogenesis after neonatal frontal cortex damage in rats.

    PubMed

    Kolb, B; Sutherland, R J

    1992-06-01

    The possibility that cortical noradrenaline (NA) is necessary for sparing of function that occurs after neonatal frontal cortex damage was examined. Spatial localization by rats with frontal cortex damage on postnatal day 7 (P7) was better than that by rats with similar damage sustained as adults. The sparing was abolished in rats depleted of cortical NA by means of neonatal 6-hydroxydopamine (6HDA) administration. The blockade of sparing in the P7 frontal operates was associated with a smaller brain, thinner cortex, and reduced cortical dendritic branching relative to saline-treated P7 frontal operates. NA depletion alone in unoperated rats did not affect spatial learning but did reduce brain size and dendritic branching. Rats with frontal lesions on P4 did not show sparing of spatial localization, and 6HDA administration had no additional behavioral effect. Overall, these data are consistent with the notion that NA has some general function in maintaining some forms of plasticity in posterior cortex. PMID:1607943

  20. Carnosine pretreatment protects against hypoxia-ischemia brain damage in the neonatal rat model.

    PubMed

    Zhang, Xiangmin; Song, Lili; Cheng, Xiuyong; Yang, Yi; Luan, Bin; Jia, Liting; Xu, Falin; Zhang, Zhan

    2011-09-30

    Perinatal hypoxia-ischemia brain injury is a major cause of mortality and morbidity in neonates and lacks an effective treatment thus far. Carnosine has been demonstrated to play a neuroprotective role in the adult brain injuries. However, there is no information available concerning its neuroprotective role in the immature brains after hypoxia-ischemia insults. Therefore, we investigated whether carnosine could also confer neuroprotective effects in a neonatal rat hypoxia-ischemia model. Hypoxia-ischemia was induced in rats on postnatal day 7 (P7). Carnosine (250 mg/kg) was administered intraperitoneally, 30 min prior to hypoxia-ischemia induction. Morphological brain injury and biochemical markers of apoptosis and oxidative stress were evaluated 24 h after hypoxia-ischemia induction. Cognitive performance was evaluated by the Morris Water Maze test on P28-P33. We found that pretreatment with carnosine significantly reduced the infarct volume and the number of terminal-deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells in the hypoxia-ischemia brain. Carnosine also inhibited mRNA expression of apoptosis-inducing factor(AIF) and caspase-3, which was accompanied by an increase in superoxide dismutase(SOD)activity and a decrease in the malondialdehyde(MDA)level in carnosine-treated rats. Furthermore, carnosine also improved the spatial learning and memory abilities of rats declined due to hypoxia-ischemia. These results demonstrate that carnosine can protect rats against hypoxia-ischemia-induced brain damage by antioxidation. PMID:21693116

  1. [SUSTENTOCYTE NUMBERS IN THE NEONATAL PERIOD IN THE OFFSPRING OF FEMALE RATS WITH EXPERIMENTAL LIVER DAMAGE].

    PubMed

    Briukhin, G V; Sizonenko, M L

    2016-01-01

    On serial histological sections of the testes, stained with hematoxylin-eosin, using a morphometric device, the total numbers of spermatogenic cells and sustentocytes (Sertoli cells) were measured in the convoluted seminiferous tubules of neonatal rat pups. Experimental groups consisted of rats born from females with experimental liver damage of various origins--autoimmune (n = 33), toxic (n = 32), alcoholic (n = 12), and medicinal (n = 27). The control group included pups born from normal female rats (n = 14). In experimental rats both increase and decrease of the total number of sustentocytes was detected. In the animals of most of the experimental groups, sustentocyte cell index reflecting the ratio of the number of spermatogenic cells and sustentocytes, was decreased. PMID:27487667

  2. Voluntary exercise-induced changes in beta2-adrenoceptor signalling in rat ventricular myocytes.

    PubMed

    Stones, Rachel; Natali, Antonio; Billeter, Rudolf; Harrison, Simon; White, Ed

    2008-09-01

    Regular exercise is beneficial to cardiovascular health. We tested whether mild voluntary exercise training modifies key myocardial parameters [ventricular mass, intracellular calcium ([Ca2+]i) handling and the response to beta-adrenoceptor (beta-AR) stimulation] in a manner distinct from that reported for beneficial, intensive training and pathological hypertrophic stimuli. Female rats performed voluntary wheel-running exercise for 6-7 weeks. The mRNA expression of target proteins was measured in left ventricular tissue using real-time reverse transcriptase-polymerase chain reaction. Simultaneous measurement of cell shortening and [Ca2+]i transients were made in single left ventricular myocytes and the inotropic response to beta1- and beta2-AR stimulation was measured. Voluntary exercise training resulted in cardiac hypertrophy, the heart weight to body weight ratio being significantly greater in trained compared with sedentary animals. However, voluntary exercise caused no significant alteration in the size or time course of myocyte shortening and [Ca2+]i transients or in the mRNA levels of key proteins that regulate Ca2+ handling. The positive inotropic response to beta1-AR stimulation and the level of beta1-AR mRNA were unaltered by voluntary exercise but both mRNA levels and inotropic response to beta2-AR stimulation were significantly reduced in trained animals. The beta2-AR inotropic response was restored by exposure to pertussis toxin. We propose that in contrast to pathological stimuli and to beneficial, intense exercise training, modulation of Ca2+ handling is not a major adaptive mechanism in the response to mild voluntary exercise. In addition, and in a reversal of the situation seen in heart failure, voluntary exercise training maintains the beta1-AR response but reduces the beta2-AR response. Therefore, although voluntary exercise induces cardiac hypertrophy, there are distinct differences between its effects on key myocardial regulatory mechanisms

  3. STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes

    PubMed Central

    Zhao, Guiling; Li, Tianyu; Brochet, Didier X. P.; Rosenberg, Paul B.; Lederer, W. J.

    2015-01-01

    In ventricular myocytes, the physiological function of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum (ER/SR) Ca2+ sensor, is unclear with respect to its cellular localization, its Ca2+-dependent mobilization, and its action on Ca2+ signaling. Confocal microscopy was used to measure Ca2+ signaling and to track the cellular movement of STIM1 with mCherry and immunofluorescence in freshly isolated adult rat ventricular myocytes and those in short-term primary culture. We found that endogenous STIM1 was expressed at low but measureable levels along the Z-disk, in a pattern of puncta and linear segments consistent with the STIM1 localizing to the junctional SR (jSR). Depleting SR Ca2+ using thapsigargin (2–10 µM) changed neither the STIM1 distribution pattern nor its mobilization rate, evaluated by diffusion coefficient measurements using fluorescence recovery after photobleaching. Two-dimensional blue native polyacrylamide gel electrophoresis and coimmunoprecipitation showed that STIM1 in the heart exists mainly as a large protein complex, possibly a multimer, which is not altered by SR Ca2+ depletion. Additionally, we found no store-operated Ca2+ entry in control or STIM1 overexpressing ventricular myocytes. Nevertheless, STIM1 overexpressing cells show increased SR Ca2+ content and increased SR Ca2+ leak. These changes in Ca2+ signaling in the SR appear to be due to STIM1 binding to phospholamban and thereby indirectly activating SERCA2a (Sarco/endoplasmic reticulum Ca2+ ATPase). We conclude that STIM1 binding to phospholamban contributes to the regulation of SERCA2a activity in the steady state and rate of SR Ca2+ leak and that these actions are independent of store-operated Ca2+ entry, a process that is absent in normal heart cells. PMID:26261328

  4. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    PubMed

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions. PMID:26794834

  5. Treprostinil potentiates the positive inotropic effect of catecholamines in adult rat ventricular cardiomyocytes

    PubMed Central

    Fontana, M; Olschewski, H; Olschewski, A; Schlüter, K-D

    2007-01-01

    Background and purpose: Prostanoids have been shown to improve exercise tolerance, hemodynamics and quality of life in patients with pulmonary arterial hypertension (PAH). We investigated whether treprostinil exerts direct contractile effects on cardiomyocytes that may explain partly the beneficial effects of these drugs. Experimental approach: Ventricular cardiomyocytes from adult rats were paced at a constant frequency of 0.5 to 2.0 Hz and cell shortening was monitored via a cell edge detection system. Twitch amplitudes, expressed as percent cell shortening of the diastolic cell length, and maximal contraction velocity, relaxation velocity, time to peak of contraction and time to reach 50% of relaxation were analyzed. Key results: Treprostinil (0.15 – 15 ng ml−1) slightly increased contractile dynamics of cardiomyocytes at clinically relevant concentrations. However, the drug significantly improved cell shortening of cardiomyocytes in the presence of isoprenaline, a β-adrenoceptor agonist. Treprostinil exerted this effect at all beating frequencies under investigation. Treprostinil mimicked this potentiating effect in a Langendorff preparation as well. The potentiating effect of treprostinil on isoprenaline-dependent cell shortening was no longer seen after phosphodiesterase inhibition. Long-term cultivation of cardiomyocytes with treprostinil did not modify load free cell shortening of these cells, but reduces the duration of contraction. Conclusions and implications: We conclude that the clinically used prostanoid treprostinil potentiates the positive inotropic effects of catecholamines in adult ventricular cardiomyocytes. This newly described effect may contribute to the beneficial clinical effects of prostanoids in patients with PAH. PMID:17533419

  6. Neuroprotective effects of NGF, BDNF, NT-3 and GDNF on axotomized extraocular motoneurons in neonatal rats.

    PubMed

    Morcuende, S; Muñoz-Hernández, R; Benítez-Temiño, B; Pastor, A M; de la Cruz, R R

    2013-10-10

    Neurotrophic factors delivered from target muscles are essential for motoneuronal survival, mainly during development and early postnatal maturation. It has been shown that the disconnection between motoneurons and their innervated muscle by means of axotomy produces a vast neuronal death in neonatal animals. In the present work, we have evaluated the effects of different neurotrophic factors on motoneuronal survival after neonatal axotomy, using as a model the motoneurons innervating the extraocular eye muscles. With this purpose, neonatal rats were monocularly enucleated at the day of birth (postnatal day 0) and different neurotrophic treatments (NGF, BDNF, NT-3, GDNF and the mixture of BDNF+GDNF) were applied intraorbitally by means of a Gelfoam implant (a single dose of 5 μg of each factor). We first demonstrated that extraocular eye muscles of neonatal rats expressed these neurotrophic factors and therefore constituted a natural source of retrograde delivery for their innervating motoneurons. By histological and immunocytochemical methods we determined that all treatments significantly rescued extraocular motoneurons from axotomy-induced cell death. For the dose used, NGF and GDNF were the most potent survival factors for these motoneurons, followed by BDNF and lastly by NT-3. The simultaneous administration of BDNF and GDNF did not increase the survival-promoting effects above those obtained by GDNF alone. Interestingly, the rescue effects of all neurotrophic treatments persisted even 30 days after lesion. The administration of these neurotrophic factors, with the exception of NT-3, also prevented the loss of the cholinergic phenotype observed by 10 days after axotomy. At the dosage applied, NGF and GDNF were revealed again as the most effective neuroprotective agents against the axotomy-induced decrease in ChAT. Two remarkable findings highlighted in the present work that contrasted with other motoneuronal types after neonatal axotomy: first, the extremely

  7. Pharmacological inhibition of IK1 by PA-6 in isolated rat hearts affects ventricular repolarization and refractoriness.

    PubMed

    Skarsfeldt, Mark A; Carstensen, Helena; Skibsbye, Lasse; Tang, Chuyi; Buhl, Rikke; Bentzen, Bo H; Jespersen, Thomas

    2016-04-01

    The inwardly rectifying potassium current (IK 1) conducted through Kir2.X channels contribute to repolarization of the cardiac action potential and to stabilization of the resting membrane potential in cardiomyocytes. Our aim was to investigate the effect of the recently discovered IK 1 inhibitor PA-6 on action potential repolarization and refractoriness in isolated rat hearts. Transiently transfected HEK-293 cells expressing IK 1 were voltage-clamped with ramp protocols. Langendorff-perfused heart experiments were performed on male Sprague-Dawley rats, effective refractory period, Wenckebach cycle length, and ventricular effective refractory period were determined following 200 nmol/L PA-6 perfusion. 200 nmol/L PA-6 resulted in a significant time-latency in drug effect on the IK 1 current expressed in HEK-293 cells, giving rise to a maximal effect at 20 min. In the Langendorff-perfused heart experiments, PA-6 prolonged the ventricular action potential duration at 90% repolarization (from 41.8 ± 6.5 msec to 72.6 ± 21.1 msec, 74% compared to baseline, P < 0.01, n = 6). In parallel, PA-6 significantly prolonged the ventricular effective refractory period compared to baseline (from 34.8 ± 4.6 msec to 58.1 ± 14.7 msec, 67%, P < 0.01, n = 6). PA-6 increased the short-term beat-to-beat variability and ventricular fibrillation was observed in two of six hearts. Neither atrial ERP nor duration of atrial fibrillation was altered following PA-6 application. The results show that pharmacological inhibition of cardiac IK 1 affects ventricular action potential repolarization and refractoriness and increases the risk of ventricular arrhythmia in isolated rat hearts. PMID:27117805

  8. NEONATAL LOW- AND HIGH-DOSE EXPOSURE TO ESTRADIOL BENZOATE IN THE MALE RAT: I. EFFECTS ON THE PROSTATE GLAND

    EPA Science Inventory

    Neonatal Low- And High-Dose Exposure To Estradiol Benzoate In The Male Rat: 1. Effects On The Prostate Gland. Oliver Putz, Christian B. Schwartz, Steve Kim, Gerald A. LeBlanc Ralph L. Cooper, Gail S. Prins

    ABSTRACT
    Brief exposure of rats to high doses of natural estro...

  9. Activity and social behavior in a complex environment in rats neonatally exposed to alcohol.

    PubMed

    Boschen, Karen E; Hamilton, Gillian F; Delorme, James E; Klintsova, Anna Y

    2014-09-01

    Environmental complexity (EC) is a powerful, stimulating paradigm that engages animals through a variety of sensory and motor pathways. Exposure to EC (30 days) following 12 days of wheel running preserves hippocampal neuroplasticity in male rats neonatally exposed to alcohol during the third-trimester equivalent (binge-like exposure on postnatal days [PD] 4-9). The current experiment investigates the importance of various components of EC (physical activity, exploration, social interaction, novelty) and examines whether neonatal alcohol exposure affects how male rats interact with their environment and other male rats. Male pups were assigned to 1 of 3 neonatal conditions from PD 4-9: suckle control (SC), sham-intubated (SI), or alcohol-exposed (AE, 5.25 g/kg/day). From PD 30-42 animals were housed with 24-h access to a voluntary running wheel. The animals were then placed in EC from PD 42-72 (9 animals/cage, counterbalanced by neonatal condition). During EC, the animals were filmed for five 30-min sessions (PD 42, 48, 56, 64, 68). For the first experiment, the videos were coded for distance traveled in the cage, overall locomotor activity, time spent near other animals, and interaction with toys. For the second experiment, the videos were analyzed for wrestling, mounting, boxing, grooming, sniffing, and crawling over/under. AE animals were found to be less active and exploratory and engaged in fewer mounting behaviors compared to control animals. Results suggest that after exposure to wheel running, AE animals still have deficits in activity and social behaviors while housed in EC compared to control animals with the same experience. PMID:25150044

  10. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat.

    PubMed

    Kao, Tina; Shumsky, Jed S; Murray, Marion; Moxon, Karen A

    2009-06-10

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/d, 5 d/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping, and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single-neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation, but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  11. Activity and Social Behavior in a Complex Environment in Rats Neonatally Exposed to Alcohol

    PubMed Central

    Boschen, Karen E.; Hamilton, Gillian F.; Delorme, James E.; Klintsova, Anna Y.

    2014-01-01

    Environmental complexity (EC) is a powerful, stimulating paradigm that engages animals through a variety of sensory and motor pathways. Exposure to EC (30 days) following 12 days of wheel running preserves hippocampal neuroplasticity in male rats neonatally exposed to alcohol during the third-trimester equivalent (binge-like exposure on postnatal days [PD] 4–9). The current experiment investigates the importance of various components of EC (physical activity, exploration, social interaction, novelty) and examines whether neonatal alcohol exposure affects how male rats interact with their environment and other male rats. Male pups were assigned to 1 of 3 neonatal conditions from PD 4–9: suckle control (SC), sham-intubated (SI), or alcohol-exposed (AE, 5.25 g/kg/day). From PD 30–42 animals were housed with 24-h access to a voluntary running wheel. The animals were then placed in EC from PD 42–72 (9 animals/cage, counterbalanced by neonatal condition). During EC, the animals were filmed for five 30-min sessions (PD 42, 48, 56, 64, 68). For the first experiment, the videos were coded for distance traveled in the cage, overall locomotor activity, time spent near other animals, and interaction with toys. For the second experiment, the videos were analyzed for wrestling, mounting, boxing, grooming, sniffing, and crawling over/under. AE animals were found to be less active and exploratory and engaged in fewer mounting behaviors compared to control animals. Results suggest that after exposure to wheel running, AE animals still have deficits in activity and social behaviors while housed in EC compared to control animals with the same experience. PMID:25150044

  12. NEUROTOXICITY OF PARATHION-INDUCED ACETYLCHOLINESTERASE INHIBITION IN NEONATAL RATS

    EPA Science Inventory

    The biochemical and morphological neurotoxic effects of postnatal acetylcholinesterase (AChE) inhibition were examined in rat pups dosed with parathion, at time points critical to hippocampal neurogenesis and synaptogenesis (i.e., D5-20). ippocampal cytopathology as assessed by l...

  13. Effects of Sleep Deprivation on Action Potential and Transient Outward Potassium Current in Ventricular Myocytes in Rats

    PubMed Central

    Fang, Zhou; Ren, Yi-Peng; Lu, Cai-Yi; Li, Yang; Xu, Qiang; Peng, Li; Fan, Yong-Yan

    2015-01-01

    Background Sleep deprivation contributes to the development and recurrence of ventricular arrhythmias. However, the electrophysiological changes in ventricular myocytes in sleep deprivation are still unknown. Material/Methods Sleep deprivation was induced by modified multiple platform technique. Fifty rats were assigned to control and sleep deprivation 1, 3, 5, and 7 days groups, and single ventricular myocytes were enzymatically dissociated from rat hearts. Action potential duration (APD) and transient outward current (Ito) were recorded using whole-cell patch clamp technique. Results Compared with the control group, the phases of APD of ventricular myocytes in 3, 5, and 7 days groups were prolonged and APD at 20% and 50% level of repolarization (APD20 and APD50) was significantly elongated (The APD20 values of control, 1, 3, 5, and 7 days groups: 5.66±0.16 ms, 5.77±0.20 ms, 8.28±0.30 ms, 11.56±0.32 ms, 13.24±0.56 ms. The APD50 values: 50.66±2.16 ms, 52.77±3.20 ms, 65.28±5.30 ms, 83.56±7.32 ms, 89.24±5.56 ms. P<0.01, n=18). The current densities of Ito significantly decreased. The current density-voltage (I–V) curve of Ito was vitally suppressed downward. The steady-state inactivation curve and steady-state activation curve of Ito were shifted to left and right, respectively, in sleep deprivation rats. The inactivation recovery time of Ito was markedly retarded and the time of closed-state inactivation was markedly accelerated in 3, 5, and 7 days groups. Conclusions APD of ventricular myocytes in sleep deprivation rats was significantly prolonged, which could be attributed to decreased activation and accelerated inactivation of Ito. PMID:25694200

  14. Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes.

    PubMed

    Despa, Sanda; Bers, Donald M

    2007-07-01

    The Na(+)/K(+)-ATPase (NKA) is the main route for Na(+) extrusion from cardiac myocytes. Different NKA alpha-subunit isoforms are present in the heart. NKA-alpha1 is predominant, although there is a variable amount of NKA-alpha2 in adult ventricular myocytes of most species. It has been proposed that NKA-alpha2 is localized mainly in T-tubules (TT), where it could regulate local Na(+)/Ca(2+) exchange and thus cardiac myocyte Ca(2+). However, there is controversy as to where NKA-alpha1 vs. NKA-alpha2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (I(Pump)) measurements and the different ouabain sensitivity of NKA-alpha1 (low) and NKA-alpha2 (high) in rat heart. Ouabain-dependent I(Pump) inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-alpha2, K(1/2) = 0.38 +/- 0.16 microM) that accounts for 29.5 +/- 1.3% of I(Pump) and a low-affinity isoform (NKA-alpha1, K(1/2) = 141 +/- 17 microM) that accounts for 70.5% of I(Pump). Detubulation decreased cell capacitance from 164 +/- 6 to 120 +/- 8 pF and reduced I(Pump) density from 1.24 +/- 0.05 to 1.02 +/- 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-alpha2 accounted for only 18.2 +/- 1.1% of I(Pump). Thus, approximately 63% of I(Pump) generated by NKA-alpha2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-alpha2/NKA-alpha1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-alpha2 is approximately 4.5 times higher in the T-tubules vs. ESL, whereas NKA-alpha1 is almost uniformly distributed between the TT and ESL. PMID:17392375

  15. The effect of exposure to hypergravity on pregnant rat dams, pregnancy outcome and early neonatal development

    NASA Astrophysics Data System (ADS)

    Ladd, B.; Nguon, K.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that hypergravity exposure affects food intake and mass gain during pregnancy. In the present study, we explored the hypothesis that changes in maternal body mass in hypergravity-exposed pregnant rat dams affect pregnancy outcome and early offspring development. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravity and by exposure during critical developmental periods. To test this hypothesis, we compared maternal body mass gain, food consumption, birth outcome and early offspring development between Sprague Dawley rat dams exposed to graded (1.5 1.75G) chronic hypergravity (HG) or rotation (rotational control, RC) on a 24-ft centrifuge for 22.5 h starting on gestational day (G) 10 with dams housed under identical conditions but not exposed to hypergravity (SC). We also compared maternal body mass, food consumption, birth outcome and early offspring development between rat dams exposed to 1.65G during different stages of pregnancy and nursing. Exposure to hypergravity resulted in transient loss in body mass and prolonged decrease in food consumption in HG dams, but the changes observed at 1.5G were not magnified at 1.65G or 1.75G. On the other hand RC dams gained more mass and consumed more food than SC dams. Exposure to hypergravity also affected pregnancy outcome as evidenced by decreased litter size, lowered neonatal mass at birth, and higher neonatal mortality; pregnancy outcome was not affected in RC dams. Neonatal changes evidenced by impaired righting response observed at 1.5G was magnified at higher gravity and was dependent on the period of hypergravity exposure. On the other hand, righting response was improved in RC neonates. Hypergravity exposure during early postpartum affected the food consumption of nursing mothers and affected early survival of their offspring. The changes observed in dams and neonates appear to be due to hypergravity exposure since animals exposed to the rotation

  16. Environmental Enrichment Decreases Asphyxia-Induced Neurobehavioral Developmental Delay in Neonatal Rats

    PubMed Central

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-01-01

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia. PMID:24232451

  17. Increased concentrations of 3-hydroxykynurenine in vitamin B6 deficient neonatal rat brain.

    PubMed

    Guilarte, T R; Wagner, H N

    1987-12-01

    Increased concentrations of the endogenous tryptophan metabolite 3-hydroxykynurenine (3-HK) were measured in the brains of vitamin B6 deficient neonatal rats. Mean concentrations of 3-HK in B6 deficient cerebellum, corpus striatum, frontal cortex, and pons/medulla ranged from 9.7 to 18.6 and 102 to 142 nmol/g of wet tissue at 14 and 18 days of age, respectively. 3-HK was not significantly increased in control neonatal or adult rat brain, vitamin B6 deficient rat brain at 7 days of age, or in brains from adult rats deprived of vitamin B6 for 58 days. The administration of daily intraperitoneal injections of vitamin B6 from the 14th to the 18th day of age decreased the concentration of 3-HK to control levels. 3-HK has been shown by other investigators to produce seizures when injected into the cerebral ventricles of adult rodents. Thus, our studies show the accumulation in brain of a putative endogenous convulsant as the result of a nutritional deficiency. PMID:3681302

  18. Experimental Nonalcoholic Steatohepatitis Induced by Neonatal Streptozotocin Injection and a High-Fat Diet in Rats.

    PubMed

    Hsu, Huai-Che; Dozen, Masaharu; Matsuno, Naoto; Obara, Hiromichi; Tanaka, Ryou; Enosawa, Shin

    2013-12-30

    Nonalcoholic steatohepatitis (NASH) has become a major concern in clinical hepatology. To elucidate the disease mechanisms and to develop a treatment, the advent of an appropriate experimental model is crucial. Pregnant Sprague-Dawley rats were fed a high-fat diet from gestational day 16. Two days after birth, the neonates were injected subcutaneously with streptozotocin (STZ) (180, 200, or 256 mg/kg). The mothers were fed a high-fat diet during the nursing period. After being weaned (4 weeks of age), the juvenile rats were fed the same high-fat diet. The survival rates at the time of weaning were 25.6% (180 mg/kg STZ), 22.8% (200 mg/kg STZ), and 19.4% (256 mg/kg STZ). The mean body weight of NASH rats was approximately 20% less than that of normal rats. Serum levels of glucose, alanine aminotransferase, and hyaluronic acid increased in NASH rats. Histologically, typical features of steatohepatitis such as ballooning, inflammatory cell infiltration, and perivenular and pericellular fibrosis were observed. In an indocyanine green loading test, the blood half-life was significantly longer in NASH rats (5.04 ± 2.14 vs. 2.72 ± 0.72 min; p < 0.05), which was suggestive of an impaired hepatobiliary transportation function. Concomitantly, biliary ICG concentrations in NASH rats stabilized in a delayed fashion compared with normal rats. In addition, the amount of bile excreted in NASH rats was significantly lower than that in normal rats (4.32 ± 0.83 vs. 7.66 ± 1.05 mg/min; p < 0.01). The rat NASH model presented here mimics the clinical features of the disease and will be a helpful tool for medical and bioscience research. PMID:26858881

  19. Behavioral and Neurochemical Deficits in Aging Rats with Increased Neonatal Iron Intake: Silibinin’s Neuroprotection by Maintaining Redox Balance

    PubMed Central

    Chen, Hanqing; Wang, Xijin; Wang, Meihua; Yang, Liu; Yan, Zhiqiang; Zhang, Yuhong; Liu, Zhenguo

    2015-01-01

    Aging is a critical risk factor for Parkinson’s disease. Silibinin, a major flavonoid in Silybum marianum, has been suggested to display neuroprotective properties against various neurodegenerative diseases. In the present study, we observed that neonatal iron (120 μg/g body weight) supplementation resulted in significant abnormality of behavior and depletion of striatal dopamine (DA) in the aging male and female rats while it did not do so in the young male and female rats. No significant change in striatal serotonin content was observed in the aging male and female rats with neonatal supplementation of the same dose of iron. Furthermore, we found that the neonatal iron supplementation resulted in significant increase in malondialdehyde (MDA) and decrease in glutathione (GSH) in the substantia nigra (SN) of the aging male and female rats. No significant change in content of MDA and GSH was observed in the cerebellum of the aging male and female rats with the neonatal iron supplementation. Interestingly, silibinin (25 and 50 mg/kg body weight) treatment significantly and dose-dependently attenuated depletion of striatal DA and improved abnormality of behavior in the aging male and female rats with the neonatal iron supplementation. Moreover, silibinin significantly reduced MDA content and increased GSH content in the SN of the aging male and female rats. Taken together, our results indicate that elevated neonatal iron supplementation may result in neurochemical and behavioral deficits in the male and female rats with aging and silibinin may exert dopaminergic neuroprotection by maintaining redox balance. PMID:26578951

  20. Striatal GABA receptor alterations in hypoxic neonatal rats: role of glucose, oxygen and epinephrine treatment.

    PubMed

    Anju, T R; Binoy, J; Anitha, M; Paulose, C S

    2012-03-01

    Hypoxia in neonates disrupts the oxygen flow to the brain, essentially starving the brain and preventing it from performing vital biochemical processes important for central nervous system development. Hypoxia results in a permanent brain damage by gene and receptor level alterations mediated through neurotransmitters. The present study evaluated GABA, GABAA, GABAB receptor functions and gene expression changes in glutamate decarboxylase in the corpus striatum of hypoxic neonatal rats and the treatment groups with glucose, oxygen and epinephrine. Since GABA is the principal neurotransmitter involved in hypoxic ventilatory decline, the alterations in its level under hypoxic stress points to an important aspect of respiratory control. Following hypoxic stress, a significant decrease in total GABA, GABAA and GABAB receptors function and GAD expression was observed in the striatum, which accounts for the ventilator decline. Hypoxic rats treated with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD to near control. Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation helps in overcoming reduction in oxygen supply. Treatment with oxygen alone and epinephrine was not effective in reversing the altered receptor functions. Thus, our study point to the functional role of GABA receptors in mediating ventilatory response to hypoxia and the neuroprotective role of glucose treatment. This has immense significance in the proper management of neonatal hypoxia for a better intellect in the later stages of life. PMID:22089934

  1. Time course of myosin heavy chain transitions in neonatal rats: importance of innervation and thyroid state

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; McCue, S. A.; Zeng, M.; Baldwin, K. M.

    1999-01-01

    During the postnatal period, rat limb muscles adapt to weight bearing via the replacement of embryonic (Emb) and neonatal (Neo) myosin heavy chains (MHCs) by the adult isoforms. Our aim was to characterize this transition in terms of the six MHC isoforms expressed in skeletal muscle and to determine the importance of innervation and thyroid hormone status on the attainment of the adult MHC phenotype. Neonatal rats were made hypothyroid via propylthiouracil (PTU) injection. In normal and PTU subgroups, leg muscles were unilaterally denervated at 15 days of age. The MHC profiles of plantaris (PLN) and soleus (Sol) muscles were determined at 7, 14, 23, and 30 days postpartum. At day 7, the Sol MHC profile was 55% type I, 30% Emb, and 10% Neo; in the PLN, the pattern was 60% Neo and 25% Emb. By day 30 the Sol and PLN had essentially attained an adult MHC profile in the controls. PTU augmented slow MHC expression in the Sol, whereas in the PLN it markedly repressed IIb MHC by retaining neonatal MHC expression. Denervation blunted the upregulation of IIb in the PLN and of Type I in the Sol and shifted the pattern to greater expression of IIa and IIx MHCs in both muscles. In contrast to previous observations, these findings collectively suggest that both an intact thyroid and innervation state are obligatory for the attainment of the adult MHC phenotype, particularly in fast-twitch muscles.

  2. Neonatal anoxia in rats: hippocampal cellular and subcellular changes related to cell death and spatial memory.

    PubMed

    Takada, S H; dos Santos Haemmerle, C A; Motta-Teixeira, L C; Machado-Nils, A V; Lee, V Y; Takase, L F; Cruz-Rizzolo, R J; Kihara, A H; Xavier, G F; Watanabe, I-S; Nogueira, M I

    2015-01-22

    Neonatal anoxia in rodents has been used to understand brain changes and cognitive dysfunction following asphyxia. This study investigated the time-course of cellular and subcellular changes and hippocampal cell death in a non-invasive model of anoxia in neonatal rats, using Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) to reveal DNA fragmentation, Fluoro-Jade® B (FJB) to show degenerating neurons, cleaved caspase-3 immunohistochemistry (IHC) to detect cells undergoing apoptosis, and transmission electron microscopy (TEM) to reveal fine ultrastructural changes related to cell death. Anoxia was induced by exposing postnatal day 1 (P1) pups to a flow of 100% gaseous nitrogen for 25 min in a chamber maintained at 37 °C. Control rats were similarly exposed to this chamber but with air flow instead of nitrogen. Brain changes following anoxia were evaluated at postnatal days 2, 14, 21 and 60 (P2, P14, P21 and P60). In addition, spatial reference memory following anoxia and control treatments was evaluated in the Morris water maze, starting at P60. Compared to their respective controls, P2 anoxic rats exhibited (1) higher TUNEL labeling in cornus ammonis (CA) 1 and the dentate gyrus (DG), (2) higher FJB-positive cells in the CA2-3, and (3) somato-dendritic swelling, mitochondrial injury and chromatin condensation in irregular bodies, as well as other subcellular features indicating apoptosis, necrosis, autophagy and excitotoxicity in the CA1, CA2-3 and DG, as revealed by TEM. At P14, P21 and P60, both groups showed small numbers of TUNEL-positive and FJB-positive cells. Stereological analysis at P2, P14, P21 and P60 revealed a lack of significant differences in cleaved caspase-3 IHC between anoxic and control subjects. These results suggest that the type of hippocampal cell death following neonatal anoxia is likely independent of caspase-3 activation. Neonatal anoxia induced deficits in acquisition and performance of spatial reference

  3. The uptake and transmission of protein by neonatal rat enterocytes.

    PubMed Central

    Morris, B; Morris, R; Solari, R

    1981-01-01

    1. Proximal enterocytes transmitted intact immunoglobulin G (IgG) preferentially in the order rat, human, sheep and bovine; the removal from the vascular compartment of these transmitted molecules occurred at about the same rate. 2. Heterologous IgGs are processed similarly to rat IgG: they are either transmitted intact or broken down to less than 1000 mol. wt. fragments. 3. All of the human transferrin removed from the intestine was broken down to less than 1000 mol. wt. fragments, but a small amount of bovine serum albumin (BSA) was transmitted intact. 4. The IgGs and BSA are relatively indigestible molecules whereas human transferrin is relatively digestible. 5. These observations are discussed in the context of receptor-mediated transmission. PMID:7264976

  4. Development of insulation in neonatal cotton rats (Sigmodon hispidus)

    SciTech Connect

    McClure, P.A.; Porter, W.P.

    1983-01-01

    Data on environmental temperatures, skin temperature, animal size, the depth of fur, density of hairs in fur, hair length, and diameter of hair shafts were used to calculate fur thermal conductivity and heat loss, using a porous medium model modified for that of Kowalski and Mitchell. The total thermal conductivity of fur changed little with respect to the age of the animal, but calculated heat loss per unit area decreased because of a decrease in the thermal gradient across the fur caused by an increase in fur depth. A sensitivity analysis of the model showed that skin, air, and radiant environmental temperatures were most important in determining heat loss in all sizes of animals. Fur depth is the only important property of fur determining heat loss in nestling rats, but in adults, all the properties of fur exert significant effects on heat loss. The diameter of animals is a significant variable in all sizes of rats.

  5. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats.

    PubMed

    Fedail, Jaafar Sulieman; Zheng, Kaizhi; Wei, Quanwei; Kong, Lingfa; Shi, Fangxiong

    2014-08-01

    Thyroid hormones (TH) play a critical role in ovarian follicular development, maturation and the maintenance of various endocrine functions. However, whether TH can affect ovarian follicular development in neonatal and immature rats remains unclear. Therefore, the aim of the present study was to elucidate the effect of TH on ovarian follicular development in neonatal and immature rats. Thirty female post-lactation mothers of Sprague-Dawley rat pups were randomly divided into three groups: control, hyperthyroid (hyper), and hypothyroid (hypo). On postnatal days (PND) 10 and 21, body weights, serum hormones, ovarian histologic changes, and immunohistochemistry of thyroid hormone receptor alpha 1 (TRα1) and nitric oxide synthase types (NOS), and NOS activities, were determined. The data showed that body weights significantly decreased in both hyper and hypo groups compared with the control group (P < 0.05). In addition, the hyper group had increased serum concentrations of T3, T4, and E2; whereas the hypo group manifested reduced serum concentrations of T3, T4, and E2 on PND 10 and 21. The hyper and hypo groups showed significantly reduced total number of primordial, primary and secondary follicles on PND 10 and 21 compared with the control group (P < 0.05). Similarly, antral follicle numbers in the hyper and hypo groups were significantly decreased on PND 21 compared with the control group (P < 0.05). Immunostaining indicated that TRα1 and NOS were expressed in ovarian surface epithelium and oocytes of growing and antral follicles, with strong staining of the granulosa and theca cells of follicles. NOS activities were significantly augmented in the hyper, but diminished in the hypo groups on PND 10 and 21. In summary, our findings suggest that TH play important roles in ovarian functions and in the regulation of NOS activity. Our results also indicate that a relationship exists between the TH and NO signaling pathways during the process of ovarian follicular

  6. Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine.

    PubMed

    Célia Moreira Borella, Vládia; Seeman, Mary V; Carneiro Cordeiro, Rafaela; Vieira dos Santos, Júnia; Romário Matos de Souza, Marcos; Nunes de Sousa Fernandes, Ethel; Santos Monte, Aline; Maria Mendes Vasconcelos, Silvânia; Quinn, John P; de Lucena, David F; Carvalho, André F; Macêdo, Danielle

    2016-05-01

    Neonatal N-methyl-D-aspartate (NMDA) receptor blockade in rodents triggers schizophrenia (SCZ)-like alterations during adult life. SCZ is influenced by gender in age of onset, premorbid functioning, and course. Estrogen, the hormone potentially driving the gender differences in SCZ, is known to present neuroprotective effects such as regulate oxidative pathways and the expression of brain-derived neurotrophic factor (BDNF). Thus, the aim of this study was to verify if differences in gender and/or estrous cycle phase during adulthood would influence the development of behavioral and neurochemical alterations in animals neonatally administered ketamine. The results showed that ketamine-treated male (KT-male) and female-in-diestrus (KTF-diestrus, the low estrogen phase) presented significant deficits in prepulse inhibition of the startle reflex and spatial working memory, two behavioral SCZ endophenotypes. On the contrary, female ketamine-treated rats during proestrus (KTF-proestrus, the high estradiol phase) had no behavioral alterations. This correlated with an oxidative imbalance in the hippocampus (HC) of both male and KTF-diestrus female rats, that is, decreased levels of GSH and increased levels of lipid peroxidation and nitrite. Similarly, BDNF was decreased in the KTF-diestrus rats while no alterations were observed in KTF-proestrus and male animals. The changes in the HC were in contrast to those in the prefrontal cortex in which only increased levels of nitrite in all groups studied were observed. Thus, there is a gender difference in the adult rat HC in response to ketamine neonatal administration, which is based on the estrous cycle. This is discussed in relation to neuropsychiatric conditions and in particular SCZ. PMID:26215537

  7. Early walking in the neonatal rat: a kinematic study.

    PubMed

    Jamon, M; Clarac, F

    1998-10-01

    The development of the early stage of locomotion (between Postnatal Days 3 and 10) was studied in newborn rats. At this age, rats are known to perform limited locomotor activities, consisting of an inefficient nonpostural gait termed crawling. By providing appropriate olfactory stimulation, it was possible to override the pups' reluctance to walk and to discover their actual locomotor abilities. The step period decreased from 1,200 ms to 900 ms from Postnatal Days 4 to 9, showing both a regular decrease in the swing and a discontinuous decrease in the stance phase. The fore- and hindlimb periods stabilized early on an alternate pattern of coupling. The ipsilateral coupling shifted progressively from 220 degrees to 260 degrees in relation with the change in the gait pattern. In parallel with the change in timing, the newborn rats showed gradual changes in the foot position and in the interlimb spatial coordination. These results show that quadruped locomotion develops before postural control is acquired, in a continuous process as the nervous system develops. PMID:9829799

  8. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans. PMID:26872850

  9. Neonatal handling (resilience) attenuates water-avoidance stress induced enhancement of chronic mechanical hyperalgesia in the rat

    PubMed Central

    Alvarez, Pedro; Levine, Jon D.; Green, Paul G.

    2015-01-01

    Chronic stress is well known to exacerbate pain. We tested the hypothesis that neonatal handling, which induces resilience to the negative impact of stress by increasing the quality and quantity of maternal care, attenuates the mechanical hyperalgesia produced by water-avoidance stress in the adult rat. Neonatal male rats underwent the handling protocol on postnatal days 2–9, weaned at 21 days and tested for muscle mechanical nociceptive threshold at postnatal days 50–75. Decrease in mechanical nociceptive threshold in skeletal muscle in adult rats, produced by exposure to water-avoidance stress, was significantly attenuated by neonatal handling. Neonatal handling also attenuated the mechanical hyperalgesia produced by intramuscular administration of the pronociceptive inflammatory mediator, prostaglandin E2 in rats exposed as adults to water-avoidance stress. Neonatal handling, which induces a smaller corticosterone response in adult rats exposed to a stressor as well as changes in central nervous system neurotransmitter systems, attenuates mechanical hyperalgesia produced by water-avoidance stress and enhanced prostaglandin hyperalgesia in adult animals. PMID:25637700

  10. Dependence of normal development of skeletal muscle in neonatal rats on load bearing

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2000-01-01

    Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.

  11. Simvastatin ameliorates ventricular remodeling via the TGF-β1 signaling pathway in rats following myocardial infarction

    PubMed Central

    XIAO, XIANGBIN; CHANG, GUANGLEI; LIU, JIAN; SUN, GUANGYUN; LIU, LI; QIN, SHU; ZHANG, DONGYING

    2016-01-01

    Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)-β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post-myocardial infarction via the TGF-β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg−1·d−1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross-sectional area and the collagen volume fraction, and also showed that the levels of TGF-β1, TGF-activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post-myocardial infarction rats via the TGF-β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system. PMID:27121011

  12. Hypercholesterolaemia exacerbates ventricular remodelling after myocardial infarction in the rat: role of angiotensin II type 1 receptors

    PubMed Central

    Mączewski, M; Mączewska, J; Duda, M

    2008-01-01

    Background and purpose: Diet-induced hypercholesterolaemia exacerbates post-myocardial infarction (MI) ventricular remodelling and heart failure, but the mechanism of this phenomenon remains unknown. This study examined whether worsening of post-MI ventricular remodelling induced by dietary hypercholesterolaemia was related to upregulation of angiotensin II type 1 (AT1) receptor in the rat heart. Experimental approach: MI was induced surgically in rats fed normal or high cholesterol diet. Both groups of rats were then assigned to control, atorvastatin, losartan or atorvastatin+losartan-treated subgroups and followed for 8 weeks. Left ventricular (LV) function was assessed with echocardiography. In isolated hearts, LV pressures were measured with a latex balloon and a tip catheter. AT1-receptor density was assessed in LV membranes with radioligand-binding assays. Key results: High cholesterol diet exacerbated LV dilation and dysfunction in post-MI hearts. Atorvastatin or losartan prevented these hypercholesterolaemia-induced effects, whereas their combination was not more effective than each drug alone. AT1 receptors were upregulated 8 weeks after MI, this was further increased by hypercholesterolaemia and restored to baseline levels by atorvastatin. Conclusions and implications: Hypercholesterolaemia exacerbated LV remodelling and dysfunction in post-MI rat hearts and upregulated cardiac AT1 receptors. All these effects were effectively prevented by atorvastatin. Thus, the pleiotropic statin effects may include interference with the renin-angiotensin system through downregulation of AT1 receptors. PMID:18536757

  13. Simvastatin ameliorates ventricular remodeling via the TGF‑β1 signaling pathway in rats following myocardial infarction.

    PubMed

    Xiao, Xiangbin; Chang, Guanglei; Liu, Jian; Sun, Guangyun; Liu, Li; Qin, Shu; Zhang, Dongying

    2016-06-01

    Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)‑β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post‑myocardial infarction via the TGF‑β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg‑1·d‑1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross‑sectional area and the collagen volume fraction, and also showed that the levels of TGF‑β1, TGF‑activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post‑myocardial infarction rats via the TGF‑β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system. PMID:27121011

  14. Inhaled NO prevents hyperoxia-induced white matter damage in neonatal rats.

    PubMed

    Pham, Hoa; Vottier, Gaelle; Pansiot, Julien; Duong-Quy, Sy; Bollen, Bieke; Dalous, Jérémie; Gallego, Jorge; Mercier, Jean-Christophe; Dinh-Xuan, Anh Tuan; Bonnin, Philippe; Charriaut-Marlangue, Christiane; Baud, Olivier

    2014-02-01

    White matter damage (WMD) and bronchopulmonary dysplasia (BPD) are the two main complications occurring in very preterm infants. Inhaled nitric oxide (iNO) has been proposed to promote alveolarization in the developing lung, and we have reported that iNO promotes myelination and induces neuroprotection in neonatal rats with excitotoxic brain damage. Our hypothesis is that, in addition to its pulmonary effects, iNO may be neuroprotective in rat pups exposed to hyperoxia. To test this hypothesis, we exposed rat pups to hyperoxia, and we assessed the impact of iNO on WMD and BPD. Rat pups were exposed to either hyperoxia (80% FiO2) or to normoxia for 8 days. Both groups received iNO (5 ppm) or air. We assessed the neurological and pulmonary effects of iNO in hyperoxia-injured rat pups using histological, molecular and behavioral approaches. iNO significantly attenuated the severity of hyperoxia-induced WMD induced in neonatal rats. Specifically, iNO decreased white matter inflammation, cell death, and enhanced the density of proliferating oligodendrocytes and oligodendroglial maturation. Furthermore, iNO triggered an early upregulation of P27kip1 and brain-derived growth factor (BDNF). Whereas hyperoxia disrupted early associative abilities, iNO treatment maintained learning scores to a level similar to that of control pups. In contrast to its marked neuroprotective effects, iNO induced only small and transient improvements of BPD. These findings suggest that iNO exposure at low doses is specifically neuroprotective in an animal model combining injuries of the developing lung and brain that mimicked BPD and WMD in preterm infants. PMID:24322053

  15. Tyrosine kinase inhibitor BIBF1000 does not hamper right ventricular pressure adaptation in rats.

    PubMed

    de Raaf, Michiel Alexander; Herrmann, Franziska Elena; Schalij, Ingrid; de Man, Frances S; Vonk-Noordegraaf, Anton; Guignabert, Christophe; Wollin, Lutz; Bogaard, Harm Jan

    2016-09-01

    BIBF1000 is a small molecule tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), and platelet-derived growth factor receptor (PDGFR) and is a powerful inhibitor of fibrogenesis. BIBF1000 is very similar to BIBF1120 (nintedanib), a drug recently approved for the treatment of idiopathic pulmonary fibrosis (IPF). A safety concern pertaining to VEGFR, FGFR, and PDGFR inhibition is the possible interference with right ventricular (RV) responses to an increased afterload, which could adversely affect clinical outcome in patients with IPF who developed pulmonary hypertension. We tested the effect of BIBF1000 on the adaptation of the RV in rats subjected to mechanical pressure overload. BIBF1000 was administered for 35 days in pulmonary artery-banded (PAB) rats. RV adaptation was assessed by echocardiography, pressure volume loop analysis, histology, and determination of atrial natriuretic peptide (ANP) expression. BIBF1000 treatment resulted in growth attenuation but had no effects on RV function after PAB, given absence of changes in cardiac index, end-systolic elastance, connective tissue disposition, and capillary density. We conclude that, in this experimental model of increased afterload, combined VEGFR, FGFR, and PDGFR inhibition does not hamper RV adaptation to pressure overload. PMID:27342880

  16. Neonatally induced mild diabetes: influence on development, behavior and reproductive function of female Wistar rats

    PubMed Central

    2013-01-01

    Background Neonatal STZ treatment induces a state of mild hyperglycemia in adult rats that disrupts metabolism and maternal/fetal interactions. The aim of this study was investigate the effect of neonatal STZ treatment on the physical development, behavior, and reproductive function of female Wistar rats from infancy to adulthood. Methods At birth, litters were assigned either to a Control (subcutaneous (s.c.) citrate buffer, n = 10) or STZ group, (streptozotocin (STZ) - 100 mg/kg-sc, n = 6). Blood glucose levels were measured on postnatal days (PND) 35, 84 and 120. In Experiment 1 body weight, length and the appearance of developmental milestones such as eye and vaginal opening were monitored. To assess the relative contribution of the initial and long term effects of STZ treatment this group was subdivided based on blood glucose levels recorded on PND 120: STZ hyperglycemic (between 120 and 300 mg/dl) and STZ normoglycemic (under 120 mg/dl). Behavioral activity was assessed in an open field on PND 21 and 75. In Experiment 2 estrous cyclicity, sexual behavior and circulating gonadotropin, ovarian steroid, and insulin levels were compared between control and STZ-hyperglycemic rats. In all measures the litter was the experimental unit. Parametric data were analyzed using one-way or, where appropriate, two-way ANOVA and significant effects were investigated using Tukey’s post hoc test. Fisher’s exact test was employed when data did not satisfy the assumption of normality e.g. presence of urine and fecal boli on the open field between groups. Statistical significance was set at p < 0.05 for all data. Results As expected neonatal STZ treatment caused hyperglycemia and hypoinsulinemia in adulthood. STZ-treated pups also showed a temporary reduction in growth rate that probably reflected the early loss of circulating insulin. Hyperglycemic rats also exhibited a reduction in locomotor and exploratory behavior in the open field. Mild hyperglycemia did

  17. Effects of neonatal alcohol exposure on vasoactive intestinal polypeptide neurons in the rat suprachiasmatic nucleus

    PubMed Central

    Farnell, Yuhua Z.; Allen, Gregg C.; Neuendorff, Nichole; West, James R.; Wei-Jung, A. Chen; Earnest, David J.

    2010-01-01

    Neonatal alcohol exposure produces long-term changes in the suprachiasmatic nucleus (SCN) that are presumably responsible for disturbances in the light–dark regulation of circadian behavior in adult rats, including the pattern of photoentrainment, rate of re-entrainment to shifted light–dark cycles, and phase-shifting responses to light. Because SCN neurons containing vasoactive intestinal polypeptide (VIP) receive direct photic input via the retinohypothalamic tract and thus play an important role in the circadian regulation of the SCN clock mechanism by light, the present study examined the long-term effects of neonatal alcohol exposure on VIP neuronal populations within the SCN of adult rats. Male Sprague-Dawley rat pups were exposed to alcohol (EtOH; 3.0, 4.5, or 6.0 g/kg/day) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4–9 using artificial-rearing methods. At 2–3 months of age, animals from the suckle control (SC), GC, and EtOH groups were exposed to constant darkness (DD) and SCN tissue was harvested for subsequent analysis of either VIP mRNA expression by quantitative polymerase chain reaction (PCR) and in situ hybridization or of VIP-immunoreactive (ir) neurons using stereological methods. Neonatal alcohol exposure had no impact on VIP mRNA expression but dramatically altered immunostaining of neurons containing this peptide within the SCN of adult rats. The relative abundance of VIP mRNA and anatomical distribution of neurons expressing this transcript were similar among all control- and EtOH-treated groups. However, the total number and density of VIP-ir neurons within the SCN were significantly decreased by about 35% in rats exposed to alcohol at a dose of 6.0 g/kg/day relative to that observed in both control groups. These results demonstrate that VIP neuronal populations in the SCN are vulnerable to EtOH-induced insult during brain development. The observed alterations in SCN neurons containing VIP may have an impact

  18. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction

    PubMed Central

    HUO, LIANYING; SHI, WENBING; CHONG, LING; WANG, JINLONG; ZHANG, KAI; LI, YUFENG

    2016-01-01

    Left ventricular remodeling results in cardiac dysfunction and accounts for the majority of the morbidity and mortality following myocardial infarction (MI). The aim of the present study was to investigate the effect of asiatic acid (AA) on cardiac function and left ventricular remodeling in a rat model of MI and explore the underlying mechanisms. Rats were subjected to coronary artery ligation to model MI and orally treated with AA. After 4 weeks, cardiac function was assessed by echocardiography. Cardiomyocyte cross-sectional area was recorded, and the expression levels of a number of inflammatory cytokines were detected using ELISA. The degree of interstitial fibrosis was determined by evaluating the mRNA expression levels of collagen II and III. Western blot analysis was performed to detect the expression levels of total and phosphorylated p38 MAPK and ERK1/2, to investigate whether they are involved in the mechanism underlying the effect of AA on the heart. Rats subjected to MI displayed significantly impaired cardiac function compared with those subjected to a sham procedure, while this change was reversed by treatment with AA. Furthermore, AA markedly inhibited cardiac hypertrophy, reduced the mRNA expression levels of inflammatory cytokines and decreased interstitial fibrosis in the infarct border zone of MI model rats compared with those in vehicle-treated MI model rats. Furthermore, the phosphorylation of p38 MAPK and ERK1/2 was blocked by AA in the MI rats but not in the sham rats. In summary, AA treatment preserved cardiac function and inhibited left ventricular remodeling, potentially by blocking the phosphorylation of p38 MAPK and ERK1/2 in the infarct border zone of the ischemic myocardium, indicating that AA may be a novel candidate for development as a therapy for MI. PMID:26889217

  19. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats.

    PubMed

    Lazzaretti, Camilla; Kincheski, Grasielle Clotildes; Pandolfo, Pablo; Krolow, Rachel; Toniazzo, Ana Paula; Arcego, Danusa Mar; Couto-Pereira, Natividade de Sá; Zeidán-Chuliá, Fares; Galvalisi, Martin; Costa, Gustavo; Scorza, Cecilia; Souza, Tadeu Mello E; Dalmaz, Carla

    2016-03-01

    Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood. PMID:26620193

  20. Intrauterine endotoxin-induced impairs pulmonary vascular function and right ventricular performance in infant rats and improvement with early vitamin D therapy.

    PubMed

    Mandell, Erica; Powers, Kyle N; Harral, Julie W; Seedorf, Gregory J; Hunter, Kendall S; Abman, Steven H; Dodson, R Blair

    2015-12-15

    High pulmonary vascular resistance (PVR), proximal pulmonary artery (PA) impedance, and right ventricular (RV) afterload due to remodeling contribute to the pathogenesis and severity of pulmonary hypertension (PH). Intra-amniotic exposure to endotoxin (ETX) causes sustained PH and high mortality in rat pups at birth, which are associated with impaired vascular growth and RV hypertrophy in survivors. Treatment of ETX-exposed pups with antenatal vitamin D (vit D) improves survival and lung growth, but the effects of ETX exposure on RV-PA coupling in the neonatal lung are unknown. We hypothesized that intrauterine ETX impairs RV-PA coupling through sustained abnormalities of PA stiffening and RV performance that are attenuated with vit D therapy. Fetal rats were exposed to intra-amniotic injections of ETX, ETX+vit D, or saline at 20 days gestation (term = 22 days). At postnatal day 14, pups had pressure-volume measurements of the RV and isolated proximal PA, respectively. Lung homogenates were assayed for extracellular matrix (ECM) composition by Western blot. We found that ETX lungs contain decreased α-elastin, lysyl oxidase, collagen I, and collagen III proteins (P < 0.05) compared control and ETX+vit D lungs. ETX-exposed animals have increased RV mechanical stroke work (P < 0.05 vs. control and ETX+vit D) and elastic potential energy (P < 0.05 vs. control and ETX+vit D). Mechanical stiffness and ECM remodeling are increased in the PA (P < 0.05 vs. control and ETX+vit D). We conclude that intrauterine exposure of fetal rats to ETX during late gestation causes persistent impairment of RV-PA coupling throughout infancy that can be prevented with early vit D treatment. PMID:26475735

  1. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes

    PubMed Central

    Al Kury, Lina T; Voitychuk, Oleg I; Yang, Keun-Hang Susan; Thayyullathil, Faisal T; Doroshenko, Petro; Ramez, Ali M; Shuba, Yaroslav M; Galadari, Sehamuddin; Howarth, Frank Christopher; Oz, Murat

    2014-01-01

    BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1–10 μM AEA, suppression of both Na+ and L-type Ca2+ channels was observed. Inhibition of Na+ channels was voltage and Pertussis toxin (PTX) – independent. Radioligand-binding studies indicated that specific binding of [3H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd. Further studies on L-type Ca2+ channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba2+ currents. MetAEA also inhibited Na+ and L-type Ca2+ currents. Radioligand studies indicated that specific binding of [3H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd. CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na+ and L-type Ca2+ channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation. PMID:24758718

  2. Long Term Hippocampal and Cortical Changes Induced by Maternal Deprivation and Neonatal Leptin Treatment in Male and Female Rats

    PubMed Central

    Mela, Virginia; Díaz, Francisca; Borcel, Erika; Argente, Jesús; Chowen, Julie A.; Viveros, Maria-Paz

    2015-01-01

    Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect. PMID:26382238

  3. Digestive enzyme expression and epithelial structure of small intestine in neonatal rats after 16 days spaceflight

    NASA Astrophysics Data System (ADS)

    Miyake, M.; Yamasaki, M.; Hazama, A.; Ijiri, K.; Shimizu, T.

    It is important to assure whether digestive system can develop normally in neonates during spaceflight. Because the small intestine changes its function and structure drastically around weaning known as redifferentiation. Lactase expression declines and sucrase increases in small intestine for digestion of solid food before weaning. In this paper, we compared this enzyme transition and structural development of small intestine in neonatal rats after spaceflight. To find digestive genes differentially expressed in fight rats, DNA membrane macroarray was also used. Eight-day old rats were loaded to Space Shuttle Columbia, and housed in the animal facility for 16 days in space (STS-90, Neurolab mission). Two control groups (AGC; asynchronous ground control and VIV; vivarium) against flight group (FLT) were prepared. There was no difference in structure (crypt depth) and cell differentiation of epithelium between FLT and AGC by immunohistochemical analysis. We found that the amount of sucrase mRNA compared to lactase was decreased in FLT by RT-PCR. It reflected the enzyme transition was inhibited. Increase of 5 genes (APO A-I, APO A-IV, ACE, aFABP and aminopeptidase M) and decrease of carboxypeptidase-D were detected in FLT using macroarray. We think nutrition differences (less nourishment and late weaning) during spaceflight may cause inhibition of enzyme transition at least partly. The weightlessness might contribute to the inhibition through behavioral change.

  4. Studies on cerebral protection of digoxin against hypoxic-ischemic brain damage in neonatal rats.

    PubMed

    Peng, Kaiwei; Tan, Danfeng; He, Miao; Guo, Dandan; Huang, Juan; Wang, Xia; Liu, Chentao; Zheng, Xiangrong

    2016-08-17

    Hypoxic-ischemic brain damage (HIBD) is a major cause of neonatal acute deaths and chronic nervous system damage. Our present study was designed to investigate the possible neuroprotective effect of digoxin-induced pharmacological preconditioning after hypoxia-ischemia and underlying mechanisms. Neonatal rats were assigned randomly to control, HIBD, or HIBD+digoxin groups. Pharmacological preconditioning was induced by administration of digoxin 72 h before inducing HIBD by carotid occlusion+hypoxia. Behavioral assays, and neuropathological and apoptotic assessments were performed to examine the effects; the expression of Na/K ATPase was also assessed. Rats in the HIBD group showed deficiencies on the T-maze, radial water maze, and postural reflex tests, whereas the HIBD+digoxin group showed significant improvements on all behavioral tests. The rats treated with digoxin showed recovery of pathological conditions, increased number of neural cells and proliferative cells, and decreased number of apoptotic cells. Meanwhile, an increased expression level of Na/K ATPase was observed after digoxin preconditioning treatment. The preconditioning treatment of digoxin contributed toward an improved functional recovery and exerted a marked neuroprotective effect including promotion of cell proliferation and reduction of apoptosis after HIBD, and the neuroprotective action was likely associated with increased expression of Na/K ATPase. PMID:27362436

  5. Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats.

    PubMed

    Zhang, Jie; Dai, Hongmei; Deng, Yuanying; Tian, Jing; Zhang, Chen; Hu, Zhiping; Bing, Guoying; Zhao, Lingling

    2015-10-01

    Increasing epidemiological and toxicological evidence suggests that pesticides and other environmental exposures may be associated with the development of Parkinson's disease (PD). Chlorpyrifos (CPF) is a widely used organophosphorous pesticide with developmental neurotoxicity. Its neurotoxicity, notably on the monoamine system, suggests that exposure of CPF may induce dopaminergic neuronal injury. We investigated whether neonatal exposure to CPF contributes to initiation and progression of dopaminergic neurotoxicity and explored the possible underlying mechanisms. The newborn rats were administrated 5 mg/kg CPF subcutaneously from postnatal day (PND) 11 to PND 14 daily. The effect of CPF on dopaminergic neurons, microglia, astrocyte, nuclear factor-κB (NF-κB) p. 65 and p. 38 mitogen-activated protein kinase (MAPK) signaling pathways was analyzed in the substantia nigra of rats at 12h, 24h, 72 h, 16d and 46 d after exposure. CPF-treated rats exhibited significant reduction of dopaminergic neurons at 16d and 46 d after exposure, and a significant increase in the expression of microglia and astrocytes in the substantia nigra after CPF exposure. Intense activation of NF-κB p. 65 and p. 38 MAPK inflammatory signaling pathways was observed. Our findings indicate that neonatal exposure to CPF may induce long-term dopaminergic neuronal damage in the substantia nigra mediated by the activation of inflammatory response via NF-κB p. 65 and p. 38 MAPK pathways in the nigrostriatal system. PMID:26215101

  6. Immunoreactive somatostatin and. beta. -endorphin content in the brain of mature rats after neonatal exposure to propylthiouacil. [Propylthiouracil

    SciTech Connect

    Kato, N.; Sundmark, V.C.; Van Middlesworth, L.; Havlicek, V.; Friesen, H.G.

    1982-01-01

    The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in this study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels were not significantly different in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.

  7. Immunoreactive somatostatin and. beta. -endorphin content in the brain of mature rats after neonatal exposure to propylthiouracil

    SciTech Connect

    Kato, N.; Sundmark, V.C.; Van Middlesworth, L.; Havlicek, V.; Friesen, H.G.

    1982-06-01

    The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in the study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels were not significantly different (significant increase only in the thalamus) in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.

  8. Differential metal content and gene expression in rat left ventricular hypertrophy due to hypertension and hyperactivity.

    PubMed

    Subramanian, Meenakumari; Hunt, Adam L; Petrucci, Giuseppe A; Chen, Zengyi; Hendley, Edith D; Palmer, Bradley M

    2014-07-01

    The spontaneously hypertensive rat (SHR) has been studied extensively as a model of left ventricular hypertrophy (LVH) and associated cardiac dysfunction due to hypertension (HT). The SHR also possesses a hyperactive trait (HA). Crossbreeding SHR with Wistar-Kyoto (WKY) control rats, which are nonHT and nonHA, followed by selected inbreeding produced two additional homozygous strains: WKHT and WKHA, in which the traits of HT and HA, respectively, are expressed separately. WKHT, WKHA and SHR all display LVH, but only the SHR exhibits cardiac dysfunction. We hypothesized that cardiac dysfunction in the SHR is uniquely characterized by calcium overload. We measured total cardiac Ca, Cu, Fe, K, Mg and Zn in the four strains. We found elevated Ca and depressed Cu, Mg and Zn with HT, but not unique to SHR. We surmise that HT promotes aberrant regulation of cardiac Ca(2+), Cu(2+), Mg(2+) and Zn(2+), which does not necessarily result in cardiac dysfunction. Interestingly, Cu was elevated in HA strains compared to nonHA counterparts. We then analyzed gene expression as mRNA of Cu-containing proteins, most notably mitochondrial-Cox, Dbh, Lox, Loxl1, Loxl2, Sod1 and Tyr. The gene expression profiles of Lox, Loxl1, Loxl2 and Sod1 were found especially high in the WKHA, which if reflective of protein content could account for the high Cu content in the WKHA. The mRNA of other genes, notably Mb, Fxyd1, Maoa and Maob were also examined. We found that Maoa gene expression and monoamine oxidase-A (MAO-A) protein content were low in the SHR compared to the other strains. The finding that MAO-A protein is low in the SHR and normal in the WKHT and WKHA strains is most consistent with the idea that MAO-A protects against the development of cardiac dysfunction in LVH but not against LVH in these rats. PMID:24629670

  9. Impaired growth hormone secretion in neonatal hypothyroid rats: hypothalamic versus pituitary component.

    PubMed

    De Gennaro, V; Cella, S G; Bassetti, M; Rizzi, R; Cocchi, D; Muller, E E

    1988-01-01

    In 10-day-old rats made hypothyroid by giving dams propylthiouracil (PTU) in the drinking water since the day of parturition, simultaneous radioimmunoassay (RIA) determinations of basal and stimulated growth hormone (GH) secretion, hypothalamic GH-releasing hormone (GHRH)-like immunoreactivity (LI) content, immunocytochemical localization of somatotrophs, and hypothalamic GHRH-LI-positive structures were performed. The frequency of somatotrophs was also determined. One-day-old hypothyroid rats, whose mothers had been given PTU since the 14th day of pregnancy, were also used for comparison. In 10-day-old hypothyroid rats, pituitary and plasma GH levels and the number of somatotrophs were considerably lower and plasma TSH levels were significantly higher than those in age-matched control rats; however, GHRH-LI titers in the mediobasal hypothalamus and the morphology of GHRH-LI-positive structures were unaltered. In 1-day-old rats the only alteration present, in addition to elevated plasma TSH levels, was a clear-cut decrease in plasma GH levels. An acute challenge with GHRH (20 ng/100 g body wt, sc) or clonidine (15 micrograms/100 g body wt, sc) induced a clear-cut rise in plasma GH levels 15 min postinjection in 10-day-old control rats but failed to do so in age-matched hypothyroid rats. Both compounds failed to rise plasma GH in both hypothyroid and control 1-day-old rats. Taken together these data indicate that in neonatal and infant rats deprivation of thyroid hormones acts primarily to depress pituitary somatotroph function and that possible changes in GHRH-secreting structures represent a later postnatal event. PMID:3124121

  10. Phosphatidylcholine kinetics in neonatal rat lungs and the effects of rhuKGF and betamethasone.

    PubMed

    Bernhard, Wolfgang; Gesche, Jens; Raith, Marco; Poets, Christian F

    2016-05-15

    Surfactant, synthesized by type II pneumocytes (PN-II), mainly comprises phosphatidylcholine (PC) and is essential to prevent neonatal respiratory distress. Furthermore, PC is essential to lung tissue growth and maintenance as a membrane component. Recent findings suggest that the lung contributes to systemic lipid homeostasis via PC export through ABC-A1 transporter expression. Hence it is important to consider pharmacological interventions in neonatal lung PC metabolism with respect to such export. Five-day-old rats were treated with carrier (control), intraperitoneal betamethasone, subcutaneous recombinant human keratinocyte growth factor (rhuKGF), or their combination for 48 h. Animals were intraperitoneally injected with 50 mg/kg [D9-methyl]choline chloride 1.5, 3.0, and 6.0 h before death at day 7, and lung lavage fluid (LLF) and tissue were harvested. Endogenous PC, D9-labeled PC species, and their water-soluble precursors (D9-)choline and (D9-)phosphocholine were determined by tandem mass spectrometry. Treatment increased secreted and tissue PC pools but did not change equilibrium composition of PC species in LLF. However, all treatments increased specific surfactant components in tissue. In control rats, peak D9-PC in lavaged lung was reached after 3 h and was decreased at 6 h. Only 13% of this net loss in lavaged lung was found in LLF. Such decrease was not present in lungs treated with betamethasone and/or with rhuKGF. D9-PC loss at 3-6 h and PC synthesis calculated from D9 enrichment of phosphocholine indicated that daily synthesis rate is higher than total pool size. We conclude that lung tissue contributes to systemic PC homeostasis in neonatal rats, which is altered by glucocorticoid and rhuKGF treatment. PMID:26944086

  11. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats

    PubMed Central

    2012-01-01

    Background Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload. Methods Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d. Results Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls. Conclusion Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats. PMID:22613782

  12. Direct and indirect vitamin A supplementation strategies result in different plasma and tissue retinol kinetics in neonatal rats

    PubMed Central

    Tan, Libo; Babbs, Amanda E.; Green, Michael H.; Ross, A. Catharine

    2016-01-01

    Many questions remain regarding vitamin A (VA) supplementation of infants. Herein we compared direct oral VA supplementation of the neonate and indirect treatment through maternal dietary VA (M-VA) treatment on VA status and kinetics in neonatal rats. Treatments included direct VA combined with retinoic acid (RA) [D-VARA; VA (6 mg/kg) + 10% RA, given orally to neonates on postnatal day (P)2 and P3] and indirect VA supplementation through increased M-VA, compared with each other and oil-treated neonates. [3H]retinol was administered orally to all neonates on P4. Plasma and tissue [3H]retinol kinetics were determined from 1 h to 14 days post-dosing. D-VARA versus placebo dramatically increased liver and lung retinol, but only in the first 8–10 days. In M-VA neonates, liver and lung VA increased progressively throughout the study. Compartmental modeling of plasma [3H]retinol showed that both D-VARA and indirect M-VA reduced retinol recycling between plasma and tissues. Compartmental models of individual tissues predicted that D-VARA stimulated the uptake of VA in chylomicrons to extrahepatic tissues, especially intestine, while the uptake was not observed in M-VA neonates. In conclusion, indirect maternal supplementation had a greater sustained effect than D-VARA on neonatal VA status, while also differentially affecting plasma and tissue retinol kinetics. PMID:27264735

  13. Direct and indirect vitamin A supplementation strategies result in different plasma and tissue retinol kinetics in neonatal rats.

    PubMed

    Tan, Libo; Babbs, Amanda E; Green, Michael H; Ross, A Catharine

    2016-08-01

    Many questions remain regarding vitamin A (VA) supplementation of infants. Herein we compared direct oral VA supplementation of the neonate and indirect treatment through maternal dietary VA (M-VA) treatment on VA status and kinetics in neonatal rats. Treatments included direct VA combined with retinoic acid (RA) [D-VARA; VA (6 mg/kg) + 10% RA, given orally to neonates on postnatal day (P)2 and P3] and indirect VA supplementation through increased M-VA, compared with each other and oil-treated neonates. [(3)H]retinol was administered orally to all neonates on P4. Plasma and tissue [(3)H]retinol kinetics were determined from 1 h to 14 days post-dosing. D-VARA versus placebo dramatically increased liver and lung retinol, but only in the first 8-10 days. In M-VA neonates, liver and lung VA increased progressively throughout the study. Compartmental modeling of plasma [(3)H]retinol showed that both D-VARA and indirect M-VA reduced retinol recycling between plasma and tissues. Compartmental models of individual tissues predicted that D-VARA stimulated the uptake of VA in chylomicrons to extrahepatic tissues, especially intestine, while the uptake was not observed in M-VA neonates. In conclusion, indirect maternal supplementation had a greater sustained effect than D-VARA on neonatal VA status, while also differentially affecting plasma and tissue retinol kinetics. PMID:27264735

  14. Down-Regulation of Replication Factor C-40 (RFC40) Causes Chromosomal Missegregation in Neonatal and Hypertrophic Adult Rat Cardiac Myocytes

    PubMed Central

    Oka, Masahiko; Ochi, Rikuo; Jong, Chian Ju; Gebb, Sarah; Benjamin, John; Schaffer, Stephen; Hobart, Holly H.; Downey, James; McMurtry, Ivan; Gupte, Rakhee

    2012-01-01

    Background Adult mammalian cardiac myocytes are generally assumed to be terminally differentiated; nonetheless, a small fraction of cardiac myocytes have been shown to replicate during ventricular remodeling. However, the expression of Replication Factor C (RFC; RFC140/40/38/37/36) and DNA polymerase δ (Pol δ) proteins, which are required for DNA synthesis and cell proliferation, in the adult normal and hypertrophied hearts has been rarely studied. Methods We performed qRT-PCR and Western blot analysis to determine the levels of RFC and Pol δ message and proteins in the adult normal cardiac myocytes and cardiac fibroblasts, as well as in adult normal and pulmonary arterial hypertension induced right ventricular hypertrophied hearts. Immunohistochemical analyses were performed to determine the localization of the re-expressed DNA replication and cell cycle proteins in adult normal (control) and hypertrophied right ventricle. We determined right ventricular cardiac myocyte polyploidy and chromosomal missegregation/aneuploidy using Fluorescent in situ hybridization (FISH) for rat chromosome 12. Results RFC40-mRNA and protein was undetectable, whereas Pol δ message was detectable in the cardiac myocytes isolated from control adult hearts. Although RFC40 and Pol δ message and protein significantly increased in hypertrophied hearts as compared to the control hearts; however, this increase was marginal as compared to the fetal hearts. Immunohistochemical analyses revealed that in addition to RFC40, proliferative and mitotic markers such as cyclin A, phospho-Aurora A/B/C kinase and phospho-histone 3 were also re-expressed/up-regulated simultaneously in the cardiac myocytes. Interestingly, FISH analyses demonstrated cardiac myocytes polyploidy and chromosomal missegregation/aneuploidy in these hearts. Knock-down of endogenous RFC40 caused chromosomal missegregation/aneuploidy and decrease in the rat neonatal cardiac myocyte numbers. Conclusion Our novel findings

  15. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  16. The functional activity of hypothalamic signaling systems in rats with neonatal diabetes mellitus treated with metformin.

    PubMed

    Derkach, K V; Sukhov, I B; Kuznetsova, L A; Buzanakov, D M; Shpakov, A O

    2016-03-01

    The effect of the two-month metformin treatment (200 mg/kg/day) of rats with the neonatal model of type 2 diabetes mellitus on the functional activity of hypothalamic signaling systems was studied. It was shown that metformin treatment restored the sensitivity of hypothalamic adenylyl cyclase signaling system to agonists of the type 4 melanocortin receptor and the type 2 dopamine receptor but did not influence significantly the functions of the insulin signaling system. These data suggest new targets and mechanisms of metformin action in the CNS, which may mediate its restoring effect on energy homeostasis impaired in diabetic pathology. PMID:27193707

  17. Development of motor coordination and cerebellar structure in male and female rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Ladd, B.; Baxter, M. G.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that the developing rat cerebellum is affected by exposure to hypergravity. In the present study, we explored the hypothesis that the changes in cerebellar structure in hypergravity-exposed rat neonates may affect their motor coordination. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravitational loading. To test this hypothesis, we compared motor behavior, cerebellar structure, and protein expression in rat neonates exposed to 1.5 1.75G on a 24-ft centrifuge daily for 22.5 h starting on gestational day (G) 10, through birth on G22/G23 and through postnatal day (P) 21. Exposure to hypergravity impacted the neurodevelopmental process as indicated by: (1) impaired righting response on P3, more than doubling the righting time at 1.75G, and (2) delayed onset of the startle response by one day, from P9 in controls to P10 in hypergravity-exposed pups. Hypergravity exposure resulted in impaired motor functions as evidenced by performance on a rotarod on P21; the duration of the stay on the rotarod recorded for 1.75G pups of both sexes was one tenth that of the stationary control (SC) pups. These changes in motor behavior were associated with cerebellar changes: (1) cerebellar mass on P6 was decreased by 7.5% in 1.5G-exposed male pups, 27.5% in 1.75G-exposed male pups, 17.5% in 1.5G-exposed female pups, and 22.5% in 1.75G female pups and (2) changes in the expression of glial and neuronal proteins. The results of this study suggest that perinatal exposure to hypergravity affects cerebellar development as evidenced by decreased cerebellar mass and altered cerebellar protein expression; cerebellar changes observed in hypergravity-exposed rat neonates are associated with impaired motor behavior. Furthermore, the response to hypergravity appears to be different in male and female neonates. If one accepts that the hypergravity paradigm is a useful animal model with which to predict those biological processes

  18. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain.

    PubMed

    Kesby, James P; Cui, Xiaoying; Ko, Pauline; McGrath, John J; Burne, Thomas H J; Eyles, Darryl W

    2009-09-18

    There is growing evidence that low vitamin D impacts adversely on brain development. The current study investigated the impact of developmental vitamin D (DVD) deficiency on dopamine and serotonin metabolism in the neonatal rat brain. DVD-deficiency resulted in an altered dopaminergic metabolic profile in the forebrain, with a decrease in the conversion of dihydroxyphenylacetic acid (DOPAC) to homovanillic acid (HVA). Correspondingly, expression of the enzyme required for this conversion, catechol-O-methyl transferase (COMT), was decreased. These results suggest that DVD-deficiency influences dopamine turnover during development. PMID:19500655

  19. Paravertebral fascial massage promotes brain development of neonatal rats via the insulin-like growth factor 1 pathway☆

    PubMed Central

    Wen, Zhongqiu; Zeng, Wenqin; Dai, Jingxing; Zhou, Xin; Yang, Chun; Duan, Fuhua; Liu, Yufeng; Yang, Huiying; Yuan, Lin

    2012-01-01

    Massage in traditional Chinese medicine can promote body and brain development of premature and normal newborn infants. In the present study, neonatal rats (1 day old) underwent paravertebral fascial massage (15 consecutive days), followed by subcutaneous injection of insulin-like growth factor 1 receptor antagonist, JB1 (9 consecutive days). Paravertebral fascial massage significantly increased insulin-like growth factor 1 expression and cell proliferation in the subventricular zone of the lateral ventricle and dentate gyrus of the hippocampus. However, JB1 inhibited this increase. Results suggest that paravertebral fascial massage can promote brain development of neonatal rats via the insulin-like growth factor 1 pathway. PMID:25722713

  20. Characterization of a beta-adrenergically inhibited K+ current in rat cardiac ventricular cells.

    PubMed Central

    Scamps, F

    1996-01-01

    1. The electrophysiological properties and beta-adrenergic regulation of a non-inactivating K+ current were studied using the whole-cell patch-clamp technique (22 +/- 2 degrees C) in adult rat ventricular cells. 2. In the presence of 4-aminopyridine, an inhibitor of the rapidly inactivating current, the depolarization-activated current consisted only of a slowly decaying outward current (IK). The presence of a non-inactivating current (ISS) was revealed when analysing inactivation curves. 3. IK and ISS were both sensitive to 50 mM tetraethylammonium and 10 mM 4-aminopyridine inhibition. IK was totally blocked by 100 microM clofilium, while ISS was not inhibited but rather enhanced by this class III anti-arrhythmic agent. 4. Unlike IK, ISS was only slightly decreased by depolarizing prepulses and it did not show time-dependent inactivation when measured during 500 ms depolarizations. 5. ISS was decreased by the beta-adrenergic agonist isoprenaline (1 microM). Forskolin (10 microM) mimicked the effects of isoprenaline. The non-specific beta-adrenergic antagonist, propranolol (3 microM), and a specific beta 1-adrenergic antagonist, CGP 20712A (0.3 microM), both prevented the effects of isoprenaline. Cell perfusion with 100 microM PKI6-22, a peptide inhibitor of the cyclic AMP-dependent protein kinase, reduced or abolished the effects of isoprenaline. 6. The dose-response curve for the inhibition of ISS by isoprenaline was positioned to the left of that for the calcium current. The threshold dose and the dose giving 50% of the maximal effect were, respectively, 0.1 and 0.21 nM for ISS and 1 and 4.3 nM for ICa. 7. In view of the high sensitivity of ISS to isoprenaline, its possible physiological effect was evaluated on action potential duration during beta-adrenergic stimulation. At 1 nM, a concentration that did not increase ICa, isoprenaline induced a significant prolongation of action potential duration as a consequence of ISS inhibition. With 1 microM isoprenaline

  1. Ephemeral cellular segmentation in the thalamus of the neonatal rat.

    PubMed

    Ivy, G O; Killackey, H P

    1981-08-01

    The distribution of thalamocortical relay cells in the rat ventrobasal complex was studied during the early postnatal period using the retrograde transport of horseradish peroxidase from the parietal cortex. It was found that the relay cells undergo marked changes in their distribution during the first two postnatal weeks. On postnatal days (PNDs) 0 and 1, the cells are rather homogeneously distributed throughout the ventrobasal complex. However, by PND 2, and more clearly by PND 3, the cells form a distinctly segmented pattern. This pattern consists of discrete curvilinear arrays of cells extending throughout most of the rostrocaudal extent of the nucleus. This distinct cellular pattern is present from PND 2 to about PND 8. In animals sacrificed on PND 15 or as adults, the pattern is no longer obvious. The cellular pattern seen at PND 8 was examined in the 3 standard planes of section and compared to both the somatotopic organization of the nucleus and to the organization of its major ascending and descending inputs. The developmental time course of the cellular segmentation was related to that of the lemniscal and corticothalamic afferents, which also show ephemeral segmentation patterns during the first two postnatal weeks. PMID:7272763

  2. Prenatal alcohol exposure and thermotaxic behavior in neonatal rats.

    PubMed

    Zimmerberg, B; Beckstead, J W; Riley, E P

    1987-01-01

    The effect of prenatal alcohol exposure on thermotaxic behavior was investigated in 5-day-old rat pups. Pregnant dams were administered a liquid diet which contained 35% ethanol-derived calories (35% EDC) on days 6 to 20 of gestation. Two control groups were included: a liquid diet control which was pair-fed and had sucrose substituted for ethanol (0% EDC), and a group fed standard lab chow (LC) throughout pregnancy. Pups from each of these prenatal treatments were tested on a thermal gradient (thermocline). On each of 5 trails, pups were placed in the cool end of the thermocline and their position along the gradient was measured after 10 min. All prenatal treatment groups displayed thermotaxic behavior by moving towards the warm end. However, pups in the 35% EDC treatment group moved significantly further towards the warm end in the later trials. Despite their position on a warmer surface, their body temperature did not rise concurrently. Thermoregulatory deficits caused by prenatal alcohol exposure might account for these results. PMID:3683345

  3. Long-term colonic hypersensitivity in adult rats induced by neonatal unpredictable vs predictable shock.

    PubMed

    Tyler, K; Moriceau, S; Sullivan, R M; Greenwood-van Meerveld, B

    2007-09-01

    Our goal was to examine the relationship between early life trauma and the development of visceral hypersensitivity in later life in irritable bowel syndrome (IBS). Rat pups underwent neonatal conditioning: (i) paired odour-shock, where odour is a predictable shock signal, (ii) unpaired odour-shock, where odour is an unpredictable shock signal or (iii) control odour-only with odour presentations and handling without shock. At maturity, colorectal sensitivity was measured as a visceromotor behavioural response. In adulthood, colorectal distension (CRD) induced a pressure-dependent increase in the number of abdominal muscle contractions all three experimental groups. However, compared to animals that had received control odour-only presentations in infancy, there was an attenuated response to CRD in animals previously exposed to neonatal predictable shock pups and an exaggerated response in the animals previously exposed to neonatal unpredictable shock. Adult responses to CRD were altered by infant experience with shock trauma. However, depending on the context of that early life trauma, there are major differences between the long-term effects of that early life trauma on colonic sensitivity compared to controls. These results strengthen the link between early life trauma and adult IBS, and suggest that unpredictable trauma is a critical factor for later life disorders. PMID:17727395

  4. Prenatal nicotine exposure alters respiratory long term facilitation in neonatal rats

    PubMed Central

    Fuller, DD; Dougherty, BJ; Sandhu, MS; Doperalski, NJ; Reynolds, CR; Hayward, LF

    2009-01-01

    Intermittent hypoxia can evoke persistent increases in ventilation (ν̇ E) in neonates (i.e. long-term facilitation, LTF) (Julien et al. Am J Physiol Regul Integr Comp Physiol 294: R1356–R1366, 2008). Since prenatal nicotine (PN) exposure alters neonatal respiratory control (Fregosi & Pilarski. Respir. Physiol. Neurobiol. 164: 80–86, 2008), we hypothesized that PN would influence LTF of ventilation (ν̇ E) in neonatal rats. An osmotic minipump delivered nicotine (6 mg/kg/day) or saline to pregnant dams. ν̇ E was assessed in unanesthetized pups via whole body plethysmography at post-natal (P) days 9–11 or 15–17 during baseline (BL, 21% O2), hypoxia (10 × 5 min, 5% O2) and 30 min post-hypoxia. PN pups had reduced BL ν̇ E (p<0.05) but greater increases in ν̇ E during hypoxia (p<0.05). Post-hypoxia ν̇ E (i.e. LTF) showed an age × treatment interaction (p<0.01) with similar values at P9-11 but enhanced LTF in saline (30±8 %BL) vs. PN pups (6±5 %BL; p=0.01) at P15-17. We conclude that the post-natal developmental time course of hypoxia-induced LTF is influenced by PN. PMID:19818419

  5. The effects of formula feeding on physiological and immunological parameters in the gut of neonatal rats.

    PubMed

    Tooley, K L; Howarth, G S; Butler, R N; Lymn, K A; Penttila, I A

    2009-07-01

    A unique model of formula feeding in the neonatal rat was utilized to investigate the effects of an enterally delivered artificial milk formula on clinically relevant immunological and biological characteristics in the gut, compared to naturally reared pups. Hooded Wistar rat pups were randomly allocated to two treatment groups: formula-fed (FF) or naturally suckled (NS). A flexible silastic intra-gastric cannula was surgically implanted into the FF pups, through which an artificial rat milk supplement was continuously delivered from day 4 to day 10 of life. Rat pups were sacrificed at 10 days of age. Body weight, small intestinal weight, mucosal CD8(+) cell numbers, and ileal lactase activity in FF animals were significantly decreased compared to their NS counterparts (P < 0.05). Numbers of eosinophils, mucosal mast cells, CD4(+) T-cells, ileal villus height and gastric emptying times were significantly increased in FF pups (P < 0.05). We have developed a new rat model of artificial feeding which possesses important immunological and biological similarities to the premature human infant. PMID:18975079

  6. Development of Left Ventricular Longitudinal Speckle Tracking Echocardiography in Very Low Birth Weight Infants with and without Bronchopulmonary Dysplasia during the Neonatal Period

    PubMed Central

    Czernik, Christoph; Rhode, Stefanie; Helfer, Sven; Schmalisch, Gerd; Bührer, Christoph; Schmitz, Lothar

    2014-01-01

    Objectives In preterm infants, postnatal myocardial adaptation may be complicated by bronchopulmonary dysplasia (BPD). We aimed to describe the development of left ventricular function by serial 2D, Doppler, and speckle tracking echocardiography (2D-STE) in infants with and without BPD during the neonatal period and compare these to anthropometric and conventional hemodynamic parameters. Study Design Prospective echocardiography on day of life (DOL) 1, 7, 14, and 28 in 119 preterm infants <1500 g birth weight of whom 36 developed BPD (need for oxygen supplementation at 36 weeks gestational age). Non-BPD and BPD infants differed significantly in median (IQR) gestational age (25.5(24–26.5) weeks vs. 29(27–30) weeks, p<0.001) and birth weight (661(552–871) g vs. 1100(890–1290) g, p<0.001). Results The intra- and inter-observer variability of the 2D-STE parameters measured did not depend on time of measurement, although there were significant differences in the reproducibility of the parameters. Low intra- and inter-observer variability was seen for longitudinal systolic strain and strain rate mid septum with a median CV (coefficient of variation) of <4.6%. Much higher CVs (>10%) were seen for the apical segment. While anthropometric parameters show rapid development during the first 4 weeks of life, the speckle tracking parameters did not differ statistically significantly during the neonatal period. Infants with and without BPD differed significantly (p<0.001) in the development of anthropometric parameters, conventional hemodynamic parameters except for heart rate, and 2D-STE parameters: global longitudinal systolic strain rate (GLSSR) and longitudinal systolic strain for the mid left wall (LSSR). The largest differences were seen at DOL 1 and 7 in GLSSR (p<0.001) and in LSSR (p<0.01). Conclusions Reproducible 2D-STE measurements are possible in preterm infants <1500 g. Cardiac deformation reveals early (DOL 1 and 7) ventricular changes (GLSSR and LSSR) in

  7. Auditory behaviour and brainstem histochemistry in adult rats with characterized ear damage after neonatal ossicle ablation or cochlear disruption.

    PubMed

    Paterson, J A; Hosea, E W

    1993-02-26

    Binaural and monaural ossicle ablation in neonate rats before the time of onset of auditory input resulted in hearing deficits as detected by behavioural responses to sound stimuli in these rats as young adults. Cochlear disruption at the same neonatal age similarly resulted in the absence of startle reflexes in many of the rats. When the middle and inner ears of the rats were analysed postmortem in serial sections, it was observed that most ears after neonatal ossicle ablation contained only small remnants of the malleus-incus unit, separated from the stapes; in other ears an apparent continuity of ossicles had been restored. The rats with blind-ending ear canals and ossicle atrophy were those that had shown little response to sound stimuli. In the cochlear-disrupted rats, those with modiolar damage and loss of most spiral ganglion cells had shown substantial impairment of sound perception, even in some rats with only monaural modiolar loss. The chronic conduction deficit caused by neonatal ossicle removal did not result in detectable differences in relative cytochrome oxidase activity in the dorsal cochlear nuclei and central nucleus of the inferior colliculus. For monaurally ossicle-ablated rats, quantitation of the average intensity of enzyme reaction product in sections of dorsal or ventral cochlear nuclei, or central nucleus, did not reveal a difference between operated and non-operated sides. However, in binaurally ossicle-ablated rats, the relative enzyme activity in the anteroventral cochlear nuclei was reduced in comparison to this nucleus in control rats. The volume of the anteroventral cochlear nucleus in rats that had had neonatal binaural cochlear disruption was reduced relative to the volume in control rats or in rats that had had binaural ossicle ablation (P < 0.001); the latter procedure did not result in a statistically significant difference from controls in AVCN volume. In cochlear-operated rats with monaural modiolar damage, the AVCN

  8. Adafenoxate abolishes the amnesia induced by neonatal 6-hydroxydopamine treatment in rats.

    PubMed

    Genkova-Papazova, M G; Stancheva, S L; Alova, L G; Lazarova-Bakarova, M B

    1993-06-01

    The effect of neonatal 6-hydroxydopamine (6-OHDA) treatment on learning and memory and on the levels of biogenic monoamines in some brain structures, as well as the influence of the nootropic drug adafenoxate on 6-OHDA effect was studied in shuttle box and step down trained rats. In mature rats injected with 6-OHDA postnatal, learning and retention were impaired and the noradrenaline (NA) level in the frontal cortex and hippocampus was decreased. Adafenoxate abolished the amnestic effect of 6-OHDA and restored the NA level to normal in the above-mentioned brain structures. This finding suggests the important role of the noradrenergic neurotransmitter system in 6-OHDA-induced amnesia and the favorable effect of adafenoxate on learning and memory impaired by 6-OHDA. PMID:8412411

  9. Xenon Combined with Therapeutic Hypothermia Is Not Neuroprotective after Severe Hypoxia-Ischemia in Neonatal Rats

    PubMed Central

    Sabir, Hemmen; Osredkar, Damjan; Maes, Elke; Wood, Thomas; Thoresen, Marianne

    2016-01-01

    Background Therapeutic hypothermia (TH) is standard treatment following perinatal asphyxia in newborn infants. Experimentally, TH is neuroprotective after moderate hypoxia-ischemia (HI) in seven-day-old (P7) rats. However, TH is not neuroprotective after severe HI. After a moderate HI insult in newborn brain injury models, the anesthetic gas xenon (Xe) doubles TH neuroprotection. The aim of this study was to examine whether combining Xe and TH is neuroprotective as applied in a P7 rat model of severe HI. Design/Methods 120 P7 rat pups underwent a severe HI insult; unilateral carotid artery ligation followed by hypoxia (8% O2 for 150min at experimental normothermia (NT-37: Trectal 37°C). Surviving pups were randomised to immediate NT-37 for 5h (n = 36), immediate TH-32: Trectal 32°C for 5h (n = 25) or immediate TH-32 plus 50% inhaled Xe for 5h (n = 24). Pups were sacrificed after one week of survival. Relative area loss of the ligated hemisphere was measured, and neurons in the subventricular zone of this injured hemisphere were counted, to quantify brain damage. Results Following the HI insult, median (interquartile range, IQR) hemispheric brain area loss was similar in all groups: 63.5% (55.5–75.0) for NT-37 group, 65.0% (57.0–65.0) for TH-32 group, and 66.5% (59.0–72.0) for TH-32+Xe50% group (not significant). Correspondingly, there was no difference in neuronal cell count (NeuN marker) in the subventricular zone across the three treatment groups. Conclusions Immediate therapeutic hypothermia with or without additional 50% inhaled Xe, does not provide neuroprotection one week after severe HI brain injury in the P7 neonatal rat. This model aims to mimic the clinical situation in severely asphyxiated neonates and treatment these newborns remains an ongoing challenge. PMID:27253085

  10. Pancreatic and Pancreatic-Like Microbial Proteases Accelerate Gut Maturation in Neonatal Rats

    PubMed Central

    Prykhodko, Olena; Pierzynowski, Stefan G.; Nikpey, Elham; Arevalo Sureda, Ester; Fedkiv, Olexandr; Weström, Björn R.

    2015-01-01

    Objectives Postnatal gut maturation in neonatal mammals, either at natural weaning or after precocious inducement, is coinciding with enhanced enzymes production by exocrine pancreas. Since the involvement of enzymes in gut functional maturation was overlooked, the present study aimed to investigate the role of enzymes in gut functional maturation using neonatal rats. Methods Suckling rats (Rattus norvegicus) were instagastrically gavaged with porcine pancreatic enzymes (Creon), microbial-derived amylase, protease, lipase and mixture thereof, while controls received α-lactalbumin or water once per day during 14–16 d of age. At 17 d of age the animals were euthanized and visceral organs were dissected, weighed and analyzed for structural and functional properties. For some of the rats, gavage with the macromolecular markers such as bovine serum albumin and bovine IgG was performed 3 hours prior to blood collection to assess the intestinal permeability. Results Gavage with the pancreatic or pancreatic-like enzymes resulted in stimulated gut growth, increased gastric acid secretion and switched intestinal disaccharidases, with decreased lactase and increased maltase and sucrase activities. The fetal-type vacuolated enterocytes were replaced by the adult-type in the distal intestine, and macromolecular transfer to the blood was declined. Enzyme exposure also promoted pancreas growth with increased amylase and trypsin production. These effects were confined to the proteases in a dose-dependent manner. Conclusion Feeding exogenous enzymes, containing proteases, induced precocious gut maturation in suckling rats. This suggests that luminal exposure to proteases by oral loading or, possibly, via enhanced pancreatic secretion involves in the gut maturation of young mammals. PMID:25658606

  11. Octreotide, a Somatostatin Analogue, Fails to Inhibit Hypoxia-induced Retinal Neovascularization in the Neonatal Rat

    PubMed Central

    Averbukh, Edward; Halpert, Michael; Yanko, Ravit; Yanko, Lutza; Peèr, Jacob; Levinger, Samuel; Flyvbjerg, Allan

    2000-01-01

    Objective: Octreotide, a somatostatin analogue, has been shown to prevent angiogenesis in diverse in vitro models. We evaluated its effect on retinal neovascularization in vivo, using a neonatal rat retinopathy model. Methods: We used, on alternating days, hypoxia (10% O2) and hyperoxia (50% O2) during the first 14 days of neonatal rats, to induce retinal neovascularization. Half of the rats were injected subcutaneously with octreotide 0.7 μg/g BW twice daily. At day 18 the eyes were evaluated for the presence of epiretinal and vitreal hemorrhage, neovascularization and epiretinal proliferation. Octreotide pharmacokinetics and its effect on serum growth hormone (GH) and insulin-like growth factor I (IGF-I) were examined in 28 rats. Results: Serum octreotide levels were 667 μg/1 two hours after injection, 26.4 μg/1 after nine hours and 3.2 μg/1 after 14 hours. GH levels were decreased by 40% (p = 0.002) two hours after injection but thereafter returned to baseline. IGF-I levels were unchanged two hours after injection and were elevated by 26% 14 hours after injection (p = 0.02). Epiretinal membranes were highly associated with epiretinal hemorrhages (p < 0.001), while retinal neovascularization was notably associated with vitreal hemorrhages (p < 0.001). Conclusions: Twice-daily injections of octreotide failed to produce sustained decrease in serum GH, but produced rebound elevation of serum IGF-I. Accordingly, no statistically significant effect of injections on retinal pathology was noted. This finding, however, does not contradict our assumption that GH suppression may decrease the severity of retinopathy. PMID:11469389

  12. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    PubMed Central

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  13. Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation: results at 30 months. Ventriculomegaly Trial Group.

    PubMed Central

    1994-01-01

    One hundred and fifty seven infants with progressive ventricular dilatation after intraventricular haemorrhage were randomised to either early repeated cerebrospinal fluid tapping or conservative management. Thirty two (20%) infants died and 13 (8%) were lost to follow up. One hundred and twelve children (90% of survivors) were examined at 30 months by a single experienced examiner. Overall, 54 (48%) scored less than 70 on the Griffiths developmental scales, 101 (90%) had neuromotor impairment, and 85 (76%) had marked disability; 63 (56%) had multiple impairments. Vision was severely affected in 10 (9%) and 30 (27%) had a field defect. Six per cent (seven children) had sensorineural hearing loss and 16 (14%) were taking regular anticonvulsant drugs. Although early cerebrospinal fluid tapping reduced the rate of ventricular and head expansion, there was no statistically significant difference (at the 5% level) between the treatment groups in the prevalence of neuromotor impairments, non-neuromotor impairments, nor multiple impairments at 30 months. These findings were consistent regardless of the presence or absence of a parenchymal cerebral lesion at entry to the trial. In the light of these findings and the 7% risk of cerebrospinal fluid infection associated with repeated tapping, this form of early intervention cannot be recommended. PMID:7512322

  14. Baroreflex failure increases the risk of pulmonary edema in conscious rats with normal left ventricular function.

    PubMed

    Sakamoto, Kazuo; Hosokawa, Kazuya; Saku, Keita; Sakamoto, Takafumi; Tobushi, Tomoyuki; Oga, Yasuhiro; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2016-01-15

    In heart failure with preserved ejection fraction (HFpEF), the complex pathogenesis hinders development of effective therapies. Since HFpEF and arteriosclerosis share common risk factors, it is conceivable that stiffened arterial wall in HFpEF impairs baroreflex function. Previous investigations have indicated that the baroreflex regulates intravascular stressed volume and arterial resistance in addition to cardiac contractility and heart rate. We hypothesized that baroreflex dysfunction impairs regulation of left atrial pressure (LAP) and increases the risk of pulmonary edema in freely moving rats. In 15-wk Sprague-Dawley male rats, we conducted sinoaortic denervation (SAD, n = 6) or sham surgery (Sham, n = 9), and telemetrically monitored ambulatory arterial pressure (AP) and LAP. We compared the mean and SD (lability) of AP and LAP between SAD and Sham under normal-salt diet (NS) or high-salt diet (HS). SAD did not increase mean AP but significantly increased AP lability under both NS (P = 0.001) and HS (P = 0.001). SAD did not change mean LAP but significantly increased LAP lability under both NS (SAD: 2.57 ± 0.43 vs. Sham: 1.73 ± 0.30 mmHg, P = 0.01) and HS (4.13 ± 1.18 vs. 2.45 ± 0.33 mmHg, P = 0.02). SAD markedly increased the frequency of high LAP, and SAD with HS prolonged the duration of LAP > 18 mmHg by nearly 20-fold compared with Sham (SAD + HS: 2,831 ± 2,366 vs. Sham + HS: 148 ± 248 s, P = 0.01). We conclude that baroreflex failure impairs volume tolerance and together with salt loading increases the risk of pulmonary edema even in the absence of left ventricular dysfunction. Baroreflex failure may contribute in part to the pathogenesis of HFpEF. PMID:26589328

  15. Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes.

    PubMed

    Fields, Laura A; Koschinski, Andreas; Zaccolo, Manuela

    2016-07-01

    In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets. PMID:26475678

  16. Pycnogenol improves left ventricular function in streptozotocin-induced diabetic cardiomyopathy in rats.

    PubMed

    Klimas, Jan; Kmecova, Jana; Jankyova, Stanislava; Yaghi, Diana; Priesolova, Elena; Kyselova, Zuzana; Musil, Peter; Ochodnicky, Peter; Krenek, Peter; Kyselovic, Jan; Matyas, Stefan

    2010-07-01

    We studied whether Pycnogenol (PYC) may attenuate the development of experimental streptozotocin-induced diabetic cardiomyopathy in rat. In addition, we aimed to study whether PYC affects cardiac oxidative stress and the protein expression of reactive oxygen species (ROS)-producing molecules (gp91(phox)-containing NADPH oxidase and NO-signalling proteins). Experimental diabetes mellitus was manifested by hyperglycaemia and impaired cardiac function estimated using left ventricular catheterisation in vivo. PYC lowered fasting plasma glucose and normalized basal cardiac function. Excessive oxidative stress in streptozotocin (STZ) hearts, evidenced by 40% increase (P < 0.05) of thiobarbituric acid reactive substances (TBARS) concentration, was associated with increased expression of gp91(phox) (by 75%, P < 0.05), iNOS (by 40%, P < 0.05) and alpha-tubulin (by 49%, P < 0.05), but unchanged expression of eNOS and its alosteric regulators, as compared to CON. PYC failed to affect these expression abnormalities. Our study shows that PYC corrects diabetic cardiac dysfunction, probably by its metabolic and direct radical scavenging activity without affecting the molecular maladaptations of ROS-producing enzymes and cytoskeletal components. PMID:19957251

  17. Biphasic effects of hyposmotic challenge on excitation-contraction coupling in rat ventricular myocytes.

    PubMed

    Brette, F; Calaghan, S C; Lappin, S; White, E; Colyer, J; Le Guennec, J Y

    2000-10-01

    The effects of short (1 min) and long (7-10 min) exposure to hyposmotic solution on excitation-contraction coupling in rat ventricular myocytes were studied. After short exposure, the action potential duration at 90% repolarization (APD(90)), the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitude, and contraction increased, whereas the L-type Ca(2+) current (I(Ca, L)) amplitude decreased. Fractional sarcoplasmic reticulum (SR) Ca(2+) release increased but SR Ca(2+) load did not. After a long exposure, I(Ca,L), APD(90), [Ca(2+)](i) transient amplitude, and contraction decreased. The abbreviation of APD(90) was partially reversed by 50 microM DIDS, which is consistent with the participation of Cl(-) current activated by swelling. After 10-min exposure to hyposmotic solution in cells labeled with di-8-aminonaphthylethenylpyridinium, t-tubule patterning remained intact, suggesting the loss of de-t-tubulation was not responsible for the fall in I(Ca,L). After long exposure, Ca(2+) load of the SR was not increased, and swelling had no effect on the site-specific phosphorylation of phospholamban, but fractional SR Ca(2+) release was depressed. The initial positive inotropic response to hyposmotic challenge may be accounted for by enhanced coupling between Ca(2+) entry and release. The negative inotropic effect of prolonged exposure can be accounted for by shortening of the action potential duration and a fall in the I(Ca,L) amplitude. PMID:11009486

  18. Left ventricular sphericity index predicts systolic dysfunction in rats with experimental aortic regurgitation.

    PubMed

    Roscani, Meliza Goi; Polegato, Bertha Fulan; Minamoto, Suzana Erico Tanni; Lousada, Ana Paula Mena; Minicucci, Marcos; Azevedo, Paula; Matsubara, Luiz Shiguero; Matsubara, Beatriz Bojikian

    2014-05-15

    Although an increased left ventricular (LV) diastolic diameter (DD) and a decreased ejection fraction have been used as markers for the surgical replacement of an insufficient aortic valve, these signals may be observed when irreversible myocardium damage has already occurred. The aim of this study was to determine whether change in LV geometry predicts systolic dysfunction in experimental aortic regurgitation. Male Wistar rats underwent surgical acute aorta regurgitation (aorta regurgitation group; n = 23) or a sham operation (sham group; n = 12). After the procedure, serial transthoracic echocardiograms were performed at 1, 4, 8, and 16 wk. At the end of protocol, the LV, lungs, and liver were dissected and weighed. During the follow-up, no animal developed overt heart failure. There was a correlation between the LV sphericity index and reduced fractional shortening (P < 0.001) over time. A multiple regression model showed that the LVDD-sphericity index association at 8 wk was a better predictor of decreased fractional shortening at week 16 (R(2) = 0.50; P < 0.001) than was the LVDD alone (R(2) = 0.39; P = 0.001). LV geometry associated with increased LVDD improved the prediction of systolic dysfunction in experimental aortic regurgitation. PMID:24699853

  19. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    PubMed Central

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  20. Prostanoid Receptors Involved in Regulation of the Beating Rate of Neonatal Rat Cardiomyocytes

    PubMed Central

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Robinet, Arnaud; Nazeyrollas, Pierre; Devillier, Philippe

    2012-01-01

    Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F2α and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate). PMID:22984630

  1. In situ morphology of the foramen ovale in the fetal and neonatal rat.

    PubMed

    Momma, K; Ito, T; Ando, M

    1992-12-01

    In situ cross-sectional morphology of the foramen ovale was studied after rapid whole-body freezing of the fetal and neonatal rat. In the fetus, the foramen ovale was open widely toward the left atrium with a thin, short primum septum. The opening area of the foramen ovale was 40% of the cross-section of the thoracic inferior vena cava, and the ratio of the long diameter to the short diameter was 2 to 1. After birth, the primum septum became longer, thicker, and straighter, with less leftward bowing. The opening of the foramen ovale diminished in the first 2 d and closed completely 3 d after birth. Postnatal thickening of the primum septum was very remarkable, increasing by 400% in the first 2d, while only minimal change was noticed in the right and the left atrial walls. The length of the primum septum was short and was only 90% of the diameter of the fossa ovalis in the fetus. It increased and reached 97% and 111% of the diameter of the fossa ovalis 1 and 2 d after birth, respectively. The septum secundum also grew rapidly after birth, and its length and width increased by 40% and 29% after 1 and 2 d, respectively. These observations indicate a sudden, explosive growth of the atrial septum in the early neonatal period in the rat. PMID:1287556

  2. A Mathematical Model of Neonatal Rat Atrial Monolayers with Constitutively Active Acetylcholine-Mediated K+ Current

    PubMed Central

    Majumder, Rupamanjari; Jangsangthong, Wanchana; Feola, Iolanda; Ypey, Dirk L.; Pijnappels, Daniël A.; Panfilov, Alexander V.

    2016-01-01

    Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities. PMID:27332890

  3. Effects of neonatal treatment with two phytoestrogens on male rat sexual behavior and partner preference.

    PubMed

    Morales-Otal, Adriana; Ferreira-Nuño, Armando; Olayo-Lortia, Jesús; Barrios-González, Javier; Tarragó-Castellanos, Rosario

    2016-10-01

    The aim of this work was to compare the effect of neonatal treatment with the phytoestrogens coumestrol (COU) and genistein (GEN), administered in equimolecular doses, on the sexual behavior and partner preference of male rats. Four groups of male rats were injected daily from day 1 to 5 with 150 µg of GEN, an equivalent amount of COU, 1 µg of β-estradiol 3-benzoato (EB), or olive oil (VEH) (control). A fifth group remained intact. In the GEN group, intromission and ejaculation latencies decreased, whereas ejaculatory frequency increased. Contrasting results were observed in COU males. EB males could not ejaculate and their mount and intromission latencies increased significantly. To determine sexual-partner preferences, a multiple partner preference arena was used and two types of tests were performed, the first one without allowing contact test (CT) with the stimulus animals, followed by a CT. COU and GEN groups did not show preference for any stimulus animal, whereas the EB males preferred the expert male. When CT with the stimulus animals was allowed, GEN-males preferred the receptive female, unlike the COU and EB groups. It is concluded that neonatal treatment with COU and GEN induced opposite effects, the effects of COU being more estrogenic. PMID:27482864

  4. Neonatal hypoxia-ischemia induces attention-deficit hyperactivity disorder-like behavior in rats.

    PubMed

    Miguel, Patrícia Maidana; Schuch, Clarissa Pedrini; Rojas, Joseane Jiménez; Carletti, Jaqueline Vieira; Deckmann, Iohanna; Martinato, Luísa Helena Machado; Pires, Augusto Viana; Bizarro, Lisiane; Pereira, Lenir Orlandi

    2015-06-01

    Attention-deficit hyperactivity disorder (ADHD) may be caused by genetic or environmental factors. Among environmental factors, perinatal complications are related, such as neonatal hypoxia-ischemia (HI). Thus, the aim of this study was to investigate whether HI contributes to the development of characteristics related to ADHD in adult rats, and to correlate the behavioral results with brain damage volume. Male Wistar rats were divided into 2 groups: HI and control. The HI procedure consisted of a permanent occlusion of the right common carotid artery followed by a period of hypoxia (90 min; 8% O₂ and 92% N₂) on the 7th postnatal day. Two months later, animals were evaluated in the open field test during a single 5-min session, and in the 5-choice serial reaction time task (5-CSRTT), over 25 weeks. Our results demonstrated that animals submitted to HI manifest cognitive impairments in task acquisition, deficits in sustained attention, and increases in impulsivity and compulsivity in response to task manipulation in the 5-CSRTT. Locomotor activity observed in open field did not differ between groups. Moreover, brain volume loss in the total hemisphere, cerebral cortex, white matter, hippocampus, and striatum were observed in HI animals, especially on the side ipsilateral to the lesion. From these results, we can infer that neonatal HI is an environmental factor that could contribute to the development of behavioral characteristics observed in ADHD that are associated with general brain atrophy. PMID:26030430

  5. Prolactin and Prolactin Receptor Expression in Rat, Small Intestine, Intraepithelial Lymphocytes During Neonatal Developmen

    PubMed Central

    Urtishak, Sandra L.; Mckenna, Elizabeth A.; Mastro, Andrea M.

    2001-01-01

    Intraepithelial lymphocytes (IEL) are specialized T cells found between the epithelial cells of the small intestine. Because of their location, IEL are the first lymphocytes to contact intestinal bacteria and food antigens. In the neonate, IEL may be the first cells of the immune system to interact with milk-borne hormones including prolactin (PRL). PRL, an endocrine hormone abundant in breast milk, interacts with cells through surface receptors. PRL has been shown to function as an immunoregulator and may affect the development of the newborn's immune system. To determine if PRL plays a role in IEL development, small intestine IEL from rats of various ages were examined for the presence of surface prolactin receptor (PRL-R) and several lymphoid markers by flow cytometry. Between birth and 96 days of age about 80% of IEL were found to express PRL-R. These same cells also expressed the mRNA for PRL. Additionally, all of the IEL subpopulations examined were found to express PRL-R. Analysis of the normal development of rat IEL revealed an age related increase in total IEL, CD4 positive cells as well as a peak in interleukin-2 receptor (IL-2R) expression at weaning. In summary, the results indicate that IEL express PRL and PRL-R. In addition, an activation marker, IL-2R, changes in expression during neonatal development. PMID:11785680

  6. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats.

    PubMed

    Zhu, Xiao-Yun; Ma, Peng-Sheng; Wu, Wei; Zhou, Ru; Hao, Yin-Ju; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2016-06-01

    Taurine is an abundant amino acid in the nervous system, which has been proved to possess antioxidation, osmoregulation and membrane stabilization. Previously it has been demonstrated that taurine exerts ischemic brain injury protective effect. This study was designed to investigate whether the protective effect of taurine has the possibility to be applied to treat neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen to generate the experimental group. The cerebral damage area was measured after taurine post-treatment with 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxyline-Eosin (HE) staining and Nissl staining. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), myeloperoxtidase (MPO), ATP and Lactic Acid productions were assayed with ipsilateral hemisphere homogenates. Western-blot and immunofluorescence assay were processed to detect the expressions of AIF, Cyt C, Bax, Bcl-2 in brain. We found that taurine significantly reduced brain infarct volume and ameliorated morphological injury obviously reversed the changes of SOD, MDA, GSH-Px, T-AOC, ATP, MPO, and Lactic Acid levels. Compared with hypoxic-ischemic group, it showed marked reduction of AIF, Cyt C and Bax expressions and increase of Bcl-2 after post-treatment. We conclude that taurine possesses an efficacious neuroprotective effect after cerebral hypoxic-ischemic damage in neonatal rats. PMID:27345710

  7. Amikacin induced renal damage and the role of the antioxidants on neonatal rats.

    PubMed

    Kara, Aslihan; Cetin, Hasan; Oktem, Faruk; Metin Ciris, Ibrahim; Altuntas, Irfan; Kaya, Selcuk

    2016-06-01

    Amikacin (AK) is frequently used on the treatment of Gram-negative infections on neonates, but its usage is restricted because of nephrotoxicity. In this study, on neonatal rats, we aimed to investigate the effects of erythropoietin and vitamin E on AK induced nephrotoxicity. A total of 35 newborn Wistar Albino rats were divided into four groups: (1) injected with saline (serum physiological was administered to placebo controls), (2) injected with AK (1200 mg/kg), (3) injected with AK + vitamin E (150 mg/kg), (4) injected with AK + erythropoietin (EPO) (300 IU/kg/day). In renal tissue, AK levels were significantly high in all groups except the control. Tissue malondialdehyde (MDA) and nitric oxide (NO) levels were statistically higher in AK -treated group than the control. MDA and NO levels were significantly decreased with the administration of vitamin E and EPO. Glutathione peroxidase (GPX) levels were statistically low in AK group compared with the controls. The levels of GPX, in vitamin E group, were increased significantly. However, superoxide dismutase and catalase levels were not significantly different in none of the groups. Insulin-like growth factor-1 values in AK, EPO and vitamin E groups were significantly higher than the control group. Histomorphological changes such as tubular epithelial necrosis were seen in AK treated group. Histopathological improvements observed with EPO and vitamin E administration. AK nephrotoxicity is related to oxidative stress and is supported with biochemical and histopathological findings. Vitamin E and EPO, as antioxidants, can be useful renoprotective agents for ameliorating AK induced nephrotoxicity in neonates. PMID:26982694

  8. Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia–ischemia in neonatal rats

    PubMed Central

    Jantzie, Lauren L.; Todd, Kathryn G.

    2010-01-01

    Background Neonatal hypoxia–ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. Methods To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10 mg/kg) or vehicle immediately before HI (n ≥ 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. Results We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. Limitations Our study investigates “acute” neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. Conclusion Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury. PMID:20040243

  9. Reduced Renshaw Recurrent Inhibition after Neonatal Sciatic Nerve Crush in Rats

    PubMed Central

    Shu, Liang; Su, Jingjing; Jing, Lingyan; Huang, Ying; Di, Yu; Peng, Lichao; Liu, Jianren

    2014-01-01

    Renshaw recurrent inhibition (RI) plays an important gated role in spinal motion circuit. Peripheral nerve injury is a common disease in clinic. Our current research was designed to investigate the change of the recurrent inhibitory function in the spinal cord after the peripheral nerve crush injury in neonatal rat. Sciatic nerve crush was performed on 5-day-old rat puppies and the recurrent inhibition between lateral gastrocnemius-soleus (LG-S) and medial gastrocnemius (MG) motor pools was assessed by conditioning monosynaptic reflexes (MSR) elicited from the sectioned dorsal roots and recorded either from the LG-S and MG nerves by antidromic stimulation of the synergist muscle nerve. Our results demonstrated that the MSR recorded from both LG-S or MG nerves had larger amplitude and longer latency after neonatal sciatic nerve crush. The RI in both LG-S and MG motoneuron pools was significantly reduced to virtual loss (15–20% of the normal RI size) even after a long recovery period upto 30 weeks after nerve crush. Further, the degree of the RI reduction after tibial nerve crush was much less than that after sciatic nerve crush indicatig that the neuron-muscle disconnection time is vital to the recovery of the spinal neuronal circuit function during reinnervation. In addition, sciatic nerve crush injury did not cause any spinal motor neuron loss but severally damaged peripheral muscle structure and function. In conclusion, our results suggest that peripheral nerve injury during neonatal early development period would cause a more sever spinal cord inhibitory circuit damage, particularly to the Renshaw recurrent inhibition pathway, which might be the target of neuroregeneration therapy. PMID:24778886

  10. Impaired rate of microsomal fatty acid elongation in undernourished neonatal rat brain

    SciTech Connect

    Yeh, Y.Y.

    1986-05-01

    Hypomyelination caused by undernourishment in characterized by low concentrations of myelin lipids and marked reduction in lignocerate (C/sub 24:0/) and nervonate (C/sub 24:1/) moiety of cerebroside and sulfatide. Since microsomal elongation is the major source of long chain (22 to 24 carbons) fatty acids in the brain, the effect of neonatal undernourishment on acyl elongation was investigated. Undernourishment of suckling rats were induced after birth by restricting maternal dietary intake to 40% of that consumed by dams fed ad libitum. Neonates suckled by the normally fed dams served as controls. Microsomal elongation was measured as nmol from (2-/sup 14/C) malonyl CoA incorporated/h per mg of protein. At 19 days of age, rates of behenoyl CoA (C/sub 22:0/) and erucoyl CoA (C/sub 22:1/) elongation in whole brain of undernourished neonates were 30-40% lower than that of the control, whereas the elongation rates of acyl CoA 16, 18 and 20 carbons in length either saturated or monounsaturated were similar in both groups. Undernourishment had no effect on cytoplasmic de novo fatty acid synthesis from acetyl CoA. If there are multiple elongation factors, the results indicate that the depressed activity of elongating enzyme(s) for C/sub 22:0/ and C/sub 22:1/ is an important contributing factor in lowering S/sub 24:0/ and C/sub 24:1/ content in cerebroside and sulfatide. This impairment may be a specific lesion leading to hypomyelination in undernourished rats.

  11. Enriched rehabilitation promotes motor recovery in rats exposed to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Jeffers, Matthew Strider; Antonescu, Sabina; Nguemeni, Carine; Gomez-Smith, Mariana; Pereira, Lenir Orlandi; Morshead, Cindi M; Corbett, Dale

    2016-05-01

    Despite continuous improvement in neonatology there is no clinically effective treatment for perinatal hypoxia ischemia (HI). Therefore, development of a new therapeutic intervention to minimize the resulting neurological consequences is urgently needed. The immature brain is highly responsive to environmental stimuli, such as environmental enrichment but a more effective paradigm is enriched rehabilitation (ER), which combines environmental enrichment with daily reach training. Another neurorestorative strategy to promote tissue repair and functional recovery is cyclosporine A (CsA). However, potential benefits of CsA after neonatal HI have yet to be investigated. The aim of this study was to investigate the effects of a combinational therapy of CsA and ER in attempts to promote cognitive and motor recovery in a rat model of perinatal hypoxic-ischemic injury. Seven-day old rats were submitted to the HI procedure and divided into 4 groups: CsA+Rehabilitation; CsA+NoRehabilitation; Vehicle+Rehabilitation; Vehicle+NoRehabilitation. Behavioural parameters were evaluated pre (experiment 1) and post 4 weeks of combinational therapy (experiment 2). Results of experiment 1 demonstrated reduced open field activity of HI animals and increased foot faults relative to shams in the ladder rung walking test. In experiment 2, we showed that ER facilitated acquisition of a staircase skilled-reaching task, increased number of zone crosses in open-field exploration and enhanced coordinated limb use during locomotion on the ladder rung task. There were no evident deficits in novel object recognition testing. Delayed administration of CsA, had no effect on functional recovery after neonatal HI. There was a significant reduction of cortical and hemispherical volume and hippocampal area, ipsilateral to arterial occlusion in HI animals; combinational therapy had no effect on these morphological measurements. In conclusion, the present study demonstrated that ER, but not CsA was the main

  12. Long-term influence of neonatal hypoxia on catecholamine activity in carotid bodies and brainstem cell groups of the rat.

    PubMed Central

    Soulier, V; Dalmaz, Y; Cottet-Emard, J M; Lagercrantz, H; Pequignot, J M

    1997-01-01

    1. In order to determine the long-term influence of neonatal hypoxia on catecholaminergic activity in peripheral arterial chemoreceptors and brainstem noradrenergic cell groups (A1, A2, A5 and A6), 1-day-old male rat pups were subjected to hypoxia (10% oxygen) for 6 days and then supplied with normal air. Control animals were kept at normoxia from birth. Rats were killed at either 3 or 8 weeks of age. 2. The content of dopamine and noradrenaline in carotid bodies of neonatally hypoxic rats was increased at both 3 and 8 weeks of age. 3. Noradrenaline turnover was selectively decreased in the caudal portion of A2 (located in the area of chemosensory afferent projection) at 8 weeks of age (-76 +/- 2%), while this turnover was unaffected in rostral A2 cells. Noradrenergic activity in A1, A5 and A6 was altered by neonatal hypoxia in an age-dependent fashion. 4. The data suggest that neonatal hypoxia induces long-term changes in the basal activity of the carotid body and brainstem noradrenergic cell groups. Such changes might contribute to neuronal regulation of the delayed respiratory, arousal and neural sequelae associated with neonatal hypoxia. These changes could also be involved in the early programming of respiratory and blood pressure control. PMID:9032699

  13. Neonatal proinflammatory challenge in male Wistar rats: Effects on behavior, synaptic plasticity, and adrenocortical stress response.

    PubMed

    Tishkina, Anna; Stepanichev, Mikhail; Kudryashova, Irina; Freiman, Sofia; Onufriev, Mikhail; Lazareva, Natalia; Gulyaeva, Natalia

    2016-05-01

    Effects of neonatal proinflammatory stress (NPS) on the development of anxiety and depressive-like behavior, stress responsiveness, hippocampal plasticity and conditioned fear response were studied in adolescent and adult male Wistar rats. On PND 3 and PND 5, the pups were subcutaneously injected with bacterial lipopolysaccharide (LPS, 50 μg/kg). In the open field test, signs of increased anxiety were demonstrated in adolescent (PND 32), but not in adult (PND 101) rats. In the elevated plus maze, no changes could be detected in adolescent rats, however, in the adults the number of entries into the open arms decreased suggesting increased anxiety after NPS. Signs of "behavioral despair" in the forced swim test, expressed in adolescent rats as a trend, became significant in the adults indicating depression-like behavior. In the majority of brain slices from PND 19-PND 33 rats subjected to NPS, deficit of LTP in the hippocampal CA1 field was detected, this deficit being associated with the impaired mechanisms of LTP induction. In the adult rats, NPS enhanced fear conditioning promoting improved formation of the novel context-foot shock association in the contextual fear conditioning paradigm without effect on cued fear conditioning. NPS significantly impaired functioning of the hypothalamic-pituitary-adrenal axis (HPAA), resulting in an elevated corticosterone level maintained in the adolescents but not in the adults and in modified corticosterone response to behavioral sub-chronic stress in both adolescent and adult rats. Thus, NPS induces "perinatal malprogramming" resulting in development of depression-like behaviors, associated with abnormalities in functioning of the HPAA, impaired hippocampal neuroplasticity (LTP) and changes in hippocampus-dependent memory formation. PMID:26851557

  14. Evidence that FOXO3a is involved in oocyte apoptosis in the neonatal rat ovary.

    PubMed

    Sui, Xu-Xia; Luo, Li-Li; Xu, Jin-Jie; Fu, Yu-Cai

    2010-08-01

    Previous studies have proposed that the forkhead transcription factor FOXO3a is involved in cell cycle arrest and apoptosis and that it may also repress follicular development by inducing cell cycle arrest in ovaries. We have recently demonstrated that FOXO3a induces oocyte apoptosis of neonatal rat ovaries under in vitro conditions. In the present study, we evaluated the role of FOXO3a in oocyte apoptosis under in vivo conditions. Ovaries from rats were obtained from newborns on postnatal day (PD) 1, 2, 3, and 4. TUNEL assay results showed that oocyte apoptosis occurred mainly on PD 1 and 2. Immunohistochemical staining of FOXO3a, Bim, Fas ligand (FasL), p27KIP1, caspase-8, and caspase-3 showed that they were all expressed mainly in naked oocytes on PD 1 and 2. The percentage of positive FOXO3a staining of oocytes reached peak levels in the ovaries of 2-day-old rats, which was consistent with the rate of the apoptotic profiles determined by TUNEL. The percentage between TUNEL-positive and FOXO3a-positive oocytes in the nucleus showed no statistical differences within the 4-day-old rat ovaries. Furthermore, the positive oocyte percentage of the target factors of FOXO3a (Bim, p27KIP1, and FasL) and pro-apoptotic proteins (caspase-3 and caspase-8) also reached peak levels in the ovaries of 2-day-old rats, which was similar to the rate of FOXO3a-positive oocytes. These results suggest that FOXO3a in the oocyte nucleus is involved in oocyte apoptosis; that is, FOXO3a-positive oocytes may be the apoptotic cells. To verify this, rat oocytes were subjected to TUNEL and immunofluorescent double-labeling assays. We found that TUNEL-positive cells were also FOXO3a-, Bim-, or FasL-positive. To identify the downstream target of FOXO3a, double immunofluorescent staining with antibodies to Bim and FasL was performed. We found that FOXO3a-positive cells were also Bim- and FasL-positive. We conclude that the overexpression of FOXO3a in the oocyte nucleus of neonatal rat ovaries

  15. Beta-adrenoceptor subtypes in young and old rat ventricular myocytes: a combined patch-clamp and binding study.

    PubMed Central

    Cerbai, E.; Guerra, L.; Varani, K.; Barbieri, M.; Borea, P. A.; Mugelli, A.

    1995-01-01

    1. We used electrophysiological and binding techniques to assess the presence of beta 1- and beta 2-adrenoceptors (beta 1AR and beta 2AR) in rat cardiac myocytes and to determine their ratio during aging. Experiments were performed in left ventricular myocytes enzymatically dissociated from the heart of 3-(young) or 22-month-old (old) Wistar Kyoto rats. 2. In patch-clamp experiments, myocytes from old rats showed a prolonged action potential duration (at -20 mV: 41.7 +/- 3.6 vs 26.2 +/- 3.1 ms; at -60 mV: 154.4 +/- 17.7 vs 87.1 +/- 6.9 ms, P < 0.05) and an augmented membrane capacitance (an index of cell size) (271.7 +/- 20.2 vs 164.3 +/- 14.6 pF, P < 0.05) compared to young rats. beta 2AR stimulation, achieved by superfusing myocytes with the selective beta 2AR agonist, zinterol (10 microM) or with (-)-isoprenaline (1 microM) in the presence of the selective beta 1AR antagonist, CGP 20712A (0.1 microM), significantly increased L-type calcium current (ICa,L) in rat ventricular myocytes. The percentage increase was similar in both young and old rats, either with zinterol (26.9 +/- 3.6% and 24.2 +/- 2.8%, respectively) or isoprenaline plus CGP 20712A (30.4 +/- 3.7% and 22.4 +/- 4.1%, respectively). Isoprenaline alone (beta 1AR and beta 2AR stimulation) caused a much smaller increase in ICa,L in old rats (58.4 +/- 12.1%) than in younger ones (95.3 +/- 8.1%) (P = 0.067).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528568

  16. Neonatally Induced Mild Diabetes in Rats and Its Effect on Maternal, Placental, and Fetal Parameters

    PubMed Central

    Sinzato, Yuri Karen; Volpato, Gustavo Tadeu; Iessi, Isabela Lovizutto; Bueno, Aline; Calderon, Iracema de Mattos Paranhos; Rudge, Marilza Vieira Cunha; Damasceno, Débora Cristina

    2012-01-01

    The aim of this study was to assess placental changes and reproductive outcomes in neonatally induced mild diabetic dams and fetal development in their offspring. At birth, female rats were assigned either to control or diabetic group (100 mg of streptozotocin/Kg, subcutaneously). At adulthood, the female rats were mated. During pregnancy, the blood glucose levels and glucose and insulin tolerance tests were performed. At term, maternal reproductive outcomes, fetal and placental weight, and placental morphology were analyzed. Diabetic rats had smaller number of living fetuses, implantations and corpora lutea, and increased rate of embryonic loss. Placenta showed morphometric alterations in decidua area. Our results showed that mild diabetes was sufficient to trigger alterations in maternal organism leading to impaired decidua development contributing to failure in embryonic implantation and early embryonic losses. Regardless placental decidua alteration, the labyrinth, which is responsible for the maternal-fetal exchanges, showed no morphometric changes contributing to an appropriate fetal development, which was able to maintain normal fetal weight at term in mild diabetic rats. Thus, this experimental model of diabetes induction at the day of birth was more effective to reproduce the reproductive alterations of diabetic women. PMID:22778712

  17. EFFECTS OF NEONATAL METHYLMERCURY EXPOSURE ON DEVELOPMENT OF NUCLEIC ACIDS AND PROTEINS IN RAT BRAIN: REGIONAL SPECIFICITY

    EPA Science Inventory

    Exposure of neonatal rats to methylmercury (1 or 2.5 mg/kg SC daily) during the preweaning period caused regionally-specific alterations in DNA, RNA and protein content in brain. In midbrain + brainstem, where neuronal replication and differentiation conclude early, reduced DNA c...

  18. Treadmill exercise ameliorates impairment of spatial learning ability through enhancing dopamine expression in hypoxic ischemia brain injury in neonatal rats.

    PubMed

    Park, Chang-Youl; Lee, Shin-Ho; Kim, Bo-Kyun; Shin, Mal-Soon; Kim, Chang-Ju; Kim, Hong

    2013-01-01

    Substantia nigra and striatum are vulnerable to hypoxic ischemia brain injury. Physical exercise promotes cell survival and functional recovery after brain injury. However, the effects of treadmill exercise on nigro-striatal dopaminergic neuronal loss induced by hypoxic ischemia brain injury in neonatal stage are largely unknown. We determined the effects of treadmill exercise on survival of dopamine neurons in the substantia nigra and dopaminergic fibers in the striatum after hypoxic ischemia brain injury. On postnatal 7 day, left common carotid artery of the neonatal rats ligated for two hours and the neonatal rats were exposed to hypoxia conditions for one hour. The rat pups in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 12 weeks, starting 22 days after induction of hypoxic ischemia brain injury. Spatial learning ability in rat pups was determined by Morris water maze test after last treadmill exercise. The viability of dopamine neurons in the substantia nigra and dopamine fibers in the striatum were analyzed using immunohistochemistry. In this study, hypoxic ischemia injury caused loss of dopamine neurons in the substantia nigra and dopaminergic fibers in the striatum. Induction of hypoxic ischemia deteriorated spatial learning ability. Treadmill exercise ameliorated nigro-striatal dopaminergic neuronal loss, resulting in the improvement of spatial learning ability. The present study suggests the possibility that treadmill exercise in early adolescent period may provide a useful strategy for the recovery after neonatal hypoxic ischemia brain injury. PMID:24278893

  19. EFFECTS OF NEONATAL METHYLMERCURY EXPOSURE ON ADRENERGIC RECEPTOR BINDING SITES IN PERIPHERAL TISSUES OF THE DEVELOPING RAT

    EPA Science Inventory

    Neonatal exposure to methylmercury produces changes in patterns of tissue growth and function, in part, due to alterations in adrenergic neuronal input. To explore the mechanisms by which these changes come about, newborn rats were exposed to methylmercury (1 or 2.5 mg/kg/day) th...

  20. Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats.

    PubMed

    Yang, Guo-Hong; Zhou, Xin; Ji, Wen-Jie; Zeng, Shan; Dong, Yan; Tian, Lu; Bi, Ying; Guo, Zhao-Zeng; Gao, Fei; Chen, Hong; Jiang, Tie-Min; Li, Yu-Ming

    2014-02-15

    Recent studies have shown that the tonicity-responsive enhancer binding protein (TonEBP)/vascular endothelial growth factor-C (VEGF-C) signaling pathway-induced lymphangiogenesis provides a buffering mechanism for high salt (HS) intake-induced elevation of blood pressure (BP). Moreover, blocking of TonEBP/VEGF-C signaling by mononuclear phagocyte depletion can induce salt-sensitive hypertension in rats. We hypothesized that HS intake could have an impact on cardiac lymphangiogenesis, and regulation of VEGF-C bioactivity, which is largely through the main receptor for VEGFR-3, may modulate HS intake-induced left ventricular remodeling. We demonstrated upregulation of TonEBP, increased macrophage infiltration, and enhanced lymphangiogenesis in the left ventricles of spontaneously hypertensive rats (SHR) that were fed a HS diet (8.0% NaCl). Then, retrovirus vectors capable of overexpression (ΔNΔC/VEGF-C/Cys152Ser, used for overexpressing VEGF-C) and blocking (VEGFR-3-Rg, used for trapping of bioactive VEGF-C) of VEGF-C and control vector (pLPCX) were intravenously administered to SHR from week 9 of a 12-wk HS loading period. At the end of the HS challenge, overexpression of VEGF-C led to enhanced cardiac lymphangiogenesis, decreased myocardial fibrosis, and macrophage infiltration, preserved left ventricular functions, as well as decreased blood pressure level compared with the HS group and the control vector-treated HS group. In contrast, systemic blocking of VEGF-C was associated with elevation of blood pressure level and an exacerbation of hypertensive left ventricular remodeling, as indicated by increased fibrosis and macrophage infiltration, and diminished lymphangiogenesis. Hence, our findings highlight that VEGF-C/VEGFR-3 is a promising therapeutic target to attenuate hypertensive left ventricular remodeling induced by HS intake, presumably via blood pressure-dependent and -independent mechanisms. PMID:24337460

  1. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.

    PubMed Central

    Bouchard, R A; Clark, R B; Giles, W R

    1993-01-01

    1. Regulation of unloaded cell shortening and relaxation by sarcolemmal Na(+)-Ca2+ exchange was investigated in rat ventricular myocytes. Contraction of single cells at 22 +/- 1 degrees C was measured simultaneously with membrane current and voltage using the whole-cell voltage clamp technique in combination with a video edge-detection device. 2. The extent of mechanical activation (cell shortening amplitude) was strongly dependent on diastolic membrane potential over the voltage range -140 to -50 mV. This voltage sensitivity of contraction was abolished completely when a recently described inhibitory peptide of the cardiac Na(+)-Ca2+ exchanger (XIP, 2 x 10(-5) M) was present in the recording pipette, demonstrating that in rat ventricular cells Na(+)-Ca2+ exchange is modulated by diastolic membrane potential. 3. Possible influences of Na(+)-Ca2+ exchange on contraction were studied from a holding potential of -80 mV. Depolarizations (-50 to +60 mV) resulted in a bell-shaped shortening-voltage (S-V) relationship. These contractions were suppressed completely by either Cd2+ (10(-4) M) or verapamil (10(-5) M), but remained unchanged during superfusion with tetrodotoxin (TTX, 1.5 x 10(-5) M), when [NA+]o was reduced from 140 to 10 mM by substitution with either Li+ or Cs+ ions or when pipette Na+ was varied between 8 and 13 mM. XIP (2 x 10(-5) M) increased the magnitude and duration of twitch contractions, but had no effect on the shape of the S-V relationship. Thus, the Ca2+ current but not the Na+ current or Ca2+ influx due to reversed Na(+)-Ca2+ exchange can release Ca2+ from the sarcoplasmic reticulum (SR) under these experimental conditions. 4. The effect of the rate of repolarization on cell shortening was studied under voltage clamp by applying ramp waveforms immediately following the depolarizations which activated contraction. Although slowing of the rate of repolarization had no effect on the first contraction following a train of conditioning depolarizations

  2. Effects of neonatal fluoxetine exposure on behavior across development in rats selectively bred for an infantile affective trait.

    PubMed

    Zimmerberg, Betty; Germeyan, Sierra C

    2015-03-01

    Infants born to women with depressive symptoms are at higher risk for insecure attachment and behavioral problems. Thus current medical practice is to continue psychotropic medication of pregnant women with depression despite concerns about its behavioral teratology. There are few animal studies focused on long-term behavioral effects of prenatal antidepressant exposure; in addition, studies have not looked at individual differences in baseline affective state as a source of response variability. In this study, fluoxetine, a selective serotonin reuptake inhibitor (SSRI), was administered to male and female rat pups from postnatal days 2-7 to model exposure to antidepressants in the human third trimester. Four behavioral measures were conducted from the neonatal to adult age periods in Low and High lines selectively bred for their rate of ultrasonic vocalizations after brief maternal separation. Neonatal fluoxetine administration decreased distress calls in both lines, but to a greater extent in High line rats than Low line. Neonatal fluoxetine also impaired motor coordination in neonates. Neonatal fluoxetine administration decreased social behavior in both juvenile and adult subjects. Fluoxetine-related reductions in anxiety behavior were not observed at the two older ages. As expected, High line subjects displayed more anxiety behavior than Low line subjects at all three test ages. These results suggest that there are may be significant behavioral consequences of antidepressant use during late pregnancy on offspring maternal attachment and social behavior, with implications for increased risk of autism spectrum disorders. PMID:25503615

  3. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats

    SciTech Connect

    Doerge, Daniel R.; Twaddle, Nathan C.; Vanlandingham, Michelle; Brown, Ronald P.; Fisher, Jeffrey W.

    2011-09-15

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA metabolites in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure in the range of 0.02-0.2 {mu}g/kg bw/d (25th-95th percentiles). The current study used LC/MS/MS to measure placental transfer and concentrations of aglycone (receptor-active) and conjugated (inactive) BPA in tissues from Sprague-Dawley rats administered deuterated BPA (100 {mu}g/kg bw) by oral and IV routes. In adult female rat tissues, the tissue/serum concentration ratios for aglycone BPA ranged from 0.7 in liver to 5 in adipose tissue, reflecting differences in tissue perfusion, composition, and metabolic capacity. Following IV administration to dams, placental transfer was observed for aglycone BPA into fetuses at several gestational days (GD), with fetal/maternal serum ratios of 2.7 at GD 12, 1.2 at GD 16, and 0.4 at GD 20; the corresponding ratios for conjugated BPA were 0.43, 0.65, and 3.7. These ratios were within the ranges observed in adult tissues and were not indicative of preferential accumulation of aglycone BPA or hydrolysis of conjugates in fetal tissue in vivo. Concentrations of aglycone BPA in GD 20 fetal brain were higher than in liver or serum. Oral administration of the same dose did not produce measurable levels of aglycone BPA in fetal tissues. Amniotic fluid consistently contained levels of BPA at or below those in maternal serum. Concentrations of aglycone BPA in tissues of neonatal rats decreased with age in a manner consistent with the corresponding circulating levels. Phase II metabolism of BPA increased with fetal age such that near-term fetus was similar to early post-natal rats. These results show that concentrations of aglycone BPA in fetal tissues are similar to those in other maternal and neonatal tissues and that maternal Phase II metabolism, especially following oral

  4. NEONATAL DESTRUCTION OF DOPAMINERGIC NEURONS

    EPA Science Inventory

    Rats treated as neonates with 6-hydroxydopamine are proposed to model the dopamine deficiency associated with Lesch-Nyhan syndrome (LNS). o understand the neurobiological basis of specific behaviors in LNS, investigations were undertaken in these neonatally lesioned rats. everal ...

  5. Endocardial endothelium is a key determinant of force-frequency relationship in rat ventricular myocardium

    PubMed Central

    Shen, Xiaoxu; Tan, Zhen; Zhong, Xin; Tian, Ye; Wang, Xian; Yu, Bo; Ramirez-Correa, Genaro; Murphy, Anne; Gabrielson, Kathleen; Paolocci, Nazareno

    2013-01-01

    We tested the hypothesis that removing endocardial endothelium (EE) negatively impacts the force-frequency relationship (FFR) of ventricular myocardium and dissected the signaling that underlies this phenomenon. EE of rat trabeculae was selectively damaged by brief (<1 s) exposure to 0.1% Triton X-100. Force, intracellular Ca2+ transient (iCa2+), and activity of protein kinase A (PKA) and protein kinase C (PKC) were determined. In control muscles, force and iCa2+ increased as the stimulation frequency increased in steps of 0.5 Hz up to 3.0 Hz. However, EE-denuded (EED) muscles exhibited a markedly blunted FFR. Neither isoproterenol (ISO; 0.1–5 nmol/l) nor endothelin-1 (ET-1; 10–100 nmol/l) alone restored the slope of FFR in EED muscles. Intriguingly, however, a positive FFR was restored in EED preparations by combining low concentrations of ISO (0.1 nmol/l) and ET-1 (20 nmol/l). In intact muscles, PKA and PKC activity increased proportionally with the increase in frequency. This effect was completely lost in EED muscles. Again, combining ISO and ET-1 fully restored the frequency-dependent rise in PKA and PKC activity in EED muscles. In conclusion, selective damage of EE leads to significantly blunted FFR. A combination of low concentrations of ISO and ET-1 successfully restores FFR in EED muscles. The interdependence of ISO and ET-1 in this process indicates cross-talk between the β1-PKA and ET-1-PKC pathways for a normal (positive) FFR. The results also imply that dysfunction of EE and/or EE-myocyte coupling may contribute to flat (or even negative) FFR in heart failure. PMID:23703113

  6. Multiphysics model of a rat ventricular myocyte: A voltage-clamp study

    PubMed Central

    2012-01-01

    Background The objective of this study is to develop a comprehensive model of the electromechanical behavior of the rat ventricular myocyte to investigate the various factors influencing its contractile response. Methods Here, we couple a model of Ca2 + dynamics described in our previous work, with a well-known model of contractile mechanics developed by Rice, Wang, Bers and de Tombe to develop a composite multiphysics model of excitation-contraction coupling. This comprehensive cell model is studied under voltage clamp (VC) conditions, since it allows to focus our study on the elaborate Ca2 + signaling system that controls the contractile mechanism. Results We examine the role of various factors influencing cellular contractile response. In particular, direct factors such as the amount of activator Ca2 + available to trigger contraction and the type of mechanical load applied (resulting in isosarcometric, isometric or unloaded contraction) are investigated. We also study the impact of temperature (22 to 38°C) on myofilament contractile response. The critical role of myofilament Ca2 + sensitivity in modulating developed force is likewise studied, as is the indirect coupling of intracellular contractile mechanism with the plasma membrane via the Na + /Ca2 + exchanger (NCX). Finally, we demonstrate a key linear relationship between the rate of contraction and relaxation, which is shown here to be intrinsically coupled over the full range of physiological perturbations. Conclusions Extensive testing of the composite model elucidates the importance of various direct and indirect modulatory influences on cellular twitch response with wide agreement with measured data on all accounts. Thus, the model provides mechanistic insights into whole-cell responses to a wide variety of testing approaches used in studies of cardiac myofilament contractility that have appeared in the literature over the past several decades. PMID:23171697

  7. Alterations to prepulse inhibition magnitude and latency in adult rats following neonatal treatment with domoic acid and social isolation rearing.

    PubMed

    Marriott, Amber L; Tasker, R Andrew; Ryan, Catherine L; Doucette, Tracy A

    2016-02-01

    Deficits in perceptual, informational, and attentional processing are consistently identified as a core feature in schizophrenia and related neuropsychiatric disorders. Neonatal injections of low doses of the AMPA/kainate agonist domoic acid (DOM) have previously been shown to alter various aspects of perceptual and attentional processing in adult rats. The current study investigated the effects of combined neonatal DOM treatment with isolation rearing on prepulse inhibition behaviour and relevant neurochemical measures, to assess the usefulness of these paradigms in modeling neurodevelopmental disorders. Daily subcutaneous injections of DOM (20 μg/kg) or saline were administered to male and female rat pups from postnatal days (PND) 8-14. After weaning, rats were either housed alone or in groups of 4. Both the magnitude and latency of prepulse inhibition were determined in adulthood (approximately 4.5 months of age) and post-mortem brain tissue was assayed using Western blot. Social isolation alone significantly lowered PPI magnitude in male (but not female) rats while DOM treatment appeared to make animals refractory to this effect. Combining social isolation and DOM treatment caused an additive decrease in PPI startle latency. No statistically significant differences were found in the expression of D1, D2, TH, GAD65 or GAD67 protein in either the prefrontal cortex or hippocampus, although some tendencies toward differences were noted. We conclude that both neonatal low-dose DOM and social isolation affect prepulse inhibition in rats but that each paradigm exerts these effects through different neuronal signalling systems. PMID:26590368

  8. Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn

    PubMed Central

    Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.

    2014-01-01

    Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417

  9. Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome

    PubMed Central

    Hartley, Stephen W.; Coon, Steven L.; Savastano, Luis E.; Mullikin, James C.; Fu, Cong; Klein, David C.

    2015-01-01

    The term neurotranscriptomics is used here to describe genome-wide analysis of neural control of transcriptomes. In this report, next-generation RNA sequencing was using to analyze the effects of neonatal (5-days-of-age) surgical stimulus deprivation on the adult rat pineal transcriptome. In intact animals, more than 3000 coding genes were found to exhibit differential expression (adjusted-p < 0.001) on a night/day basis in the pineal gland (70% of these increased at night, 376 genes changed more than 4-fold in either direction). Of these, more than two thousand genes were not previously known to be differentially expressed on a night/day basis. The night/day changes in expression were almost completely eliminated by neonatal removal (SCGX) or decentralization (DCN) of the superior cervical ganglia (SCG), which innervate the pineal gland. Other than the loss of rhythmic variation, surgical stimulus deprivation had little impact on the abundance of most genes; of particular interest, expression levels of the melatonin-synthesis-related genes Tph1, Gch1, and Asmt displayed little change (less than 35%) following DCN or SCGX. However, strong and consistent changes were observed in the expression of a small number of genes including the gene encoding Serpina1, a secreted protease inhibitor that might influence extracellular architecture. Many of the genes that exhibited night/day differential expression in intact animals also exhibited similar changes following in vitro treatment with norepinephrine, a superior cervical ganglia transmitter, or with an analog of cyclic AMP, a norepinephrine second messenger in this tissue. These findings are of significance in that they establish that the pineal-defining transcriptome is established prior to the neonatal period. Further, this work expands our knowledge of the biological process under neural control in this tissue and underlines the value of RNA sequencing in revealing how neurotransmission influences cell biology. PMID

  10. Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats.

    PubMed

    Lopes, L T; Patrone, L G A; Li, K-Y; Imber, A N; Graham, C D; Gargaglioni, L H; Putnam, R W

    2016-06-01

    This study was designed to investigate brain connections among chemosensitive areas in newborn rats. Rhodamine beads were injected unilaterally into the locus coeruleus (LC) or into the caudal part of the nucleus tractus solitarius (cNTS) in Sprague-Dawley rat pups (P7-P10). Rhodamine-labeled neurons were patched in brainstem slices to study their electrophysiological responses to hypercapnia and to determine if chemosensitive neurons are communicating between LC and cNTS regions. After 7-10 days, retrograde labeling was observed in numerous areas of the brainstem, including many chemosensitive regions, such as the contralateral LC, cNTS and medullary raphe. Whole-cell patch clamp was done in cNTS. In 4 of 5 retrogradely labeled cNTS neurons that projected to the LC, firing rate increased in response to hypercapnic acidosis (15% CO2), even in synaptic blockade medium (SNB) (high Mg(2+)/low Ca(2+)). In contrast, 2 of 3 retrogradely labeled LC neurons that projected to cNTS had reduced firing rate in response to hypercapnic acidosis, both in the presence and absence of SNB. Extensive anatomical connections among chemosensitive brainstem regions in newborn rats were found and at least for the LC and cNTS, the connections involve some CO2-sensitive neurons. Such anatomical and functional coupling suggests a complex central respiratory control network, such as seen in adult rats, is already largely present in neonatal rats by at least day P7-P10. Since the NTS and the LC play a major role in memory consolidation, our results may also contribute to the understanding of the development of memory consolidation. PMID:27001176