Science.gov

Sample records for neonatal rat ventricular

  1. Calcium-sensing receptor induces rat neonatal ventricular cardiomyocyte apoptosis

    SciTech Connect

    Sun Yihua; Liu Meina; Li Hong; Shi Sa; Zhao Yajun; Wang Rui; Xu Changqing . E-mail: syh200415@yahoo.com.cn

    2006-12-01

    The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, Physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl{sub 3}) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca{sup 2+}]{sub i}) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl{sub 3} increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal protein kinases (JNK), and p38. GdCl{sub 3} also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca{sup 2+}]{sub i}. In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.

  2. Calcium current in isolated neonatal rat ventricular myocytes.

    PubMed Central

    Cohen, N M; Lederer, W J

    1987-01-01

    1. Calcium currents (ICa) from neonatal rat ventricular heart muscle cells grown in primary culture were examined using the 'whole-cell' voltage-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Examination of ICa was limited to one calcium channel type, 'L' type (Nilius, Hess, Lansman & Tsien, 1985), by appropriate voltage protocols. 2. We measured transient and steady-state components of ICa, and could generally describe ICa in terms of the steady-state activation (d infinity) and inactivation (f infinity) parameters. 3. We observed that the reduction of ICa by the calcium channel antagonist D600 can be explained by both a shift of d infinity to more positive potentials as well as a slight reduction of ICa conductance. D600 did not significantly alter either the rate of inactivation of ICa or the voltage dependence of f infinity. 4. The calcium channel modulator BAY K8644 shifted both d infinity and f infinity to more negative potentials. Additionally, BAY K8644 increased the rate of inactivation at potentials between +5 and +55 mV. Furthermore, BAY K8644 also increased ICa conductance, a change consistent with a promotion of 'mode 2' calcium channel activity (Hess, Lansman & Tsien, 1984). 5. We conclude that, as predicted by d infinity and f infinity, there is a significant steady-state component of ICa ('window current') at plateau potentials in neonatal rat heart cells. Modulation of the steady-state and transient components of ICa by various agents can be attributed both to specific alterations in d infinity and f infinity and to more complicated alterations in the mode of calcium channel activity. PMID:2451004

  3. Frataxin deficiency in neonatal rat ventricular myocytes targets mitochondria and lipid metabolism.

    PubMed

    Obis, Èlia; Irazusta, Verónica; Sanchís, Daniel; Ros, Joaquim; Tamarit, Jordi

    2014-08-01

    Friedreich ataxia (FRDA) is a hereditary disease caused by deficient frataxin expression. This mitochondrial protein has been related to iron homeostasis, energy metabolism, and oxidative stress. Patients with FRDA experience neurologic alterations and cardiomyopathy, which is the leading cause of death. The specific effects of frataxin depletion on cardiomyocytes are poorly understood because no appropriate cardiac cellular model is available to researchers. To address this research need, we present a model based on primary cultures of neonatal rat ventricular myocytes (NRVMs) and short-hairpin RNA interference. Using this approach, frataxin was reduced down to 5 to 30% of control protein levels after 7 days of transduction. At this stage the activity and amount of the iron-sulfur protein aconitase, in vitro activities of several OXPHOS components, levels of iron-regulated mRNAs, and the ATP/ADP ratio were comparable to controls. However, NRVMs exhibited markers of oxidative stress and a disorganized mitochondrial network with enlarged mitochondria. Lipids, the main energy source of heart cells, also underwent a clear metabolic change, indicated by the increased presence of lipid droplets and induction of medium-chain acyl-CoA dehydrogenase. These results indicate that mitochondria and lipid metabolism are primary targets of frataxin deficiency in NRVMs. Therefore, they contribute to the understanding of cardiac-specific mechanisms occurring in FRDA and give clues for the design of cardiac-specific treatment strategies for FRDA. PMID:24751525

  4. Electrotonic suppression of early afterdepolarizations in the neonatal rat ventricular myocyte monolayer

    PubMed Central

    Himel, Herman D; Garny, Alan; Noble, Penelope J; Wadgoankar, Raj; Savarese, Joseph; Liu, Nian; Bub, Gil; El-Sherif, Nabil

    2013-01-01

    Pathologies that result in early afterdepolarizations (EADs) are a known trigger for tachyarrhythmias, but the conditions that cause surrounding tissue to conduct or suppress EADs are poorly understood. Here we introduce a cell culture model of EAD propagation consisting of monolayers of cultured neonatal rat ventricular myocytes treated with anthopleurin-A (AP-A). AP-A-treated monolayers display a cycle length dependent prolongation of action potential duration (245 ms untreated, vs. 610 ms at 1 Hz and 1200 ms at 0.5 Hz for AP-A-treated monolayers). In contrast, isolated single cells treated with AP-A develop prominent irregular oscillations with a frequency of 2.5 Hz, and a variable prolongation of the action potential duration of up to several seconds. To investigate whether electrotonic interactions between coupled cells modulates EAD formation, cell connectivity was reduced by RNA silencing gap junction Cx43. In contrast to well-connected monolayers, gap junction silenced monolayers display bradycardia-dependent plateau oscillations consistent with EADs. Further, simulations of a cell displaying EADs electrically connected to a cell with normal action potentials show a coupling strength-dependent suppression of EADs consistent with the experimental results. These results suggest that electrotonic effects may play a critical role in EAD-mediated arrhythmogenesis. PMID:24018945

  5. Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes.

    PubMed Central

    Xiao, Y F; Kang, J X; Morgan, J P; Leaf, A

    1995-01-01

    Recent evidence indicates that polyunsaturated long-chain fatty acids (PUFAs) prevent lethal ischemia-induced cardiac arrhythmias in animals and probably in humans. To increase understanding of the mechanism(s) of this phenomenon, the effects of PUFAs on Na+ currents were assessed by the whole-cell patch-clamp technique in cultured neonatal rat ventricular myocytes. Extracellular application of the free 5,8,11,14,17-eicosapentaenoic acid (EPA) produced a concentration-dependent suppression of ventricular, voltage-activated Na+ currents (INa). After cardiac myocytes were treated with 5 or 10 microM EPA, the peak INa (elicited by a single-step voltage change with pulses from -80 to -30 mV) was decreased by 51% +/- 8% (P < 0.01; n = 10) and 64% +/- 5% (P < 0.001; n = 21), respectively, within 2 min. Likewise, the same concentrations of 4,7,10,16,19-docosahexaenoic acid produced the same inhibition of INa. By contrast, 5 and 10 microM arachidonic acid (AA) caused less inhibition of INa, but both n - 6 and n - 3 PUFAs inhibited INa significantly. A monounsaturated fatty acid and a saturated fatty acid did not. After washing out EPA, INa returned to the control level. Raising the concentration of EPA to 40 microM completely blocked INa. The IC50 of EPA was 4.8 microM. The inhibition of this Na+ channel was found to be dose and time, but not use dependent. Also, the EPA-induced inhibition of INa was voltage dependent, since 10 microM EPA produced 83% +/- 7% and 29% +/- 5% inhibition of INa elicited by pulses from -80 to -30 mV and from -150 to -30 mV, respectively, in single-step voltage changes. A concentration of 10 microM EPA shifted the steady-state inactivation curve of INa by -19 +/- 3 mV (n = 7; P < 0.01). These effects of PUFAs on INa may be important for their antiarrhythmic effect in vivo. PMID:7479925

  6. Glucose-Insulin-Potassium Solution Protects Ventricular Myocytes of Neonatal Rat in an In Vitro Coverslip Ischemia/Reperfusion Model

    PubMed Central

    Chun, Woo-Jung; Bae, Jun-Ho; Chung, Jin-Wook; Lee, HyunSook; Moon, Il Soo

    2015-01-01

    Background and Objectives The benefit of high glucose-insulin-potassium (GIK) solution in clinical applications is controversial. We established a neonatal rat ventricular myocyte (NRVM) in vitro coverslip ischemia/reperfusion (I/R) model and investigated the effects of GIK solution on suppressing reactive oxygen species (ROS) and upregulating O-GlcNacylation, which protects cells from ischemic injury. Materials and Methods NRVMs were isolated from postnatal day 3-4 Sprague-Dawley rat pups and grown in Dulbecco's modified Eagle's medium containing high glucose (4.5 g/L), fetal bovine serum, and penicillin/streptomycin. The effects of the GIK solution on ROS production, apoptosis, and expression of O-GlcNAc and O-GlcNAc transferase (OGT) were investigated in the coverslip I/R model. Results Covering the 24-well culture plates for 3 hr with 12 mm diameter coverslips resulted in the appropriate ischemic shock. Glucose and insulin synergistically reduced ROS production, protected NRVM dose-dependently from apoptosis, and altered O-GlcNAc and OGT expression. Conclusion The high GIK solution protected NRVM from I/R injury in vitro by reducing ROS and altering O-GlcNacylation. PMID:26023312

  7. Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes.

    PubMed

    Graff, Donald W; Cascio, Wayne E; Brackhan, Joseph A; Devlin, Robert B

    2004-05-01

    Soluble particulate matter (PM) components (e.g., metals) have the potential to be absorbed into the bloodstream and transported to the heart where they might induce the expression of inflammatory cytokines and remodel electrical properties. We exposed cultured rat ventricular myocytes to similar concentrations of two metals [zinc (Zn) and vanadium (V)] found commonly in PM and measured changes in spontaneous beat rate. We found statistically significant reductions in spontaneous beat rate after both short-term (4-hr) and long-term (24-hr) exposures, with a more substantial effect seen with Zn. We also measured the expression of genes associated with inflammation and a number of sarcolemmal proteins associated with electrical impulse conduction. Exposure to Zn or V (6.25-50 microM) for 6 hr produced significant increases in IL-6, IL-1 alpha, heat shock protein 70, and connexin 43 (Cx43). After 24 hr exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvLQt (potassium channel proteins), the alpha 1 subunit of the L-type calcium channel, and Cx43, as well as IL-6 and IL-1 alpha. In contrast, V produced a greater effect on Cx43 and affected only one ion channel (KvLQT1). These results show that exposure of rat cardiac myocytes to noncytotoxic concentrations of Zn and V alter spontaneous beat rate as well as the expression of ion channels and sarcolemmal proteins relevant to electrical remodeling and slowing of spontaneous beat rate, with Zn producing a more profound effect. As such, these data suggest that the cardiac effects of PM are largely determined by the relative metal composition of particles. PMID:15159208

  8. The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes.

    PubMed

    Hewawasam, Ruwani P; Liu, Dan; Casarotto, Marco G; Board, Philip G; Dulhunty, Angela F

    2016-01-01

    The cardiac ryanodine receptor (RyR2) is an intracellular ion channel that regulates Ca2+ release from the sarcoplasmic reticulum (SR) during excitation-contraction coupling in the heart. The glutathione transferases (GSTs) are a family of phase II detoxification enzymes with additional functions including the selective inhibition of RyR2, with therapeutic implications. The C-terminal half of GSTM2 (GSTM2C) is essential for RyR2 inhibition, and mutations F157A and Y160A within GSTM2C prevent the inhibitory action. Our objective in this investigation was to determine whether GSTM2C can enter cultured rat neonatal ventricular cardiomyocytes and influence contractility. We show that oregon green-tagged GSTM2C (at 1 μM) is internalized into the myocytes and it reduces spontaneous contraction frequency and myocyte shortening. Field stimulation of myocytes evoked contraction in the same percentage of myocytes treated either with media alone or media plus 15 μM GSTM2C. Myocyte shortening during contraction was significantly reduced by exposure to 15 μM GSTM2C, but not 5 and 10 μM GSTM2C and was unaffected by exposure to 15 μM of the mutants Y160A or F157A. The amplitude of the Ca2+ transient in the 15 μM GSTM2C - treated myocytes was significantly decreased, the rise time was significantly longer and the decay time was significantly shorter than in control myocytes. The Ca2+ transient was not altered by exposure to Y160A or F157A. The results are consistent with GSTM2C entering the myocytes and inhibiting RyR2, in a manner that indicates a possible therapeutic potential for treatment of arrhythmia in the neonatal heart. PMID:27612301

  9. Role of inositol-1,4,5-trisphosphate receptor in the regulation of calcium transients in neonatal rat ventricular myocytes.

    PubMed

    Zeng, Zheng; Zhang, Heping; Lin, Na; Kang, Man; Zheng, Yuanyuan; Li, Chen; Xu, Pingxiang; Wu, Yongquan; Luo, Dali

    2014-01-01

    This study determined the regulatory effect of inositol 1,4,5-trisphosphate receptors (IP3Rs) on the basal Ca(2+) transients in cardiomyocytes. In cultured neonatal rat ventricular myocytes (NRVMs) at different densities, we used confocal microscopy to assess the effect of IP3Rs on the endogenous spontaneous Ca(2+) oscillations through specific activation of IP3Rs with myo-IP3 hexakis (butyryloxymethyl) ester (IP3BM), a membrane permeable IP3, and interference of IP3R expression with shRNA. We found that NRVMs at the monolayer state displayed coordinated Ca(2+) transients with less rate, shorter duration, and higher amplitude compared to single NRVMs. In addition, monolayer NRVMs exhibited 4 or 10 times more increased Ca(2+) transients in response to phenylephrine, an α-adrenergic receptor agonist, or IP3BM than single NRVMs did, while the transient pattern remained unaltered, suggesting that the sensitivity of intracellular Ca(2+) response to IP3R activation is different between single and monolayer NRVMs. However, interference of IP3R expression with shRNA reduced the frequency and amplitude of the spontaneous Ca(2+) fluctuates similarly in both densities of NRVMs, resembling the effects of ryanodine receptor inhibition by ryanodine or tetracaine. Our findings suggest that IP3Rs are involved, in part, in the regulation of native Ca(2+) transients, in profiles of their initiation and Ca(2+) release extent, in developing cardiomyocytes. In addition, caution should be paid in evaluating the behavior of Ca(2+) signaling in primary cultured cardiomyocytes at different densities. PMID:25242084

  10. Tribulosin suppresses apoptosis via PKC epsilon and ERK1/2 signaling pathway during hypoxia/reoxygenation in neonatal rat ventricular cardiac myocytes.

    PubMed

    Zhang, Shuang; Li, Hong; Yang, Shi-Jie

    2011-12-01

    Tribulosin (tigogenin 3-O-β-D-xylopyranosyl(1-2)-[β-D-xylopyranosyl (1-3)]-β-D-glucopyranosyl (1-4)-[a-L-rhamnopyranosyl(1-2)]-β-D-galactopyranoside), a component of gross saponins of Tribulus terrestris, has been shown to produce cytoprotective effects in heart. Yet, the precise mechanisms are not fully understood. We examined the mechanisms of tribulosin on myocardial protection. Ventricular myocytes were isolated from the heart of neonatal rats and were exposed to 3 h of hypoxia followed by 2 h reoxygenation. Apoptosis was induced by hypoxia/reoxygenation (H/R), and the expression of protein kinase C epsilon (PKCϵ) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured neonatal rat cardiac myocytes was detected. The results indicated that treatment with tribulosin in the culture medium protected cardiac myocytes against apoptosis induced by H/R. PKCϵ and ERK1/2 expression increased after pretreated with tribulosin. In the presence of PKCϵ inhibitor co-treated with tribulosin, the expression of ERK1/2 was decreased in H/R cardiac myocytes. While preconditioned with PD98059, ERK1/2 inhibitor, no effects on the expression of PKCϵ were detected. Tribulosin has protective effects on cardiac myocytes against apoptosis induced by H/R injury via PKCϵ and ERK1/2 signaling pathway. PMID:22115037

  11. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    SciTech Connect

    Sun, Yi-hua; Li, Yong-quan; Feng, Shan-li; Li, Bao-xin; Pan, Zhen-wei; Xu, Chang-qing; Li, Ting-ting; Yang, Bao-feng

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  12. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering.

    PubMed

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-12-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE. PMID:27263018

  13. Carbon Nanohorns Promote Maturation of Neonatal Rat Ventricular Myocytes and Inhibit Proliferation of Cardiac Fibroblasts: a Promising Scaffold for Cardiac Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Yujing; Shi, Xiaoli; Li, Yi; Tian, Lei; Bai, Rui; Wei, Yujie; Han, Dong; Liu, Huiliang; Xu, Jianxun

    2016-06-01

    Cardiac tissue engineering (CTE) has developed rapidly, but a great challenge remains in finding practical scaffold materials for the construction of engineered cardiac tissues. Carbon nanohorns (CNHs) may be a potential candidate due to their special structure and properties. The purpose of this study was to assess the effect of CNHs on the biological behavior of neonatal rat ventricular myocytes (NRVMs) for CTE applications. CNHs were incorporated into collagen to form growth substrates for NRVMs. Transmission electron microscopy (TEM) observations demonstrated that CNHs exhibited a good affinity to collagen. Moreover, it was found that CNH-embedded substrates enhanced adhesion and proliferation of NRVMs. Immunohistochemical staining, western blot analysis, and intracellular calcium transient measurements indicated that the addition of CNHs significantly increased the expression and maturation of electrical and mechanical proteins (connexin-43 and N-cadherin). Bromodeoxyuridine staining and a Cell Counting Kit-8 assay showed that CNHs have the ability to inhibit the proliferation of cardiac fibroblasts. These findings suggest that CNHs can have a valuable effect on the construction of engineered cardiac tissues and may be a promising scaffold for CTE.

  14. Abnormal ventricular development in preterm neonates with visually normal MRIs

    NASA Astrophysics Data System (ADS)

    Shi, Jie; Wang, Yalin; Lao, Yi; Ceschin, Rafael; Mi, Liang; Nelson, Marvin D.; Panigrahy, Ashok; Leporé, Natasha

    2015-12-01

    Children born preterm are at risk for a wide range of neurocognitive and neurobehavioral disorders. Some of these may stem from early brain abnormalities at the neonatal age. Hence, a precise characterization of neonatal neuroanatomy may help inform treatment strategies. In particular, the ventricles are often enlarged in neurocognitive disorders, due to atrophy of surrounding tissues. Here we present a new pipeline for the detection of morphological and relative pose differences in the ventricles of premature neonates compared to controls. To this end, we use a new hyperbolic Ricci flow based mapping of the ventricular surfaces of each subjects to the Poincaré disk. Resulting surfaces are then registered to a template, and a between group comparison is performed using multivariate tensor-based morphometry. We also statistically compare the relative pose of the ventricles within the brain between the two groups, by performing a Procrustes alignment between each subject's ventricles and an average shape. For both types of analyses, differences were found in the left ventricles between the two groups.

  15. Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1α/CXC chemokine receptor 4 pathway

    PubMed Central

    ZHOU, HAO; YANG, JUNJIE; XIN, TING; ZHANG, TAO; HU, SHUNYIN; ZHOU, SHANSHAN; CHEN, GUANGHUI; CHEN, YUNDAI

    2015-01-01

    Adipose-derived stem cells (ADSCs) are considered a suitable source of cells for the repair of tissue following acute myocardial infarction (AMI); however, the transplantation efficiency of ADSCs remains low. Therefore, identification of an efficient method to enhance the migration of engrafted cells to the target site is required. The present study used exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, to optimize the migratory capacity of ADSCs. The aim was to determine the effect and mechanisms of Ex-4 on the migration of ADSCs to neonatal rat ventricular cardiomyocyte-derived conditioned medium (NRVC-CM). The ADSCs and cardiomyocytes were cultured in vitro. Following incubation of the ADSCs with Ex-4, cell proliferation was measured using an MTT assay and the expression levels of CXC chemokine receptor 4 (CXCR4) were investigated by reverse transctiption quantitative polymerase chain reaction (RT-qPCR), western blot analysis and flow cytometry. In addition, the expression levels of stromal cell-derived factor-1α (SDF-1α) were evaluated in the NRVC-CM treated with Ex-4 by ELISA, RT-qPCR and western blot analysis. The migration of the ADSCs to the NRVC-CM was examined using a Transwell assay. Changes in the protein expression levels of phosphorylated (p−)Akt were examined in the two types of cell by western blot analysis. The results suggested that Ex-4 promoted the proliferation and expression of CXCR4 in the ADSCs, increased the secretion of SDF-1α in the cardiomyocytes and increased the expression levels of p-Akt in both cells. However, the alterations to the SDF-1α/C XC R4 cascade in the cells were abrogated following pretreatment with LY-294002, a phosphoinositide 3-kinase(PI3K) inhibitor. Furthermore, a Transwell migration assay revealed marked translocation of the ADSCs through the membranes, towards the NRVC-CM, following treatment with Ex-4. However, these effects were reduced significantly by pretreatment of the cells with the SDF-1

  16. EVALUATION OF RENAL FUNCTION IN NEONATAL RATS

    EPA Science Inventory

    The ontogenetic profile of several parameters of neonatal renal development in the rat is presented. Nephrogenesis was observed to continue at a rapid pace between birth and 8 days of age and to be virtually complete by 11 days of age. The activity of alkaline phosphatase, a brus...

  17. Metabolic neural mapping in neonatal rats

    SciTech Connect

    DiRocco, R.J.; Hall, W.G.

    1981-01-01

    Functional neural mapping by /sup 14/C-deoxyglucose autoradiography in adult rats has shown that increases in neural metabolic rate that are coupled to increased neurophysiological activity are more evident in axon terminals and dendrites than neuron cell bodies. Regions containing architectonically well-defined concentrations of terminals and dendrites (neuropil) have high metabolic rates when the neuropil is physiologically active. In neonatal rats, however, we find that regions containing well-defined groupings of neuron cell bodies have high metabolic rates in /sup 14/C-deoxyglucose autoradiograms. The striking difference between the morphological appearance of /sup 14/C-deoxyglucose autoradiograms obtained from neonatal and adult rats is probably related to developmental changes in morphometric features of differentiating neurons, as well as associated changes in type and locus of neural work performed.

  18. Mesenchymal stem cells preserve neonatal right ventricular function in a porcine model of pressure overload.

    PubMed

    Wehman, Brody; Sharma, Sudhish; Pietris, Nicholas; Mishra, Rachana; Siddiqui, Osama T; Bigham, Grace; Li, Tieluo; Aiello, Emily; Murthi, Sarah; Pittenger, Mark; Griffith, Bartley; Kaushal, Sunjay

    2016-06-01

    Limited therapies exist for patients with congenital heart disease (CHD) who develop right ventricular (RV) dysfunction. Bone marrow-derived mesenchymal stem cells (MSCs) have not been evaluated in a preclinical model of pressure overload, which simulates the pathophysiology relevant to many forms of CHD. A neonatal swine model of RV pressure overload was utilized to test the hypothesis that MSCs preserve RV function and attenuate ventricular remodeling. Immunosuppressed Yorkshire swine underwent pulmonary artery banding to induce RV dysfunction. After 30 min, human MSCs (1 million cells, n = 5) or placebo (n = 5) were injected intramyocardially into the RV free wall. Serial transthoracic echocardiography monitored RV functional indices including 2D myocardial strain analysis. Four weeks postinjection, the MSC-treated myocardium had a smaller increase in RV end-diastolic area, end-systolic area, and tricuspid vena contracta width (P < 0.01), increased RV fractional area of change, and improved myocardial strain mechanics relative to placebo (P < 0.01). The MSC-treated myocardium demonstrated enhanced neovessel formation (P < 0.0001), superior recruitment of endogenous c-kit+ cardiac stem cells to the RV (P < 0.0001) and increased proliferation of cardiomyocytes (P = 0.0009) and endothelial cells (P < 0.0001). Hypertrophic changes in the RV were more pronounced in the placebo group, as evidenced by greater wall thickness by echocardiography (P = 0.008), increased cardiomyocyte cross-sectional area (P = 0.001), and increased expression of hypertrophy-related genes, including brain natriuretic peptide, β-myosin heavy chain and myosin light chain. Additionally, MSC-treated myocardium demonstrated increased expression of the antihypertrophy secreted factor, growth differentiation factor 15 (GDF15), and its downstream effector, SMAD 2/3, in cultured neonatal rat cardiomyocytes and in the porcine RV myocardium. This is the first report of the use of MSCs as a therapeutic

  19. A neonate with ectodermal dysplasia ectrodactyly clefting syndrome and ventricular septal defect.

    PubMed

    Ram, S P; Noor, A R; Ariffin, W A; Ariffin, N A

    1994-04-01

    A 37-week gestation male boy was born to a gravida seven para six mother by spontaneous vertex delivery at home. The baby cried at birth. On day 3 of life, he was admitted for respiratory distress. Physical examination revealed ectrodactyly, thin dry skin, anomalous tear duct with cardiomegaly. X-ray revealed absent radii, cardiomegaly and hemivertebra at L1. Echocardiogram revealed perimembranous type of ventricular septal defect. A diagnosis of Ectodermal Dysplasia Ectrodactyly Clefting Syndrome with ventricular septal defect was made. He was managed conservatively in the nursery. However, he expired on day 27 of life following short spell of fever apnoeic episode due to neonatal sepsis. PMID:7939823

  20. Hair growth in neonatally undernourished rats.

    PubMed

    Salas, M; Pulido, S; Torrero, C; Regalado, M; Loranca, A

    1995-01-01

    Interaction between neonatal undernutrition and the increased self-grooming activity upon hair growth of several body areas was analyzed in rats of 10, 20 and 30 days of age. Light microscopic observations on methylene blue impregnated hairs showed that these perinatal influences delayed the growth of hair follicles and thickness and length of hair measurements of the head and thoracic areas. The hair growth of lateral abdominal regions was less affected. Data suggest that hair alterations are primarily related to food deprivation since hair follicle measures of all skin areas were more affected than the distal hair measurements. Moreover, the distribution of impaired hair growth on different body areas correlates well with the increased self-grooming components associated to neonatal undernourishment. PMID:8914627

  1. Specific heart granules and natriuretic peptide in the developing myocardium of fetal and neonatal rats and hamsters.

    PubMed Central

    Navaratnam, V; Woodward, J M; Skepper, J N

    1989-01-01

    The ontogenesis of specific heart granules and of the related natriuretic peptide activity in heart muscle was studied in fetal and neonatal rats and golden hamsters by ultrastructural analysis including immunogold labelling for ANP-28 and by radioimmunoassay. In both species, immunoreactive granules first appear in the myocardial sleeve of the embryonic heart tube during the looping stages which precede chamber formation and the peptide becomes detectable by radioimmunoassay two or three days later by which time the chambers are identifiable. Granule density and ANP concentration in the rat are higher than in the hamster at all stages of development. Almost all atrial myocytes express ANP in fetal hearts whereas, in the ventricular wall, cells containing immunoreactive granules are scattered. The density of granules in atrial myocytes increases during further stages of fetal and neonatal development, while it decreases markedly even in those ventricular myocytes which are immunoreactive. Changes in the ultrastructural appearance of ventricular SHG suggest that the mode of production of ANP changes in ventricular myocytes after birth but does not change in atrial cells. There is no correlation between the distribution of immunoreactive ventricular myocytes and that of the conducting system. In both species, the concentration of ANP in the atrial well is higher than ventricular levels from the outset and the disparity becomes exaggerated with development till, in six months old adult animals, the atrial to ventricular concentration ratio is about 3 x 10(3):1 in the rat and 1.5 x 10(3): 1 in the hamster. In the hamster, a distinct gradient of ANP concentration between the right and left atria is already established in the early fetal period and it becomes enhanced in the neonatal period. In the rat, however, a slight difference becomes discernible only after birth. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:2532637

  2. Neonatal ventricular fibrillation and an elusive ALCAPA: things are not always as they seem.

    PubMed

    Walker, Tracie C; Renno, Markus S; Parra, David A; Guthrie, Scott O

    2016-01-01

    An anomalous left coronary artery from the pulmonary artery (ALCAPA) is a rare congenital cardiac condition that typically presents with poor feeding and failure to thrive from progressive myocardial ischaemia. Previous reports of ALCAPA presenting with ventricular fibrillation (VF) have suggested a causative relationship. In this case, we present a neonate with VF without apparent cause after an extensive evaluation. Following implantable cardioverter-defibrillator placement for presumed idiopathic VF, at which time she also underwent surgical ligation of a patent ductus arteriosus (PDA), the neonate developed haemodynamic instability that ultimately was found to be due to ALCAPA. Numerous echocardiograms had missed the ALCAPA in the setting of mildly elevated pulmonary artery pressure. We discuss the limitations of current ultrasound technology in diagnosing ALCAPA in the setting of pulmonary hypertension and explain why the relationship between this patient's diagnosis of ALCAPA and her episode of VF is not clearly causative. PMID:27033289

  3. Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts.

    PubMed

    He, Quan; Wang, Miao; Harris, Nicole; Han, Xianlin

    2013-11-01

    Mutation of the mitochondrial protein tafazzin causes dilated cardiomyopathy in Barth syndrome. Previous studies have shown that tafazzin knockdown promotes hypertrophy of neonatal cardiac myocytes. The current investigation was designed to show whether tafazzin knockdown affects cardiac fibroblast proliferation and collagen secretion, which contribute to fibrosis in dilated cardiomyopathy. In primary cultures of neonatal ventricular fibroblasts (NVFs) transduced with a tafazzin short hairpin RNA adenovirus, tafazzin knockdown increased production of reactive oxygen species and activation of mitogen-activated protein kinases and induced protein and DNA synthesis via cell cycle regulators. It also reduced intracellular ATP, activated AMPK, and caused multinucleation, hypertrophy, and enhanced collagen secretion. We concluded that tafazzin knockdown interrupts the NVF cell cycle and this in turn may contribute to fibrosis and dilated cardiomyopathy in Barth syndrome. PMID:23997105

  4. Isolation and Cryopreservation of Neonatal Rat Cardiomyocytes

    PubMed Central

    Vandergriff, Adam C.; Hensley, Michael Taylor; Cheng, Ke

    2016-01-01

    Cell culture has become increasingly important in cardiac research, but due to the limited proliferation of cardiomyocytes, culturing cardiomyocytes is difficult and time consuming. The most commonly used cells are neonatal rat cardiomyocytes (NRCMs), which require isolation every time cells are needed. The birth of the rats can be unpredictable. Cryopreservation is proposed to allow for cells to be stored until needed, yet freezing/thawing methods for primary cardiomyocytes are challenging due to the sensitivity of the cells. Using the proper cryoprotectant, dimethyl sulfoxide (DMSO), cryopreservation was achieved. By slowly extracting the DMSO while thawing the cells, cultures were obtained with viable NRCMs. NRCM phenotype was verified using immunocytochemistry staining for α-sarcomeric actinin. In addition, cells also showed spontaneous contraction after several days in culture. Cell viability after thawing was acceptable at 40–60%. In spite of this, the methods outlined allow one to easily cryopreserve and thaw NRCMs. This gives researchers a greater amount of flexibility in planning experiments as well as reducing the use of animals. PMID:25938862

  5. Impaired antipneumococcal activity of bronchoalveolar lining material of neonatal rats.

    PubMed Central

    Coonrod, J D; Jarrells, M C

    1989-01-01

    Pulmonary clearance of inhaled pneumococci is markedly impaired in neonatal rats compared with that in adult rats. To determine whether this impairment is due to a deficiency of extracellular bactericidal factors, the antipneumococcal activity of free fatty acids (FFA) in lung surfactant and the levels of lysozyme and transferrin in lavage fluids were quantified. Surfactant from adult rats averaged 68 U of antipneumococcal activity per g (dry weight) of lung, compared with less than 0.25 U for rats less than 1 week old (P less than 0.001). The kinds of FFA in surfactant of neonatal and adult rats were essentially identical, and the antipneumococcal activity of highly purified FFA from surfactant of neonatal and adult rats was also the same. However, the quantity of FFA in surfactant varied significantly with age, and rats less than 3 weeks old had much lower levels of surfactant FFA than did adults (P less than 0.001). In addition, lavage fluids from neonatal rats inhibited the antipneumococcal activity of surfactant FFA more than lavage fluids from adults did (P less than 0.02). This inhibitory activity did not appear to be due to protein binding. Lavage fluids from neonates showed an age-related deficiency of lysozyme (P less than 0.001), but lysozyme appeared to play no role in pneumococcal killing by the surfactant fraction of lavage fluids in vitro. Transferrin levels in lavage fluids were similar for neonates and adults. It was concluded that lung surfactant from neonatal rats was deficient in antipneumococcal activity, due mostly to low levels of FFA and to a lesser degree to increased levels of inhibitor(s) in lavage fluids. PMID:2912894

  6. PHARMACOLOGIC PROBING OF RENAL DEVELOPMENT IN THE NEONATAL RAT

    EPA Science Inventory

    The study was designed to examine the ontogeny of renal functions in the neonatal rat using various pharmacologic agents as probes. The renal responses of 2, 6, and 10 day old rats to diuretic agents known to act on proximal tubules, loops of Henle and distal tubules were assesse...

  7. TRIETHYLTIN-INDUCED NEURONAL DAMAGE IN NEONATALLY EXPOSE RATS

    EPA Science Inventory

    Neuropathological and biochemical effects of neonatal exposure to the alkyl metal triethyltin were examined in Long Evans juvenile male rats. Rats were injected intraperitoneally on post-natal day 5 with 6 mk/kg of triethyltin bromide and sampled on day 20. The brains of tin-trea...

  8. The neurological effects of brevetoxin on neonatal rats

    SciTech Connect

    Tapley, S.R.; Ramsdell, J.S.; Xi, D.

    1994-12-31

    We have investigated the neuroexcitatory and neurodegenerative effects of brevetoxin on neonatal rats. Brevetoxin, a marine-biotoxin that has been implicated in several seafood poisoning incidents, is produced by the dinoflagellate Gymnodinium brevis. Four studies were done: dose response, northern analysis, immunohistochemistry and neurodegeneration. We found that neonatal rats are much more sensitive to brevetoxin than adult rats. The effectiveness of c-fos as a biomarker is being investigated, because of the high basal expression in young animals. The neurodegeneration, although not available yet, should provide valuable information.

  9. Evaluation of right ventricular function using single-beat three-dimensional echocardiography in neonate.

    PubMed

    Watanabe, Kazuhiro; Hashimoto, Ikuo; Ibuki, Keijiro; Okabe, Mako; Kaneda, Hisashi; Ichida, Fukiko

    2015-06-01

    Aim of our study was to evaluate right ventricular (RV) systolic function in neonate using newly developed single-beat three-dimensional echocardiography (sb3DE). We enrolled 15 healthy or premature neonates (0-53 days after birth). We scanned one beat full volume using Siemens ACUSON SC2000 (Siemens AG) echocardiography with 4Z1c full-volume transducer without ECG gating. RV end-diastolic volume (RVEDV) and RV end-systolic volume (RVESV) were computed with special software dedicated to analysis for RV volume. RV ejection fraction (RVEF) and RV stroke volume (3D-RVSV) were calculated. And RV stroke volume was also determined from the recordings of ejection blood flow velocity and diameter at the level of the pulmonary orifice in RV outflow tract (Doppler-RVSV). Tricuspid annular plane systolic excursion (TAPSE) was also measured by 2D echocardiography. RVEDV ranged from 5.1 to 10.7 ml (average 7.5 ml), RVESV ranged from 2.3 to 5.8 ml (average 3.9 ml). There was a good correlation between 3D-RVSV and Doppler-RVSV (r = 0.77). Bland-Altman plot revealed that 3D-RVSV became underestimation of an average of 1.78 ml compared to Doppler-RVSV. And TAPSE positively correlated with 3D-RVEF (r = 0.58, P = 0.038). Newly developed sb3DE enables us to perform three-dimensional acquisition of RV volume without ECG gating even in neonate. However, 3D-RVSV currently tends to be underestimated in neonatal measurement. PMID:25588573

  10. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  11. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes.

    PubMed Central

    Takahashi, N; Calderone, A; Izzo, N J; Mäki, T M; Marsh, J D; Colucci, W S

    1994-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is a peptide growth factor that may play a role in the myocardial response to hypertrophic stimuli. However, the cellular distribution, mechanism of induction, and source of increased TGF-beta 1 in response to hypertrophic stimuli are not known. We tested the hypothesis that the cardiac myocyte responds to hypertrophic stimuli with the increased expression of TGF-beta 1. In adult rat ventricular myocardium freshly dissociated into myocyte and nonmyocyte cellular fractions, the preponderance of TGF-beta 1 mRNA visualized by Northern hybridization was in the nonmyocyte fraction. Abdominal aortic constriction (7 d) and subcutaneous norepinephrine infusion (36 h) each caused ventricular hypertrophy associated with 3.1-fold and 3.8-fold increases, respectively, in TGF-beta 1 mRNA in the myocyte fraction, but had no effect on the level of TGF-beta 1 mRNA in the nonmyocyte fraction. In ventricular myocytes, norepinephrine likewise caused a 4.1-fold increase in TGF-beta 1 mRNA associated with an increase in TGF-beta bioactivity. This induction of TGF-beta 1 mRNA occurred at norepinephrine concentrations as low as 1 nM and was blocked by prazosin, but not propranolol. NE did not increase the TGF-beta 1 mRNA level in nonmyocytes, primarily fibroblasts, cultured from neonatal rat ventricle. Thus, the cardiac myocyte responds to two hypertrophic stimuli, pressure overload and norepinephrine, with the induction of TGF-beta 1. These data support the view that TGF-beta 1, released by myocytes and acting in an autocrine and/or paracrine manner, is involved in myocardial remodeling by hypertrophic stimuli. Images PMID:7929822

  12. Resveratrol reduces intracellular free calcium concentration in rat ventricular myocytes.

    PubMed

    Liu, Zheng; Zhang, Li-Ping; Ma, Hui-Jie; Wang, Chuan; Li, Ming; Wang, Qing-Shan

    2005-10-25

    Resveratrol (trans-3, 4', 5-trihydroxy stilbene), a phytoalexin found in grape skins and red wine, has been reported to have a wide range of biological and pharmacological properties. It has been speculated that resveratrol may have cardioprotective activity. The objective of our study was to investigate the effects of resveratrol on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular myocytes. [Ca(2+)](i) was detected by laser scanning confocal microscopy. The results showed that resveratrol (15~60 mumol/L) reduced [Ca(2+)](i) in normal and Ca(2+)-free Tyrode's solution in a concentration-dependent manner. The effects of resveratrol on [Ca(2+)](i) in normal Tyrode's solution was partially inhibited by pretreatment with sodium orthovanadate (Na3VO4, 1.0 mmol/L, P<0.01), an inhibitor of protein tyrosine phosphatase, or L-type Ca(2+) channel agonist Bay K8644 (10 mumol/L, P<0.05), but could not be antagonized by NO synthase inhibitor L-NAME (1.0 mmol/L). Resveratrol also markedly inhibited the ryanodine-induced [Ca(2+)](i) increase in Ca(2+)-free Tyrode's solution (P<0.01). When Ca(2+) waves were produced by increasing extracellular Ca(2+) concentration from 1 to 10 mmol/L, resveratrol (60 mumol/L) could reduce the velocity and duration of propagating waves, and block the propagating waves of elevated [Ca(2+)](i). These results suggest that resveratrol may reduce the [Ca(2+)](i) in isolated rat ventricular myocytes. The inhibition of voltage-dependent Ca(2+) channel and tyrosine kinase, and alleviation of Ca(2+) release from sarcoplasmic reticulum (SR) are possibly involved in the effects of resveratrol on rat ventricular myocytes. These findings could help explain the protective activity of resveratrol against cardiovascular disease. PMID:16220198

  13. Oral Everolimus for Treatment of a Giant Left Ventricular Rhabdomyoma in a Neonate-Rapid Tumor Regression Documented by Real Time 3D Echocardiography.

    PubMed

    Wagner, Robert; Riede, Frank Thomas; Seki, Hiroshi; Hornemann, Frauke; Syrbe, Steffen; Daehnert, Ingo; Weidenbach, Michael

    2015-12-01

    The presented case reports on successful treatment with everolimus in a neonate with left ventricular giant rhabdomyoma. The authors used a different dosage regime compared to literature and documented rapid tumor regression by 3D echocardiography. PMID:26199144

  14. Functional characteristics of neonatal rat β cells with distinct markers.

    PubMed

    Martens, G A; Motté, E; Kramer, G; Stangé, G; Gaarn, L W; Hellemans, K; Nielsen, J H; Aerts, J M; Ling, Z; Pipeleers, D

    2014-02-01

    Neonatal β cells are considered developmentally immature and hence less glucose responsive. To study the acquisition of mature glucose responsiveness, we compared glucose-regulated redox state, insulin synthesis, and secretion of β cells purified from neonatal or 10-week-old rats with their transcriptomes and proteomes measured by oligonucleotide and LC-MS/MS profiling. Lower glucose responsiveness of neonatal β cells was explained by two distinct properties: higher activity at low glucose and lower activity at high glucose. Basal hyperactivity was associated with higher NAD(P)H, a higher fraction of neonatal β cells actively incorporating (3)H-tyrosine, and persistently increased insulin secretion below 5 mM glucose. Neonatal β cells lacked the steep glucose-responsive NAD(P)H rise between 5 and 10 mM glucose characteristic for adult β cells and accumulated less NAD(P)H at high glucose. They had twofold lower expression of malate/aspartate-NADH shuttle and most glycolytic enzymes. Genome-wide profiling situated neonatal β cells at a developmental crossroad: they showed advanced endocrine differentiation when specifically analyzed for their mRNA/protein level of classical neuroendocrine markers. On the other hand, discrete neonatal β cell subpopulations still expressed mRNAs/proteins typical for developing/proliferating tissues. One example, delta-like 1 homolog (DLK1) was used to investigate whether neonatal β cells with basal hyperactivity corresponded to a more immature subset with high DLK1, but no association was found. In conclusion, the current study supports the importance of glycolytic NADH-shuttling in stimulus function coupling, presents basal hyperactivity as novel property of neonatal β cells, and provides potential markers to recognize intercellular developmental differences in the endocrine pancreas. PMID:24049066

  15. Dietary salt restriction in hyperthyroid rats. Differential influence on left and right ventricular mass.

    PubMed

    Wangensteen, Rosemary; Rodríguez-Gómez, Isabel; Perez-Abud, Rocío; Quesada, Andrés; Montoro-Molina, Sebastián; Osuna, Antonio; Vargas, Félix

    2015-01-01

    This study assessed the impact of salt restriction on cardiac morphology and biochemistry and its effects on hemodynamic and renal variables in experimental hyperthyroidism. Four groups of male Wistar rats were used: control, hyperthyroid, and the same groups under low salt intake. Body weight, blood pressure (BP), and heart rate (HR) were recorded weekly for 4 weeks. Morphologic, metabolic, plasma, cardiac, and renal variables were also measured. Low salt intake decreased BP in T(4)-treated rats but not in controls. Low salt intake reduced relative left ventricular mass but increased absolute right ventricular weight and right ventricular weight/BW ratio in both control and hyperthyroid groups. Low salt intake increased Na(+)/H(+) exchanger-1 (NHE-1) protein abundance in both ventricles in normal rats but not in hyperthyroid rats, independently of its effect on ventricular mass. Mammalian target of rapamycin (mTOR) protein abundance was not related to left or right ventricular mass in hyperthyroid or controls rats under normal or low salt conditions. Proteinuria was increased in hyperthyroid rats and attenuated by low salt intake. In this study, low salt intake produced an increase in right ventricular mass in normal and hyperthyroid rats. Changes in the left or right ventricular mass of control and hyperthyroid rats under low salt intake were not explained by the NHE-1 or mTOR protein abundance values observed. In hyperthyroid rats, low salt intake also slightly reduced BP and decreased HR, proteinuria, and water and sodium balances. PMID:25030483

  16. Mitochondrial integrity in a neonatal bovine model of right ventricular dysfunction.

    PubMed

    Bruns, Danielle R; Brown, R Dale; Stenmark, Kurt R; Buttrick, Peter M; Walker, Lori A

    2015-01-15

    Right ventricular (RV) function is a key determinant of survival in patients with both RV and left ventricular (LV) failure, yet the mechanisms of RV failure are poorly understood. Recent studies suggest cardiac metabolism is altered in RV failure in pulmonary hypertension (PH). Accordingly, we assessed mitochondrial content, dynamics, and function in hearts from neonatal calves exposed to hypobaric hypoxia (HH). This model develops severe PH with concomitant RV hypertrophy, dilation, and dysfunction. After 2 wk of HH, pieces of RV and LV were obtained along with samples from age-matched controls. Comparison with control assesses the effect of hypoxia, whereas comparison between the LV and RV in HH assesses the additional impact of RV overload. Mitochondrial DNA was unchanged in HH, as was mitochondrial content as assessed by electron microscopy. Immunoblotting for electron transport chain subunits revealed a small increase in mitochondrial content in HH in both ventricles. Mitochondrial dynamics were largely unchanged. Activity of individual respiratory chain complexes was reduced (complex I) or unchanged (complex V) in HH. Key enzymes in the glycolysis pathway were upregulated in both HH ventricles, alongside upregulation of hypoxia-inducible factor-1α protein. Importantly, none of the changes in expression or activity were different between ventricles, suggesting the changes are in response to HH and not RV overload. Upregulation of glycolytic modulators without chamber-specific mitochondrial dysfunction suggests that mitochondrial capacity and activity are maintained at the onset of PH, and the early RV dysfunction in this model results from mechanisms independent of the mitochondria. PMID:25416385

  17. A Neonate with Susceptibility to Long QT Syndrome Type 6 who Presented with Ventricular Fibrillation and Sudden Unexpected Infant Death

    PubMed Central

    Sauer, Charles W.; Marc-Aurele, Krishelle L.

    2016-01-01

    Patient: Female, 19-day Final Diagnosis: 19 day old neonate with susceptibility to Long QT syndrome • ventricular fibrillation Symptoms: Cardiac arrest • cardiac arrhythmia • encephalopathy Medication: — Clinical Procedure: Cardioversion Specialty: Pediatrics and Neonatology Objective: Rare disease Background: This is a case of a neonate with susceptibility to long QT syndrome (LQTS) who presented with a sudden unexpected infant death. Experts continue to debate whether universal electrocardiogram (ECG) screening of all newborns is feasible, practical, and cost-effective. Case Report: A 19-day-old neonate was found unresponsive by her mother. ECG showed ventricular fibrillation and a combination of a lidocaine drip plus multiple defibrillations converted the rhythm to normal sinus. Unfortunately, MRI brain imaging showed multiple infarcts and EEG showed burst suppression pattern with frequent seizures; life supportive treatment was stopped and the infant died. Genetic testing revealed two mutations in the KCNE2 gene consistent with susceptibility to LQTS type 6. Conclusions: We believe this case is the first to demonstrate both a precipitating electrocardiographic and genetic cause of death for an infant with LQTS, showing a cause-and-effect relationship between LQTS mutation, ventricular arrhythmia, and death. We wonder whether universal ECG newborn screening to prevent LQTS death could have saved this baby. PMID:27465075

  18. Right ventricular cyclic nucleotide signaling is decreased in hyperoxia-induced pulmonary hypertension in neonatal mice

    PubMed Central

    Heilman, Rachel P.; Lagoski, Megan B.; Lee, Keng Jin; Taylor, Joann M.; Kim, Gina A.; Berkelhamer, Sara K.; Steinhorn, Robin H.

    2015-01-01

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 25–35% of premature infants with significant bronchopulmonary dysplasia (BPD), increasing morbidity and mortality. We sought to determine the role of phosphodiesterase 5 (PDE5) in the right ventricle (RV) and left ventricle (LV) in a hyperoxia-induced neonatal mouse model of PH and RVH. After birth, C57BL/6 mice were placed in room air (RA) or 75% O2 (CH) for 14 days to induce PH and RVH. Mice were euthanized at 14 days or recovered in RA for 14 days or 42 days prior to euthanasia at 28 or 56 days of age. Some pups received sildenafil or vehicle (3 mg·kg−1·dose−1 sc) every other day from P0. RVH was assessed by Fulton's index [RV wt/(LV + septum) wt]. PDE5 protein expression was analyzed via Western blot, PDE5 activity was measured by commercially available assay, and cGMP was measured by enzyme-linked immunoassay. Hyperoxia induced RVH in mice after 14 days, and RVH did not resolve until 56 days of age. Hyperoxia increased PDE5 expression and activity in RV, but not LV + S, after 14 days. PDE5 expression normalized by 28 days of age, but PDE5 activity did not normalize until 56 days of age. Sildenafil given during hyperoxia prevented RVH, decreased RV PDE5 activity, and increased RV cGMP levels. Mice with cardiac-specific overexpression of PDE5 had increased RVH in RA. These findings suggest normal RV PDE5 function is disrupted by hyperoxia, and elevated PDE5 contributes to RVH and remodeling. Therefore, in addition to impacting the pulmonary vasculature, sildenafil also targets PDE5 in the neonatal mouse RV and decreases RVH. PMID:25862831

  19. Development of play behavior in neonatally undernourished rats.

    PubMed

    Loranca, A; Torrero, C; Salas, M

    1999-03-01

    The effects of neonatal food and sensory deprivation on play social behavior (boxing, wrestling, and pinning) were studied in male and female Wistar strain rats from 20 to 60 days of age. Data showed that the mean frequency of total play was markedly increased in neonatally underfed subjects. Play did also increase in the females and during the interaction in pairs and in the play that occurred during the prepuberal period. These findings suggest that early food restriction and the unavoidable sensory deprivation associated to the undernourishing procedure, interfere with the neuroendocrine maturational processes of central and peripheral modulatory mechanisms underlying play behavior. PMID:10222466

  20. Norwood Stage 1 With Surgical Ventricular Reconstruction and Mitral Valve Repair for Neonatal Idiopathic Left Ventricular Dilated Cardiomyopathy.

    PubMed

    Myers, Patrick O; Sologashvili, Tornike; Beghetti, Maurice; Tissot, Cécile

    2016-07-01

    A newborn girl presented with a prenatal diagnosis of dilated left ventricular cardiomyopathy, mitral valve regurgitation, and ductal-dependent circulation. The left ventricle was severely dilated and hypokinetic. The patient underwent Norwood stage 1 single ventricle palliation with a Damus-Kaye-Stansel anastomosis, atrioseptectomy, and a modified Blalock-Taussig shunt. The left ventricle was managed with Batista surgical ventricular reconstruction, with resection of the dilated and thinned ventricular myocardium, along with periventricular Alfieri repair of the mitral valve. The patient had an uneventful postoperative recovery, followed by stage 2 bidirectional Glenn and tricuspid valvuloplasty at 2.75 months of age. PMID:27343520

  1. Electrical stimulation of primary neonatal rat ventricular cardiomyocytes using pacemakers.

    PubMed

    Martherus, Ruben S R M; Zeijlemaker, Volkert A; Ayoubi, Torik A Y

    2010-01-01

    The study of gene regulation in cardiac myocytes requires a reliable in vitro model. However, monolayer cultures used for this purpose are typically not exposed to electrical stimulation, though this has been shown to strongly affect cardiomyocyte gene expression. Based on pacemakers for clinical use, we developed an easy-to-use portable system that allows the user to perform electro-stimulation of cardiomyocyte cultures in standard tissue incubators without the need for bulky equipment. In addition, we present a refined protocol for culturing high-purity cardiomyocyte cultures with excellent contractile properties for a wide variety of applications. PMID:20078430

  2. Altered ovarian responsiveness to gonadotropins in neonatally irradiated immature rats

    SciTech Connect

    Freud, A.; Sod-Moriah, U.A.

    1988-01-01

    Female rats which were exposed to a single low dose of gamma irradiation (6R or 15R) at the age of 8 days produce smaller litters when mature than untreated controls. In order to study the possibility that such an impaired reproductive performance could result from a reduced ovulation rate, neonatally irradiated females were treated with PMSG (12 iu/rat) at the age of 26 days. Another group of rats, similarly treated, was further injected with hCG (5 iu/rat) 48 hours later. Animals were killed 48, 55, 60 and 72 hours after PMSG treatment or 72 and 120 after hCG injection. The results indicated that PMSG treatment increased the ovarian weight of non-irradiated controls as well as of irradiated rats and in all animals induced a proestrus like profile of LH. Only a combined treatment of PMSG and hCG resulted in ovulation and corpora lutea formation with significantly increased numbers of corpora lutea in the ovaries of the irradiated rats. The latter was associated with higher progesterone plasma levels not correlated to the number of corpora lutea. The gradual decrease in the number of ovarian binding sites for hCG with increased radiation dose and the increased association constant in the 15R group could not explain the increased sensitivity of the ovary to exogenous gonadotropins which results from neonatal exposure to low doses of gamma irradiation.

  3. CHARACTERIZATION OF RESPIRATORY DISEASE IN RATS FOLLOWING NEONATAL INOCULATION WITH A RAT-ADAPTED INFLUENZA VIRUS

    EPA Science Inventory

    Neonatal F344 rats were infected with a rat-adapted influenza virus (RAIV) as a potential model to study the combined effects of early life viral respiratory infection with air pollutant dosimetry and toxic responses, as well as on the development of respiratory disease and incre...

  4. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure

    PubMed Central

    Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.

    2015-01-01

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0–4 or 0–10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  5. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure.

    PubMed

    Goss, Kara N; Cucci, Anthony R; Fisher, Amanda J; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S; Ahlfeld, Shawn K; Lahm, Tim

    2015-04-15

    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0-4 or 0-10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults. PMID:25659904

  6. Organ Explant Culture of Neonatal Rat Ventricles: A New Model to Study Gene and Cell Therapy

    PubMed Central

    den Haan, A. Dénise; Veldkamp, Marieke W.; Bakker, Diane; Boink, Geert J. J.; Janssen, Rob B.; de Bakker, Jacques M. T.; Tan, Hanno L.

    2013-01-01

    Testing cardiac gene and cell therapies in vitro requires a tissue substrate that survives for several days in culture while maintaining its physiological properties. The purpose of this study was to test whether culture of intact cardiac tissue of neonatal rat ventricles (organ explant culture) may be used as a model to study gene and cell therapy. We compared (immuno) histology and electrophysiology of organ explant cultures to both freshly isolated neonatal rat ventricular tissue and monolayers. (Immuno) histologic studies showed that organ explant cultures retained their fiber orientation, and that expression patterns of α-actinin, connexin-43, and α-smooth muscle actin did not change during culture. Intracellular voltage recordings showed that spontaneous beating was rare in organ explant cultures (20%) and freshly isolated tissue (17%), but common (82%) in monolayers. Accordingly, resting membrane potential was -83.9±4.4 mV in organ explant cultures, −80.5±3.5 mV in freshly isolated tissue, and −60.9±4.3 mV in monolayers. Conduction velocity, measured by optical mapping, was 18.2±1.0 cm/s in organ explant cultures, 18.0±1.2 cm/s in freshly isolated tissue, and 24.3±0.7 cm/s in monolayers. We found no differences in action potential duration (APD) between organ explant cultures and freshly isolated tissue, while APD of monolayers was prolonged (APD at 70% repolarization 88.8±7.8, 79.1±2.9, and 134.0±4.5 ms, respectively). Organ explant cultures and freshly isolated tissue could be paced up to frequencies within the normal range for neonatal rat (CL 150 ms), while monolayers could not. Successful lentiviral (LV) transduction was shown via Egfp gene transfer. Co-culture of organ explant cultures with spontaneously beating cardiomyocytes increased the occurrence of spontaneous beating activity of organ explant cultures to 86%. We conclude that organ explant cultures of neonatal rat ventricle are structurally and electrophysiologically similar to

  7. Homeostatic control of manganese excretion in the neonatal rat

    SciTech Connect

    Ballatori, N.; Miles, E.; Clarkson, T.W.

    1987-05-01

    Previous studies in neonatal and suckling animals showed that immature animals have a greatly diminished capacity to excrete manganese and therefore were considered to be unable to regulate tissue manganese concentrations. In contrast, the present studies indicate that suckling rats have the capacity to excrete excess manganese at rates nearly comparable to those of adults. Eight- to 10-day-old rats given a tracer dose of /sup 54/MnCl/sub 2/ (essentially carrier free), either via gavage or by intraperitoneal injection showed little elimination of the /sup 54/Mn until the 18-19th day of life, when there was an abrupt increase in the rate of the metal's excretion. However, when manganese was given in doses of 1 and 10 mg/kg, the young animals excreted from 30-70% of the dose in only 4 days, at which time a new rate of excretion was achieved. This enhanced rate of excretion remained constant until the 18-19th day of life, when it was again accelerated. Biliary excretion of manganese, the primary route for the elimination of the metal, was only 30-60% lower in 14-day-old rats compared with adults at doses ranging from tracer to 10 mg /sup 54/Mn/kg. For both the 14-day-old and adult rats, an apparent biliary transport maximum was reached at a dose of 10 mg Mn/kg. These studies indicate that the excretory pathways for manganese are well developed in the neonatal rat. The avid retention of tracer quantities of manganese by the neonate may be a consequence of the scarcity of this essential trace metal in its diet.

  8. Evidence of ventricular contamination of the optical signal in preterm neonates with post hemorrhagic ventricle dilation

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; Diop, M.; McLachlan, P.; de Ribaupierre, S.; Lee, D. S. C.; St. Lawrence, K.

    2015-03-01

    Dilation of the cerebral ventricles is a common condition in preterm neonates with intraventricular hemorrhage (IVH). This post hemorrhagic ventricle dilation (PHVD) can lead to lifelong neurological impairment through ischemic injury due to increased intracranial pressure (ICP). Interventions, such as ventricular tapping to remove cerebrospinal fluid (CSF), are used to prevent injury, but determining the optimal time for treatment is difficult as clinical signs of increased ICP lack sensitivity. There is a growing interest in using near-infrared spectroscopy (NIRS) because of its ability to monitor cerebral oxygen saturation (StO2) at the bedside. However, the accuracy of NIRS may be affected by signal contamination from enlarged ventricles, especially if there are blood breakdown products (bbp) in CSF following IVH. To investigate this, serial NIR spectra from the head and from CSF samples were acquired over a month from seven IVH patients undergoing treatment for PHVD. Over time, the visual appearance of the CSF samples progressed from dark brown ("tea color") to clear yellow, reflecting the reduction in bbp concentration as confirmed by the stronger absorption around 760 nm at the earlier time points. All CSF samples contained strong absorption at 960 nm due to water. More importantly the same trend in these absorption features was observed in the in vivo spectra, and Monte Carlo simulations confirmed the potential for signal contamination from enlarged ventricles. These findings highlight the challenges of accurately measuring StO2 in this patient population and the necessity of using a hyperspectral NIRS system to resolve the additional chromophores.

  9. Neurotoxin-induced neuropeptide perturbations in striatum of neonatal rats.

    PubMed

    Karlsson, Oskar; Kultima, Kim; Wadensten, Henrik; Nilsson, Anna; Roman, Erika; Andrén, Per E; Brittebo, Eva B

    2013-04-01

    The cyanobacterial toxin β-N-methylamino-l-alanine (BMAA) is suggested to play a role in neurodegenerative disease. We have previously shown that although the selective uptake of BMAA in the rodent neonatal striatum does not cause neuronal cell death, exposure during the neonatal development leads to cognitive impairments in adult rats. The aim of the present study was to characterize the changes in the striatal neuropeptide systems of male and female rat pups treated neonatally (postnatal days 9-10) with BMAA (40-460 mg/kg). The label-free quantification of the relative levels of endogenous neuropeptides using mass spectrometry revealed that 25 peptides from 13 neuropeptide precursors were significantly changed in the rat neonatal striatum. The exposure to noncytotoxic doses of BMAA induced a dose-dependent increase of neurosecretory protein VGF-derived peptides, and changes in the relative levels of cholecystokinin, chromogranin, secretogranin, MCH, somatostatin and cortistatin-derived peptides were observed at the highest dose. In addition, the results revealed a sex-dependent increase in the relative level of peptides derived from the proenkephalin-A and protachykinin-1 precursors, including substance P and neurokinin A, in female pups. Because several of these peptides play a critical role in the development and survival of neurons, the observed neuropeptide changes might be possible mediators of BMAA-induced behavioral changes. Moreover, some neuropeptide changes suggest potential sex-related differences in susceptibility toward this neurotoxin. The present study also suggests that neuropeptide profiling might provide a sensitive characterization of the BMAA-induced noncytotoxic effects on the developing brain. PMID:23410195

  10. Rutaecarpine attenuates hypoxia-induced right ventricular remodeling in rats.

    PubMed

    Li, Wen-Qun; Li, Xiao-Hui; Du, Jie; Zhang, Wang; Li, Dai; Xiong, Xiao-Ming; Li, Yuan-Jian

    2016-07-01

    Rutaecarpine has been shown to exhibit wide pharmacological effects in the cardiovascular system via stimulation of calcitonin gene-related peptide (CGRP) release. In the present study, the effect of rutaecarpine on hypoxia-induced right ventricular (RV) remodeling and the underlying mechanisms were evaluated. RV remodeling was induced by hypoxia (10 % O2, 3 weeks) in rats. Rats were treated with rutaecarpine (20 or 40 mg/kg) by intragastric administration. Proliferation of cardiac fibroblasts was induced by TGF-β1 (5 ng/mL) and determined by MTS and EdU incorporation method. Cardiac fibroblasts were treated with exogenous CGRP (10 or 100 nM). The concentrations of CGRP and TGF-β1 in plasma were measured by ELISA. The expression of eIF3a, p27, α-SMA, collagen-I/III, ANP, and BNP were measured by real-time PCR or western blot. Hypoxia induced an increase of right ventricle systolic pressure (RVSP), ration of RV/LV+S, and RV/tibial length in rats, while cardiac hypertrophy, apoptosis, and fibrosis were detected. The expression of ANP, BNP, α-SMA, collagen-I, collagen-III, eIF3a, and TGF-β1 was up-regulated, and the expression of p27 was down-regulated in the right ventricle of hypoxia-treated rats. The plasma concentration of CGRP was decreased and TGF-β1 was increased in hypoxia-treated rats. All of these effects induced by hypoxia were attenuated by rutaecarpine in a dose-dependent manner. In cultured cardiac fibroblasts, TGF-β1 significantly promoted the proliferation and up-regulated the expression of α-SMA and collagen-I/III, while the expression of eIF3a was up-regulated and the expression of p27 was down-regulated. The effects of TGF-β1 were attenuated by CGRP. CGRP8-37, a selective CGRP receptor antagonist, abolished the effects of CGRP. Rutaecarpine attenuates hypoxia-induced RV remodeling via stimulation of CGRP release, and the effects of rutaecarpine involve the eIF3a/p27 pathway. PMID:27052575

  11. Physiological pathway of magnesium influx in rat ventricular myocytes.

    PubMed

    Tashiro, Michiko; Inoue, Hana; Konishi, Masato

    2014-11-01

    Cytoplasmic free Mg(2+) concentration ([Mg(2+)]i) was measured in rat ventricular myocytes with a fluorescent indicator furaptra (mag-fura-2) introduced by AM-loading. By incubation of the cells in a high-K(+) (Ca(2+)- and Mg(2+)-free) solution, [Mg(2+)]i decreased from ? 0.9 mM to 0.2 to 0.5 mM. The lowered [Mg(2+)]i was recovered by perfusion with Ca(2+)-free Tyrode's solution containing 1 mM Mg(2+). The time course of the [Mg(2+)]i recovery was fitted by a single exponential function, and the first derivative at time 0 was analyzed as being proportional to the initial Mg(2+) influx rate. The Mg(2+) influx rate was inversely related to [Mg(2+)]i, being higher at low [Mg(2+)]i. The Mg(2+) influx rate was augmented by the high extracellular Mg(2+) concentration (5 mM), whereas it was greatly reduced by cell membrane depolarization caused by high K(+). Known inhibitors of TRPM7 channels, 2-aminoethoxydiphenyl borate (2-APB), NS8593, and spermine reduced the Mg(2+) influx rate with half inhibitory concentrations (IC50) of, respectively, 17 ?M, 2.0 ?M, and 22 ?M. We also studied Ni(2+) influx by fluorescence quenching of intracellular furaptra by Ni(2+). The Ni(2+) influx was activated by lowering intra- and extracellular Mg(2+) concentrations, and it was inhibited by 2-APB and NS8593 with IC50 values comparable with those for the Mg(2+) influx. Intracellular alkalization (caused by pulse application of NH4Cl) enhanced, whereas intracellular acidification (induced after the removal of NH4Cl) slowed the Mg(2+) influx. Under the whole-cell patch-clamp configuration, the removal of intracellular and extracellular divalent cations induced large inward and outward currents, MIC (Mg-inhibited cation) currents or IMIC, carried by monovalent cations likely via TRPM7 channels. IMIC measured at -120 mV was diminished to ? 50% by 100 ?M 2-APB or 10 ?M NS8593. These results suggest that TRPM7/MIC channels serve as a major physiological pathway of Mg(2+) influx in rat

  12. A Neonate with Susceptibility to Long QT Syndrome Type 6 who Presented with Ventricular Fibrillation and Sudden Unexpected Infant Death.

    PubMed

    Sauer, Charles W; Marc-Aurele, Krishelle L

    2016-01-01

    BACKGROUND This is a case of a neonate with susceptibility to long QT syndrome (LQTS) who presented with a sudden unexpected infant death. Experts continue to debate whether universal electrocardiogram (ECG) screening of all newborns is feasible, practical, and cost-effective. CASE REPORT A 19-day-old neonate was found unresponsive by her mother. ECG showed ventricular fibrillation and a combination of a lidocaine drip plus multiple defibrillations converted the rhythm to normal sinus. Unfortunately, MRI brain imaging showed multiple infarcts and EEG showed burst suppression pattern with frequent seizures; life supportive treatment was stopped and the infant died. Genetic testing revealed two mutations in the KCNE2 gene consistent with susceptibility to LQTS type 6. CONCLUSIONS We believe this case is the first to demonstrate both a precipitating electrocardiographic and genetic cause of death for an infant with LQTS, showing a cause-and-effect relationship between LQTS mutation, ventricular arrhythmia, and death. We wonder whether universal ECG newborn screening to prevent LQTS death could have saved this baby. PMID:27465075

  13. The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure

    PubMed Central

    Bae, Hyun Kyung; Lee, Hyeryon; Kim, Kwan Chang

    2016-01-01

    Purpose Pulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF. Methods The rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed. Results The mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-α, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4. Conclusion Sildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function. PMID:27462355

  14. Role of cyclooxygenase-2 in intestinal injury in neonatal rats

    PubMed Central

    LU, HUI; ZHU, BING

    2014-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature neonates. The pathogenesis of NEC remains poorly understood. The present study aimed to investigate the dynamic change and role of cyclooxygenase-2 (COX-2) in neonatal rats with intestinal injury. Wistar rats, <24 h in age, received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileal tissues were collected at 1, 3, 6, 12 and 24 h following the LPS challenge for histological evaluation of NEC and for measurements of COX-2 mRNA. The correlation between the degree of intestinal injury and expression of COX-2 mRNA was determined. The LPS-injected pups showed a significant increase in injury scores compared to the control, and the most deteriorating change was at 12 h. COX-2 mRNA expression was upregulated following LPS injection. There was a significantly positive correlation between COX-2 mRNA and the grade of intestinal injury within 12 h, whereas COX-2 mRNA expression had a significantly negative correlation with the severity of intestinal injury at 24 h. COX-2 plays an important role in LPS-induced intestinal injury and the repair processes. Caution should be exerted concerning the potential therapeutic uses of COX-2 inhibitors or promoters in NEC. PMID:25279162

  15. Prenatal cocaine exposure increases apoptosis of neonatal rat heart and heart susceptibility to ischemia–reperfusion injury in 1-month-old rat

    PubMed Central

    Bae, Soochan; Zhang, Lubo

    2005-01-01

    Maternal cocaine administration during pregnancy increased apoptosis in near-term fetal rat heart. The present study tested the hypothesis that prenatal cocaine exposure increases the heart susceptibility to ischemia/reperfusion injury in the offspring. Pregnant Sprague–Dawley rats received cocaine (30 mg kg−1 day−1) or saline from days 15 to 21 of gestational age. Maternal body weights were not significantly different at the end of cocaine treatment, but body weights of offspring were decreased slightly at ages of 1, 3, and 7 days. Although heart-to-body weight ratio was not affected at all ages examined, prenatal cocaine significantly increased left ventricular myocyte size at an age of 30 days. Additionally, prenatal cocaine increased DNA fragmentation measured in the hearts isolated from offspring of 1, 3, 7, and 21 days, but not of 30 days, with the peak at 3-day neonates. Antiapoptotic (Bcl-2 and Bcl-XL) and proapoptotic (Bax and Bad) proteins were expressed in neonatal rat hearts of both groups. Prenatal cocaine exposure decreased levels of Bcl-2 in 21-day and increased Bax in 21- and 30-day rat hearts. In addition, hearts of 30-day-old male progeny were studied using the Langendorff preparation, and were subjected to 25 min of ischemia and 60 min of reperfusion. Preischemic baseline values of left ventricular (LV) function were the same between the two groups. However, prenatal cocaine exposure significantly attenuated postischemic recovery of LV function, and significantly increased elevated LV end diastolic pressure during reperfusion. This was associated with a significant increase in ischemia/reperfusion-induced LV myocardial infarct size. The results suggest that prenatal cocaine exposure induces abnormal apoptosis and myocyte hypertrophy in postnatal heart, leading to an increased heart susceptibility to ischemic insults in postnatal life. PMID:15685203

  16. l-Arginine currents in rat cardiac ventricular myocytes

    PubMed Central

    Peluffo, R Daniel

    2007-01-01

    l-Arginine (l-Arg) is a basic amino acid that plays a central role in the biosynthesis of nitric oxide, creatine, agmantine, polyamines, proline and glutamate. Most tissues, including myocardium, must import l-Arg from the circulation to ensure adequate intracellular levels of this amino acid. This study reports novel l-Arg-activated inward currents in whole-cell voltage-clamped rat ventricular cardiomyocytes. Ion-substitution experiments identified extracellular l-Arg as the charge-carrying cationic species responsible for these currents, which, thus, represent l-Arg import into cardiac myocytes. This result was independently confirmed by an increase in myocyte nitric oxide production upon extracellular application of l-Arg. The inward movement of Arg molecules was found to be passive and independent of Na2+, K2+, Ca2+ and Mg2+. The process displayed saturation and membrane potential (Vm)-dependent kinetics, with a K0.5 for l-Arg that increased from 5 mm at hyperpolarizing Vm to 20 mm at +40 mV. l-Lysine and l-ornithine but not d-Arg produced currents with characteristics similar to that activated by l-Arg indicating that the transport process is stereospecific for cationic l-amino acids. l-Arg current was fully blocked after brief incubation with 0.2 mmN-ethylmaleimide. These features suggest that the activity of the low-affinity, high-capacity CAT-2A member of the y2+ family of transporters is responsible for l-Arg currents in acutely isolated cardiomyocytes. Regardless of the mechanism, we hypothesize that a low-affinity arginine transport process in heart, by ensuring substrate availability for sustained NO production, might play a cardio-protective role during catabolic states known to increase Arg plasma levels severalfold. PMID:17303641

  17. Effects of hindlimb unloading on neuromuscular development of neonatal rats

    NASA Technical Reports Server (NTRS)

    Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.

    2000-01-01

    We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.

  18. Effects of acrylamide on primary neonatal rat astrocyte functions.

    PubMed

    Aschner, Michael; Wu, Qi; Friedman, Marvin A

    2005-08-01

    The present study assessed biochemical endpoints indicative of acrylamide toxicity in astrocyte cultures derived from neonatal rat pups. Given earlier reports on the possible ability of acrylamide to induce astrocytomas in the Fischer 344 rat, we performed studies in neonatal rat astrocyte cultures from the Fischer 344 to assess the ability of acrylamide to induce astrocytic proliferation. Measurements on astrocytic proliferation included [3H]-leucine incorporation, [3H]-thymidine incorporation, and changes in proliferating cell nuclear antigen (PCNA). Although acrylamide (0.1 and 1 mM for 7, 11, 15, or 20 days) did not significantly (P > 0.05) affect [3H]-leucine or [3H]-thymidine incorporation, it significantly (P < 0.05) increased PCNA protein expression in astrocytes exposed to acrylamide for 15 and 20 days. Additional studies revealed that this effect on PCNA protein expression was not associated with activation of dopamine-2 (D2) receptors, given that quinpirole (10 microM added to cultures for the last hour of 7, 11, 15, or 20 days in culture), a selective D2 receptor agonist, did not produce results analogous to those seen with acrylamide treatment. Cotreatment of astrocytes with acrylamide (7, 11, 15, or 20 days) and the D2 receptor antagonist, sulpiride (1 microM for the last 6 h of exposure), also failed to reverse acrylamide's effect on PCNA protein induction. Taken together, these studies suggest that acrylamide promotes astrocytic cell proliferation in the CNS even though DNA synthesis did not appear stimulated. PMID:16179551

  19. Buyanghuanwu Tang therapy for neonatal rats with hypoxic ischemic encephalopathy

    PubMed Central

    Liu, Xiyao; Min, Yue; Gu, Weiwang; Wang, Yujue; Tian, Yuguang

    2015-01-01

    Background: Neonatal hypoxic-ischemic encephalopathy (HIE) is a clinical syndrome manifested by neurological symptoms in the first days of life in term infants. Purpose: To investigate the therapy effect of Buyanghuanwu Tang (BYHWT), a decoction with 7 herbal ingredients, on neonatal rats with hypoxic ischemic encephalopathy (HIE) and its mechanism. Methods: 50 3-week male Sprague-Dawley rats were divided into normal control group, model group, BYHWT 1d group, BYHWT 3d group and BYHWT 7d group, 10 rats in each group. The HIE model of was established in later 4 groups. The later 3 groups were treated with BYHWT for 1, 3 and 7 days, respectively, and the normal control group and model group were treated with PBS. The Morris water maze test and dynamic 18F-FDG-PET/CT imaging were performed. The changes of hippocampal tissue observed by histopathologic examination, and the expressions of JNK1/JNK2 and TNF-α protein were observed western blotting. Results: Compared with model group, the impaired performance on distance and latency parameters was mitigated in BYHWT 1d group, BYHWT 3d group and BYHWT 7d group (P < 0.01), the FDG uptake was decreased in BYHWT 3d group and BYHWT 7d group, the apoptotic cells and inflammatory cells were significantly decreased in BYHWT 3d group and BYHWT 7d group, and the expressions of JNK1/JNK2 and TNF-α protein were significantly decreased in BYHWT 7d group (P < 0.05). Conclusion: BYHWT can delay the HIE onset and preserve the motor function, primarily by regulating inflammation, apoptosis and inhibition by mediating JNK signaling. PMID:26770451

  20. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium.

    PubMed

    Majumder, Rupamanjari; Engels, Marc C; de Vries, Antoine A F; Panfilov, Alexander V; Pijnappels, Daniël A

    2016-01-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity. PMID:27072041

  1. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium

    NASA Astrophysics Data System (ADS)

    Majumder, Rupamanjari; Engels, Marc C.; de Vries, Antoine A. F.; Panfilov, Alexander V.; Pijnappels, Daniël A.

    2016-04-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity.

  2. Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium

    PubMed Central

    Majumder, Rupamanjari; Engels, Marc C.; de Vries, Antoine A. F.; Panfilov, Alexander V.; Pijnappels, Daniël A.

    2016-01-01

    Fibrosis and altered gap junctional coupling are key features of ventricular remodelling and are associated with abnormal electrical impulse generation and propagation. Such abnormalities predispose to reentrant electrical activity in the heart. In the absence of tissue heterogeneity, high-frequency impulse generation can also induce dynamic electrical instabilities leading to reentrant arrhythmias. However, because of the complexity and stochastic nature of such arrhythmias, the combined effects of tissue heterogeneity and dynamical instabilities in these arrhythmias have not been explored in detail. Here, arrhythmogenesis was studied using in vitro and in silico monolayer models of neonatal rat ventricular tissue with 30% randomly distributed cardiac myofibroblasts and systematically lowered intercellular coupling achieved in vitro through graded knockdown of connexin43 expression. Arrhythmia incidence and complexity increased with decreasing intercellular coupling efficiency. This coincided with the onset of a specialized type of spatially discordant action potential duration alternans characterized by island-like areas of opposite alternans phase, which positively correlated with the degree of connexinx43 knockdown and arrhythmia complexity. At higher myofibroblast densities, more of these islands were formed and reentrant arrhythmias were more easily induced. This is the first study exploring the combinatorial effects of myocardial fibrosis and dynamic electrical instabilities on reentrant arrhythmia initiation and complexity. PMID:27072041

  3. Developmental plasticity of the hypoxic ventilatory response in rats induced by neonatal hypoxia

    PubMed Central

    Bavis, R W; Olson, E B; Vidruk, E H; Fuller, D D; Mitchell, G S

    2004-01-01

    Neonatal hypoxia alters the development of the hypoxic ventilatory response in rats and other mammals. Here we demonstrate that neonatal hypoxia impairs the hypoxic ventilatory response in adult male, but not adult female, rats. Rats were raised in 10% O2 for the first postnatal week, beginning within 12 h after birth. Subsequently, ventilatory responses were assessed in 7- to 9-week-old unanaesthetized rats via whole-body plethysmography. In response to 12% O2, male rats exposed to neonatal hypoxia increased ventilation less than untreated control rats (mean ±s.e.m. 35.2 ± 7.7%versus 67.4 ± 9.1%, respectively; P = 0.01). In contrast, neonatal hypoxia had no lasting effect on hypoxic ventilatory responses in female rats (67.9 ± 12.6%versus 61.2 ± 11.7% increase in hypoxia-treated and control rats, respectively; P > 0.05). Normoxic ventilation was unaffected by neonatal hypoxia in either sex at 7–9 weeks of age (P > 0.05). Since we hypothesized that neonatal hypoxia alters the hypoxic ventilatory response at the level of peripheral chemoreceptors or the central neural integration of chemoafferent activity, integrated phrenic responses to isocapnic hypoxia were investigated in urethane-anaesthetized, paralysed and ventilated rats. Phrenic responses were unaffected by neonatal hypoxia in rats of either sex (P > 0.05), suggesting that neonatal hypoxia-induced plasticity occurs between the phrenic nerve and the generation of airflow (e.g. neuromuscular junction, respiratory muscles or respiratory mechanics) and is not due to persistent changes in hypoxic chemosensitivity or central neural integration. The basis of sex differences in this developmental plasticity is unknown. PMID:15020695

  4. Neuroprotection by Melatonin after Germinal Matrix Hemorrhage in Neonatal Rats

    PubMed Central

    Lekic, Tim; Manaenko, Anatol; Rolland, William; Virbel, Kelly; Hartman, Richard; Tang, Jiping

    2013-01-01

    Background Germinal matrix hemorrhage (GMH) is a devastating neurological disorder of very low birth weight premature infants that leads to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Melatonin is a potent antioxidant known to reverse free-radical mediated injury in the brain. This study investigated the effect of melatonin treatment after GMH injury. Methods Clostridial collagenase was infused into the right germinal matrix region of neonatal rats with stereotaxic technique. Cognitive function, sensorimotor ability, cerebral, cardiac and splenic growths were measured in juvenile animals. Results Systemic melatonin treatment ameliorated cognitive and sensorimotor dysfunction at the juvenile developmental stage. This hormone also normalized brain atrophy, splenomegaly, and cardiac hypertrophy consequences at 1 month after injury. Conclusion This study supports the role of free radicals in acute neonatal hemorrhagic brain injury. Melatonin is an effective antioxidant that can protect the infant’s brain from the post-hemorrhagic consequences of mental retardation and cerebral palsy. Further mechanistic studies are warranted to determine the mechanisms behind these neuroprotective effects. PMID:21725756

  5. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    PubMed Central

    2010-01-01

    Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics

  6. A Case of Neonatal Heart Failure Caused by Left Ventricular Diverticulum: Successful ECMO Support Application.

    PubMed

    Gocen, Ugur; Atalay, Atakan; Salih, Orhan Kemal

    2016-01-01

    Congenital left ventricular diverticulum is a rare cardiac anomaly. During the newborn period, symptomatic patients are diagnosed with heart failure findings. We present a 23-day-old male newborn with congenital left ventricular diverticulum diagnosed during fetal echocardiographic examination. After the birth, the patient had heart failure symptoms and his echocardiographic examination showed low cardiac ejection fraction. Diverticulum was operated with endoventricular circular patch plasty (DOR) technique, and after, cardiopulmonary bypass venoarterial extracorporeal membrane oxygenation (ECMO) support was performed because of low cardiac output syndrome. On postoperative day 17, he was discharged with no problem. PMID:27585200

  7. The relationship between contraction and intracellular sodium in rat and guinea-pig ventricular myocytes.

    PubMed Central

    Harrison, S M; McCall, E; Boyett, M R

    1992-01-01

    1. The contraction, measured optically, and the intracellular Na+ activity (aNai), measured with the Na(+)-sensitive fluorescent dye SBFI, have been recorded simultaneously in rat and guinea-pig ventricular myocytes. 2. In rat and guinea-pig ventricular myocytes at rest, aNai was 7.8 +/- 0.3 mM (n = 4) and 5.1 +/- 0.3 mM (n = 16), respectively. 3. When both rat and guinea-pig ventricular myocytes were stimulated at 1 Hz after a rest there was usually a gradual increase in twitch shortening (referred to as a 'staircase') over several minutes accompanied by an increase in aNai over a similar time course. Twitch shortening increased by 21 +/- 3% (n = 6) and 20 +/- 4% (n = 16) (of steady-state twitch shortening during 1 Hz stimulation) per millimolar rise in aNai in rat and guinea-pig ventricular myocytes, respectively. 4. When rat and guinea-pig ventricular myocytes were exposed to strophanthidin to block the Na(+)-K+ pump, there were increases in twitch shortening and aNai over similar time courses. Twitch shortening increased by 24 +/- 4% (n = 5) and 20 +/- 3% (n = 10) (of control twitch shortening) per millimolar rise in aNai in rat and guinea-pig ventricular myocytes respectively. 5. The inotropic effect of cardiac glycosides, such as strophanthidin, is widely regarded to be principally the result of the rise in aNai. The similarity of the relation between twitch shortening and aNai during the staircase and on application of strophanthidin suggests that the progressive increase in the strength of contraction during the staircase was also linked to the rise in aNai. 6. In guinea-pig, but not rat, ventricular myocytes there was hysteresis in the relation between twitch shortening and aNai on application and wash-off of strophanthidin. This indicates that strophanthidin has another inotropic action in guinea-pig ventricular myocytes. 7. A computer model of excitation-contraction coupling has been developed to simulate the staircase and the action of cardiac glycoside

  8. GESTATIONAL MERCURY VAPOR EXPOSURE AND DIET CONTRIBUTE TO MERCURY ACCUMULATION IN NEONATAL RATS.

    EPA Science Inventory

    Exposure of pregnant Long-Evans rats to elemental mercury (Hg0) vapor resulted in a significant

    accumulation of Hg in tissues of neonates. Because elevated Hg in neonatal tissues may adversely

    affect growth and development, we were interested in how rapidly Hg was...

  9. Vitamin D supply to the rat fetus and neonate.

    PubMed Central

    Clements, M R; Fraser, D R

    1988-01-01

    The prevention of neonatal rickets by oral supplementation with vitamin D2 (ergocalciferol) has tended to obscure our ignorance of the natural mechanism by which young mammals receive an adequate supply of vitamin D. To investigate the possibility of specific intrauterine transfer and storage of vitamin D in fetal tissues, vitamin D-deficient female rats were given depot injections of 3H- or 14C-labeled vitamin D3 (cholecalciferol) before mating and the 3H-labeled animals were killed at stages during the last third of gestation. Analysis of lipid extracts from whole fetuses revealed a linear increase in the concentration of 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, and D3 itself between days 14 and 19 of gestation. During this period the elimination half-time of 3H-labeled molecules in maternal plasma fell from 27.1 to 4.4 d, suggesting that a specific mechanism was transferring vitamin D molecules into the fetuses. The vitamin was stored predominantly as 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3, with the highest concentrations in fetal muscle. Immediately after birth, pups from 3H- and 14C-labeled mothers were exchanged and later killed after 1-3 wk of suckling. Analysis of total lipid extracts for 3H and 14C content determined the relative contributions of vitamin D supplied before birth via the placenta and after birth in the maternal milk. The vitamin D content of the rat milk was relatively high, between 1.0 and 3.5 micrograms/liter. Nevertheless, the supply of vitamin D in utero, rather than from milk, was the main determinant of vitamin D status in early neonatal life. This is the first indication in a mammal of a specific transfer mechanism that allows the fetus to accumulate vitamin D from the mother during the last third of gestation. PMID:2838521

  10. Outcome of prolonged ventricular fibrillation and CPR in a rat model of chronic ischemic left ventricular dysfunction.

    PubMed

    Fang, Xiangshao; Huang, Lei; Sun, Shijie; Weil, Max Harry; Tang, Wanchun

    2013-01-01

    Patients with chronic left ventricular (LV) dysfunction are assumed to have a lower chance of successful CPR and lower likelihood of ultimate survival. However, these assumptions have rarely been documented. Therefore, we investigated the outcome of prolonged ventricular fibrillation (VF) and CPR in a rat model of chronic LV dysfunction. Sprague-Dawley rats were randomized to (1) chronic LV dysfunction: animals underwent left coronary artery ligation; and (2) sham control. Echocardiography was used to measure cardiac performance before surgery and 4 weeks after surgery. Four weeks after surgical intervention, 8 min of VF was induced and defibrillation was delivered after 8 min of CPR. LV dilation and low ejection fraction were observed 4 weeks after coronary ligation. With optimal chest compressions, coronary perfusion pressure values during CPR were well maintained and indistinguishable between groups. There were no differences in resuscitability and numbers of shock required for successful resuscitation between groups. Despite the significantly decreased cardiac index in LV dysfunction animals before induction of VF, no differences in cardiac index were observed between groups following resuscitation, which was associated with the insignificant difference in postresuscitation survival. In conclusion, the outcomes of CPR were not compromised by the preexisting chronic LV dysfunction. PMID:24455704

  11. Stroma Cell-Derived Factor-1α Signaling Enhances Calcium Transients and Beating Frequency in Rat Neonatal Cardiomyocytes

    PubMed Central

    Hadad, Ielham; Veithen, Alex; Springael, Jean–Yves; Sotiropoulou, Panagiota A.; Mendes Da Costa, Agnès; Miot, Françoise; Naeije, Robert

    2013-01-01

    Stroma cell-derived factor-1α (SDF-1α) is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency. Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R) blocker, but not with a ryanodine receptor (RyR) antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax. These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect. PMID:23460790

  12. Stroma cell-derived factor-1α signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes.

    PubMed

    Hadad, Ielham; Veithen, Alex; Springael, Jean-Yves; Sotiropoulou, Panagiota A; Mendes Da Costa, Agnès; Miot, Françoise; Naeije, Robert; De Deken, Xavier; Entee, Kathleen Mc

    2013-01-01

    Stroma cell-derived factor-1α (SDF-1α) is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency.Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R) blocker, but not with a ryanodine receptor (RyR) antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax.These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect. PMID:23460790

  13. Neonatal dexamethasone treatment increases susceptibility to experimental autoimmune disease in adult rats.

    PubMed

    Bakker, J M; Kavelaars, A; Kamphuis, P J; Cobelens, P M; van Vugt, H H; van Bel, F; Heijnen, C J

    2000-11-15

    Major concern has emerged about the possible long term adverse effects of glucocorticoid treatment, which is frequently used for the prevention of chronic lung disease in preterm infants. Here we show that neonatal glucocorticoid treatment of rats increases the severity (p< or = 0.01) and incidence (p< or =0.01) of the inflammatory autoimmune disease experimental autoimmune encephalomyelitis in adult life. In search of possible mechanisms responsible for the increased susceptibility to experimental autoimmune encephalomyelitis, we investigated the reactivity of the hypothalamo-pituitary-adrenal axis and of immune cells in adult rats after neonatal glucocorticoid treatment. We observed that neonatal glucocorticoid treatment reduces the corticosterone response after an LPS challenge in adult rats (p< or =0.001). Interestingly, LPS-stimulated macrophages of glucocorticoid-treated rats produce less TNF-alpha and IL-1beta in adult life than control rats (p<0.05). In addition, splenocytes obtained from adult rats express increased mRNA levels of the proinflammatory cytokines IFN-gamma (p<0.01) and TNF-beta (p<0.05) after neonatal glucocorticoid treatment. Apparently, neonatal glucocorticoid treatment has permanent programming effects on endocrine as well as immune functioning in adult life. In view of the frequent clinical application of glucocorticoids to preterm infants, our data demonstrate that neonatal glucocorticoid treatment may be a risk factor for the development of (auto)immune disease in man. PMID:11067955

  14. Cardio-protecteffect of qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction

    PubMed Central

    Liang, Tuo; Zhang, Yuhui; Yin, Shijie; Gan, Tianyi; An, Tao; Zhang, Rongcheng; Wang, Yunhong; Huang, Yan; Zhou, Qiong; Zhang, Jian

    2016-01-01

    Background: Qiliqiangxin (QL) capsule is a traditional Chinese medicine which has been approved for the treatment of chronic heart failure. Evidences proved that QL capsules further reduced the NT-proBNP levels and improved left ventricular ejection fraction in CHF patients but the evidence supporting its underlying mechanism is still unclear. Methods and Results: Myocardial infarction (MI) -Heart failure (HF) Sprague-Dawley ratsmodel and neonatal rat cardiac myocytes (NRCMs) were used. Animals were assigned into 4 groups, normal group (n=6), shame-operation group (n=6), MI rats 4 weeks after left anterior descending coronary artery ligation were randomized into vehicle group (n=8), QL group (n=8). QL significantly attenuated cardiac dysfunction and ventricle remodeling as echocardiography and hemodynamic measurements showed improvement in left ventricular ejection fraction, fractional shortening, ±dp/dt and left ventricular end diastolic and systolic diameters in QL treated group compared with the vehicle group. Improvements ininterstitial fibrosisand mitochondrial structures were also exhibited by Sirius Red staining, RT-PCR and electron microscopy. QL treatment improved apoptosis and VEGF expression in rats marginal infract area. Complementary experiments analyzed the improved apoptosis and up-regulate of VEGF in ischemia-hypoxia cultivated NRCMs is in an Akt dependent manner and can be reversed by Akt inhibitor. Conclusion: QL capsule can improve cardiac dysfunction and ventricular remodeling in MI-HF ratsmodel, this cardiac protective efficacy may be concerned with attenuated apoptosis and cardiac fibrosis. Up-regulated VEGF expression and Akt phosphorylation may take part in this availability. PMID:27347313

  15. [Rat cardiomyocyte remodeling after neonatal cryptosporidiosis. II. Elongation, excessive polyploidization and HIF-1alpha overexpression].

    PubMed

    Anatskaia, O V; Sidorenko, N V; Matveev, I V; Kropotov, A V; Vinogradov, A E

    2012-01-01

    Retrospective epidemyological studies evidence that infant diseases leave survivors with an increased susceptibility to cardiovascular diseases in later life. At the same time, the mechanisms of this link remain poorly understood. Based on medical statistics reporting that infectious gastroenteritis is the most common cause of maladies in babies, infants and children, we analysed the effects of moderate cryptosporidial gastroenteritis on the heart and ventricular cardiomyocyte remodelling in rats of the first month of life. The disease was challenged by a worldwide human protozoic pathogen Cryptosporidium parvum (Apicomplexa, Sporozoa). The main symptoms manifested in the growth retardation moderate diarrhea. Using real-time PCR, cytophotometry, confocal microscopy and image analysis, we indicated that cryptosporidiosis was associated, with the atrophy heart and the elongation, narrowing, protein content decrease and hyperpolyploidization of cardiomyocytes and the moderate overexpression of hypoxia inducible factor 1alpha (HIF-1alpha) mRNA. Cardiomyocyte shape remodeling and heart atrophy presented in all age groups. The severity of these changes, hovewer, declined gradually from younger to older groups. In contrast, hyperpolyploidization and HIF-1alpha mRNA overexpression were registered mainly among animals aged between 6 and 13 days, and were barely detected and non-significant in older age groups. In the rat the time period covering 6-13 days after birth is known to coincide with the intensive cardiomyocyte polyploidization and the switch from proliferation to hypertrophy. Thus, our data indicate that neonatal cryptosporidiosis may be potential cardiovascular diseases risk factor and that one of the critical time windows for the growing heart covers the time period when cardiomyocyte undergo polyploidization. PMID:23074852

  16. The importance of hybrid stage I palliation for neonates with critical aortic stenosis and reduced left ventricular function.

    PubMed

    Misumi, Yusuke; Hoashi, Takaya; Kagisaki, Koji; Yazaki, Satoshi; Kitano, Masataka; Kurosaki, Kenichi; Shiraishi, Isao; Ichikawa, Hajime

    2015-04-01

    The optimal management strategy for neonates with congenital aortic stenosis, two balanced ventricles, and duct-dependent systemic circulation (critical aortic stenosis) is still controversial. Thirteen patients with critical aortic stenosis underwent balloon aortic valvotomy (BAV) between 1996 and 2013, at the median age of 1 day old (range 0-28). Since 2010, bilateral pulmonary artery banding with ductal stenting following BAV was conducted for patients with reduced left ventricular (LV) function as a hybrid stage I palliation for the bridge to decision for further treatment. A follow-up was completed on all patients and the median follow-up period was 3.3 years (max 16.0). The overall survival rate at 15 years was 67.1 %. Six of the seven patients with maintained LV function could go on to the definitive Ross or Konno-aortic valve replacement at the median duration of 311 days after initial BAV, without any mortality. Three of four patients with reduced LV function died before 2010 with conventional treatment. With use of a hybrid stage I palliation, one of two patients ultimately underwent Fontan completion at 38 months of age and the other successfully underwent the definitive Ross-Konno operation at 9 months of age after recovery of the LV function. Although a statistically significant improvement has not been observed yet, the application of hybrid stage I palliation following BAV would be a favorable alternative for patients with reduced LV function to avoid a high-risk neonatal Ross or Norwood-type operation, and also to determine further treatment carefully. PMID:25480352

  17. ALKYTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM NEONATAL AND ADULT RATS

    EPA Science Inventory

    The effects of triethyltin (TET) on ATPase activities in brain and liver homogenates and subcellular fractions were compared in neonatal and adult rats. n 5 day old rats, relative sensitivities to TET inhibition were: brain and liver mitochondrial ATPase >> rain Na+/K+ ATPase > b...

  18. Mechanisms by which neonatal testosterone exposure mediates sex differences in impulsivity in prepubertal rats.

    PubMed

    Bayless, Daniel W; Darling, Jeffrey S; Daniel, Jill M

    2013-11-01

    Neonatal testosterone, either acting directly or through its conversion to estradiol, can exert organizational effects on the brain and behavior. The goal of the current study was to examine sex differences and determine the role of neonatal testosterone on prefrontal cortex-dependent impulsive choice behavior in prepubertal rats. Male and female prepubertal rats were tested on the delay-based impulsive choice task. Impulsive choice was defined as choosing an immediate small food reward over a delayed large reward. In a first experiment to examine sex differences, males made significantly more impulsive choices than did females. In a second experiment to examine the organizational effects of testosterone, females treated with neonatal testosterone made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. In a third experiment to determine if the effect of testosterone on performance is due to the actions of androgens or estrogens through its conversion to estradiol, males treated neonatally with the aromatase inhibitor formestane, which blocks the conversion of testosterone to estradiol, females treated neonatally with the non-aromatizable androgen dihydrotestosterone, and females treated neonatally with estradiol made significantly more impulsive choices than did control females and their performance was indistinguishable from that of control males. Results indicate that male pubertal rats display increased impulsive choice behavior as compared to females, that this sex difference results from organizing actions of testosterone during the neonatal period, and that this effect can result from both androgenic and estrogenic actions. PMID:24126137

  19. Structural characterization of rat ventricular tissue exposed to the smoke of two types of waterpipe

    PubMed Central

    Al-Awaida, Wajdy; Najjar, Hossam; Shraideh, Ziad

    2015-01-01

    Objective(s): this study focused on the effect of waterpipe smoke exposure toxicity on the structure of albino rat’s ventricular tissue and their recovery. Materials and Methods: Albino rats were divided into three groups: control, flavored, and unflavored. The control group was exposed to normal air while the flavored and unflavored groups were exposed to waterpipe smoke for a period of 90 days. Each group was followed by a period of 90 days of fresh air exposure. Following each period, the ventricular tissue was removed for biochemical and histopathological studies. Results: The ventricular tissues of waterpipe exposed rats showed some degree of separation between cardiac muscle fibers, infiltration of lymphocytes, and congestion of blood vessel. Also, thin cross sections of ventricular cells revealed pleomorphic mitochondria with partially disrupted cristae, partial disruption of the myofibrils, and deposited toxic materials. The unflavored waterpipe has more deleterious effects on heart ventricular tissues than the flavored one. Waterpipe smoke didn’t induce apoptosis in the ventricular tissue. We also found very high levels of plasma thiocyanate after exposure to smoke in the flavored and unflavored groups, while the control group showed no increase. After the recovery period, those tissues showed partial recovery. Conclusion: Waterpipe smoke induces structural changes in the heart ventricle tissues, causing a negative impact on the capacity of the cardiac muscle for pumping blood and may lead to heart attack due to accumulation of free radicals and tissue inflammation. Cessation of smoking is important in returning most of these changes to their normal structure. PMID:26730327

  20. Derangement of autonomic nerve control in rat with right ventricular failure.

    PubMed

    Sanyal, S N.; Ono, K

    2002-06-01

    The effects of right ventricular hypertrophy and eventual right ventricular failure on autonomic nerve regulation of heart rate variability were investigated using rats with monocrotaline (MCT)-induced pulmonary hypertension. ECG signals were obtained from a radio transmitter placed into the subcutaneous pouch in the back of the male MCT-treated and control rats for 30 min every 6 h at a sample rate of 5 kHz with or without injection of atropine (2 mg/kg I.P.) or propranolol (4 mg/kg I.P.), in a room equipped with a climate controller. Heart rate (HR) and HR variability (HRV) were analyzed in each group by power spectrograms obtained by the fast-Fourier transform algorithm. The RR interval, total power (TP), low-frequency (LF) power (0.04-0.73 Hz), high-frequency (HF) power (0.73-2 Hz) and LF/HF (L/H) ratio were measured. HR was significantly increased in the MCT-treated rats (P<0.001), which also presented lower HRV than that of the control Wistar rats; TP (P<0.05) and HF (P<0.05) power, but not the L/H ratio, were significantly lower than that of the control rats. Responses of these parameters to a muscarinic antagonist (atropine: 2 mg/kg) and a beta-adrenergic antagonist (propranolol: 4 mg/kg), however, remained intact in the MCT-treated rats. Only the parasympathetic component of autonomic nervous controls of HRV was deranged in rats with MCT-induced right ventricular failure. PMID:12039652

  1. TROPHIC CONTROL OF THE ORNITHINE DECARBOXYLASE/POLYAMINE SYSTEM IN NEONATAL RAT CEREBELLUM: REGIONALLY-SELECTIVE EFFECTS OF NEONATAL LESIONS CAUSED BY 6-HYDROXYDOPAMINE

    EPA Science Inventory

    Norepinephrine has been hypothesized as a trophic factor influencing postnatal development of the cerebellum. n the current study, neonatal rats were given 6-hydroxydopanine (6-OHDA) to destroy noradrenergic projections and the effects on the ornithine decarboxylase (ODC)/polyami...

  2. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization.

    PubMed

    Soares, Sandra Sofia; Henao, Fernando; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2008-03-01

    Besides the well-known inotropic effects of vanadium in cardiac muscle, previous studies have shown that vanadate can stimulate cell growth or induce cell death. In this work, we studied the toxicity to neonatal rat ventricular myocytes (cardiomyocytes) of two vanadate solutions containing different oligovanadates distribution, decavanadate (containing decameric vanadate, V 10) and metavanadate (containing monomeric vanadate and also di-, tetra-, and pentavanadate). Incubation for 24 h with decavanadate or metavanadate induced necrotic cell death of cardiomyocytes, without significant caspase-3 activation. Only 10 microM total vanadium of either decavanadate (1 microM V 10) or metavanadate (10 microM total vanadium) was needed to produce 50% loss of cell viability after 24 h (assessed with MTT and propidium iodide assays). Atomic absorption spectroscopy showed that vanadium accumulation in cardiomyocytes after 24 h was the same when incubation was done with decavanadate or metavanadate. A decrease of 75% of the rate of mitochondrial superoxide anion generation, monitored with dihydroethidium, and a sustained rise of cytosolic calcium (monitored with Fura-2-loaded cardiomyocytes) was observed after 24 h of incubation of cardiomyocytes with decavanadate or metavanadate concentrations close to those inducing 50% loss of cell viability produced. In addition, mitochondrial membrane depolarization within cardiomyocytes, monitored with tetramethylrhodamine ethyl esther or with 3,3',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, were observed after only 6 h of incubation with decavanadate or metavanadate. The concentration needed for 50% mitochondrial depolarization was 6.5 +/- 1 microM total vanadium for both decavanadate (0.65 microM V 10) and metavanadate. In conclusion, mitochondrial membrane depolarization was an early event in decavanadate- and monovanadate-induced necrotic cell death of cardiomyocytes. PMID:18251508

  3. Hypertrophy induced KIF5B controls mitochondrial localization and function in neonatal rat cardiomyocytes.

    PubMed

    Tigchelaar, Wardit; de Jong, Anne Margreet; Bloks, Vincent W; van Gilst, Wiek H; de Boer, Rudolf A; Silljé, Herman H W

    2016-08-01

    Cardiac hypertrophy is associated with growth and functional changes of cardiomyocytes, including mitochondrial alterations, but the latter are still poorly understood. Here we investigated mitochondrial function and dynamic localization in neonatal rat ventricular cardiomyocytes (NRVCs) stimulated with insulin like growth factor 1 (IGF1) or phenylephrine (PE), mimicking physiological and pathological hypertrophic responses, respectively. A decreased activity of the mitochondrial electron transport chain (ETC) (state 3) was observed in permeabilized NRVCs stimulated with PE, whereas this was improved in IGF1 stimulated NRVCs. In contrast, in intact NRVCs, mitochondrial oxygen consumption rate (OCR) was increased in PE stimulated NRVCs, but remained constant in IGF1 stimulated NRVCs. After stimulation with PE, mitochondria were localized to the periphery of the cell. To study the differences in more detail, we performed gene array studies. IGF1 and PE stimulated NRVCs did not reveal major differences in gene expression of mitochondrial encoding proteins, but we identified a gene encoding a motor protein implicated in mitochondrial localization, kinesin family member 5b (Kif5b), which was clearly elevated in PE stimulated NRVCs but not in IGF1 stimulated NRVCs. We confirmed that Kif5b gene and protein expression were elevated in animal models with pathological cardiac hypertrophy. Silencing of Kif5b reverted the peripheral mitochondrial localization in PE stimulated NRVCs and diminished PE induced increases in mitochondrial OCR, indicating that KIF5B dependent localization affects cellular responses to PE stimulated NRVCs. These results indicate that KIF5B contributes to mitochondrial localization and function in cardiomyocytes and may play a role in pathological hypertrophic responses in vivo. PMID:27094714

  4. Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes.

    PubMed

    Pentassuglia, Laura; Heim, Philippe; Lebboukh, Sonia; Morandi, Christian; Xu, Lifen; Brink, Marijke

    2016-05-01

    Nrg1β is critically involved in cardiac development and also maintains function of the adult heart. Studies conducted in animal models showed that it improves cardiac performance under a range of pathological conditions, which led to its introduction in clinical trials to treat heart failure. Recent work also implicated Nrg1β in the regenerative potential of neonatal and adult hearts. The molecular mechanisms whereby Nrg1β acts in cardiac cells are still poorly understood. In the present study, we analyzed the effects of Nrg1β on glucose uptake in neonatal rat ventricular myocytes and investigated to what extent mTOR/Akt signaling pathways are implicated. We show that Nrg1β enhances glucose uptake in cardiomyocytes as efficiently as IGF-I and insulin. Nrg1β causes phosphorylation of ErbB2 and ErbB4 and rapidly induces the phosphorylation of FAK (Tyr(861)), Akt (Thr(308) and Ser(473)), and its effector AS160 (Thr(642)). Knockdown of ErbB2 or ErbB4 reduces Akt phosphorylation and blocks the glucose uptake. The Akt inhibitor VIII and the PI3K inhibitors LY-294002 and Byl-719 abolish Nrg1β-induced phosphorylation and glucose uptake. Finally, specific mTORC2 inactivation after knockdown of rictor blocks the Nrg1β-induced increases in Akt-p-Ser(473) but does not modify AS160-p-Thr(642) or the glucose uptake responses to Nrg1β. In conclusion, our study demonstrates that Nrg1β enhances glucose uptake in cardiomyocytes via ErbB2/ErbB4 heterodimers, PI3Kα, and Akt. Furthermore, although Nrg1β activates mTORC2, the resulting Akt-Ser(473) phosphorylation is not essential for glucose uptake induction. These new insights into pathways whereby Nrg1β regulates glucose uptake in cardiomyocytes may contribute to the understanding of its regenerative capacity and protective function in heart failure. PMID:26979522

  5. Early Life Triclocarban Exposure During Lactation Affects Neonate Rat Survival

    PubMed Central

    Kennedy, Rebekah C. M.; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A.; Hu, Pan; Bae, Jiyoung; Gee, Nancy A.; Lasley, Bill L.; Zhao, Ling

    2015-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  6. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.

    1994-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.

  7. Early life triclocarban exposure during lactation affects neonate rat survival.

    PubMed

    Kennedy, Rebekah C M; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A; Hu, Pan; Bae, Jiyoung; Gee, Nancy A; Lasley, Bill L; Zhao, Ling; Chen, Jiangang

    2015-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  8. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.

    1997-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.

  9. Effect of Wenxin Granule on Ventricular Remodeling and Myocardial Apoptosis in Rats with Myocardial Infarction

    PubMed Central

    Wu, Aiming; Zhai, Jianying; Zhang, Dongmei; Lou, Lixia; Zhu, Haiyan; Gao, Yonghong; Chai, Limin; Xing, Yanwei; Lv, Xiying; Zhu, Lingqun; Zhao, Mingjing; Wang, Shuoren

    2013-01-01

    Aim. To determine the effect of a Chinese herbal compound named Wenxin Granule on ventricular remodeling and myocardial apoptosis in rats with myocardial infarction (MI). Methods. Male Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the model group, the metoprolol group, and the Wenxin Granule group (WXKL group) with sample size (n) of 7 rats in each group. An MI model was established in all rats by occlusion of the left anterior descending coronary artery (the control group was without occlusion). Wenxin Granule (1.35 g/kg/day), metoprolol (12 mg/kg/day), and distilled water (5 mL/kg/day for the control and model groups) were administered orally for 4 weeks. Ultrasonic echocardiography was used to examine cardiac structural and functional parameters. Myocardial histopathological changes were observed using haematoxylin and eosin (H&E) dyeing. Myocardial apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Serum angiotensin II (Ang II) concentration was measured using the enzyme-linked immunosorbent assay (ELISA). Results. It was found that Wenxin Granule could partially reverse ventricular remodeling, improve heart function, alleviate the histopathological damage, inhibit myocardial apoptosis, and reduce Ang II concentration in rats with MI. Conclusions. The results of the current study suggest that Wenxin Granule may be a potential alternative and complementary medicine for the treatment of MI. PMID:23997803

  10. Inhibition of carnitine synthesis protects against left ventricular dysfunction in rats with myocardial ischemia.

    PubMed

    Aoyagi, T; Sugiura, S; Eto, Y; Yonekura, K; Matsumoto, A; Yokoyama, I; Kobayakawa, N; Omata, M; Kirimoto, T; Hayashi, Y; Momomura, S

    1997-10-01

    During myocardial ischemia, inhibition of the carnitine-mediated transportation of fatty acid may be beneficial because it facilitates glucose utilization and prevents an accumulation of fatty acid metabolites. We orally administered 3-(2,2,2-trimethyl hydrazinium) propionate (MET), an inhibitor of carnitine synthesis, for 20 days to rats. Then we evaluated left ventricular (LV) function during brief ischemia by using a buffer-perfused isovolumic heart model. After 15 min of reoxygenation after the transient ischemia, LV peak systolic pressure (PSP) almost completely returned to the baseline level in rats given MET (96 +/- 4%), whereas it was only partially (77 +/- 16%) recovered in the placebo-treated rats. We induced myocardial infarction in other rats by ligating the left anterior descending coronary artery. Then the animals were given MET for 20 days, and LV function was compared. In the placebo-treated rats (with myocardial infarction, but without drug treatment), LVPSP was lower than that in the sham group [108 +/- 19 (n = 10) vs. 136 +/- 15 mm Hg (n = 13); p < 0.05], and the time constant (T) of LV pressure decay was elongated (36 +/- 4 vs. 30 +/- 7 ms; p < 0.05). In MET-treated groups, however, neither PSP nor T differed from those in the sham group. In conclusion, inhibition of the carnitine-mediated transportation of fatty acid by MET protected against left ventricular dysfunction in acute and chronic myocardial ischemia. PMID:9335406

  11. The effect of hexane on the ventricular fibrillation threshold of the isolated perfused rat heart.

    PubMed

    Khedun, S M; Maharaj, B; Leary, W P; Lockett, C J

    1992-01-01

    This investigation was conducted to determine the influence of hexane on the ventricular fibrillation threshold of the isolated perfused rat heart and myocardial electrolyte levels. Ventricular fibrillation threshold was measured using the Langendorff perfusion apparatus. Heart rate was measured by a universal digital counter and the cardiac flow by collecting the outflow of the heating chamber below the heart into a graduated measuring cylinder. Magnesium and zinc were measured by atomic absorption spectrophotometry and potassium by flame photometry. Two groups of rats were studied; those in the experimental group were given 0.2 ml of hexane and the control group 0.2 ml olive oil subcutaneously for 90 days. Their hearts were removed under anaesthesia. Half of the experimental and control hearts were mounted on the Langendorff perfusion apparatus and the heart rate, coronary flow and ventricular fibrillation threshold were measured. The hearts of the other half were used to measure myocardial electrolyte levels. In the experimental group the ventricular fibrillation threshold decreased (4.72 (S.D. +/- 1.87) vs 9.48 (S.D. +/- 2.98); P less than 0.001). There was no change in the coronary flow and heart rate in between the groups. The mean myocardial potassium levels (2586 (S.D. +/- 162) vs 2968 (S.D. +/- 218) micrograms/g; P less than 0.001), magnesium levels (164 (S.D. +/- 28) vs 208 (S.D. +/- 18) micrograms/g; P less than 0.001) and zinc levels (19.6 (S.D. +/- 4) vs 33.8 (S.D. +/- 6.8) micrograms/g; P less than 0.001) were significantly lower in the hexane-treated group compared to controls. Hexane, a constituent of glue and benzine, is cardiotoxic; marked derangement in myocardial electrolytes and a reduced ventricular fibrillation threshold, indicating an increased myocardial vulnerability to arrhythmias, was noted in the experimental animals. PMID:1729763

  12. Hypercholesterolemic diet applied to rat dams protects their offspring against cognitive deficits. Simulated neonatal anoxia model.

    PubMed

    Bohr, Iwo

    2004-09-30

    There is accumulating data suggesting a neuroprotective activity of cholesterol, especially in stroke and Alzheimer's disease (AD). In the present study, a protective activity of this lipid in simulated neonatal anoxia was investigated. Rats were subjected to high cholesterol by feeding their dams with a diet enriched with cholesterol. Half of these rats were subjected to anoxia. One and a half months later, the rats were tested for their ability to acquire a spatial memory, one group on the linear maze and the other on the Morris water maze. After these assessments, the level of total plasma cholesterol was measured. Rats from dams subjected to neonatal anoxia on standard diet performed worse than control rats in both types of behavioral experiments, whereas anoxic rats from dams were housed on hypercholesterolemic diet performed as control animals. It suggests that dietetic cholesterol applied by their dams protected rats against cognitive deficits elicited by neonatal anoxia. Furthermore, offspring of anoxic rats housed on standard diet had elevated levels of blood cholesterol in relation to control animals. Generally, anoxia affected the concentration of this lipid much stronger than hypercholesterolemic diet of their dams. It might mean that the anoxia-related rise of cholesterol could be involved in physiological phenomenon being an adaptive response to neurotoxic processes. This concept is discussed in relation to pathological mechanisms in AD. PMID:15327920

  13. Short-term vagal nerve stimulation improves left ventricular function following chronic heart failure in rats

    PubMed Central

    LI, YAN; XUAN, YAN-HUA; LIU, SHUANG-SHUANG; DONG, JING; LUO, JIA-YING; SUN, ZHI-JUN

    2015-01-01

    Increasing numbers of animal and clinical investigations have demonstrated the effectiveness of long-term electrical vagal nerve stimulation (VNS) on chronic heart failure (CHF). The present study investigated the effects of short-term VNS on the hemodynamics of cardiac remodeling and cardiac excitation-contraction coupling (ECP) in an animal model of CHF following a large myocardial infarction. At 3 weeks subsequent to ligation of the left coronary artery, the surviving rats were randomized into vagal and sham-stimulated groups. The right vagal nerve of the CHF rats was stimulated for 72 h. The vagal nerve was stimulated with rectangular pulses of 40 ms duration at 1 Hz, 5 V. The treated rats, compared with the untreated rats, had significantly higher left ventricular ejection fraction (54.86±9.73, vs. 45.60±5.51%; P=0.025) and left ventricular fractional shortening (25.31±6.30, vs. 15.42±8.49%; P=0.013), and lower levels of brain natriuretic peptide (10.07±2.63, vs. 19.95±5.22 ng/ml; P=0.001). The improvement in cardiac pumping function was accompanied by a decrease in left ventricular end diastolic volume (1.11±0.50, vs. 1.54±0.57 cm3; P=0.032) and left ventricular end systolic volume (0.50±0.28, vs. 0.87±0.36 cm3; P=0.007). Furthermore, the expression levels of ryanodine receptor type 2 (RyR2) and sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2) were significantly higher in the treated rats compared with the untreated rats (P=0.011 and P=0.001 for RyR2 and SERCA2, respectively). Therefore, VNS was beneficial to the CHF rats through the prevention of cardiac remodeling and improvement of cardiac ECP. PMID:25873055

  14. Protective effect of atrial natriuretic peptide on electrical-field-stimulated rat ventricular strips during hypoxia.

    PubMed

    Ljusegren, M E; Andersson, R G

    1994-12-01

    We have previously shown that atrial natriuretic peptide reduces lactate accumulation in non-beating rat ventricular myocardium exposed to hypoxic conditions, and that hypoxia induces release of atrial natriuretic peptide from isolated rat atrial tissue. In these studies we suggested that atrial natriuretic peptide may be physiologically important for protection of the myocardium during periods of oxygen deficit. In the present study, we used isolated strips of rat right ventricle, contracted by electrical-field-stimulation, as a model of a beating myocardium. After contraction stabilization, hypoxic conditions were introduced through aeration with 20% O2, held for 20 or 30 min., and then interrupted by reoxygenation with 95% O2. The contractile force was recorded and the percentage regain of the contractions after reoxygenation was considered as an indication of the amount of cell damage induced during the period of hypoxia. The results show that after 30 min. of hypoxia and subsequent reoxygenation, ventricular strips treated with atrial natriuretic peptide (0.1 microM) recovered 67.9 +/- 2.8% of the prehypoxic force of contraction; control strips from the same ventricle regained 44.9 +/- 4.4% (P = 0.015) of their initial contractile activity. After 20 min. of hypoxia followed by reoxygenation, a ventricular strip incubated together with an atrium regained 78.6 +/- 2.4% of the prehypoxic force of contraction as compared to a 60.2 +/- 2.7% regain (P = 0.002) for the control strip. We conclude that atrial natriuretic peptide protects the working ventricular myocardium during hypoxia, which further supports our previously reported suggestion that the effect on myocardial metabolism is physiologically relevant during situations of oxygen deficit in heart muscle. PMID:7899254

  15. Memantine delayed N-methyl-D-aspartate -induced convulsions in neonatal rats.

    PubMed

    Dhir, Ashish; Chopra, Kanwaljit

    2015-02-01

    Memantine (1-amino-3,5-dimethyladamantane) is a moderate-affinity uncompetitive antagonist of N-methyl-d-aspartate (NMDA) receptors. In this study, we have explored the effect of memantine against N-methyl-d-aspartate (NMDA)-induced seizures in neonatal rats. Here, we evaluated various behavioral seizure abnormalities in neonatal rats (Sprague-Dawley; postnatal day 9) after an intraperitoneal administration of NMDA. Further, we explored whether an acute administration of memantine could protect these neonates against different phases of convulsions induced by NMDA. In a separate study, we have compared the effect of levetiracetam in the same animal model. Exogenous administration of NMDA (30 mg/kg., i.p.) in neonatal rats resulted in arrest of activity, emprosthotonos curvature (trunk is bent forward by the entire muscles), myoclonic jerks, and forelimb/hindlimb clonus. The clonus phase in neonates was followed by loss of righting reflex and continuous seizures (for more than 5 min) suggesting status epilepticus, tonic extension, and death. Pretreatment of memantine hydrochloride (10-30 mg/kg., i.p.) dose-dependently delayed the onset of different phases of convulsions induced by NMDA. Memantine at the highest dose was found to be ataxic in rat neonates, while lower doses were free of any observed behavioral signs of toxicity. Levetiracetam (25 mg/kg., i.p.) when administered 30 min before the NMDA challenge blocked only the jerk phase and did not affect other phases of NMDA-induced convulsions. These data indicated that memantine and other safer uncompetitive NMDA receptor antagonists may be protective in the management of neonatal seizures. PMID:25196574

  16. Neonatal Cystitis-Induced Colonic Hypersensitivity in Adult Rats: A Model of Viscero-Visceral Convergence

    PubMed Central

    Miranda, Adrian; Mickle, Aaron; Schmidt, Jamie; Zhang, Zhihong; Shaker, Reza; Banerjee, Banani; Sengupta, Jyoti N.

    2011-01-01

    Background The objective of this study was to determine if neonatal cystitis alters colonic sensitivity later in life and to investigate the role of peripheral mechanisms. Methods Neonatal rats received intravesical zymosan, normal saline, or anesthesia only for three consecutive days (postnatal days 14th–16th). The estrous cycle phase was determined prior to recording the visceromotor response (VMR) to colorectal distension (CRD) in adult rats. Eosinophils and mast cells were examined from colon and bladder tissue. CRD or urinary bladder distension (UBD)-sensitive pelvic nerve afferents (PNAs) were identified and their responses to distension were examined. The relative expression of N-methyl-D-aspartic acid (NMDA) NR1 subunit in the L6-S1 spinal cord was examined using Western blot. Results The VMR to CRD (≥10mmHg) in the neonatal zymosan group was significantly higher than control in both the diestrus, estrus phase and in all phases combined. There was no difference in the total number of eosinophils, mast cells or number of degranulated mast cells between groups. The spontaneous firing of UBD, but not CRD-sensitive PNAs from the zymosan rats was significantly higher than the control. However, the mechanosensitive properties of PNAs to CRD or UBD were no different between groups (p > 0.05). The expression of spinal NR1 subunit was significantly higher in zymosan-treated rats compared to saline treated rats (p <0.05). Conclusion Neonatal cystitis results in colonic hypersensitivity in adult rats without changing tissue histology or the mechanosensitive properties of CRD-sensitive PNAs. Neonatal cystitis does results in overexpression of spinal NR1 subunit in adult rats. PMID:21592255

  17. A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique.

    PubMed

    Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Gazmuri, Raúl J

    2015-01-01

    A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes - but is not limited to - hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation. PMID:25938619

  18. Neonatal capsaicin treatment in rats induces chronic hyperthermia resulting in infectious disease

    PubMed Central

    JEONG, KEUN-YEONG; KIM, HWAN MOOK

    2015-01-01

    Treatment of neonatal animals with capsaicin has previously been associated with long-lasting hyperthermia and severe cutaneous lesions. The present study analyzed the effects of capsaicin-induced hyperthermia on the occurrence of infectious disease and pruritic dermatitis in a rat model. Pregnant Sprague-Dawley (SD) rats were obtained 1 week prior to parturition. Pups from each litter were randomly assigned to the following experimental groups: Capsaicin-treated (cap-treated; n=10) or vehicle-treated (n=5). Capsaicin (50 mg/kg) or vehicle were systemically administered to the SD rat pups (age, 48 h), after which body temperature was measured using a biotelemetry system, and the effects of hyperthermia on the ability of the rat pups to resist bacterial infection were analyzed. Furthermore, pruritus-induced scratching behavior and dermatitis were assessed, and changes in interleukin (IL)-4- and IL-13-induced immunoglobulin E expression were measured. Treatment of neonatal rats with capsaicin resulted in chronic hyperthermia, which had negative effects on the host immune defense response. The expression levels of T-helper type 2 cell-associated cytokines were significantly increased (P<0.01) in the cap-treated rats following bacterial infection with Staphylococcus aureus or Streptococcus agalactiae. Furthermore, cap-treated rats exhibited pruritus-induced scratching behavior and dermatitis. The results of the present study suggested that treatment of neonatal rats with capsaicin induces chronic hyperthermia and decreases the effectiveness of the host defense system. Therefore, a cap-treated neonatal rat model may be considered useful when investigating the association between hyperthermia and infectious disease. PMID:26668650

  19. Aspects of the Development of Housing for the Spaceflight of Pregnant and Lactating Rats with Neonates

    NASA Technical Reports Server (NTRS)

    Hinds, William E.; Mayer, David J.; Evans, Juli; Spratt, Shahn; Lane, Philip K.; Rodriguez, Shari L.; Navidi, Meena; Armstrong, Rachel; Lemos, Bonnie; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    Recent and upcoming spaceflights are investigating the effect of weightlessness on developing neural and organ systems. Pregnant rats and dams with neonates have to be accommodated in cages that support the special requirements of these animals. Extensive ground testing of cage concepts, the effect of launch and landing stresses on the maintenance of pregnancy and maternal behavior at different neonatal ages, and techniques for monitoring adaptability to change are discussed. A spaceflight opportunity for the NlH.R3 payload of rat families at three different postnatal ages demonstrated that the survival of very young animals was not good but that older newborns could be returned to Earth in reasonably good health. The development of cages for the Research Animal Holding Facility (RAHF) to support the flight of neonates on Neurolab was continued and incorporated modifications that were demonstrated by the NIH.R3 flight. Other modifications to the RAHF are discussed. Data from biocompatibility and experiment verification testing are presented.

  20. EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS

    EPA Science Inventory

    EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS. M.N. Logan1, J.R. Thibodeaux2, R.G. Hanson2, C. Lau2. 1North Carolina Central University, Durham, NC, 2Reprod. Tox. Div. NHEERL, US EPA, Research Triangle Park, NC.

    Perfluor...

  1. Enhancement of Sexual Behavior in Female Rats by Neonatal Transplantation of Brain Tissue from Males

    NASA Astrophysics Data System (ADS)

    Arendash, Gary W.; Gorski, Roger A.

    1982-09-01

    Transplantation of preoptic tissue from male rat neonates into the preoptic area of female littermates increased masculine and feminine sexual behavior in the recipients during adulthood. This suggests that functional connections develop between the transplanted neural tissue and the host brain. A new intraparenchymal brain transplantation technique was used to achieve these results.

  2. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    PubMed Central

    Sifringer, Marco; von Haefen, Clarissa; Krain, Maria; Paeschke, Nadine; Bendix, Ivo; Bührer, Christoph; Spies, Claudia D.; Endesfelder, Stefanie

    2015-01-01

    Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight) and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable. PMID:25653737

  3. REPEATED MATERNAL SEPARATION IN THE NEONATAL RAT: CELLULAR MECHANISMS CONTRIBUTING TO BRAIN GROWTH SPARING

    EPA Science Inventory

    Separation of rat neonates from their dam has been shown to evoke acutely a variety of biochemical and physiological responses. n the current study, we examined whether these responses were extended to pups who were subject to daily episodes of maternal deprivation, and whether t...

  4. PHARMACOLOGIC PROBING OF AMPHOTERICIN B-INDUCED RENAL DYSFUNCTION IN THE NEONATAL RAT

    EPA Science Inventory

    Pharmacologic Probing of Amphotericin B-Induced Renal Dysfunction in the Neonatal Rat. Gray, J.A., and Kavlock, R.J. (1988). Toxicol. Appl. Pharmacol. 93, 360-368. Acetazolamide, furosemide, chlorothiazide, and amiloride pharmacologic agents that act primarily in the proximal tub...

  5. Dysregulation of neonatal hippocampal cell genesis in the androgen insensitive Tfm rat

    PubMed Central

    Waddell, Jaylyn; Bowers, J. Michael; Edwards, N. Shalon; Jordan, Cynthia L.; McCarthy, Margaret M.

    2013-01-01

    The first two weeks of life are a critical period for hippocampal development. At this time gonadal steroid exposure organizes sex differences in hippocampal sensitivity to activational effects of steroids, hippocampal cell morphology and hippocampus dependent behaviors. Our laboratory has characterized a robust sex difference in neonatal neurogenesis in the hippocampus that is mediated by estradiol. Here, we extend our knowledge of this sex difference by comparing the male and female hippocampus to the androgen insensitive testicular feminized mutant (Tfm) rat. In the neonatal Tfm rat hippocampus, fewer newly generated cells survive compared to males or females. This deficit in cell genesis is partially recovered with the potent androgen DHT, but is more completely recovered following estradiol administration. Tfm rats do not differ from males or females in the level of endogenous estradiol in the neonatal hippocampus, suggesting other mechanisms mediate a differential sensitivity to estradiol in male, female and Tfm hippocampus. We also demonstrate disrupted performance on a hippocampal-dependent contextual fear discrimination task. Tfm rats generalize fear across contexts, and do not exhibit significant loss of fear during extinction exposure. These results extend prior reports of exaggerated response to stress in Tfm rats, and following gonadectomy in normal male rats. PMID:23747829

  6. Citrobacter koseri Brain Abscess in the Neonatal Rat: Survival and Replication within Human and Rat Macrophages

    PubMed Central

    Townsend, Stacy M.; Pollack, Harvey A.; Gonzalez-Gomez, Ignacio; Shimada, Hiroyuki; Badger, Julie L.

    2003-01-01

    A unique feature of Citrobacter koseri is the extremely high propensity to initiate brain abscesses during neonatal meningitis. Previous clinical reports and studies on infant rats have documented many Citrobacter-filled macrophages within the ventricles and brain abscesses. It has been hypothesized that intracellular survival and replication within macrophages may be a mechanism by which C. koseri subverts the host response and elicits chronic infection, resulting in brain abscess formation. In this study, we showed that C. koseri causes meningitis and brain abscesses in the neonatal rat model, and we utilized histology and magnetic resonance imaging technology to visualize brain abscess formation. Histology and electron microscopy (EM) revealed that macrophages (and not fibroblasts, astrocytes, oligodendrocytes, or neurons) were the primary target for long-term C. koseri infection. To better understand C. koseri pathogenesis, we have characterized the interactions of C. koseri with human macrophages. We found that C. koseri survives and replicates within macrophages in vitro and that uptake of C. koseri increases in the presence of human pooled serum in a dose-dependent manner. EM studies lend support to the hypothesis that C. koseri uses morphologically different methods of uptake to enter macrophages. FcγRI blocking experiments show that this receptor primarily facilitates the entry of opsonized C. koseri into macrophages. Further, confocal fluorescence microscopy demonstrates that C. koseri survives phagolysosomal fusion and that more than 90% of intracellular C. koseri organisms are colocalized within phagolysosomes. The ability of C. koseri to survive phagolysosome fusion and replicate within macrophages may contribute to the establishment of chronic central nervous system infection including brain abscesses.   PMID:14500508

  7. Effect of diazepam on sociability of rats submitted to neonatal seizures.

    PubMed

    Leite, Ingrid Stanize; Castelhano, Adelissandra S S; Cysneiros, Roberta M

    2016-06-01

    Status epilepticus (SE), an acute condition characterized by repetitive or ongoing seizures activity, may produce long-term deleterious consequences. Previous data demonstrated that Wistar rats subjected to neonatal SE displayed autistic behavior, characterized by social play impairment, low preference by novelty, deficit in social discrimination; anxiety related behavior and stereotyped behavior with no changes in locomotor activity (doi: http://dx.doi.org/10.1007/s00702-010-0460-1, doi: http://dx.doi.org/10.3389/fnbeh.2013.00036, doi: http://dx.doi.org/10.1007/s00702-014-1291-2[1], [2], [3]). Taking into account the bi-directional relationship between the state of anxiety and social interaction (doi: http://dx.doi.org/10.1007/s10567-009-0062-3[4]), we evaluated the impact of the state of anxiety on social interaction. Male Wistar rats at postnatal day 9 were subjected to pilocarpine-induced neonatal SE (380 mg/kg, ip) and the controls received 0.9% saline (0.1 ml/10 g). The groups received saline or diazepam (1.0 mg/kg) 45 min prior each behavioral testing that started from 60 days of postnatal life. In the open field, rats subjected to neonatal seizure exhibited less central zone activity as compared to animals treated with diazepam, with no changes in the total locomotor activity. In elevated plus maze, rats subjected to neonatal seizure and treated with diazepam exhibited higher locomotor activity and spent more time on the open arms as compared to untreated animals. In approach phase of sociability paradigm, animals subjected to neonatal seizures similarly to controls, regardless the treatment, spent more time with social stimulus as compared to non social stimulus. In social novelty phase of sociability paradigm, animals subjected to neonatal seizures differently of controls, regardless the treatment, spent similar time with familiar and novel stimulus. PMID:27054178

  8. Neonatal endotoxin exposure changes neuroendocrine, cardiovascular function and mortality during polymicrobial sepsis in adult rats.

    PubMed

    Saia, Rafael Simone; Oliveira-Pelegrin, Gabriela Ravanelli; da Silva, Maria Emília Nadaletto Bonifácio; Aguila, Fábio Alves; Antunes-Rodrigues, José; Rocha, Maria José Alves; Cárnio, Evelin Capellari

    2011-08-01

    Our aim was to investigate whether neonatal LPS challenge may improve hormonal, cardiovascular response and mortality, this being a beneficial adaptation when adult rats are submitted to polymicrobial sepsis by cecal ligation and puncture (CLP). Fourteen days after birth, pups received an intraperitoneal injection of lipopolysaccharide (LPS; 100μg/kg) or saline. After 8-12 weeks, they were submitted to CLP, decapitated 4, 6 or 24h after surgery and blood was collected for vasopressin (AVP), corticosterone and nitrate measurement, while AVP contents were measured in neurohypophysis, supra-optic (SON) and paraventricular (PVN) nuclei. Moreover, rats had their mean arterial pressure (MAP) and heart rate (HR) evaluated, and mortality and bacteremia were determined at 24h. Septic animals with neonatal LPS exposure had higher plasma AVP and corticosterone levels, and higher c-Fos expression in SON and PVN at 24h after surgery when compared to saline treated rats. The LPS pretreated group showed increased AVP content in SON and PVN at 6h, while we did not observe any change in neurohypophyseal AVP content. The nitrate levels were significantly reduced in plasma at 6 and 24h after surgery, and in both hypothalamic nuclei only at 6h. Septic animals with neonatal LPS exposure showed increase in MAP during the initial phase of sepsis, but HR was not different from the neonatal saline group. Furthermore, neonatally LPS exposed rats showed a significant decrease in mortality rate as well as in bacteremia. These data suggest that neonatal LPS challenge is able to promote beneficial effects on neuroendocrine and cardiovascular responses to polymicrobial sepsis in adulthood. PMID:21549159

  9. Comparative effects of oral chlorpyrifos exposure on cholinesterase activity and muscarinic receptor binding in neonatal and adult rat heart.

    PubMed

    Howard, Marcia D; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N

    2007-09-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M(2) muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M(2) receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor-mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M(2) receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age-related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac cholinesterase (ChE) activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1x LD(10): neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1x LD(10), relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (approximately 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC(50) values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that

  10. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    PubMed Central

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  11. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats

    SciTech Connect

    Doerge, Daniel R.; Twaddle, Nathan C.; Vanlandingham, Michelle; Fisher, Jeffrey W.

    2010-09-01

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 {mu}g/kg bw. Evidence for enterohepatic recirculation of conjugated, but not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 {mu}g/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.

  12. Neonatal hyperoxia alters the pulmonary alveolar and capillary structure of 40-day-old rats.

    PubMed Central

    Randell, S. H.; Mercer, R. R.; Young, S. L.

    1990-01-01

    High inspired oxygen concentrations during the neonatal period profoundly inhibit rat lung development, an effect that is partly reversed during recovery in air. Persistent effects of neonatal hyperoxia on the size and number of alveoli or the structure of pulmonary capillaries have not been well defined. Using light and electron microscopic morphometry plus quantitative three-dimensional reconstructions of alveoli, we examined the lungs of 40-day-old rats that were exposed to more than 95% oxygen for the first 7 days after birth. Neonatal hyperoxia administered to rats resulted in abnormally enlarged air spaces at age 40 days. The fraction of the lung consisting of parenchyma was significantly increased and alveolar surface area was 13% lower than controls. There was an abnormal enlargement of alveolar ducts, which reduced by 24% the relative amount of air in the alveoli, compared to that in the alveolar ducts. The number of alveoli per lung and the mean volume of an alveolus were not different between the groups, but alveolar size class distributions were different, with significantly more very small and very large alveoli in 40-day-old rats after neonatal hyperoxia. By scanning electron microscopy, the alveolar surface of the exposed animals had a corrugated appearance, which was especially evident along alveolar ducts. Transmission electron microscopy revealed a greater density of capillaries, particularly in the alveolar regions close to terminal airways. Based on a random sample of the entire parenchymal region, capillary blood volume per cm2 of alveolar basal lamina was 18% greater. The results demonstrate that neonatal exposure to hyperoxia can cause abnormalities in the pulmonary alveolar and capillary structure of 40-day-old rats, and that these changes are similar to some features of broncho-pulmonary dysplasia. Images Figure 1 Figure 4 Figure 5 PMID:2356858

  13. Measurement of cardiac left ventricular pressure in conscious rats using a fluid-filled catheter.

    PubMed

    Schenk, J; Hebden, A; McNeill, J H

    1992-05-01

    A fluid-filled catheter consisting of 100 cm of PE50 polyethylene tubing welded to 7 cm of PE10 polyethylene tubing (PE50/PE10) was constructed for the purpose of measuring the rate of left ventricular pressure development (+dP/dt) in conscious, freely moving rats. Prior to in vivo experiments, four PE50/PE10 catheters were randomly selected, and their natural frequencies and damping ratios were determined using a square wave impact. The mean (n = 4), natural frequency of these catheters was shown to be 35.0 +/- 5.5 Hz, and the mean damping ratio was 0.83 +/- 0.10. Natural frequency plotted against increasing PE50 tubing length was shown to have a slope of -0.44 Hz/cm with a correlation coefficient of 0.99. The effect of the 7-cm PE10 tubing segment on the catheter damping ratio was also demonstrated. One of the four PE50/PE10 type catheters exhibited a damping ratio of 0.74 +/- 0.09. When the 7-cm PE10 tube was removed, the damping ratio was reduced to 0.31 +/- 0.04. Left ventricular +dP/dt obtained in conscious rats with a PE50/PE10 catheter (n = 7; 6300 +/- 300 mmHg/sec) was significantly less than the +dP/dt obtained using a 100-cm PE50 catheter (n = 6; 9400 +/- 400 mmHg/sec). The results of this study make it clear that the PE50/PE10 catheter is suitable for the measurement of left ventricular +dP/dt in the conscious rat, and that catheter design has a profound influence on both the catheter natural frequency and damping ratio. PMID:1498344

  14. Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes.

    PubMed Central

    Yuan, W; Ginsburg, K S; Bers, D M

    1996-01-01

    1. Fundamental properties of Ca2+ channel currents in rat and rabbit ventricular myocytes were measured using whole cell voltage clamp. 2. In rat, as compared with rabbit myocytes, Ca2+ channel current (ICa) was half-activated at about 10 mV more negative potential, decayed slower, was half-inactivated (in steady state) at about 5 mV more positive potential, and recovered faster from inactivation. 3. These features result in a larger steady-state window current in rat, and also suggest that under comparable voltage clamp conditions, including action potential (AP) clamp, more Ca2+ influx would be expected in rat myocytes. 4. Ca2+ channel current carried by Na+ and Cs+ in the absence of divalent ions (Ins) also activated at more negative potential and decayed more slowly in rat. 5. The reversal potential for Ins was 6 mV more positive in rabbit, consistent with a larger permeability ratio (PNa/PCs) in rabbit than in rat. ICa also reversed at slightly more positive potentials in rabbit (such that PCa/PCs might also be higher). 6. Ca2+ influx was calculated by integration of ICa evoked by voltage clamp pulses (either square pulses or pulses based on recorded rabbit or rat APs). For a given clamp waveform, the Ca2+ influx was up to 25% greater in rat, as predicted from the fundamental properties of ICa and Ins. 7. However, the longer duration of the AP in rabbit myocytes compensated for the difference in influx, such that the integrated Ca2+ influx via ICa in response to the species-appropriate waveform was about twice as large as that seen in rat. PMID:8799895

  15. Pulmonary vascular responsiveness in rats following neonatal exposure to high altitude or carbon monoxide

    SciTech Connect

    Tucker, A.; Penney, D.G. Wayne State Univ., Detroit, MI )

    1993-01-01

    Exposure of adult and neonatal rats to high altitude increases pulmonary vascular responsiveness during the exposure. A study was undertaken to determine if a short exposure of neonatal rats to either high-altitude or carbon monoxide (CO) hypoxia would cause persistent alterations in pulmonary vascular responsiveness postexposure. One-day-old male Sprague-Dawley rats were obtained as 16 litters of 10-12 pups each. At 2 days of age, 4 litters were exposed to CO (500 ppm) for 32 days, and 4 litters were exposed to ambient air (AIR) in Detroit (200 m). Another 4 litters were exposed to 3500 m altitude (ALT) in a chamber for 32 days, and 3 litters were exposed to ambient conditions in Fort Collins (CON, 1524 m). After the exposures, all rats were maintained at 1524 m. At 2, 40, 76 and 112 days postexposure, lungs were isolated and perfused with Earle's salt solution (+Ficoll, 4 g%). Pulmonary vascular responsiveness was assessed by dose responses to angiotensin II (AII, 0.025-0.40 [mu]g) and acute hypoxia (3% O[sub 2] for 3 min). AII responses were higher in ALT vs CON rats at 2 and 40 days postexposure, but no differences were noted between CO and AIR rats. Baseline pulmonary vascular resistance and pulmonary arterial pressure (in isolated lungs) were higher in ALT rats at all four ages compared to the other three groups. Both the ALT and CO rats displayed hypertrophy of the right ventricle (RV) and the left ventricle (LV) at the termination of treatment and elevated hematocrit. LV hypertrophy and polycythemia regressed with time, but RV hypertrophy remained significant in the ALT rats through 112 days postexposure. The results indicate that neonatal exposure to ALT, but no CO, causes a persistent increase in pulmonary vascular responsiveness and RV hypertrophy for at least 112 days after termination of the exposure. 40 refs., 3 figs., 2 tabs.

  16. Sensory deprivation stress and supplemental stimulation in the rat pup and preterm human neonate.

    PubMed

    Schanberg, S M; Field, T M

    1987-12-01

    This article reviews the literature and presents data from our laboratories on sensory deprivation stress and supplemental stimulation of the rat pup and the preterm neonate. The data suggest that the effects of maternal deprivation in the rat pup (suppression of growth hormone release and protein synthesis) are regulated by a specific form of tactile stimulation: only brush stroking of maternally deprived rat pups returned growth parameters to normal; other forms of stimulation, including kinesthetic and vestibular stimulation, were ineffective in restoring normal functions. Other data are presented demonstrating that very small preterm neonates given tactile-kinesthetic stimulation gain more weight per day, spend more time awake and active, and show more mature habituation, orientation, motor, and range of state behaviors on the Brazelton assessment. PMID:3691193

  17. Chronic nonocclusive coronary artery constriction in rats. Beta-adrenoceptor signal transduction and ventricular failure.

    PubMed Central

    Meggs, L G; Huang, H; Li, P; Capasso, J M; Anversa, P

    1991-01-01

    To determine the effects of chronic coronary artery constriction on the relationship between cardiac function and regulation of beta-adrenoceptor signal transduction, the left main coronary artery was narrowed in rats and the animals were killed 5 mo later. An average reduction in coronary luminal diameter of 44% was obtained and this change resulted in an increase in left ventricular end-diastolic pressure and a decrease in positive and negative dP/dt. Significant increases in left and right ventricular weights indicative of global cardiac hypertrophy were observed. Radioligand binding studies of beta-adrenoreceptors, agonist-stimulated adenylate cyclase activity, and ADP ribosylation of 45-kD substrate by cholera toxin were all depressed in the failing left ventricle. In contrast, in the hypertrophic non-failing right ventricle, beta-adrenoreceptor density was preserved and receptor antagonist affinity was increased. In spite of these findings at the receptor level, agonist stimulated cyclic AMP generation was reduced in the right ventricular myocardium. The quantity of the 45-kD substrate was also decreased. In conclusion, longterm nonocclusive coronary artery stenosis of moderate degree has profound detrimental effects on the contractile performance of the heart in association with marked attenuation of adrenergic support mechanisms. Images PMID:1661293

  18. Therapeutic Effect of Agaricus brasiliensis on Phenylhydrazine-Induced Neonatal Jaundice in Rats

    PubMed Central

    Zhang, Lan; Yuan, Bo; Wang, HuiPing; Gao, Ya

    2015-01-01

    The present study was designed to investigate the effect of Agaricus brasiliensis extract (ABE) on phenylhydrazine-induced neonatal jaundice in rats. Administration of ABE dose-dependently reduced the elevated bilirubin level induced by phenylhydrazine. It can be somewhat supported from the results of in vitro bilirubin degradation experiment. ABE treatment also reduced the total antioxidant status (TAOS), cascade O2−/SOD, level of NF-κB protein, and adrenomedullin (AM). Overall, the results of this study demonstrated that Agaricus brasiliensis extract may be beneficial to reducing bilirubin level without causing hepatotoxicity in neonatal jaundice. PMID:25883968

  19. Therapeutic effect of Agaricus brasiliensis on phenylhydrazine-induced neonatal jaundice in rats.

    PubMed

    Zhang, Lan; Yuan, Bo; Wang, HuiPing; Gao, Ya

    2015-01-01

    The present study was designed to investigate the effect of Agaricus brasiliensis extract (ABE) on phenylhydrazine-induced neonatal jaundice in rats. Administration of ABE dose-dependently reduced the elevated bilirubin level induced by phenylhydrazine. It can be somewhat supported from the results of in vitro bilirubin degradation experiment. ABE treatment also reduced the total antioxidant status (TAOS), cascade O2(-)/SOD, level of NF-κB protein, and adrenomedullin (AM). Overall, the results of this study demonstrated that Agaricus brasiliensis extract may be beneficial to reducing bilirubin level without causing hepatotoxicity in neonatal jaundice. PMID:25883968

  20. Human neonatal hepatocyte transplantation induces long-term rescue of unconjugated hyperbilirubinemia in the Gunn rat.

    PubMed

    Tolosa, Laia; López, Silvia; Pareja, Eugenia; Donato, María Teresa; Myara, Anne; Nguyen, Tuan Huy; Castell, José Vicente; Gómez-Lechón, María José

    2015-06-01

    Crigler-Najjar type 1 disease is a rare inherited metabolic disease characterized by high levels of unconjugated bilirubin due to the complete absence of hepatic uridine diphosphoglucuronate-glucuronosyltransferase activity. Hepatocyte transplantation (HT) has been proposed as an alternative treatment for Crigler-Najjar syndrome, but it is still limited by the quality and the low engraftment and repopulation ability of the cells used. Because of their attachment capability and expression of adhesion molecules as well as the higher proportion of hepatic progenitor cells, neonatal hepatocytes may have an advantage over adult cells. Adult or neonatal hepatocytes were transplanted into Gunn rats, a model for Crigler-Najjar disease. Engraftment and repopulation were studied and compared by immunofluorescence (IF). Additionally, the serum bilirubin levels, the presence of bilirubin conjugates in rat serum, and the expression of uridine diphosphate glucuronosyltransferase 1 family polypeptide A1 (UGT1A1) in rat liver samples were also analyzed. Here we show that neonatal HT results in long-term correction in Gunn rats. In comparison with adult cells, neonatal cells showed better engraftment and repopulation capability 3 days and 6 months after transplantation, respectively. Bilirubinemia decreased in the transplanted animals during the whole experimental follow-up (6 months). Bilirubin conjugates were also present in the serum of the transplanted animals. Western blots and IF confirmed the presence and expression of UGT1A1 in the liver. This work is the first to demonstrate the advantage of using neonatal hepatocytes for the treatment of Crigler-Najjar in vivo. PMID:25821167

  1. Current-Voltage Relationship for Late Na(+) Current in Adult Rat Ventricular Myocytes.

    PubMed

    Clark, R B; Giles, W R

    2016-01-01

    It is now well established that the slowly inactivating component of the Na(+) current (INa-L) in the mammalian heart is a significant regulator of the action potential waveform. This insight has led to detailed studies of the role of INa-L in a number of important and challenging pathophysiological settings. These include genetically based ventricular arrhythmias (LQT 1, 2, and 3), ventricular arrhythmias arising from progressive cardiomyopathies (including diabetic), and proarrhythmic abnormalities that develop during local or global ventricular ischemia. Inhibition of INa-L may also be a useful strategy for management of atrial flutter and fibrillation. Many important biophysical parameters that characterize INa-L have been identified; and INa-L as an antiarrhythmia drug target has been studied extensively. However, relatively little information is available regarding (1) the ion transfer or current-voltage relationship for INa-L or (2) the time course of its reactivation at membrane potentials similar to the resting or diastolic membrane potential in mammalian ventricle. This chapter is based on our preliminary findings concerning these two very important physiological/biophysical descriptors for INa-L. Our results were obtained using whole-cell voltage clamp methods applied to enzymatically isolated rat ventricular myocytes. A chemical agent, BDF 9148, which was once considered to be a drug candidate in the Na(+)-dependent inotropic agent category has been used to markedly enhance INa-L current. BDF acts in a potent, selective, and reversible fashion. These BDF 9148 effects are compared and contrasted with the prototypical activator of INa-L, a sea anemone toxin, ATX II. PMID:27586292

  2. Plakophilin-2 and the migration, differentiation and transformation of cells derived from the epicardium of neonatal rat hearts

    PubMed Central

    Matthes, Stephanie A.; Taffet, Steven; Delmar, Mario

    2011-01-01

    During development, epicardial cells act as progenitors for a large fraction of non-myocyte cardiac cells. Expression and function of molecules of the desmosome in the postnatal epicardium has not been studied. The objective of this study was to assess the expression of desmosomal molecules, and the functional importance of the desmosomal protein plakophilin-2 (PKP2), in epicardial and epicardium-derived cells. Epicardial explants were obtained from neonatal rat hearts. Presence of mechanical junction proteins was assessed by immunocytochemistry. Explants after PKP2 knockdown showed increased abundance of alpha smooth muscle actin-positive cells, increased abundance of lipid markers, enhanced cell migration velocity and increased abundance of a marker of cell proliferation. We conclude that a population of non-excitable, cardiac-resident cells express desmosomal molecules and, in vitro, show functional properties (including lipid accumulation) that depend on PKP2 expression. The possible relevance of our data to the pathophysiology of arrhythmogenic right ventricular cardiomyopathy, is discussed. PMID:21985446

  3. Activation of chloride current by P2-purinoceptors in rat ventricular myocytes.

    PubMed Central

    Kaneda, M.; Fukui, K.; Doi, K.

    1994-01-01

    1. Rat ventricular myocytes were dissociated and their responses to extracellularly applied ATP were recorded using patch pipettes under the whole cell configuration. 2. ATP initially induced an inward current followed by an outward current at -50 mV. With a Cs-rich pipette solution the late outward current was blocked, leaving a sustained inward current (IATPs) suggesting that a K+ conductance underlies the late response. 3. When the extracellular Cl- concentration was changed, the reversal potential of IATPs corresponded well to the shift of the Cl- equilibrium potential. IATPs was reversibly blocked by the chloride channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). 4. The concentration-response curve of IATPs had a Hill coefficient of 0.98 and an EC50 value of 5.2 x 10(-6) M. 5. ATP was more potent than ADP, while AMP and adenosine were ineffective, suggesting that P2-purinoceptor activation induced IATPs. 6. The activation of IATPs was depressed by depleting the extracellular Mg2+ and increased by adding Mg2+. 7. Our results strongly suggest that P2-purinoceptor activation by ATP induces both a Cl(-)-conductance (IATPs) and a K(+)-conductance in rat ventricular myocytes. PMID:8032621

  4. [Effects of neonatal fluvoxamine administration to white rats and their correction by semax treatment].

    PubMed

    Volodina, M A; Merchieva, S A; Sebentsova, E A; Glazova, N Iu; Manchenko, D M; Andreeva, L A; Levickaia, N G; Kamenskiĭ, A A; Miasoedov, N F

    2014-01-01

    The aim of this work was to study the delayed effects of chronic neonatal administration of the selective serotonin reuptake inhibitor fluvoxamine (FA) to white rat pups and to estimate the possibility to correct these effects by treatment with semax. Fluvoxamine was injected intraperitoneally at a dose of 10 mg/kg from postnatal days 1 to 14, and semax was injected intranasally at a dose of 0.05 mg/kg from postnatal days 15 to 28. It was shown that neonatal FA administration produced a significant delay in animal somatic growth. A loss in body weight was detected both during FA administration and 4-6 weeks after the last injection. Furthermore, FA administration increased the anxiety level and disturbed the learning ability of animals. The negative consequences of neonatal FA administration were largely compensated by Semax. PMID:25735182

  5. Low-Dose Bisphenol A and Estrogen Increase Ventricular Arrhythmias Following Ischemia-Reperfusion in Female Rat Hearts

    PubMed Central

    Yan, Sujuan; Song, Weizhong; Chen, Yamei; Hong, Kui; Rubinstein, Jack; Wang, Hong-Sheng

    2013-01-01

    Bisphenol A (BPA) is an environmental estrogenic endocrine disruptor that may have adverse health impacts on a range of tissue/systems. In previous studies, we reported that BPA rapidly promoted arrhythmias in female rodent hearts through alteration of myocyte calcium handling. In the present study we investigated the acute effects of BPA on ventricular arrhythmias and infarction following ischemia-reperfusion in rat hearts. Rat hearts were subjected to 20 minutes of global ischemia followed by reperfusion. In female, but not male hearts, acute exposure to 1 nM BPA, either alone or combined with 1 nM 17β-estradiol (E2), during reperfusion resulted in a marked increase in the duration of sustained ventricular arrhythmias. BPA plus E2 increased the duration ventricular fibrillation, and the duration of VF as a fraction of total duration of sustained ventricular arrhythmia. The pro-arrhythmic effects of estrogens were abolished by MPP combined with PHTPP, suggesting the involvements of both ERα and ERβ signaling. In contrast to their pro-arrhythmic effects, BPA and E2 reduced infarction size, agreeing with previously described protective effect of estrogen against cardiac infarction. In conclusion, rapid exposure to low dose BPA, particularly when combined with E2, exacerbates ventricular arrhythmia following IR injury in female rat hearts. PMID:23429042

  6. Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats

    PubMed Central

    Lestari, Bayu; Permatasari, Nur; Rohman, Mohammad Saifur

    2016-01-01

    The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (—); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats. PMID:26941790

  7. Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats.

    PubMed

    Lestari, Bayu; Permatasari, Nur; Rohman, Mohammad Saifur

    2016-01-01

    The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (-); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats. PMID:26941790

  8. Congenital Viral Infections of the Brain: Lessons Learned from Lymphocytic Choriomeningitis Virus in the Neonatal Rat

    PubMed Central

    Bonthius, Daniel J; Perlman, Stanley

    2007-01-01

    The fetal brain is highly vulnerable to teratogens, including many infectious agents. As a consequence of prenatal infection, many children suffer severe and permanent brain injury and dysfunction. Because most animal models of congenital brain infection do not strongly mirror human disease, the models are highly limited in their abilities to shed light on the pathogenesis of these diseases. The animal model for congenital lymphocytic choriomeningitis virus (LCMV) infection, however, does not suffer from this limitation. LCMV is a well-known human pathogen. When the infection occurs during pregnancy, the virus can infect the fetus, and the developing brain is particularly vulnerable. Children with congenital LCMV infection often have substantial neurological deficits. The neonatal rat inoculated with LCMV is a superb model system of human congenital LCMV infection. Virtually all of the neuropathologic changes observed in humans congenitally infected with LCMV, including microencephaly, encephalomalacia, chorioretinitis, porencephalic cysts, neuronal migration disturbances, periventricular infection, and cerebellar hypoplasia, are reproduced in the rat model. Within the developing rat brain, LCMV selectively targets mitotically active neuronal precursors. Thus, the targets of infection and sites of pathology depend on host age at the time of infection. The rat model has further shown that the pathogenic changes induced by LCMV infection are both virus-mediated and immune-mediated. Furthermore, different brain regions simultaneously infected with LCMV can undergo widely different pathologic changes, reflecting different brain region–virus–immune system interactions. Because the neonatal rat inoculated with LCMV so faithfully reproduces the diverse neuropathology observed in the human counterpart, the rat model system is a highly valuable tool for the study of congenital LCMV infection and of all prenatal brain infections In addition, because LCMV induces delayed

  9. Alterations in cytochrome P-450 levels in adult rats following neonatal exposure to xenobiotics

    SciTech Connect

    Zangar, R.C. Pacific Northwest Laboratories, Richland, WA ); Springer, D.L. ); Buhler, D.R. )

    1993-01-01

    Neonatal exposure to certain xenobiotics has been shown to alter hepatic metabolism in adult rats in a manner that indicates long-term changes in enzyme regulation. Previously, the authors have observed changes in adult testosterone metabolism and in cytochrome P-450 (P-450) mRNA levels in animals neonatally exposed to phenobarbital (PB) or diethylstilbestrol (DES). In order to test for other enzyme alterations, they used Western blot procedures for specific P-450s to analyze hepatic microsomes from adult rats (24 wk old) that had been exposed neonatally to DES, PB, 7,12-dimethylbenz[a]anthracene (DMBA), or pregnenolone 16[alpha]-carbonitrile (PCN). The most striking effects were observed in the DES-treated males: P-4502C6 and an immunologically similar protein were increased 60 and 90%, respectively, relative to control values, but P-4503A2 was decreased by 44%. No changes were observed in the DES-treated males in levels of P-4502E1, P-4502B, or the male-specific P-4502C13. Adult males neonatally treated with PB had 150% increase in levels of anti-P4502B-reactive protein without significant changes in the other enzymes. The DES- and DMBA-treated females had increased levels of the female-specific P-4502C12 of 38 and 48%, respectively, but no other observed alterations. The results confirm that neonatal exposure to DES or PB can cause alterations in adult hepatic cytochrome P-450 levels but show that these chemicals act on different enzymes. Neonatal DMBA resulted in changes in adult females similar to those produced by the synthetic estrogen DES, but did so at about two-thirds lower dose. 37 refs., 5 figs.

  10. Neonatal glucocorticoid treatment increased depression-like behaviour in adult rats.

    PubMed

    Ko, Meng-Chang; Hung, Yu-Hui; Ho, Pei-Yin; Yang, Yi-Ling; Lu, Kwok-Tung

    2014-12-01

    Synthetic glucocorticoid dexamethasone (DEX) is frequently used as a therapeutic agent to lessen the morbidity of chronic lung disease in premature infants. Previous studies suggested that neonatal DEX treatment altered brain development and cognitive function. It has been recognized that the amygdala is involved in emotional processes and also a critical site of neuronal plasticity for fear conditioning. Little is known about the possible long-term adverse effect of neonatal DEX treatment on amygdala function. The present study was aimed to evaluate the possible effect of neonatal DEX treatment on the synaptic function of amygdala in adult rats. Newborn Wistar rats were subjected to subcutaneous tapering-dose injections of DEX (0.5, 0.3 and 0.1 mg/kg) from post-natal day one to three, PN1-PN3. Animals were then subjected to a forced swimming test (FST) and electrophysiological recording aged eight weeks. The results of the FST showed neonatal DEX treatment increased depression-like behaviour in adulthood. After acute stress evoking, the percentage of time spent free floating is significantly increased in the DEX treated group compared with the control animals. Furthermore, neonatal DEX treatment elevated long-term potentiation (LTP) response and the phosphorylation level of MAPK in the lateral nucleus of amygdala (LA). Intracerebroventricular infusion of the MAPK inhibitor, PD98059, showed significant rescue effects including reduced depression-like behaviour and restoration of LTP to within normal range. In conclusion, our results suggested that MAPK signalling cascade in the LA plays an important role in the adverse effect of neonatal DEX treatment on amygdala function, which may result in adverse consequences in adult age, such as the enhancement of susceptibility for a depressive disorder in later life. PMID:24945924

  11. Protective Effect of Hydrogen Gas Therapy After Germinal Matrix Hemorrhage in Neonatal Rats

    PubMed Central

    Lekic, Tim; Manaenko, Anatol; Rolland, William; Fathali, Nancy; Peterson, Mathew; Tang, Jiping

    2013-01-01

    Background Germinal matrix hemorrhage (GMH) is a neurological disease of very low birth weight premature infants leading to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Hydrogen (H2) is a potent antioxidant shown to selectively reverse cytotoxic oxygen-radical injury in the brain. This study investigated the therapeutic effect of hydrogen gas after neonatal GMH injury. Methods Neonatal rats underwent stereotaxic infusion of clostridial collagenase into the right germinal matrix brain region. Cognitive function was assessed at 3 weeks, and then sensorimotor function, cerebral, cardiac and splenic growths were measured 1 week thereafter. Results Hydrogen gas inhalation markedly suppressed mental retardation and cerebral palsy outcomes in rats at the juvenile developmental stage. The administration of H2 gas, early after neonatal GMH, also normalized the brain atrophy, splenomegaly and cardiac hypertrophy 1 month after injury. Conclusion This study supports the role of cytotoxic oxygen-radical injury in early neonatal GMH. Hydrogen gas inhalation is an effective strategy to help protect the infant brain from the post-hemorrhagic consequences of brain atrophy, mental retardation and cerebral palsy. Further studies are necessary to determine the mechanistic basis of these protective effects. PMID:21725762

  12. Neonatal immune challenge exacerbates seizure-induced hippocampus-dependent memory impairment in adult rats.

    PubMed

    Yin, Ping; Li, Zhen; Wang, Ying-Yan; Qiao, Na-Na; Huang, Shan-Ying; Sun, Ruo-Peng; Wang, Ji-Wen

    2013-04-01

    Our aim was to examine whether neonatal lipopolysaccharide (LPS) exposure is associated with changes in microglia and whether these alternations could influence later seizure-induced neurobehavioral outcomes. Male pups were first injected intraperitoneally with either LPS or saline on postnatal day 3 (P3) and postnatal day 5 (P5). Immunohistochemical analysis showed that LPS-treated animals exhibited increased microglia activation that persisted into adolescence. At P45, seizures were induced in rats by intraperitoneal injection of kainic acid (KA). Rats treated with LPS neonatally showed significantly greater proinflammatory responses and performed significantly worse in the Y-maze, Morris water maze, and inhibitory avoidance tasks after KA insult. Treatment with minocycline at the time of neonatal LPS exposure to block LPS-induced microglia alternation attenuated the exaggerated neuroinflammatory responses and alleviated memory impairment associated with the KA insult. Our findings suggest that neonatal immune activation can predispose the brain to exacerbated behavioral deficits following seizures in adulthood, possibly by priming microglia. PMID:23353000

  13. Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells

    PubMed Central

    Jermendy, A.; Toschi, E.; Aye, T.; Koh, A.; Aguayo-Mazzucato, C.; Sharma, A.; Weir, G. C.; Sgroi, D.

    2011-01-01

    Aims/hypothesis Fetal and neonatal beta cells have poor glucose-induced insulin secretion and only gain robust glucose responsiveness several weeks after birth. We hypothesise that this unresponsiveness is due to a generalised immaturity of the metabolic pathways normally found in beta cells rather than to a specific defect. Methods Using laser-capture microdissection we excised beta cell-enriched cores of pancreatic islets from day 1 (P1) neonatal and young adult Sprague–Dawley rats in order to compare their gene-expression profiles using Affymetrix U34A microarrays (neonatal, n=4; adult, n=3). Results Using dChip software for analysis, 217 probe sets for genes/38 expressed sequence tags (ESTs) were significantly higher and 345 probe sets for genes/33 ESTs significantly lower in beta cell-enriched cores of neonatal islets compared with those of adult islets. Among the genes lower in the neonatal beta cells were key metabolic genes including mitochondrial shuttles (malate dehydrogenase, glycerol-3-phosphate dehydrogenase and glutamate oxalacetate transaminase), pyruvate carboxylase and carnitine palmitoyl transferase 2. Differential expression of these enzyme genes was confirmed by quantitative PCR on RNA from isolated neonatal (P2 until P28) and adult islets and with immunostaining of pancreas. Even by 28 days of age some of these genes were still expressed at lower levels than in adults. Conclusions/interpretation The lack of glucose responsiveness in neonatal islets is likely to be due to a generalised immaturity of the metabolic specialisation of pancreatic beta cells. PMID:21240476

  14. Efficient central nervous system AAVrh10-mediated intrathecal gene transfer in adult and neonate rats.

    PubMed

    Hordeaux, J; Dubreil, L; Deniaud, J; Iacobelli, F; Moreau, S; Ledevin, M; Le Guiner, C; Blouin, V; Le Duff, J; Mendes-Madeira, A; Rolling, F; Cherel, Y; Moullier, P; Colle, M-A

    2015-04-01

    Intracerebral administration of recombinant adeno-associated vector (AAV) has been performed in several clinical trials. However, delivery into the brain requires multiple injections and is not efficient to target the spinal cord, thus limiting its applications. To assess widespread and less invasive strategies, we tested intravenous (IV) or intrathecal (that is, in the cerebrospinal fluid (CSF)) delivery of a rAAVrh10-egfp vector in adult and neonate rats and studied the effect of the age at injection on neurotropism. IV delivery is more efficient in neonates and targets predominantly Purkinje cells of the cerebellum and sensory neurons of the spinal cord and dorsal root ganglia. A single intra-CSF administration of AAVrh10, single strand or oversized self-complementary, is efficient for the targeting of neurons in the cerebral hemispheres, cerebellum, brainstem and spinal cord. Green fluorescent protein (GFP) expression is more widespread in neonates when compared with adults. More than 50% of motor neurons express GFP in the three segments of the spinal cord in neonates and in the cervical and thoracic regions in adults. Neurons are almost exclusively transduced in neonates, whereas neurons, astrocytes and rare oligodendrocytes are targeted in adults. These results expand the possible routes of delivery of AAVrh10, a serotype that has shown efficacy and safety in clinical trials concerning neurodegenerative diseases. PMID:25588740

  15. Simultaneous measurement of arterial and left ventricular pressure in conscious freely moving rats by telemetry.

    PubMed

    Segreti, Jason A; Polakowski, James S; Blomme, Eric A; King, Andrew J

    2016-01-01

    Comprehensive cardiovascular assessment in conscious rodents by utilizing telemetry has been limited by the restriction of current devices to one pressure channel. The purpose of this study was to test and validate a dual pressure transmitter that allows the simultaneous measurement of arterial pressure (AP) and left ventricular pressure (LVP) in conscious freely moving rats. Six rats were surgically implanted with dual pressure transmitters. Baseline hemodynamics and circadian rhythm were observed to return within 7days. AP, heart rate (HR), LVP and indices of left ventricular contractility were stable and demonstrated a prominent circadian rhythm over a two-week period of uninterrupted recordings. Administration of the vasodilator nifedipine produced the anticipated dose-dependent decrease in AP which was accompanied by a baroreflex mediated increase in HR and cardiac contractility. The negative inotrope verapamil produced the expected dose-dependent decreases in AP and cardiac contractility. Finally, a terminal validation of the dual pressure transmitter was performed under anesthesia by measuring AP and LVP simultaneously via telemetry and from a fluid filled arterial catheter and an intraventricular Millar catheter, respectively. A range of pressures and cardiac contractility were studied by administering sequential intravenous infusions of the positive inotrope dobutamine followed by verapamil. Linear regression analysis revealed a high level of agreement between pressures measured by the dual pressure transmitter and the exteriorized catheters. Histopathologic analysis of the heart revealed mild peri-catheter fibrosis. In conclusion, the simultaneous measurement of AP and LVP offers the potential for more detailed cardiovascular assessment in conscious rats. PMID:26778372

  16. Establishment and identification of a hypoxia-ischemia brain damage model in neonatal rats

    PubMed Central

    YAO, DAN; ZHANG, WEIRAN; HE, XUE; WANG, JINHU; JIANG, KEWEN; ZHAO, ZHENGYAN

    2016-01-01

    The present study was designed to set up a reliable model of severe hypoxia-ischemia brain damage (HIBD) in neonatal rats and several methods were used to identify whether the model was successful. A total of 40 healthy 7-day-old Sprague-Dawley rats were randomly divided into 2 groups: The sham-surgery group (n=18) and the HIBD model group (n=22). The HIBD model was produced according to the traditional Rice method. The rats were anesthetized with ethyl ether. The left common carotid artery (CCA) was exposed, ligated and cut. Following this, the rats were exposed to hypoxia in a normobaric chamber filled with 8% oxygen and 92% nitrogen for 2 h. In the sham-surgery group, the left CCA was exposed but was not ligated, cut or exposed to hypoxia. The neurobehavioral changes of the rats were observed in the 24 h after HIBD. The brains were collected after 72 h to observe the pathological morphological changes of the brain tissue. The behavioral ability and neurobehavioral changes were studied in each group. The water maze test was used for evaluating the learning-memory ability when the rats were 28 days old. Compared with the sham-surgery group, all the HIBD model rats had a lag of motor development. The rats had evident changes in anatomy and Nissl staining, and cognitive impairment was shown through the result of the water maze. Therefore, the model of HIBD in neonatal rats is feasible and provides a reliable model for subsequent studies. PMID:27073628

  17. Bax inhibiting peptide reduces apoptosis in neonatal rat hypoxic-ischemic brain damage

    PubMed Central

    Sun, Meng-Ya; Cui, Kai-Jie; Yu, Mao-Min; Zhang, Hui; Peng, Xiang-Li; Jiang, Hong

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) has been reported to induce apoptosis in neonates. We, therefore, analyzed the ability of Bax-inhibiting peptide (BIP) to provide neuroprotective effects during hypoxic-ischemic brain damage (HIBD). Seven-day-old wistar rat pups (n = 198) were randomly divided into a sham-operated group (Group S, n = 18), saline group (Group C, n = 90) and BIP group (Group B, n = 90). Pathological changes in the cerebral tissues of rat pups were analyzed using hematoxylin and eosin stain, TUNEL and Western blot. The expression of cytochrome c and caspase-3 was determined using western blot technique. Rat pups demonstrated neurobehavioral alteration in Groups C and B. TUNEL-positive cells in the left hippocampus were significantly increased in Group C and Group B after HIBD (P < 0.01) when compared with Group S. There was a marked reduction in TUNEL positive cells in subgroups B1 through B4 when compared with the respective subgroups C1 through C5. Compared with Group S, the expression of caspase-3 and cytochrome c was significantly increased in Groups C and B (P < 0.01). The difference in expression of caspase-3 and cytochrome c between subgroups B1 through B4 and C1 through C4 was significant (P < 0.01). In conclusions, the neuro-protective effect of BIP was due to a reduction of nerve cell apoptosis in our neonatal HIE rat model. We propose that BIP has potential as a neuro-protective drug in neonatal HIE cases. PMID:26823794

  18. Lithium Treatment Prevents Apoptosis in Neonatal Rat Hippocampus Resulting from Sevoflurane Exposure.

    PubMed

    Zhou, Xue; da Li, Wen-; Yuan, Bao-Long; Niu, Li-Jun; Yang, Xiao-Yu; Zhou, Zhi-Bin; Chen, Xiao-Hui; Feng, Xia

    2016-08-01

    We aimed to observe the therapeutic effects of lithium on inhalational anesthetic sevoflurane-induced apoptosis in immature brain hippocampus. From postnatal day 5 (P5) to P28, male Sprague-Dawley pups were intraperitoneally injected with lithium chloride or 0.9 % sodium chloride. On P7 after the injection, pups were exposed to 2.3 % sevoflurane or air for 6 h. Brain tissues were harvested 12 h and 3 weeks after exposure. Cleaved caspase-3, nNOS protein, GSK-3β,p-GSK-3β were assessed by Western blot, and histopathological changes were assessed using Nissl stain and TUNEL stain. From P28, we used the eight-arm radial maze test and step-through test to evaluate the influence of sevoflurane exposure on the learning and memory of juvenile rats. The results showed that neonatal sevoflurane exposure induced caspase-3 activation and histopathological changes in hippocampus can be attenuated by lithium chloride. Sevoflurane increased GSK-3β activity while pretreatment of lithium decreased GSK-3β activity. Moreover, sevoflurane showed possibly slight but temporal influence on the spatial learning and the memory of juvenile rats, and chronic use of lithium chloride might have the therapeutic effect. Our current study suggests that lithium attenuates sevoflurane induced neonatal hippocampual damage by GSK-3β pathway and might improve learning and memory deficits in rats after neonatal exposure. PMID:27068032

  19. Noradrenaline depletion blocks behavioral sparing and alters cortical morphogenesis after neonatal frontal cortex damage in rats.

    PubMed

    Kolb, B; Sutherland, R J

    1992-06-01

    The possibility that cortical noradrenaline (NA) is necessary for sparing of function that occurs after neonatal frontal cortex damage was examined. Spatial localization by rats with frontal cortex damage on postnatal day 7 (P7) was better than that by rats with similar damage sustained as adults. The sparing was abolished in rats depleted of cortical NA by means of neonatal 6-hydroxydopamine (6HDA) administration. The blockade of sparing in the P7 frontal operates was associated with a smaller brain, thinner cortex, and reduced cortical dendritic branching relative to saline-treated P7 frontal operates. NA depletion alone in unoperated rats did not affect spatial learning but did reduce brain size and dendritic branching. Rats with frontal lesions on P4 did not show sparing of spatial localization, and 6HDA administration had no additional behavioral effect. Overall, these data are consistent with the notion that NA has some general function in maintaining some forms of plasticity in posterior cortex. PMID:1607943

  20. Carnosine pretreatment protects against hypoxia-ischemia brain damage in the neonatal rat model.

    PubMed

    Zhang, Xiangmin; Song, Lili; Cheng, Xiuyong; Yang, Yi; Luan, Bin; Jia, Liting; Xu, Falin; Zhang, Zhan

    2011-09-30

    Perinatal hypoxia-ischemia brain injury is a major cause of mortality and morbidity in neonates and lacks an effective treatment thus far. Carnosine has been demonstrated to play a neuroprotective role in the adult brain injuries. However, there is no information available concerning its neuroprotective role in the immature brains after hypoxia-ischemia insults. Therefore, we investigated whether carnosine could also confer neuroprotective effects in a neonatal rat hypoxia-ischemia model. Hypoxia-ischemia was induced in rats on postnatal day 7 (P7). Carnosine (250 mg/kg) was administered intraperitoneally, 30 min prior to hypoxia-ischemia induction. Morphological brain injury and biochemical markers of apoptosis and oxidative stress were evaluated 24 h after hypoxia-ischemia induction. Cognitive performance was evaluated by the Morris Water Maze test on P28-P33. We found that pretreatment with carnosine significantly reduced the infarct volume and the number of terminal-deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells in the hypoxia-ischemia brain. Carnosine also inhibited mRNA expression of apoptosis-inducing factor(AIF) and caspase-3, which was accompanied by an increase in superoxide dismutase(SOD)activity and a decrease in the malondialdehyde(MDA)level in carnosine-treated rats. Furthermore, carnosine also improved the spatial learning and memory abilities of rats declined due to hypoxia-ischemia. These results demonstrate that carnosine can protect rats against hypoxia-ischemia-induced brain damage by antioxidation. PMID:21693116

  1. [SUSTENTOCYTE NUMBERS IN THE NEONATAL PERIOD IN THE OFFSPRING OF FEMALE RATS WITH EXPERIMENTAL LIVER DAMAGE].

    PubMed

    Briukhin, G V; Sizonenko, M L

    2016-01-01

    On serial histological sections of the testes, stained with hematoxylin-eosin, using a morphometric device, the total numbers of spermatogenic cells and sustentocytes (Sertoli cells) were measured in the convoluted seminiferous tubules of neonatal rat pups. Experimental groups consisted of rats born from females with experimental liver damage of various origins--autoimmune (n = 33), toxic (n = 32), alcoholic (n = 12), and medicinal (n = 27). The control group included pups born from normal female rats (n = 14). In experimental rats both increase and decrease of the total number of sustentocytes was detected. In the animals of most of the experimental groups, sustentocyte cell index reflecting the ratio of the number of spermatogenic cells and sustentocytes, was decreased. PMID:27487667

  2. Voluntary exercise-induced changes in beta2-adrenoceptor signalling in rat ventricular myocytes.

    PubMed

    Stones, Rachel; Natali, Antonio; Billeter, Rudolf; Harrison, Simon; White, Ed

    2008-09-01

    Regular exercise is beneficial to cardiovascular health. We tested whether mild voluntary exercise training modifies key myocardial parameters [ventricular mass, intracellular calcium ([Ca2+]i) handling and the response to beta-adrenoceptor (beta-AR) stimulation] in a manner distinct from that reported for beneficial, intensive training and pathological hypertrophic stimuli. Female rats performed voluntary wheel-running exercise for 6-7 weeks. The mRNA expression of target proteins was measured in left ventricular tissue using real-time reverse transcriptase-polymerase chain reaction. Simultaneous measurement of cell shortening and [Ca2+]i transients were made in single left ventricular myocytes and the inotropic response to beta1- and beta2-AR stimulation was measured. Voluntary exercise training resulted in cardiac hypertrophy, the heart weight to body weight ratio being significantly greater in trained compared with sedentary animals. However, voluntary exercise caused no significant alteration in the size or time course of myocyte shortening and [Ca2+]i transients or in the mRNA levels of key proteins that regulate Ca2+ handling. The positive inotropic response to beta1-AR stimulation and the level of beta1-AR mRNA were unaltered by voluntary exercise but both mRNA levels and inotropic response to beta2-AR stimulation were significantly reduced in trained animals. The beta2-AR inotropic response was restored by exposure to pertussis toxin. We propose that in contrast to pathological stimuli and to beneficial, intense exercise training, modulation of Ca2+ handling is not a major adaptive mechanism in the response to mild voluntary exercise. In addition, and in a reversal of the situation seen in heart failure, voluntary exercise training maintains the beta1-AR response but reduces the beta2-AR response. Therefore, although voluntary exercise induces cardiac hypertrophy, there are distinct differences between its effects on key myocardial regulatory mechanisms

  3. STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes

    PubMed Central

    Zhao, Guiling; Li, Tianyu; Brochet, Didier X. P.; Rosenberg, Paul B.; Lederer, W. J.

    2015-01-01

    In ventricular myocytes, the physiological function of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum (ER/SR) Ca2+ sensor, is unclear with respect to its cellular localization, its Ca2+-dependent mobilization, and its action on Ca2+ signaling. Confocal microscopy was used to measure Ca2+ signaling and to track the cellular movement of STIM1 with mCherry and immunofluorescence in freshly isolated adult rat ventricular myocytes and those in short-term primary culture. We found that endogenous STIM1 was expressed at low but measureable levels along the Z-disk, in a pattern of puncta and linear segments consistent with the STIM1 localizing to the junctional SR (jSR). Depleting SR Ca2+ using thapsigargin (2–10 µM) changed neither the STIM1 distribution pattern nor its mobilization rate, evaluated by diffusion coefficient measurements using fluorescence recovery after photobleaching. Two-dimensional blue native polyacrylamide gel electrophoresis and coimmunoprecipitation showed that STIM1 in the heart exists mainly as a large protein complex, possibly a multimer, which is not altered by SR Ca2+ depletion. Additionally, we found no store-operated Ca2+ entry in control or STIM1 overexpressing ventricular myocytes. Nevertheless, STIM1 overexpressing cells show increased SR Ca2+ content and increased SR Ca2+ leak. These changes in Ca2+ signaling in the SR appear to be due to STIM1 binding to phospholamban and thereby indirectly activating SERCA2a (Sarco/endoplasmic reticulum Ca2+ ATPase). We conclude that STIM1 binding to phospholamban contributes to the regulation of SERCA2a activity in the steady state and rate of SR Ca2+ leak and that these actions are independent of store-operated Ca2+ entry, a process that is absent in normal heart cells. PMID:26261328

  4. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    PubMed

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions. PMID:26794834

  5. Treprostinil potentiates the positive inotropic effect of catecholamines in adult rat ventricular cardiomyocytes

    PubMed Central

    Fontana, M; Olschewski, H; Olschewski, A; Schlüter, K-D

    2007-01-01

    Background and purpose: Prostanoids have been shown to improve exercise tolerance, hemodynamics and quality of life in patients with pulmonary arterial hypertension (PAH). We investigated whether treprostinil exerts direct contractile effects on cardiomyocytes that may explain partly the beneficial effects of these drugs. Experimental approach: Ventricular cardiomyocytes from adult rats were paced at a constant frequency of 0.5 to 2.0 Hz and cell shortening was monitored via a cell edge detection system. Twitch amplitudes, expressed as percent cell shortening of the diastolic cell length, and maximal contraction velocity, relaxation velocity, time to peak of contraction and time to reach 50% of relaxation were analyzed. Key results: Treprostinil (0.15 – 15 ng ml−1) slightly increased contractile dynamics of cardiomyocytes at clinically relevant concentrations. However, the drug significantly improved cell shortening of cardiomyocytes in the presence of isoprenaline, a β-adrenoceptor agonist. Treprostinil exerted this effect at all beating frequencies under investigation. Treprostinil mimicked this potentiating effect in a Langendorff preparation as well. The potentiating effect of treprostinil on isoprenaline-dependent cell shortening was no longer seen after phosphodiesterase inhibition. Long-term cultivation of cardiomyocytes with treprostinil did not modify load free cell shortening of these cells, but reduces the duration of contraction. Conclusions and implications: We conclude that the clinically used prostanoid treprostinil potentiates the positive inotropic effects of catecholamines in adult ventricular cardiomyocytes. This newly described effect may contribute to the beneficial clinical effects of prostanoids in patients with PAH. PMID:17533419

  6. Neuroprotective effects of NGF, BDNF, NT-3 and GDNF on axotomized extraocular motoneurons in neonatal rats.

    PubMed

    Morcuende, S; Muñoz-Hernández, R; Benítez-Temiño, B; Pastor, A M; de la Cruz, R R

    2013-10-10

    Neurotrophic factors delivered from target muscles are essential for motoneuronal survival, mainly during development and early postnatal maturation. It has been shown that the disconnection between motoneurons and their innervated muscle by means of axotomy produces a vast neuronal death in neonatal animals. In the present work, we have evaluated the effects of different neurotrophic factors on motoneuronal survival after neonatal axotomy, using as a model the motoneurons innervating the extraocular eye muscles. With this purpose, neonatal rats were monocularly enucleated at the day of birth (postnatal day 0) and different neurotrophic treatments (NGF, BDNF, NT-3, GDNF and the mixture of BDNF+GDNF) were applied intraorbitally by means of a Gelfoam implant (a single dose of 5 μg of each factor). We first demonstrated that extraocular eye muscles of neonatal rats expressed these neurotrophic factors and therefore constituted a natural source of retrograde delivery for their innervating motoneurons. By histological and immunocytochemical methods we determined that all treatments significantly rescued extraocular motoneurons from axotomy-induced cell death. For the dose used, NGF and GDNF were the most potent survival factors for these motoneurons, followed by BDNF and lastly by NT-3. The simultaneous administration of BDNF and GDNF did not increase the survival-promoting effects above those obtained by GDNF alone. Interestingly, the rescue effects of all neurotrophic treatments persisted even 30 days after lesion. The administration of these neurotrophic factors, with the exception of NT-3, also prevented the loss of the cholinergic phenotype observed by 10 days after axotomy. At the dosage applied, NGF and GDNF were revealed again as the most effective neuroprotective agents against the axotomy-induced decrease in ChAT. Two remarkable findings highlighted in the present work that contrasted with other motoneuronal types after neonatal axotomy: first, the extremely

  7. Pharmacological inhibition of IK1 by PA-6 in isolated rat hearts affects ventricular repolarization and refractoriness.

    PubMed

    Skarsfeldt, Mark A; Carstensen, Helena; Skibsbye, Lasse; Tang, Chuyi; Buhl, Rikke; Bentzen, Bo H; Jespersen, Thomas

    2016-04-01

    The inwardly rectifying potassium current (IK 1) conducted through Kir2.X channels contribute to repolarization of the cardiac action potential and to stabilization of the resting membrane potential in cardiomyocytes. Our aim was to investigate the effect of the recently discovered IK 1 inhibitor PA-6 on action potential repolarization and refractoriness in isolated rat hearts. Transiently transfected HEK-293 cells expressing IK 1 were voltage-clamped with ramp protocols. Langendorff-perfused heart experiments were performed on male Sprague-Dawley rats, effective refractory period, Wenckebach cycle length, and ventricular effective refractory period were determined following 200 nmol/L PA-6 perfusion. 200 nmol/L PA-6 resulted in a significant time-latency in drug effect on the IK 1 current expressed in HEK-293 cells, giving rise to a maximal effect at 20 min. In the Langendorff-perfused heart experiments, PA-6 prolonged the ventricular action potential duration at 90% repolarization (from 41.8 ± 6.5 msec to 72.6 ± 21.1 msec, 74% compared to baseline, P < 0.01, n = 6). In parallel, PA-6 significantly prolonged the ventricular effective refractory period compared to baseline (from 34.8 ± 4.6 msec to 58.1 ± 14.7 msec, 67%, P < 0.01, n = 6). PA-6 increased the short-term beat-to-beat variability and ventricular fibrillation was observed in two of six hearts. Neither atrial ERP nor duration of atrial fibrillation was altered following PA-6 application. The results show that pharmacological inhibition of cardiac IK 1 affects ventricular action potential repolarization and refractoriness and increases the risk of ventricular arrhythmia in isolated rat hearts. PMID:27117805

  8. NEONATAL LOW- AND HIGH-DOSE EXPOSURE TO ESTRADIOL BENZOATE IN THE MALE RAT: I. EFFECTS ON THE PROSTATE GLAND

    EPA Science Inventory

    Neonatal Low- And High-Dose Exposure To Estradiol Benzoate In The Male Rat: 1. Effects On The Prostate Gland. Oliver Putz, Christian B. Schwartz, Steve Kim, Gerald A. LeBlanc Ralph L. Cooper, Gail S. Prins

    ABSTRACT
    Brief exposure of rats to high doses of natural estro...

  9. Activity and Social Behavior in a Complex Environment in Rats Neonatally Exposed to Alcohol

    PubMed Central

    Boschen, Karen E.; Hamilton, Gillian F.; Delorme, James E.; Klintsova, Anna Y.

    2014-01-01

    Environmental complexity (EC) is a powerful, stimulating paradigm that engages animals through a variety of sensory and motor pathways. Exposure to EC (30 days) following 12 days of wheel running preserves hippocampal neuroplasticity in male rats neonatally exposed to alcohol during the third-trimester equivalent (binge-like exposure on postnatal days [PD] 4–9). The current experiment investigates the importance of various components of EC (physical activity, exploration, social interaction, novelty) and examines whether neonatal alcohol exposure affects how male rats interact with their environment and other male rats. Male pups were assigned to 1 of 3 neonatal conditions from PD 4–9: suckle control (SC), sham-intubated (SI), or alcohol-exposed (AE, 5.25 g/kg/day). From PD 30–42 animals were housed with 24-h access to a voluntary running wheel. The animals were then placed in EC from PD 42–72 (9 animals/cage, counterbalanced by neonatal condition). During EC, the animals were filmed for five 30-min sessions (PD 42, 48, 56, 64, 68). For the first experiment, the videos were coded for distance traveled in the cage, overall locomotor activity, time spent near other animals, and interaction with toys. For the second experiment, the videos were analyzed for wrestling, mounting, boxing, grooming, sniffing, and crawling over/under. AE animals were found to be less active and exploratory and engaged in fewer mounting behaviors compared to control animals. Results suggest that after exposure to wheel running, AE animals still have deficits in activity and social behaviors while housed in EC compared to control animals with the same experience. PMID:25150044

  10. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat.

    PubMed

    Kao, Tina; Shumsky, Jed S; Murray, Marion; Moxon, Karen A

    2009-06-10

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/d, 5 d/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping, and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single-neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation, but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  11. Activity and social behavior in a complex environment in rats neonatally exposed to alcohol.

    PubMed

    Boschen, Karen E; Hamilton, Gillian F; Delorme, James E; Klintsova, Anna Y

    2014-09-01

    Environmental complexity (EC) is a powerful, stimulating paradigm that engages animals through a variety of sensory and motor pathways. Exposure to EC (30 days) following 12 days of wheel running preserves hippocampal neuroplasticity in male rats neonatally exposed to alcohol during the third-trimester equivalent (binge-like exposure on postnatal days [PD] 4-9). The current experiment investigates the importance of various components of EC (physical activity, exploration, social interaction, novelty) and examines whether neonatal alcohol exposure affects how male rats interact with their environment and other male rats. Male pups were assigned to 1 of 3 neonatal conditions from PD 4-9: suckle control (SC), sham-intubated (SI), or alcohol-exposed (AE, 5.25 g/kg/day). From PD 30-42 animals were housed with 24-h access to a voluntary running wheel. The animals were then placed in EC from PD 42-72 (9 animals/cage, counterbalanced by neonatal condition). During EC, the animals were filmed for five 30-min sessions (PD 42, 48, 56, 64, 68). For the first experiment, the videos were coded for distance traveled in the cage, overall locomotor activity, time spent near other animals, and interaction with toys. For the second experiment, the videos were analyzed for wrestling, mounting, boxing, grooming, sniffing, and crawling over/under. AE animals were found to be less active and exploratory and engaged in fewer mounting behaviors compared to control animals. Results suggest that after exposure to wheel running, AE animals still have deficits in activity and social behaviors while housed in EC compared to control animals with the same experience. PMID:25150044

  12. NEUROTOXICITY OF PARATHION-INDUCED ACETYLCHOLINESTERASE INHIBITION IN NEONATAL RATS

    EPA Science Inventory

    The biochemical and morphological neurotoxic effects of postnatal acetylcholinesterase (AChE) inhibition were examined in rat pups dosed with parathion, at time points critical to hippocampal neurogenesis and synaptogenesis (i.e., D5-20). ippocampal cytopathology as assessed by l...

  13. Effects of Sleep Deprivation on Action Potential and Transient Outward Potassium Current in Ventricular Myocytes in Rats

    PubMed Central

    Fang, Zhou; Ren, Yi-Peng; Lu, Cai-Yi; Li, Yang; Xu, Qiang; Peng, Li; Fan, Yong-Yan

    2015-01-01

    Background Sleep deprivation contributes to the development and recurrence of ventricular arrhythmias. However, the electrophysiological changes in ventricular myocytes in sleep deprivation are still unknown. Material/Methods Sleep deprivation was induced by modified multiple platform technique. Fifty rats were assigned to control and sleep deprivation 1, 3, 5, and 7 days groups, and single ventricular myocytes were enzymatically dissociated from rat hearts. Action potential duration (APD) and transient outward current (Ito) were recorded using whole-cell patch clamp technique. Results Compared with the control group, the phases of APD of ventricular myocytes in 3, 5, and 7 days groups were prolonged and APD at 20% and 50% level of repolarization (APD20 and APD50) was significantly elongated (The APD20 values of control, 1, 3, 5, and 7 days groups: 5.66±0.16 ms, 5.77±0.20 ms, 8.28±0.30 ms, 11.56±0.32 ms, 13.24±0.56 ms. The APD50 values: 50.66±2.16 ms, 52.77±3.20 ms, 65.28±5.30 ms, 83.56±7.32 ms, 89.24±5.56 ms. P<0.01, n=18). The current densities of Ito significantly decreased. The current density-voltage (I–V) curve of Ito was vitally suppressed downward. The steady-state inactivation curve and steady-state activation curve of Ito were shifted to left and right, respectively, in sleep deprivation rats. The inactivation recovery time of Ito was markedly retarded and the time of closed-state inactivation was markedly accelerated in 3, 5, and 7 days groups. Conclusions APD of ventricular myocytes in sleep deprivation rats was significantly prolonged, which could be attributed to decreased activation and accelerated inactivation of Ito. PMID:25694200

  14. Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes.

    PubMed

    Despa, Sanda; Bers, Donald M

    2007-07-01

    The Na(+)/K(+)-ATPase (NKA) is the main route for Na(+) extrusion from cardiac myocytes. Different NKA alpha-subunit isoforms are present in the heart. NKA-alpha1 is predominant, although there is a variable amount of NKA-alpha2 in adult ventricular myocytes of most species. It has been proposed that NKA-alpha2 is localized mainly in T-tubules (TT), where it could regulate local Na(+)/Ca(2+) exchange and thus cardiac myocyte Ca(2+). However, there is controversy as to where NKA-alpha1 vs. NKA-alpha2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (I(Pump)) measurements and the different ouabain sensitivity of NKA-alpha1 (low) and NKA-alpha2 (high) in rat heart. Ouabain-dependent I(Pump) inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-alpha2, K(1/2) = 0.38 +/- 0.16 microM) that accounts for 29.5 +/- 1.3% of I(Pump) and a low-affinity isoform (NKA-alpha1, K(1/2) = 141 +/- 17 microM) that accounts for 70.5% of I(Pump). Detubulation decreased cell capacitance from 164 +/- 6 to 120 +/- 8 pF and reduced I(Pump) density from 1.24 +/- 0.05 to 1.02 +/- 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-alpha2 accounted for only 18.2 +/- 1.1% of I(Pump). Thus, approximately 63% of I(Pump) generated by NKA-alpha2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-alpha2/NKA-alpha1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-alpha2 is approximately 4.5 times higher in the T-tubules vs. ESL, whereas NKA-alpha1 is almost uniformly distributed between the TT and ESL. PMID:17392375

  15. The effect of exposure to hypergravity on pregnant rat dams, pregnancy outcome and early neonatal development

    NASA Astrophysics Data System (ADS)

    Ladd, B.; Nguon, K.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that hypergravity exposure affects food intake and mass gain during pregnancy. In the present study, we explored the hypothesis that changes in maternal body mass in hypergravity-exposed pregnant rat dams affect pregnancy outcome and early offspring development. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravity and by exposure during critical developmental periods. To test this hypothesis, we compared maternal body mass gain, food consumption, birth outcome and early offspring development between Sprague Dawley rat dams exposed to graded (1.5 1.75G) chronic hypergravity (HG) or rotation (rotational control, RC) on a 24-ft centrifuge for 22.5 h starting on gestational day (G) 10 with dams housed under identical conditions but not exposed to hypergravity (SC). We also compared maternal body mass, food consumption, birth outcome and early offspring development between rat dams exposed to 1.65G during different stages of pregnancy and nursing. Exposure to hypergravity resulted in transient loss in body mass and prolonged decrease in food consumption in HG dams, but the changes observed at 1.5G were not magnified at 1.65G or 1.75G. On the other hand RC dams gained more mass and consumed more food than SC dams. Exposure to hypergravity also affected pregnancy outcome as evidenced by decreased litter size, lowered neonatal mass at birth, and higher neonatal mortality; pregnancy outcome was not affected in RC dams. Neonatal changes evidenced by impaired righting response observed at 1.5G was magnified at higher gravity and was dependent on the period of hypergravity exposure. On the other hand, righting response was improved in RC neonates. Hypergravity exposure during early postpartum affected the food consumption of nursing mothers and affected early survival of their offspring. The changes observed in dams and neonates appear to be due to hypergravity exposure since animals exposed to the rotation

  16. Environmental Enrichment Decreases Asphyxia-Induced Neurobehavioral Developmental Delay in Neonatal Rats

    PubMed Central

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-01-01

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia. PMID:24232451

  17. Increased concentrations of 3-hydroxykynurenine in vitamin B6 deficient neonatal rat brain.

    PubMed

    Guilarte, T R; Wagner, H N

    1987-12-01

    Increased concentrations of the endogenous tryptophan metabolite 3-hydroxykynurenine (3-HK) were measured in the brains of vitamin B6 deficient neonatal rats. Mean concentrations of 3-HK in B6 deficient cerebellum, corpus striatum, frontal cortex, and pons/medulla ranged from 9.7 to 18.6 and 102 to 142 nmol/g of wet tissue at 14 and 18 days of age, respectively. 3-HK was not significantly increased in control neonatal or adult rat brain, vitamin B6 deficient rat brain at 7 days of age, or in brains from adult rats deprived of vitamin B6 for 58 days. The administration of daily intraperitoneal injections of vitamin B6 from the 14th to the 18th day of age decreased the concentration of 3-HK to control levels. 3-HK has been shown by other investigators to produce seizures when injected into the cerebral ventricles of adult rodents. Thus, our studies show the accumulation in brain of a putative endogenous convulsant as the result of a nutritional deficiency. PMID:3681302

  18. Experimental Nonalcoholic Steatohepatitis Induced by Neonatal Streptozotocin Injection and a High-Fat Diet in Rats.

    PubMed

    Hsu, Huai-Che; Dozen, Masaharu; Matsuno, Naoto; Obara, Hiromichi; Tanaka, Ryou; Enosawa, Shin

    2013-12-30

    Nonalcoholic steatohepatitis (NASH) has become a major concern in clinical hepatology. To elucidate the disease mechanisms and to develop a treatment, the advent of an appropriate experimental model is crucial. Pregnant Sprague-Dawley rats were fed a high-fat diet from gestational day 16. Two days after birth, the neonates were injected subcutaneously with streptozotocin (STZ) (180, 200, or 256 mg/kg). The mothers were fed a high-fat diet during the nursing period. After being weaned (4 weeks of age), the juvenile rats were fed the same high-fat diet. The survival rates at the time of weaning were 25.6% (180 mg/kg STZ), 22.8% (200 mg/kg STZ), and 19.4% (256 mg/kg STZ). The mean body weight of NASH rats was approximately 20% less than that of normal rats. Serum levels of glucose, alanine aminotransferase, and hyaluronic acid increased in NASH rats. Histologically, typical features of steatohepatitis such as ballooning, inflammatory cell infiltration, and perivenular and pericellular fibrosis were observed. In an indocyanine green loading test, the blood half-life was significantly longer in NASH rats (5.04 ± 2.14 vs. 2.72 ± 0.72 min; p < 0.05), which was suggestive of an impaired hepatobiliary transportation function. Concomitantly, biliary ICG concentrations in NASH rats stabilized in a delayed fashion compared with normal rats. In addition, the amount of bile excreted in NASH rats was significantly lower than that in normal rats (4.32 ± 0.83 vs. 7.66 ± 1.05 mg/min; p < 0.01). The rat NASH model presented here mimics the clinical features of the disease and will be a helpful tool for medical and bioscience research. PMID:26858881

  19. Behavioral and Neurochemical Deficits in Aging Rats with Increased Neonatal Iron Intake: Silibinin’s Neuroprotection by Maintaining Redox Balance

    PubMed Central

    Chen, Hanqing; Wang, Xijin; Wang, Meihua; Yang, Liu; Yan, Zhiqiang; Zhang, Yuhong; Liu, Zhenguo

    2015-01-01

    Aging is a critical risk factor for Parkinson’s disease. Silibinin, a major flavonoid in Silybum marianum, has been suggested to display neuroprotective properties against various neurodegenerative diseases. In the present study, we observed that neonatal iron (120 μg/g body weight) supplementation resulted in significant abnormality of behavior and depletion of striatal dopamine (DA) in the aging male and female rats while it did not do so in the young male and female rats. No significant change in striatal serotonin content was observed in the aging male and female rats with neonatal supplementation of the same dose of iron. Furthermore, we found that the neonatal iron supplementation resulted in significant increase in malondialdehyde (MDA) and decrease in glutathione (GSH) in the substantia nigra (SN) of the aging male and female rats. No significant change in content of MDA and GSH was observed in the cerebellum of the aging male and female rats with the neonatal iron supplementation. Interestingly, silibinin (25 and 50 mg/kg body weight) treatment significantly and dose-dependently attenuated depletion of striatal DA and improved abnormality of behavior in the aging male and female rats with the neonatal iron supplementation. Moreover, silibinin significantly reduced MDA content and increased GSH content in the SN of the aging male and female rats. Taken together, our results indicate that elevated neonatal iron supplementation may result in neurochemical and behavioral deficits in the male and female rats with aging and silibinin may exert dopaminergic neuroprotection by maintaining redox balance. PMID:26578951

  20. Time course of myosin heavy chain transitions in neonatal rats: importance of innervation and thyroid state

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; McCue, S. A.; Zeng, M.; Baldwin, K. M.

    1999-01-01

    During the postnatal period, rat limb muscles adapt to weight bearing via the replacement of embryonic (Emb) and neonatal (Neo) myosin heavy chains (MHCs) by the adult isoforms. Our aim was to characterize this transition in terms of the six MHC isoforms expressed in skeletal muscle and to determine the importance of innervation and thyroid hormone status on the attainment of the adult MHC phenotype. Neonatal rats were made hypothyroid via propylthiouracil (PTU) injection. In normal and PTU subgroups, leg muscles were unilaterally denervated at 15 days of age. The MHC profiles of plantaris (PLN) and soleus (Sol) muscles were determined at 7, 14, 23, and 30 days postpartum. At day 7, the Sol MHC profile was 55% type I, 30% Emb, and 10% Neo; in the PLN, the pattern was 60% Neo and 25% Emb. By day 30 the Sol and PLN had essentially attained an adult MHC profile in the controls. PTU augmented slow MHC expression in the Sol, whereas in the PLN it markedly repressed IIb MHC by retaining neonatal MHC expression. Denervation blunted the upregulation of IIb in the PLN and of Type I in the Sol and shifted the pattern to greater expression of IIa and IIx MHCs in both muscles. In contrast to previous observations, these findings collectively suggest that both an intact thyroid and innervation state are obligatory for the attainment of the adult MHC phenotype, particularly in fast-twitch muscles.

  1. Striatal GABA receptor alterations in hypoxic neonatal rats: role of glucose, oxygen and epinephrine treatment.

    PubMed

    Anju, T R; Binoy, J; Anitha, M; Paulose, C S

    2012-03-01

    Hypoxia in neonates disrupts the oxygen flow to the brain, essentially starving the brain and preventing it from performing vital biochemical processes important for central nervous system development. Hypoxia results in a permanent brain damage by gene and receptor level alterations mediated through neurotransmitters. The present study evaluated GABA, GABAA, GABAB receptor functions and gene expression changes in glutamate decarboxylase in the corpus striatum of hypoxic neonatal rats and the treatment groups with glucose, oxygen and epinephrine. Since GABA is the principal neurotransmitter involved in hypoxic ventilatory decline, the alterations in its level under hypoxic stress points to an important aspect of respiratory control. Following hypoxic stress, a significant decrease in total GABA, GABAA and GABAB receptors function and GAD expression was observed in the striatum, which accounts for the ventilator decline. Hypoxic rats treated with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD to near control. Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation helps in overcoming reduction in oxygen supply. Treatment with oxygen alone and epinephrine was not effective in reversing the altered receptor functions. Thus, our study point to the functional role of GABA receptors in mediating ventilatory response to hypoxia and the neuroprotective role of glucose treatment. This has immense significance in the proper management of neonatal hypoxia for a better intellect in the later stages of life. PMID:22089934

  2. Neonatal anoxia in rats: hippocampal cellular and subcellular changes related to cell death and spatial memory.

    PubMed

    Takada, S H; dos Santos Haemmerle, C A; Motta-Teixeira, L C; Machado-Nils, A V; Lee, V Y; Takase, L F; Cruz-Rizzolo, R J; Kihara, A H; Xavier, G F; Watanabe, I-S; Nogueira, M I

    2015-01-22

    Neonatal anoxia in rodents has been used to understand brain changes and cognitive dysfunction following asphyxia. This study investigated the time-course of cellular and subcellular changes and hippocampal cell death in a non-invasive model of anoxia in neonatal rats, using Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) to reveal DNA fragmentation, Fluoro-Jade® B (FJB) to show degenerating neurons, cleaved caspase-3 immunohistochemistry (IHC) to detect cells undergoing apoptosis, and transmission electron microscopy (TEM) to reveal fine ultrastructural changes related to cell death. Anoxia was induced by exposing postnatal day 1 (P1) pups to a flow of 100% gaseous nitrogen for 25 min in a chamber maintained at 37 °C. Control rats were similarly exposed to this chamber but with air flow instead of nitrogen. Brain changes following anoxia were evaluated at postnatal days 2, 14, 21 and 60 (P2, P14, P21 and P60). In addition, spatial reference memory following anoxia and control treatments was evaluated in the Morris water maze, starting at P60. Compared to their respective controls, P2 anoxic rats exhibited (1) higher TUNEL labeling in cornus ammonis (CA) 1 and the dentate gyrus (DG), (2) higher FJB-positive cells in the CA2-3, and (3) somato-dendritic swelling, mitochondrial injury and chromatin condensation in irregular bodies, as well as other subcellular features indicating apoptosis, necrosis, autophagy and excitotoxicity in the CA1, CA2-3 and DG, as revealed by TEM. At P14, P21 and P60, both groups showed small numbers of TUNEL-positive and FJB-positive cells. Stereological analysis at P2, P14, P21 and P60 revealed a lack of significant differences in cleaved caspase-3 IHC between anoxic and control subjects. These results suggest that the type of hippocampal cell death following neonatal anoxia is likely independent of caspase-3 activation. Neonatal anoxia induced deficits in acquisition and performance of spatial reference

  3. The uptake and transmission of protein by neonatal rat enterocytes.

    PubMed Central

    Morris, B; Morris, R; Solari, R

    1981-01-01

    1. Proximal enterocytes transmitted intact immunoglobulin G (IgG) preferentially in the order rat, human, sheep and bovine; the removal from the vascular compartment of these transmitted molecules occurred at about the same rate. 2. Heterologous IgGs are processed similarly to rat IgG: they are either transmitted intact or broken down to less than 1000 mol. wt. fragments. 3. All of the human transferrin removed from the intestine was broken down to less than 1000 mol. wt. fragments, but a small amount of bovine serum albumin (BSA) was transmitted intact. 4. The IgGs and BSA are relatively indigestible molecules whereas human transferrin is relatively digestible. 5. These observations are discussed in the context of receptor-mediated transmission. PMID:7264976

  4. Development of insulation in neonatal cotton rats (Sigmodon hispidus)

    SciTech Connect

    McClure, P.A.; Porter, W.P.

    1983-01-01

    Data on environmental temperatures, skin temperature, animal size, the depth of fur, density of hairs in fur, hair length, and diameter of hair shafts were used to calculate fur thermal conductivity and heat loss, using a porous medium model modified for that of Kowalski and Mitchell. The total thermal conductivity of fur changed little with respect to the age of the animal, but calculated heat loss per unit area decreased because of a decrease in the thermal gradient across the fur caused by an increase in fur depth. A sensitivity analysis of the model showed that skin, air, and radiant environmental temperatures were most important in determining heat loss in all sizes of animals. Fur depth is the only important property of fur determining heat loss in nestling rats, but in adults, all the properties of fur exert significant effects on heat loss. The diameter of animals is a significant variable in all sizes of rats.

  5. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats.

    PubMed

    Fedail, Jaafar Sulieman; Zheng, Kaizhi; Wei, Quanwei; Kong, Lingfa; Shi, Fangxiong

    2014-08-01

    Thyroid hormones (TH) play a critical role in ovarian follicular development, maturation and the maintenance of various endocrine functions. However, whether TH can affect ovarian follicular development in neonatal and immature rats remains unclear. Therefore, the aim of the present study was to elucidate the effect of TH on ovarian follicular development in neonatal and immature rats. Thirty female post-lactation mothers of Sprague-Dawley rat pups were randomly divided into three groups: control, hyperthyroid (hyper), and hypothyroid (hypo). On postnatal days (PND) 10 and 21, body weights, serum hormones, ovarian histologic changes, and immunohistochemistry of thyroid hormone receptor alpha 1 (TRα1) and nitric oxide synthase types (NOS), and NOS activities, were determined. The data showed that body weights significantly decreased in both hyper and hypo groups compared with the control group (P < 0.05). In addition, the hyper group had increased serum concentrations of T3, T4, and E2; whereas the hypo group manifested reduced serum concentrations of T3, T4, and E2 on PND 10 and 21. The hyper and hypo groups showed significantly reduced total number of primordial, primary and secondary follicles on PND 10 and 21 compared with the control group (P < 0.05). Similarly, antral follicle numbers in the hyper and hypo groups were significantly decreased on PND 21 compared with the control group (P < 0.05). Immunostaining indicated that TRα1 and NOS were expressed in ovarian surface epithelium and oocytes of growing and antral follicles, with strong staining of the granulosa and theca cells of follicles. NOS activities were significantly augmented in the hyper, but diminished in the hypo groups on PND 10 and 21. In summary, our findings suggest that TH play important roles in ovarian functions and in the regulation of NOS activity. Our results also indicate that a relationship exists between the TH and NO signaling pathways during the process of ovarian follicular

  6. Gender and estrous cycle influences on behavioral and neurochemical alterations in adult rats neonatally administered ketamine.

    PubMed

    Célia Moreira Borella, Vládia; Seeman, Mary V; Carneiro Cordeiro, Rafaela; Vieira dos Santos, Júnia; Romário Matos de Souza, Marcos; Nunes de Sousa Fernandes, Ethel; Santos Monte, Aline; Maria Mendes Vasconcelos, Silvânia; Quinn, John P; de Lucena, David F; Carvalho, André F; Macêdo, Danielle

    2016-05-01

    Neonatal N-methyl-D-aspartate (NMDA) receptor blockade in rodents triggers schizophrenia (SCZ)-like alterations during adult life. SCZ is influenced by gender in age of onset, premorbid functioning, and course. Estrogen, the hormone potentially driving the gender differences in SCZ, is known to present neuroprotective effects such as regulate oxidative pathways and the expression of brain-derived neurotrophic factor (BDNF). Thus, the aim of this study was to verify if differences in gender and/or estrous cycle phase during adulthood would influence the development of behavioral and neurochemical alterations in animals neonatally administered ketamine. The results showed that ketamine-treated male (KT-male) and female-in-diestrus (KTF-diestrus, the low estrogen phase) presented significant deficits in prepulse inhibition of the startle reflex and spatial working memory, two behavioral SCZ endophenotypes. On the contrary, female ketamine-treated rats during proestrus (KTF-proestrus, the high estradiol phase) had no behavioral alterations. This correlated with an oxidative imbalance in the hippocampus (HC) of both male and KTF-diestrus female rats, that is, decreased levels of GSH and increased levels of lipid peroxidation and nitrite. Similarly, BDNF was decreased in the KTF-diestrus rats while no alterations were observed in KTF-proestrus and male animals. The changes in the HC were in contrast to those in the prefrontal cortex in which only increased levels of nitrite in all groups studied were observed. Thus, there is a gender difference in the adult rat HC in response to ketamine neonatal administration, which is based on the estrous cycle. This is discussed in relation to neuropsychiatric conditions and in particular SCZ. PMID:26215537

  7. Early walking in the neonatal rat: a kinematic study.

    PubMed

    Jamon, M; Clarac, F

    1998-10-01

    The development of the early stage of locomotion (between Postnatal Days 3 and 10) was studied in newborn rats. At this age, rats are known to perform limited locomotor activities, consisting of an inefficient nonpostural gait termed crawling. By providing appropriate olfactory stimulation, it was possible to override the pups' reluctance to walk and to discover their actual locomotor abilities. The step period decreased from 1,200 ms to 900 ms from Postnatal Days 4 to 9, showing both a regular decrease in the swing and a discontinuous decrease in the stance phase. The fore- and hindlimb periods stabilized early on an alternate pattern of coupling. The ipsilateral coupling shifted progressively from 220 degrees to 260 degrees in relation with the change in the gait pattern. In parallel with the change in timing, the newborn rats showed gradual changes in the foot position and in the interlimb spatial coordination. These results show that quadruped locomotion develops before postural control is acquired, in a continuous process as the nervous system develops. PMID:9829799

  8. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans. PMID:26872850

  9. Neonatal handling (resilience) attenuates water-avoidance stress induced enhancement of chronic mechanical hyperalgesia in the rat

    PubMed Central

    Alvarez, Pedro; Levine, Jon D.; Green, Paul G.

    2015-01-01

    Chronic stress is well known to exacerbate pain. We tested the hypothesis that neonatal handling, which induces resilience to the negative impact of stress by increasing the quality and quantity of maternal care, attenuates the mechanical hyperalgesia produced by water-avoidance stress in the adult rat. Neonatal male rats underwent the handling protocol on postnatal days 2–9, weaned at 21 days and tested for muscle mechanical nociceptive threshold at postnatal days 50–75. Decrease in mechanical nociceptive threshold in skeletal muscle in adult rats, produced by exposure to water-avoidance stress, was significantly attenuated by neonatal handling. Neonatal handling also attenuated the mechanical hyperalgesia produced by intramuscular administration of the pronociceptive inflammatory mediator, prostaglandin E2 in rats exposed as adults to water-avoidance stress. Neonatal handling, which induces a smaller corticosterone response in adult rats exposed to a stressor as well as changes in central nervous system neurotransmitter systems, attenuates mechanical hyperalgesia produced by water-avoidance stress and enhanced prostaglandin hyperalgesia in adult animals. PMID:25637700

  10. Dependence of normal development of skeletal muscle in neonatal rats on load bearing

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2000-01-01

    Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.

  11. Hypercholesterolaemia exacerbates ventricular remodelling after myocardial infarction in the rat: role of angiotensin II type 1 receptors

    PubMed Central

    Mączewski, M; Mączewska, J; Duda, M

    2008-01-01

    Background and purpose: Diet-induced hypercholesterolaemia exacerbates post-myocardial infarction (MI) ventricular remodelling and heart failure, but the mechanism of this phenomenon remains unknown. This study examined whether worsening of post-MI ventricular remodelling induced by dietary hypercholesterolaemia was related to upregulation of angiotensin II type 1 (AT1) receptor in the rat heart. Experimental approach: MI was induced surgically in rats fed normal or high cholesterol diet. Both groups of rats were then assigned to control, atorvastatin, losartan or atorvastatin+losartan-treated subgroups and followed for 8 weeks. Left ventricular (LV) function was assessed with echocardiography. In isolated hearts, LV pressures were measured with a latex balloon and a tip catheter. AT1-receptor density was assessed in LV membranes with radioligand-binding assays. Key results: High cholesterol diet exacerbated LV dilation and dysfunction in post-MI hearts. Atorvastatin or losartan prevented these hypercholesterolaemia-induced effects, whereas their combination was not more effective than each drug alone. AT1 receptors were upregulated 8 weeks after MI, this was further increased by hypercholesterolaemia and restored to baseline levels by atorvastatin. Conclusions and implications: Hypercholesterolaemia exacerbated LV remodelling and dysfunction in post-MI rat hearts and upregulated cardiac AT1 receptors. All these effects were effectively prevented by atorvastatin. Thus, the pleiotropic statin effects may include interference with the renin-angiotensin system through downregulation of AT1 receptors. PMID:18536757

  12. Simvastatin ameliorates ventricular remodeling via the TGF‑β1 signaling pathway in rats following myocardial infarction.

    PubMed

    Xiao, Xiangbin; Chang, Guanglei; Liu, Jian; Sun, Guangyun; Liu, Li; Qin, Shu; Zhang, Dongying

    2016-06-01

    Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)‑β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post‑myocardial infarction via the TGF‑β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg‑1·d‑1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross‑sectional area and the collagen volume fraction, and also showed that the levels of TGF‑β1, TGF‑activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post‑myocardial infarction rats via the TGF‑β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system. PMID:27121011

  13. Simvastatin ameliorates ventricular remodeling via the TGF-β1 signaling pathway in rats following myocardial infarction

    PubMed Central

    XIAO, XIANGBIN; CHANG, GUANGLEI; LIU, JIAN; SUN, GUANGYUN; LIU, LI; QIN, SHU; ZHANG, DONGYING

    2016-01-01

    Statins are widely used in patients with cardiovascular diseases. A considerable number of previous studies revealed that the intracellular signaling of transforming growth factor (TGF)-β1 mediated the development of cardiomyocyte hypertrophy and interstitial fibrosis. However, whether statins can ameliorate ventricular remodeling in post-myocardial infarction via the TGF-β1 signaling pathway remains to be rigorously tested. The left anterior descending artery was ligated to induce a rat model of myocardial infarction. The rat model of myocardial infarction was treated with simvastatin through gastric gavage (10, 20 or 40 mg kg−1·d−1). All rats were sacrificed on day 28 after the myocardial infarction operation. The results revealed that simvastatin significantly improved the hemodynamic indexes, left ventricular mass index, the myocardial tissue structure, the cardiomyocyte cross-sectional area and the collagen volume fraction, and also showed that the levels of TGF-β1, TGF-activated kinase (TAK)1 and drosophila mothers against decapentaplegic (Smad)3 were significantly reduced following treatment with simvastatin, while the levels of Smad7 in the simvastatin treatment groups were markedly increased. The results of the present study suggested that statins ameliorated ventricular remodeling in post-myocardial infarction rats via the TGF-β1 signaling pathway, which provided a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system. PMID:27121011

  14. Inhaled NO prevents hyperoxia-induced white matter damage in neonatal rats.

    PubMed

    Pham, Hoa; Vottier, Gaelle; Pansiot, Julien; Duong-Quy, Sy; Bollen, Bieke; Dalous, Jérémie; Gallego, Jorge; Mercier, Jean-Christophe; Dinh-Xuan, Anh Tuan; Bonnin, Philippe; Charriaut-Marlangue, Christiane; Baud, Olivier

    2014-02-01

    White matter damage (WMD) and bronchopulmonary dysplasia (BPD) are the two main complications occurring in very preterm infants. Inhaled nitric oxide (iNO) has been proposed to promote alveolarization in the developing lung, and we have reported that iNO promotes myelination and induces neuroprotection in neonatal rats with excitotoxic brain damage. Our hypothesis is that, in addition to its pulmonary effects, iNO may be neuroprotective in rat pups exposed to hyperoxia. To test this hypothesis, we exposed rat pups to hyperoxia, and we assessed the impact of iNO on WMD and BPD. Rat pups were exposed to either hyperoxia (80% FiO2) or to normoxia for 8 days. Both groups received iNO (5 ppm) or air. We assessed the neurological and pulmonary effects of iNO in hyperoxia-injured rat pups using histological, molecular and behavioral approaches. iNO significantly attenuated the severity of hyperoxia-induced WMD induced in neonatal rats. Specifically, iNO decreased white matter inflammation, cell death, and enhanced the density of proliferating oligodendrocytes and oligodendroglial maturation. Furthermore, iNO triggered an early upregulation of P27kip1 and brain-derived growth factor (BDNF). Whereas hyperoxia disrupted early associative abilities, iNO treatment maintained learning scores to a level similar to that of control pups. In contrast to its marked neuroprotective effects, iNO induced only small and transient improvements of BPD. These findings suggest that iNO exposure at low doses is specifically neuroprotective in an animal model combining injuries of the developing lung and brain that mimicked BPD and WMD in preterm infants. PMID:24322053

  15. Tyrosine kinase inhibitor BIBF1000 does not hamper right ventricular pressure adaptation in rats.

    PubMed

    de Raaf, Michiel Alexander; Herrmann, Franziska Elena; Schalij, Ingrid; de Man, Frances S; Vonk-Noordegraaf, Anton; Guignabert, Christophe; Wollin, Lutz; Bogaard, Harm Jan

    2016-09-01

    BIBF1000 is a small molecule tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), and platelet-derived growth factor receptor (PDGFR) and is a powerful inhibitor of fibrogenesis. BIBF1000 is very similar to BIBF1120 (nintedanib), a drug recently approved for the treatment of idiopathic pulmonary fibrosis (IPF). A safety concern pertaining to VEGFR, FGFR, and PDGFR inhibition is the possible interference with right ventricular (RV) responses to an increased afterload, which could adversely affect clinical outcome in patients with IPF who developed pulmonary hypertension. We tested the effect of BIBF1000 on the adaptation of the RV in rats subjected to mechanical pressure overload. BIBF1000 was administered for 35 days in pulmonary artery-banded (PAB) rats. RV adaptation was assessed by echocardiography, pressure volume loop analysis, histology, and determination of atrial natriuretic peptide (ANP) expression. BIBF1000 treatment resulted in growth attenuation but had no effects on RV function after PAB, given absence of changes in cardiac index, end-systolic elastance, connective tissue disposition, and capillary density. We conclude that, in this experimental model of increased afterload, combined VEGFR, FGFR, and PDGFR inhibition does not hamper RV adaptation to pressure overload. PMID:27342880

  16. Effects of neonatal alcohol exposure on vasoactive intestinal polypeptide neurons in the rat suprachiasmatic nucleus

    PubMed Central

    Farnell, Yuhua Z.; Allen, Gregg C.; Neuendorff, Nichole; West, James R.; Wei-Jung, A. Chen; Earnest, David J.

    2010-01-01

    Neonatal alcohol exposure produces long-term changes in the suprachiasmatic nucleus (SCN) that are presumably responsible for disturbances in the light–dark regulation of circadian behavior in adult rats, including the pattern of photoentrainment, rate of re-entrainment to shifted light–dark cycles, and phase-shifting responses to light. Because SCN neurons containing vasoactive intestinal polypeptide (VIP) receive direct photic input via the retinohypothalamic tract and thus play an important role in the circadian regulation of the SCN clock mechanism by light, the present study examined the long-term effects of neonatal alcohol exposure on VIP neuronal populations within the SCN of adult rats. Male Sprague-Dawley rat pups were exposed to alcohol (EtOH; 3.0, 4.5, or 6.0 g/kg/day) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4–9 using artificial-rearing methods. At 2–3 months of age, animals from the suckle control (SC), GC, and EtOH groups were exposed to constant darkness (DD) and SCN tissue was harvested for subsequent analysis of either VIP mRNA expression by quantitative polymerase chain reaction (PCR) and in situ hybridization or of VIP-immunoreactive (ir) neurons using stereological methods. Neonatal alcohol exposure had no impact on VIP mRNA expression but dramatically altered immunostaining of neurons containing this peptide within the SCN of adult rats. The relative abundance of VIP mRNA and anatomical distribution of neurons expressing this transcript were similar among all control- and EtOH-treated groups. However, the total number and density of VIP-ir neurons within the SCN were significantly decreased by about 35% in rats exposed to alcohol at a dose of 6.0 g/kg/day relative to that observed in both control groups. These results demonstrate that VIP neuronal populations in the SCN are vulnerable to EtOH-induced insult during brain development. The observed alterations in SCN neurons containing VIP may have an impact

  17. Neonatally induced mild diabetes: influence on development, behavior and reproductive function of female Wistar rats

    PubMed Central

    2013-01-01

    Background Neonatal STZ treatment induces a state of mild hyperglycemia in adult rats that disrupts metabolism and maternal/fetal interactions. The aim of this study was investigate the effect of neonatal STZ treatment on the physical development, behavior, and reproductive function of female Wistar rats from infancy to adulthood. Methods At birth, litters were assigned either to a Control (subcutaneous (s.c.) citrate buffer, n = 10) or STZ group, (streptozotocin (STZ) - 100 mg/kg-sc, n = 6). Blood glucose levels were measured on postnatal days (PND) 35, 84 and 120. In Experiment 1 body weight, length and the appearance of developmental milestones such as eye and vaginal opening were monitored. To assess the relative contribution of the initial and long term effects of STZ treatment this group was subdivided based on blood glucose levels recorded on PND 120: STZ hyperglycemic (between 120 and 300 mg/dl) and STZ normoglycemic (under 120 mg/dl). Behavioral activity was assessed in an open field on PND 21 and 75. In Experiment 2 estrous cyclicity, sexual behavior and circulating gonadotropin, ovarian steroid, and insulin levels were compared between control and STZ-hyperglycemic rats. In all measures the litter was the experimental unit. Parametric data were analyzed using one-way or, where appropriate, two-way ANOVA and significant effects were investigated using Tukey’s post hoc test. Fisher’s exact test was employed when data did not satisfy the assumption of normality e.g. presence of urine and fecal boli on the open field between groups. Statistical significance was set at p < 0.05 for all data. Results As expected neonatal STZ treatment caused hyperglycemia and hypoinsulinemia in adulthood. STZ-treated pups also showed a temporary reduction in growth rate that probably reflected the early loss of circulating insulin. Hyperglycemic rats also exhibited a reduction in locomotor and exploratory behavior in the open field. Mild hyperglycemia did

  18. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction

    PubMed Central

    HUO, LIANYING; SHI, WENBING; CHONG, LING; WANG, JINLONG; ZHANG, KAI; LI, YUFENG

    2016-01-01

    Left ventricular remodeling results in cardiac dysfunction and accounts for the majority of the morbidity and mortality following myocardial infarction (MI). The aim of the present study was to investigate the effect of asiatic acid (AA) on cardiac function and left ventricular remodeling in a rat model of MI and explore the underlying mechanisms. Rats were subjected to coronary artery ligation to model MI and orally treated with AA. After 4 weeks, cardiac function was assessed by echocardiography. Cardiomyocyte cross-sectional area was recorded, and the expression levels of a number of inflammatory cytokines were detected using ELISA. The degree of interstitial fibrosis was determined by evaluating the mRNA expression levels of collagen II and III. Western blot analysis was performed to detect the expression levels of total and phosphorylated p38 MAPK and ERK1/2, to investigate whether they are involved in the mechanism underlying the effect of AA on the heart. Rats subjected to MI displayed significantly impaired cardiac function compared with those subjected to a sham procedure, while this change was reversed by treatment with AA. Furthermore, AA markedly inhibited cardiac hypertrophy, reduced the mRNA expression levels of inflammatory cytokines and decreased interstitial fibrosis in the infarct border zone of MI model rats compared with those in vehicle-treated MI model rats. Furthermore, the phosphorylation of p38 MAPK and ERK1/2 was blocked by AA in the MI rats but not in the sham rats. In summary, AA treatment preserved cardiac function and inhibited left ventricular remodeling, potentially by blocking the phosphorylation of p38 MAPK and ERK1/2 in the infarct border zone of the ischemic myocardium, indicating that AA may be a novel candidate for development as a therapy for MI. PMID:26889217

  19. Neonatal handling causes impulsive behavior and decreased pharmacological response to methylphenidate in male adult wistar rats.

    PubMed

    Lazzaretti, Camilla; Kincheski, Grasielle Clotildes; Pandolfo, Pablo; Krolow, Rachel; Toniazzo, Ana Paula; Arcego, Danusa Mar; Couto-Pereira, Natividade de Sá; Zeidán-Chuliá, Fares; Galvalisi, Martin; Costa, Gustavo; Scorza, Cecilia; Souza, Tadeu Mello E; Dalmaz, Carla

    2016-03-01

    Neonatal handling has an impact on adult behavior of experimental animals and is associated with rapid and increased palatable food ingestion, impaired behavioral flexibility, and fearless behavior to novel environments. These symptoms are characteristic features of impulsive trait, being controlled by the medial prefrontal cortex (mPFC). Impulsive behavior is a key component of many psychiatric disorders such as attention deficit hyperactivity disorder (ADHD), manic behavior, and schizophrenia. Others have reported a methylphenidate (MPH)-induced enhancement of mPFC functioning and improvements in behavioral core symptoms of ADHD patients. The aims of the present study were: (i) to find in vivo evidence for an association between neonatal handling and the development of impulsive behavior in adult Wistar rats and (ii) to test whether neonatal handling could have an impact on monoamine levels in the mPFC and the pharmacological response to MPH in vivo. Therefore, experimental animals (litters) were classified as: "non-handled" and "handled" (10[Formula: see text]min/day, postnatal days 1-10). After puberty, they were exposed to either a larger and delayed or smaller and immediate reward (tolerance to delay of reward task). Acute MPH (3[Formula: see text]mg/Kg. i.p.) was used to suppress and/or regulate impulsive behavior. Our results show that only neonatally handled male adult Wistar rats exhibit impulsive behavior with no significant differences in monoamine levels in the medial prefrontal cortex, together with a decreased response to MPH. On this basis, we postulate that early life interventions may have long-term effects on inhibitory control mechanisms and affect the later response to pharmacological agents during adulthood. PMID:26620193

  20. Intrauterine endotoxin-induced impairs pulmonary vascular function and right ventricular performance in infant rats and improvement with early vitamin D therapy.

    PubMed

    Mandell, Erica; Powers, Kyle N; Harral, Julie W; Seedorf, Gregory J; Hunter, Kendall S; Abman, Steven H; Dodson, R Blair

    2015-12-15

    High pulmonary vascular resistance (PVR), proximal pulmonary artery (PA) impedance, and right ventricular (RV) afterload due to remodeling contribute to the pathogenesis and severity of pulmonary hypertension (PH). Intra-amniotic exposure to endotoxin (ETX) causes sustained PH and high mortality in rat pups at birth, which are associated with impaired vascular growth and RV hypertrophy in survivors. Treatment of ETX-exposed pups with antenatal vitamin D (vit D) improves survival and lung growth, but the effects of ETX exposure on RV-PA coupling in the neonatal lung are unknown. We hypothesized that intrauterine ETX impairs RV-PA coupling through sustained abnormalities of PA stiffening and RV performance that are attenuated with vit D therapy. Fetal rats were exposed to intra-amniotic injections of ETX, ETX+vit D, or saline at 20 days gestation (term = 22 days). At postnatal day 14, pups had pressure-volume measurements of the RV and isolated proximal PA, respectively. Lung homogenates were assayed for extracellular matrix (ECM) composition by Western blot. We found that ETX lungs contain decreased α-elastin, lysyl oxidase, collagen I, and collagen III proteins (P < 0.05) compared control and ETX+vit D lungs. ETX-exposed animals have increased RV mechanical stroke work (P < 0.05 vs. control and ETX+vit D) and elastic potential energy (P < 0.05 vs. control and ETX+vit D). Mechanical stiffness and ECM remodeling are increased in the PA (P < 0.05 vs. control and ETX+vit D). We conclude that intrauterine exposure of fetal rats to ETX during late gestation causes persistent impairment of RV-PA coupling throughout infancy that can be prevented with early vit D treatment. PMID:26475735

  1. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes

    PubMed Central

    Al Kury, Lina T; Voitychuk, Oleg I; Yang, Keun-Hang Susan; Thayyullathil, Faisal T; Doroshenko, Petro; Ramez, Ali M; Shuba, Yaroslav M; Galadari, Sehamuddin; Howarth, Frank Christopher; Oz, Murat

    2014-01-01

    BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1–10 μM AEA, suppression of both Na+ and L-type Ca2+ channels was observed. Inhibition of Na+ channels was voltage and Pertussis toxin (PTX) – independent. Radioligand-binding studies indicated that specific binding of [3H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd. Further studies on L-type Ca2+ channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba2+ currents. MetAEA also inhibited Na+ and L-type Ca2+ currents. Radioligand studies indicated that specific binding of [3H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd. CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na+ and L-type Ca2+ channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation. PMID:24758718

  2. Long Term Hippocampal and Cortical Changes Induced by Maternal Deprivation and Neonatal Leptin Treatment in Male and Female Rats

    PubMed Central

    Mela, Virginia; Díaz, Francisca; Borcel, Erika; Argente, Jesús; Chowen, Julie A.; Viveros, Maria-Paz

    2015-01-01

    Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect. PMID:26382238

  3. Digestive enzyme expression and epithelial structure of small intestine in neonatal rats after 16 days spaceflight

    NASA Astrophysics Data System (ADS)

    Miyake, M.; Yamasaki, M.; Hazama, A.; Ijiri, K.; Shimizu, T.

    It is important to assure whether digestive system can develop normally in neonates during spaceflight. Because the small intestine changes its function and structure drastically around weaning known as redifferentiation. Lactase expression declines and sucrase increases in small intestine for digestion of solid food before weaning. In this paper, we compared this enzyme transition and structural development of small intestine in neonatal rats after spaceflight. To find digestive genes differentially expressed in fight rats, DNA membrane macroarray was also used. Eight-day old rats were loaded to Space Shuttle Columbia, and housed in the animal facility for 16 days in space (STS-90, Neurolab mission). Two control groups (AGC; asynchronous ground control and VIV; vivarium) against flight group (FLT) were prepared. There was no difference in structure (crypt depth) and cell differentiation of epithelium between FLT and AGC by immunohistochemical analysis. We found that the amount of sucrase mRNA compared to lactase was decreased in FLT by RT-PCR. It reflected the enzyme transition was inhibited. Increase of 5 genes (APO A-I, APO A-IV, ACE, aFABP and aminopeptidase M) and decrease of carboxypeptidase-D were detected in FLT using macroarray. We think nutrition differences (less nourishment and late weaning) during spaceflight may cause inhibition of enzyme transition at least partly. The weightlessness might contribute to the inhibition through behavioral change.

  4. Studies on cerebral protection of digoxin against hypoxic-ischemic brain damage in neonatal rats.

    PubMed

    Peng, Kaiwei; Tan, Danfeng; He, Miao; Guo, Dandan; Huang, Juan; Wang, Xia; Liu, Chentao; Zheng, Xiangrong

    2016-08-17

    Hypoxic-ischemic brain damage (HIBD) is a major cause of neonatal acute deaths and chronic nervous system damage. Our present study was designed to investigate the possible neuroprotective effect of digoxin-induced pharmacological preconditioning after hypoxia-ischemia and underlying mechanisms. Neonatal rats were assigned randomly to control, HIBD, or HIBD+digoxin groups. Pharmacological preconditioning was induced by administration of digoxin 72 h before inducing HIBD by carotid occlusion+hypoxia. Behavioral assays, and neuropathological and apoptotic assessments were performed to examine the effects; the expression of Na/K ATPase was also assessed. Rats in the HIBD group showed deficiencies on the T-maze, radial water maze, and postural reflex tests, whereas the HIBD+digoxin group showed significant improvements on all behavioral tests. The rats treated with digoxin showed recovery of pathological conditions, increased number of neural cells and proliferative cells, and decreased number of apoptotic cells. Meanwhile, an increased expression level of Na/K ATPase was observed after digoxin preconditioning treatment. The preconditioning treatment of digoxin contributed toward an improved functional recovery and exerted a marked neuroprotective effect including promotion of cell proliferation and reduction of apoptosis after HIBD, and the neuroprotective action was likely associated with increased expression of Na/K ATPase. PMID:27362436

  5. Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats.

    PubMed

    Zhang, Jie; Dai, Hongmei; Deng, Yuanying; Tian, Jing; Zhang, Chen; Hu, Zhiping; Bing, Guoying; Zhao, Lingling

    2015-10-01

    Increasing epidemiological and toxicological evidence suggests that pesticides and other environmental exposures may be associated with the development of Parkinson's disease (PD). Chlorpyrifos (CPF) is a widely used organophosphorous pesticide with developmental neurotoxicity. Its neurotoxicity, notably on the monoamine system, suggests that exposure of CPF may induce dopaminergic neuronal injury. We investigated whether neonatal exposure to CPF contributes to initiation and progression of dopaminergic neurotoxicity and explored the possible underlying mechanisms. The newborn rats were administrated 5 mg/kg CPF subcutaneously from postnatal day (PND) 11 to PND 14 daily. The effect of CPF on dopaminergic neurons, microglia, astrocyte, nuclear factor-κB (NF-κB) p. 65 and p. 38 mitogen-activated protein kinase (MAPK) signaling pathways was analyzed in the substantia nigra of rats at 12h, 24h, 72 h, 16d and 46 d after exposure. CPF-treated rats exhibited significant reduction of dopaminergic neurons at 16d and 46 d after exposure, and a significant increase in the expression of microglia and astrocytes in the substantia nigra after CPF exposure. Intense activation of NF-κB p. 65 and p. 38 MAPK inflammatory signaling pathways was observed. Our findings indicate that neonatal exposure to CPF may induce long-term dopaminergic neuronal damage in the substantia nigra mediated by the activation of inflammatory response via NF-κB p. 65 and p. 38 MAPK pathways in the nigrostriatal system. PMID:26215101

  6. Differential metal content and gene expression in rat left ventricular hypertrophy due to hypertension and hyperactivity.

    PubMed

    Subramanian, Meenakumari; Hunt, Adam L; Petrucci, Giuseppe A; Chen, Zengyi; Hendley, Edith D; Palmer, Bradley M

    2014-07-01

    The spontaneously hypertensive rat (SHR) has been studied extensively as a model of left ventricular hypertrophy (LVH) and associated cardiac dysfunction due to hypertension (HT). The SHR also possesses a hyperactive trait (HA). Crossbreeding SHR with Wistar-Kyoto (WKY) control rats, which are nonHT and nonHA, followed by selected inbreeding produced two additional homozygous strains: WKHT and WKHA, in which the traits of HT and HA, respectively, are expressed separately. WKHT, WKHA and SHR all display LVH, but only the SHR exhibits cardiac dysfunction. We hypothesized that cardiac dysfunction in the SHR is uniquely characterized by calcium overload. We measured total cardiac Ca, Cu, Fe, K, Mg and Zn in the four strains. We found elevated Ca and depressed Cu, Mg and Zn with HT, but not unique to SHR. We surmise that HT promotes aberrant regulation of cardiac Ca(2+), Cu(2+), Mg(2+) and Zn(2+), which does not necessarily result in cardiac dysfunction. Interestingly, Cu was elevated in HA strains compared to nonHA counterparts. We then analyzed gene expression as mRNA of Cu-containing proteins, most notably mitochondrial-Cox, Dbh, Lox, Loxl1, Loxl2, Sod1 and Tyr. The gene expression profiles of Lox, Loxl1, Loxl2 and Sod1 were found especially high in the WKHA, which if reflective of protein content could account for the high Cu content in the WKHA. The mRNA of other genes, notably Mb, Fxyd1, Maoa and Maob were also examined. We found that Maoa gene expression and monoamine oxidase-A (MAO-A) protein content were low in the SHR compared to the other strains. The finding that MAO-A protein is low in the SHR and normal in the WKHT and WKHA strains is most consistent with the idea that MAO-A protects against the development of cardiac dysfunction in LVH but not against LVH in these rats. PMID:24629670

  7. Immunoreactive somatostatin and. beta. -endorphin content in the brain of mature rats after neonatal exposure to propylthiouacil. [Propylthiouracil

    SciTech Connect

    Kato, N.; Sundmark, V.C.; Van Middlesworth, L.; Havlicek, V.; Friesen, H.G.

    1982-01-01

    The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in this study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels were not significantly different in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.

  8. Immunoreactive somatostatin and. beta. -endorphin content in the brain of mature rats after neonatal exposure to propylthiouracil

    SciTech Connect

    Kato, N.; Sundmark, V.C.; Van Middlesworth, L.; Havlicek, V.; Friesen, H.G.

    1982-06-01

    The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in the study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels were not significantly different (significant increase only in the thalamus) in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.

  9. Impaired growth hormone secretion in neonatal hypothyroid rats: hypothalamic versus pituitary component.

    PubMed

    De Gennaro, V; Cella, S G; Bassetti, M; Rizzi, R; Cocchi, D; Muller, E E

    1988-01-01

    In 10-day-old rats made hypothyroid by giving dams propylthiouracil (PTU) in the drinking water since the day of parturition, simultaneous radioimmunoassay (RIA) determinations of basal and stimulated growth hormone (GH) secretion, hypothalamic GH-releasing hormone (GHRH)-like immunoreactivity (LI) content, immunocytochemical localization of somatotrophs, and hypothalamic GHRH-LI-positive structures were performed. The frequency of somatotrophs was also determined. One-day-old hypothyroid rats, whose mothers had been given PTU since the 14th day of pregnancy, were also used for comparison. In 10-day-old hypothyroid rats, pituitary and plasma GH levels and the number of somatotrophs were considerably lower and plasma TSH levels were significantly higher than those in age-matched control rats; however, GHRH-LI titers in the mediobasal hypothalamus and the morphology of GHRH-LI-positive structures were unaltered. In 1-day-old rats the only alteration present, in addition to elevated plasma TSH levels, was a clear-cut decrease in plasma GH levels. An acute challenge with GHRH (20 ng/100 g body wt, sc) or clonidine (15 micrograms/100 g body wt, sc) induced a clear-cut rise in plasma GH levels 15 min postinjection in 10-day-old control rats but failed to do so in age-matched hypothyroid rats. Both compounds failed to rise plasma GH in both hypothyroid and control 1-day-old rats. Taken together these data indicate that in neonatal and infant rats deprivation of thyroid hormones acts primarily to depress pituitary somatotroph function and that possible changes in GHRH-secreting structures represent a later postnatal event. PMID:3124121

  10. Phosphatidylcholine kinetics in neonatal rat lungs and the effects of rhuKGF and betamethasone.

    PubMed

    Bernhard, Wolfgang; Gesche, Jens; Raith, Marco; Poets, Christian F

    2016-05-15

    Surfactant, synthesized by type II pneumocytes (PN-II), mainly comprises phosphatidylcholine (PC) and is essential to prevent neonatal respiratory distress. Furthermore, PC is essential to lung tissue growth and maintenance as a membrane component. Recent findings suggest that the lung contributes to systemic lipid homeostasis via PC export through ABC-A1 transporter expression. Hence it is important to consider pharmacological interventions in neonatal lung PC metabolism with respect to such export. Five-day-old rats were treated with carrier (control), intraperitoneal betamethasone, subcutaneous recombinant human keratinocyte growth factor (rhuKGF), or their combination for 48 h. Animals were intraperitoneally injected with 50 mg/kg [D9-methyl]choline chloride 1.5, 3.0, and 6.0 h before death at day 7, and lung lavage fluid (LLF) and tissue were harvested. Endogenous PC, D9-labeled PC species, and their water-soluble precursors (D9-)choline and (D9-)phosphocholine were determined by tandem mass spectrometry. Treatment increased secreted and tissue PC pools but did not change equilibrium composition of PC species in LLF. However, all treatments increased specific surfactant components in tissue. In control rats, peak D9-PC in lavaged lung was reached after 3 h and was decreased at 6 h. Only 13% of this net loss in lavaged lung was found in LLF. Such decrease was not present in lungs treated with betamethasone and/or with rhuKGF. D9-PC loss at 3-6 h and PC synthesis calculated from D9 enrichment of phosphocholine indicated that daily synthesis rate is higher than total pool size. We conclude that lung tissue contributes to systemic PC homeostasis in neonatal rats, which is altered by glucocorticoid and rhuKGF treatment. PMID:26944086

  11. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats

    PubMed Central

    2012-01-01

    Background Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload. Methods Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d. Results Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls. Conclusion Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats. PMID:22613782

  12. Direct and indirect vitamin A supplementation strategies result in different plasma and tissue retinol kinetics in neonatal rats.

    PubMed

    Tan, Libo; Babbs, Amanda E; Green, Michael H; Ross, A Catharine

    2016-08-01

    Many questions remain regarding vitamin A (VA) supplementation of infants. Herein we compared direct oral VA supplementation of the neonate and indirect treatment through maternal dietary VA (M-VA) treatment on VA status and kinetics in neonatal rats. Treatments included direct VA combined with retinoic acid (RA) [D-VARA; VA (6 mg/kg) + 10% RA, given orally to neonates on postnatal day (P)2 and P3] and indirect VA supplementation through increased M-VA, compared with each other and oil-treated neonates. [(3)H]retinol was administered orally to all neonates on P4. Plasma and tissue [(3)H]retinol kinetics were determined from 1 h to 14 days post-dosing. D-VARA versus placebo dramatically increased liver and lung retinol, but only in the first 8-10 days. In M-VA neonates, liver and lung VA increased progressively throughout the study. Compartmental modeling of plasma [(3)H]retinol showed that both D-VARA and indirect M-VA reduced retinol recycling between plasma and tissues. Compartmental models of individual tissues predicted that D-VARA stimulated the uptake of VA in chylomicrons to extrahepatic tissues, especially intestine, while the uptake was not observed in M-VA neonates. In conclusion, indirect maternal supplementation had a greater sustained effect than D-VARA on neonatal VA status, while also differentially affecting plasma and tissue retinol kinetics. PMID:27264735

  13. Direct and indirect vitamin A supplementation strategies result in different plasma and tissue retinol kinetics in neonatal rats

    PubMed Central

    Tan, Libo; Babbs, Amanda E.; Green, Michael H.; Ross, A. Catharine

    2016-01-01

    Many questions remain regarding vitamin A (VA) supplementation of infants. Herein we compared direct oral VA supplementation of the neonate and indirect treatment through maternal dietary VA (M-VA) treatment on VA status and kinetics in neonatal rats. Treatments included direct VA combined with retinoic acid (RA) [D-VARA; VA (6 mg/kg) + 10% RA, given orally to neonates on postnatal day (P)2 and P3] and indirect VA supplementation through increased M-VA, compared with each other and oil-treated neonates. [3H]retinol was administered orally to all neonates on P4. Plasma and tissue [3H]retinol kinetics were determined from 1 h to 14 days post-dosing. D-VARA versus placebo dramatically increased liver and lung retinol, but only in the first 8–10 days. In M-VA neonates, liver and lung VA increased progressively throughout the study. Compartmental modeling of plasma [3H]retinol showed that both D-VARA and indirect M-VA reduced retinol recycling between plasma and tissues. Compartmental models of individual tissues predicted that D-VARA stimulated the uptake of VA in chylomicrons to extrahepatic tissues, especially intestine, while the uptake was not observed in M-VA neonates. In conclusion, indirect maternal supplementation had a greater sustained effect than D-VARA on neonatal VA status, while also differentially affecting plasma and tissue retinol kinetics. PMID:27264735

  14. Down-Regulation of Replication Factor C-40 (RFC40) Causes Chromosomal Missegregation in Neonatal and Hypertrophic Adult Rat Cardiac Myocytes

    PubMed Central

    Oka, Masahiko; Ochi, Rikuo; Jong, Chian Ju; Gebb, Sarah; Benjamin, John; Schaffer, Stephen; Hobart, Holly H.; Downey, James; McMurtry, Ivan; Gupte, Rakhee

    2012-01-01

    Background Adult mammalian cardiac myocytes are generally assumed to be terminally differentiated; nonetheless, a small fraction of cardiac myocytes have been shown to replicate during ventricular remodeling. However, the expression of Replication Factor C (RFC; RFC140/40/38/37/36) and DNA polymerase δ (Pol δ) proteins, which are required for DNA synthesis and cell proliferation, in the adult normal and hypertrophied hearts has been rarely studied. Methods We performed qRT-PCR and Western blot analysis to determine the levels of RFC and Pol δ message and proteins in the adult normal cardiac myocytes and cardiac fibroblasts, as well as in adult normal and pulmonary arterial hypertension induced right ventricular hypertrophied hearts. Immunohistochemical analyses were performed to determine the localization of the re-expressed DNA replication and cell cycle proteins in adult normal (control) and hypertrophied right ventricle. We determined right ventricular cardiac myocyte polyploidy and chromosomal missegregation/aneuploidy using Fluorescent in situ hybridization (FISH) for rat chromosome 12. Results RFC40-mRNA and protein was undetectable, whereas Pol δ message was detectable in the cardiac myocytes isolated from control adult hearts. Although RFC40 and Pol δ message and protein significantly increased in hypertrophied hearts as compared to the control hearts; however, this increase was marginal as compared to the fetal hearts. Immunohistochemical analyses revealed that in addition to RFC40, proliferative and mitotic markers such as cyclin A, phospho-Aurora A/B/C kinase and phospho-histone 3 were also re-expressed/up-regulated simultaneously in the cardiac myocytes. Interestingly, FISH analyses demonstrated cardiac myocytes polyploidy and chromosomal missegregation/aneuploidy in these hearts. Knock-down of endogenous RFC40 caused chromosomal missegregation/aneuploidy and decrease in the rat neonatal cardiac myocyte numbers. Conclusion Our novel findings

  15. Development of motor coordination and cerebellar structure in male and female rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Ladd, B.; Baxter, M. G.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that the developing rat cerebellum is affected by exposure to hypergravity. In the present study, we explored the hypothesis that the changes in cerebellar structure in hypergravity-exposed rat neonates may affect their motor coordination. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravitational loading. To test this hypothesis, we compared motor behavior, cerebellar structure, and protein expression in rat neonates exposed to 1.5 1.75G on a 24-ft centrifuge daily for 22.5 h starting on gestational day (G) 10, through birth on G22/G23 and through postnatal day (P) 21. Exposure to hypergravity impacted the neurodevelopmental process as indicated by: (1) impaired righting response on P3, more than doubling the righting time at 1.75G, and (2) delayed onset of the startle response by one day, from P9 in controls to P10 in hypergravity-exposed pups. Hypergravity exposure resulted in impaired motor functions as evidenced by performance on a rotarod on P21; the duration of the stay on the rotarod recorded for 1.75G pups of both sexes was one tenth that of the stationary control (SC) pups. These changes in motor behavior were associated with cerebellar changes: (1) cerebellar mass on P6 was decreased by 7.5% in 1.5G-exposed male pups, 27.5% in 1.75G-exposed male pups, 17.5% in 1.5G-exposed female pups, and 22.5% in 1.75G female pups and (2) changes in the expression of glial and neuronal proteins. The results of this study suggest that perinatal exposure to hypergravity affects cerebellar development as evidenced by decreased cerebellar mass and altered cerebellar protein expression; cerebellar changes observed in hypergravity-exposed rat neonates are associated with impaired motor behavior. Furthermore, the response to hypergravity appears to be different in male and female neonates. If one accepts that the hypergravity paradigm is a useful animal model with which to predict those biological processes

  16. Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain.

    PubMed

    Kesby, James P; Cui, Xiaoying; Ko, Pauline; McGrath, John J; Burne, Thomas H J; Eyles, Darryl W

    2009-09-18

    There is growing evidence that low vitamin D impacts adversely on brain development. The current study investigated the impact of developmental vitamin D (DVD) deficiency on dopamine and serotonin metabolism in the neonatal rat brain. DVD-deficiency resulted in an altered dopaminergic metabolic profile in the forebrain, with a decrease in the conversion of dihydroxyphenylacetic acid (DOPAC) to homovanillic acid (HVA). Correspondingly, expression of the enzyme required for this conversion, catechol-O-methyl transferase (COMT), was decreased. These results suggest that DVD-deficiency influences dopamine turnover during development. PMID:19500655

  17. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  18. The functional activity of hypothalamic signaling systems in rats with neonatal diabetes mellitus treated with metformin.

    PubMed

    Derkach, K V; Sukhov, I B; Kuznetsova, L A; Buzanakov, D M; Shpakov, A O

    2016-03-01

    The effect of the two-month metformin treatment (200 mg/kg/day) of rats with the neonatal model of type 2 diabetes mellitus on the functional activity of hypothalamic signaling systems was studied. It was shown that metformin treatment restored the sensitivity of hypothalamic adenylyl cyclase signaling system to agonists of the type 4 melanocortin receptor and the type 2 dopamine receptor but did not influence significantly the functions of the insulin signaling system. These data suggest new targets and mechanisms of metformin action in the CNS, which may mediate its restoring effect on energy homeostasis impaired in diabetic pathology. PMID:27193707

  19. Paravertebral fascial massage promotes brain development of neonatal rats via the insulin-like growth factor 1 pathway☆

    PubMed Central

    Wen, Zhongqiu; Zeng, Wenqin; Dai, Jingxing; Zhou, Xin; Yang, Chun; Duan, Fuhua; Liu, Yufeng; Yang, Huiying; Yuan, Lin

    2012-01-01

    Massage in traditional Chinese medicine can promote body and brain development of premature and normal newborn infants. In the present study, neonatal rats (1 day old) underwent paravertebral fascial massage (15 consecutive days), followed by subcutaneous injection of insulin-like growth factor 1 receptor antagonist, JB1 (9 consecutive days). Paravertebral fascial massage significantly increased insulin-like growth factor 1 expression and cell proliferation in the subventricular zone of the lateral ventricle and dentate gyrus of the hippocampus. However, JB1 inhibited this increase. Results suggest that paravertebral fascial massage can promote brain development of neonatal rats via the insulin-like growth factor 1 pathway. PMID:25722713

  20. Characterization of a beta-adrenergically inhibited K+ current in rat cardiac ventricular cells.

    PubMed Central

    Scamps, F

    1996-01-01

    1. The electrophysiological properties and beta-adrenergic regulation of a non-inactivating K+ current were studied using the whole-cell patch-clamp technique (22 +/- 2 degrees C) in adult rat ventricular cells. 2. In the presence of 4-aminopyridine, an inhibitor of the rapidly inactivating current, the depolarization-activated current consisted only of a slowly decaying outward current (IK). The presence of a non-inactivating current (ISS) was revealed when analysing inactivation curves. 3. IK and ISS were both sensitive to 50 mM tetraethylammonium and 10 mM 4-aminopyridine inhibition. IK was totally blocked by 100 microM clofilium, while ISS was not inhibited but rather enhanced by this class III anti-arrhythmic agent. 4. Unlike IK, ISS was only slightly decreased by depolarizing prepulses and it did not show time-dependent inactivation when measured during 500 ms depolarizations. 5. ISS was decreased by the beta-adrenergic agonist isoprenaline (1 microM). Forskolin (10 microM) mimicked the effects of isoprenaline. The non-specific beta-adrenergic antagonist, propranolol (3 microM), and a specific beta 1-adrenergic antagonist, CGP 20712A (0.3 microM), both prevented the effects of isoprenaline. Cell perfusion with 100 microM PKI6-22, a peptide inhibitor of the cyclic AMP-dependent protein kinase, reduced or abolished the effects of isoprenaline. 6. The dose-response curve for the inhibition of ISS by isoprenaline was positioned to the left of that for the calcium current. The threshold dose and the dose giving 50% of the maximal effect were, respectively, 0.1 and 0.21 nM for ISS and 1 and 4.3 nM for ICa. 7. In view of the high sensitivity of ISS to isoprenaline, its possible physiological effect was evaluated on action potential duration during beta-adrenergic stimulation. At 1 nM, a concentration that did not increase ICa, isoprenaline induced a significant prolongation of action potential duration as a consequence of ISS inhibition. With 1 microM isoprenaline

  1. Ephemeral cellular segmentation in the thalamus of the neonatal rat.

    PubMed

    Ivy, G O; Killackey, H P

    1981-08-01

    The distribution of thalamocortical relay cells in the rat ventrobasal complex was studied during the early postnatal period using the retrograde transport of horseradish peroxidase from the parietal cortex. It was found that the relay cells undergo marked changes in their distribution during the first two postnatal weeks. On postnatal days (PNDs) 0 and 1, the cells are rather homogeneously distributed throughout the ventrobasal complex. However, by PND 2, and more clearly by PND 3, the cells form a distinctly segmented pattern. This pattern consists of discrete curvilinear arrays of cells extending throughout most of the rostrocaudal extent of the nucleus. This distinct cellular pattern is present from PND 2 to about PND 8. In animals sacrificed on PND 15 or as adults, the pattern is no longer obvious. The cellular pattern seen at PND 8 was examined in the 3 standard planes of section and compared to both the somatotopic organization of the nucleus and to the organization of its major ascending and descending inputs. The developmental time course of the cellular segmentation was related to that of the lemniscal and corticothalamic afferents, which also show ephemeral segmentation patterns during the first two postnatal weeks. PMID:7272763

  2. Prenatal alcohol exposure and thermotaxic behavior in neonatal rats.

    PubMed

    Zimmerberg, B; Beckstead, J W; Riley, E P

    1987-01-01

    The effect of prenatal alcohol exposure on thermotaxic behavior was investigated in 5-day-old rat pups. Pregnant dams were administered a liquid diet which contained 35% ethanol-derived calories (35% EDC) on days 6 to 20 of gestation. Two control groups were included: a liquid diet control which was pair-fed and had sucrose substituted for ethanol (0% EDC), and a group fed standard lab chow (LC) throughout pregnancy. Pups from each of these prenatal treatments were tested on a thermal gradient (thermocline). On each of 5 trails, pups were placed in the cool end of the thermocline and their position along the gradient was measured after 10 min. All prenatal treatment groups displayed thermotaxic behavior by moving towards the warm end. However, pups in the 35% EDC treatment group moved significantly further towards the warm end in the later trials. Despite their position on a warmer surface, their body temperature did not rise concurrently. Thermoregulatory deficits caused by prenatal alcohol exposure might account for these results. PMID:3683345

  3. Prenatal nicotine exposure alters respiratory long term facilitation in neonatal rats

    PubMed Central

    Fuller, DD; Dougherty, BJ; Sandhu, MS; Doperalski, NJ; Reynolds, CR; Hayward, LF

    2009-01-01

    Intermittent hypoxia can evoke persistent increases in ventilation (ν̇ E) in neonates (i.e. long-term facilitation, LTF) (Julien et al. Am J Physiol Regul Integr Comp Physiol 294: R1356–R1366, 2008). Since prenatal nicotine (PN) exposure alters neonatal respiratory control (Fregosi & Pilarski. Respir. Physiol. Neurobiol. 164: 80–86, 2008), we hypothesized that PN would influence LTF of ventilation (ν̇ E) in neonatal rats. An osmotic minipump delivered nicotine (6 mg/kg/day) or saline to pregnant dams. ν̇ E was assessed in unanesthetized pups via whole body plethysmography at post-natal (P) days 9–11 or 15–17 during baseline (BL, 21% O2), hypoxia (10 × 5 min, 5% O2) and 30 min post-hypoxia. PN pups had reduced BL ν̇ E (p<0.05) but greater increases in ν̇ E during hypoxia (p<0.05). Post-hypoxia ν̇ E (i.e. LTF) showed an age × treatment interaction (p<0.01) with similar values at P9-11 but enhanced LTF in saline (30±8 %BL) vs. PN pups (6±5 %BL; p=0.01) at P15-17. We conclude that the post-natal developmental time course of hypoxia-induced LTF is influenced by PN. PMID:19818419

  4. Long-term colonic hypersensitivity in adult rats induced by neonatal unpredictable vs predictable shock.

    PubMed

    Tyler, K; Moriceau, S; Sullivan, R M; Greenwood-van Meerveld, B

    2007-09-01

    Our goal was to examine the relationship between early life trauma and the development of visceral hypersensitivity in later life in irritable bowel syndrome (IBS). Rat pups underwent neonatal conditioning: (i) paired odour-shock, where odour is a predictable shock signal, (ii) unpaired odour-shock, where odour is an unpredictable shock signal or (iii) control odour-only with odour presentations and handling without shock. At maturity, colorectal sensitivity was measured as a visceromotor behavioural response. In adulthood, colorectal distension (CRD) induced a pressure-dependent increase in the number of abdominal muscle contractions all three experimental groups. However, compared to animals that had received control odour-only presentations in infancy, there was an attenuated response to CRD in animals previously exposed to neonatal predictable shock pups and an exaggerated response in the animals previously exposed to neonatal unpredictable shock. Adult responses to CRD were altered by infant experience with shock trauma. However, depending on the context of that early life trauma, there are major differences between the long-term effects of that early life trauma on colonic sensitivity compared to controls. These results strengthen the link between early life trauma and adult IBS, and suggest that unpredictable trauma is a critical factor for later life disorders. PMID:17727395

  5. Development of Left Ventricular Longitudinal Speckle Tracking Echocardiography in Very Low Birth Weight Infants with and without Bronchopulmonary Dysplasia during the Neonatal Period

    PubMed Central

    Czernik, Christoph; Rhode, Stefanie; Helfer, Sven; Schmalisch, Gerd; Bührer, Christoph; Schmitz, Lothar

    2014-01-01

    Objectives In preterm infants, postnatal myocardial adaptation may be complicated by bronchopulmonary dysplasia (BPD). We aimed to describe the development of left ventricular function by serial 2D, Doppler, and speckle tracking echocardiography (2D-STE) in infants with and without BPD during the neonatal period and compare these to anthropometric and conventional hemodynamic parameters. Study Design Prospective echocardiography on day of life (DOL) 1, 7, 14, and 28 in 119 preterm infants <1500 g birth weight of whom 36 developed BPD (need for oxygen supplementation at 36 weeks gestational age). Non-BPD and BPD infants differed significantly in median (IQR) gestational age (25.5(24–26.5) weeks vs. 29(27–30) weeks, p<0.001) and birth weight (661(552–871) g vs. 1100(890–1290) g, p<0.001). Results The intra- and inter-observer variability of the 2D-STE parameters measured did not depend on time of measurement, although there were significant differences in the reproducibility of the parameters. Low intra- and inter-observer variability was seen for longitudinal systolic strain and strain rate mid septum with a median CV (coefficient of variation) of <4.6%. Much higher CVs (>10%) were seen for the apical segment. While anthropometric parameters show rapid development during the first 4 weeks of life, the speckle tracking parameters did not differ statistically significantly during the neonatal period. Infants with and without BPD differed significantly (p<0.001) in the development of anthropometric parameters, conventional hemodynamic parameters except for heart rate, and 2D-STE parameters: global longitudinal systolic strain rate (GLSSR) and longitudinal systolic strain for the mid left wall (LSSR). The largest differences were seen at DOL 1 and 7 in GLSSR (p<0.001) and in LSSR (p<0.01). Conclusions Reproducible 2D-STE measurements are possible in preterm infants <1500 g. Cardiac deformation reveals early (DOL 1 and 7) ventricular changes (GLSSR and LSSR) in

  6. The effects of formula feeding on physiological and immunological parameters in the gut of neonatal rats.

    PubMed

    Tooley, K L; Howarth, G S; Butler, R N; Lymn, K A; Penttila, I A

    2009-07-01

    A unique model of formula feeding in the neonatal rat was utilized to investigate the effects of an enterally delivered artificial milk formula on clinically relevant immunological and biological characteristics in the gut, compared to naturally reared pups. Hooded Wistar rat pups were randomly allocated to two treatment groups: formula-fed (FF) or naturally suckled (NS). A flexible silastic intra-gastric cannula was surgically implanted into the FF pups, through which an artificial rat milk supplement was continuously delivered from day 4 to day 10 of life. Rat pups were sacrificed at 10 days of age. Body weight, small intestinal weight, mucosal CD8(+) cell numbers, and ileal lactase activity in FF animals were significantly decreased compared to their NS counterparts (P < 0.05). Numbers of eosinophils, mucosal mast cells, CD4(+) T-cells, ileal villus height and gastric emptying times were significantly increased in FF pups (P < 0.05). We have developed a new rat model of artificial feeding which possesses important immunological and biological similarities to the premature human infant. PMID:18975079

  7. Auditory behaviour and brainstem histochemistry in adult rats with characterized ear damage after neonatal ossicle ablation or cochlear disruption.

    PubMed

    Paterson, J A; Hosea, E W

    1993-02-26

    Binaural and monaural ossicle ablation in neonate rats before the time of onset of auditory input resulted in hearing deficits as detected by behavioural responses to sound stimuli in these rats as young adults. Cochlear disruption at the same neonatal age similarly resulted in the absence of startle reflexes in many of the rats. When the middle and inner ears of the rats were analysed postmortem in serial sections, it was observed that most ears after neonatal ossicle ablation contained only small remnants of the malleus-incus unit, separated from the stapes; in other ears an apparent continuity of ossicles had been restored. The rats with blind-ending ear canals and ossicle atrophy were those that had shown little response to sound stimuli. In the cochlear-disrupted rats, those with modiolar damage and loss of most spiral ganglion cells had shown substantial impairment of sound perception, even in some rats with only monaural modiolar loss. The chronic conduction deficit caused by neonatal ossicle removal did not result in detectable differences in relative cytochrome oxidase activity in the dorsal cochlear nuclei and central nucleus of the inferior colliculus. For monaurally ossicle-ablated rats, quantitation of the average intensity of enzyme reaction product in sections of dorsal or ventral cochlear nuclei, or central nucleus, did not reveal a difference between operated and non-operated sides. However, in binaurally ossicle-ablated rats, the relative enzyme activity in the anteroventral cochlear nuclei was reduced in comparison to this nucleus in control rats. The volume of the anteroventral cochlear nucleus in rats that had had neonatal binaural cochlear disruption was reduced relative to the volume in control rats or in rats that had had binaural ossicle ablation (P < 0.001); the latter procedure did not result in a statistically significant difference from controls in AVCN volume. In cochlear-operated rats with monaural modiolar damage, the AVCN

  8. Adafenoxate abolishes the amnesia induced by neonatal 6-hydroxydopamine treatment in rats.

    PubMed

    Genkova-Papazova, M G; Stancheva, S L; Alova, L G; Lazarova-Bakarova, M B

    1993-06-01

    The effect of neonatal 6-hydroxydopamine (6-OHDA) treatment on learning and memory and on the levels of biogenic monoamines in some brain structures, as well as the influence of the nootropic drug adafenoxate on 6-OHDA effect was studied in shuttle box and step down trained rats. In mature rats injected with 6-OHDA postnatal, learning and retention were impaired and the noradrenaline (NA) level in the frontal cortex and hippocampus was decreased. Adafenoxate abolished the amnestic effect of 6-OHDA and restored the NA level to normal in the above-mentioned brain structures. This finding suggests the important role of the noradrenergic neurotransmitter system in 6-OHDA-induced amnesia and the favorable effect of adafenoxate on learning and memory impaired by 6-OHDA. PMID:8412411

  9. Xenon Combined with Therapeutic Hypothermia Is Not Neuroprotective after Severe Hypoxia-Ischemia in Neonatal Rats

    PubMed Central

    Sabir, Hemmen; Osredkar, Damjan; Maes, Elke; Wood, Thomas; Thoresen, Marianne

    2016-01-01

    Background Therapeutic hypothermia (TH) is standard treatment following perinatal asphyxia in newborn infants. Experimentally, TH is neuroprotective after moderate hypoxia-ischemia (HI) in seven-day-old (P7) rats. However, TH is not neuroprotective after severe HI. After a moderate HI insult in newborn brain injury models, the anesthetic gas xenon (Xe) doubles TH neuroprotection. The aim of this study was to examine whether combining Xe and TH is neuroprotective as applied in a P7 rat model of severe HI. Design/Methods 120 P7 rat pups underwent a severe HI insult; unilateral carotid artery ligation followed by hypoxia (8% O2 for 150min at experimental normothermia (NT-37: Trectal 37°C). Surviving pups were randomised to immediate NT-37 for 5h (n = 36), immediate TH-32: Trectal 32°C for 5h (n = 25) or immediate TH-32 plus 50% inhaled Xe for 5h (n = 24). Pups were sacrificed after one week of survival. Relative area loss of the ligated hemisphere was measured, and neurons in the subventricular zone of this injured hemisphere were counted, to quantify brain damage. Results Following the HI insult, median (interquartile range, IQR) hemispheric brain area loss was similar in all groups: 63.5% (55.5–75.0) for NT-37 group, 65.0% (57.0–65.0) for TH-32 group, and 66.5% (59.0–72.0) for TH-32+Xe50% group (not significant). Correspondingly, there was no difference in neuronal cell count (NeuN marker) in the subventricular zone across the three treatment groups. Conclusions Immediate therapeutic hypothermia with or without additional 50% inhaled Xe, does not provide neuroprotection one week after severe HI brain injury in the P7 neonatal rat. This model aims to mimic the clinical situation in severely asphyxiated neonates and treatment these newborns remains an ongoing challenge. PMID:27253085

  10. Octreotide, a Somatostatin Analogue, Fails to Inhibit Hypoxia-induced Retinal Neovascularization in the Neonatal Rat

    PubMed Central

    Averbukh, Edward; Halpert, Michael; Yanko, Ravit; Yanko, Lutza; Peèr, Jacob; Levinger, Samuel; Flyvbjerg, Allan

    2000-01-01

    Objective: Octreotide, a somatostatin analogue, has been shown to prevent angiogenesis in diverse in vitro models. We evaluated its effect on retinal neovascularization in vivo, using a neonatal rat retinopathy model. Methods: We used, on alternating days, hypoxia (10% O2) and hyperoxia (50% O2) during the first 14 days of neonatal rats, to induce retinal neovascularization. Half of the rats were injected subcutaneously with octreotide 0.7 μg/g BW twice daily. At day 18 the eyes were evaluated for the presence of epiretinal and vitreal hemorrhage, neovascularization and epiretinal proliferation. Octreotide pharmacokinetics and its effect on serum growth hormone (GH) and insulin-like growth factor I (IGF-I) were examined in 28 rats. Results: Serum octreotide levels were 667 μg/1 two hours after injection, 26.4 μg/1 after nine hours and 3.2 μg/1 after 14 hours. GH levels were decreased by 40% (p = 0.002) two hours after injection but thereafter returned to baseline. IGF-I levels were unchanged two hours after injection and were elevated by 26% 14 hours after injection (p = 0.02). Epiretinal membranes were highly associated with epiretinal hemorrhages (p < 0.001), while retinal neovascularization was notably associated with vitreal hemorrhages (p < 0.001). Conclusions: Twice-daily injections of octreotide failed to produce sustained decrease in serum GH, but produced rebound elevation of serum IGF-I. Accordingly, no statistically significant effect of injections on retinal pathology was noted. This finding, however, does not contradict our assumption that GH suppression may decrease the severity of retinopathy. PMID:11469389

  11. Pancreatic and Pancreatic-Like Microbial Proteases Accelerate Gut Maturation in Neonatal Rats

    PubMed Central

    Prykhodko, Olena; Pierzynowski, Stefan G.; Nikpey, Elham; Arevalo Sureda, Ester; Fedkiv, Olexandr; Weström, Björn R.

    2015-01-01

    Objectives Postnatal gut maturation in neonatal mammals, either at natural weaning or after precocious inducement, is coinciding with enhanced enzymes production by exocrine pancreas. Since the involvement of enzymes in gut functional maturation was overlooked, the present study aimed to investigate the role of enzymes in gut functional maturation using neonatal rats. Methods Suckling rats (Rattus norvegicus) were instagastrically gavaged with porcine pancreatic enzymes (Creon), microbial-derived amylase, protease, lipase and mixture thereof, while controls received α-lactalbumin or water once per day during 14–16 d of age. At 17 d of age the animals were euthanized and visceral organs were dissected, weighed and analyzed for structural and functional properties. For some of the rats, gavage with the macromolecular markers such as bovine serum albumin and bovine IgG was performed 3 hours prior to blood collection to assess the intestinal permeability. Results Gavage with the pancreatic or pancreatic-like enzymes resulted in stimulated gut growth, increased gastric acid secretion and switched intestinal disaccharidases, with decreased lactase and increased maltase and sucrase activities. The fetal-type vacuolated enterocytes were replaced by the adult-type in the distal intestine, and macromolecular transfer to the blood was declined. Enzyme exposure also promoted pancreas growth with increased amylase and trypsin production. These effects were confined to the proteases in a dose-dependent manner. Conclusion Feeding exogenous enzymes, containing proteases, induced precocious gut maturation in suckling rats. This suggests that luminal exposure to proteases by oral loading or, possibly, via enhanced pancreatic secretion involves in the gut maturation of young mammals. PMID:25658606

  12. Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation: results at 30 months. Ventriculomegaly Trial Group.

    PubMed Central

    1994-01-01

    One hundred and fifty seven infants with progressive ventricular dilatation after intraventricular haemorrhage were randomised to either early repeated cerebrospinal fluid tapping or conservative management. Thirty two (20%) infants died and 13 (8%) were lost to follow up. One hundred and twelve children (90% of survivors) were examined at 30 months by a single experienced examiner. Overall, 54 (48%) scored less than 70 on the Griffiths developmental scales, 101 (90%) had neuromotor impairment, and 85 (76%) had marked disability; 63 (56%) had multiple impairments. Vision was severely affected in 10 (9%) and 30 (27%) had a field defect. Six per cent (seven children) had sensorineural hearing loss and 16 (14%) were taking regular anticonvulsant drugs. Although early cerebrospinal fluid tapping reduced the rate of ventricular and head expansion, there was no statistically significant difference (at the 5% level) between the treatment groups in the prevalence of neuromotor impairments, non-neuromotor impairments, nor multiple impairments at 30 months. These findings were consistent regardless of the presence or absence of a parenchymal cerebral lesion at entry to the trial. In the light of these findings and the 7% risk of cerebrospinal fluid infection associated with repeated tapping, this form of early intervention cannot be recommended. PMID:7512322

  13. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    PubMed Central

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  14. Baroreflex failure increases the risk of pulmonary edema in conscious rats with normal left ventricular function.

    PubMed

    Sakamoto, Kazuo; Hosokawa, Kazuya; Saku, Keita; Sakamoto, Takafumi; Tobushi, Tomoyuki; Oga, Yasuhiro; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2016-01-15

    In heart failure with preserved ejection fraction (HFpEF), the complex pathogenesis hinders development of effective therapies. Since HFpEF and arteriosclerosis share common risk factors, it is conceivable that stiffened arterial wall in HFpEF impairs baroreflex function. Previous investigations have indicated that the baroreflex regulates intravascular stressed volume and arterial resistance in addition to cardiac contractility and heart rate. We hypothesized that baroreflex dysfunction impairs regulation of left atrial pressure (LAP) and increases the risk of pulmonary edema in freely moving rats. In 15-wk Sprague-Dawley male rats, we conducted sinoaortic denervation (SAD, n = 6) or sham surgery (Sham, n = 9), and telemetrically monitored ambulatory arterial pressure (AP) and LAP. We compared the mean and SD (lability) of AP and LAP between SAD and Sham under normal-salt diet (NS) or high-salt diet (HS). SAD did not increase mean AP but significantly increased AP lability under both NS (P = 0.001) and HS (P = 0.001). SAD did not change mean LAP but significantly increased LAP lability under both NS (SAD: 2.57 ± 0.43 vs. Sham: 1.73 ± 0.30 mmHg, P = 0.01) and HS (4.13 ± 1.18 vs. 2.45 ± 0.33 mmHg, P = 0.02). SAD markedly increased the frequency of high LAP, and SAD with HS prolonged the duration of LAP > 18 mmHg by nearly 20-fold compared with Sham (SAD + HS: 2,831 ± 2,366 vs. Sham + HS: 148 ± 248 s, P = 0.01). We conclude that baroreflex failure impairs volume tolerance and together with salt loading increases the risk of pulmonary edema even in the absence of left ventricular dysfunction. Baroreflex failure may contribute in part to the pathogenesis of HFpEF. PMID:26589328

  15. Pycnogenol improves left ventricular function in streptozotocin-induced diabetic cardiomyopathy in rats.

    PubMed

    Klimas, Jan; Kmecova, Jana; Jankyova, Stanislava; Yaghi, Diana; Priesolova, Elena; Kyselova, Zuzana; Musil, Peter; Ochodnicky, Peter; Krenek, Peter; Kyselovic, Jan; Matyas, Stefan

    2010-07-01

    We studied whether Pycnogenol (PYC) may attenuate the development of experimental streptozotocin-induced diabetic cardiomyopathy in rat. In addition, we aimed to study whether PYC affects cardiac oxidative stress and the protein expression of reactive oxygen species (ROS)-producing molecules (gp91(phox)-containing NADPH oxidase and NO-signalling proteins). Experimental diabetes mellitus was manifested by hyperglycaemia and impaired cardiac function estimated using left ventricular catheterisation in vivo. PYC lowered fasting plasma glucose and normalized basal cardiac function. Excessive oxidative stress in streptozotocin (STZ) hearts, evidenced by 40% increase (P < 0.05) of thiobarbituric acid reactive substances (TBARS) concentration, was associated with increased expression of gp91(phox) (by 75%, P < 0.05), iNOS (by 40%, P < 0.05) and alpha-tubulin (by 49%, P < 0.05), but unchanged expression of eNOS and its alosteric regulators, as compared to CON. PYC failed to affect these expression abnormalities. Our study shows that PYC corrects diabetic cardiac dysfunction, probably by its metabolic and direct radical scavenging activity without affecting the molecular maladaptations of ROS-producing enzymes and cytoskeletal components. PMID:19957251

  16. Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes.

    PubMed

    Fields, Laura A; Koschinski, Andreas; Zaccolo, Manuela

    2016-07-01

    In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets. PMID:26475678

  17. Left ventricular sphericity index predicts systolic dysfunction in rats with experimental aortic regurgitation.

    PubMed

    Roscani, Meliza Goi; Polegato, Bertha Fulan; Minamoto, Suzana Erico Tanni; Lousada, Ana Paula Mena; Minicucci, Marcos; Azevedo, Paula; Matsubara, Luiz Shiguero; Matsubara, Beatriz Bojikian

    2014-05-15

    Although an increased left ventricular (LV) diastolic diameter (DD) and a decreased ejection fraction have been used as markers for the surgical replacement of an insufficient aortic valve, these signals may be observed when irreversible myocardium damage has already occurred. The aim of this study was to determine whether change in LV geometry predicts systolic dysfunction in experimental aortic regurgitation. Male Wistar rats underwent surgical acute aorta regurgitation (aorta regurgitation group; n = 23) or a sham operation (sham group; n = 12). After the procedure, serial transthoracic echocardiograms were performed at 1, 4, 8, and 16 wk. At the end of protocol, the LV, lungs, and liver were dissected and weighed. During the follow-up, no animal developed overt heart failure. There was a correlation between the LV sphericity index and reduced fractional shortening (P < 0.001) over time. A multiple regression model showed that the LVDD-sphericity index association at 8 wk was a better predictor of decreased fractional shortening at week 16 (R(2) = 0.50; P < 0.001) than was the LVDD alone (R(2) = 0.39; P = 0.001). LV geometry associated with increased LVDD improved the prediction of systolic dysfunction in experimental aortic regurgitation. PMID:24699853

  18. Biphasic effects of hyposmotic challenge on excitation-contraction coupling in rat ventricular myocytes.

    PubMed

    Brette, F; Calaghan, S C; Lappin, S; White, E; Colyer, J; Le Guennec, J Y

    2000-10-01

    The effects of short (1 min) and long (7-10 min) exposure to hyposmotic solution on excitation-contraction coupling in rat ventricular myocytes were studied. After short exposure, the action potential duration at 90% repolarization (APD(90)), the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitude, and contraction increased, whereas the L-type Ca(2+) current (I(Ca, L)) amplitude decreased. Fractional sarcoplasmic reticulum (SR) Ca(2+) release increased but SR Ca(2+) load did not. After a long exposure, I(Ca,L), APD(90), [Ca(2+)](i) transient amplitude, and contraction decreased. The abbreviation of APD(90) was partially reversed by 50 microM DIDS, which is consistent with the participation of Cl(-) current activated by swelling. After 10-min exposure to hyposmotic solution in cells labeled with di-8-aminonaphthylethenylpyridinium, t-tubule patterning remained intact, suggesting the loss of de-t-tubulation was not responsible for the fall in I(Ca,L). After long exposure, Ca(2+) load of the SR was not increased, and swelling had no effect on the site-specific phosphorylation of phospholamban, but fractional SR Ca(2+) release was depressed. The initial positive inotropic response to hyposmotic challenge may be accounted for by enhanced coupling between Ca(2+) entry and release. The negative inotropic effect of prolonged exposure can be accounted for by shortening of the action potential duration and a fall in the I(Ca,L) amplitude. PMID:11009486

  19. Effects of neonatal treatment with two phytoestrogens on male rat sexual behavior and partner preference.

    PubMed

    Morales-Otal, Adriana; Ferreira-Nuño, Armando; Olayo-Lortia, Jesús; Barrios-González, Javier; Tarragó-Castellanos, Rosario

    2016-10-01

    The aim of this work was to compare the effect of neonatal treatment with the phytoestrogens coumestrol (COU) and genistein (GEN), administered in equimolecular doses, on the sexual behavior and partner preference of male rats. Four groups of male rats were injected daily from day 1 to 5 with 150 µg of GEN, an equivalent amount of COU, 1 µg of β-estradiol 3-benzoato (EB), or olive oil (VEH) (control). A fifth group remained intact. In the GEN group, intromission and ejaculation latencies decreased, whereas ejaculatory frequency increased. Contrasting results were observed in COU males. EB males could not ejaculate and their mount and intromission latencies increased significantly. To determine sexual-partner preferences, a multiple partner preference arena was used and two types of tests were performed, the first one without allowing contact test (CT) with the stimulus animals, followed by a CT. COU and GEN groups did not show preference for any stimulus animal, whereas the EB males preferred the expert male. When CT with the stimulus animals was allowed, GEN-males preferred the receptive female, unlike the COU and EB groups. It is concluded that neonatal treatment with COU and GEN induced opposite effects, the effects of COU being more estrogenic. PMID:27482864

  20. Neonatal hypoxia-ischemia induces attention-deficit hyperactivity disorder-like behavior in rats.

    PubMed

    Miguel, Patrícia Maidana; Schuch, Clarissa Pedrini; Rojas, Joseane Jiménez; Carletti, Jaqueline Vieira; Deckmann, Iohanna; Martinato, Luísa Helena Machado; Pires, Augusto Viana; Bizarro, Lisiane; Pereira, Lenir Orlandi

    2015-06-01

    Attention-deficit hyperactivity disorder (ADHD) may be caused by genetic or environmental factors. Among environmental factors, perinatal complications are related, such as neonatal hypoxia-ischemia (HI). Thus, the aim of this study was to investigate whether HI contributes to the development of characteristics related to ADHD in adult rats, and to correlate the behavioral results with brain damage volume. Male Wistar rats were divided into 2 groups: HI and control. The HI procedure consisted of a permanent occlusion of the right common carotid artery followed by a period of hypoxia (90 min; 8% O₂ and 92% N₂) on the 7th postnatal day. Two months later, animals were evaluated in the open field test during a single 5-min session, and in the 5-choice serial reaction time task (5-CSRTT), over 25 weeks. Our results demonstrated that animals submitted to HI manifest cognitive impairments in task acquisition, deficits in sustained attention, and increases in impulsivity and compulsivity in response to task manipulation in the 5-CSRTT. Locomotor activity observed in open field did not differ between groups. Moreover, brain volume loss in the total hemisphere, cerebral cortex, white matter, hippocampus, and striatum were observed in HI animals, especially on the side ipsilateral to the lesion. From these results, we can infer that neonatal HI is an environmental factor that could contribute to the development of behavioral characteristics observed in ADHD that are associated with general brain atrophy. PMID:26030430

  1. Prolactin and Prolactin Receptor Expression in Rat, Small Intestine, Intraepithelial Lymphocytes During Neonatal Developmen

    PubMed Central

    Urtishak, Sandra L.; Mckenna, Elizabeth A.; Mastro, Andrea M.

    2001-01-01

    Intraepithelial lymphocytes (IEL) are specialized T cells found between the epithelial cells of the small intestine. Because of their location, IEL are the first lymphocytes to contact intestinal bacteria and food antigens. In the neonate, IEL may be the first cells of the immune system to interact with milk-borne hormones including prolactin (PRL). PRL, an endocrine hormone abundant in breast milk, interacts with cells through surface receptors. PRL has been shown to function as an immunoregulator and may affect the development of the newborn's immune system. To determine if PRL plays a role in IEL development, small intestine IEL from rats of various ages were examined for the presence of surface prolactin receptor (PRL-R) and several lymphoid markers by flow cytometry. Between birth and 96 days of age about 80% of IEL were found to express PRL-R. These same cells also expressed the mRNA for PRL. Additionally, all of the IEL subpopulations examined were found to express PRL-R. Analysis of the normal development of rat IEL revealed an age related increase in total IEL, CD4 positive cells as well as a peak in interleukin-2 receptor (IL-2R) expression at weaning. In summary, the results indicate that IEL express PRL and PRL-R. In addition, an activation marker, IL-2R, changes in expression during neonatal development. PMID:11785680

  2. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    PubMed Central

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  3. Prostanoid Receptors Involved in Regulation of the Beating Rate of Neonatal Rat Cardiomyocytes

    PubMed Central

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Robinet, Arnaud; Nazeyrollas, Pierre; Devillier, Philippe

    2012-01-01

    Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F2α and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate). PMID:22984630

  4. In situ morphology of the foramen ovale in the fetal and neonatal rat.

    PubMed

    Momma, K; Ito, T; Ando, M

    1992-12-01

    In situ cross-sectional morphology of the foramen ovale was studied after rapid whole-body freezing of the fetal and neonatal rat. In the fetus, the foramen ovale was open widely toward the left atrium with a thin, short primum septum. The opening area of the foramen ovale was 40% of the cross-section of the thoracic inferior vena cava, and the ratio of the long diameter to the short diameter was 2 to 1. After birth, the primum septum became longer, thicker, and straighter, with less leftward bowing. The opening of the foramen ovale diminished in the first 2 d and closed completely 3 d after birth. Postnatal thickening of the primum septum was very remarkable, increasing by 400% in the first 2d, while only minimal change was noticed in the right and the left atrial walls. The length of the primum septum was short and was only 90% of the diameter of the fossa ovalis in the fetus. It increased and reached 97% and 111% of the diameter of the fossa ovalis 1 and 2 d after birth, respectively. The septum secundum also grew rapidly after birth, and its length and width increased by 40% and 29% after 1 and 2 d, respectively. These observations indicate a sudden, explosive growth of the atrial septum in the early neonatal period in the rat. PMID:1287556

  5. A Mathematical Model of Neonatal Rat Atrial Monolayers with Constitutively Active Acetylcholine-Mediated K+ Current

    PubMed Central

    Majumder, Rupamanjari; Jangsangthong, Wanchana; Feola, Iolanda; Ypey, Dirk L.; Pijnappels, Daniël A.; Panfilov, Alexander V.

    2016-01-01

    Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities. PMID:27332890

  6. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats.

    PubMed

    Zhu, Xiao-Yun; Ma, Peng-Sheng; Wu, Wei; Zhou, Ru; Hao, Yin-Ju; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2016-06-01

    Taurine is an abundant amino acid in the nervous system, which has been proved to possess antioxidation, osmoregulation and membrane stabilization. Previously it has been demonstrated that taurine exerts ischemic brain injury protective effect. This study was designed to investigate whether the protective effect of taurine has the possibility to be applied to treat neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen to generate the experimental group. The cerebral damage area was measured after taurine post-treatment with 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxyline-Eosin (HE) staining and Nissl staining. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), myeloperoxtidase (MPO), ATP and Lactic Acid productions were assayed with ipsilateral hemisphere homogenates. Western-blot and immunofluorescence assay were processed to detect the expressions of AIF, Cyt C, Bax, Bcl-2 in brain. We found that taurine significantly reduced brain infarct volume and ameliorated morphological injury obviously reversed the changes of SOD, MDA, GSH-Px, T-AOC, ATP, MPO, and Lactic Acid levels. Compared with hypoxic-ischemic group, it showed marked reduction of AIF, Cyt C and Bax expressions and increase of Bcl-2 after post-treatment. We conclude that taurine possesses an efficacious neuroprotective effect after cerebral hypoxic-ischemic damage in neonatal rats. PMID:27345710

  7. Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia–ischemia in neonatal rats

    PubMed Central

    Jantzie, Lauren L.; Todd, Kathryn G.

    2010-01-01

    Background Neonatal hypoxia–ischemia (HI) is a major cause of perinatal brain injury and is associated with a spectrum of neuropsychiatric disorders. Although very few treatment options are currently available, doxycycline (DOXY) has been reported to be neuroprotective in neontatal HI. Our objective was to investigate the effects of DOXY on neonatal brain development in normal and HI rat pups. We hypothesized that DOXY would inhibit microglial activation but that developmentally important processes, including cytogenesis and trophic responses, would not be impaired. Methods To investigate the putative neurodevelopmental consequences of DOXY administration in a clinically relevant animal model of HI, we performed a time-course analysis such that postnatal rat pups received DOXY (10 mg/kg) or vehicle immediately before HI (n ≥ 6). We then assessed cytogenesis, proinflammatory cytokines, brain-derived neurotrophic factor (BDNF) and matrix metalloproteinases regionally and longitudinally. Results We found that DOXY significantly inhibits neuroinflammation in the frontal cortex, striatum and hippocampus; decreases interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α); and augments BDNF following HI. In addition, DOXY-treated pups have significantly fewer 2-bromo-5-deoxyuridine (BrdU)-positive cells in the subventricular zone 6 hours post-HI. However, DOXY does not persistently affect cytogenesis in the subventricular zone or dentate gyrus up to 7 days post-HI. The BrdU-positive cells not expressing markers for mature neurons colabel with nestin, an intermediate filament protein typical of neuronal precursors. Limitations Our study investigates “acute” neurodevelopment over the first 7 days of life after HI injury. Further long-term investigations into adulthood are underway. Conclusion Taken together, our results suggest the putative clinical potential of DOXY in the management of neonatal cerebral HI injury. PMID:20040243

  8. Reduced Renshaw Recurrent Inhibition after Neonatal Sciatic Nerve Crush in Rats

    PubMed Central

    Shu, Liang; Su, Jingjing; Jing, Lingyan; Huang, Ying; Di, Yu; Peng, Lichao; Liu, Jianren

    2014-01-01

    Renshaw recurrent inhibition (RI) plays an important gated role in spinal motion circuit. Peripheral nerve injury is a common disease in clinic. Our current research was designed to investigate the change of the recurrent inhibitory function in the spinal cord after the peripheral nerve crush injury in neonatal rat. Sciatic nerve crush was performed on 5-day-old rat puppies and the recurrent inhibition between lateral gastrocnemius-soleus (LG-S) and medial gastrocnemius (MG) motor pools was assessed by conditioning monosynaptic reflexes (MSR) elicited from the sectioned dorsal roots and recorded either from the LG-S and MG nerves by antidromic stimulation of the synergist muscle nerve. Our results demonstrated that the MSR recorded from both LG-S or MG nerves had larger amplitude and longer latency after neonatal sciatic nerve crush. The RI in both LG-S and MG motoneuron pools was significantly reduced to virtual loss (15–20% of the normal RI size) even after a long recovery period upto 30 weeks after nerve crush. Further, the degree of the RI reduction after tibial nerve crush was much less than that after sciatic nerve crush indicatig that the neuron-muscle disconnection time is vital to the recovery of the spinal neuronal circuit function during reinnervation. In addition, sciatic nerve crush injury did not cause any spinal motor neuron loss but severally damaged peripheral muscle structure and function. In conclusion, our results suggest that peripheral nerve injury during neonatal early development period would cause a more sever spinal cord inhibitory circuit damage, particularly to the Renshaw recurrent inhibition pathway, which might be the target of neuroregeneration therapy. PMID:24778886

  9. Impaired rate of microsomal fatty acid elongation in undernourished neonatal rat brain

    SciTech Connect

    Yeh, Y.Y.

    1986-05-01

    Hypomyelination caused by undernourishment in characterized by low concentrations of myelin lipids and marked reduction in lignocerate (C/sub 24:0/) and nervonate (C/sub 24:1/) moiety of cerebroside and sulfatide. Since microsomal elongation is the major source of long chain (22 to 24 carbons) fatty acids in the brain, the effect of neonatal undernourishment on acyl elongation was investigated. Undernourishment of suckling rats were induced after birth by restricting maternal dietary intake to 40% of that consumed by dams fed ad libitum. Neonates suckled by the normally fed dams served as controls. Microsomal elongation was measured as nmol from (2-/sup 14/C) malonyl CoA incorporated/h per mg of protein. At 19 days of age, rates of behenoyl CoA (C/sub 22:0/) and erucoyl CoA (C/sub 22:1/) elongation in whole brain of undernourished neonates were 30-40% lower than that of the control, whereas the elongation rates of acyl CoA 16, 18 and 20 carbons in length either saturated or monounsaturated were similar in both groups. Undernourishment had no effect on cytoplasmic de novo fatty acid synthesis from acetyl CoA. If there are multiple elongation factors, the results indicate that the depressed activity of elongating enzyme(s) for C/sub 22:0/ and C/sub 22:1/ is an important contributing factor in lowering S/sub 24:0/ and C/sub 24:1/ content in cerebroside and sulfatide. This impairment may be a specific lesion leading to hypomyelination in undernourished rats.

  10. Amikacin induced renal damage and the role of the antioxidants on neonatal rats.

    PubMed

    Kara, Aslihan; Cetin, Hasan; Oktem, Faruk; Metin Ciris, Ibrahim; Altuntas, Irfan; Kaya, Selcuk

    2016-06-01

    Amikacin (AK) is frequently used on the treatment of Gram-negative infections on neonates, but its usage is restricted because of nephrotoxicity. In this study, on neonatal rats, we aimed to investigate the effects of erythropoietin and vitamin E on AK induced nephrotoxicity. A total of 35 newborn Wistar Albino rats were divided into four groups: (1) injected with saline (serum physiological was administered to placebo controls), (2) injected with AK (1200 mg/kg), (3) injected with AK + vitamin E (150 mg/kg), (4) injected with AK + erythropoietin (EPO) (300 IU/kg/day). In renal tissue, AK levels were significantly high in all groups except the control. Tissue malondialdehyde (MDA) and nitric oxide (NO) levels were statistically higher in AK -treated group than the control. MDA and NO levels were significantly decreased with the administration of vitamin E and EPO. Glutathione peroxidase (GPX) levels were statistically low in AK group compared with the controls. The levels of GPX, in vitamin E group, were increased significantly. However, superoxide dismutase and catalase levels were not significantly different in none of the groups. Insulin-like growth factor-1 values in AK, EPO and vitamin E groups were significantly higher than the control group. Histomorphological changes such as tubular epithelial necrosis were seen in AK treated group. Histopathological improvements observed with EPO and vitamin E administration. AK nephrotoxicity is related to oxidative stress and is supported with biochemical and histopathological findings. Vitamin E and EPO, as antioxidants, can be useful renoprotective agents for ameliorating AK induced nephrotoxicity in neonates. PMID:26982694

  11. Enriched rehabilitation promotes motor recovery in rats exposed to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Jeffers, Matthew Strider; Antonescu, Sabina; Nguemeni, Carine; Gomez-Smith, Mariana; Pereira, Lenir Orlandi; Morshead, Cindi M; Corbett, Dale

    2016-05-01

    Despite continuous improvement in neonatology there is no clinically effective treatment for perinatal hypoxia ischemia (HI). Therefore, development of a new therapeutic intervention to minimize the resulting neurological consequences is urgently needed. The immature brain is highly responsive to environmental stimuli, such as environmental enrichment but a more effective paradigm is enriched rehabilitation (ER), which combines environmental enrichment with daily reach training. Another neurorestorative strategy to promote tissue repair and functional recovery is cyclosporine A (CsA). However, potential benefits of CsA after neonatal HI have yet to be investigated. The aim of this study was to investigate the effects of a combinational therapy of CsA and ER in attempts to promote cognitive and motor recovery in a rat model of perinatal hypoxic-ischemic injury. Seven-day old rats were submitted to the HI procedure and divided into 4 groups: CsA+Rehabilitation; CsA+NoRehabilitation; Vehicle+Rehabilitation; Vehicle+NoRehabilitation. Behavioural parameters were evaluated pre (experiment 1) and post 4 weeks of combinational therapy (experiment 2). Results of experiment 1 demonstrated reduced open field activity of HI animals and increased foot faults relative to shams in the ladder rung walking test. In experiment 2, we showed that ER facilitated acquisition of a staircase skilled-reaching task, increased number of zone crosses in open-field exploration and enhanced coordinated limb use during locomotion on the ladder rung task. There were no evident deficits in novel object recognition testing. Delayed administration of CsA, had no effect on functional recovery after neonatal HI. There was a significant reduction of cortical and hemispherical volume and hippocampal area, ipsilateral to arterial occlusion in HI animals; combinational therapy had no effect on these morphological measurements. In conclusion, the present study demonstrated that ER, but not CsA was the main

  12. Long-term influence of neonatal hypoxia on catecholamine activity in carotid bodies and brainstem cell groups of the rat.

    PubMed Central

    Soulier, V; Dalmaz, Y; Cottet-Emard, J M; Lagercrantz, H; Pequignot, J M

    1997-01-01

    1. In order to determine the long-term influence of neonatal hypoxia on catecholaminergic activity in peripheral arterial chemoreceptors and brainstem noradrenergic cell groups (A1, A2, A5 and A6), 1-day-old male rat pups were subjected to hypoxia (10% oxygen) for 6 days and then supplied with normal air. Control animals were kept at normoxia from birth. Rats were killed at either 3 or 8 weeks of age. 2. The content of dopamine and noradrenaline in carotid bodies of neonatally hypoxic rats was increased at both 3 and 8 weeks of age. 3. Noradrenaline turnover was selectively decreased in the caudal portion of A2 (located in the area of chemosensory afferent projection) at 8 weeks of age (-76 +/- 2%), while this turnover was unaffected in rostral A2 cells. Noradrenergic activity in A1, A5 and A6 was altered by neonatal hypoxia in an age-dependent fashion. 4. The data suggest that neonatal hypoxia induces long-term changes in the basal activity of the carotid body and brainstem noradrenergic cell groups. Such changes might contribute to neuronal regulation of the delayed respiratory, arousal and neural sequelae associated with neonatal hypoxia. These changes could also be involved in the early programming of respiratory and blood pressure control. PMID:9032699

  13. Neonatal proinflammatory challenge in male Wistar rats: Effects on behavior, synaptic plasticity, and adrenocortical stress response.

    PubMed

    Tishkina, Anna; Stepanichev, Mikhail; Kudryashova, Irina; Freiman, Sofia; Onufriev, Mikhail; Lazareva, Natalia; Gulyaeva, Natalia

    2016-05-01

    Effects of neonatal proinflammatory stress (NPS) on the development of anxiety and depressive-like behavior, stress responsiveness, hippocampal plasticity and conditioned fear response were studied in adolescent and adult male Wistar rats. On PND 3 and PND 5, the pups were subcutaneously injected with bacterial lipopolysaccharide (LPS, 50 μg/kg). In the open field test, signs of increased anxiety were demonstrated in adolescent (PND 32), but not in adult (PND 101) rats. In the elevated plus maze, no changes could be detected in adolescent rats, however, in the adults the number of entries into the open arms decreased suggesting increased anxiety after NPS. Signs of "behavioral despair" in the forced swim test, expressed in adolescent rats as a trend, became significant in the adults indicating depression-like behavior. In the majority of brain slices from PND 19-PND 33 rats subjected to NPS, deficit of LTP in the hippocampal CA1 field was detected, this deficit being associated with the impaired mechanisms of LTP induction. In the adult rats, NPS enhanced fear conditioning promoting improved formation of the novel context-foot shock association in the contextual fear conditioning paradigm without effect on cued fear conditioning. NPS significantly impaired functioning of the hypothalamic-pituitary-adrenal axis (HPAA), resulting in an elevated corticosterone level maintained in the adolescents but not in the adults and in modified corticosterone response to behavioral sub-chronic stress in both adolescent and adult rats. Thus, NPS induces "perinatal malprogramming" resulting in development of depression-like behaviors, associated with abnormalities in functioning of the HPAA, impaired hippocampal neuroplasticity (LTP) and changes in hippocampus-dependent memory formation. PMID:26851557

  14. Evidence that FOXO3a is involved in oocyte apoptosis in the neonatal rat ovary.

    PubMed

    Sui, Xu-Xia; Luo, Li-Li; Xu, Jin-Jie; Fu, Yu-Cai

    2010-08-01

    Previous studies have proposed that the forkhead transcription factor FOXO3a is involved in cell cycle arrest and apoptosis and that it may also repress follicular development by inducing cell cycle arrest in ovaries. We have recently demonstrated that FOXO3a induces oocyte apoptosis of neonatal rat ovaries under in vitro conditions. In the present study, we evaluated the role of FOXO3a in oocyte apoptosis under in vivo conditions. Ovaries from rats were obtained from newborns on postnatal day (PD) 1, 2, 3, and 4. TUNEL assay results showed that oocyte apoptosis occurred mainly on PD 1 and 2. Immunohistochemical staining of FOXO3a, Bim, Fas ligand (FasL), p27KIP1, caspase-8, and caspase-3 showed that they were all expressed mainly in naked oocytes on PD 1 and 2. The percentage of positive FOXO3a staining of oocytes reached peak levels in the ovaries of 2-day-old rats, which was consistent with the rate of the apoptotic profiles determined by TUNEL. The percentage between TUNEL-positive and FOXO3a-positive oocytes in the nucleus showed no statistical differences within the 4-day-old rat ovaries. Furthermore, the positive oocyte percentage of the target factors of FOXO3a (Bim, p27KIP1, and FasL) and pro-apoptotic proteins (caspase-3 and caspase-8) also reached peak levels in the ovaries of 2-day-old rats, which was similar to the rate of FOXO3a-positive oocytes. These results suggest that FOXO3a in the oocyte nucleus is involved in oocyte apoptosis; that is, FOXO3a-positive oocytes may be the apoptotic cells. To verify this, rat oocytes were subjected to TUNEL and immunofluorescent double-labeling assays. We found that TUNEL-positive cells were also FOXO3a-, Bim-, or FasL-positive. To identify the downstream target of FOXO3a, double immunofluorescent staining with antibodies to Bim and FasL was performed. We found that FOXO3a-positive cells were also Bim- and FasL-positive. We conclude that the overexpression of FOXO3a in the oocyte nucleus of neonatal rat ovaries

  15. Beta-adrenoceptor subtypes in young and old rat ventricular myocytes: a combined patch-clamp and binding study.

    PubMed Central

    Cerbai, E.; Guerra, L.; Varani, K.; Barbieri, M.; Borea, P. A.; Mugelli, A.

    1995-01-01

    1. We used electrophysiological and binding techniques to assess the presence of beta 1- and beta 2-adrenoceptors (beta 1AR and beta 2AR) in rat cardiac myocytes and to determine their ratio during aging. Experiments were performed in left ventricular myocytes enzymatically dissociated from the heart of 3-(young) or 22-month-old (old) Wistar Kyoto rats. 2. In patch-clamp experiments, myocytes from old rats showed a prolonged action potential duration (at -20 mV: 41.7 +/- 3.6 vs 26.2 +/- 3.1 ms; at -60 mV: 154.4 +/- 17.7 vs 87.1 +/- 6.9 ms, P < 0.05) and an augmented membrane capacitance (an index of cell size) (271.7 +/- 20.2 vs 164.3 +/- 14.6 pF, P < 0.05) compared to young rats. beta 2AR stimulation, achieved by superfusing myocytes with the selective beta 2AR agonist, zinterol (10 microM) or with (-)-isoprenaline (1 microM) in the presence of the selective beta 1AR antagonist, CGP 20712A (0.1 microM), significantly increased L-type calcium current (ICa,L) in rat ventricular myocytes. The percentage increase was similar in both young and old rats, either with zinterol (26.9 +/- 3.6% and 24.2 +/- 2.8%, respectively) or isoprenaline plus CGP 20712A (30.4 +/- 3.7% and 22.4 +/- 4.1%, respectively). Isoprenaline alone (beta 1AR and beta 2AR stimulation) caused a much smaller increase in ICa,L in old rats (58.4 +/- 12.1%) than in younger ones (95.3 +/- 8.1%) (P = 0.067).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528568

  16. Neonatally Induced Mild Diabetes in Rats and Its Effect on Maternal, Placental, and Fetal Parameters

    PubMed Central

    Sinzato, Yuri Karen; Volpato, Gustavo Tadeu; Iessi, Isabela Lovizutto; Bueno, Aline; Calderon, Iracema de Mattos Paranhos; Rudge, Marilza Vieira Cunha; Damasceno, Débora Cristina

    2012-01-01

    The aim of this study was to assess placental changes and reproductive outcomes in neonatally induced mild diabetic dams and fetal development in their offspring. At birth, female rats were assigned either to control or diabetic group (100 mg of streptozotocin/Kg, subcutaneously). At adulthood, the female rats were mated. During pregnancy, the blood glucose levels and glucose and insulin tolerance tests were performed. At term, maternal reproductive outcomes, fetal and placental weight, and placental morphology were analyzed. Diabetic rats had smaller number of living fetuses, implantations and corpora lutea, and increased rate of embryonic loss. Placenta showed morphometric alterations in decidua area. Our results showed that mild diabetes was sufficient to trigger alterations in maternal organism leading to impaired decidua development contributing to failure in embryonic implantation and early embryonic losses. Regardless placental decidua alteration, the labyrinth, which is responsible for the maternal-fetal exchanges, showed no morphometric changes contributing to an appropriate fetal development, which was able to maintain normal fetal weight at term in mild diabetic rats. Thus, this experimental model of diabetes induction at the day of birth was more effective to reproduce the reproductive alterations of diabetic women. PMID:22778712

  17. EFFECTS OF NEONATAL METHYLMERCURY EXPOSURE ON ADRENERGIC RECEPTOR BINDING SITES IN PERIPHERAL TISSUES OF THE DEVELOPING RAT

    EPA Science Inventory

    Neonatal exposure to methylmercury produces changes in patterns of tissue growth and function, in part, due to alterations in adrenergic neuronal input. To explore the mechanisms by which these changes come about, newborn rats were exposed to methylmercury (1 or 2.5 mg/kg/day) th...

  18. Treadmill exercise ameliorates impairment of spatial learning ability through enhancing dopamine expression in hypoxic ischemia brain injury in neonatal rats.

    PubMed

    Park, Chang-Youl; Lee, Shin-Ho; Kim, Bo-Kyun; Shin, Mal-Soon; Kim, Chang-Ju; Kim, Hong

    2013-01-01

    Substantia nigra and striatum are vulnerable to hypoxic ischemia brain injury. Physical exercise promotes cell survival and functional recovery after brain injury. However, the effects of treadmill exercise on nigro-striatal dopaminergic neuronal loss induced by hypoxic ischemia brain injury in neonatal stage are largely unknown. We determined the effects of treadmill exercise on survival of dopamine neurons in the substantia nigra and dopaminergic fibers in the striatum after hypoxic ischemia brain injury. On postnatal 7 day, left common carotid artery of the neonatal rats ligated for two hours and the neonatal rats were exposed to hypoxia conditions for one hour. The rat pups in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 12 weeks, starting 22 days after induction of hypoxic ischemia brain injury. Spatial learning ability in rat pups was determined by Morris water maze test after last treadmill exercise. The viability of dopamine neurons in the substantia nigra and dopamine fibers in the striatum were analyzed using immunohistochemistry. In this study, hypoxic ischemia injury caused loss of dopamine neurons in the substantia nigra and dopaminergic fibers in the striatum. Induction of hypoxic ischemia deteriorated spatial learning ability. Treadmill exercise ameliorated nigro-striatal dopaminergic neuronal loss, resulting in the improvement of spatial learning ability. The present study suggests the possibility that treadmill exercise in early adolescent period may provide a useful strategy for the recovery after neonatal hypoxic ischemia brain injury. PMID:24278893

  19. EFFECTS OF NEONATAL METHYLMERCURY EXPOSURE ON DEVELOPMENT OF NUCLEIC ACIDS AND PROTEINS IN RAT BRAIN: REGIONAL SPECIFICITY

    EPA Science Inventory

    Exposure of neonatal rats to methylmercury (1 or 2.5 mg/kg SC daily) during the preweaning period caused regionally-specific alterations in DNA, RNA and protein content in brain. In midbrain + brainstem, where neuronal replication and differentiation conclude early, reduced DNA c...

  20. Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats.

    PubMed

    Yang, Guo-Hong; Zhou, Xin; Ji, Wen-Jie; Zeng, Shan; Dong, Yan; Tian, Lu; Bi, Ying; Guo, Zhao-Zeng; Gao, Fei; Chen, Hong; Jiang, Tie-Min; Li, Yu-Ming

    2014-02-15

    Recent studies have shown that the tonicity-responsive enhancer binding protein (TonEBP)/vascular endothelial growth factor-C (VEGF-C) signaling pathway-induced lymphangiogenesis provides a buffering mechanism for high salt (HS) intake-induced elevation of blood pressure (BP). Moreover, blocking of TonEBP/VEGF-C signaling by mononuclear phagocyte depletion can induce salt-sensitive hypertension in rats. We hypothesized that HS intake could have an impact on cardiac lymphangiogenesis, and regulation of VEGF-C bioactivity, which is largely through the main receptor for VEGFR-3, may modulate HS intake-induced left ventricular remodeling. We demonstrated upregulation of TonEBP, increased macrophage infiltration, and enhanced lymphangiogenesis in the left ventricles of spontaneously hypertensive rats (SHR) that were fed a HS diet (8.0% NaCl). Then, retrovirus vectors capable of overexpression (ΔNΔC/VEGF-C/Cys152Ser, used for overexpressing VEGF-C) and blocking (VEGFR-3-Rg, used for trapping of bioactive VEGF-C) of VEGF-C and control vector (pLPCX) were intravenously administered to SHR from week 9 of a 12-wk HS loading period. At the end of the HS challenge, overexpression of VEGF-C led to enhanced cardiac lymphangiogenesis, decreased myocardial fibrosis, and macrophage infiltration, preserved left ventricular functions, as well as decreased blood pressure level compared with the HS group and the control vector-treated HS group. In contrast, systemic blocking of VEGF-C was associated with elevation of blood pressure level and an exacerbation of hypertensive left ventricular remodeling, as indicated by increased fibrosis and macrophage infiltration, and diminished lymphangiogenesis. Hence, our findings highlight that VEGF-C/VEGFR-3 is a promising therapeutic target to attenuate hypertensive left ventricular remodeling induced by HS intake, presumably via blood pressure-dependent and -independent mechanisms. PMID:24337460

  1. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.

    PubMed Central

    Bouchard, R A; Clark, R B; Giles, W R

    1993-01-01

    1. Regulation of unloaded cell shortening and relaxation by sarcolemmal Na(+)-Ca2+ exchange was investigated in rat ventricular myocytes. Contraction of single cells at 22 +/- 1 degrees C was measured simultaneously with membrane current and voltage using the whole-cell voltage clamp technique in combination with a video edge-detection device. 2. The extent of mechanical activation (cell shortening amplitude) was strongly dependent on diastolic membrane potential over the voltage range -140 to -50 mV. This voltage sensitivity of contraction was abolished completely when a recently described inhibitory peptide of the cardiac Na(+)-Ca2+ exchanger (XIP, 2 x 10(-5) M) was present in the recording pipette, demonstrating that in rat ventricular cells Na(+)-Ca2+ exchange is modulated by diastolic membrane potential. 3. Possible influences of Na(+)-Ca2+ exchange on contraction were studied from a holding potential of -80 mV. Depolarizations (-50 to +60 mV) resulted in a bell-shaped shortening-voltage (S-V) relationship. These contractions were suppressed completely by either Cd2+ (10(-4) M) or verapamil (10(-5) M), but remained unchanged during superfusion with tetrodotoxin (TTX, 1.5 x 10(-5) M), when [NA+]o was reduced from 140 to 10 mM by substitution with either Li+ or Cs+ ions or when pipette Na+ was varied between 8 and 13 mM. XIP (2 x 10(-5) M) increased the magnitude and duration of twitch contractions, but had no effect on the shape of the S-V relationship. Thus, the Ca2+ current but not the Na+ current or Ca2+ influx due to reversed Na(+)-Ca2+ exchange can release Ca2+ from the sarcoplasmic reticulum (SR) under these experimental conditions. 4. The effect of the rate of repolarization on cell shortening was studied under voltage clamp by applying ramp waveforms immediately following the depolarizations which activated contraction. Although slowing of the rate of repolarization had no effect on the first contraction following a train of conditioning depolarizations

  2. Effects of neonatal fluoxetine exposure on behavior across development in rats selectively bred for an infantile affective trait.

    PubMed

    Zimmerberg, Betty; Germeyan, Sierra C

    2015-03-01

    Infants born to women with depressive symptoms are at higher risk for insecure attachment and behavioral problems. Thus current medical practice is to continue psychotropic medication of pregnant women with depression despite concerns about its behavioral teratology. There are few animal studies focused on long-term behavioral effects of prenatal antidepressant exposure; in addition, studies have not looked at individual differences in baseline affective state as a source of response variability. In this study, fluoxetine, a selective serotonin reuptake inhibitor (SSRI), was administered to male and female rat pups from postnatal days 2-7 to model exposure to antidepressants in the human third trimester. Four behavioral measures were conducted from the neonatal to adult age periods in Low and High lines selectively bred for their rate of ultrasonic vocalizations after brief maternal separation. Neonatal fluoxetine administration decreased distress calls in both lines, but to a greater extent in High line rats than Low line. Neonatal fluoxetine also impaired motor coordination in neonates. Neonatal fluoxetine administration decreased social behavior in both juvenile and adult subjects. Fluoxetine-related reductions in anxiety behavior were not observed at the two older ages. As expected, High line subjects displayed more anxiety behavior than Low line subjects at all three test ages. These results suggest that there are may be significant behavioral consequences of antidepressant use during late pregnancy on offspring maternal attachment and social behavior, with implications for increased risk of autism spectrum disorders. PMID:25503615

  3. NEONATAL DESTRUCTION OF DOPAMINERGIC NEURONS

    EPA Science Inventory

    Rats treated as neonates with 6-hydroxydopamine are proposed to model the dopamine deficiency associated with Lesch-Nyhan syndrome (LNS). o understand the neurobiological basis of specific behaviors in LNS, investigations were undertaken in these neonatally lesioned rats. everal ...

  4. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats

    SciTech Connect

    Doerge, Daniel R.; Twaddle, Nathan C.; Vanlandingham, Michelle; Brown, Ronald P.; Fisher, Jeffrey W.

    2011-09-15

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA metabolites in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure in the range of 0.02-0.2 {mu}g/kg bw/d (25th-95th percentiles). The current study used LC/MS/MS to measure placental transfer and concentrations of aglycone (receptor-active) and conjugated (inactive) BPA in tissues from Sprague-Dawley rats administered deuterated BPA (100 {mu}g/kg bw) by oral and IV routes. In adult female rat tissues, the tissue/serum concentration ratios for aglycone BPA ranged from 0.7 in liver to 5 in adipose tissue, reflecting differences in tissue perfusion, composition, and metabolic capacity. Following IV administration to dams, placental transfer was observed for aglycone BPA into fetuses at several gestational days (GD), with fetal/maternal serum ratios of 2.7 at GD 12, 1.2 at GD 16, and 0.4 at GD 20; the corresponding ratios for conjugated BPA were 0.43, 0.65, and 3.7. These ratios were within the ranges observed in adult tissues and were not indicative of preferential accumulation of aglycone BPA or hydrolysis of conjugates in fetal tissue in vivo. Concentrations of aglycone BPA in GD 20 fetal brain were higher than in liver or serum. Oral administration of the same dose did not produce measurable levels of aglycone BPA in fetal tissues. Amniotic fluid consistently contained levels of BPA at or below those in maternal serum. Concentrations of aglycone BPA in tissues of neonatal rats decreased with age in a manner consistent with the corresponding circulating levels. Phase II metabolism of BPA increased with fetal age such that near-term fetus was similar to early post-natal rats. These results show that concentrations of aglycone BPA in fetal tissues are similar to those in other maternal and neonatal tissues and that maternal Phase II metabolism, especially following oral

  5. Endocardial endothelium is a key determinant of force-frequency relationship in rat ventricular myocardium

    PubMed Central

    Shen, Xiaoxu; Tan, Zhen; Zhong, Xin; Tian, Ye; Wang, Xian; Yu, Bo; Ramirez-Correa, Genaro; Murphy, Anne; Gabrielson, Kathleen; Paolocci, Nazareno

    2013-01-01

    We tested the hypothesis that removing endocardial endothelium (EE) negatively impacts the force-frequency relationship (FFR) of ventricular myocardium and dissected the signaling that underlies this phenomenon. EE of rat trabeculae was selectively damaged by brief (<1 s) exposure to 0.1% Triton X-100. Force, intracellular Ca2+ transient (iCa2+), and activity of protein kinase A (PKA) and protein kinase C (PKC) were determined. In control muscles, force and iCa2+ increased as the stimulation frequency increased in steps of 0.5 Hz up to 3.0 Hz. However, EE-denuded (EED) muscles exhibited a markedly blunted FFR. Neither isoproterenol (ISO; 0.1–5 nmol/l) nor endothelin-1 (ET-1; 10–100 nmol/l) alone restored the slope of FFR in EED muscles. Intriguingly, however, a positive FFR was restored in EED preparations by combining low concentrations of ISO (0.1 nmol/l) and ET-1 (20 nmol/l). In intact muscles, PKA and PKC activity increased proportionally with the increase in frequency. This effect was completely lost in EED muscles. Again, combining ISO and ET-1 fully restored the frequency-dependent rise in PKA and PKC activity in EED muscles. In conclusion, selective damage of EE leads to significantly blunted FFR. A combination of low concentrations of ISO and ET-1 successfully restores FFR in EED muscles. The interdependence of ISO and ET-1 in this process indicates cross-talk between the β1-PKA and ET-1-PKC pathways for a normal (positive) FFR. The results also imply that dysfunction of EE and/or EE-myocyte coupling may contribute to flat (or even negative) FFR in heart failure. PMID:23703113

  6. Multiphysics model of a rat ventricular myocyte: A voltage-clamp study

    PubMed Central

    2012-01-01

    Background The objective of this study is to develop a comprehensive model of the electromechanical behavior of the rat ventricular myocyte to investigate the various factors influencing its contractile response. Methods Here, we couple a model of Ca2 + dynamics described in our previous work, with a well-known model of contractile mechanics developed by Rice, Wang, Bers and de Tombe to develop a composite multiphysics model of excitation-contraction coupling. This comprehensive cell model is studied under voltage clamp (VC) conditions, since it allows to focus our study on the elaborate Ca2 + signaling system that controls the contractile mechanism. Results We examine the role of various factors influencing cellular contractile response. In particular, direct factors such as the amount of activator Ca2 + available to trigger contraction and the type of mechanical load applied (resulting in isosarcometric, isometric or unloaded contraction) are investigated. We also study the impact of temperature (22 to 38°C) on myofilament contractile response. The critical role of myofilament Ca2 + sensitivity in modulating developed force is likewise studied, as is the indirect coupling of intracellular contractile mechanism with the plasma membrane via the Na + /Ca2 + exchanger (NCX). Finally, we demonstrate a key linear relationship between the rate of contraction and relaxation, which is shown here to be intrinsically coupled over the full range of physiological perturbations. Conclusions Extensive testing of the composite model elucidates the importance of various direct and indirect modulatory influences on cellular twitch response with wide agreement with measured data on all accounts. Thus, the model provides mechanistic insights into whole-cell responses to a wide variety of testing approaches used in studies of cardiac myofilament contractility that have appeared in the literature over the past several decades. PMID:23171697

  7. Alterations to prepulse inhibition magnitude and latency in adult rats following neonatal treatment with domoic acid and social isolation rearing.

    PubMed

    Marriott, Amber L; Tasker, R Andrew; Ryan, Catherine L; Doucette, Tracy A

    2016-02-01

    Deficits in perceptual, informational, and attentional processing are consistently identified as a core feature in schizophrenia and related neuropsychiatric disorders. Neonatal injections of low doses of the AMPA/kainate agonist domoic acid (DOM) have previously been shown to alter various aspects of perceptual and attentional processing in adult rats. The current study investigated the effects of combined neonatal DOM treatment with isolation rearing on prepulse inhibition behaviour and relevant neurochemical measures, to assess the usefulness of these paradigms in modeling neurodevelopmental disorders. Daily subcutaneous injections of DOM (20 μg/kg) or saline were administered to male and female rat pups from postnatal days (PND) 8-14. After weaning, rats were either housed alone or in groups of 4. Both the magnitude and latency of prepulse inhibition were determined in adulthood (approximately 4.5 months of age) and post-mortem brain tissue was assayed using Western blot. Social isolation alone significantly lowered PPI magnitude in male (but not female) rats while DOM treatment appeared to make animals refractory to this effect. Combining social isolation and DOM treatment caused an additive decrease in PPI startle latency. No statistically significant differences were found in the expression of D1, D2, TH, GAD65 or GAD67 protein in either the prefrontal cortex or hippocampus, although some tendencies toward differences were noted. We conclude that both neonatal low-dose DOM and social isolation affect prepulse inhibition in rats but that each paradigm exerts these effects through different neuronal signalling systems. PMID:26590368

  8. Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn

    PubMed Central

    Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.

    2014-01-01

    Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417

  9. Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome

    PubMed Central

    Hartley, Stephen W.; Coon, Steven L.; Savastano, Luis E.; Mullikin, James C.; Fu, Cong; Klein, David C.

    2015-01-01

    The term neurotranscriptomics is used here to describe genome-wide analysis of neural control of transcriptomes. In this report, next-generation RNA sequencing was using to analyze the effects of neonatal (5-days-of-age) surgical stimulus deprivation on the adult rat pineal transcriptome. In intact animals, more than 3000 coding genes were found to exhibit differential expression (adjusted-p < 0.001) on a night/day basis in the pineal gland (70% of these increased at night, 376 genes changed more than 4-fold in either direction). Of these, more than two thousand genes were not previously known to be differentially expressed on a night/day basis. The night/day changes in expression were almost completely eliminated by neonatal removal (SCGX) or decentralization (DCN) of the superior cervical ganglia (SCG), which innervate the pineal gland. Other than the loss of rhythmic variation, surgical stimulus deprivation had little impact on the abundance of most genes; of particular interest, expression levels of the melatonin-synthesis-related genes Tph1, Gch1, and Asmt displayed little change (less than 35%) following DCN or SCGX. However, strong and consistent changes were observed in the expression of a small number of genes including the gene encoding Serpina1, a secreted protease inhibitor that might influence extracellular architecture. Many of the genes that exhibited night/day differential expression in intact animals also exhibited similar changes following in vitro treatment with norepinephrine, a superior cervical ganglia transmitter, or with an analog of cyclic AMP, a norepinephrine second messenger in this tissue. These findings are of significance in that they establish that the pineal-defining transcriptome is established prior to the neonatal period. Further, this work expands our knowledge of the biological process under neural control in this tissue and underlines the value of RNA sequencing in revealing how neurotransmission influences cell biology. PMID

  10. Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats.

    PubMed

    Lopes, L T; Patrone, L G A; Li, K-Y; Imber, A N; Graham, C D; Gargaglioni, L H; Putnam, R W

    2016-06-01

    This study was designed to investigate brain connections among chemosensitive areas in newborn rats. Rhodamine beads were injected unilaterally into the locus coeruleus (LC) or into the caudal part of the nucleus tractus solitarius (cNTS) in Sprague-Dawley rat pups (P7-P10). Rhodamine-labeled neurons were patched in brainstem slices to study their electrophysiological responses to hypercapnia and to determine if chemosensitive neurons are communicating between LC and cNTS regions. After 7-10 days, retrograde labeling was observed in numerous areas of the brainstem, including many chemosensitive regions, such as the contralateral LC, cNTS and medullary raphe. Whole-cell patch clamp was done in cNTS. In 4 of 5 retrogradely labeled cNTS neurons that projected to the LC, firing rate increased in response to hypercapnic acidosis (15% CO2), even in synaptic blockade medium (SNB) (high Mg(2+)/low Ca(2+)). In contrast, 2 of 3 retrogradely labeled LC neurons that projected to cNTS had reduced firing rate in response to hypercapnic acidosis, both in the presence and absence of SNB. Extensive anatomical connections among chemosensitive brainstem regions in newborn rats were found and at least for the LC and cNTS, the connections involve some CO2-sensitive neurons. Such anatomical and functional coupling suggests a complex central respiratory control network, such as seen in adult rats, is already largely present in neonatal rats by at least day P7-P10. Since the NTS and the LC play a major role in memory consolidation, our results may also contribute to the understanding of the development of memory consolidation. PMID:27001176

  11. Short-term pretreatment with atorvastatin attenuates left ventricular dysfunction, reduces infarct size and apoptosis in acute myocardial infarction rats

    PubMed Central

    Chen, Tie-Long; Zhu, Guang-Li; He, Xiao-Long; Wang, Jian-An; Wang, Yu; Qi, Guo-An

    2014-01-01

    Background: Atorvastatin showed a number of cardiovascular benefits, however, the role and underlying molecular mechanisms of short-term atorvastatin-mediated protection remain unclear. Methods: 30 rats were randomly divided into 3 groups: sham group, acute myocardial infarction model group and atorvastatin group. The rats of acute myocardial infarction model were established by ligation of the left anterior descending of coronary arteries. Before surgery, rats in the atorvastatin group received 20 mg/kg/d atorvastatin for 7 days in atorvastatin group. After 4 hours of model established, changes in hemodynamics parameters were recorded and myocardial infarct size was achieved by Evans blue-TTC staining. Myocardium apoptosis was evaluated by TUNEL. The expression of FAS, FAS-L, Bcl-2, Bax, p-BAD, Caspase-8 and Caspase-3 in myocardium were examined by Western blot. Results: In the atorvastatin group, left ventricular function was elevated and infarct size was decreased compared with the model group. Moreover, in the atorvastatin group, the cell apoptosis index was reduced in response to myocardial infarction. The expressions of Bcl-2 were increased and Bax, p-BAD, Fas, Fas-L, caspase-8 and caspase-3 in myocardium were decreased in atorvastatin group. Conclusions: Short-term atorvastatin pretreatment restored left ventricular function and limited infarct size in acute myocardial infarction, which were associated with reduction of the apoptosis in myocardium through Bcl-2 and Fas pathway. PMID:25663976

  12. The role of the sarcoplasmic reticulum in neonatal uterine smooth muscle: enhanced role compared to adult rat

    PubMed Central

    Noble, Karen; Wray, Susan

    2002-01-01

    Little is known about contractile activity, response to agonists or excitation-contraction coupling in neonatal smooth muscle. We have therefore investigated 10-day rat uterus to better understand these processes, and compared it to adult uterus to elucidate how control of contractility develops. Spontaneous contractions are present in the 10-day neonatal uterus, although they are not as large or as regular as those present in adult tissues. External Ca2+ entry via L-type Ca2+ channels is the sole source of Ca2+ and is essential for the spontaneous activity. The neonatal uterus was responsive to carbachol or prostaglandin F2α application; it showed a marked stimulation and a clear dissociation between the force and Ca2+ changes. Such sensitization was not apparent in adult rat myometrium. The sarcoplasmic reticulum (SR) had more releasable Ca2+ and contributed more to the response to agonists in neonatal compared to adult tissues. Thus, Ca2+ entry as opposed to SR Ca2+ release contributed much less to the uterine response to agonists in the neonatal, compared to adult tissues. Inhibition of the SR by cyclopiazonic acid also caused a more vigorous increase in Ca2+ and contractile activity, particularly frequency, in the neonatal compared to the adult uterus. Taken together these data suggest that: (1) spontaneous activity is already present by day 10, (2) receptor-coupling and excitation-contraction signalling pathways are functional, (3) the SR and Ca2+ sensitization mechanisms play a more prominent role in the neonate, and (4) there is a shift to a greater reliance on Ca2+ entry and excitability with development of the myometrium. PMID:12456834

  13. Neonatal finasteride administration decreases dopamine release in nucleus accumbens after alcohol and food presentation in adult male rats.

    PubMed

    Llidó, Anna; Bartolomé, Iris; Darbra, Sònia; Pallarès, Marc

    2016-08-01

    Endogenous levels of the neurosteroid (NS) allopregnanolone (AlloP) during neonatal stages are crucial for the correct development of the central nervous system (CNS). In a recent work we reported that the neonatal administration of AlloP or finasteride (Finas), an inhibitor of the enzyme 5α-reductase needed for AlloP synthesis, altered the voluntary consumption of ethanol and the ventrostriatal dopamine (DA) levels in adulthood, suggesting that neonatal NS manipulations can increase alcohol abuse vulnerability in adulthood. Moreover, other authors have associated neonatal NS alterations with diverse dopaminergic (DAergic) alterations. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP alter the DAergic response in the nucleus accumbens (NAcc) during alcohol intake in rats. We administered AlloP or Finas from postnatal day (PND) 5 to PND9. At PND98, we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 12 days. On the last day of consumption, we measured the DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in NAcc in response to ethanol intake. The samples were obtained by means of in vivo microdialysis in freely moving rats, and DA and DOPAC levels were determined by means of high-performance liquid chromatography analysis (HPLC). The results revealed that neonatal Finas increased ethanol consumption in some days of the consumption phase, and decreased the DA release in the NAcc in response to solutions (ethanol+glucose) and food presentation. Taken together, these results suggest that neonatal NS alterations can affect alcohol rewarding properties. PMID:27139934

  14. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats.

    PubMed

    Watts, John A; Zagorski, John; Gellar, Michael A; Stevinson, Brad G; Kline, Jeffrey A

    2006-08-01

    Acute right ventricular (RV) failure following pulmonary embolism (PE) is a strong predictor of poor clinical outcome. Present studies test for an association between RV failure from experimental PE, inflammation, and upregulated chemokine expression. Additional experiments test if neutrophil influx contributes to RV dysfunction. PE was induced in male rats by infusing 24 microm microspheres (right jugular vein) producing mild hypertension (1.3 million beads/100 g, PE1.3), or moderately severe hypertension (2.0 million beads/100 g, PE2.0). Additional rats served as vehicle sham (0.01% Tween 20, Veh). In vivo RV peak systolic pressures (RVPSP) increased significantly, and then declined following PE2.0 (51 +/- 1 mm Hg 2 h; 49 +/- 1, 6 h; 44 +/- 1, 18 h). RV generated pressure of isolated, perfused hearts was significantly reduced in PE2.0 compared with PE1.3 or Veh. MCP-1 protein (ELISA) was elevated 21-fold and myeloperoxidase activity 95-fold in RV of PE2.0 compared with Veh or PE1.3. CINC-1, CINC-2, MIP-2, MCP-1, and MIP-1alpha mRNA also increased in RV of PE2.0. Histological analysis revealed massive accumulation of neutrophils (selective esterase stain) and monocyte/macrophages (CD68, ED-1) in RV of PE2.0 hearts in regions of myocyte damage. Electron microscopy showed myocyte necrosis and phagocytosis by inflammatory cells. LV function was normal and did not show increased inflammation after PE2.0. Treatment with anti-PMN antibody reduced RV MPO activity and prevented RV dysfunction. Conclusions-PE with moderately severe pulmonary hypertension (PE2.0) resulted in selective RV dysfunction, which was associated with increased chemokine expression, and infiltration of both neutrophils and monocyte/macrophages, indicating that a robust immune response occurred with RV damage following experimental PE. Experimental agranulocytosis reduced RV, suggesting that neutrophil influx contributed to RV damage. PMID:16814320

  15. Partial purification and characterization of a peroxidase from neonatal rat skin

    SciTech Connect

    Strohm, B.H.

    1987-01-01

    Peroxidase activity was partially purified from neonatal CFN rat skin. The membrane-bound peroxidase activity was extracted with 0.5 M calcium chloride and was monitored spectrophotometrically at 470 nm with 2-methoxyphenol and hydrogen peroxide as substrates. Subcellular distribution studies indicated the specific activity to be highest and comparable in the 800 {times} g and 8000 {times} g pellets, lowest in the 100,000 {times} g pellet, and absent in the 100,000 {times} g supernatant. The peroxidase activity was partially purified by affinity chromatography on concanavaline-A-sepharose 4-B and by gel filtration using Bio-gel P-150. The apparent molecular weight of the native enzyme as determined by Bio-gel P-200 gel filtration was approximately 42,500 {plus minus} 2,300 daltons. Peroxidase activity increased linearly with increases in protein concentration, time, and guaiacol concentration. Activity was inhibited approximately 75% by 0.1 mM potassium cyanide or 0.05 mM sodium azide. Pyrogallol, hydroquinone, p-cresol, catechol, benzidine, 3,3{prime}-dimethoxybenzidine, tetramethylbenzidine, and p-phenylenediamine were active as substrates for rat skin peroxidase. Rat skin peroxidase was also shown to mediate non-extractable binding of ({sup 3}H)-benzo(a)pyrene-7,8-dihydrodiol and ({sup 3}H)-2-aminofluorene to DNA and protein.

  16. The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats.

    PubMed

    Engskog, Mikael K R; Karlsson, Oskar; Haglöf, Jakob; Elmsjö, Albert; Brittebo, Eva; Arvidsson, Torbjörn; Pettersson, Curt

    2013-10-01

    The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (p<0.05) decreased. The neonatal rat model used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function. PMID:23886855

  17. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals. PMID:26799547

  18. Neonatal exposure to bisphenol A reduces the pool of primordial follicles in the rat ovary.

    PubMed

    Rodríguez, Horacio A; Santambrosio, Noelia; Santamaría, Clarisa G; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2010-12-01

    We evaluated whether exposure to bisphenol A (BPA) disrupts neonatal follicle development in rats. From postnatal day 1 (PND1) to PND7, pups received corn oil (control), diethylstilbestrol (DES20: 20 μg/kg-d, DES0.2: 0.2 μg/kg-d), or BPA (BPA20: 20mg/kg-d, BPA0.05: 0.05 mg/kg-d). We examined follicular dynamics, multioocyte follicles (MOFs) incidence, proliferation and apoptosis rates, expression of steroid receptors (ERα, ERβ, PR, AR) and cyclin-dependent kinase inhibitor 1B (p27) in PND8 ovaries. DES20, DES0.2 and BPA20-ovaries showed fewer primordial follicles and increased growing follicles. DES20-ovaries exhibited increased incidence of MOFs. Oocyte survival, AR, PR and apoptosis were not changed. Primordial and recruited follicles from BPA20-ovaries showed higher p27, whereas ERβ and proliferation were both increased in recruited follicles. ERα positive primary follicles increased in BPA 20-ovaries. Results show that BPA reduces the primordial follicle pool by stimulating the neonatal initial recruitment, associated with an increased proliferation rate likely mediated by an estrogenic pathway. PMID:20692330

  19. A Novel Preclinical Model of Germinal Matrix Hemorrhage Using Neonatal Rats

    PubMed Central

    Lekic, Tim; Manaenko, Anatol; Rolland, William; Tang, Jiping

    2013-01-01

    Background Germinal matrix hemorrhage (GMH) is a neurological disorder associated with very low birth weight premature infants. This event can lead to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. This study developed a novel animal model for pre-clinical investigations. Methods Neonatal rats underwent infusion of clostridial collagenase into the right germinal matrix (anterior caudate) region using stereotaxic techniques. Developmental milestones were evaluated over 10 days, cognitive function at 3 weeks, and sensorimotor function at 4 weeks after collagenase infusion. This was accomplished by anthropometric quantifications of cranial, cerebral, cardiac, and splenic growths. Results Collagenase infusion led to delays in neonatal developmental milestones, followed by cognitive and sensorimotor dysfunctions in the juvenile animals. Cranial growth was accelerated during the first week after injury, and this was followed by significant brain atrophy, splenomegaly, and cardiac hypertrophy 3 weeks later. Conclusion This study characterized the developmental delays, mental retardation, and cerebral palsy features resembling the long-term clinical course after germinal matrix hemorrhage in premature infants. Pre-clinical testing of therapeutics in this experimental model could lead to improved patient outcomes while expanding upon the pathophysiological understanding of this disease. PMID:21725732

  20. Glial response to 17β-estradiol in neonatal rats with excitotoxic brain injury.

    PubMed

    Pansiot, Julien; Pham, Hoa; Dalous, Jeremie; Chevenne, Didier; Colella, Marina; Schwendimann, Leslie; Fafouri, Assia; Mairesse, Jérôme; Moretti, Raffaella; Schang, Anne-Laure; Charriaut-Marlangue, Christiane; Gressens, Pierre; Baud, Olivier

    2016-08-01

    White-matter injury is the most common cause of the adverse neurodevelopmental outcomes observed in preterm infants. Only few options exist to prevent perinatal brain injury associated to preterm delivery. 17β-estradiol (E2) is the predominant estrogen in circulation and has been shown to be neuroprotective in vitro and in vivo. However, while E2 has been found to modulate inflammation in adult models of brain damage, how estrogens influence glial cells response in the developing brain needs further investigations. Using a model of ibotenate-induced brain injury, we have refined the effects of E2 in the developing brain. E2 provides significant neuroprotection both in the cortical plate and the white matter in neonatal rats subjected to excitotoxic insult mimicking white matter and cortical damages frequently observed in very preterm infants. E2 promotes significant changes in microglial phenotypes balance in response to brain injury and the acceleration of oligodendrocyte maturation. Maturational effects of E2 on myelination process were observed both in vivo and in vitro. Altogether, these data demonstrate that response of glial cells to E2 could be responsible for its neuroprotective properties in neonatal excitotoxic brain injury. PMID:27222132

  1. The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo.

    PubMed

    Akhmetshina, Dinara; Zakharov, Andrei; Vinokurova, Daria; Nasretdinov, Azat; Valeeva, Guzel; Khazipov, Roustem

    2016-06-01

    Inhibition of serotonin uptake, which causes an increase in extracellular serotonin levels, disrupts the development of thalamocortical barrel maps in neonatal rodents. Previous in vitro studies have suggested that the disruptive effect of excessive serotonin on barrel map formation involves a depression at thalamocortical synapses. However, the effects of serotonin uptake inhibitors on the early thalamocortical activity patterns in the developing barrel cortex in vivo remain largely unknown. Here, using extracellular recordings of the local field potentials and multiple unit activity (MUA) we explored the effects of the selective serotonin reuptake inhibitor (SSRI) citalopram (10-20mg/kg, intraperitoneally) on sensory evoked activity in the barrel cortex of neonatal (postnatal days P2-5) rats in vivo. We show that administration of citalopram suppresses the amplitude and prolongs the delay of the sensory evoked potentials, reduces the power and frequency of the early gamma oscillations, and suppresses sensory evoked and spontaneous neuronal firing. In the adolescent P21-29 animals, citalopram affected neither sensory evoked nor spontaneous activity in barrel cortex. We suggest that suppression of the early thalamocortical activity patterns contributes to the disruption of the barrel map development caused by SSRIs and other conditions elevating extracellular serotonin levels. PMID:27016034

  2. Enhanced sympathetic nerve activity induced by neonatal colon inflammation induces gastric hypersensitivity and anxiety-like behavior in adult rats.

    PubMed

    Winston, John H; Sarna, Sushil K

    2016-07-01

    Gastric hypersensitivity (GHS) and anxiety are prevalent in functional dyspepsia patients; their underlying mechanisms remain unknown largely because of lack of availability of live visceral tissues from human subjects. Recently, we demonstrated in a preclinical model that rats subjected to neonatal colon inflammation show increased basal plasma norepinephrine (NE), which contributes to GHS through the upregulation of nerve growth factor (NGF) expression in the gastric fundus. We tested the hypothesis that neonatal colon inflammation increases anxiety-like behavior and sympathetic nervous system activity, which upregulates the expression of NGF to induce GHS in adult life. Chemical sympathectomy, but not adrenalectomy, suppressed the elevated NGF expression in the fundus muscularis externa and GHS. The measurement of heart rate variability showed a significant increase in the low frequency-to-high frequency ratio in GHS vs. the control rats. Stimulus-evoked release of NE from the fundus muscularis externa strips was significantly greater in GHS than in the control rats. Tyrosine hydroxylase expression was increased in the celiac ganglia of the GHS vs. the control rats. We found an increase in trait but not stress-induced anxiety-like behavior in GHS rats in an elevated plus maze. We concluded that neonatal programming triggered by colon inflammation upregulates tyrosine hydroxylase in the celiac ganglia, which upregulates the release of NE in the gastric fundus muscularis externa. The increase of NE release from the sympathetic nerve terminals concentration dependently upregulates NGF, which proportionately increases the visceromotor response to gastric distention. Neonatal programming concurrently increases anxiety-like behavior in GHS rats. PMID:27151940

  3. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats

    PubMed Central

    Deng, Shengqiong; Zhao, Qian; Zhou, Xianjin; Zhang, Lin; Bao, Luer; Zhen, Lixiao; Zhang, Yuzhen; Fan, Huimin; Liu, Zhongmin; Yu, Zuoren

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+) stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases. PMID:27338347

  4. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats.

    PubMed

    Deng, Shengqiong; Zhao, Qian; Zhou, Xianjin; Zhang, Lin; Bao, Luer; Zhen, Lixiao; Zhang, Yuzhen; Fan, Huimin; Liu, Zhongmin; Yu, Zuoren

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+) stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases. PMID:27338347

  5. Developmental responses to opioids reveals a lack of effect on stress-induced corticosterone levels in neonatal rats.

    PubMed Central

    Bailey, C. C.; Kitchen, I.

    1987-01-01

    The neonate has an unusual capacity for survival and the possibility exists that mechanisms for controlling stress responses may differ in the developing animal. In adults both endogenous and exogenous opioids can modulate the corticosterone responses to stress. We have studied this effect in neonatal rats and found that opioid modulation is absent in early postnatal development. Neonatal rats of either sex were injected with morphine (5-50 mg kg-1), fentanyl (10-100 micrograms kg-1), buprenorphine (0.1-30 mg kg-1) or naloxone (0.1-10 mg kg-1) and plasma corticosterone measured fluorimetrically 15 or 20 min later. In addition naloxone reversibility studies (1 mg kg-1, co-administered) were carried out for the opioid agonists. In adult rats, elevations in plasma corticosterone caused by injection stress were potentiated by morphine, fentanyl and buprenorphine. In neonates, though injection stress-induced rises in plasma corticosterone were absent at 10 days, elevations were observed at 21 days and later. However, significant potentiation of this corticosterone response by fentanyl was absent at 21 days and at later ages (30 and 40 days) for morphine and buprenorphine. The potentiating effect of all three agonists did not become fully effective until day 45. In addition, in animals acclimatized to injection stress by 7 day injection pretreatment, fentanyl did not significantly alter corticosterone levels in 30 day old neonates. High doses of naloxone (10 mg kg-1) significantly increased the corticosterone response to injection stress in adult rats but this effect was absent in 30 day old animals.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3594070

  6. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  7. Sialylated galacto-oligosaccharides and 2'-fucosyllactose reduce necrotising enterocolitis in neonatal rats.

    PubMed

    Autran, Chloe A; Schoterman, Margriet H C; Jantscher-Krenn, Evelyn; Kamerling, Johannis P; Bode, Lars

    2016-07-01

    Necrotising enterocolitis (NEC) is one of the most frequent and fatal intestinal disorders in preterm infants and has very limited treatment options. Breast-fed infants are at a 6-10-fold lower NEC risk than formula-fed infants, and we have previously shown that human milk oligosaccharides (HMO) improved survival and reduced pathology in a rat NEC model. The HMO disialyllacto-N-tetraose (DSLNT) was most effective, and sialylation was shown to be essential for its protective effect. Galacto-oligosaccharides (GOS), currently added to some infant formula, but not containing sialic acid, had no effect. In addition to DSLNT, our previous work also showed that the neutral HMO fraction, which contains high concentrations of 2'-fucosyllactose (2'FL), slightly improved pathology scores. Here, we assessed the in vivo efficacy of 2'FL, as well as of GOS that we enzymatically sialylated (Sia-GOS). Neonatal rats were randomised into the following study groups - dam-fed (DF), formula-fed (FF), FF containing pooled HMO (10 mg/ml), GOS (8 mg/ml), Sia-GOS (500 µm) or 2'FL (2 mg/ml) - and subjected to the established NEC protocol. The DF and HMO groups had the lowest pathology scores with mean values of 0·67 (sd 0·34) and 0·90 (sd 0·47), respectively. The FF group had significantly elevated pathology scores of 2·02 (sd 0·63). Although the addition of GOS to the formula had no protective effect and generated scores of 2·00 (sd 0·63), the addition of Sia-GOS or 2'FL significantly lowered pathology scores to 1·32 (sd 0·56) (P<0·0034) and 1·43 (sd 0·51) (P<0·0040), respectively. The results warrant further studies to investigate the underlying mechanisms and to assess safety and efficacy in human neonates. PMID:27212112

  8. Maternal Oxytocin Administration Before Birth Influences the Effects of Birth Anoxia on the Neonatal Rat Brain.

    PubMed

    Boksa, Patricia; Zhang, Ying; Nouel, Dominique

    2015-08-01

    Ineffective contractions and prolonged labor are common birth complications in primiparous women, and oxytocin is the most common agent given for induction or augmentation of labor. Clinical studies in humans suggest oxytocin might adversely affect the CNS response to hypoxia at birth. In this study, we used a rat model of global anoxia during Cesarean section birth to test if administering oxytocin to pregnant dams prior to birth affects the acute neonatal CNS response to birth anoxia. Anoxic pups born from dams pre-treated with intravenous injections or infusions of oxytocin before birth showed significantly increased brain lactate, a metabolic indicator of CNS hypoxia, compared to anoxic pups from dams pre-treated with saline. Anoxic pups born from dams given oxytocin before birth also showed decreased brain ATP compared to anoxic pups from saline dams. Direct injection of oxytocin to postnatal day 2 rat pups followed by exposure to anoxia also resulted in increased brain lactate and decreased brain ATP, compared to anoxia exposure alone. Oxytocin pre-treatment of the dam decreased brain malondialdehyde, a marker of lipid peroxidation, as well as protein kinase C activity, both in anoxic pups and controls, suggesting oxytocin may reduce aspects of oxidative stress. Finally, when dams were pretreated with indomethacin, a cyclooxygenase (COX) inhibitor, maternal oxytocin no longer potentiated effects of anoxia on neonatal brain lactate, suggesting this effect of oxytocin may be mediated via prostaglandin production or other COX-derived products. The results indicate that maternal oxytocin administration may have multiple acute effects on CNS metabolic responses to anoxia at birth. PMID:26108713

  9. Intermittent severe hypoxia induces plasticity within serotonergic and catecholaminergic neurons in the neonatal rat ventrolateral medulla.

    PubMed

    Givan, Scott A; Cummings, Kevin J

    2016-06-01

    5-HT neurons contribute to autoresuscitation and survival during intermittent severe hypoxia (IsH). In adults, catecholaminergic neurons in the ventrolateral medulla (VLM) contribute to the autonomic response to hypoxia. We hypothesized that 1) catecholaminergic neurons in the neonatal VLM are activated following IsH, 2) this activation is compromised following an acute loss of brain stem 5-HT, and 3) IsH induces cellular and/or transcriptomic plasticity within catecholaminergic and serotonergic neurons that are within or project to the VLM, respectively. To test these hypotheses, we treated rat pups with 6-fluorotryptophan, a tryptophan hydroxylase (TPH) inhibitor, and then exposed treated and vehicle controls to IsH or air. Along with immunohistochemistry to detect tyrosine hydroxylase (TH)- or Fos-positive neurons, we used RNA sequencing to resolve the effects of IsH and 5-HT deficiency on the expression of serotonergic and catecholaminergic system genes in the VLM. 5-HT deficiency compromised autoresuscitation and survival. IsH significantly increased the number of identifiable TH-positive VLM neurons, an effect enhanced by 5-HT deficiency (P = 0.003). Contrary to our hypothesis, 5-HT-deficient pups had significantly more Fos-positive neurons following IsH (P = 0.008) and more activated TH-positive neurons following IsH or air (P = 0.04). In both groups the expression of the 5-HT transporter and TPH2 was increased following IsH. In 5-HT-deficient pups, the expression of the inhibitory 5-HT1A receptor was decreased following IsH, while the expression of DOPA decarboxylase was increased. These data show that the serotonergic and catecholaminergic systems in the VLM of the neonatal rat are dynamically upregulated by IsH, potentially adapting cardiorespiratory responses to severe hypoxia. PMID:26968026

  10. Impaired glucose homeostasis after a transient intermittent hypoxic exposure in neonatal rats.

    PubMed

    Pae, Eung-Kwon; Ahuja, Bhoomika; Kim, Marieyerie; Kim, Gyuyoup

    2013-11-22

    This initial report presents a neonatal rat model with exposure to a transient intermittent hypoxia (IH), which results in a persisting diabetes-like condition in the young rats. Twenty-five male pups were treated at postnatal day 1 with IH exposure by alternating the level of oxygen between 10.3% and 20.8% for 5h. The treated animals were then maintained in normal ambient oxygen condition for 3 week and compared to age-matched controls. The IH treated animals exhibited a significantly higher fasting glucose level than the control animals (237.00 ± 19.66 mg/dL vs. 167.25 ± 2.95 mg/dL; P=0.003); and a significantly lower insulin level than the control (807.0 ± 72.5 pg/mL vs. 1839.8 ± 377.6 pg/mL; P=0.023). There was no difference in the mass or the number of insulin producing beta cells as well as no indicative of inflammatory changes; however, glucose tolerance tests showed a significantly disturbed glucose homeostasis. In addition, the amount of C-peptide secreted from the islets harvested from the IH animals were decreased significantly (from 914 pM in control to 809 pM in IH; P=0.0006) as well. These observations demonstrate that the neonatal exposure to the IH regimen initiates the development of deregulation in glucose homeostasis without infiltration of inflammatory cells. PMID:24183722

  11. Persistent Behavioral Alterations in Rats Neonatally Exposed to Low Doses of the Organophosphate Pesticide, Parathion

    PubMed Central

    Timofeeva, Olga A.; Sanders, David; Seemann, Kristen; Yang, Liwei; Hermanson, Daniel; Regenbogen, Sam; Agoos, Samantha; Kallepalli, Anita; Rastogi, Anit; Braddy, David; Wells, Corinne; Perraut, Charles; Seidler, Frederic J.; Slotkin, Theodore A.; Levin, Edward D.

    2008-01-01

    Although developmental exposures of rats to low levels of the organophosphate pesticides (OPs), chlorpyrifos (CPF) or diazinon (DZN), both cause persistent neurobehavioral effects, there are important differences in their neurotoxicity. The current study extended investigation to parathion (PTN), an OP that has higher systemic toxicity than either CPF or DZN. We gave PTN on postnatal days (PND) 1–4 at doses spanning the threshold for systemic toxicity (0, 0.1 or 0.2 mg/kg/day, s.c.) and performed a battery of emotional and cognitive behavioral tests in adolescence through adulthood. The higher PTN dose increased time spent on the open arms and the number of center crossings in the plus maze, indicating greater risk-taking and overall activity. This group also showed a decrease in tactile startle response without altering prepulse inhibition, indicating a blunted acute sensorimotor reaction without alteration in sensorimotor plasticity. T-maze spontaneous alternation, novelty suppressed feeding, preference for sweetened chocolate milk, and locomotor activity were not significantly affected by neonatal PTN exposure. During radial arm maze acquisition, rats given the lower PTN dose committed fewer errors compared to controls and displayed lower sensitivity to the amnestic effects of the NMDA receptor blocker, dizocilpine. No PTN effects were observed with regard to the sensitivity to blockade of muscarinic and nicotinic cholinergic receptors, or serotonin 5HT2 receptors. This study shows that neonatal PTN exposure evokes long-term changes in behavior, but the effects are less severe, and in some incidences opposite in nature, to those seen earlier for CPF or DZN, findings consistent with our neurochemical studies showing different patterns of effects and less neurotoxic damage with PTN. Our results reinforce the conclusion that low dose exposure to different OPs can have quite different neurotoxic effects, obviously unconnected to their shared property as

  12. Transient expression of somatostatin messenger RNA and peptide in the hypoglossal nucleus of the neonatal rat.

    PubMed

    Seroogy, K B; Bayliss, D A; Szymeczek, C L; Hökfelt, T; Millhorn, D E

    1991-06-21

    The postnatal developmental expression of somatostatin mRNA and peptide in the rat hypoglossal nucleus was analyzed using immunocytochemical and in situ hybridization techniques. Both the neuropeptide and its cognate mRNA were found to be transiently present within a subpopulation of hypoglossal motoneurons during the neonatal period. At the day of birth, a large population of perikarya situated in caudal, ventral regions of the hypoglossal nucleus expressed somatostatin. By postnatal day 7, the number of hypoglossal somata which expressed somatostatin had diminished considerably, and by 2 weeks postnatal, only few such cell bodies were found. By 3-4 weeks postnatal, somatostatin peptide- and mRNA-containing hypoglossal motoneurons were rarely observed, and in the adult, they were never detected, despite the use of colchicine. A double-labeling co-localization technique was used to demonstrate that somatostatin, when present perinatally, always coexisted with calcitonin gene-related peptide in hypoglossal motoneurons. The latter peptide, in contrast to somatostatin, was expressed in large numbers of somata throughout the entire hypoglossal nucleus and persisted within the motoneurons throughout development into adulthood. These results demonstrate that somatostatin is transiently expressed in motoneurons of the caudal, ventral tier of the hypoglossal nucleus in the neonatal rat. The developmental disappearance of somatostatin is most likely not due to cell death; hypoglossal somata continue to express calcitonin gene-related peptide, with which somatostatin coexisted perinatally, a high levels throughout development. Thus, it appears that the regulation of somatostatin expression in hypoglossal neurons occurs at the level of gene transcription or mRNA stability/degradation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1680035

  13. Episodic hypoxia evokes long-term facilitation of genioglossus muscle activity in neonatal rats

    PubMed Central

    McKay, Leanne C; Janczewski, Wiktor A; Feldman, Jack L

    2004-01-01

    The aim of this study was to determine if episodic hypoxia evokes persistent increases of genioglossus muscle (GG) activity, termed long-term facilitation (LTF), in neonatal rats in vivo. Experiments were performed on anaesthetized, spontaneously breathing, intubated neonatal rats (postnatal days (P) 3–7), divided into three groups. The first group (n = 8) was subjected to three 5-min periods of hypoxia (5% O2–95% N2) alternating with 5 min periods of room air. The second group (n = 8) was exposed to 15 min of continuous hypoxia. The third (n = 4) group was not exposed to hypoxia and served as a control. GG EMG activity and airflow were recorded before, during and for 60 min after episodic and continuous hypoxic exposure. During hypoxia, GG EMG burst amplitude and tidal volume (VT) significantly increased compared to baseline levels (episodic protocol: mean ±s.e.m.; 324 ± 59% of control and 0.13 ± 0.007 versus 0.09 ± 0.005 ml, respectively; continuous protocol: 259 ± 30% of control and 0.16 ± 0.005 versus 0.09 ± 0.007 ml, respectively; P < 0.05). After the episodic protocol, GG EMG burst amplitude transiently returned to baseline; over the next 60 min, burst amplitude progressively increased to levels significantly greater than baseline (238 ± 40% at 60 min; P < 0.05), without any significant increase in VT and respiratory frequency (P> 0.05). After the continuous protocol, there was no lasting increase in GG EMG burst amplitude. We conclude that LTF of upper airway muscles is an adaptive respiratory behaviour present from birth. PMID:15047768

  14. Role of gravity in the development of posture and locomotion in the neonatal rat.

    PubMed

    Clarac, F; Vinay, L; Cazalets, J R; Fady, J C; Jamon, M

    1998-11-01

    This report describes the early motor behaviour in the neonatal rat in relation with the maturation of sensory and motor elements of the central nervous system (CNS). The role of vestibular information during the week before (E14-21) and the 2 weeks after (P0-15) birth will be considered. There is a rostro-caudal gradient in the maturation of posture and locomotion with a control of the head and forelimbs during the first postnatal week and then a sudden acceleration in the functional maturation of the hindlimb. At birth, the neonatal rat is blinded and deaf; despite the immaturity of the other sensory systems, the animal uses its olfactory system to find the mother nipple. Vestibular development takes place between E8 and P15. Most descending pathways from the brainstem start to reach the lumbar enlargement of the spinal cord a few days before birth (reticulo-, vestibulospinal pathways as well as the serotonergic and noradrenergic projections); their development is not completed until the end of the second postnatal week. At birth, in an in vitro preparation, a locomotor activity can be evoked by perfusing excitatory amino acids and serotonin over the lumbar region. The descending pathways which trigger the activity of the CPG are also partly functional. At the same age both air stepping and swimming can be induced. Complex locomotion such as walking, trotting and galloping start later because it requires the maturation of the vestibular system, descending pathways and postural reflex regulation. The period around birth is critical to properly define how the vestibular information is essential for the structuring of the motor behaviour. Different types of experiments (hypergravity, microgravity) are planned to test this hypothesis. PMID:9795120

  15. Effect of maternal exercise on biochemical parameters in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Marcelino, Thiago Beltram; de Lemos Rodrigues, Patrícia Idalina; Miguel, Patrícia Maidana; Netto, Carlos Alexandre; Pereira Silva, Lenir Orlandi; Matté, Cristiane

    2015-10-01

    Pregnancy is a critical period for brain metabolic programming, being affected by individual environment, such as nutrition, stress, and physical exercise. In this context, we previously reported a cerebral antioxidant upregulation and mitochondrial biogenesis in the offspring delivered from exercised mothers, which could provide neuroprotection against neonatal insults. Hypoxia-ischemia (HI) encephalopathy is one of the most studied models of neonatal brain injury; disrupting motor, cognitive, and learning abilities. Physiopathology includes oxidative stress, allied to mitochondria energy production failure, glutamatergic excitotoxicity, and cell death. In this study we evaluated the effect of maternal swimming during pregnancy on offspring׳s brain oxidative status evaluated fourteen days after HI stablishment. Swimming exercise was performed by female adult rats one week before and during pregnancy, in controlled environment. Their offspring was submitted to HI on postnatal day 7, and the brain samples for biochemical assays were obtained in the weaning. Contrary to our expectations, maternal exercise did not prevent the oxidative alterations observed in brain from HI-rats. In a general way, we found a positive modulation in the activities of antioxidant enzymes, measured two weeks after HI, in hippocampus, striatum, and cerebellum of pups delivered from exercised mothers. Reactive species levels were modulated differently in each structure evaluated. Considering the scenery presented, we concluded that HI elicited a neurometabolic adaptation in both brain hemispheres, particularly in hippocampus, parietal cortex, and cerebellum; while striatum appears to be most damaged. The protocol of aerobic maternal exercise was not enough to fully prevent HI-induced brain damages. PMID:26119914

  16. Feeding of Nigella sativa during neonatal and juvenile growth improves learning and memory of rats

    PubMed Central

    Beheshti, Farimah; Hosseini, Mahmoud; Vafaee, Farzaneh; Shafei, Mohammad Naser; Soukhtanloo, Mohammad

    2015-01-01

    The positive roles of antioxidants on brain development and learning and memory have been suggested. Nigella sativa (NS) has been suggested to have antioxidant and neuroprotective effects. This study was done to investigate the effects of feeding by the hydro-alcoholic extract of NS during neonatal and juvenile growth on learning and memory of rats. The pregnant rats were kept in separate cages. After delivery, they were randomly divided into four Groups including: (1) control; (2) NS 100 mg/kg (NS 100); (3) NS 200 mg/kg (NS 200); and (4) NS 400 mg/kg (NS 400). Rats in the control group (Group 1) received normal drinking water, whereas Groups 2, 3, and 4 received the same drinking water supplemented with the hydro-alcoholic extract of NS (100 mg/kg, 200 mg/kg, and 400 mg/kg, respectively) from the 1st day after birth through the first 8 weeks of life. After 8 weeks, 10 male offspring from each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) test. Finally, the brains were removed and total thiol groups and malondialdehyde (MDA) concentrations were determined. In the MWM, treatment by 400 mg/kg extract reduced both the time latency and the distance traveled to reach the platform compared to the control group (p < 0.05–p < 0.01). Both 200 mg/kg and 400 mg/kg of the extract increased the time spent in the target quadrant (p < 0.05–p < 0.01). In the PA test, the treatment of the animals by 200 mg/kg and 400 mg/kg of NS extract significantly increased the time latency for entering the dark compartment (p < 0.05–p < 0.001). Pretreatment of the animals with 400 mg/kg of NS extract decreased the MDA concentration in hippocampal tissues whereas it increased the thiol content compared to the control group (p < 0.001). These results allow us to propose that feeding of the rats by the hydro-alcoholic extract of NS during neonatal and juvenile growth has positive effects on learning and memory. The

  17. Feeding of Nigella sativa during neonatal and juvenile growth improves learning and memory of rats.

    PubMed

    Beheshti, Farimah; Hosseini, Mahmoud; Vafaee, Farzaneh; Shafei, Mohammad Naser; Soukhtanloo, Mohammad

    2016-04-01

    The positive roles of antioxidants on brain development and learning and memory have been suggested. Nigella sativa (NS) has been suggested to have antioxidant and neuroprotective effects. This study was done to investigate the effects of feeding by the hydro-alcoholic extract of NS during neonatal and juvenile growth on learning and memory of rats. The pregnant rats were kept in separate cages. After delivery, they were randomly divided into four Groups including: (1) control; (2) NS 100 mg/kg (NS 100); (3) NS 200 mg/kg (NS 200); and (4) NS 400 mg/kg (NS 400). Rats in the control group (Group 1) received normal drinking water, whereas Groups 2, 3, and 4 received the same drinking water supplemented with the hydro-alcoholic extract of NS (100 mg/kg, 200 mg/kg, and 400 mg/kg, respectively) from the 1st day after birth through the first 8 weeks of life. After 8 weeks, 10 male offspring from each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) test. Finally, the brains were removed and total thiol groups and malondialdehyde (MDA) concentrations were determined. In the MWM, treatment by 400 mg/kg extract reduced both the time latency and the distance traveled to reach the platform compared to the control group (p < 0.05-p < 0.01). Both 200 mg/kg and 400 mg/kg of the extract increased the time spent in the target quadrant (p < 0.05-p < 0.01). In the PA test, the treatment of the animals by 200 mg/kg and 400 mg/kg of NS extract significantly increased the time latency for entering the dark compartment (p < 0.05-p < 0.001). Pretreatment of the animals with 400 mg/kg of NS extract decreased the MDA concentration in hippocampal tissues whereas it increased the thiol content compared to the control group (p < 0.001). These results allow us to propose that feeding of the rats by the hydro-alcoholic extract of NS during neonatal and juvenile growth has positive effects on learning and memory. The

  18. Protective effect of polydatin on learning and memory impairments in neonatal rats with hypoxic‑ischemic brain injury by up‑regulating brain‑derived neurotrophic factor.

    PubMed

    Sun, Jin; Qu, Yunxia; He, Huiming; Fan, Xiaolei; Qin, Yuanhua; Mao, Weifeng; Xu, Lixin

    2014-12-01

    Polydatin is a key component of Polygonum cuspidatum, a herb with medical and nutritional value. The present study investigated the protective effect of polydatin against learning and memory impairment in neonatal rats with hypoxic‑ischemic brain injury (HIBI). The unilateral common carotid artery ligation method was used to generate neonatal HIBI rats. Y‑maze testing revealed that rats with HIBI exhibited memory impairment, while rats with HIBI treated with polydatin displayed enhanced long‑term learning and memory. Of note, polydatin was found to upregulate the expression of hippocampal brain‑derived neurotrophic factor (BDNF) in rats with HIBI. BDNF has a role in protecting HIBI‑induced brain tissue injury and alleviating memory impairment. These findings showed that polydatin had a protective effect against learning and memory impairment in neonatal rats with HIBI and that the protective effect may be mediated through the upregulation of BDNF. PMID:25241777

  19. Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes

    PubMed Central

    Connell, Jennifer Petsche; Augustini, Emily; Moise, Kenneth J; Johnson, Anthony; Jacot, Jeffrey G

    2013-01-01

    Amniotic fluid-derived stem cells (AFSC) have been reported to differentiate into cardiomyocyte-like cells and form gap junctions when directly mixed and cultured with neonatal rat ventricular myocytes (NRVM). This study investigated whether or not culture of AFSC on the opposite side of a Transwell membrane from NRVM, allowing for contact and communication without confounding factors such as cell fusion, could direct cardiac differentiation and enhance gap junction formation. Results were compared to shared media (Transwell), conditioned media and monoculture media controls. After a 2-week culture period, AFSC did not express cardiac myosin heavy chain or troponin T in any co-culture group. Protein expression of cardiac calsequestrin 2 was up-regulated in direct transmembrane co-cultures and media control cultures compared to the other experimental groups, but all groups were up-regulated compared with undifferentiated AFSC cultures. Gap junction communication, assessed with a scrape-loading dye transfer assay, was significantly increased in direct transmembrane co-cultures compared to all other conditions. Gap junction communication corresponded with increased connexin 43 gene expression and decreased phosphorylation of connexin 43. Our results suggest that direct transmembrane co-culture does not induce cardiomyocyte differentiation of AFSC, though calsequestrin expression is increased. However, direct transmembrane co-culture does enhance connexin-43-mediated gap junction communication between AFSC. PMID:23634988

  20. Destructive Effects of Prenatal WIN 55212-2 Exposure on Central Nervous System of Neonatal Rats

    PubMed Central

    Shabani, Mohammad; Divsalar, Kouros; Janahmadi, Mahyar

    2012-01-01

    Background Cannabinoid, particularly hashish and WIN 55212-2 (WIN), consumption during embryonic period may affect fetal growth, and the development of motor functioning, memory and cognitive functions. Therefore, the present study aimed to evaluate the effects of WIN 55212-2 during embryonic period on behavioral responses, as well as tissue and memory changes among neonatal rats. Methods WIN treated groups subcutaneously received daily doses of 0.5 or 1 mg/kg WIN suspended in 1% Tween-80-saline (1 ml/kg) from days 5 to 20 of pregnancy. The vehicle group received 1% Tween-80-saline from days 5 to 20 of pregnancy. Three, five and seven weeks after birth, the effects of maternal WIN consumption on infants' body weight, mortality, histological changes, motor functioning, and memory function were assessed. Findings Prenatal WIN consumption was associated with atrophy of cerebellum cortex in granular and Purkinje cells layers. WIN treatment of pregnant rats produced a significant decrease in the rearing frequency of the offspring, but significantly increased the grooming frequency at 22, 36 and 50 days of age. During the acquisition trials, approach latencies were not significantly different between all groups of rats (50 days old). When the trial was repeated 24 hours and seven days later (retention trial), the avoidance latencies of the WIN-exposed group were significantly shorter than those of the control and vehicle animals. The mortality percent was increased significantly and litter size was decreased significantly in WIN (1 mg/kg) treated rats compared to the control, vehicle and WIN (0.5 mg/kg) treatment groups. Conclusion These findings suggested that prenatal exposure to WIN probably induces long-term alterations in histological, motor functioning, and learning and memory parameters. PMID:24494131

  1. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  2. Low-Dose Sevoflurane Promotes Hippocampal Neurogenesis and Facilitates the Development of Dentate Gyrus-Dependent Learning in Neonatal Rats

    PubMed Central

    Chen, Chong; Shen, Feng-Yan; Zhao, Xuan; Zhou, Tao; Xu, Dao-Jie; Wang, Zhi-Ru

    2015-01-01

    Huge body of evidences demonstrated that volatile anesthetics affect the hippocampal neurogenesis and neurocognitive functions, and most of them showed impairment at anesthetic dose. Here, we investigated the effect of low dose (1.8%) sevoflurane on hippocampal neurogenesis and dentate gyrus-dependent learning. Neonatal rats at postnatal day 4 to 6 (P4–6) were treated with 1.8% sevoflurane for 6 hours. Neurogenesis was quantified by bromodeoxyuridine labeling and electrophysiology recording. Four and seven weeks after treatment, the Morris water maze and contextual-fear discrimination learning tests were performed to determine the influence on spatial learning and pattern separation. A 6-hour treatment with 1.8% sevoflurane promoted hippocampal neurogenesis and increased the survival of newborn cells and the proportion of immature granular cells in the dentate gyrus of neonatal rats. Sevoflurane-treated rats performed better during the training days of the Morris water maze test and in contextual-fear discrimination learning test. These results suggest that a subanesthetic dose of sevoflurane promotes hippocampal neurogenesis in neonatal rats and facilitates their performance in dentate gyrus-dependent learning tasks. PMID:25873307

  3. Glycogen metabolism in the liver of the neonatal gsd/gsd and control (GSD/GSD) rat.

    PubMed Central

    Clark, D G; Neville, S D; Brinkman, M; Filsell, O H

    1982-01-01

    1. The metabolism of hepatic glycogen, labelled with [6-3H]glucose at day 19.5 of gestation and with 14C from [U-14C]galactose at delivery, was followed for 10 h in food-deprived gsd/gsd and control (GSD/GSD) neonatal rats. 2. In the affected pups glycogen was maintained at 12% (w/w) and there was no loss of incorporated radioactivity. 3. The 3H and 14C in glycogen from the controls were both decreased by 80%, but 14C was removed at 0--5 h and [6-3H]glucose at 5--10 h. 4. Blood glucose concentrations in the unaffected neonatal rats fell from 5.3 mM at 20 min to 1.7 mM after 10 h. In the gsd/gsd pups blood glucose concentration was decreased from 2 mM at birth to 0.3 mM at 2.5 h: it was maintained at 0.8 mM between 5 and 10 h. 5. In neonatal rats that had been dead for 10 h, hepatic glycogen was decreased by 34% in the controls and by 22% in the gsd/gsd pups. These results demonstrate that liver from the affected rats contains glycogenolytic activity, but that it is not expressed in living tissue. PMID:6953968

  4. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Nguon, K.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion molecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats.

    PubMed

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  6. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  7. Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia.

    PubMed

    Fournier, Sébastien; Gulemetova, Roumiana; Baldy, Cécile; Joseph, Vincent; Kinkead, Richard

    2015-04-01

    Human and animal studies on sleep-disordered breathing and respiratory regulation show that the effects of sex hormones are heterogeneous. Because neonatal stress results in sex-specific disruption of the respiratory control in adult rats, we postulate that it might affect respiratory control modulation induced by ovarian steroids in female rats. The hypoxic ventilatory response (HVR) of adult female rats exposed to neonatal maternal separation (NMS) is ∼30% smaller than controls (24), but consequences of NMS on respiratory control in aging female rats are unknown. To address this issue, whole body plethysmography was used to evaluate the impact of NMS on the HVR (12% O2, 20 min) of middle-aged (MA; ∼57 wk old) female rats. Pups subjected to NMS were placed in an incubator 3 h/day for 10 consecutive days (P3 to P12). Controls were undisturbed. To determine whether the effects were related to sexual hormone decline or aging per se, experiments were repeated on bilaterally ovariectomized (OVX) young (∼12 wk old) adult female rats. OVX and MA both reduced the HVR significantly in control rats but had little effect on the HVR of NMS females. OVX (but not aging) reduced the anapyrexic response in both control and NMS animals. These results show that hormonal decline decreases the HVR of control animals, while leaving that of NMS female animals unaffected. This suggests that neonatal stress alters the interaction between sex hormone regulation and the development of body temperature, hormonal, and ventilatory responses to hypoxia. PMID:25652536

  8. Englitazone administration to late pregnant rats produces delayed body growth and insulin resistance in their fetuses and neonates

    PubMed Central

    2005-01-01

    The level of maternal circulating triacylglycerols during late pregnancy has been correlated with the mass of newborns. PPARγ (peroxisome-proliferator-activated receptor γ) ligands, such as TZDs (thiazolidinediones), have been shown to reduce triacylglycerolaemia and have also been implicated in the inhibition of tissue growth and the promotion of cell differentiation. Therefore TZDs might control cell proliferation during late fetal development and, by extension, body mass of pups. To investigate the response to EZ (englitazone), a TZD, on perinatal development, 0 or 50 mg of englitazone/kg of body mass was given as an oral dose to pregnant rats daily from day 16 of gestation until either day 20 for the study of their fetuses, or until day 21 of gestation for the study of neonates. EZ decreased maternal triacylglycerol levels at day 20 of gestation and neonatal mass, but not fetal mass. Fetuses and neonates from EZ-treated mothers exhibited high levels of insulin and were found to be hyperglycaemic. The apparent insulin-resistant state in neonates from EZ-treated pregnant rats was corroborated, since they showed higher plasma NEFA [non-esterified (‘free’) fatty acid] levels, ketonaemia and liver LPL (lipoprotein lipase) activity and lower plasma IGF-I (type 1 insulin-like growth factor) levels, in comparison with those from control mothers. Moreover, at the molecular level, an increase in Akt phosphorylation was found in the liver of neonates from EZ-treated mothers, which confirms that the insulin pathway was negatively affected. Thus the response of fetuses and neonates to maternal antidiabetic drug treatment is the opposite of what would be expected, and can be justified by the scarce amount of adipose tissue impeding a normal response to PPARγ ligands and by hyperinsulinaemia as being responsible for a major insulin-resistant condition. PMID:15810879

  9. Englitazone administration to late pregnant rats produces delayed body growth and insulin resistance in their fetuses and neonates.

    PubMed

    Sevillano, Julio; López-Pérez, Inmaculada C; Herrera, Emilio; Del Pilar Ramos, María; Bocos, Carlos

    2005-08-01

    The level of maternal circulating triacylglycerols during late pregnancy has been correlated with the mass of newborns. PPARgamma (peroxisome-proliferator-activated receptor gamma) ligands, such as TZDs (thiazolidinediones), have been shown to reduce triacylglycerolaemia and have also been implicated in the inhibition of tissue growth and the promotion of cell differentiation. Therefore TZDs might control cell proliferation during late fetal development and, by extension, body mass of pups. To investigate the response to EZ (englitazone), a TZD, on perinatal development, 0 or 50 mg of englitazone/kg of body mass was given as an oral dose to pregnant rats daily from day 16 of gestation until either day 20 for the study of their fetuses, or until day 21 of gestation for the study of neonates. EZ decreased maternal triacylglycerol levels at day 20 of gestation and neonatal mass, but not fetal mass. Fetuses and neonates from EZ-treated mothers exhibited high levels of insulin and were found to be hyperglycaemic. The apparent insulin-resistant state in neonates from EZ-treated pregnant rats was corroborated, since they showed higher plasma NEFA [non-esterified ('free') fatty acid] levels, ketonaemia and liver LPL (lipoprotein lipase) activity and lower plasma IGF-I (type 1 insulin-like growth factor) levels, in comparison with those from control mothers. Moreover, at the molecular level, an increase in Akt phosphorylation was found in the liver of neonates from EZ-treated mothers, which confirms that the insulin pathway was negatively affected. Thus the response of fetuses and neonates to maternal antidiabetic drug treatment is the opposite of what would be expected, and can be justified by the scarce amount of adipose tissue impeding a normal response to PPARgamma ligands and by hyperinsulinaemia as being responsible for a major insulin-resistant condition. PMID:15810879

  10. Altered ventricular torsion and transmural patterns of myocyte relaxation precede heart failure in aging F344 rats

    PubMed Central

    Campbell, Stuart G.; Haynes, Premi; Kelsey Snapp, W.; Nava, Kristofer E.

    2013-01-01

    The purpose of this study was to identify and explain changes in ventricular and cellular function that contribute to aging-associated cardiovascular disease in aging F344 rats. Three groups of female F344 rats, aged 6, 18, and 22 mo, were studied. Echocardiographic measurements in isoflurane-anesthetized animals showed an increase in peak left ventricular torsion between the 6- and the 18-mo-old groups that was partially reversed in the 22-mo-old animals (P < 0.05). Epicardial, midmyocardial, and endocardial myocytes were subsequently isolated from the left ventricles of each group of rats. Unloaded sarcomere shortening and Ca2+ transients were then measured in these cells (n = >75 cells for each of the nine age-region groups). The decay time of the Ca2+ transient and the time required for 50% length relaxation both increased with age but not uniformly across the three regions (P < 0.02). Further analysis revealed a significant shift in the transmural distribution of these properties between 18 and 22 mo of age, with the largest changes occurring in epicardial myocytes. Computational modeling suggested that these changes were due in part to slower Ca2+ dissociation from troponin in aging epicardial myocytes. Subsequent biochemical assays revealed a >50% reduction in troponin I phosphoprotein content in 22-mo-old epicardium relative to the other regions. These data suggest that between 18 and 22 mo of age (before the onset of heart failure), F344 rats display epicardial-specific myofilament-level modifications that 1) break from the progression observed between 6 and 18 mo and 2) coincide with aberrant patterns of cardiac torsion. PMID:23792678

  11. Activation of adenylate cyclase by dopamine, GTP, NaF and forskolin in striatal membranes of neonatal, adult and senescent rats.

    PubMed

    Nomura, Y; Makihata, J; Segawa, T

    1984-11-13

    Dopamine (DA) caused a significant activation of striatal adenylate cyclase in neonatal and adult but not in senescent rats. GTP activated cyclase at the adult stage but not at both neonatal and senescent stages. NaF and forskolin activated cyclase at every stage. The coupling mechanism between DA1 receptors and catalytic units of cyclase seems to become functional at the neonatal stage but GTP recognition and/or binding sites lack in stimulatory GTP binding protein in neonatal and senescent membranes. PMID:6543337

  12. Amphetamine-induced c-fos mRNA expression is altered in rats with neonatal ventral hippocampal damage.

    PubMed

    Lillrank, S M; Lipska, B K; Bachus, S E; Wood, G K; Weinberger, D R

    1996-08-01

    To further characterize the mechanisms underlying enhanced dopamine-related behaviors expressed during adulthood in rats with neonatal excitotoxic ventral hippocampal (VH) damage, we studied the expression of c-fos mRNA in these rats after a single saline or amphetamine (AMPH) (10 mg/kg, i.p.) injection using in situ hybridization. The VH of rat pups was lesioned with ibotenic acid on postnatal day 7 (PD7). At the age of 90 days, rats were challenged with AMPH or saline, and the expression of c-fos mRNA using an oligonucleotide probe was assessed 30, 90, and 180 min later. AMPH significantly increased c-fos mRNA expression in medial prefrontal cortex, piriform cortex, cingulate cortex, septal region, and dorsolateral and ventromedial striatum in control and lesioned rats. However, this response to AMPH was attenuated 30 min after AMPH injection in all of these regions in the lesioned as compared to the sham-operated rats. No significant changes were seen at other time points. These results indicate that the neonatal VH lesion alters time-dependent intracellular signal transduction mechanisms measured by AMPH-induced c-fos mRNA expression in cortical and subcortical brain regions. Changes in c-fos mRNA expression in this putative animal model of schizophrenia may have implications for long-term alterations in cellular phenotype because of altered regulation of certain target genes. PMID:8855514

  13. Ca exchange under non-perfusion-limited conditions in rat ventricular cells: Identification of subcellular compartments

    SciTech Connect

    Langer, G.A.; Rich, T.L.; Orner, F.B. )

    1990-08-01

    Freshly prepared ventricular myocytes from rat hearts, aliquots of which were tested for sarcolemmal integrity by La exposure, were labeled at high 45Ca specific activity. Isotope was subsequently washed out at a perfusion rate of 2.8 ml/s with washout solution sampled each 1 s. No initial unrecorded period of washout was imposed. Four compartments were distinguishable: (1) a rapid compartment (RC) containing 2.6 mmol Ca/kg dry wt of La-displaceable Ca, half time (t1/2) less than 1 s; (2) an intermediate compartment(s) (IC) containing 2.1 mmol, t1/2 = 3 and 19 s; (3) a slow compartment (SC) containing 1.6 mmol, t1/2 = 3.6 min; (4) an inexchangeable compartment that demonstrated no 45Ca uptake after 60-min labeling containing 1.2 mmol. Introduction of 10 mM caffeine as a probe for sarcoplasmic reticulum (SR) content at various times during the washouts caused an increased release of 45Ca. The net increased 45Ca release plotted as a function of time at which caffeine was introduced produced a biexponential curve with t1/2s of 2 and 22 s, very similar to the t1/2s of the IC. Ryanodine (1 microM) significantly reduced the caffeine-induced 45Ca release, confirming the SR locus of the IC. Cells were perfused with 10 mM NaH2PO4 to specifically increase mitochondrial 45Ca labeling. Subsequent removal of PO4 at various times during washouts produced large increases in effluent 45Ca. A plot of the net peak release of 45Ca vs. time of PO4 removal was monoexponential with t1/2 = 3.3 min, very similar to the SC t1/2. The large La-accessible RC remains unlocalized, but the rapidity of its exchange places it in the sarcolemma and/or at sites in rapid equilibrium with the sarcolemma.

  14. Effects of Mg2+ on Ca2+ waves and Ca2+ transients of rat ventricular myocytes.

    PubMed

    Terada, H; Hayashi, H; Noda, N; Satoh, H; Katoh, H; Yamazaki, N

    1996-03-01

    It has been shown that the occurrence of the transient inward current, which is responsible for triggered activity, was often associated with propagating regions of increased intracellular Ca2+ concentration ([Ca2+]i), i.e., the "Ca2+ wave." To investigate the mechanism of antiarrhythmic action of Mg2+, we have studied effects of high concentrations of Mg2+ on Ca2+ waves in isolated rat ventricular myocytes. [Ca2+]i was estimated using the Ca(2+)-indicating probe indo 1. Ca2+ waves in myocytes, stimulated at 0.2 Hz, were induced by perfusion of isoproterenol (10(-7) M). High Mg2+ concentration suppressed Ca2+ waves in a concentration-dependent manner (36% at 4 mM, 70% at 8 mM, and 82% at 12 mM). The Ca2+ channel blocker verapamil also suppressed Ca2+ waves in a similar way. In contrast with marked depression of Ca2+ transients by verapamil, Ca2+ transients were not affected by high Mg2+ concentration (8 mM). High Mg2+ concentration also reduced frequencies of Ca2+ waves in the absence of electrical stimulation, whereas verapamil failed to reduce frequencies of Ca2+ waves. Reduction in frequency of Ca2+ waves by high Mg2+ concentration was associated with slowing of propagation velocity of Ca2+ waves. To examine whether suppressive effects of high Mg2+ concentration on Ca2+ waves were related to an increase in intracellular Mg2+ concentration ([Mg2+]i), the effect of high-Mg2+ solution on [Mg2+]i was examined in myocytes loaded with mag-fura 2. An increase in extracellular Mg2+ concentration from 1 to 12 mM increased [Mg2+]i from 1.06 +/- 0.16 to 1.87 +/- 0.22 mM (P < 0.01) in 30 min. To examine the effect of high Mg2+ concentration on amount of releasable Ca2+ in the sarcoplasmic reticulum, the effect of high Mg2+ concentration on the Ca2+ transient induced by a rapid application of caffeine was examined. High-Mg2+ solution increased the peak of the caffeine-induced Ca2+ transient. These results suggest that the inhibitory effect of Mg2+ on Ca2+ waves was not due

  15. The cytosolic calcium transient modulates the action potential of rat ventricular myocytes.

    PubMed Central

    duBell, W H; Boyett, M R; Spurgeon, H A; Talo, A; Stern, M D; Lakatta, E G

    1991-01-01

    1. The modulation of the action potential by the cytosolic Ca2+ (Cai2+) transient was studied in single isolated rat ventricular myocytes loaded with the acetoxymethyl ester form of the Ca(2+)-sensitive fluorescent dye Indo-1. Stimulation following rest and exposure to ryanodine were used to change the amount of Ca2+ released from the sarcoplasmic reticulum and thus the size of the Cai2+ transient. The Cai2+ transient was measured as the change, upon stimulation, in the ratio of Indo-1 fluorescence at 410 nm to that at 490 nm (410/490) and action potentials or membrane currents were recorded using patch-type microelectrodes. 2. When stimulation was initiated following rest, the magnitude of the Cai2+ transient decreased in a beat-dependent manner until a steady state was reached. The negative staircase in the Cai2+ transient was accompanied by a similar beat-dependent decrease in the duration of the action potential, manifested primarily as a gradual loss of the action potential plateau (approximately -45 mV). A slow terminal phase of repolarization of a few millivolts in amplitude was found to parallel the terminal decay of the Cai2+ transient. 3. The terminal portion of phase-plane loops of membrane potential (Vm) vs. Indo-1 ratio from all of the beats of a stimulus train followed a common linear trajectory even though the individual beats differed markedly in the duration and amplitude of the action potential and Cai2+ transient. 4. When the stimulation dependence of the Cai2+ transient was titrated away with submaximal exposure to ryanodine, the stimulation-dependent changes in the action potential plateau and terminal phase of repolarization were also eliminated. The same effect was noted in cells which, fortuitously, did not show a staircase in the Cai2+ transient following a period of rest. 5. When action potentials were triggered immediately following spontaneous release of Ca2+ from the sarcoplasmic reticulum, which results in a small depolarization at the

  16. ATP-containing vesicles in stria vascular marginal cell cytoplasms in neonatal rat cochlea are lysosomes

    PubMed Central

    Liu, Jun; Liu, Wenjing; Yang, Jun

    2016-01-01

    We confirmed that ATP is released from cochlear marginal cells in the stria vascular but the cell organelle in which ATP stores was not identified until now. Thus, we studied the ATP-containing cell organelles and suggest that these are lysosomes. Primary cultures of marginal cells of Sprague-Dawley rats aged 1–3 days was established. Vesicles within marginal cells stained with markers were identified under confocal laser scanning microscope and transmission electron microscope (TEM). Then ATP release from marginal cells was measured after glycyl-L-phenylalanine-ß- naphthylamide (GPN) treatment using a bioluminescent assay. Quinacrine-stained granules within marginal cells were labeled with LysoTracker, a lysosome tracer, and lysosomal-associated membrane protein 1(LAMP1), but not labeled with the mitochondrial tracer MitoTracker. Furthermore, LysoTracker-labelled puncta showed accumulation of Mant-ATP, an ATP analog. Treatment with 200 μM GPN quenched fluorescently labeled puncta after incubation with LysoTracker or quinacrine, but not MitoTracker. Quinacrine-labeled organelles observed by TEM were lysosomes, and an average 27.7 percent increase in ATP luminescence was observed in marginal cells extracellular fluid after GPN treatment. ATP-containing vesicles in cochlear marginal cells of the stria vascular from neonatal rats are likely lysosomes. ATP release from marginal cells may be via Ca2+-dependent lysosomal exocytosis. PMID:26864824

  17. Dexmedetomidine Postconditioning Reduces Brain Injury after Brain Hypoxia-Ischemia in Neonatal Rats.

    PubMed

    Ren, Xiaoyan; Ma, Hong; Zuo, Zhiyi

    2016-06-01

    Perinatal asphyxia can lead to death and severe disability. Brain hypoxia-ischemia (HI) injury is the major pathophysiology contributing to death and severe disability after perinatal asphyxia. Here, seven-day old Sprague-Dawley rats were subjected to left brain HI. Dexmedetomidine was given intraperitoneally after the brain HI. Yohimbine or atipamezole, two α2 adrenergic receptor antagonists, were given 10 min before the dexmedetomidine injection. Neurological outcome was evaluated 7 or 28 days after the brain HI. Frontal cerebral cortex was harvested 6 h after the brain HI. Left brain HI reduced the left cerebral hemisphere weight assessed 7 days after the brain HI. This brain tissue loss was dose-dependently attenuated by dexmedetomidine. Dexmedetomidine applied within 1 h after the brain HI produced this effect. Dexmedetomidine attenuated the brain HI-induced brain tissue and cell loss as well as neurological and cognitive dysfunction assessed from 28 days after the brain HI. Dexmedetomidine postconditioning-induced neuroprotection was abolished by yohimbine or atipamezole. Brain HI increased tumor necrosis factor α and interleukin 1β in the brain tissues. This increase was attenuated by dexmedetomidine. Atipamezole inhibited this dexmedetomidine effect. Our results suggest that dexmedetomidine postconditioning reduces HI-induced brain injury in the neonatal rats. This effect may be mediated by α2 adrenergic receptor activation that inhibits inflammation in the ischemic brain tissues. PMID:26932203

  18. Withaferin A attenuates lipopolysaccharide-induced acute lung injury in neonatal rats.

    PubMed

    Gao, S; Li, H; Zhou, X-Q; You, J-B; Tu, D-N; Xia, G; Jiang, J-X; Xin, C

    2015-01-01

    Withaferin A (WFA) is an active compound from Withania somnifera and has been reported to exhibit a variety of pharmacological activities such as anti—inflammatory, immunomodulatory and anti—tumor properties. In the present study, we investigated the potential protective role of WFA on acute lung injury in neonatal rats induced by lipopolysaccharide (LPS). We found that WFA significantly attenuated the pathological changes of lungs induced by LPS injection. Administration with WFA obviously decreased pulmonary neutrophil infiltration accompanied with decreased MPO concentrations. WFA also reduced the expression of pro—inflammatory cytokines including MIP—2, TNF—α, IL—1β and IL—6. Meanwhile, the expression levels of anti—inflammatory mediators such as TGF—β1 and IL—10 were significantly increased following WFA administration. Moreover, WFA protected LPS—treated rats from oxidative damage via up—regulation of TBARS and H2O2 concentrations and down—regulation of ROS contents. Taken together, the present study demonstrated that WFA administration attenuated LPS—induced lung injury through inhibition of inflammatory responses and oxidative stress. PMID:26255139

  19. Sex Differences in Behavioral Outcomes Following Temperature Modulation During Induced Neonatal Hypoxic Ischemic Injury in Rats

    PubMed Central

    Smith, Amanda L.; Garbus, Haley; Rosenkrantz, Ted S.; Fitch, Roslyn Holly

    2015-01-01

    Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen. PMID:26010486

  20. Neonatal Binge Alcohol Exposure Produces Dose Dependent Deficits in Interstimulus Interval Discrimination Eyeblink Conditioning in Juvenile Rats

    PubMed Central

    Brown, Kevin L.; Burman, Michael A.; Duong, Huan B.; Stanton, Mark E.

    2009-01-01

    Alcohol consumption in neonatal rats produces cerebellar damage and is widely used to model 3rd-trimester human fetal alcohol exposure. Neonatal “binge-like” exposure to high doses of alcohol (5 g/kg/day or more) impairs acquisition of eyeblink classical conditioning (EBC), a cerebellar-dependent Pavlovian motor learning task. We have recently found impairments in interstimulus interval (ISI) discrimination – a complex task variant of EBC - in adult rats following postnatal day (PD) 4–9 alcohol exposure at doses of 3, 4, and 5 g/kg/day. Because robust developmental differences in conditioned response (CR) generation and CR latency measures are present between untreated juveniles and adults in this task, we sought to extend alcohol findings to juvenile rats (PD30). Five neonatal treatment groups were used: (1) undisturbed controls, (2) sham intubation controls, (3) 3 g/kg/day of alcohol (blood alcohol concentration {BAC} = 139.9 mg/dl), (4) 4 g/kg/day of alcohol (BAC = 237.3 mg/dl), or (5) 5 g/kg/day of alcohol (BAC = 301.8 mg/dl). Intubations occurred over PD4-9. ISI discrimination training in juveniles (PD30-33) revealed dose-dependent CR deficits in all three alcohol-exposed groups relative to controls. Contrary to expected outcomes, CR latency measures were not significantly affected as a function of neonatal treatment. Comparison of these findings with our recent study in adults suggests that alcohol-induced impairments in ISI discrimination EBC may be greater in adults relative to juveniles. The present findings provide further evidence that ISI discrimination may provide greater sensitivity to functional deficits resulting from moderate levels of neonatal alcohol exposure relative to single-cue EBC paradigms. PMID:19007754

  1. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.

    PubMed

    Le Gal, Jean-Patrick; Juvin, Laurent; Cardoit, Laura; Morin, Didier

    2016-01-20

    Neural networks that can generate rhythmic motor output in the absence of sensory feedback, commonly called central pattern generators (CPGs), are involved in many vital functions such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce coordinated motor behavior adapted to environmental constraints and to satisfy the basic needs of an organism. In this context, we recently reported the existence of an ascending excitatory influence from lumbar locomotor CPG circuitry to the medullary respiratory networks that is able to depolarize neurons of the parafacial respiratory group during fictive locomotion and to subsequently induce an increased respiratory rhythmicity (Le Gal et al., 2014b). Here, using an isolated in vitro brainstem-spinal cord preparation from neonatal rat in which the respiratory and the locomotor networks remain intact, we show that during fictive locomotion induced either pharmacologically or by sacrocaudal afferent stimulation, the activity of both thoracolumbar expiratory motoneurons and interneurons is rhythmically modulated with the locomotor activity. Completely absent in spinal inspiratory cells, this rhythmic pattern is highly correlated with the hindlimb ipsilateral flexor activities. Furthermore, silencing brainstem neural circuits by pharmacological manipulation revealed that this locomotor-related drive to expiratory motoneurons is solely dependent on propriospinal pathways. Together these data provide the first evidence in the newborn rat spinal cord for the existence of bimodal respiratory-locomotor motoneurons and interneurons onto which both central efferent expiratory and locomotor drives converge, presumably facilitating the coordination between the rhythmogenic networks responsible for two different motor functions. Significance statement: In freely moving animals, distant regions of the brain and spinal cord controlling distinct motor acts must interact to produce the best

  2. Neonatal finasteride administration alters hippocampal α4 and δ GABAAR subunits expression and behavioural responses to progesterone in adult rats.

    PubMed

    Modol, Laura; Casas, Caty; Navarro, Xavier; Llidó, Anna; Vallée, Monique; Pallarès, Marc; Darbra, Sònia

    2014-02-01

    Allopregnanolone is a neurosteroid that has been reported to fluctuate during early developmental stages. Previous experiments reported the importance of neonatal endogenous allopregnanolone levels for the maturation of the central nervous system and particularly for the hippocampus. Changes in neonatal allopregnanolone levels have been related to altered adult behaviour and with psychopathological susceptibility, including anxiety disorders, schizophrenia and drug abuse. However, the mechanism underlying these changes remains to be elucidated. In the present study we assessed changes in hippocampal expression of α4 and δ GABAA receptor (GABAAR) subunits as a consequence of neonatal finasteride (a 5-α reductase inhibitor) administration during early development (PD6 to PD15) in male rats. We observed that the treatment altered the temporal window of the natural peak in the expression of these subunits during development. Additionally, the level of these subunits were higher than in non-handled and control animals in the adult hippocampus. We observed that in adulthood, neonatal finasteride-treated animals presented an anxiogenic-like profile in response to progesterone administration which was absent in the rest of the groups. In conclusion, these results corroborate the relevance of neonatal maintenance of neurosteroid levels for behavioural anxiety responses in the adult, and point to some of the mechanisms involved in this alterations. PMID:24011224

  3. Fetal-Adult Cardiac Transcriptome Analysis in Rats with Contrasting Left Ventricular Mass Reveals New Candidates for Cardiac Hypertrophy

    PubMed Central

    Grabowski, Katja; Riemenschneider, Mona; Schulte, Leonard; Witten, Anika; Schulz, Angela; Stoll, Monika; Kreutz, Reinhold

    2015-01-01

    Reactivation of fetal gene expression patterns has been implicated in common cardiac diseases in adult life including left ventricular (LV) hypertrophy (LVH) in arterial hypertension. Thus, increased wall stress and neurohumoral activation are discussed to induce the return to expression of fetal genes after birth in LVH. We therefore aimed to identify novel potential candidates for LVH by analyzing fetal-adult cardiac gene expression in a genetic rat model of hypertension, i.e. the stroke-prone spontaneously hypertensive rat (SHRSP). To this end we performed genome-wide transcriptome analysis in SHRSP to identify differences in expression patterns between day 20 of fetal development (E20) and adult animals in week 14 in comparison to a normotensive rat strain with contrasting low LV mass, i.e. Fischer (F344). 15232 probes were detected as expressed in LV tissue obtained from rats at E20 and week 14 (p < 0.05) and subsequently screened for differential expression. We identified 24 genes with SHRSP specific up-regulation and 21 genes with down-regulation as compared to F344. Further bioinformatic analysis presented Efcab6 as a new candidate for LVH that showed only in the hypertensive SHRSP rat differential expression during development (logFC = 2.41, p < 0.001) and was significantly higher expressed in adult SHRSP rats compared with adult F344 (+ 76%) and adult normotensive Wistar-Kyoto rats (+ 82%). Thus, it represents an interesting new target for further functional analyses and the elucidation of mechanisms leading to LVH. Here we report a new approach to identify candidate genes for cardiac hypertrophy by combining the analysis of gene expression differences between strains with a contrasting cardiac phenotype with a comparison of fetal-adult cardiac expression patterns. PMID:25646840

  4. The impacts of diabetes in pregnancy on hippocampal synaptogenesis in rat neonates.

    PubMed

    Vafaei-Nezhad, S; Hami, J; Sadeghi, A; Ghaemi, K; Hosseini, M; Abedini, M R; Haghir, H

    2016-03-24

    Diabetes during the pregnancy period impairs hippocampal development, and is associated with neurocognitive and neurobehavioral problems in the offspring. Synaptogenesis is one of the most important events in the development of the nervous system, and is known as a mechanism by which the memory process takes place. Synaptophysin (SYP) is an integral membrane protein of synaptic vesicles in the hippocampus involved also in learning and memory. The present study aimed to examine the effects of maternal diabetes on the expression and distribution pattern of SYP, as a marker of synaptogenesis, in the developing rat hippocampus using Immunofluorescence staining and real-time PCR. Wistar female rats were maintained as diabetic from a week before pregnancy through parturition and male offspring was euthanized at postnatal day (P) 0, 7, and 14. Our results showed a significant down-regulation in mRNA expression of SYP in the offspring born to diabetic animals at P7, and P14 (P ⩽ 0.05 each). Regarding to the density of SYP expressing hippocampal neurons, we found a marked decrease in the distribution pattern of SYP in all hippocampal subfields of Streptozotocin (STZ)-D group rat neonates, especially in one and two weeks of age (P ⩽ 0.05 each). Moreover, the results revealed no significant changes in either gene expression or distribution pattern of SYP--positive neurons in insulin-treated group compared with the controls. The present study demonstrated that diabetes in pregnancy has negative impacts on synaptogenesis in the offspring's hippocampus. Furthermore, the rigid maternal glycaemia control by insulin treatment in most cases normalized these effects. PMID:26794272

  5. Repeated neonatal propofol administration induces sex-dependent long-term impairments on spatial and recognition memory in rats.

    PubMed

    Gonzales, Edson Luck T; Yang, Sung Min; Choi, Chang Soon; Mabunga, Darine Froy N; Kim, Hee Jin; Cheong, Jae Hoon; Ryu, Jong Hoon; Koo, Bon-Nyeo; Shin, Chan Young

    2015-05-01

    Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner. PMID:25995824

  6. Repeated Neonatal Propofol Administration Induces Sex-Dependent Long-Term Impairments on Spatial and Recognition Memory in Rats

    PubMed Central

    Gonzales, Edson Luck T.; Yang, Sung Min; Choi, Chang Soon; Mabunga, Darine Froy N.; Kim, Hee Jin; Cheong, Jae Hoon; Ryu, Jong Hoon; Koo, Bon-Nyeo; Shin, Chan Young

    2015-01-01

    Propofol is an anesthetic agent that gained wide use because of its fast induction of anesthesia and rapid recovery post-anesthesia. However, previous studies have reported immediate neurodegeneration and long-term impairment in spatial learning and memory from repeated neonatal propofol administration in animals. Yet, none of those studies has explored the sex-specific long-term physical changes and behavioral alterations such as social (sociability and social preference), emotional (anxiety), and other cognitive functions (spatial working, recognition, and avoidance memory) after neonatal propofol treatment. Seven-day-old Wistar-Kyoto (WKY) rats underwent repeated daily intraperitoneal injections of propofol or normal saline for 7 days. Starting fourth week of age and onwards, rats were subjected to behavior tests including open-field, elevated-plus-maze, Y-maze, 3-chamber social interaction, novel-object-recognition, passive-avoidance, and rotarod. Rats were sacrificed at 9 weeks and hippocampal protein expressions were analyzed by Western blot. Results revealed long-term body weight gain alterations in the growing rats and sex-specific impairments in spatial (female) and recognition (male) learning and memory paradigms. A markedly decreased expression of hippocampal NMDA receptor GluN1 subunit in female- and increased expression of AMPA GluR1 subunit protein expression in male rats were also found. Other aspects of behaviors such as locomotor activity and coordination, anxiety, sociability, social preference and avoidance learning and memory were not generally affected. These results suggest that neonatal repeated propofol administration disrupts normal growth and some aspects of neurodevelopment in rats in a sex-specific manner. PMID:25995824

  7. Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats.

    PubMed

    Jagarapu, Jawahar; Kelchtermans, Jelte; Rong, Min; Chen, Shaoyi; Hehre, Dorothy; Hummler, Stefanie; Faridi, Mohd Hafeez; Gupta, Vineet; Wu, Shu

    2015-12-01

    Lung inflammation plays a key role in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants. The challenge in BPD management is the lack of effective and safe antiinflammatory agents. Leukadherin-1 (LA1) is a novel agonist of the leukocyte surface integrin CD11b/CD18 that enhances leukocyte adhesion to ligands and vascular endothelium and thus reduces leukocyte transendothelial migration and influx to the injury sites. Its functional significance in preventing hyperoxia-induced neonatal lung injury is unknown. We tested the hypothesis that administration of LA1 is beneficial in preventing hyperoxia-induced neonatal lung injury, an experimental model of BPD. Newborn rats were exposed to normoxia (21% O2) or hyperoxia (85% O2) and received twice-daily intraperitoneal injection of LA1 or placebo for 14 days. Hyperoxia exposure in the presence of the placebo resulted in a drastic increase in the influx of neutrophils and macrophages into the alveolar airspaces. This increased leukocyte influx was accompanied by decreased alveolarization and angiogenesis and increased pulmonary vascular remodeling and pulmonary hypertension (PH), the pathological hallmarks of BPD. However, administration of LA1 decreased macrophage infiltration in the lungs during hyperoxia. Furthermore, treatment with LA1 improved alveolarization and angiogenesis and decreased pulmonary vascular remodeling and PH. These data indicate that leukocyte recruitment plays an important role in the experimental model of BPD induced by hyperoxia. Targeting leukocyte trafficking using LA1, an integrin agonist, is beneficial in preventing lung inflammation and protecting alveolar and vascular structures during hyperoxia. Thus, targeting integrin-mediated leukocyte recruitment and inflammation may provide a novel strategy in preventing and treating BPD in preterm infants. PMID:25909334

  8. Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells

    PubMed Central

    Aguayo-Mazzucato, C.; Koh, A.; El Khattabi, I.; Li, W.-C.; Toschi, E.; Jermendy, A.; Juhl, K.; Mao, K.; Weir, G. C.

    2011-01-01

    Aim/hypothesis Neonatal beta cells lack glucose-stimulated insulin secretion and are thus functionally immature. We hypothesised that this lack of glucose responsiveness results from a generalised low expression of genes characteristic of mature functional beta cells. Important glucose-responsive transcription factors, Mafa and Pdx1, regulate genes involved in insulin synthesis and secretion, and have been implicated in late beta cell development. The aim of this study was to assess whether Mafa and/or Pdx1 regulates the postnatal functional maturation of beta cells. Methods By quantitative PCR we evaluated expression of these and other beta cell genes over the first month compared with adult. After infection with adenovirus expressing MAFA, Pdx1 or green fluorescent protein (Gfp), P2 rat islets were evaluated by RT-PCR and insulin secretion with static incubation and reverse haemolytic plaque assay (RHPA). Results At P2 most beta cell genes were expressed at about 10% of adult, but by P7 Pdx1 and Neurod1 no longer differ from adult; by contrast, Mafa expression remained significantly lower than adult through P21. Overexpression of Pdx1 increased Mafa, Neurod1, glucokinase (Gck) mRNA and insulin content but failed to enhance glucose responsiveness. Similar overexpression of MAFA resulted in increased Neurod1, Nkx6-1, Gck and Glp1r mRNAs and no change in insulin content but, importantly, acquisition of glucose-responsive insulin secretion. Both the percentage of secreting beta cells and the amount of insulin secreted per beta cell increased, approaching that of adult beta cells. Conclusions/interpretation In the process of functional maturation acquiring glucose-responsive insulin secretion, neonatal beta cells undergo a coordinated gene expression programme in which Mafa plays a crucial role. PMID:21190012

  9. Maternal exposure to lipopolysaccharide leads to transient motor dysfunction in neonatal rats.

    PubMed

    Rousset, Catherine I; Kassem, Jinane; Aubert, Arnaud; Planchenault, Deborah; Gressens, Pierre; Chalon, Sylvie; Belzung, Catherine; Saliba, Elie

    2013-01-01

    Epidemiological and experimental data implicate maternal infection and inflammation in the etiology of brain white matter injury, which may lead to cerebral palsy in preterm newborns. Our aim was to investigate motor development of the offspring after maternal administration of lipopolysaccharide (LPS). Wistar rats were intraperitoneally injected with Escherichia coli LPS or saline on gestational days 19 and 20. From birth to 3 weeks, pups were tested for neurobehavioral development, neurological signs and reflexes. From 3 to 6 weeks, motor coordination was investigated. At 4 months, animals were tested for locomotion. Brain myelination was assessed by myelin basic protein immunohistochemistry. Days of appearance of several neurological reflexes were significantly delayed, and neonate LPS pups displayed retarded performance in righting, gait and negative geotaxis. At the juvenile stage, LPS animals showed important impairment in coordination. However, although the LPS group performed worse in most tests, they reached vehicle levels by 5 weeks. At 4 months, LPS animals did not show variations in locomotion performances compared to vehicle. No myelination differences have been observed in the brains at adulthood. Maternal LPS administration results in delayed motor development even though these alterations fade to reach control level by 5 weeks. Motor impairments observed at the early stage in this study could be linked to previously reported hypomyelination of the white matter induced by maternal LPS challenge in the neonates. Finally, the normal myelination shown here at adulthood may explain the functional recovery of the animals and suggest either a potential remyelination of the brain or a delayed myelination in LPS pups. PMID:23445561

  10. Neonatal binge alcohol exposure increases microglial activation in the developing rat hippocampus.

    PubMed

    Boschen, K E; Ruggiero, M J; Klintsova, A Y

    2016-06-01

    Aberrant activation of the developing immune system can have long-term negative consequences on cognition and behavior. Teratogens, such as alcohol, activate microglia, the brain's resident immune cells, which could contribute to the lifelong deficits in learning and memory observed in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. The current study investigates the microglial response of the brain 24h following neonatal alcohol exposure (postnatal days (PDs) 4-9, 5.25g/kg/day). On PD10, microglial cell counts and area of cell territory were assessed using unbiased stereology in the hippocampal subfields CA1, CA3 and dentate gyrus (DG), and hippocampal expression of pro- and anti-inflammatory genes was analyzed. A significant decrease in microglial cell counts in CA1 and DG was found in alcohol-exposed and sham-intubated (SI) animals compared to undisturbed suckle controls (SCs), suggesting overlapping effects of alcohol exposure and intubation alone on the neuroimmune response. Cell territory was decreased in alcohol-exposed animals in CA1, CA3, and DG compared to controls, suggesting the microglia have shifted to a more activated state following alcohol treatment. Furthermore, both alcohol-exposed and SI animals had increased levels of pro-inflammatory cytokines IL-1β, TNF-α, CD11b, and CCL4; in addition, CCL4 was significantly increased in alcohol-exposed animals compared to SI as well. Alcohol-exposed animals also showed increased levels of anti-inflammatory cytokine TGF-β compared to both SI and SCs. In summary, the number and activation of microglia in the neonatal hippocampus are both affected in a rat model of FASD, along with increased gene expression of pro- and anti-inflammatory cytokines. This study shows that alcohol exposure during development induces a neuroimmune response, potentially contributing to long-term alcohol-related changes to cognition, behavior and immune function. PMID:26996510

  11. Comparison of Macitentan and Bosentan on Right Ventricular Remodeling in a Rat Model of Non-vasoreactive Pulmonary Hypertension

    PubMed Central

    Landskroner, Kyle; Bauer, Yasmina; Vercauteren, Magali; Rey, Markus; Renault, Berengère; Studer, Rolf; Vezzali, Enrico; Freti, Diego; Hadana, Hakim; Schläpfer, Manuela; Cattaneo, Christophe; Bortolamiol, Céline; Weber, Edgar; Whitby, Brian R.; Delahaye, Stéphane; Wanner, Daniel; Steiner, Pauline; Nayler, Oliver; Hess, Patrick; Clozel, Martine

    2015-01-01

    Aims: We compared the efficacy of macitentan, a novel dual endothelin A/endothelin B receptor antagonist, with that of another dual endothelin receptor antagonist, bosentan, in a rat model of non-vasoreactive pulmonary hypertension (PH) with particular emphasis on right ventricular (RV) remodeling. Methods and Results: Unlike monocrotaline or hypoxic/sugen rats, bleomycin-treated rats presented a non-vasoreactive PH characterized by the absence of pulmonary dilatation to adenosine. We therefore chose the bleomycin rat model to compare the effects of the maximally effective doses of macitentan and bosentan on pulmonary vascular and RV remodeling. Macitentan (100 mg·kg−1·d−1), but not bosentan (300 mg·kg−1·d−1), significantly prevented pulmonary vascular remodeling, RV hypertrophy, and cardiomyocyte diameter increase. Cardiac protection by macitentan was associated with a significant attenuation of genes related to cell hypertrophy and extracellular matrix remodeling. Microautoradiography and high performance liquid chromatography analysis showed greater distribution of macitentan than bosentan in the RV and pulmonary tissue. Conclusions: Macitentan was more efficacious than bosentan in preventing the development of pulmonary and RV hypertrophies in a model of non-vasoreactive PH. Greater ability to distribute into the tissue could contribute to the greater structural improvement by macitentan compared with bosentan. PMID:26230396

  12. Alternative Splicing Generates a Novel Truncated Cav1.2 Channel in Neonatal Rat Heart*

    PubMed Central

    Liao, Ping; Yu, Dejie; Hu, Zhenyu; Liang, Mui Cheng; Wang, Jue Jin; Yu, Chye Yun; Ng, Gandi; Yong, Tan Fong; Soon, Jia Lin; Chua, Yeow Leng; Soong, Tuck Wah

    2015-01-01

    L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level. PMID:25694430

  13. Alterations in cortical GABAB receptors in neonatal rats exposed to hypoxic stress: role of glucose, oxygen, and epinephrine resuscitation.

    PubMed

    Anju, T R; Abraham, Pretty Mary; Antony, Sherin; Paulose, C S

    2010-10-01

    Hypoxia in neonates can cause permanent brain damage by gene and receptor level alterations mediated through changes in neurotransmitters. The present study evaluated GABA(B) receptor alterations, gene expression changes in glutamate decarboxylase and hypoxia-inducible factor 1A in the cerebral cortex of hypoxic neonatal rats and the resuscitation groups with glucose, oxygen, and epinephrine. Under hypoxic stress, a significant decrease in total GABA and GABA(B) receptors, GABA(B) and GAD gene expression was observed in the cerebral cortex, which accounts for the respiratory inhibition. Hypoxia-inducible factor 1A was upregulated under hypoxia to maintain body homeostasis. Hypoxic rats supplemented with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD and HIF-1A to near control. Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation, which helps in encountering hypoxia. Resuscitation with oxygen alone and epinephrine was less effective in reversing the receptor alterations. Thus, our study suggests that reduction in the GABA(B) receptors functional regulation during hypoxia plays an important role in cortical damage. Resuscitation with glucose alone and glucose and oxygen to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage. PMID:20473556

  14. The effect of HMGB1 on sub-toxic chlorpyrifos exposure-induced neuroinflammation in amygdala of neonatal rats.

    PubMed

    Tian, Jing; Dai, Hongmei; Deng, Yuanying; Zhang, Jie; Li, Ying; Zhou, Jun; Zhao, Mingyi; Zhao, Mengwen; Zhang, Chen; Zhang, Yuxi; Wang, Peipei; Bing, Guoying; Zhao, Lingling

    2015-12-01

    Chlorpyrifos (CPF), one of organophosphorus pesticides (OPs), is associated with developmental neurotoxicity. Inflammatory response is closely related with CPF-induced neurotoxicity. The present study aimed at exploring whether sub-toxic CPF exposure on neonatal rats results in neuroinflammation that mediated by HMGB1/TLR4/NF-κB signaling pathway in the amygdala. The neonatal rats were subcutaneously injected with 5mg/kg CPF for 4 consecutive days (postnatal day 11-14) with or without HMGB1 inhibitor, glycyrrhizin. We assessed the levels of pro-inflammatory cytokines at 12, 24, and 72 h after CPF exposure. The role of HMGB1 on neuroinflammation in sub-toxic exposure during brain development was studied. CPF-treated neonatal rats exhibited a significant increase in the expression of pro-inflammatory cytokines, such as IL-6, TNF-α and HMGB1, and a significant increase in the activation of NF-κB in the amygdala after CPF exposure. Inhibited HMGB1 reduced the release of IL-6 and TNF-α, and inhibited activation of NF-κB. Our findings indicate that CPF exposure on developmental brain might induce the activation of neuroinflammation mediated by HMGB1/TLR4/NF-κB pathway in the amygdala. PMID:26524701

  15. PDE2 activity differs in right and left rat ventricular myocardium and differentially regulates β2 adrenoceptor-mediated effects.

    PubMed

    Soler, Fernando; Fernández-Belda, Francisco; Pérez-Schindler, Joaquín; Handschin, Christoph; Fuente, Teodomiro; Hernandez-Cascales, Jesús

    2015-09-01

    The important regulator of cardiac function, cAMP, is hydrolyzed by different cyclic nucleotide phosphodiesterases (PDEs), whose expression and activity are not uniform throughout the heart. Of these enzymes, PDE2 shapes β1 adrenoceptor-dependent cardiac cAMP signaling, both in the right and left ventricular myocardium, but its role in regulating β2 adrenoceptor-mediated responses is less well known. Our aim was to investigate possible differences in PDE2 transcription and activity between right (RV) and left (LV) rat ventricular myocardium, as well as its role in regulating β2 adrenoceptor effects. The free walls of the RV and the LV were obtained from Sprague-Dawley rat hearts. Relative mRNA for PDE2 (quantified by qPCR) and PDE2 activity (evaluated by a colorimetric procedure and using the PDE2 inhibitor EHNA) were determined in RV and LV. Also, β2 adrenoceptor-mediated effects (β2-adrenoceptor agonist salbutamol + β1 adrenoceptor antagonist CGP-20712A) on contractility and cAMP concentrations, in the absence or presence of EHNA, were studied in the RV and LV. PDE2 transcript levels were less abundant in RV than in LV and the contribution of PDE2 to the total PDE activity was around 25% lower in the microsomal fraction of the RV compared with the LV. β2 adrenoceptor activation increased inotropy and cAMP levels in the LV when measured in the presence of EHNA, but no such effects were observed in the RV, either in the presence or absence of EHNA. These results indicate interventricular differences in PDE2 transcript and activity levels, which may distinctly regulate β2 adrenoceptor-mediated contractility and cAMP concentrations in the RV and in the LV of the rat heart. PMID:25432985

  16. Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: relevance to neurological symptoms in clinical syndromes with reduced brain dopamine.

    PubMed

    Breese, G R; Baumeister, A A; McCown, T J; Emerick, S G; Frye, G D; Crotty, K; Mueller, R A

    1984-11-01

    Administration of L-dopa or apomorphine to neonatal and adult 6-hydroxydopamine (6-OHDA)-treated rats resulted in different behavioral responses depending on the age at which dopaminergic fibers were destroyed. When neonatal 6-OHDA-treated rats were tested as adults, they exhibited marked stereotypies, self-biting and self-mutilation behavior (SMB) when given these dopamine agonists. Self-biting as well as the incidence of SMB in neonatal 6-OHDA-treated rats showed dose-related changes between 10 and 100 mg/kg of L-dopa. This SMB and self-biting after L-dopa was observed as early as 22 to 24 days of age. Adult 6-OHDA-treated rats did not exhibit SMB or self-biting to L-dopa (100 mg/kg) or apomorphine (10 mg/kg), but did display paw treading and head nodding--behaviors not observed in neonatal 6-OHDA-treated rats. In addition, the locomotor response to apomorphine (1 mg/kg) was significantly greater in adult 6-OHDA-treated rats than in neonatal 6-OHDA-treated rats. Brain dopamine was reduced markedly in striatum, nucleus accumbens and olfactory tubercles in both 6-OHDA treatment groups with the reduction being slightly greater in rats treated with 6-OHDA neonatally. Serotonin content was elevated in striatum of rats treated neonatally with 6-OHDA, but not in adult 6-OHDA-treated rats. SMB and behaviors observed after L-dopa in rats treated neonatally with 6-OHDA were not apparent after L-dopa in rats with brain serotonin or norepinephrine reduced. Rats with brain dopaminergic fibers destroyed neonatally exhibited self-biting and SMB after L-dopa, suggesting that neonatal reduction of this amine is responsible for the SMB and self-biting in neonatal 6-OHDA-treated rats. 5-Hydroxytryptophan administration to neonatal 6-OHDA-treated rats did not induce SMB, indicating that release of serotonin by L-dopa is not responsible for this behavior. Because inhibition of dopamine-beta-hydroxylase did not alter the SMB response to L-dopa observed in neonatal 6-OHDA-treated rats

  17. Attenuated mRNA expression of inflammatory mediators in neonatal rat lung following lipopolysaccharide treatment

    PubMed Central

    Le Rouzic, Valerie; Wiedinger, Kari; Zhou, Heping

    2012-01-01

    Neonates are known to exhibit increased susceptibility to bacterial and viral infections and increasing evidence demonstrates that the increased susceptibility is related to their attenuated immune response to infections. The lung is equipped with an innate defense system involving both cellular and humoral mediators. The present study was performed to characterize the expression of inflammatory mediators in the lung of neonatal rats in comparison with older animals. Rats at postnatal day 1 (P1), P21, and P70 were treated with saline or 0.25 mg/kg lipopolysaccharide (LPS) via intraperitoneal injection. Two hours later, animals were sacrificed and the transcriptional response of key inflammatory mediators and enzyme activity of myeloperoxidase (MPO) in the lung of these animals were examined. LPS-induced messenger RNA (mRNA) expression of pro-inflammatory cytokines, namely interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, antiinflammatory cytokines, namely IL-10 and IL-1 receptor antagonist (IL-1ra), and chemokines, namely macrophage inflammatory protein (MIP)-1β, MIP-2, and monocyte chemotactic protein-1, in P1 lung was much reduced compared to that in P21 and P70 animals at 2 hours postinjection. These data suggest that LPS-induced transcriptional response of cytokines and chemokines was much reduced in P1 lung even though the protein levels of these genes were not ascertained and mRNA levels of these genes may not reflect their final protein levels. MPO activity in LPS-treated P1 lung was also significantly attenuated compared to that in LPS-treated P70 lung, suggesting impaired neutrophil infiltration in P1 lung at 2 hours following LPS treatment. In parallel, the baseline mRNA expression of LPS-binding protein (LBP) in P1 lung was much lower than that in P21 and P70 lungs. While the protein level of LBP was not examined and the mRNA level of LBP may not reflect its final protein level, the reduced transcriptional response of cytokines and chemokines in

  18. A modified rat model of neonatal anoxia: Development and evaluation by pulseoximetry, arterial gasometry and Fos immunoreactivity.

    PubMed

    Takada, S H; Sampaio, C A G; Allemandi, W; Ito, P H; Takase, L F; Nogueira, M I

    2011-05-15

    Neonatal anoxia is a worldwide clinical problem that has serious and lasting consequences. The diversity of models does not allow complete reproducibility, so a standardized model is needed. In this study, we developed a rat model of neonatal anoxia that utilizes a semi-hermetic system suitable for oxygen deprivation. The validity of this model was confirmed using pulse oximetry, arterial gasometry, observation of skin color and behavior and analysis of Fos immunoreactivity in brain regions that function in respiratory control. For these experiments, 87 male albino neonate rats (Rattus norvegicus, lineage Wistar) aged approximate 30 postnatal hours were divided into anoxia and control groups. The pups were kept in an euthanasia polycarbonate chamber at 36±1 °C, with continuous 100% nitrogen gas flow at 3 L/min and 101.7 kPa for 25 min. The peripheral arterial oxygen saturation of the anoxia group decreased 75% from its initial value. Decreased pH and partial pressure of oxygen and increased partial pressure of carbon dioxide were observed in this group, indicating metabolic acidosis, hypoxia and hypercapnia, respectively. Analysis of neuronal activation showed Fos immunoreactivity in the solitary tract nucleus, the lateral reticular nucleus and the area postrema, confirming that those conditions activated areas related to respiratory control in the nervous system. Therefore, the proposed model of neonatal anoxia allows standardization and precise control of the anoxic condition, which should be of great value in indentifying both the mechanisms underlying neonatal anoxia and novel therapeutic strategies to combat or prevent this widespread public health problem. PMID:21439321

  19. Role of histone acetylation in long-term neurobehavioral effects of neonatal Exposure to sevoflurane in rats.

    PubMed

    Jia, Min; Liu, Wen-Xue; Yang, Jiao-Jiao; Xu, Ning; Xie, Ze-Min; Ju, Ling-Sha; Ji, Mu-Huo; Martynyuk, Anatoly E; Yang, Jian-Jun

    2016-07-01

    Human studies, and especially laboratory studies, provide evidence that early life exposure to general anesthesia may affect neurocognitive development via largely unknown mechanisms. We explored whether hippocampal histone acetylation had a role in neurodevelopmental effects of sevoflurane administered to neonatal rats. Male Sprague-Dawley rats were exposed to 3% sevoflurane or were subjected to maternal separation only for 2h daily at postnatal days 6, 7, and 8. The histone deacetylase inhibitor, sodium butyrate (250mg/kg, intraperitoneally), or saline was administered starting 2h prior to anesthesia or maternal separation and continued daily until the end of behavioral tests, which were performed between postnatal days 33 and 50. Upon completion of the behavioral tests, the brain tissues were harvested for further analysis. Rats neonatally exposed to sevoflurane exhibited decreased freezing time in the fear conditioning contextual test and increased escape latency, decreased time in target quadrant, and number of platform crossings in the Morris water maze test. The sevoflurane-exposed rats had lower hippocampal density of dendritic spines, reduced levels of the brain-derived neurotrophic factor, c-fos protein, microtubule-associated protein 2, synapsin1, postsynaptic density protein 95, pCREB/CREB, CREB binding protein, and acetylated histones H3 and H4, and increased levels of histone deacetylases 3 and 8. These neurobehavioral abnormalities were normalized in the sevoflurane-exposed rats treated with sodium butyrate. Our findings provide evidence that neonatal exposure to sevoflurane induces neurobehavioral abnormalities and long-lasting alterations in histone acetylation; normalization of histone acetylation may alleviate the neurodevelopmental side effects of the anesthetic. PMID:27001149

  20. Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity

    SciTech Connect

    Kacham, R.; Karanth, S.; Baireddy, P.; Liu, J.; Pope, C. . E-mail: carey.pope@okstate.edu

    2006-01-15

    We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequential dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats are less

  1. Developmental nicotine exposure adversely effects respiratory patterning in the barbiturate anesthetized neonatal rat.

    PubMed

    Barreda, Santiago; Kidder, Ian J; Mudery, Jordan A; Bailey, E Fiona

    2015-03-01

    Neonates at risk for sudden infant death syndrome (SIDS) are hospitalized for cardiorespiratory monitoring however, monitoring is costly and generates large quantities of averaged data that serve as poor predictors of infant risk. In this study we used a traditional autocorrelation function (ACF) testing its suitability as a tool to detect subtle alterations in respiratory patterning in vivo. We applied the ACF to chest wall motion tracings obtained from rat pups in the period corresponding to the mid-to-end of the third trimester of human pregnancy. Pups were drawn from two groups: nicotine-exposed and saline-exposed at each age (i.e., P7, P8, P9, and P10). Respiratory-related motions of the chest wall were recorded in room air and in response to an arousal stimulus (FIO2 14%). The autocorrelation function was used to determine measures of breathing rate and respiratory patterning. Unlike alternative tools such as Poincare plots that depict an averaged difference in a measure breath to breath, the ACF when applied to a digitized chest wall trace yields an instantaneous sample of data points that can be used to compare (data) points at the same time in the next breath or in any subsequent number of breaths. The moment-to-moment evaluation of chest wall motion detected subtle differences in respiratory pattern in rat pups exposed to nicotine in utero and aged matched saline-exposed peers. The ACF can be applied online as well as to existing data sets and requires comparatively short sampling windows (∼2 min). As shown here, the ACF could be used to identify factors that precipitate or minimize instability and thus, offers a quantitative measure of risk in vulnerable populations. PMID:25596542

  2. Endocrine and neurobehavioral abnormalities induced by propofol administered to neonatal rats

    PubMed Central

    Tan, Sijie; Xu, Changqing; Zhu, Wanting; Willis, Jesse; Seubert, Christoph N.; Gravenstein, Nikolaus; Sumners, Colin; Martynyuk, Anatoly E.

    2014-01-01

    Background We studied whether neonatal propofol anesthesia affects development of the endocrine and neural systems. Methods Sprague-Dawley rats were anesthetized using intraperitoneal propofol for 5 h on postnatal days (P) 4, 5, or 6. Pups that received either saline or intralipid, but not those in the negative control groups, were also maternally separated for 5 h. Serum levels of corticosterone were measured immediately after anesthesia and in adulthood after prepulse inhibition (PPI) of acoustic startle testing (≥P80), followed by measurement of hippocampal neuronal activity. Results Propofol acutely increased corticosterone levels to 146.6 ± 23.5 ng/ml (n=6) vs 16.4 ± 3.5 ng/ml (n=6) and 18.4 ± 3.2 ng/ml (n=6) in saline- and intralipd-treated pups, respectively. In adulthood, the propofol group exhibited exacerbated endocrine responses to stress in a form of increased corticosterone levels (1171.58 ± 149.17 ng/ml (n=15) vs 370.02 ± 36.01 ng/ml (n=10) in the saline group). The propofol group had increased the frequency of miniature inhibitory postsynaptic currents in CA1 neurons of male and female rats, but reduced PPI of startle was detected only in males. The Na+–K+–2Cl− co-transporter inhibitor bumetanide, administered to pups prior to propofol, alleviated long-term endocrine and PPI abnormalities. Exogenous corticosterone, administered to naïve pups, induced synaptic and endocrine, but not PPI effects, similar to those of propofol. Conclusions Propofol-caused acute increases in corticosterone levels and gamma-aminobutyric acid type A receptor-mediated excitation at the time of anesthesia may play mechanistic roles in development of exacerbated endocrine responses to stress and neurobehavioral abnormalities. PMID:24992523

  3. Evaluation of neonatally-induced mild diabetes in rats: Maternal and fetal repercussions

    PubMed Central

    2010-01-01

    Many experimental studies have been performed to evaluate mild diabetes effects. However, results are divergent regarding glycemia and insulin measurement, fetal macrossomia, and placental weights. The aim was to investigate repercussions of neonatally-induced mild diabetes on the maternal organism and presence of congenital defects in their offspring in other mild diabetes model. On the day of birth, female offspring were distributed into two groups: Group streptozotocin (STZ): received 100 mg STZ/kg body weight, and Control Group: received vehicle in a similar time period. Maternal weights and glycemias were determined at days 0, 7, 14 and 21 of pregnancy. At day 21 of pregnancy, the rats were anesthetized and a laparotomy was performed to weigh and analyze living fetuses and placentas. The fetuses were classified as small (SPA), appropriate (APA) and large (LPA) for pregnancy age. Fetuses were also analyzed for the presence of external anomalies and processed for skeletal anomaly and ossification sites analysis. Statistical significance was considered as p < 0.05. In STZ group, there was increased glycemia at 0 and 14 days of pregnancy, lower weights throughout pregnancy, higher placental weight and index, an increased proportion of fetuses classified as SPA and LPA, and their fetuses presented with an increased frequency of abnormal sternebra, and absent cervical nuclei, which were not enough to cause the emergence of skeletal anomalies. Thus, this study shows that mild diabetes altered fetal development, characterized by intrauterine growth restriction. Further, the reached glycemia does not lead to any major congenital defects in the fetuses of streptozotocin-induced mild diabetic rats. PMID:20529353

  4. Neuroprotection and reduction of glial reaction by cannabidiol treatment after sciatic nerve transection in neonatal rats.

    PubMed

    Perez, Matheus; Benitez, Suzana U; Cartarozzi, Luciana P; Del Bel, Elaine; Guimarães, Francisco S; Oliveira, Alexandre L R

    2013-11-01

    In neonatal rats, the transection of a peripheral nerve leads to an intense retrograde degeneration of both motor and sensory neurons. Most of the axotomy-induced neuronal loss is a result of apoptotic processes. The clinical use of neurotrophic factors is difficult due to side effects and elevated costs, but other molecules might be effective and more easily obtained. Among them, some are derived from Cannabis sativa. Cannabidiol (CBD) is the major non-psychotropic component found on the surface of such plant leaves. The present study aimed to investigate the neuroprotective potential of CBD. Thus, 2-day-old Wistar rats were divided into the following experimental groups: sciatic nerve axotomy + CBD treatment (CBD group), axotomy + vehicle treatment (phosphate buffer group) and a control group (no-treatment group). The results were analysed by Nissl staining, immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling at 5 days post-lesion. Neuronal counting revealed both motor and sensory neuron rescue following treatment with CBD (15 and 30 mg/kg). Immunohistochemical analysis (obtained by synaptophysin staining) revealed 30% greater synaptic preservation within the spinal cord in the CBD-treated group. CBD administration decreased the astroglial and microglial reaction by 30 and 27%, respectively, as seen by glial fibrillary acidic protein and ionised calcium binding adaptor molecule 1 immunolabeling quantification. In line with such results, the terminal deoxynucleotidyl transferase dUTP nick end labeling reaction revealed a reduction of apoptotic cells, mostly located in the spinal cord intermediate zone, where interneurons promote sensory-motor integration. The present results show that CBD possesses neuroprotective characteristics that may, in turn, be promising for future clinical use. PMID:23981015

  5. Effects of buyang huanwu decoction on ventricular remodeling and differential protein profile in a rat model of myocardial infarction.

    PubMed

    Zhou, Ying Chun; Liu, Bin; Li, Ying Jia; Jing, Lin Lin; Wen, Ge; Tang, Jing; Xu, Xin; Lv, Zhi Ping; Sun, Xue Gang

    2012-01-01

    Buyang Huanwu decoction (BYHWD) is a well-known and canonical Chinese medicine formula from "Correction on Errors in Medical Classics" in Qing dynasty. Here, we show that BYHWD could alleviate the ventricular remodeling induced by left anterior descending (LAD) artery ligation in rats. BYHWD treatment (18 g/kg/day) decreased heart weight/body weight (HW/BW), left ventricle (LV) dimension at end diastole (LVDd) and increased LV ejection fraction (LVEF) and LV fractional shortening (LVFS) significantly compared to model group at the end of 12 weeks. The collagen volume of BYHWD group was more significantly decreased than that of model group. Proteomic analysis showed that atrial natriuretic factor (ANF) was downregulated; heat shock protein beta-6 (HSPB6) and peroxiredoxin-6 (PRDX6) were upregulated in BYHWD-treated group among successfully identified proteins. The apoptotic index (AI) was reduced by BYHWD accompanied by decreased expression of Bax and caspase 3 activity, increased Bcl-2/Bax ratio, and phosphorylation of HSPB6 compared to that of model group. Taken together, these results suggest that BYHWD can alleviate ventricular remodeling induced by LAD artery ligation. The antiremodeling effects of BYHWD are conferred by decreasing AI through affecting multiple targets including increased Bcl-2/Bax ratio and decreased caspase 3 activity that might be via upregulated PRDX6, phosphorylation of HSPB6 and subsequently reduction of ANF. PMID:23049607

  6. Nicorandil Prevents Right Ventricular Remodeling by Inhibiting Apoptosis and Lowering Pressure Overload in Rats with Pulmonary Arterial Hypertension

    PubMed Central

    Yu, Yan-Zhe; Wang, Hui; Bi, Li-Qing; Xie, Wei-Ping; Wang, Hong

    2012-01-01

    Background Most of the deaths among patients with severe pulmonary arterial hypertension (PAH) are caused by progressive right ventricular (RV) pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear. Methodology/Principal Findings RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT). RV systolic pressure (RVSP) was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP) ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD) reversed these beneficial effects of nicorandil in MCT-injected rats. Conclusions/Significance Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K+ (mitoKATP) channels. The use of a mitoKATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV remodeling during

  7. Non-targeted metabolomics identified a common metabolic signature of lethal ventricular tachyarrhythmia (LVTA) in two rat models.

    PubMed

    Wang, Xingxing; Wang, Dian; Yu, Xiaojun; Zhang, Guohong; Wu, Jiayan; Zhu, Guanghui; Su, Ruibing; Lv, Junyao

    2016-06-21

    Lethal ventricular tachyarrhythmia (LVTA) is the predominant underlying mechanism of sudden cardiac death (SCD). The aim of this study is to characterize the metabolic features of myocardia following LVTA, and identify potential biomarkers to diagnose LVTA. We developed two LVTA rat models induced by aconitine injection or coronary artery ligation, which represent cardiac ion channel disease-related and cardiac ischemia-related SCD, respectively. The myocardial metabolic profile was investigated by gas chromatography-mass spectrometry and proton nuclear magnetic resonance-based metabolomics. Twenty-three aconitine-injected and 14 coronary artery ligation-treated rats developed LVTA SCD. A total of 38 differential metabolites of myocardia were identified in aconitine-induced LVTA rats, of which 31 metabolites showed a similar change in coronary artery ligation-related LVTA rats. Fatty acids (stearic, palmitic, linoleic, elaidic, and myristic) and branched-chain amino acids (valine, leucine, and isoleucine) were the most down-regulated metabolites. Furthermore, elevated ADP, phosphate, lactate, glutamate, aspartate, threonine, choline and arginine were also observed. Major pathways regarding these dysregulated metabolites post LVTA are energy excessive consumption and deficit, ionic imbalance, oxidative stress, cardiac cytotoxicity and membrane injury. Valine, stearic acid and leucine collectively enable a precision of 92.9% to distinguish LVTA from its control, and are correlated with several arrhythmia indices. Our results uncovered a common metabolic feature of LVTA in myocardia in two rat models, which represent cardiac ion channel disease and cardiac ischemia, respectively. l-Valine, l-leucine and stearic acid jointly confer good potential for distinguishing LVTA, which might be potential biomarkers of LVTA-related SCD. PMID:27138062

  8. Effects of quinapril on myocardial function, ventricular remodeling and cardiac cytokine expression in congestive heart failure in the rat.

    PubMed

    We, Ge Cheng; Siroi, Martin G; Qu, Rong; Liu, Peter; Roulea, Jean L

    2002-01-01

    Inflammatory cytokines have been shown to be activated in congestive heart failure (CHF). This activation is likely the result of the convergence of a number of factors, several of which could be attenuated with the use of an Angiotensin converting enzyme (ACE) inhibitor. In order to assess this, rats had a myocardial infarction (MI) created by coronary artery ligation and were followed for 28 days without treatment to permit the development of CHF. At that time, the ACE inhibitor quinapril was started, or rats remained untreated and were followed a further 56 days for a total of 84 days. Half of the untreated rats had quinapril started 3 days prior to sacrifice, on day 81. Starting quinapril at either 28 or 81 days had little effect on cardiac hemodynamics, or ventricular remodeling. Quinapril did however attenuate the MI-induced rise in cardiac cytokine expression (tumor necrosis factor-alpha [TNF-alpha], interleukin-1beta, -5 and -6). Thus, in CHF, ACE inhibitors attenuate the rise in cardiac cytokine expression. This study helps to identify a new mechanism by which ACE inhibitors may exert their beneficial effects in CHF. PMID:12085975

  9. Sustained hypoxia modulates mitochondrial DNA content in the neonatal rat brain.

    PubMed

    Lee, Heung M; Greeley, George H; Englander, Ella W

    2008-03-01

    The effects of placental insufficiency and preterm birth on neurodevelopment can be modeled in experimental settings of neonatal hypoxia in rodents. Here, rat pups were reared in reduced oxygen (9.5%) for 11 days, starting on postnatal day 3 (P3). This led to a significant reduction in brain and body weight gain in hypoxic pups compared to age-matched normoxia-reared controls, plausibly reflecting an inability to fulfill the energetic needs of normal growth and development. Adaptive processes designed to augment energetic capacity in eukaryotes include stimulation of mitochondrial biogenesis. We show that after 11 days of sustained hypoxia, the levels of nuclear respiratory factor-1 and mitochondrial transcription factor A are elevated and the content of mitochondrial DNA (mtDNA) is greater in the hypoxic P14 pup brain compared to normoxic conditions. Corresponding immunohistochemical analyses reveal increased density of mtDNA in large cortical neurons. In contrast, no changes in mtDNA content are observed in the brain of pups reared for 24 h (P3-P4) under hypoxic conditions. Together, these data suggest that prolonged inadequate oxygenation may trigger a compensatory increase in neuronal mitochondrial DNA content to partially mitigate compromised energy homeostasis and reduced energetic capacity in the developing hypoxic brain. PMID:18078825

  10. Anthraquinones and flavonoids of Cassia tora leaves ameliorate sodium selenite induced cataractogenesis in neonatal rats.

    PubMed

    Sreelakshmi, V; Abraham, Annie

    2016-02-01

    The present study was undertaken to evaluate the efficacy of Cassia tora leaves, an edible plant traditionally used for eye ailments, in preventing experimental cataractogenesis. Cataract is the leading cause of irreversible visual impairment worldwide characterized by the cloudiness or opacification of the lens due to the disturbance of even distribution of lens proteins and lipids. A significant number of epidemiological studies have suggested the potential role of herbal medicine in the prevention of cataract by maintaining lens architecture. The study was conducted in neonatal rat pups of 8-10 days old with an ethyl acetate fraction of Cassia tora leaves (ECT) administered by gastric intubation. After 30 days, the animals were sacrificed and various parameters such as redox status and gene expressions were evaluated in lenses. ECT administration caused a significant decrease in the onset and maturation of cataract, potentiated antioxidant defense and normalized lens crystallin expression against cataract induced animals. HPLC and ESI-MS analysis of ECT revealed the presence of flavonoids and anthraquinones. Thus, the present study indicates the therapeutic potential of Cassia tora leaves in preventing cataract and the effect is endorsed by the presence of antioxidants in Cassia tora leaves. PMID:26786764

  11. Rapid Induction of Aldosterone Synthesis in Cultured Neonatal Rat Cardiomyocytes under High Glucose Conditions

    PubMed Central

    Nagoshi, Tomohisa; Nishikawa, Tetsuo; Date, Taro; Yoshimura, Michihiro

    2013-01-01

    In addition to classical adrenal cortical biosynthetic pathway, there is increasing evidence that aldosterone is produced in extra-adrenal tissues. Although we previously reported aldosterone production in the heart, the concept of cardiac aldosterone synthesis remains controversial. This is partly due to lack of established experimental models representing aldosterone synthase (CYP11B2) expression in robustly reproducible fashion. We herein investigated suitable conditions in neonatal rat cardiomyocytes (NRCMs) culture system producing CYP11B2 with considerable efficacy. NRCMs were cultured with various glucose doses for 2–24 hours. CYP11B2 mRNA expression and aldosterone concentrations secreted from NRCMs were determined using real-time PCR and enzyme immunoassay, respectively. We found that suitable conditions for CYP11B2 induction included four-hour incubation with high glucose conditions. Under these particular conditions, CYP11B2 expression, in accordance with aldosterone secretion, was significantly increased compared to those observed in the cells cultured under standard-glucose condition. Angiotensin II receptor blocker partially inhibited this CYP11B2 induction, suggesting that there is local renin-angiotensin-aldosterone system activation under high glucose conditions. The suitable conditions for CYP11B2 induction in NRCMs culture system are now clarified: high-glucose conditions with relatively brief period of culture promote CYP11B2 expression in cardiomyocytes. The current system will help to accelerate further progress in research on cardiac tissue aldosterone synthesis. PMID:24288663

  12. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    PubMed

    Frolova, Sheyda R; Gaiko, Olga; Tsvelaya, Valeriya A; Pimenov, Oleg Y; Agladze, Konstantin I

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  13. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

    PubMed Central

    Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  14. Afferent modulation of neonatal rat respiratory rhythm in vitro: cellular and synaptic mechanisms.

    PubMed

    Mellen, Nicholas M; Roham, Maryam; Feldman, Jack L

    2004-05-01

    In mammals, expiration is lengthened by mid-expiratory lung inflation (Breuer-Hering Expiratory reflex; BHE). The central pathway mediating the BHE is paucisynaptic, converging on neurones in the rostral ventrolateral medulla. An in vitro neonatal rat brainstem-lung preparation in which mid-expiratory inflation lengthens expiration was used to study afferent modulation of respiratory neurone activity. Recordings were made from respiratory neurones in or near the pre-Bötzinger Complex (preBötC). Respiratory neurone membrane properties and BHE-induced changes in activity were characterized. Our findings suggest the following mechanisms for the BHE: (i) lung afferent signals strongly excite biphasic neurones that convey these signals to respiratory neurones in ventrolateral medulla; (ii) expiratory lengthening is mediated by inhibition of rhythmogenic and (pre)motoneuronal networks; and (iii) pre-inspiratory (Pre-I) neurones, some of which project to abdominal expiratory motoneurones, are excited during the BHE. These findings are qualitatively similar to studies of the BHE in vivo. Where there are differences, they can largely be accounted for by developmental changes and experimental conditions. PMID:14766932

  15. Effects of neonatal undernutrition and cold stress on behavior and biochemical brain parameters in rats.

    PubMed

    Villescas, R; Ostwald, R; Morimoto, H; Bennett, E L

    1981-06-01

    This study was conducted to investigate the separate and combined effects of neonatal undernutrition (U) and cold stress (S) on the behavioral and cerebral development of postweaning rats. A severe U was imposed by feeding dams a low protein diet. Postweaning all pups were fed a control diet. S consisted of daily exposure to 5 degrees for 3 minutes from day 2 to 11. Behavioral data show that U animals, stressed (S) + nonstressed (NS), exhibited a significant deficit in reversal learning of T-maze at 21 days, an enhanced passive avoidance response, but no difference in active-avoidance at 35 days when compared to controls of the same age. S had no effect on behavior development. At death (110 days), the brains were dissected into five sections and assay for acetylcholinesterase (AChE) and cholinesterase (ChE) activities. Brain weights of U animals (NS + S) were significantly lower in all sections except dorsal cortex (DC). AChE and ChE activities were significantly higher in all sections (except DC) of U animals relative to controls. S resulted in lower cerebellar weight and ChE:AChE ratios in some sections. Our results suggest a delayed behavioral maturation in U animals and an association between early postweaning behavior and brain parameters in adult rehabilitated animals. PMID:7241231

  16. Chronic neonatal nicotine increases anxiety but does not impair cognition in adult rats.

    PubMed

    Huang, Luping Z; Liu, Xuhong; Griffith, William H; Winzer-Serhan, Ursula H

    2007-12-01

    Developmental nicotine exposure has been implicated in the association between maternal smoking and adverse outcomes in offspring. The 3rd trimester of human pregnancy is equivalent to the 1st postnatal week in rodents; both are periods of active brain growth during which nicotinic acetylcholine receptors are transiently upregulated. Chronic neonatal nicotine (CNN; 6 mg/kg/day) from postnatal Days 1 to 7 was given orally to rat pups to evaluate long-term behavioral effects. Males and females were tested as adolescents or as young adults. CNN significantly decreased center time, ambulatory behavior, and rearing in the open-field test and decreased the number of entrances and time spent in the open arm of the elevated plus-maze in both sexes and ages. CNN did not change performance in the T maze or in the water maze in adult males or females. Motor coordination was not altered. In summary, CNN had long-term effects on anxiety-like behavior but did not affect spatial learning and memory functions. This finding is particularly important when evaluating the benefits of nicotine-replacement therapies during human pregnancies, which may improve smoking cessation rates but could result in long-term behavioral consequences. PMID:18085887

  17. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    PubMed

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. PMID:26500193

  18. Delayed Remote Ischemic Postconditioning Improves Long Term Sensory Motor Deficits in a Neonatal Hypoxic Ischemic Rat Model

    PubMed Central

    Tang, Junjia; Li, Li; Barnhart, Margaret; Doycheva, Desislava M.; Zhang, John H.; Tang, Jiping

    2014-01-01

    Objective Remote Ischemic Postconditioning (RIPC) is a promising therapeutic intervention wherein a sub-lethal ischemic insult induced in one organ (limb) improves ischemia in an organ distant to it (brain). The main objective of this study was to investigate the long-term functional effects of delayed RIPC in a neonatal hypoxia-ischemia (HI) rat model. Method 10 day old rat pups were subjected to delayed RIPC treatment and randomized into four groups: 1) Sham, 2) HI induced, 3) HI +24 hr delayed RIPC, and 4) HI +24 hr delayed RIPC with three consecutive daily treatments. Neurobehavioral tests, brain weights, gross and microscopic brain tissue morphologies, and systemic organ weights were evaluated at five weeks post surgery. Results HI induced rats performed significantly worse than sham but both groups of delayed RIPC treatment showed improvement of sensory motor functions. Furthermore, compared to the HI induced group, the delayed RIPC treatment groups showed no further detrimental changes on brain tissue, both grossly and morphologically, and no changes on the systemic organ weights. Conclusion Delayed RIPC significantly improves long term sensory motor deficits in a neonatal HI rat model. A 24 hr delayed treatment does not significantly attenuate morphological brain injury but does attenuate sensory motor deficits. Sensory motor deficits improve with both a single treatment and with three consecutive daily treatments, and the consecutive treatments are possibly being more beneficial. PMID:24587303

  19. The Effect of Iron Deficiency on Osmotic Sensitivity of Red Blood Cells from Neonatal Rats and Their Mothers.

    PubMed

    Al-Hashimi, L Mossa; Gambling, Lorraine; McArdle, H J

    2015-12-01

    Iron deficiency during pregnancy has many effects on both the mother and her developing foetus. These can be both short and long term. One effect is an alteration in fatty acid metabolism and we hypothesised that these changes may result in alterations in membrane function and structure. In order to test this hypothesis, we measured osmotic sensitivity in red blood cells isolated from neonates and their mothers at different times following birth. We fed female rats control or iron-deficient diets for 4 weeks prior to mating and kept them on the same diet until term. At that time, we returned one group of deficient dams to the control diet. The others were kept on the same diet. We showed that iron deficiency results in a decrease in osmotic sensitivity in the mothers but not in their neonates. Returning the dams to the control diet resulted in a return of their red cell osmotic sensitivity to control levels. In the neonates, there was no recovery in haematocrit or in any other parameter, though they did not get any worse, in contrast to the pups being suckled by deficient mothers. The data show two things. The first is that following birth, the mother restores her own iron stores at the expense of the pups, and secondly, there are differences in properties and sensitivities between red cells from mothers and their neonates. This latter observation cannot be explained by differences in the membrane fatty acid profiles, which were not significantly different. PMID:26439821

  20. Protection against cardiac anoxia--role and limitations of increased glycogen reserves in the isolated rat right ventricular strip.

    PubMed

    Towart, R; Schlossmann, K; Kazda, S

    1981-01-01

    The effects of drugs on rat cardiac glycogen reserves in vivo, and on the subsequent in vitro sensitivity of the right ventricular strip preparation to anoxia have been investigated. Isoproterenol (0.2 mg/kg i.p.) causes immediate cardiac stimulation and reduction of glycogen reserves, coupled with an increased susceptibility to anoxia. Several hours after administration, glycogen levels are found to be greatly (100-200%) increased, by a "supercompensation" mechanism, and a marked tolerance to anoxia can be simultaneously demonstrated. In contrast, large doses of corticosteroids (dexamethasone, 8 mg/kg i.m.) increase glycogen levels without initial stimulation and glycogen depletion; increased myocardial tolerance to anoxia parallels the increase in glycogen reserves in vivo. We conclude that the myocardial tolerance to anoxia in this model is related to increased glycogen reserves, which increase the rate and/or duration of anaerobic glycolysis during anoxia. PMID:7332516

  1. Effect of naringin on hemodynamic changes and left ventricular function in renal artery occluded renovascular hypertension in rats

    PubMed Central

    Visnagri, Asjad; Adil, Mohammad; Kandhare, Amit D.; Bodhankar, Subhash L.

    2015-01-01

    Background: Renal artery occlusion (RAO) induced hypertension is a major health problem associated with structural and functional variations of the renal and cardiac vasculature. Naringin a flavanone glycoside derived possesses metal-chelating, antioxidant and free radical scavenging properties. Objective: The objective of this study was to investigate the antihypertensive activity of naringin in RAO induced hypertension in rats. Material and Methods: Male Wistar rats (180-200 g) were divided into five groups Sham, RAO, naringin (20, 40 and 80 mg/kg). Animals were pretreated with naringin (20, 40 and 80 mg/kg p.o) for 4 weeks. On the last day of the experiment, left renal artery was occluded with renal bulldog clamp for 4 h. After assessment of hemodynamic and left ventricular function various biochemical (superoxide dismutase [SOD], glutathione [GSH] and malondialdehyde [MDA]) and histological parameters were determined in the kidney. Results: RAO group significantly (P < 0.001) increased hemodynamic parameters at 15, 30 and 45 min of clamp removal. Naringin (40 and 80 mg/kg) treated groups showed a significant decrease in hemodynamic parameters at 15 min. after clamp removal that remained sustained for 60 min. Naringin (40 and 80 mg/kg) treated groups showed significant improvement in left ventricular function at 15, 30 and 45 min after clamp removal. Alteration in level of SOD, GSH and MDA was significantly restored by naringin (40 and 80 mg/kg) treatment. It also reduced histological aberration induced in kidney by RAO. Conclusion: It is concluded that the antihypertensive activity of naringin may result through inhibition of oxidative stress. PMID:25883516

  2. Effectiveness of DTPA therapy when administered intragastrically or intraperitoneally to remove Pu from adult or neonatal rats

    SciTech Connect

    Sullivan, M.F.; Ruemmler, P.S.

    1986-11-01

    Adult and neonatal rats were given /sup 238/Pu by gavage or parenterally and treated with 0.5 mmoles/kg of calcium diethylenetriaminepentaacetate (DTPA), by gavage or parenterally, to determine its effectiveness for removing Pu. Parenteral administration of DTPA to adult rats 2 h after an intravenous /sup 238/Pu injection was much more effective than intragastric treatment, removing nearly 70% of the retained dose. When /sup 238/Pu was given to adults intragastrically (IG), followed by DTPA given either intraperitoneally (IP) or IG 2 h later, /sup 238/Pu absorption increased while retention remained either unchanged, or increased. When neonates were given /sup 238/Pu IG and treated 2 h later with intraperitoneal or intragastric DTPA, removal of /sup 238/Pu was better than in adults: more than 80% of the /sup 238/Pu that was absorbed and retained was removed by intragastric DTPA. When neonates were injected IP with /sup 238/Pu, treatment with intraperitoneal DTPA was more effective for /sup 238/Pu removal than intragastric treatment.

  3. Gypenosides Protected the Neural Stem Cells in the Subventricular Zone of Neonatal Rats that Were Prenatally Exposed to Ethanol

    PubMed Central

    Dong, Lun; Yang, Kun-Qi; Fu, Wen-Yan; Shang, Zhen-Hua; Zhang, Qing-Yu; Jing, Fang-Miao; Li, Lin-Lin; Xin, Hua; Wang, Xiao-Jing

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) can cause severe mental retardation in children who are prenatally exposed to ethanol. The effects of prenatal and early postnatal ethanol exposure on adult hippocampal neurogenesis have been investigated; however, the effects of prenatal ethanol exposure on the subventricular zone (SVZ) have not. Gypenosides (GPs) have been reported to have neuroprotective effects in addition to other bioactivities. The effects of GPs on neural stem cells (NSCs) in the FASD model are unknown. Here, we test the effect of prenatal ethanol exposure on the neonatal SVZ, and the protection potential of GPs on NSCs in FASD rats. Our results show that prenatal ethanol exposure can suppress the cell proliferation and differentiation of neural stem cells in the neonatal SVZ and that GPs (400 mg/kg/day) can significantly increase the cell proliferation and differentiation of neural stem cells inhibited by ethanol. Our data indicate that GPs have neuroprotective effects on the NSCs and can enhance the neurogenesis inhibited by ethanol within the SVZ of neonatal rats. These findings provide new evidence for a potential therapy involving GPs for the treatment of FASD. PMID:25464383

  4. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs.

    PubMed

    Grasemann, Hartmut; Dhaliwal, Rupinder; Ivanovska, Julijana; Kantores, Crystal; McNamara, Patrick J; Scott, Jeremy A; Belik, Jaques; Jankov, Robert P

    2015-03-15

    Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension. PMID:25595650

  5. Hyperactivity in the Gunn rat model of neonatal jaundice: age-related attenuation and emergence of gait deficits

    PubMed Central

    Stanford, John A.; Shuler, Jeffrey M.; Fowler, Stephen C.; Stanford, Kimberly G.; Ma, Delin; Bittel, Douglas C.; Le Pichon, Jean-Baptiste; Shapiro, Steven M.

    2014-01-01

    Background Neonatal jaundice resulting from elevated unconjugated bilirubin (UCB) occurs in 60–80% of newborn infants. Although mild jaundice is generally considered harmless, little is known about its long-term consequences. Recent studies have linked mild bilirubin-induced neurological dysfunction (BIND) with a range of neurological syndromes, including attention deficit-hyperactivity disorder. The goal of this study was to measure BIND across the lifespan in the Gunn rat model of BIND. Methods Using a sensitive force plate actometer, we measured locomotor activity and gait in jaundiced (jj) Gunn rats versus their non-jaundiced (Nj) littermates. Data were analyzed for young adult (3–4 months), early middle-aged (9–10 months), and late middle-aged (17–20 months) male rats. Results jj rats exhibited lower body weights at all ages and a hyperactivity that resolved at 17–20 months of age. Increased propulsive force and gait velocity accompanied hyperactivity during locomotor bouts at 9–10 months in jj rats. Stride length did not differ between the two groups at this age. Hyperactivity normalized and gait deficits, including decreased stride length, propulsive force, and gait velocity, emerged in the 17–20-month-old jj rats. Conclusions These results demonstrate that, in aging, hyperactivity decreases with the onset of gait deficits in the Gunn rat model of BIND. PMID:25518009

  6. Functional diversity of electrogenic Na+–HCO3− cotransport in ventricular myocytes from rat, rabbit and guinea pig

    PubMed Central

    Yamamoto, Taku; Swietach, Pawel; Rossini, Alessandra; Loh, Shih-Hurng; Vaughan-Jones, Richard D; Spitzer, Kenneth W

    2005-01-01

    The Na+–HCO3− cotransporter (NBC) is an important sarcolemmal acid extruder in cardiac muscle. The characteristics of NBC expressed functionally in heart are controversial, with reports suggesting electroneutral (NBCn; 1HCO3− : 1Na+; coupling coefficient n = 1) or electrogenic forms of the transporter (NBCe; equivalent to 2HCO3− : 1Na+; n = 2). We have used voltage-clamp and epifluorescence techniques to compare NBC activity in isolated ventricular myocytes from rabbit, rat and guinea pig. Depolarization (by voltage clamp or hyperkalaemia) reversibly increased steady-state pHi while hyperpolarization decreased it, effects seen only in CO2/HCO3−-buffered solutions, and blocked by S0859 (cardiac NBC inhibitor). Species differences in amplitude of these pHi changes were rat > guinea pig ≈ rabbit. Tonic depolarization (−140 mV to −0 mV) accelerated NBC-mediated pHi recovery from an intracellular acid load. At 0 mV, NBC-mediated outward current at resting pHi was +0.52 ± 0.05 pA pF−1 (rat, n = 5), +0.26 ± 0.05 pA pF−1 (guinea pig, n = 5) and +0.10 ± 0.03 pA pF−1 (rabbit, n = 9), with reversal potentials near −100 mV, consistent with n = 2. The above results indicate a functionally active voltage-sensitive NBCe in these species. Voltage-clamp hyperpolarization negative to the reversal potential for NBCe failed, however, to terminate or reverse NBC-mediated pHi-recovery from an acid load although it was slowed significantly, suggesting electroneutral NBC may also be operational. NBC-mediated pHi recovery was associated with a rise of [Na+]i at a rate ∼25% of that mediated via NHE, and consistent with an apparent NBC stoichiometry between n = 1 and n = 2. In conclusion, NBCe in the ventricular myocyte displays considerable functional variation among the three species tested (greatest in rat, least in rabbit) and may coexist with some NBCn activity. PMID:15550467

  7. Erythropoietin Ameliorates Neonatal Hypoxia-Ischemia-Induced Neurobehavioral Deficits, Neuroinflammation, and Hippocampal Injury in the Juvenile Rat

    PubMed Central

    Lan, Kuo-Mao; Tien, Lu-Tai; Cai, Zhengwei; Lin, Shuying; Pang, Yi; Tanaka, Sachiko; Rhodes, Philip G.; Bhatt, Abhay J.; Savich, Renate D.; Fan, Lir-Wan

    2016-01-01

    The hematopoietic growth factor erythropoietin (EPO) has been shown to be neuroprotective against hypoxia-ischemia (HI) in Postnatal Day 7 (P7)–P10 or adult animal models. The current study was aimed to determine whether EPO also provides long-lasting neuroprotection against HI in P5 rats, which is relevant to immature human infants. Sprague-Dawley rats at P5 were subjected to right common carotid artery ligation followed by an exposure to 6% oxygen with balanced nitrogen for 1.5 h. Human recombinant EPO (rEPO, at a dose of 5 units/g) was administered intraperitoneally one hour before or immediately after insult, followed by additional injections at 24 and 48 h post-insult. The control rats were injected with normal saline following HI. Neurobehavioral tests were performed on P8 and P20, and brain injury was examined on P21. HI insult significantly impaired neurobehavioral performance including sensorimotor, locomotor activity and cognitive ability on the P8 and P20 rats. HI insult also resulted in brain inflammation (as indicated by microglia activation) and neuronal death (as indicated by Jade B positive staining) in the white matter, striatum, cortex, and hippocampal areas of the P21 rat. Both pre- and post-treatment with rEPO significantly improved neurobehavioral performance and protected against the HI-induced neuronal death, microglia activation (OX42+) as well as loss of mature oligodendrocytes (APC-CC1+) and hippocampal neurons (Nissl+). The long-lasting protective effects of rEPO in the neonatal rat HI model suggest that to exert neurotrophic activity in the brain might be an effective approach for therapeutic treatment of neonatal brain injury induced by hypoxia-ischemia. PMID:26927081

  8. Erythropoietin Ameliorates Neonatal Hypoxia-Ischemia-Induced Neurobehavioral Deficits, Neuroinflammation, and Hippocampal Injury in the Juvenile Rat.

    PubMed

    Lan, Kuo-Mao; Tien, Lu-Tai; Cai, Zhengwei; Lin, Shuying; Pang, Yi; Tanaka, Sachiko; Rhodes, Philip G; Bhatt, Abhay J; Savich, Renate D; Fan, Lir-Wan

    2016-01-01

    The hematopoietic growth factor erythropoietin (EPO) has been shown to be neuroprotective against hypoxia-ischemia (HI) in Postnatal Day 7 (P7)-P10 or adult animal models. The current study was aimed to determine whether EPO also provides long-lasting neuroprotection against HI in P5 rats, which is relevant to immature human infants. Sprague-Dawley rats at P5 were subjected to right common carotid artery ligation followed by an exposure to 6% oxygen with balanced nitrogen for 1.5 h. Human recombinant EPO (rEPO, at a dose of 5 units/g) was administered intraperitoneally one hour before or immediately after insult, followed by additional injections at 24 and 48 h post-insult. The control rats were injected with normal saline following HI. Neurobehavioral tests were performed on P8 and P20, and brain injury was examined on P21. HI insult significantly impaired neurobehavioral performance including sensorimotor, locomotor activity and cognitive ability on the P8 and P20 rats. HI insult also resulted in brain inflammation (as indicated by microglia activation) and neuronal death (as indicated by Jade B positive staining) in the white matter, striatum, cortex, and hippocampal areas of the P21 rat. Both pre- and post-treatment with rEPO significantly improved neurobehavioral performance and protected against the HI-induced neuronal death, microglia activation (OX42+) as well as loss of mature oligodendrocytes (APC-CC1+) and hippocampal neurons (Nissl+). The long-lasting protective effects of rEPO in the neonatal rat HI model suggest that to exert neurotrophic activity in the brain might be an effective approach for therapeutic treatment of neonatal brain injury induced by hypoxia-ischemia. PMID:26927081

  9. Aspirate from human stented saphenous vein grafts induces epicardial coronary vasoconstriction and impairs perfusion and left ventricular function in rat bioassay hearts with pharmacologically induced endothelial dysfunction.

    PubMed

    Lieder, Helmut R; Baars, Theodor; Kahlert, Philipp; Kleinbongard, Petra

    2016-08-01

    Stent implantation into aortocoronary saphenous vein grafts (SVG) releases particulate debris and soluble vasoactive mediators, for example, serotonin. We now analyzed effects of the soluble mediators released into the coronary arterial blood during stent implantation on vasomotion of isolated rat epicardial coronary artery segments and on coronary flow and left ventricular developed pressure in isolated perfused rat hearts. Coronary blood was retrieved during percutaneous SVG intervention using a distal occlusion/aspiration protection device in nine symptomatic patients with stable angina pectoris and a flow-limiting SVG stenosis. The blood was separated into particulate debris and plasma. Responses to coronary plasma were determined in isolated rat epicardial coronary arteries and in isolated, constant pressure-perfused rat hearts (±nitric oxide synthase [NOS] inhibition and ±serotonin receptor blockade, respectively). Coronary aspirate plasma taken after stent implantation induced a stronger vasoconstriction of rat epicardial coronary arteries (52 ± 8% of maximal potassium chloride induced vasoconstriction [% KClmax = 100%]) than plasma taken before stent implantation (12 ± 8% of KClmax); NOS inhibition augmented this vasoconstrictor response (to 110 ± 15% and 24 ± 9% of KClmax). Coronary aspirate plasma taken after stent implantation reduced in isolated perfused rat hearts only under NOS inhibition coronary flow by 17 ± 3% and left ventricular developed pressure by 25 ± 4%. Blockade of serotonin receptors abrogated these effects. Coronary aspirate plasma taken after stent implantation induces vasoconstriction in isolated rat epicardial coronary arteries and reduces coronary flow and left ventricular developed pressure in isolated perfused rat hearts with pharmacologically induced endothelial dysfunction. PMID:27482071

  10. The Actions of Lyophilized Apple Peel on the Electrical Activity and Organization of the Ventricular Syncytium of the Hearts of Diabetic Rats

    PubMed Central

    Martínez-Ladrón de Guevara, Elideth; Pérez-Hernández, Nury; Villalobos-López, Miguel Ángel; Pérez-Ishiwara, David Guillermo; Salas-Benito, Juan Santiago; Martínez Martínez, Alejandro; Hernández-García, Vicente

    2016-01-01

    This study was designed to examine the effects of lyophilized red delicious apple peel (RDP) on the action potentials (APs) and the input resistance-threshold current relationship. The experiments were performed on isolated papillary heart muscles from healthy male rats, healthy male rats treated with RDP, diabetic male rats, and diabetic male rats treated with RDP. The preparation was superfused with oxygenated Tyrode's solution at 37°C. The stimulation and the recording of the APs, the input resistance, and the threshold current were made using conventional electrophysiological methods. The RDP presented no significant effect in normal rats. Equivalent doses in diabetic rats reduced the APD and ARP. The relationship between input resistance and threshold current established an inverse correlation. The results indicate the following: (1) The functional structure of the cardiac ventricular syncytium in healthy rats is heterogeneous, in terms of input resistance and threshold current. Diabetes further accentuates the heterogeneity. (2) As a consequence, conduction block occurs and increases the possibility of reentrant arrhythmias. (3) These modifications in the ventricular syncytium, coupled with the increase in the ARP, are the adequate substrate so that, with diabetes, the heart becomes more arrhythmogenic. (4) RDP decreases the APD, the ARP, and most syncytium irregularity caused by diabetes. PMID:26839897

  11. The Actions of Lyophilized Apple Peel on the Electrical Activity and Organization of the Ventricular Syncytium of the Hearts of Diabetic Rats.

    PubMed

    Martínez-Ladrón de Guevara, Elideth; Pérez-Hernández, Nury; Villalobos-López, Miguel Ángel; Pérez-Ishiwara, David Guillermo; Salas-Benito, Juan Santiago; Martínez Martínez, Alejandro; Hernández-García, Vicente

    2016-01-01

    This study was designed to examine the effects of lyophilized red delicious apple peel (RDP) on the action potentials (APs) and the input resistance-threshold current relationship. The experiments were performed on isolated papillary heart muscles from healthy male rats, healthy male rats treated with RDP, diabetic male rats, and diabetic male rats treated with RDP. The preparation was superfused with oxygenated Tyrode's solution at 37°C. The stimulation and the recording of the APs, the input resistance, and the threshold current were made using conventional electrophysiological methods. The RDP presented no significant effect in normal rats. Equivalent doses in diabetic rats reduced the APD and ARP. The relationship between input resistance and threshold current established an inverse correlation. The results indicate the following: (1) The functional structure of the cardiac ventricular syncytium in healthy rats is heterogeneous, in terms of input resistance and threshold current. Diabetes further accentuates the heterogeneity. (2) As a consequence, conduction block occurs and increases the possibility of reentrant arrhythmias. (3) These modifications in the ventricular syncytium, coupled with the increase in the ARP, are the adequate substrate so that, with diabetes, the heart becomes more arrhythmogenic. (4) RDP decreases the APD, the ARP, and most syncytium irregularity caused by diabetes. PMID:26839897

  12. Effects of Aged Garlic Extract on Left Ventricular Diastolic Function and Fibrosis in a Rat Hypertension Model

    PubMed Central

    Hara, Yuki; Noda, Akiko; Miyata, Seiko; Minoshima, Makoto; Sugiura, Mari; Kojima, Jun; Otake, Masafumi; Furukawa, Mayuko; Cheng, Xian Wu; Nagata, Kohzo; Murohara, Toyoaki

    2013-01-01

    Daily consumption of garlic is known to lower the risk of hypertension and ischemic heart disease. In this study, we examined whether aged garlic extract (AGE) prevents hypertension and the progression of compensated left ventricular (LV) hypertrophy in Dahl salt-sensitive (DS) rats. DS rats were randomly divided into three groups: those fed an 8% NaCl diet until 18 weeks of age (8% NaCl group), those additionally treated with AGE (8% NaCl + AGE group), and control rats maintained on a diet containing 0.3% NaCl until 18 weeks of age (0.3% NaCl group). AGE was administered orally by gastric gavage once a day until 18 weeks of age. LV mass was significantly higher in the 8% NaCl + AGE group than in the 0.3% NaCl group at 18 weeks of age, but significantly lower in the 8% NaCl + AGE group than in the 8% NaCl group. No significant differences were observed in systolic blood pressure (SBP) between the 8% NaCl and 8% NaCl + AGE groups at 12 and 18 weeks of age. LV end-diastolic pressure and pressure half-time at 12 and 18 weeks of age were significantly lower in the 8% NaCl + AGE group compared with the 8% NaCl group. AGE significantly reduced LV interstitial fibrosis at 12 and 18 weeks of age. Chronic AGE intake attenuated LV diastolic dysfunction and fibrosis without significantly decreasing SBP in hypertensive DS rats. PMID:24172194

  13. Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones

    PubMed Central

    Frump, Andrea L.; Goss, Kara N.; Vayl, Alexandra; Albrecht, Marjorie; Fisher, Amanda; Tursunova, Roziya; Fierst, John; Whitson, Jordan; Cucci, Anthony R.; Brown, M. Beth

    2015-01-01

    Estrogens are disease modifiers in PAH. Even though female patients exhibit better right ventricular (RV) function than men, estrogen effects on RV function (a major determinant of survival in PAH) are incompletely characterized. We sought to determine whether sex differences exist in RV function in the SuHx model of PAH, whether hormone depletion in females worsens RV function, and whether E2 repletion improves RV adaptation. Furthermore, we studied the contribution of ERs in mediating E2’s RV effects. SuHx-induced pulmonary hypertension (SuHx-PH) was induced in male and female Sprague-Dawley rats as well as OVX females with or without concomitant E2 repletion (75 μg·kg−1·day−1). Female SuHx rats exhibited superior CI than SuHx males. OVX worsened SuHx-induced decreases in CI and SuHx-induced increases in RVH and inflammation (MCP-1 and IL-6). E2 repletion in OVX rats attenuated SuHx-induced increases in RV systolic pressure (RVSP), RVH, and pulmonary artery remodeling and improved CI and exercise capacity (V̇o2max). Furthermore, E2 repletion ameliorated SuHx-induced alterations in RV glutathione activation, proapoptotic signaling, cytoplasmic glycolysis, and proinflammatory cytokine expression. Expression of ERα in RV was decreased in SuHx-OVX but was restored upon E2 repletion. RV ERα expression was inversely correlated with RVSP and RVH and positively correlated with CO and apelin RNA levels. RV-protective E2 effects observed in females were recapitulated in male SuHx rats treated with E2 or with pharmacological ERα or ERβ agonists. Our data suggest significant RV-protective ER-mediated effects of E2 in a model of severe PH. PMID:25713318

  14. Resveratrol attenuates left ventricular remodeling in old rats with COPD induced by cigarette smoke exposure and LPS instillation.

    PubMed

    Hu, Yi Xin; Cui, Hua; Fan, Li; Pan, Xiu Jie; Wu, Ji Hua; Shi, Suo Zhu; Cui, Shao Yuan; Wei, Zhi Min; Liu, Lin

    2013-12-01

    The objective of this study was to investigate left cardiac damage and the cardioprotective effects of resveratrol in old rats with COPD. Rats 22 months old were divided into three groups: control (CTL), smoking and lipopolysaccharides (SM/LPS), and SM/LPS plus resveratrol (SM/LPS-Res). Cardiac function, pathology, oxidative stress, and apoptosis index were measured. Expression of myocardial SIRT1 was studied by real-time quantitative polymerase chain reaction (PCR) and Western blot detection. The heart weight-body weight ratio (LVW/BW) increased in the SM/LPS group compared with the CTL group. Both the LVW/BW and the area of fibrosis in the SM/LPS-Res group decreased compared with those in the SM/LPS group. 8-OHdG expression increased in cardiac tissue of rats in the SM/LPS group, which could be inhibited by resveratrol. Resveratrol significantly increased the activity of superoxide dismutase (SOD) and reduced the cardiac malonyldialdehyde (MDA) level in the SM/LPS-Res group. There was a significant decrease in the extent of cardiomyocyte apoptosis in the SM/LPS-Res group compared with the SM/LPS group. SIRT1 mRNA increased in the SM/LPS-Res group compared with the SM/LPS group. In conclusion, resveratrol attenuated cardiac oxidative damage and left ventricular remodeling and enhanced the decreased expression of SIRT1 in hearts of old rats with emphysema and thus might be a therapeutic modality for cardiac injury complicated in chronic obstructive pulmonary disease (COPD). PMID:24289075

  15. Effects of aged garlic extract on left ventricular diastolic function and fibrosis in a rat hypertension model.

    PubMed

    Hara, Yuki; Noda, Akiko; Miyata, Seiko; Minoshima, Makoto; Sugiura, Mari; Kojima, Jun; Otake, Masafumi; Furukawa, Mayuko; Cheng, Xian Wu; Nagata, Kohzo; Murohara, Toyoaki

    2013-01-01

    Daily consumption of garlic is known to lower the risk of hypertension and ischemic heart disease. In this study, we examined whether aged garlic extract (AGE) prevents hypertension and the progression of compensated left ventricular (LV) hypertrophy in Dahl salt-sensitive (DS) rats. DS rats were randomly divided into three groups: those fed an 8% NaCl diet until 18 weeks of age (8% NaCl group), those additionally treated with AGE (8% NaCl + AGE group), and control rats maintained on a diet containing 0.3% NaCl until 18 weeks of age (0.3% NaCl group). AGE was administered orally by gastric gavage once a day until 18 weeks of age. LV mass was significantly higher in the 8% NaCl + AGE group than in the 0.3% NaCl group at 18 weeks of age, but significantly lower in the 8% NaCl + AGE group than in the 8% NaCl group. No significant differences were observed in systolic blood pressure (SBP) between the 8% NaCl and 8% NaCl + AGE groups at 12 and 18 weeks of age. LV end-diastolic pressure and pressure half-time at 12 and 18 weeks of age were significantly lower in the 8% NaCl + AGE group compared with the 8% NaCl group. AGE significantly reduced LV interstitial fibrosis at 12 and 18 weeks of age. Chronic AGE intake attenuated LV diastolic dysfunction and fibrosis without significantly decreasing SBP in hypertensive DS rats. PMID:24172194

  16. Inhibition of anandamide hydrolysis dampens the neuroendocrine response to stress in neonatal rats subjected to suboptimal rearing conditions.

    PubMed

    McLaughlin, Ryan Joseph; Verlezza, Silvanna; Gray, Jennifer Megan; Hill, Matthew Nicholas; Walker, Claire-Dominique

    2016-01-01

    Exposure to stress during early development can exert profound effects on the maturation of the neuroendocrine stress axis. The endocannabinoid (ECB) system has recently surfaced as a fundamental component of the neuroendocrine stress response; however, the effect of early-life stress on neonatal ECB signaling and the capacity to which ECB enhancement may modulate neonatal stress responses is relatively unknown. The present study assessed whether exposure to early-life stress in the form of limited access to nesting/bedding material (LB) from postnatal (PND) day 2 to 9 alters neuroendocrine activity and hypothalamic ECB content in neonatal rats challenged with a novel immobilization stressor. Furthermore, we examined whether inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of anandamide (AEA) affects neuroendocrine responses in PND10 pups as a function of rearing conditions. Neonatal rats showed a robust increase in corticosterone (CORT) and adrenocorticotropin hormone (ACTH) secretion in response to immobilization stress, which was significantly blunted in pups reared in LB conditions. Accordingly, LB pups exhibited reduced stress-induced Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, with no significant differences in hypothalamic ECB content. Administration of the FAAH inhibitor URB597 (0.3 mg/kg, ip) 90 min prior to immobilization stress significantly dampened stress-induced CORT release, but only in pups reared in LB conditions. These results suggest that rearing in restricted bedding conditions dampens the neuroendocrine response to stress, while augmenting AEA mitigates stress-induced alterations in glucocorticoid secretion preferentially in pups subjected to early-life stress. PMID:26552023

  17. Endothelin receptor-A (ETa) inhibition fails to improve neonatal hypoxic-ischemic brain injury in rats.

    PubMed

    Khatibi, Nikan H; Lee, Lillian K; Zhou, Yilin; Chen, Wanqiu; Rolland, William; Fathali, Nancy; Martin, Robert; Applegate, Richard; Stier, Gary; Zhang, John H

    2011-01-01

    Cerebral hypoxia-ischemia (HI) is an important cause of mortality and disability in newborns. It is a result of insufficient oxygen and glucose circulation to the brain, initiating long-term cerebral damage and cell death. Emerging evidence suggests that endothelin receptor-A (ETA) activation can play an important role in mediating brain damage. In this study, we investigated the role of ETA receptor inhibition using ABT-627 in neonatal HI injured rats. Postnatal day 10 Sprague-Dawley rat pups (n=91) were assigned to the following groups: sham (n=28), HI (vehicle, n=32), and HI with ABT-627 at 3 mg/kg (n=31). The Rice-Vannucci model was used to induce ischemia by ligating the right common carotid artery, followed by a 2 h hypoxic episode using 8% oxygen in a 37°C chamber. Postoperative assessment was conducted at 48 h after injury and again at 4 weeks. At the acute time point, investigative markers included cerebral edema, infarction volume, and body weight change. Neurobehavioral testing was measured at 4 weeks post-injury. Our findings indicated that ABT-627 had no effect on the measured parameters. This study suggests that ETA receptor blockade using ABT-627 post-treatment fails to improve neurological outcomes in neonatal HI injured rats. PMID:21725757

  18. Neonatal exposure to 17α-ethinyl estradiol affects kisspeptin expression and LH-surge level in female rats.

    PubMed

    Usuda, Kento; Nagaoka, Kentaro; Nozawa, Kaori; Zhang, Haolin; Taya, Kazuyoshi; Yoshida, Midori; Watanabe, Gen

    2014-08-01

    Contamination of estrogenic compounds disrupts endocrinological and neurological reproductive systems in animals. Neonatal exposure to 17α-ethinyl estradiol (EE) induced an abnormal estrous cycle at postnatal day (PND) 180, but not at PND90. We found that serum level of luteinizing hormone (LH) at the latter half of proestrus in EE-treated rats was lower than in the controls at PND90 when there was no significant difference on estrous cyclicity. Additionally, kiss1 mRNA levels in the anteroventral periventricular nucleus-preoptic area (AVPV/POA) were lower in EE-treated rats than in the controls. The expression of GnRH precursor (GNRH1) mRNA in the AVPV/POA and that of LH beta subunit (LHb) mRNA in the pituitary were similar in the control- and EE-treated groups. Our results indicated that neonatal exposure to EE leads to reduced expression of kiss1 mRNA in AVPV/POA and LH-surge, which is likely related to the delayed reproductive dysfunction seen in adult female rats. PMID:24784441

  19. Neonatal exposure to 17α-ethynyl estradiol affects ovarian gene expression and disrupts reproductive cycles in female rats.

    PubMed

    Nozawa, Kaori; Nagaoka, Kentaro; Zhang, Haolin; Usuda, Kento; Okazaki, Sachiko; Taya, Kazuyoshi; Yoshida, Midori; Watanabe, Gen

    2014-07-01

    Neonatal exposure to synthetic estrogen causes delayed reproductive dysfunction in female rats. Exposure to 17α-ethynyl estradiol (EE, low: 20 and high: 2000 μg/kg) induced an abnormal estrous cycle during PND171-190 in low-dose and PND126-145 in high-dose group. At PND90 within normal estrous cycle, high-dose animals showed lack of LH surge and low of ovarian hormones in serum level. Gene expression analysis demonstrated that level of mRNA encoding luteinizing hormone/chorionic gonadotropin receptor (LHCGR) was higher in EE-treated ovaries than in control ovaries, and LHCGR protein colocalized with apoptosis-related proteins in the interstitial area of the ovary. At PND1, ovarian LHCGR mRNA levels were higher in EE-treated rats than in control rats, and direct induction of LHCGR expression by EE was observed in vitro. Our results indicate that neonatal exposure to EE induces irregular LHCGR expression in the immature ovary, which may influence the occurrence of delayed reproductive dysfunction in adult animals. PMID:24632129

  20. Gamma-linolenic acid provides additional protection against ventricular fibrillation in aged rats fed linoleic acid rich diets.

    PubMed

    Charnock, J S

    2000-02-01

    Ligation of the coronary artery in rats produces severe ventricular fibrillation (VF) and malignant cardiac arrhythmia. Mortality increases with the age of the animal. Diets rich in saturated fatty acids (SF) but low in linoleic acid (LA) increase, but diets high in LA and low in SF decrease the severity of VF and mortality in older animals. The effects of an LA enriched diet can be blocked by inhibition of cyclooxygenase suggesting that conversion of LA to eicosanoids is central to the development of VF. Conversion of LA to gamma-linolenic acid (GLA) via delta-6 desaturase is the first step in the process. The activity of delta-6 desaturase declines with age. Thus inclusion of GLA in the diet of older animals may provide an additional benefit over LA alone. Dietary supplements of evening primrose oil (EPO) to one year old rats reduced ischaemic VF more than a supplement of sunflower seed oil (SSO) without GLA. Substitution of borage oil (more GLA than EPO but less LA than either EPO or SSO) was without additional benefit. PMID:10780878

  1. (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine binding to A1 adenosine receptors of intact rat ventricular myocytes

    SciTech Connect

    Martens, D.; Lohse, M.J.; Schwabe, U.

    1988-09-01

    The purpose of the present study was the identification of A1 adenosine receptors in intact rat ventricular myocytes, which are thought to mediate the negative inotropic effects of adenosine. The adenosine receptor antagonist (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine was used as radioligand. Binding of the radioligand to intact myocytes was rapid, reversible, and saturable with a binding capacity of 40,000 binding sites per cell. The dissociation constant of the radioligand was 0.48 nM. The adenosine receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine, xanthine amine congener, and theophylline were competitive inhibitors with affinities in agreement with results obtained for A1 receptors in other tissues. Competition experiments using the adenosine receptor agonists R-N(6)-phenylisopropyladenosine, 5'-N-ethylcarboxamidoadenosine, and S-N(6)-phenylisopropyladenosine gave monophasic displacement curves with Ki values of 50 nM, 440 nM, and 4,300 nM, which agreed well with the GTP-inducible low affinity state in cardiac membranes. The low affinity for agonists was not due to agonist-induced desensitization, and correlated well with the corresponding IC50 values for the inhibition of cyclic AMP accumulation by isoprenaline. It is suggested that only a low affinity state of A1 receptors can be detected in intact rat myocytes due to the presence of high concentrations of guanine nucleotides in intact cells.

  2. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge

    PubMed Central

    Campbell, Erin J.; Watters, Stephanie M.; Zouikr, Ihssane; Hodgson, Deborah M.; Dayas, Christopher V.

    2015-01-01

    Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS), during the neonatal period has been shown to alter both neuroendocrine function and behavioral pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whether neonatal LPS exposure affects the reactivity of the orexin system to formalin-induced inflammatory pain in later life remains to be determined. Male Wistar rats (n = 13) were exposed to either LPS or saline (0.05 mg/kg, i.p) on postnatal days (PND) 3 and 5. On PND 80–97, all rats were exposed to a subcutaneous hindpaw injection of 2.25% formalin. Following behavioral testing, animals were perfused and brains processed for Fos-protein and orexin immunohistochemistry. Rats treated with LPS during the neonatal period exhibited decreased licking behaviors during the interphase of the formalin test, the period typically associated with the active inhibition of pain, and increased grooming responses to formalin in adulthood. Interestingly, these behavioral changes were accompanied by an increase in the percentage of Fos-positive orexin cells in the dorsomedial and perifornical hypothalamus in LPS-exposed animals. Similar increases in Fos-protein were also observed in stress and pain sensitive brain regions that receive orexinergic inputs. These findings highlight a potential role for orexin in the behavioral responses to pain and provide further evidence that early life stress can prime the circuitry responsible for these responses in adulthood. PMID:25805965

  3. Initiation of segmental locomotor-like activities by stimulation of ventrolateral funiculus in the neonatal rat.

    PubMed

    Cheng, Jianguo; Magnuson, David S K

    2011-09-01

    Descending control is critically important for the generation of locomotor activities. Yet, our understanding of the descending control system of locomotion is limited. We hypothesized that stimulation of the ventrolateral funiculus (VLF) induces rhythmic activity in lumbar neurons that is correlated with locomotor-like activity in the neonatal rat. Intracellular recordings were conducted in the L2-L3 lumbar segments, while locomotor-like output was monitored in the L2 and L5 ventral roots. Stimulation of the VLF at thoracic segments induced locomotor-like activity in the L2 and L5 ventral roots in majority of the preparations (26/33). In a few midline split cord preparations (4/13), VLF stimulation induced rhythmic locomotor-like bursts in either L2 or L5 ventral root without alternating pattern between the ventral roots. The response latencies suggest that VLF stimulation induced antidromic activation (<1 ms, 8 cells), monosynaptic activation (1-3 ms, 18 cells), and oligosynaptic activation (3.5-5 ms, 14 cells) of segmental neurons in the lumbar region. VLF stimulation induced rhythmic membrane potential oscillations with or without bursting of action potentials in 9 of 40 putative interneurons. The membrane potential oscillations were in phase with the locomotor-like output of the L2 ventral root in 7 of the 9 cells while the other 2 cells oscillated in phase with the L5 ventral root activity. We have thus demonstrated that descending axons exist in the VLF which make synaptic connections with segmental neurons in the lumbar region that may be a critical element of the locomotor neural network for the initiation of locomotion. PMID:21858680

  4. Initiation of segmental locomotor-like activities by stimulation of ventrolateral funiculus in the neonatal rat

    PubMed Central

    Magnuson, David S. K.

    2011-01-01

    Descending control is critically important for the generation of locomotor activities. Yet, our understanding of the descending control system of locomotion is limited. We hypothesized that stimulation of the ventrolateral funiculus (VLF) induces rhythmic activity in lumbar neurons that is correlated with locomotor-like activity in the neonatal rat. Intracellular recordings were conducted in the L2–L3 lumbar segments, while locomotor-like output was monitored in the L2 and L5 ventral roots. Stimulation of the VLF at thoracic segments induced locomotor-like activity in the L2 and L5 ventral roots in majority of the preparations (26/33). In a few midline split cord preparations (4/13), VLF stimulation induced rhythmic locomotor-like bursts in either L2 or L5 ventral root without alternating pattern between the ventral roots. The response latencies suggest that VLF stimulation induced antidromic activation (<1 ms, 8 cells), monosynaptic activation (1–3 ms, 18 cells), and oligosynaptic activation (3.5–5 ms, 14 cells) of segmental neurons in the lumbar region. VLF stimulation induced rhythmic membrane potential oscillations with or without bursting of action potentials in 9 of 40 putative interneurons. The membrane potential oscillations were in phase with the locomotor-like output of the L2 ventral root in 7 of the 9 cells while the other 2 cells oscillated in phase with the L5 ventral root activity. We have thus demonstrated that descending axons exist in the VLF which make synaptic connections with segmental neurons in the lumbar region that may be a critical element of the locomotor neural network for the initiation of locomotion. PMID:21858680

  5. Ethanol influences on Bax associations with mitochondrial membrane proteins in neonatal rat cerebellum.

    PubMed

    Heaton, Marieta Barrow; Siler-Marsiglio, Kendra; Paiva, Michael; Kotler, Alexandra; Rogozinski, Jonathan; Kubovec, Stacey; Coursen, Mary; Madorsky, Vladimir

    2013-02-01

    These studies investigated interactions taking place at the mitochondrial membrane in neonatal rat cerebellum following ethanol exposure and focused on interactions between proapoptotic Bax and proteins of the permeability transition pore (PTP), voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT) of the outer and inner mitochondrial membranes, respectively. Cultured cerebellar granule cells were used to assess the role of these interactions in ethanol neurotoxicity. Analyses were made at the age of maximal cerebellar ethanol vulnerability (P4), compared to the later age of relative resistance (P7), to determine whether differential ethanol sensitivity was mirrored by differences in these molecular interactions. We found that, following ethanol exposure, Bax proapoptotic associations with both VDAC and ANT were increased, particularly at the age of greater ethanol sensitivity, and these interactions were sustained at this age for at least 2 h postexposure. Since Bax:VDAC interactions disrupt protective VDAC interactions with mitochondrial hexokinase (HXK), we also assessed VDAC:HXK associations following ethanol treatment and found such interactions were altered by ethanol treatment, but only at 2 h postexposure and only in the P4, ethanol-sensitive cerebellum. Ethanol neurotoxicity in cultured neuronal preparations was abolished by pharmacological inhibition of both VDAC and ANT interactions with Bax but not by a Bax channel blocker. Therefore, we conclude that, at this age, within the constraints of our experimental model, a primary mode of Bax-induced initiation of the apoptosis cascade following ethanol insult involves interactions with proteins of the PTP complex and not channel formation independent of PTP constituents. PMID:22767450

  6. Glutamate uptake block triggers deadly rhythmic bursting of neonatal rat hypoglossal motoneurons

    PubMed Central

    Sharifullina, Elina; Nistri, Andrea

    2006-01-01

    In the brain the extracellular concentration of glutamate is controlled by glial transporters that restrict the neurotransmitter action to synaptic sites and avoid excitotoxicity. Impaired transport of glutamate occurs in many cases of amyotrophic lateral sclerosis, a devastating motoneuron disease. Motoneurons of the brainstem nucleus hypoglossus are among the most vulnerable, giving early symptoms like slurred speech and dysphagia. However, the direct consequences of extracellular glutamate build-up, due to uptake block, on synaptic transmission and survival of hypoglossal motoneurons remain unclear and have been studied using the neonatal rat brainstem slice preparation as a model. Patch clamp recording from hypoglossal motoneurons showed that, in about one-third of these cells, inhibition of glutamate transport with the selective blocker dl-threo-β-benzyloxyaspartate (TBOA; 50 μ m) unexpectedly led to the emergence of rhythmic bursting consisting of inward currents of long duration with superimposed fast oscillations and synaptic events. Synaptic inhibition block facilitated bursting. Bursts had a reversal potential near 0 mV, and were blocked by tetrodotoxin, the gap junction blocker carbenoxolone, or antagonists of AMPA, NMDA or mGluR1 glutamate receptors. Intracellular Ca2+ imaging showed bursts as synchronous discharges among motoneurons. Synergy of activation of distinct classes of glutamate receptor plus gap junctions were therefore essential for bursting. Ablating the lateral reticular formation preserved bursting, suggesting independence from propagated network activity within the brainstem. TBOA significantly increased the number of dead motoneurons, an effect prevented by the same agents that suppressed bursting. Bursting thus represents a novel hallmark of motoneuron dysfunction triggered by glutamate uptake block. PMID:16455692

  7. Behavioral and growth effects induced by low dose methamphetamine administration during the neonatal period in rats.

    PubMed

    Williams, Michael T; Moran, Mary S; Vorhees, Charles V

    2004-01-01

    The investigation of methamphetamine exposure during neonatal development in rats has demonstrated that long-term spatial learning deficits are induced. A previous dose-response study showed that administration of 5 mg/kg methamphetamine, four times daily from postnatal days 11 to 20 produced these deficits, although the effects were not as severe as at higher doses of 10 or 15 mg/kg. This study examined concentrations of methamphetamine at or below 5mg/kg given over the same period of time. Five different concentrations of methamphetamine (i.e., 5, 2.5, 1.25, 0.625, or 0) were administered every 2 h four times daily from postnatal days 11 to 20. Body weights, zero maze performance, and Morris water maze learning were examined. A dose-dependent decrease in body weight was observed during the period of methamphetamine administration and these lower weights continued throughout adulthood for the 5, 2.5, and 1.25 mg/kg concentrations, although the adult decreases were negligible. No differences were noted in the zero maze. In the Morris water maze during the acquisition period, dose-dependent differences in spatial orientation were seen, however non-dose related deficits were observed for other parameters. During the shifted platform phase ("reversal"), a similar dose-dependent difference in spatial orientation was observed, although no other effects were noted during this phase. Females performed worse than males regardless of treatment or the phase of learning in the Morris water maze. These data suggest that even lower doses of methamphetamine can alter learning and memory in adulthood, although with less consistent results than with doses higher than 5 mg/kg/dose. These data would caution against even casual use of methamphetamine by women during pregnancy since even low doses could alter the ability of the child to learn. PMID:15380827

  8. Neonatal PCP Is More Potent than Ketamine at Modifying Preweaning Behaviors of Sprague-Dawley Rats

    PubMed Central

    Boctor, Sherin Y.; Wang, Cheng; Ferguson, Sherry A.

    2008-01-01

    Treatment with N-methyl-D-aspartate (NMDA) receptor antagonists, such as ketamine (KET) or phencyclidine (PCP), can trigger apoptotic neurodegeneration in neonatal rodents; however, little is known about the behavioral alterations resulting from such treatment. Here, rats were sc treated with saline; 10 mg/kg PCP on postnatal days (PNDs) 7, 9, and 11; 20 mg/kg KET (six injections every 2 h on PND 7); or a regimen of ketamine and 250 mg/kg L-carnitine (KLC) both administered on PND 7 with additional 250 mg/kg doses of L-carnitine given on PNDs 8–11. Postinjection, the home cage behavior of each pup was categorized on PNDs 7–11. Slant board and forelimb hang behaviors were examined on PNDs 8–11 and 12–16, respectively. The initial KET or KLC injections on PND 7 elevated abnormal home cage activity (i.e., paresis and paddling); however, KLC pup behavior returned to normal by the fourth injection, indicating the protective effects of L-carnitine against NMDA antagonist toxicity. PCP treatment caused substantial abnormal home cage activity on each injection day (PNDs 7, 9, and 11). Latencies to turn on the slant board were significantly longer on PND 8 for KET- and PCP-treated pups and PND 10 for PCP-treated pups. On PND 12, the forelimb hang time of PCP-treated pups was significantly shorter. Body weight was decreased on PNDs 8–18 in PCP-treated pups and PNDs 8–10 in KET-treated pups. These data indicate that developmental NMDA antagonist treatment causes short-term behavioral alterations which appear related to motor coordination and may be cerebellar in nature. Furthermore, single PCP injections appear more potent at altering behavior than multiple injections of KET. PMID:18667523

  9. Brain stem serotonin protects blood pressure in neonatal rats exposed to episodic anoxia.

    PubMed

    Yang, Hsiao T; Cummings, Kevin J

    2013-12-01

    In neonatal rodents, a loss of brain stem serotonin [5-hydroxytryptamine (5-HT)] in utero or at birth compromises anoxia-induced gasping and the recovery of heart rate (HR) and breathing with reoxygenation (i.e., autoresuscitation). How mean arterial pressure (MAP) is influenced after an acute loss of brain stem 5-HT content is unknown. We hypothesized that a loss of 5-HT for ∼1 day would compromise MAP during episodic anoxia. We injected 6-fluorotryptophan (20 mg/kg ip) into rat pups (postnatal days 9-10 or 11-13, n = 22 treated, 24 control), causing a ∼70% loss of brain stem 5-HT. Pups were exposed to a maximum of 15 anoxic episodes, separated by 5 min of room air to allow autoresuscitation. In younger pups, we measured breathing frequency and tidal volume using "head-out" plethysmography and HR from the electrocardiogram. In older pups, we used whole body plethysmography to detect gasping, while monitoring MAP. Gasp latency and the time required for respiratory, HR, and MAP recovery following each episode were determined. Despite normal gasp latency, breathing frequency and a larger tidal volume (P < 0.001), 5-HT-deficient pups survived one-half the number of episodes as controls (P < 0.001). The anoxia-induced decrease in MAP experienced by 5-HT-deficient pups was double that of controls (P = 0.017), despite the same drop in HR (P = 0.48). MAP recovery was delayed ∼10 s by 5-HT deficiency (P = 0.001). Our data suggest a loss of brain stem 5-HT leads to a pronounced, premature loss of MAP in response to episodic anoxia. These data may help explain why some sudden infant death syndrome cases die from what appears to be cardiovascular collapse during apparent severe hypoxia. PMID:24136109

  10. Neonatal handling increases cardiovascular reactivity to contextual fear conditioning in borderline hypertensive rats (BHR).

    PubMed

    Sanders, Brian J; Knoepfler, Jonathan

    2008-09-01

    Much research has demonstrated that events occurring in early life can have a profound influence on future biobehavioral responses to stressful and emotion provoking situations. The purpose of these studies was to determine the effects of an early environmental manipulation, handling (HAN) on cardiovascular (CV) reactivity, freezing behavior and corticosterone (CORT) responses to contextual fear conditioning in the borderline hypertensive rat (BHR),which is susceptible to environmental stressors. HAN subjects were separated from the nest for 15 min/day on post-natal days 1-14, while non-handled (NON-HAN) controls remained in the home cage. Adult subjects were exposed to the contextual fear conditioning procedure and returned to the chamber 24 h later for a 10 min test period. HAN subjects displayed significantly more freezing behavior compared to NON-HAN(92%+/-2.2 vs 80.7%+/-5.7, p<.05). Although resting MAP did not differ between groups, HAN subjects had increased MAP reactivity when re-exposed to the chamber. In addition, HAN subjects had significantly lower CORT levels at the end of the 10 min test period (174.2+/-9 ng/ml vs 237.2+/-12.9 ng/ml, p<.05). In the second experiment, CORT responses to 60 min of restraint stress and recovery following return to the home cage were assessed in separate groups of HAN and NON-HAN subjects. HAN subjects showed reduced CORT levels in response to acute restraint stress. These results indicate that neonatal handling can modulate biobehavioral responses to contextual fear conditioning in BHR and may suggest a useful model with which to study emotionality and susceptibility to CV disease. PMID:18538802

  11. Culturing Schwann Cells from Neonatal Rats by Improved Enzyme Digestion Combined with Explants-culture Method.

    PubMed

    Liu, Di; Liang, Xiao-Chun; Zhang, Hong

    2016-08-01

    Objective To develop an improved method for culturing Schwann cells(SCs) by using both enzyme digestion and explants-culture approaches and compared with traditional explants-culture method and general hemi-explants-culture method. Methods Bilaterally sciatic nerves and brachial plexus nerves were dissected from 3 to 5-day-old neonatal SD rats and explants-culture method,general hemi-explants-culture method,and improved enzyme digestion combined with explants-culture method were adopted to culture SCs,respectively. SCs were digested and passaged after 7 days in culture and counted under the microscope. The purity of SCs was identified by S-100 immunofluorescence staining. Results The SCs of improved method group grew fastest and the total number of cells obtained was(1.85±0.13)×10(6);the SCs of the hemi-explants-culture method group grew slower than the improved method group and the total number of cells obtained was (1.10±0.10)×10(6);the SCs of the explants-culture method group grew slowest and the total number of cells obtained was (0.77±0.03)×10(6).The total number of cells obtained showed significant difference among the three groups(P<0.01). Immunofluorescence staining showed that the SCs purity was (95.73±1.51)% in the improved method group,(84.66±2.68)% in the hemi-explants-culture method group,and (74.50±4.23)% in the explants-culture method group(P<0.01). Conclusion The improved enzyme digestion combined with explants-culture method can obtain sufficient amount of high-purity SCs in a short time and thus may be applied in further research on peripheral nerve regeneration. PMID:27594149

  12. Neonatal low-protein diet reduces the masticatory efficiency in rats.

    PubMed

    Ferraz-Pereira, Kelli N; da Silva Aragão, Raquel; Verdier, Dorly; Toscano, Ana E; Lacerda, Diego C; Manhães-de-Castro, Raul; Kolta, Arlette

    2015-11-14

    Little is known about the effects of undernutrition on the specific muscles and neuronal circuits involved in mastication. The aim of this study was to document the effects of neonatal low-protein diet on masticatory efficiency. Newborn rats whose mothers were fed 17% (nourished (N), n 60) or 8% (undernourished (U), n 56) protein were compared. Their weight was monitored and their masticatory jaw movements were video-recorded. Whole-cell patch-clamp recordings were performed in brainstem slice preparations to investigate the intrinsic membrane properties and N-methyl-d-aspartate-induced bursting characteristics of the rhythmogenic neurons (N, n 43; U, n 39) within the trigeminal main sensory nucleus (NVsnpr). Morphometric analysis (N, n 4; U, n 5) were conducted on masseteric muscles serial cross-sections. Our results showed that undernourished animals had lower numbers of masticatory sequences (P=0·049) and cycles (P=0·045) and slower chewing frequencies (P=0·004) (N, n 32; U, n 28). Undernutrition reduced body weight but had little effect on many basic NVsnpr neuronal electrophysiological parameters. It did, however, affect sag potentials (P<0·001) and rebound firing (P=0·005) that influence firing pattern. Undernutrition delayed the appearance of bursting and reduced the propensity to burst (P=0·002), as well as the bursting frequency (P=0·032). Undernourished animals showed increased and reduced proportions of fibre type IIA (P<0·0001) and IIB (P<0·0001), respectively. In addition, their fibre areas (IIA, P<0·001; IIB, P<0·001) and perimeters (IIA, P<0·001; IIB, P<0·001) were smaller. The changes observed at the behavioural, neuronal and muscular levels suggest that undernutrition reduces chewing efficiency by slowing, weakening and delaying maturation of the masticatory muscles and the associated neuronal circuitry. PMID:26337745

  13. The passive electrical properties of spheroidal aggregates cultured from neonatal rat heart cells.

    PubMed Central

    De Bruijne, J; Jongsma, H J; van Ginneken, A C

    1984-01-01

    Membrane specific resistance and capacitance of non-spontaneously active spheroidal aggregates, cultured from collagenase-dissociated neonatal rat heart cells, were calculated from changes in membrane potential due to intracellularly injected rectangular hyper- and depolarizing current pulses during diastole. The relation between steady-state membrane voltage displacement and injected current is linear for current pulses between +10 and -10 nA. No significant fall-off of electrotonic potential is measured in an aggregate at increasing distances from the site of current injection. The aggregate membrane resistance (input resistance) was best fitted by an inverse square function of the aggregate radius. This suggests selective current flow through the outer membranes of the spheroidal aggregate. Taking this into account the membrane specific resistance was calculated to be 753 +/- 38 omega cm2 (S.E. of mean; n = 39). The time course of the change in membrane potential is exponential with a time constant ranging from 5 to 26 ms, depending on the aggregate radius. The aggregate membrane capacitance is calculated from the exponential transients for each aggregate and appears to be a cubic function of the radius, indicating that the membrane area of all cells in the preparation equally contributes to the input capacitance. The membrane specific capacitance is calculated to be 0.97 +/- 0.02 microF/cm2 (S.E. of mean; n = 100). It is concluded that myocytes in aggregates are electrically well coupled and that a resistance in series with the inner membranes, if present, is negligible compared to the membrane resistance of the internal cells. In order to explain the finding that the membrane resistance was not inversely related to the cube of the aggregate radius, it is postulated that the membrane specific resistance might be a function of aggregate radius. PMID:6491992

  14. Investigation of infectivity of neonates and adults from different rat strains to Toxoplasma gondii Prugniaud shows both variation which correlates with iNOS and Arginase-1 activity and increased susceptibility of neonates to infection.

    PubMed

    Gao, Jiang-Mei; Yi, Si-Qi; Wu, Ming-Shui; Geng, Guo-Qing; Shen, Ji-Long; Lu, Fang-Li; Hide, Geoff; Lai, De-Hua; Lun, Zhao-Rong

    2015-02-01

    Mouse models differ considerably from humans with regard to clinical symptoms of toxoplasmosis caused by Toxoplasma gondii and, by comparison, the rat model is more representative of this disease in humans. In the present study, we found that different strains of adult and newborn rats (Lewis, Wistar, Sprague Dawley, Brown Norway and Fischer 344) exhibited remarkable variation in the number of brain cysts following inoculation with the T.gondii Prugniaud strain. In adult rats, large numbers of cysts (1231 ± 165.6) were observed in Fischer 344, but none in the other four. This situation was different in newborn rats aged from 5 to 20 days old. All Fischer 344 and Brown Norway newborns were cyst-positive while cyst-positive infection in Sprague Dawley neonates ranged from 54.5% to 60% depending on their age at infection. In Wistar and Lewis rat neonates, however, cyst-positivity rates of 0-42.9% and 0-25% were found respectively. To investigate whether rat strain differences in infectivity could be related to inherent strain and genetic differences in the host immune response, we correlated our data with previously reported strain differences in iNOS/Arginase ratio in adult rats and found them to be linked. These results show that interactions between host genetic background and age of rat influence T.gondii infection. PMID:25541383

  15. Cytoplasmic and nuclear estradiol receptors in the hypothalamus and cerebral cortex of female rats during the neonatal period

    SciTech Connect

    Shishkina, I.V.; Babichev, V.N.; Ozol', L.Y.

    1986-07-01

    The content of estradifol receptors (E/sub 2/) in the cytoplasmic and nuclear fractions of the hypothalamus and cerebral cortex of female rats was investigated in the course of neonatal development. In the cytosol of the hypothalamus and cortex, the E/sub 2/-binding proteins, which possess high capacity, include both the true estradiol receptors and proteins identical with ..cap alpha..-fetoprotein. True receptors E/sub 2/ were detected in the nuclear fraction; in the hypothalamus their concentration was virtually unchanged, while in the cortex it decreased from the first to fifth days of postnatal development.

  16. Effect of sphingosine-1-phosphate on L-type calcium current and Ca(2+) transient in rat ventricular myocytes.

    PubMed

    Egom, Emmanuel Eroume-A; Bae, James S H; Capel, Rebecca; Richards, Mark; Ke, Yunbo; Pharithi, Rebabonye B; Maher, Vincent; Kruzliak, Peter; Lei, Ming

    2016-08-01

    Modulation of Ca(2+) homoeostasis in cardiac myocytes plays a major role in beat-to-beat regulation of heart function. Previous studies suggest that sphingosine-1-phosphate (S1P), a biologically active sphingomyelin metabolite, regulates Ca(2+) handling in cardiac myocytes, but the underlying mechanism is unclear. In the present study, we tested the hypothesis that S1P-induced functional alteration of intracellular Ca(2+) handling includes the L-type calcium channel current (ICa,L) via a signalling pathway involving P21-activated kinase 1 (Pak1). Our results show that, in rat ventricular myocytes, S1P (100 nM) does not affect the basal activity of ICa,L but is able to partially reverse the effect of the β-adrenergic agonist Isoproterenol (ISO, 100 nM) on ICa,L. S1P (25 nM) also significantly prevents ISO (5 nM)-induced Ca(2+) waves and diastolic Ca(2+) release in these cells. Our further molecular characterisation demonstrates that Pak1 activity is increased in myocytes treated with S1P (25 nM) compared with those myocytes without treatment of S1P. By immunoprecipitation we demonstrate that Pak1 and protein phosphatase 2A (PP2A) are associated in ventricular tissue indicating their functional interaction. Thus the results indicate that S1P attenuates β-adrenergic stress-induced alteration of intracellular Ca(2+) release and L-type Ca(2+) channel current at least in part via Pak1-PP2A-mediated signalling. PMID:27372350

  17. Regional alterations of repolarizing K+ currents among the left ventricular free wall of rats with ascending aortic stenosis

    PubMed Central

    Volk, Tilmann; Nguyen, Thi Hong-Diep; Schultz, Jobst-Hendrik; Faulhaber, Jörg; Ehmke, Heimo

    2001-01-01

    The effect of cardiac hypertrophy on electrocardiogram (ECG), action potential duration (APD) and repolarizing K+ currents was investigated in epicardial, midmyocardial and endocardial myocytes isolated from the rat left ventricular free wall. Cardiac hypertrophy was induced by stenosis of the ascending aorta (AS), which led to an increased pressure load (+85 ± 10 mm) of the left ventricle; sham-operated animals served as controls. In ECG recordings from AS rats, the QTc interval was prolonged and the main vectors of the QRS complex and the T-wave pointed in opposite directions, indicating an abnormal sequence of repolarization. APD and K+ currents were recorded using the whole-cell patch-clamp technique. In the AS group, APD90 (90 % repolarization) was significantly prolonged in epicardial and midmyocardial, but not endocardial myocytes. Corresponding to the increase in APD, the magnitude of the transient outward K+ current (Ito1) was significantly smaller (-30 %) in epicardial and midmyocardial, but not endocardial myocytes. Inactivation and steady-state inactivation of Ito1 were not affected by hypertrophy. Recovery from inactivation was slightly prolonged in endocardial myocytes from AS rats. No differences in delayed rectifier currents (IK) or inwardly rectifying K+ currents (IK1) were detected between myocytes of the three regions of sham-operated or AS animals. However, both currents were reduced by AS. The present data show that cardiac hypertrophy caused by pressure overload leads to an increase in APD and a decrease in Ito1 primarily in epicardial and midmyocardial myocytes, which implies a major role of alterations in Ito1 for the reduced gradient in APD. The effects of AS on IK1 and IK may slightly counteract the decrease in APD gradient. The observed changes in APD and underlying ionic currents could well explain the alterations in repolarization observed in the ECG induced by cardiac hypertrophy. PMID:11158275

  18. Altered Formalin-Induced Pain and Fos Induction in the Periaqueductal Grey of Preadolescent Rats following Neonatal LPS Exposure

    PubMed Central

    Zouikr, Ihssane; James, Morgan H.; Campbell, Erin J.; Clifton, Vicki L.; Beagley, Kenneth W.; Dayas, Christopher V.; Hodgson, Deborah M.

    2014-01-01

    Animal and human studies have demonstrated that early pain experiences can produce alterations in the nociceptive systems later in life including increased sensitivity to mechanical, thermal, and chemical stimuli. However, less is known about the impact of neonatal immune challenge on future responses to noxious stimuli and the reactivity of neural substrates involved in analgesia. Here we demonstrate that rats exposed to Lipopolysaccharide (LPS; 0.05 mg/kg IP, Salmonella enteritidis) during postnatal day (PND) 3 and 5 displayed enhanced formalin-induced flinching but not licking following formalin injection at PND 22. This LPS-induced hyperalgesia was accompanied by distinct recruitment of supra-spinal regions involved in analgesia as indicated by significantly attenuated Fos-protein induction in the rostral dorsal periaqueductal grey (DPAG) as well as rostral and caudal axes of the ventrolateral PAG (VLPAG). Formalin injections were associated with increased Fos-protein labelling in lateral habenula (LHb) as compared to medial habenula (MHb), however the intensity of this labelling did not differ as a result of neonatal immune challenge. These data highlight the importance of neonatal immune priming in programming inflammatory pain sensitivity later in development and highlight the PAG as a possible mediator of this process. PMID:24878577

  19. Testicular Development in Male Rats Is Sensitive to a Soy-Based Diet in the Neonatal Period1

    PubMed Central

    Napier, India D.; Simon, Liz; Perry, Devin; Cooke, Paul S.; Stocco, Douglas M.; Sepehr, Estatira; Doerge, Daniel R.; Kemppainen, Barbara W.; Morrison, Edward E.; Akingbemi, Benson T.

    2014-01-01

    ABSTRACT Approximately 30% of infants in the United States are exposed to high doses of isoflavones resulting from soy infant formula consumption. Soybeans contain the isoflavones genistin and daidzin, which are hydrolyzed in the gastrointestinal tract to their genistein and daidzein aglycones. Both aglycones possess hormonal activity and may interfere with male reproductive development. Testosterone, which supports male fertility, is mainly produced by testicular Leydig cells. Our previous studies indicated that perinatal exposure of male rats to isoflavones induced proliferative activity in Leydig cells and increased testosterone concentrations into adulthood. However, the relevance of the neonatal period as part of the perinatal window of isoflavone exposure remains to be established. The present study examined the effects of exposure to isoflavones on male offspring of dams maintained on a casein-based control or whole soybean diet in the neonatal period, that is, Days 2 to 21 postpartum. The results showed that the soybean diet stimulated proliferative activity in developing Leydig cells while suppressing their steroidogenic capacity in adulthood. In addition, isoflavone exposure decreased production of anti-Müllerian hormone by Sertoli cells. Similar to our previous in vitro studies of genistein action in Leydig cells, daidzein induced proliferation and interfered with signaling pathways to suppress steroidogenic activity. Overall, the data showed that the neonatal period is a sensitive window of exposure to isoflavones and support the view that both genistein and daidzein are responsible for biological effects associated with soy-based diets. PMID:24451983

  20. Chronic cerebrolysin administration attenuates neuronal abnormalities in the basolateral amygdala induced by neonatal ventral hippocampus lesion in the rat.

    PubMed

    Vázquez-Roque, Rubén Antonio; Ubhi, Kiren; Masliah, Eliezer; Flores, Gonzalo

    2014-01-01

    The neonatal ventral hippocampal lesion (nVHL) has emerged as a model of schizophrenia-related behavior in the rat. Our previous report demonstrated that cerebrolysin (Cbl), a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair, promoted recovery of dendritic and neuronal damage of the prefrontal cortex and nucleus accumbens and behavioral improvements in postpubertal nVHL rats. We recently demonstrated that nVHL animals exhibit dendritic atrophy and spine loss in the basolateral amygdala (BLA). This study aimed to determine whether Cbl treatment was capable of reducing BLA neuronal alterations observed in nVHL rats. The morphological evaluation included examination of dendrites using the Golgi-Cox procedure and stereology to quantify the total cell number in BLA. Golgi-Cox staining revealed that nVHL induced dendritic retraction and spine loss in BLA pyramidal neurons. Stereological analysis demonstrated nVHL also produced a reduction in cells in BLA. Interestingly, repeated Cbl treatment ameliorated dendritic pathology and neuronal loss in the BLA of the nVHL rats. Our data show that Cbl may foster recovery of BLA damage in postpubertal nVHL rats and suggests that the use of neurotrophic agents for the management of some schizophrenia-related symptoms may present an alternative therapeutic pathway in these disorders. PMID:24123373

  1. Sequential development of intraepithelial gamma delta and alpha beta T lymphocytes expressing CD8 alpha beta in neonatal rat intestine: requirement for the thymus.

    PubMed

    Helgeland, L; Brandtzaeg, P; Rolstad, B; Vaage, J T

    1997-12-01

    Previous studies in congenitally athymic nude rats have suggested that the thymus is important for the development of intestinal T cells. Here we have examined the effect of the nude mutation on intraepithelial lymphocyte (IEL) development from the perinatal period. By immunohistochemistry it was shown that CD3(-)CD8 alpha alpha + putative IEL precursors colonized the epithelium of both normal and athymic neonatal rats. Mature T cells, however, did not develop in athymic neonates. In normal rats, gamma delta T cells were present at birth and alpha beta T cells appeared within 8 days of postnatal life. At this age, the composition and relative number of intraepithelial T cells were similar to that in normal adult rats, with the exception that most neonatal T-cell receptor-gamma delta + and -alpha beta + IEL expressed CD8 beta. By contrast, extrathymic T-cell maturation in the gut of congenitally athymic rats occurred slowly, as CD3+ IEL did not appear until 4-6 months of age. These intraepithelial T cells displayed variable phenotypes and appeared to be induced by environmental antigens as they were not found in isolator-kept old nudes. In conclusion, the present results indicate that the major colonization of the gut epithelium with gamma delta and alpha beta T cells expressing CD8 alpha beta takes place perinatally and requires the presence of the thymus. The developmental relationship between these neonatal T cells and more immature CD3- CD8 alpha alpha +/- IEL remains elusive. PMID:9497485

  2. Deferoxamine improves antioxidative protection in the brain of neonatal rats: The role of anoxia and body temperature.

    PubMed

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-08-15

    After hypoxic-ischemic insult iron deposited in the brain catalyzes formation of reactive oxygen species. Newborn rats, showing reduced physiological body temperature and their hyperthermic counterparts injected with deferoxamine (DF), a chelator of iron, are protected both against iron-mediated neurotoxicity and against depletion of low-molecular antioxidants after perinatal asphyxia. Therefore, we decided to study the effects of DF on activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione peroxidase-GPx and catalase-CAT) in the brain of rats exposed neonatally to a critical anoxia at body temperatures elevated to 39°C. Perinatal anoxia under hyperthermic conditions intensified oxidative stress and depleted the pool of antioxidant enzymes. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The present paper evidenced that deferoxamine may act by recovering of SOD, GPx and CAT activity to reduce anoxia-induced oxidative stress. PMID:27297770

  3. Characterization and agonist regulation of muscarinic ([3H]N-methyl scopolamine) receptors in isolated ventricular myocytes from rat.

    PubMed

    Horackova, M; Robinson, B; Wilkinson, M

    1990-11-01

    Cell surface muscarinic cholinergic receptors have been characterized and quantified for the first time, in intact, isolated adult rat cardiomyocytes. The cells were previously established as functionally fully compatible with cellular responses in intact cardiac tissue. The specific binding of the hydrophilic radioligand, [3H]-NMS, (N-methyl-[3H]-scopolamine methylchloride) was found to be stereo-specific, saturable, reversible and of high affinity. Binding of [3H]-NMS demonstrated appropriate drug specificity and was positively correlated with increasing cell concentrations. Bmax for [3H]-NMS binding to ventricular myocytes, enzymatically dissociated from adult male rats, was 15.8 +/- 1.03 fmol/25 x 10(3) cells (at 4 degrees C) and KD was 0.27 +/- 0.05 nM (n = 14). Binding assays performed at a higher incubation temperature (30 degrees C) yielded a higher Bmax value (22.1 +/- 1.6 fmol/25 x 10(3) cells; n = 11; P less than 0.005 vs. Bmax at 4 degrees C) but an unchanged KD (0.23 +/- 0.06 nM). Pretreatment of myocytes with the muscarinic agonist carbachol (1 mM) at 37 degrees C resulted in a reduction (down-regulation) in specific binding of the hydrophilic ligand [3H]-NMS. The magnitude of this reduction and its rate of recovery were dependent on the time of the exposure to carbachol. Exposures of 30-60 min elicited down-regulated by 35% (Bmax = 14.29 +/- 1.66 changed to 9.5 +/- 1.79 fmol/25 x 10(3) cells, without change in KD P less than 0.01, n = 4). The down-regulation of the muscarinic receptors by carbachol was insensitive to application of bacitracin - an inhibitor of endocytosis. On the other hand preincubation with 10(-9)M atropine, a muscarinic antagonist, hindered the agonist-induced receptor "loss" from the cell surface confirming the muscarinic nature of these receptors. We conclude that our preparation of intact, isolated ventricular cardiomyocytes is ideally suited for the study of cell surface muscarinic receptor regulation under physiological and

  4. Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain.

    PubMed

    Karlsson, Oskar; Jiang, Liying; Ersson, Lisa; Malmström, Tim; Ilag, Leopold L; Brittebo, Eva B

    2015-01-01

    β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA. PMID:26498001

  5. Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain

    PubMed Central

    Karlsson, Oskar; Jiang, Liying; Ersson, Lisa; Malmström, Tim; Ilag, Leopold L.; Brittebo, Eva B.

    2015-01-01

    β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA. PMID:26498001

  6. Combustion derived ultrafine particles induce cytochrome P-450 expression in specific lung compartments in the developing neonatal and adult rat

    PubMed Central

    Chan, Jackie K. W.; Vogel, Christoph F.; Baek, Jaeeun; Kodani, Sean D.; Uppal, Ravi S.; Bein, Keith J.; Anderson, Donald S.

    2013-01-01

    Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM. PMID:23502512

  7. TRANSIENT CORTICAL ASTROGLIOSIS INDUCED BY ALCOHOL EXPOSURE DURING THE NEONATAL BRAIN GROWTH SPURT IN RATS

    EPA Science Inventory

    The astrocyte response to central nervous system injury induced by neonatal alcohol exposure was evaluated using radioimmunoassay and immunocytochemistry of glial fibrillary acidic protein (GFAP). at pups were exposed to alcohol on postnatal days 4 through 9 via artificial rearin...

  8. Long-Term Left Ventricular Remodelling in Rat Model of Nonreperfused Myocardial Infarction: Sequential MR Imaging Using a 3T Clinical Scanner

    PubMed Central

    Saleh, Muhammad G.; Sharp, Sarah-Kate; Alhamud, Alkathafi; Spottiswoode, Bruce S.; van der Kouwe, Andre J. W.; Davies, Neil H.; Franz, Thomas; Meintjes, Ernesta M.

    2012-01-01

    Purpose. To evaluate whether 3T clinical MRI with a small-animal coil and gradient-echo (GE) sequence could be used to characterize long-term left ventricular remodelling (LVR) following nonreperfused myocardial infarction (MI) using semi-automatic segmentation software (SASS) in a rat model. Materials and Methods. 5 healthy rats were used to validate left ventricular mass (LVM) measured by MRI with postmortem values. 5 sham and 7 infarcted rats were scanned at 2 and 4 weeks after surgery to allow for functional and structural analysis of the heart. Measurements included ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), and LVM. Changes in different regions of the heart were quantified using wall thickness analyses. Results. LVM validation in healthy rats demonstrated high correlation between MR and postmortem values. Functional assessment at 4 weeks after MI revealed considerable reduction in EF, increases in ESV, EDV, and LVM, and contractile dysfunction in infarcted and noninfarcted regions. Conclusion. Clinical 3T MRI with a small animal coil and GE sequence generated images in a rat heart with adequate signal-to-noise ratio (SNR) for successful semiautomatic segmentation to accurately and rapidly evaluate long-term LVR after MI. PMID:23118511

  9. Intranasal pyrrolidine dithiocarbamate decreases brain inflammatory mediators and provides neuroprotection after brain hypoxia-ischemia in neonatal rats

    PubMed Central

    Wang, Zhi; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2013-01-01

    Brain injury due to birth asphyxia is the major cause of death and long-term disabilities in newborns. We determined whether intranasal pyrrolidine dithiocarbamate (PDTC) could provide neuroprotection in neonatal rats after brain hypoxia-ischemia (HI). Seven-day old male and female Sprague-Dawley rats were subjected to brain HI. They were then treated by intranasal PDTC. Neurological outcome were evaluated 7 or 30 days after the brain HI. Brain tissues were harvested 6 or 24 h after the brain HI for biochemical analysis. Here, PDTC dose-dependently reduced brain HI-induced brain tissue loss with an effective dose (ED)50 at 27 mg/kg. PDTC needed to be applied within 45 min after the brain HI for this neuroprotection. This treatment reduced brain tissue loss and improved neurological and cognitive functions assessed 30 days after the HI. PDTC attenuated brain HI-induced lipid oxidative stress, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells, and various inflammatory mediators in the brain tissues. Inhibition of inducible nitric oxide synthase after brain HI reduced brain tissue loss. Our results suggest that intranasal PDTC provides neuroprotection possibly via reducing inflammation and oxidative stress. Intranasal PDTC may have a potential to provide neuroprotection to human neonates after birth asphyxia. PMID:23994718

  10. Thymbra capitata essential oil prevents cell death induced by 4-hydroxy-2-nonenal in neonatal rat cardiac myocytes.

    PubMed

    Hortigón-Vinagre, María P; Blanco, José; Ruiz, Trinidad; Henao, Fernando

    2014-10-01

    An interdisciplinary experimental investigation on the antioxidant activity of Thymbra capitata essential oil was made. This plant is a Mediterranean culinary herb, whose essential oil antioxidant power has recently been demonstrated in vitro as one of the highest in nature. We tested if this in vitro antioxidant capacity was reproducible on biological systems using as model system primary cultures of neonatal rat cardiomyocytes treated with the lipid peroxidation product 4-hydroxy-2-nonenal. The composition and the in vitro antioxidant activity of the T. capitata essential oil were also assessed. Cell viability, mitochondrial membrane potential, and reactive oxygen species level were measured in cells treated with pathophysiologic doses of 4-hydroxy-2-nonenal (< 10 µM) or vehicle after being pre-incubated with small concentrations of the T. capitata essential oil, and the ability of small doses (< 40 ppm) to prevent the death of neonatal rat cardiomyocytes proved very remarkable. Long-term pre-incubation (12 h) with 20 ppm prevented 4-hydroxy-2-nonenal-induced cell death and avoided mitochondrial membrane potential loss and reactive oxygen species generation caused by 4-hydroxy-2-nonenal. A deleterious effect was shown at doses higher than 40 ppm. The results of this study pave the way to further analysis in animal models to achieve a deeper understanding of the in vivo antioxidant power of T. capitata essential oil. PMID:25203731

  11. Phosphodiesterase types 3 and 4 regulate the phasic contraction of neonatal rat bladder smooth myocytes via distinct mechanisms.

    PubMed

    Zhai, Kui; Chang, Yan; Wei, Bin; Liu, Qinghua; Leblais, Véronique; Fischmeister, Rodolphe; Ji, Guangju

    2014-05-01

    Activation of the cyclic AMP (cAMP) pathway reduces bladder contractility. However, the role of phosphodiesterase (PDE) families in regulating this function is poorly understood. Here, we compared the contractile function of the cAMP hydrolyzing PDEs in neonatal rat bladder smooth myocytes. RT-PCR and Western blotting analysis revealed that several isoforms of PDE1-4 were expressed in neonatal rat bladder. While 8-methoxymethyl-3-isobutyl-1-methylxanthine (a PDE1 inhibitor) and BAY-60-7550 (a PDE2 inhibitor) had no effect on the carbachol-enhanced phasic contractions of bladder strips, cilostamide (Cil, a PDE3 inhibitor) and Ro-20-1724 (Ro, a PDE4 inhibitor) significantly reduced these contractions. This inhibitory effect of Ro was blunted by the PKA inhibitor H-89, while the inhibitory effect of Cil was strongly attenuated by the PKG inhibitor KT 5823. Application of Ro in single bladder smooth myocytes resulted in an increase in Ca(2+) spark frequency but a decrease both in Ca(2+) transients and in sarcoplasmic reticulum (SR) Ca(2+) content. In contrast, Cil had no effect on these events. Furthermore, Ro-induced inhibition of the phasic contractions was significantly blocked by ryanodine and iberiotoxin. Taken together, PDE3 and PDE4 are the main PDE isoforms in maintaining the phasic contractions of bladder smooth myocytes, with PDE4 being functionally more active than PDE3. However, their roles are mediated through different mechanisms. PMID:24463006

  12. Live Cell Imaging of Primary Rat Neonatal Cardiomyocytes Following Adenoviral and Lentiviral Transduction Using Confocal Spinning Disk Microscopy

    PubMed Central

    Sakurai, Takashi; Lanahan, Anthony; Woolls, Melissa J.; Li, Na; Tirziu, Daniela; Murakami, Masahiro

    2014-01-01

    Primary rat neonatal cardiomyocytes are useful in basic in vitro cardiovascular research because they can be easily isolated in large numbers in a single procedure. Due to advances in microscope technology it is relatively easy to capture live cell images for the purpose of investigating cellular events in real time with minimal concern regarding phototoxicity to the cells. This protocol describes how to take live cell timelapse images of primary rat neonatal cardiomyocytes using a confocal spinning disk microscope following lentiviral and adenoviral transduction to modulate properties of the cell. The application of two different types of viruses makes it easier to achieve an appropriate transduction rate and expression levels for two different genes. Well focused live cell images can be obtained using the microscope’s autofocus system, which maintains stable focus for long time periods. Applying this method, the functions of exogenously engineered proteins expressed in cultured primary cells can be analyzed. Additionally, this system can be used to examine the functions of genes through the use of siRNAs as well as of chemical modulators. PMID:24998400

  13. A novel endoplasmic reticulum stress‑induced apoptosis model using tunicamycin in primary cultured neonatal rat cardiomyocytes.

    PubMed

    Shen, Mingzhi; Wang, Lin; Guo, Xiaowang; Xue, Qiao; Huo, Cong; Li, Xing; Fan, Li; Wang, Xiaoming

    2015-10-01

    Endoplasmic reticulum (ER) stress is key in the development of cardiovascular diseases. However, there is a lack of a systemic ER stress‑induced cardiomyocyte apoptosis model. In the present study, primary cultured neonatal rat cardiomyocytes were exposed to tunicamycin. Cell viability was determined by an MTT assay, and cell damage was detected by a lactose dehydrogenase assay. Flow cytometry was used and the activity of caspase‑3 was analyzed in order to measure apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to examine the expression of glucose‑regulated protein 78‑kDa (GRP78) and C/EBP homologous protein (CHOP). As a result, tunicamycin significantly increased cardiomyocyte injury, which occurred in a time- and concentration‑dependent manner. In addition, tunicamycin treatment resulted in apoptosis of cardiomyocytes. Molecularly, tunicamycin (100 ng/ml) increased the levels of GRP78 and CHOP 6 h after administration. In addition, GRP78 and CHOP reached maximum mRNA and protein levels 24 h after administration. In conclusion, the results implicate that the tunicamycin‑induced ER stress‑induced apoptotic model was successfully constructed in cultured neonatal rat cardiomyocytes. A 100 ng/ml concentration of tunicamycin was selected, and MTT, LDH release and flow cytometry assay was at 72 h. In addition, GRP78 and GRP94 were detected 24 h following administration. The results of the present study indicate a novel experimental basis for the investigation of ERS-induced cardiac apoptosis. PMID:26151415

  14. New phenylglycine derivatives with potent and selective antagonist activity at presynaptic glutamate receptors in neonatal rat spinal cord.

    PubMed

    Jane, D E; Pittaway, K; Sunter, D C; Thomas, N K; Watkins, J C

    1995-08-01

    The depression of the monosynaptic excitation of neonatal rat motoneurones produced by the metabotropic glutamate receptor (mGluR) agonists (1S,3S)-1-aminocyclopentane-1, 3-dicarboxylate (ACPD) or L-2-amino-4-phosphonobutyrate (L-AP4) was antagonized by three novel phenylglycine analogues: (RS)-alpha-methyl-4-sulphonophenylglycine (MSPG), (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) and (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG). The potencies of all the new compounds were greater than that of the previously reported (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG). For L-AP4-sensitive presynaptic mGluRs, the order of antagonist potency found was MPPG > MSPG > MTPG > MCPG. In contrast, the order of antagonist potency found for (1S,3S)-ACPD-sensitive presynaptic mGluRs was MTPG > MPPG > MSPG > MCPG. To date, MPPG (KD 9.2 microM) is the most potent L-AP4-sensitive receptor antagonist yet tested on the neonatal rat spinal cord. In addition, MTPG (KD 77 microM) is the most potent antagonist yet tested for (1S,3S)-ACPD-sensitive receptors in this preparation. PMID:8532166

  15. Protective Effects of Valproic Acid, a Histone Deacetylase Inhibitor, against Hyperoxic Lung Injury in a Neonatal Rat Model

    PubMed Central

    Cetinkaya, Merih; Cansev, Mehmet; Cekmez, Ferhat; Tayman, Cuneyt; Canpolat, Fuat Emre; Kafa, Ilker Mustafa; Yaylagul, Esra Orenlili; Kramer, Boris W.; Sarici, Serdar Umit

    2015-01-01

    Objective Histone acetylation and deacetylation may play a role in the pathogenesis of inflammatory lung diseases. We evaluated the preventive effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, on neonatal hyperoxic lung injury. Methods Forty newborn rat pups were randomized in normoxia, normoxia+VPA, hyperoxia and hyperoxia+VPA groups. Pups in the normoxia and normoxia+VPA groups were kept in room air and received daily saline and VPA (30 mg/kg) injections, respectively, while those in hyperoxia and hyperoxia+VPA groups were exposed to 95% O2 and received daily saline and VPA (30 mg/kg) injections for 10 days, respectively. Growth, histopathological, biochemical and molecular biological indicators of lung injury, apoptosis, inflammation, fibrosis and histone acetylation were evaluated. Results VPA treatment during hyperoxia significantly improved weight gain, histopathologic grade, radial alveolar count and lamellar body membrane protein expression, while it decreased number of TUNEL(+) cells and active Caspase-3 expression. Expressions of TGFβ3 and phospho-SMAD2 proteins and levels of tissue proinflammatory cytokines as well as lipid peroxidation biomarkers were reduced, while anti-oxidative enzyme activities were enhanced by VPA treatment. VPA administration also reduced HDAC activity while increasing acetylated H3 and H4 protein expressions. Conclusions The present study shows for the first time that VPA treatment ameliorates lung damage in a neonatal rat model of hyperoxic lung injury. The preventive effect of VPA involves HDAC inhibition. PMID:25938838

  16. Effects of neonatal fluvoxamine administration on the physical development and activity of the serotoninergic system in white rats.

    PubMed

    Glazova, N Yu; Merchieva, S A; Volodina, M A; Sebentsova, E A; Manchenko, D M; Kudrun, V S; Levitskaya, N G

    2014-07-01

    Selective serotonin reuptake inhibitors (SSRIs), including fluvoxamine, are widely used to treat depressive disorders in pregnant women. These antidepressants effectively penetrate through the placental barrier, affecting the fetus during the critical phase of neurodevelopment. Some clinical studies have linked prenatal exposure to SSRIs with increased neonatal mortality, premature birth, decreased fetal growth and delay in psychomotor development. However, the effects of prenatal exposure to SSRIs remain unknown. The administration of SSRIs in rodents during the first postnatal weeks is considered as an model for studying the effects of prenatal SSRIs exposure in human. The aim of this work was to study the acute effects of chronic fluvoxamine (FA) administration in white rat pups. The study was carried out in male and female rat pups treated with FA (10 mg/kg/day, intraperitoneally) from postnatal days 1 to 14. The lethality level, body weight, age of eye opening, and motor reflex maturation were recorded. The contents of biogenic amines and their metabolites in different brain structures were also determined. It was shown that neonatal FA administration led to increased lethality level, reduced body weight, and delayed maturation of motor reflexes. Furthermore, increased noradrenalin level in hypothalamus, serotonin level in hippocampus and serotonin metabolite 5-HIAA level in frontal cortex, hypothalamus, hippocampus, and striatum were observed in drug-treated animals compared to the control group. We can conclude that the altered activity of the serotoninergic system induced by fluvoxamine administration at early developmental stages leads to a delay in physical and motor development. PMID:25349718

  17. Live cell imaging of primary rat neonatal cardiomyocytes following adenoviral and lentiviral transduction using confocal spinning disk microscopy.

    PubMed

    Sakurai, Takashi; Lanahan, Anthony; Woolls, Melissa J; Li, Na; Tirziu, Daniela; Murakami, Masahiro

    2014-01-01

    Primary rat neonatal cardiomyocytes are useful in basic in vitro cardiovascular research because they can be easily isolated in large numbers in a single procedure. Due to advances in microscope technology it is relatively easy to capture live cell images for the purpose of investigating cellular events in real time with minimal concern regarding phototoxicity to the cells. This protocol describes how to take live cell timelapse images of primary rat neonatal cardiomyocytes using a confocal spinning disk microscope following lentiviral and adenoviral transduction to modulate properties of the cell. The application of two different types of viruses makes it easier to achieve an appropriate transduction rate and expression levels for two different genes. Well focused live cell images can be obtained using the microscope's autofocus system, which maintains stable focus for long time periods. Applying this method, the functions of exogenously engineered proteins expressed in cultured primary cells can be analyzed. Additionally, this system can be used to examine the functions of genes through the use of siRNAs as well as of chemical modulators. PMID:24998400

  18. The impact of neonatal bisphenol-A exposure on sexually dimorphic hypothalamic nuclei in the female rat

    PubMed Central

    Adewale, Heather B.; Todd, Karina L.; Mickens, Jillian A.; Patisaul, Heather B.

    2010-01-01

    Now under intense scrutiny, due to its endocrine disrupting properties, the potential threat the plastics component bisphenol-a (BPA) poses to human health remains unclear. Found in a multitude of polycarbonate plastics, food and beverage containers, and medical equipment, BPA is thought to bind to estrogen receptors (ERs), thereby interfering with estrogen-dependent processes. Our lab has previously shown that exposure to BPA (50mg/kg bw or 50μg/kg bw) during the neonatal critical period is associated with advancement of puberty, early reproductive senescence and ovarian malformations in female Long-Evans rats. Here, using neural tissue obtained from the same animals, we explored the impact of neonatal BPA exposure on the development of sexually dimorphic hypothalamic regions critical for female reproductive physiology and behavior. Endpoints included quantification of oxytocin-immunoreactive neurons (OT-ir) in the paraventricular nucleus (PVN), serotonin (5-HT-ir) fiber density in the ventrolateral subdivision of the ventromedial nucleus (VMNvl) as well as ERα-ir neuron number in the medial preoptic area (MPOA), the VMNvl, and the arcuate nucleus (ARC). Both doses of BPA increased the number of OT-ir neurons within the PVN, but no significant effects were seen on 5-HT-ir fiber density or ERα-ir neuron number in any of the areas analyzed. In addition to hypothalamic development, we also assessed female sex behavior and body weight. No effect of BPA on sexual receptivity or proceptive behavior in females was observed. Females treated with BPA, however, weighed significantly more than control females by postnatal day 99. This effect of BPA on weight is critical because alterations in metabolism, are frequently associated with reproductive dysfunction. Collectively, the results of this and our prior study indicate that the impact of neonatal BPA exposure within the female rat hypothalamus is region specific and support the hypothesis that developmental BPA

  19. Involvement of a cyclic-AMP pathway in group I metabotropic glutamate receptor responses in neonatal rat cortex.

    PubMed

    Schaffhauser, H; de Barry, J; Muller, H; Heitz, M P; Gombos, G; Mutel, V

    1997-09-10

    3,5-Dihydroxyphenylglycine (DHPG), (S)-3-hydroxyphenylglycine and (S)-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG) stimulated phosphoinositide hydrolysis in neonatal rat cortical slices, but with lower maximal effect, in comparison with 2S,1'S,2'S-2-(2'-carboxycyclopropyl)glycine (L-CCG I) or (1S,3R)-1-aminocyclo-pentane-1,3-dicarboxylic acid (1S,3R-ACPD). DHPG, 1S,3R-ACPD, and S-4C3HPG also evoked a rapidly desensitizing increase in [Ca2+]i in cortical layers of neonatal brain slices. (R,S)-alpha-methyl-4-tetrazolyl-phenylglycine (MTPG), and (R,S)-alpha-methyl-4-phosphono-phenylglycine (MPPG) inhibited the increase of phosphoinositide hydrolysis elicited by 1S,3R-ACPD but not that by R,S-DHPG. In contrast, the selective group II receptor agonist (1S,2S,5R,6S)-2-amino-bicyclo-[3.1.0]-hexane-2,6-dicarboxylate (LY 354740) potentiated the response of R,S-DHPG. Finally, 8-(4-chlorophenylthio)-cAMP, a membrane permeant analogue of cAMP, reversed the stimulatory effect of 1S,3R-ACPD and S-4C3HPG on phosphoinositide hydrolysis and [Ca2+]i mobilization, without affecting the response induced by R,S-DHPG. These data suggest that, in neonatal rat cortex, the activation of group II metabotropic glutamate receptors potentiates the phosphoinositide hydrolysis and [Ca2+]i responses mediated by group I metabotropic glutamate receptors. PMID:9369360

  20. Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

    PubMed

    Flores, G; Ibañez-Sandoval, O; Silva-Gómez, A B; Camacho-Abrego, I; Rodríguez-Moreno, A; Morales-Medina, J C

    2014-02-14

    In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood. PMID:24295633

  1. Evaluation of a novel delayed-type hypersensitivity assay to Candida albicans in adult and neonatal rats.

    PubMed

    Thorn, Mitchell; Hudson, Adam W; Kreeger, John; Kawabe, Thomas T; Bowman, Christopher J; Collinge, Mark

    2015-01-01

    Delayed-type hypersensitivity (DTH) is a T-cell-mediated immune response that may be used for immunotoxicity testing in non-clinical species. However, in some cases DTH assays using T-dependent antigens may be confounded by the production of antibodies to the antigen. The authors have previously modified a DTH assay, initially validated in the mouse, for use in juvenile rats to assess the effect of immunosuppressive drugs on the developing rat immune system. The assay measures footpad swelling induced by subcutaneous footpad injection of Candida albicans (C. albicans) derived-chitosan in rats previously sensitized with C. albicans. Antibodies to chitosan are not produced in this model. However, considerable inter-animal variability inherent in the footpad swelling assay can make it difficult to precisely quantify the magnitude of the immune response and inhibition by immunosuppressants, particularly if complete suppression is not observed. This report describes the development of an ex vivo assay to assess DTH in rats using interferon (IFN)-γ production by splenocytes, obtained from rats sensitized with C. albicans, as the quantifiable measure of the DTH response. Adult and neonatal rats administered dexamethasone (DEX), a known immunosuppressant, exhibited immunosuppression as evidenced by a reduction in ex vivo IFNγ production from splenocytes challenged with C. albicans-derived chitosan. Current data indicate that the ex vivo based DTH assay is more sensitive than the conventional footpad swelling assay due to a lower background response and the ability to detect a response as early as post-natal day (PND) 12. The ex vivo based rat DTH assay offers a highly sensitive and quantitative alternative to the footpad swelling assay for the assessment of the immunotoxic potential of drugs. The increased sensitivity of the ex vivo DTH assay may be useful for identifying smaller changes in response to immunotoxic drugs, as well as detecting responses earlier in animal

  2. Physiological and theoretical analysis of K+ currents controlling discharge in neonatal rat mesencephalic trigeminal neurons.

    PubMed

    Del Negro, C A; Chandler, S H

    1997-02-01

    Whole cell voltage- and current-clamp recordings were obtained from mesencephalic trigeminal sensory (Mes 5) neurons identified visually in thin brain stem slices of neonatal rats with the use of infrared video microscopy. These cells exhibited accommodation in spike discharge responses to depolarizing current injection protocols whose duration differed as a function of holding potential (-50 vs. -65 mV). Several spikes were elicited before the membrane response accommodated from -50 mV, whereas from -65 mV only single action potentials were evoked. In response to similar protocols, application of the K+ channel blocker 4-aminopyridine (4-AP) (50 microM to 2 mM) caused sustained repetitive spiking whereas tetraethylammonium (TEA) (10-30 mM) did not cause repetitive spiking. In voltage clamp, 4-AP application (100 microM) revealed a sustained outward current (I4-AP) that was active between -60 and -30 mV. I4-AP was responsible for suppressing sustained repetitive spiking behavior, producing accommodation under normal circumstances. TEA application in voltage clamp revealed a sustained outward current evoked positive to -40 mV. Two transient outward currents (TOCs) were identified by prepulse protocols typically used to characterize A-type currents: a 4-AP-insensitive fast TOC, and a slow TOC (ITOC-S) sensitive to 4-AP (> 500 microM). A Ca(2+)-dependent outward current that activated positive to -30 mV was also characterized. A mathematical model of a Mes 5 neuron was assembled from our voltage-clamp records to simulate the dynamic interaction of outward currents during membrane excitation. We conclude that in Mes 5 neurons, the 4-AP-sensitive currents ITOC-S and I4-AP determine the duration of spike trains. In particular, the noninactivating I4-AP determines whether cells exhibit sustained repetitive discharge or accommodate in response to depolarizing current. Neurotransmitter modulation of this current or modulation of the resting membrane potential could modify

  3. Maternal low-level lead exposure reduces the expression of PSA-NCAM and the activity of sialyltransferase in the hippocampi of neonatal rat pups.

    PubMed

    Hu, Qiansheng; Fu, Hongjun; Ren, Tieling; Wang, Shuyu; Zhou, Wei; Song, Hong; Han, Yifan; Dong, Shengzhang

    2008-07-01

    Highly polysialylated neural cell adhesion molecule (PSA-NCAM) is transiently expressed specifically in newly generated cells, and is important for cell migration and neurite outgrowth. Developmental lead (Pb) exposure has been considered to affect the expression of PSA-NCAM, which contributes to the neurotoxicity of Pb exposure. However, the effect of maternal low-level Pb exposure on the expression of PSA-NCAM in neonatal rat pups has not been reported. In the present study, female Wistar rats were exposed to vehicle or different dosages of lead chloride (0.5-4mM PbCl2) 2 weeks before and during pregnancy. This exposure protocol resulted in neonatal rat pups blood Pb levels up to 12.12+/-0.38 microg/dl, and hippocampal Pb levels up to 9.22+/-0.81 microg/g at postnatal day 1 (PND 1). Immunohistochemistry analysis and Western blot analysis revealed that the expressions of PSA-NCAM and NCAM in the hippocampi of neonatal rat pups at PND 1 were significantly reduced by the maternal low-level Pb exposures. Furthermore, the mRNA levels of NCAM and polysialyltransferases (STX and PST), measured by the fluorescent real-time quantitative RT-PCR, dosage-dependently and significantly decreased by 13.26-37.62%, 25.17-59.67%, and 10.78-47.81%, respectively. In addition, the sialyltransferase activity in neonatal rat pups was significantly reduced by 6.23-32.50% in the presence of the low-level Pb exposure, too. Taken together, these results suggest that maternal low-level Pb exposure reduces the expression of PSA-NCAM, NCAM, and the activity of sialyltransferase in the hippocampi of neonatal rat pups, which might contribute to the learning and memory impairments in the developmental pups following maternal low-level Pb exposure. PMID:18499259

  4. An endogenous protectant effect of cardiac cyclic GMP against reperfusion-induced ventricular fibrillation in the rat heart.

    PubMed Central

    Pabla, R.; Bland-Ward, P.; Moore, P. K.; Curtis, M. J.

    1995-01-01

    1. After a period of myocardial ischaemia, reperfusion of the myocardium can elicit cardiac arrhythmias. Susceptibility to these arrhythmias declines with time, such that a preceding period of more than approximately 40 min ischaemia is associated with few reperfusion-induced arrhythmias. We have tested the hypothesis that this decline in susceptibility occurs, in part, because of protection by endogenous guanosine 3':5'-cyclic monophosphate (cyclic GMP). 2. Rat isolated hearts were subjected to 60 min left regional ischaemia followed by reperfusion (n = 10 per group). Methylene blue (20 microM), a soluble guanylate cyclase inhibitor, raised the incidence of reperfusion-induced ventricular fibrillation (VF) from 10% in control hearts to 80% (P < 0.05). This effect of methylene blue was abolished by co-perfusion with zaprinast (100 microM), a phosphodiesterase inhibitor which, in the rat heart, is cyclic GMP-specific (specific for the type-V phosphodiesterase isozyme). 3. Methylene blue reduced cyclic GMP levels in the ischaemic, non-ischaemic and reperfused myocardium (P < 0.05) to 50 +/- 10, 52 +/- 12 and 70 +/- 7 fmol mg-1 tissue wet weight, respectively from control values of 143 +/- 38, 147 +/- 43 and 156 +/- 15 fmol mg-1. Co-perfusion with zaprinast prevented this effect, and cyclic GMP levels were actually elevated (P < 0.05) to 366 +/- 102, 396 +/- 130 and 293 +/- 22 fmol mg-1 in ischaemic, non-ischaemic and reperfused myocardium, respectively. Zaprinast by itself also elevated cyclic GMP content. Cyclic AMP levels were not affected by zaprinast or methylene blue. 4. In conclusion, when endogenous cardiac cyclic GMP synthesis is reduced, susceptibility to reperfusion-induced VF after sustained ischaemia is substantially increased. The effect is prevented by inhibiting cyclic GMP degradation. Therefore cyclic GMP appears to be an endogenous intracellular cardioprotectant, and its actions may account for the low susceptibility to VF normally encountered in

  5. Alterations in stress-associated behaviors and neurochemical markers in adult rats after neonatal short-lasting local inflammatory insult.

    PubMed

    Anseloni, V C Z; He, F; Novikova, S I; Turnbach Robbins, M; Lidow, I A; Ennis, M; Lidow, M S

    2005-01-01

    Recently, there has been a growing interest in long-term consequences of neonatal pain because modern neonatal intensive care units routinely employ procedures that cause considerable pain and may be followed by local inflammation and hyperalgesia lasting for several hours or even days. To address this question, we developed a rat model of short lasting (<2 days) early local inflammatory insult produced by a single injection of 0.25% carrageenan (CAR) into the plantar surface of a hindpaw. Previously, we demonstrated that rats receiving this treatment within the first week after birth grow into adults with a global reduction in responsiveness to acute pain. Here, we report that these animals also manifest a low anxiety trait associated with reduced emotional responsiveness to stress. This conclusion is based in the following observations: (a) rats in our model display reduced anxiety on an elevated plus-maze; (b) in the forced swim test, these rats exhibit behavioral characteristics associated with stronger ability for stress coping; and (c) these animals have reduced basal and stress-induced plasma levels of such stress-related neuroendocrine markers as corticotropin-releasing factor, vasopressin, and adrenocorticotrophic hormone. In addition, we used DNA microarray and real-time reverse-transcriptase polymerase chain reaction to profile long-term changes in gene expression in the midbrain periaqueductal gray (PAG; a region involved in both stress and pain modulation) in our animal model. Among the affected genes, serotonergic receptors were particularly well represented. Specifically, we detected increase in the expression of 5-HT1A, 5-HT1D, 5-HT2A, 5-HT2C and 5-HT4 receptors. Several of these receptors are known to be involved in the anxiolytic and analgesic activity of the PAG. Finally, to determine whether neonatal inflammatory insult induces elevation in maternal care, which may play a role in generating long-term behavioral alterations seen in our model, we

  6. TRPV1-mediated presynaptic transmission in basolateral amygdala contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation

    PubMed Central

    Xiao, Ying; Chen, Xiaoqi; Zhang, Ping-An; Xu, Qiya; Zheng, Hang; Xu, Guang-Yin

    2016-01-01

    The central mechanisms of visceral hypersensitivity remain largely unknown. It’s reported that there are highest densities of TRPV1 labeled neurons within basolateral amygdala (BLA). The aim of this study was to explore the role and mechanisms of TRPV1 in BLA in development of visceral hypersensitivity. Visceral hypersensitivity was induced by neonatal maternal deprivation (NMD) and was quantified by abdominal withdrawal reflex. Expression of TRPV1 was determined by Western blot. The synaptic transmission of neurons in BLA was recorded by patch clamping. It was found that the expression of TRPV1 in BLA was significantly upregulated in NMD rats; glutamatergic synaptic activities in BLA were increased in NMD rats; application of capsazepine (TRPV1 antagonist) decreased glutamatergic synaptic activities of BLA neurons in NMD slices through a presynaptic mechanism; application of capsaicin (TRPV1 agonist) increased glutamatergic synaptic activities of BLA neurons in control slices through presynaptic mechanism without affecting GABAergic synaptic activities; microinjecting capsazepine into BLA significantly increased colonic distension threshold both in control and NMD rats. Our data suggested that upregulation of TRPV1 in BLA contributes to visceral hypersensitivity of NMD rats through enhancing excitation of BLA, thus identifying a potential target for treatment of chronic visceral pain. PMID:27364923

  7. TRPV1-mediated presynaptic transmission in basolateral amygdala contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation.

    PubMed

    Xiao, Ying; Chen, Xiaoqi; Zhang, Ping-An; Xu, Qiya; Zheng, Hang; Xu, Guang-Yin

    2016-01-01

    The central mechanisms of visceral hypersensitivity remain largely unknown. It's reported that there are highest densities of TRPV1 labeled neurons within basolateral amygdala (BLA). The aim of this study was to explore the role and mechanisms of TRPV1 in BLA in development of visceral hypersensitivity. Visceral hypersensitivity was induced by neonatal maternal deprivation (NMD) and was quantified by abdominal withdrawal reflex. Expression of TRPV1 was determined by Western blot. The synaptic transmission of neurons in BLA was recorded by patch clamping. It was found that the expression of TRPV1 in BLA was significantly upregulated in NMD rats; glutamatergic synaptic activities in BLA were increased in NMD rats; application of capsazepine (TRPV1 antagonist) decreased glutamatergic synaptic activities of BLA neurons in NMD slices through a presynaptic mechanism; application of capsaicin (TRPV1 agonist) increased glutamatergic synaptic activities of BLA neurons in control slices through presynaptic mechanism without affecting GABAergic synaptic activities; microinjecting capsazepine into BLA significantly increased colonic distension threshold both in control and NMD rats. Our data suggested that upregulation of TRPV1 in BLA contributes to visceral hypersensitivity of NMD rats through enhancing excitation of BLA, thus identifying a potential target for treatment of chronic visceral pain. PMID:27364923

  8. NEONATAL LOW- AND HIGH-DOSE EXPOSURE TO ESTRADIOL BENZOATE IN THE MALE RAT: II. EFFECTS ON THE MALE PUBERTY AND THE REPRODUCTIVE TRACT

    EPA Science Inventory

    NEONATAL LOW- AND HIGH-DOSE EXPOSURE TO ESTRADIOL BENZOATE IN THE MALE RAT: II. EFFECTS ON MALE PUBERTY AND THE REPRODUCTIVE TRACT. Oliver Putz, Christian B. Schwartz, Gerald A. LeBlanc, Ralph L. Cooper, Gail S. Prins

    ABSTRACT
    Environmental contaminants with estrogen...

  9. IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    EPA Science Inventory

    IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY

    Chad R. Blystone1, David J. Dix2, and John C. Rockett2
    1Department of Environmental and Molecular Toxicology, NC State University, R...

  10. Increased severity of experimental autoimmune encephalomyelitis in rats tolerized as adults but not neonatally to a protective TCR V beta 8 CDR2 idiotope.

    PubMed

    Offner, H; Malotky, M K; Pope, L; Vainiene, M; Celnik, B; Miller, S D; Vandenbark, A A

    1995-01-15

    The ability of synthetic V region peptides to induce regulatory T cells and Abs in rodents and humans provides clear evidence that these idiotopes do not naturally induce tolerance. In this study, we investigated the ability of TCR V beta 8.2 peptides to experimentally induce specific T cell tolerance, as measured by loss of Ag-specific proliferation and delayed-type hypersensitivity responses, and by increased susceptibility to experimental autoimmune encephalomyelitis (EAE). We found that both neonatal and adult exposure to V beta 8.2-39-59 or V beta 8-44-54 peptides could induce efficient T cell tolerance, resulting in a significant inhibition of peptide-specific proliferative responses. In addition, neonatal tolerance resulted in a partial reduction in delayed-type hypersensitivity response and an inability to vaccinate against EAE after adult immunization with the tolerizing peptide. We further evaluated the contribution of naturally induced TCR-specific responses to EAE resistance induced by challenging neonatally or adult tolerized rats with myelin basic protein in adjuvant. The clinical course of EAE was not significantly altered in rats tolerized neonatally to V beta 8.2 peptides, but both the severity and incidence of mortality from EAE was increased in rats tolerized as adults with V beta 8.2 peptides conjugated to syngeneic splenocytes. These results demonstrate that V beta 8.2 peptides are tolerogenic as well as immunogenic. Moreover, the observation of different effects of neonatal vs adult tolerization on the course of EAE suggests either the emergence of additional protective idiotopes after neonatal tolerization and/or mechanistic differences in the two tolerance-inducing protocols. Most importantly, the enhancement of clinical EAE in rats tolerized as adults with V beta 8.2 peptides provides evidence for an innate regulatory role of the CDR2 idiotope in recovery from EAE. PMID:7529291

  11. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior.

    PubMed

    Girardi, Carlos Eduardo Neves; Zanta, Natália Cristina; Suchecki, Deborah

    2014-01-01

    Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation (MD) disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h) or not from their dams, to a stress challenge (i.p. saline injection). Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze (EPM), social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45). Maternally deprived rats exhibited increased plasma corticosterone (CORT) levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of MD, was associated with increased anxiety-like behavior in the EPM and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of MD, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the MD paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia. PMID:25309370

  12. Neonatal stress-induced affective changes in adolescent Wistar rats: early signs of schizophrenia-like behavior

    PubMed Central

    Girardi, Carlos Eduardo Neves; Zanta, Natália Cristina; Suchecki, Deborah

    2014-01-01

    Psychiatric disorders are multifactorial diseases with etiology that may involve genetic factors, early life environment and stressful life events. The neurodevelopmental hypothesis of schizophrenia is based on a wealth of data on increased vulnerability in individuals exposed to insults during the perinatal period. Maternal deprivation (MD) disinhibits the adrenocortical response to stress in neonatal rats and has been used as an animal model of schizophrenia. To test if long-term affective consequences of early life stress were influenced by maternal presence, we submitted 10-day old rats, either deprived (for 22 h) or not from their dams, to a stress challenge (i.p. saline injection). Corticosterone plasma levels were measured 2 h after the challenge, whereas another subgroup was assessed for behavior in the open field, elevated plus maze (EPM), social investigation and the negative contrast sucrose consumption test in adolescence (postnatal day 45). Maternally deprived rats exhibited increased plasma corticosterone (CORT) levels which were higher in maternally deprived and stress challenged pups. Social investigation was impaired in maternally deprived rats only, while saline injection, independently of MD, was associated with increased anxiety-like behavior in the EPM and an impaired intake decrement in the negative sucrose contrast. In the open field, center exploration was reduced in all maternally-deprived adolescents and in control rats challenged with saline injection. The most striking finding was that exposure to a stressful stimulus per se, regardless of MD, was linked to differential emotional consequences. We therefore propose that besides being a well-known and validated model of schizophrenia in adult rats, the MD paradigm could be extended to model early signs of psychiatric dysfunction, and would particularly be a useful tool to detect early signs that resemble schizophrenia. PMID:25309370

  13. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage

    PubMed Central

    CHEN, JING; CHEN, YAN-HUI; LV, HONG-YAN; CHEN, LI-TING

    2016-01-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P<0.01) and the SOD activities were lower while the MDA levels were higher (P<0.01) in the HIBD group. No significant differences in ultrastructure, the latency of F-VEPs or SOD/MDA levels were identified between the HBO-treated HIBD group and the normal control group (P>0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function. PMID:27347417

  14. Traditional Formula, Modern Application: Chinese Medicine Formula Sini Tang Improves Early Ventricular Remodeling and Cardiac Function after Myocardial Infarction in Rats

    PubMed Central

    Liu, Jiangang; Peter, Karoline; Shi, Dazhuo; Zhang, Lei; Dong, Guoju; Zhang, Dawu; Breiteneder, Heimo; Ma, Yan

    2014-01-01

    Sini Tang (SNT) is a traditional Chinese herbal formula consisting of four different herbs: the root of Aconitum carmichaelii, the bark of Cinnamomum cassia, the rhizome of Zingiber officinale, and the root of Glycyrrhiza uralensis. This study aims to evaluate the improvement of early ventricular remodeling and cardiac function in myocardial infarction (MI) rats by SNT. A MI model was established by ligation of the left anterior descending coronary artery. Following treatment for 4 weeks, ultrasonic echocardiography was performed. Myocardial histopathological changes were observed using haematoxylin and eosin staining. Collagens (type I and type III), transforming growth factor-β1 (TGF-β1), and Toll-like receptors (TLR-2 and TLR-4) were measured in plasma, serum, and myocardial tissue. SNT treatment decreased the infarct size, the left ventricular cavity area/heart cavity area ratio, and the left ventricle dimension at end systole and increased the left ventricular ejection fraction. SNT reduced the levels of TLR-2 and TLR-4 in myocardial tissue significantly and decreased the collagens content in serum and in myocardial tissue. SNT could partially reduce the level of TGF-β1 in serum and in myocardial tissue. Our data suggest that the Chinese medicine formula SNT has the potential to improve early ventricular remodeling and cardiac function after MI. PMID:24971143

  15. Effects of Single Drug and Combined Short-term Administration of Sildenafil, Pimobendan, and Nicorandil on Right Ventricular Function in Rats With Monocrotaline-induced Pulmonary Hypertension.

    PubMed

    Nakata, Telma M; Tanaka, Ryou; Yoshiyuki, Rieko; Fukayama, Toshiharu; Goya, Seijiro; Fukushima, Ryuji

    2015-06-01

    This study was designed to assess the progression of pulmonary arterial hypertension (PAH) and the effectiveness of therapy using recently investigated echocardiographic parameters. PAH is characterized by the progressive elevation of pulmonary artery pressure and right ventricular hypertrophy and dysfunction, which ultimately results in right-sided heart failure and death. Echocardiography results and invasive measurements of right and left ventricular systolic pressures were compared after 3-week administrations of sildenafil (S group), pimobendan (P group), nicorandil (N group), and their combinations (SP and SPN groups) in male rats with monocrotaline (MCT)-induced pulmonary hypertension (M group) and without this condition (C group). The groups that received pimobendan alone and in combinations (SP and SPN groups) showed improvement in their echocardiographic parameters of systolic function. A significant improvement of diastolic function was achieved in the SPN group. Invasive measurements showed the most significant decreases of right ventricular systolic pressure in the N and SPN groups, and the use of pimobendan resulted in a comparatively low risk of adverse hemodynamic effects (left ventricular systolic pressure). Although our results suggested the attenuation of PAH severity in all treatment groups, PAH could not be reversed. PMID:25806612

  16. Effects of Single Drug and Combined Short-term Administration of Sildenafil, Pimobendan, and Nicorandil on Right Ventricular Function in Rats With Monocrotaline-induced Pulmonary Hypertension

    PubMed Central

    Tanaka, Ryou; Yoshiyuki, Rieko; Fukayama, Toshiharu; Goya, Seijiro; Fukushima, Ryuji

    2015-01-01

    Abstract: This study was designed to assess the progression of pulmonary arterial hypertension (PAH) and the effectiveness of therapy using recently investigated echocardiographic parameters. PAH is characterized by the progressive elevation of pulmonary artery pressure and right ventricular hypertrophy and dysfunction, which ultimately results in right-sided heart failure and death. Echocardiography results and invasive measurements of right and left ventricular systolic pressures were compared after 3-week administrations of sildenafil (S group), pimobendan (P group), nicorandil (N group), and their combinations (SP and SPN groups) in male rats with monocrotaline (MCT)-induced pulmonary hypertension (M group) and without this condition (C group). The groups that received pimobendan alone and in combinations (SP and SPN groups) showed improvement in their echocardiographic parameters of systolic function. A significant improvement of diastolic function was achieved in the SPN group. Invasive measurements showed the most significant decreases of right ventricular systolic pressure in the N and SPN groups, and the use of pimobendan resulted in a comparatively low risk of adverse hemodynamic effects (left ventricular systolic pressure). Although our results suggested the attenuation of PAH severity in all treatment groups, PAH could not be reversed. PMID:25806612

  17. Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes.

    PubMed Central

    Donoso, P; Mill, J G; O'Neill, S C; Eisner, D A

    1992-01-01

    1. The fluorescent Na+ indicator SBFI was incorporated into isolated ventricular myocytes using the acetoxymethyl (AM) ester. 2. The excitation spectrum was found to be shifted about 20 nm in the cell compared to in vitro. In the cell, an increase of [Na+] decreased fluorescence at 380 nm (F380) and had no effect at 340 nm (F340). The ratio (R = F340/F380) was used as a measure of [Na+]i. 3. In vivo calibration of SBFI for [Na+]i was obtained by equilibrating [Na+] across the plasma membrane with a divalent-free solution in the presence of gramicidin D. 4. Selective removal of the surface membrane with saponin or digitonin released only about 50% of the indicator. Following saponin treatment, cyanide or carbonylcyanide m-chlorphenylhydrazone (CCCP) increased the apparent [Na+] measured by the remaining (presumably mitochondrial) SBFI. It is suggested that mitochondrial [Na+] is normally less than cytoplasmic. 5. Attempts to examine the effects of metabolic inhibition on [Na+]i were hampered by changes of autofluorescence due to changes of [NADH]. It is shown that this effect can be corrected for using the isosbestic signal (excited at 340 nm). 6. Inhibition of both aerobic metabolism (with CN-) and glycolysis (glucose removal or iodoacetate) produced a gradual increase of [Na+]i. This began before the resting contracture developed and may (via Na(+)-Ca2+ exchange) account for some of the rise of diastolic [Ca2+]i seen in previous work. The rise of [Na+]i began at about the same time as the decrease of systolic contraction and therefore at a time when [ATP]i had begun to fall. PMID:1593474

  18. Effects of neonatal capsaicin treatment on descending modulation of spinal nociception from the rostral, medial medulla in adult rat.

    PubMed

    Zhuo, M; Gebhart, G F

    1994-05-01

    Stimulation-produced modulation from the rostral, medial medulla (RMM) on the spinal nociceptive tail-flick (TF) reflex and on lumbar spinal dorsal horn neuron responses to noxious cutaneous stimuli was studied in adult rats treated as neonates with capsaicin or vehicle. In vehicle-treated rats (n = 7), both descending facilitatory and inhibitory influences on the TF reflex were produced from the RMM. At 11/23 sites in the RMM, electrical stimulation produced biphasic modulatory effects. Electrical stimulation facilitated the spinal nociceptive TF reflex at low intensities (5-25 microA) and inhibited the TF reflex at greater intensities (50-200 microA). The mean threshold intensity of stimulation to inhibit the TF reflex (cut-off time = 7.0 s) was 66 microA (n = 11). At 11 of 23 sites, electrical stimulation only inhibited the TF reflex; the mean threshold intensity of stimulation to inhibit the TF reflex was 50 microA (n = 11). At one stimulation site, electrical stimulation only facilitated the TF reflex at the intensities tested (5-100 microA). In capsaicin-treated rats (n = 6), the proportion of sites from which electrical stimulation only inhibited the TF reflex was significantly less (3/27 sites = 11%) than in vehicle-treated rats (11/23 = 48%). The threshold intensity of stimulation to inhibit the TF reflex from these three sites was 50 microA. The number of sites in RMM from which electrical stimulation only facilitated the TF reflex was significantly greater in capsaicin-treated rats (15/27 = 56%) than in vehicle-treated rats (1/23 = 4%). Neither the number of sites in RMM from which electrical stimulation produced biphasic modulatory effects on the TF reflex (48% and 33%, respectively) nor the intensities of stimulation or magnitudes of facilitation or inhibition of the TF reflex significantly differed between vehicle- and capsaicin-treated rats. In electrophysiological experiments, all units studied responded to non-noxious and noxious intensities of

  19. The Inotropic Effect of the Active Metabolite of Levosimendan, OR-1896, Is Mediated through Inhibition of PDE3 in Rat Ventricular Myocardium

    PubMed Central

    Ørstavik, Øivind; Manfra, Ornella; Andressen, Kjetil Wessel; Andersen, Geir Øystein; Skomedal, Tor; Osnes, Jan-Bjørn; Levy, Finn Olav; Krobert, Kurt Allen

    2015-01-01

    Aims We recently published that the positive inotropic response (PIR) to levosimendan can be fully accounted for by phosphodiesterase (PDE) inhibition in both failing human heart and normal rat heart. To determine if the PIR of the active metabolite OR-1896, an important mediator of the long-term clinical effects of levosimendan, also results from PDE3 inhibition, we compared the effects of OR-1896, a representative Ca2+ sensitizer EMD57033 (EMD), levosimendan and other PDE inhibitors. Methods Contractile force was measured in rat ventricular strips. PDE assay was conducted on rat ventricular homogenate. cAMP was measured using RII_epac FRET-based sensors. Results OR-1896 evoked a maximum PIR of 33±10% above basal at 1 μM. This response was amplified in the presence of the PDE4 inhibitor rolipram (89±14%) and absent in the presence of the PDE3 inhibitors cilostamide (0.5±5.3%) or milrinone (3.2±4.4%). The PIR was accompanied by a lusitropic response, and both were reversed by muscarinic receptor stimulation with carbachol and absent in the presence of β-AR blockade with timolol. OR-1896 inhibited PDE activity and increased cAMP levels at concentrations giving PIRs. OR-1896 did not sensitize the concentration-response relationship to extracellular Ca2+. Levosimendan, OR-1896 and EMD all increased the sensitivity to β-AR stimulation. The combination of either EMD and levosimendan or EMD and OR-1896 further sensitized the response, indicating at least two different mechanisms responsible for the sensitization. Only EMD sensitized the α1-AR response. Conclusion The observed PIR to OR-1896 in rat ventricular strips is mediated through PDE3 inhibition, enhancing cAMP-mediated effects. These results further reinforce our previous finding that Ca2+ sensitization does not play a significant role in the inotropic (and lusitropic) effect of levosimendan, nor of its main metabolite OR-1896. PMID:25738589

  20. Evidence that the deficit in sexual behavior in adult rats neonatally exposed to citalopram is a consequence of 5-HT1 receptor stimulation during development

    PubMed Central

    Maciag, Dorota; Coppinger, David; Paul, Ian A.

    2006-01-01

    Neonatal (postnatal days 8-21) exposure of rats to the selective serotonin reuptake inhibitor (SSRI), citalopram, results in persistent changes in behavior including decreased sexual activity in adult animals. We hypothesized that this effect was a consequence of abnormal stimulation of serotonergic receptors 5- HT1A or/and 5-HT1B as a result of increased synaptic availability of serotonin during a critical period of development. We examined whether neonatal exposure to a 5-HT1A (8OH-DPAT) and/or a 5-HT1B (CGS 12066B) receptor agonist can mimic the effect of neonatal exposure to citalopram on adult sexual behavior. Results showed that neonatal treatment with 5-HT1B receptor agonist robustly impaired sexual behavior similar to the effect of citalopram whereas exposure to 5-HT1A receptor agonist only moderately influenced male sexual activity in adult animals. These data support the hypothesis that stimulation of serotonin autoreceptors during development contributes to the adult sexual deficit in rats neonatally exposed to citalopram. PMID:17101120

  1. Glutamate and glycine modulation of 3H-MK801 binding to the NMDA receptor-ion channel complex in the vitamin B-6 deficient neonatal rat brain

    SciTech Connect

    Guilarte, T.R. )

    1990-02-26

    The authors have previously shown that the concentrations of the neuroactive amino acids glutamate (GLU) and glycine (GLY) are significantly altered in the seizure-prone vitamin B-6 deficient neonatal rat brain. Recently, it has been shown that GLU and GLY modulate the binding of {sup 3}H-MK801 to the ion channel associated with the N-methyl-D-aspartate (NMDA)-glutamate receptor subtype. The present investigation was undertaken to determine if GLU or GLY modulation of {sup 3}H-MK801 binding was altered in B-6 deficient neonatal rat brain. Preparation of cortical membranes from control and deficient 14 day old rats and {sup 3}H-MK801 binding assay were done as described by Ransom and Stec. The results show a significant reduction in the potency and efficacy of GLU modulation of {sup 3}H-MK801 binding, as well as a reduction in the efficacy of GLY, in membrane preparations from deficient rats compared to controls. These results indicate a reduced ability of GLU and GLY to potentiate the binding of {sup 3}H-MK801 to the NMDA receptor-ion channel in the B-6 deficient neonatal rat brain.

  2. Relationship of dopamine to serotonin in the neonatal 6-OHDA rat model of Lesch-Nyhan syndrome.

    PubMed

    Allen, S M; Davis, W M

    1999-09-01

    Rats were treated as neonates with either 6-hydroxydopamine (6-OHDA) 100 micrograms or vehicle intracisternally. Upon maturation, animals receiving 6-OHDA were assigned to four groups, with two of the four groups receiving intraventricular 5,7-dihydroxytryptamine (5,7-DHT) 75 micrograms bilaterally. At 94 days of age, animals were injected with either SKF-38393 (3.0 mg/kg, intraperitoneally (i.p.)), a dopamine D1 agonist, or m-chlorophenylpiperazine (m-CPP) (3.0 mg/kg, i.p.), a 5-HT2C agonist, in an attempt to evoke behaviors such as stereotypical chewing, head-nodding, self-biting and self-mutilation. Both SKF-38393 and m-CPP induced the target behaviors in animals receiving 6-OHDA alone. Animals receiving additional 5,7-DHT treatment did not show any of the target behaviors in response to SKF-38393, but exhibited a much higher sensitivity to m-CPP. Pre-treatment with SCH-23390 in animals receiving 6-OHDA alone was effective in preventing SKF-38393-induced target behaviors, but not those induced by m-CPP. Pre-treatment with mianserin partially antagonized the effects of both SKF-38393 and m-CPP in these same animals. In groups receiving both neonatal 6-OHDA and adult 5,7-DHT, mianserin was effective in reducing m-CPP-induced behaviors, while SCH-23390 was largely ineffective. These data provide evidence of a serial relationship between the D1 and 5-HT2C receptor systems in the neostriatum of animals receiving neonatal 6-OHDA lesions. PMID:10780253

  3. alpha-Phenyl-n-tert-butyl-nitrone attenuates hypoxic-ischemic white matter injury in the neonatal rat brain.

    PubMed

    Lin, Shuying; Rhodes, Philip G; Lei, Manping; Zhang, Feng; Cai, Zhengwei

    2004-05-01

    White matter of the neonatal brain is highly sensitive to hypoxic-ischemic insult. The susceptibility of premature oligodendrocytes (OLs) to free radicals (FRs) produced during hypoxia-ischemia (HI) has been proposed as one of the mechanisms involved. To test this hypothesis, and to further investigate if the FR scavenger alpha-phenyl-N-tert-butyl-nitrone (PBN) attenuates hypoxic-ischemic white matter damage (WMD), postnatal day 4 (P4) SD rats were subjected to bilateral common carotid artery ligation (BCAL), followed by 8% oxygen exposure for 20 min. Pathological changes were evaluated on P6 and P9, 2 and 5 days after the HI insult. HI caused severe WMD including rarefaction, necrosis and cavity formation in the corpus callosum, external and internal capsule areas. OL injury was evidenced by degeneration of O4 positive OLs on P6. Disrupted myelination was verified by decreased immunostaining of myelin basic protein (MBP) on P9. Axonal injury was demonstrated by increased amyloid precursor protein (APP) immunostaining on both P6 and P9. Two lipid peroxidation end products, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), showed a one-fold elevation within 1-24 h following HI. 4-HNE immunostaining was found to specifically localize in the white matter area. Furthermore, pyknotic O4+ OLs were double-labeled with 4-HNE. These findings suggest that FRs are involved in the pathogenesis of neonatal WMD. PBN (100 mg/kg, i.p.) treatment alleviated the pathological changes of WMD following HI. It improved the survival of O4 positive OLs, attenuated hypomyelination and reduced axonal damage. PBN treatment also decreased the brain concentration of MDA/4-HNE and positive 4-HNE staining in the white matter area. These findings indicate that in the current WMD model, PBN protects both OLs and axons, the two main components in the white matter, from neonatal HI insult. FR scavenging appears to be the primary mechanism underlying its neuroprotective effect. PMID:15064144

  4. The consequences of prenatal and/or postnatal methamphetamine exposure on neonatal development and behaviour in rat offspring.

    PubMed

    McDonnell-Dowling, Kate; Kelly, John P

    2015-12-01

    Methamphetamine (MA) has become a popular drug of abuse in recent years not only in the general population but also amongst pregnant women. Although there is a growing body of preclinical investigations of MA exposure during pregnancy, there has been little investigation of the consequences of such exposure via the breast milk during the neonatal period. Therefore, the aim of this study was to determine the consequences of MA exposure during pregnancy and lactation on neurodevelopment and behaviour in the rat offspring. Pregnant Sprague-Dawley dams received MA (3.75 mg/kg) or control (distilled water) once daily via oral gavage from gestation day 7-21, postnatal day 1-21 or gestation day 7- postnatal day 21. A range of well-recognised neurodevelopmental parameters were examined in the offspring. Prenatal MA significantly reduced maternal weight gain, with a concomitant reduction in food intake. A significant increase in neonatal pup mortality was observed, being most marked in the prenatal/postnatal MA group. Significant impairments in neurodevelopmental parameters were also evident in all MA treatment groups including somatic development (e.g. pinna unfolding, fur appearance, eye opening) and behavioural development (e.g. surface righting, inclined plane test, forelimb grip). In conclusion, this study demonstrates that exposure to MA during any of these exposure periods (prenatal and/or postnatal) can have a profound effect on neonatal outcome, suggesting that regardless of the exposure period MA is associated with detrimental consequences in the offspring. These results indicate that in the clinical scenario, exposure during lactation needs to be considered when assessing the potential harmful effects of MA on offspring development. PMID:26391019

  5. Plasminogen Activator Inhibitor-1 Mitigates Brain Injury in a Rat Model of Infection-Sensitized Neonatal Hypoxia–Ischemia

    PubMed Central

    Yang, Dianer; Sun, Yu-Yo; Nemkul, Niza; Baumann, Jessica M.; Shereen, Ahmed; Dunn, R. Scott; Wills-Karp, Marsha; Lawrence, Daniel A.; Lindquist, Diana M.; Kuan, Chia-Yi

    2013-01-01

    Intrauterine infection exacerbates neonatal hypoxic–ischemic (HI) brain injury and impairs the development of cerebral cortex. Here we used low-dose lipopolysaccharide (LPS) pre-exposure followed by unilateral cerebral HI insult in 7-day-old rats to study the pathogenic mechanisms. We found that LPS pre-exposure blocked the HI-induced proteolytic activity of tissue-type plasminogen activator (tPA), but significantly enhanced NF-κB signaling, microglia activation, and the production of pro-inflammatory cytokines in newborn brains. Remarkably, these pathogenic responses were all blocked by intracerebroventricular injection of a stable-mutant form of plasminogen activator protein-1 called CPAI. Similarly, LPS pre-exposure amplified, while CPAI therapy mitigated HI-induced blood-brain-barrier damage and the brain tissue loss with a therapeutic window at 4 h after the LPS/HI insult. The CPAI also blocks microglia activation following a brain injection of LPS, which requires the contribution by tPA, but not the urinary-type plasminogen activator (uPA), as shown by experiments in tPA-null and uPA-null mice. These results implicate the nonproteolytic tPA activity in LPS/HI-induced brain damage and microglia activation. Finally, the CPAI treatment protects near-normal motor and white matter development despite neonatal LPS/HI insult. Together, because CPAI blocks both proteolytic and nonproteolytic tPA neurotoxicity, it is a promising therapeutics of neonatal HI injury either with or without infection. PMID:22556277

  6. Arrhythmias presenting in neonatal lupus.

    PubMed

    Brucato, A; Previtali, E; Ramoni, V; Ghidoni, S

    2010-09-01

    Perfusion of human foetal heart with anti-Ro/SSA antibodies induces transient heart block. Anti-Ro/SSA antibodies may cross-react with T- and L-type calcium channels, and anti-p200 antibodies may cause calcium to accumulate in rat heart cells. These actions may explain a direct electrophysiological effect of these antibodies. Congenital complete heart block is the more severe manifestation of so-called "Neonatal Lupus". In clinical practice, it is important to distinguish in utero complete versus incomplete atrioventricular (AV) block, as complete AV block to date is irreversible, while incomplete AV block has been shown to be potentially reversible after fluorinated steroid therapy. Another issue is the definition of congenital AV block, as cardiologists have considered congenital blocks detected months or years after birth. We propose as congenital blocks detected in utero or within the neonatal period (0-27 days after birth). The possible detection of first degree AV block in utero, with different techniques, might be a promising tool to assess the effects of these antibodies. Other arrhythmias have been described in NL or have been linked to anti-Ro/SSA antibodies: first degree AV block, in utero and after birth, second degree (i.e. incomplete block), sinus bradycardia and QT prolongation, both in infants and in adults, ventricular arrhythmias (in adults). Overall, these arrhythmias have not a clinical relevance, but are important for research purposes. PMID:20696016

  7. IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN ADULT AND NEONATAL RAT TESTIS

    EPA Science Inventory

    IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL TESTIS
    Chad R. Blystone1, 2, David J. Dix2, and John C. Rockett2
    1Department of Environmental and Molecular Toxicology, Box 7633, NC State University, Raleigh, NC 27695, USA and 2U.S. Envi...

  8. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures.

    PubMed

    Cleary, Ryan T; Sun, Hongyu; Huynh, Thanhthao; Manning, Simon M; Li, Yijun; Rotenberg, Alexander; Talos, Delia M; Kahle, Kristopher T; Jackson, Michele; Rakhade, Sanjay N; Berry, Gerard T; Berry, Gerard; Jensen, Frances E

    2013-01-01

    Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures. PMID:23536761

  9. Enhancement of contraction and L-type Ca(2+) current by murrayafoline-A via protein kinase C in rat ventricular myocytes.

    PubMed

    Chidipi, Bojjibabu; Son, Min-Jeong; Kim, Joon-Chul; Lee, Jeong Hyun; Toan, Tran Quoc; Cuong, Nguyen Manh; Lee, Byung Ho; Woo, Sun-Hee

    2016-08-01

    We previously reported that murrayafoline-A (1-methoxy-3-methyl-9H-carbazole, Mu-A) increases the contractility of ventricular myocytes, in part, via enhancing Ca(2+) influx through L-type Ca(2+) channels, and that it increases the Ca(2+) transients by activation of protein kinase C (PKC). In the present study, we further examined the cellular mechanisms for the enhancement of contractility and L-type Ca(2+) current (ICa,L) by Mu-A. Cell shortening and ICa,L were measured in rat ventricular myocytes using a video edge detection method and perforated patch-clamp technique, respectively. We found that the positive inotropic effect of Mu-A was not affected by pre-exposure to the β-adrenoceptor antagonist propranolol, the protein kinase A (PKA) inhibitors KT5720 or H-89, or the phospholipase C inhibitor U73122. Interestingly, the Mu-A-mediated increases in cell shortening and in the rate of contraction were completely suppressed by pre-treatment with the PKC inhibitor GF109203X. The stimulatory effect of Mu-A on ICa,L was not altered by inhibition of PKA (KT5720), G-protein coupled receptors (suramin), or α1-adrenoceptor (prazosin). However, pre-exposure to the PKC inhibitor, GF109203X or chelerythrine, abolished the Mu-A-induced increase in ICa,L. Pre-exposure to the Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 slightly reduced the stimulatory effects on contraction and ICa,L by Mu-A. Phosphorylation of PKC was enhanced by Mu-A in ventricular myocytes. These data suggest that Mu-A increases contraction and ICa,L via PKC in rat ventricular myocytes, and that the PKC-mediated responses in the presence of Mu-A may be partly mediated by CaMKII. PMID:27158118

  10. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes.

    PubMed Central

    Kagaya, Y; Weinberg, E O; Ito, N; Mochizuki, T; Barry, W H; Lorell, B H

    1995-01-01

    We tested the hypothesis that glycolytic inhibition by 2-deoxyglucose causes greater impairment of diastolic relaxation and intracellular calcium handling in well-oxygenated hypertrophied adult rat myocytes compared with control myocytes. We simultaneously measured cell motion and intracellular free calcium concentration ([Ca2+]i) with indo-1 in isolated paced myocytes from aortic-banded rats and sham-operated rats. There was no difference in either the end-diastolic or peak-systolic [Ca2+]i between control and hypertrophied myocytes (97 +/- 18 vs. 105 +/- 15 nM, 467 +/- 92 vs. 556 +/- 67 nM, respectively). Myocytes were first superfused with oxygenated Hepes-buffered solution containing 1.2 mM CaCl2, 5.6 mM glucose, and 5 mM acetate, and paced at 3 Hz at 36 degrees C. Exposure to 20 mM 2-deoxyglucose as substitution of glucose for 15 min caused an upward shift of end-diastolic cell position in both control (n = 5) and hypertrophied myocytes (n = 10) (P < 0.001 vs. baseline), indicating an impaired extent of relaxation. Hypertrophied myocytes, however, showed a greater upward shift in end-diastolic cell position and slow