Science.gov

Sample records for nerve growth induces

  1. Nerve growth factor-induced migration of endothelial cells.

    PubMed

    Dollé, Jean-Pierre; Rezvan, Amir; Allen, Fred D; Lazarovici, Philip; Lelkes, Peter I

    2005-12-01

    Nerve growth factor (NGF) is a well known neurotropic and neurotrophic agonist in the nervous system, which recently was shown to also induce angiogenic effects in endothelial cells (ECs). To measure NGF effects on the migration of cultured ECs, an important step in neoangiogenesis, we optimized an omnidirectional migration assay using human aortic endothelial cells (HAECs) and validated the assay with human recombinant basic fibroblast growth factor (rhbFGF) and human recombinant vascular endothelial growth factor (rhVEGF). The potencies of nerve growth factor purified from various species (viper, mouse, and recombinant human) to stimulate HAEC migration was similar to that of VEGF and basic fibroblast growth factor (bFGF) (EC50 of approximately 0.5 ng/ml). Recombinant human bFGF was significantly more efficacious than either viper NGF or rhVEGF, both of which stimulated HAEC migration by approximately 30% over basal spontaneous migration. NGF-mediated stimulation of HAEC migration was completely blocked by the NGF/TrkA receptor antagonist K252a [(8R*,9S*,11S*)-(/)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,-8H,11H-2,7b,11a-triazadibenzo(a,g)cycloocta(c,d,e)trindene-1-one] (30 nM) but not by the VEGF/Flk receptor antagonist SU-5416 [3-[(2,4-dimethylpyrrol-5-yl) methylidenyl]-indolin-2-one] (250 nM), indicating a direct effect of NGF via TrkA receptor activation on HAEC migration. Viper NGF stimulation of HAEC migration was additively increased by either rhVEGF or rhbFGF, suggesting a potentiating interaction between their tyrosine kinase receptor signaling pathways. Viper NGF represents a novel pharmacological tool to investigate possible TrkA receptor subtypes in endothelial cells. The ability of NGF to stimulate migration of HAEC cells in vitro implies that this factor may play an important role in the cardiovascular system besides its well known effects in the nervous system. PMID:16123305

  2. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density.

    PubMed

    Hirth, Michael; Rukwied, Roman; Gromann, Alois; Turnquist, Brian; Weinkauf, Benjamin; Francke, Klaus; Albrecht, Philip; Rice, Frank; Hägglöf, Björn; Ringkamp, Matthias; Engelhardt, Maren; Schultz, Christian; Schmelz, Martin; Obreja, Otilia

    2013-11-01

    Nerve growth factor (NGF) is involved in the long-term sensitization of nociceptive processing linked to chronic pain. Functional and structural ("sprouting") changes can contribute. Thus, humans report long-lasting hyperalgesia to mechanical and electrical stimulation after intradermal NGF injection and NGF-induced sprouting has been reported to underlie cancer bone pain and visceral pain. Using a human-like animal model we investigated the relationship between the structure and function of unmyelinated porcine nociceptors 3 weeks after intradermal NGF treatment. Axonal and sensory characteristics were studied by in vivo single-fiber electrophysiology and immunohistochemistry. C fibers recorded extracellularly were classified based on mechanical response and activity-dependent slowing (ADS) of conduction velocity. Intraepidermal nerve fiber (IENF) densities were assessed by immunohistochemistry in pigs and in human volunteers using the same NGF model. NGF increased conduction velocity and reduced ADS and propagation failure in mechano-insensitive nociceptors. The proportion of mechano-sensitive C nociceptors within NGF-treated skin areas increased from 45.1% (control) to 71% and their median mechanical thresholds decreased from 40 to 20 mN. After NGF application, the mechanical receptive fields of nociceptors increased from 25 to 43 mm(2). At the structural level, however, IENF density was not increased by NGF. In conclusion, intradermal NGF induces long-lasting axonal and mechanical sensitization in porcine C nociceptors that corresponds to hyperalgesia observed in humans. Sensitization is not accompanied by increased IENF density, suggesting that NGF-induced hyperalgesia might not depend on changes in nerve fiber density but could be linked to the recruitment of previously silent nociceptors. PMID:23891896

  3. Exposure to Nerve Growth Factor Worsens Nephrotoxic Effect Induced by Cyclosporine A in HK-2 Cells

    PubMed Central

    Lofaro, Danilo; Toteda, Giuseppina; Lupinacci, Simona; Leone, Francesca; Gigliotti, Paolo; Papalia, Teresa; Bonofiglio, Renzo

    2013-01-01

    Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkANTR and p75NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A. PMID:24244623

  4. Experimental Research on Differentiation-Inducing Growth of Nerve Lateral Bud by HUC-MSCs Chitosan Composite Conduit.

    PubMed

    Xiao, Qiang; Zhang, Xuepu; Wu, Yuexin

    2015-11-01

    immunohistochemistry, the arrangement of a large number of brown-red proliferating schwann cells around the regenerated nerve fibers in group C could be found, while fewer and sparse brown-red matters and very poor growth of schwann cells could be observed in groups A and B. Slightly more favorable situation could be observed in group B compared with group A. HUC-MSCs play obviously an important role in promoting nerve regeneration during the nerve end-to-side anastomosis, which induces the growth of axis bud, accelerates the growth velocity of regenerated fiber, and promotes the growth and maturity of schwann cells. PMID:27352316

  5. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons.

    PubMed

    Murayama, Chiaki; Watanabe, Shimpei; Nakamura, Motokazu; Norimoto, Hisayoshi

    2015-01-01

    Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine) is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH), a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF) in cultured rat dorsal root ganglion (DRG) neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control), a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in "itch-scratch" animal models is under investigation. PMID:26287150

  6. Nerve growth factor partially recovers inflamed skin from stress-induced worsening in allergic inflammation.

    PubMed

    Peters, Eva M J; Liezmann, Christiane; Spatz, Katharina; Daniltchenko, Maria; Joachim, Ricarda; Gimenez-Rivera, Andrey; Hendrix, Sven; Botchkarev, Vladimir A; Brandner, Johanna M; Klapp, Burghard F

    2011-03-01

    Neuroimmune dysregulation characterizes atopic disease, but its nature and clinical impact remain ill-defined. Induced by stress, the neurotrophin nerve growth factor (NGF) may worsen cutaneous inflammation. We therefore studied the role of NGF in the cutaneous stress response in a mouse model for atopic dermatitis-like allergic dermatitis (AlD). Combining several methods, we found that stress increased cutaneous but not serum or hypothalamic NGF in telogen mice. Microarray analysis showed increased mRNAs of inflammatory and growth factors associated with NGF in the skin. In stress-worsened AlD, NGF-neutralizing antibodies markedly reduced epidermal thickening together with NGF, neurotrophin receptor (tyrosine kinase A and p75 neurotrophin receptor), and transforming growth factor-β expression by keratinocytes but did not alter transepidermal water loss. Moreover, NGF expression by mast cells was reduced; this corresponded to reduced cutaneous tumor necrosis factor-α (TNF-α) mRNA levels but not to changes in mast cell degranulation or in the T helper type 1 (Th1)/Th2 cytokine balance. Also, eosinophils expressed TNF receptor type 2, and we observed reduced eosinophil infiltration after treatment with NGF-neutralizing antibodies. We thus conclude that NGF acts as a local stress mediator in perceived stress and allergy and that increased NGF message contributes to worsening of cutaneous inflammation mainly by enhancing epidermal hyperplasia, pro-allergic cytokine induction, and allergy-characteristic cellular infiltration. PMID:21085186

  7. Hepatic nerve growth factor induced by iron overload triggers defenestration in liver sinusoidal endothelial cells.

    PubMed

    Addo, Lynda; Tanaka, Hiroki; Yamamoto, Masayo; Toki, Yasumichi; Ito, Satoshi; Ikuta, Katsuya; Sasaki, Katsunori; Ohtake, Takaaki; Torimoto, Yoshihiro; Fujiya, Mikihiro; Kohgo, Yutaka

    2015-01-01

    The fenestrations of liver sinusoidal endothelial cells (LSECs) play important roles in the exchange of macromolecules, solutes, and fluid between blood and surrounding liver tissues in response to hepatotoxic drugs, toxins, and oxidative stress. As excess iron is a hepatotoxin, LSECs may be affected by excess iron. In this study, we found a novel link between LSEC defenestration and hepatic nerve growth factor (NGF) in iron-overloaded mice. By Western blotting, NGF was highly expressed, whereas VEGF and HGF were not, and hepatic NGF mRNA levels were increased according to digital PCR. Immunohistochemically, NGF staining was localized in hepatocytes, while TrkA, an NGF receptor, was localized in LSECs. Scanning electron microscopy revealed LSEC defenestration in mice overloaded with iron as well as mice treated with recombinant NGF. Treatment with conditioned medium from iron-overloaded primary hepatocytes reduced primary LSEC fenestrations, while treatment with an anti-NGF neutralizing antibody or TrkA inhibitor, K252a, reversed this effect. However, iron-loaded medium itself did not reduce fenestration. In conclusion, iron accumulation induces NGF expression in hepatocytes, which in turn leads to LSEC defenestration via TrkA. This novel link between iron and NGF may aid our understanding of the development of chronic liver disease. PMID:25460199

  8. Spatial and temporal aspects of muscle hyperalgesia induced by nerve growth factor in humans.

    PubMed

    Andersen, Helle; Arendt-Nielsen, Lars; Svensson, Peter; Danneskiold-Samsøe, Bente; Graven-Nielsen, Thomas

    2008-11-01

    Intramuscular injection of nerve growth factor (NGF) has been shown to induce long-term sensitisation and time-dependent hyperalgesia indicating potential involvement of both central and peripheral pain mechanisms. This double-blind placebo-controlled study was designed to describe the spatial distribution of muscle hyperalgesia over time (immediately after, 3 h, 1, 4, 7 and 21 days) after injecting NGF (5 mug) into the tibialis anterior (TA) muscle, to explore possibly involved central pain mechanisms and to investigate the effect of gender on development of hyperalgesia. Totally 20 healthy volunteers (10 men and 10 women) participated in the study. An isotonic saline injection into the contralateral TA muscle served as a control condition for the NGF injection. Pressure pain thresholds (PPT) were used to test for muscle hyperalgesia along the TA (seven sites) muscle at the extensor digitorum longus and at the web between 1st and 2nd metatarsal (central involvement). One day after the NGF/control injections, hypertonic saline (0.5 ml, 5.8%) was injected into the left and right TA to study the pain response to chemical stimulation of the hyperalgesic muscle tissue. Scores on a modified Likert scale were used to assess soreness during muscle function. An area of hyperalgesia was observed locally at the injected site 3 h after injection of NGF, which expanded both proximally and distally on day 1; this effect subsided on day 4. Decreased PPT was also found between 1st and 2nd metatarsal on day 1. Hypertonic saline evoked more pain in men when injected in the NGF treated TA compared to the control leg. Injection of NGF increased muscle soreness during muscle activity for 7 days. In this material there was no gender effect of NGF-induced muscle hyperalgesia. The expansion of muscle hyperalgesia to distant areas indicates that central mechanisms are involved. PMID:18813917

  9. Effect of exercise on the expression of nerve growth factor in the spinal cord of rats with induced osteoarthritis.

    PubMed

    Park, Soo-Jin; Yong, Min-Sik; Na, Sang-Su

    2015-08-01

    [Purpose] We examined the impact of exercise on the expression pattern of nerve growth factor in the spinal cord of rats with induced osteoarthritis of the knee joint. [Subjects and Methods] To produce monosodium iodoacetate-induced arthritis, rats were administered 3 mg/50 µL monosodium iodoacetate through the interarticular space of the right knee. The animals were randomly divided into four groups: rats sacrificed 3 weeks after 0.9% saline solution injection (shame group, n = 10), rats sacrificed 3 weeks after monosodium iodoacetate injection (control group, n = 10), rats with 4 weeks rest from 3 weeks after monosodium iodoacetate injection (no exercise group, n = 10), and rats with 4 weeks treadmill training from 3 weeks after monosodium iodoacetate injection (exercise group, n = 10). Serial coronal sections of the lumbar spine were cut and processed for immunohistochemistry. [Results] The expression of nerve growth factor was significantly increased in the EG compared with the SG, CG, and NEG. [Conclusion] Increased nerve growth factor expression in the spinal cord due to exercise-induced stimulation can be effective in treating chronic pain. Such treatment will contribute not only to improving the joint function of patients with chronic pain but also their quality of life. PMID:26357438

  10. Noninflammatory upregulation of nerve growth factor underlies gastric hypersensitivity induced by neonatal colon inflammation.

    PubMed

    Li, Qingjie; Winston, John H; Sarna, Sushil K

    2016-02-01

    Gastric hypersensitivity is one of the key contributors to the postprandial symptoms of epigastric pain/discomfort, satiety, and fullness in functional dyspepsia patients. Epidemiological studies found that adverse early-life experiences are risk factors for the development of gastric hypersensitivity. Preclinical studies found that neonatal colon inflammation elevates plasma norepinephrine (NE), which upregulates expression of nerve growth factor (NGF) in the muscularis externa of the gastric fundus. Our goal was to investigate the cellular mechanisms by which NE upregulates the expression of NGF in gastric hypersensitive (GHS) rats, which were subjected previously to neonatal colon inflammation. Neonatal colon inflammation upregulated NGF protein, but not mRNA, in the gastric fundus of GHS rats. Western blotting showed upregulation of p110γ of phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K), phosphoinositide-dependent kinase-1 (PDK1), pAKT(Ser473), and phosphorylated 4E-binding protein (p4E-BP1)(Thr70), suggesting AKT activation and enhanced NGF protein translation. AKT inhibitor MK-2206 blocked the upregulation of NGF in the fundus of GHS rats. Matrix metalloproteinase 9 (MMP-9), the major NGF-degrading protease, was suppressed, indicating that NGF degradation was impeded. Incubation of fundus muscularis externa with NE upregulated NGF by modulating the protein translation and degradation pathways. Yohimbine, an α2-adrenergic receptor antagonist, upregulated plasma NE and NGF expression by activating the protein translation and degradation pathways in naive rats. In contrast, a cocktail of adrenergic receptor antagonists suppressed the upregulation of NGF by blocking the activation of the protein translation and degradation pathways. Our findings provide evidence that the elevation of plasma NE induces NGF expression in the gastric fundus. PMID:26608656

  11. Nerve growth factor induces facial heat hyperalgesia and plays a role in trigeminal neuropathic pain in rats.

    PubMed

    Dos Reis, Renata C; Kopruszinski, Caroline M; Nones, Carina F M; Chichorro, Juliana G

    2016-09-01

    There is preclinical evidence that nerve growth factor (NGF) contributes toward inflammatory hyperalgesia in the orofacial region, but the mechanisms underlying its hyperalgesic effect as well as its role in trigeminal neuropathic pain require further investigation. This study investigated the ability of NGF to induce facial heat hyperalgesia and the involvement of tyrosine kinase receptor A, transient receptor potential vanilloid 1, and mast cells in NGF pronociceptive effects. In addition, the role of NGF in heat hyperalgesia in a model of trigeminal neuropathic pain was evaluated. NGF injection into the upper lip of naive rats induced long-lasting heat hyperalgesia. Pretreatment with an antibody anti-NGF, antagonists of tyrosine kinase receptor A, and transient receptor potential vanilloid 1 receptors or compound 48/80, to induce mast-cell degranulation, all attenuated NGF-induced hyperalgesia. In a rat model of trigeminal neuropathic pain, local treatment with anti-NGF significantly reduced heat hyperalgesia. In addition, increased NGF levels were detected in the ipsilateral infraorbital nerve branch at the time point that represents the peak of heat hyperalgesia. The results suggest that NGF is a prominent hyperalgesic mediator in the trigeminal system and it may represent a potential therapeutic target for the management of painful orofacial conditions, including trigeminal neuropathic pain. PMID:27392124

  12. Nerve growth factor and asthma.

    PubMed

    Bonini, S; Lambiase, A; Lapucci, G; Properzi, F; Bresciani, M; Bracci Laudiero, M L; Mancini, M J; Procoli, A; Micera, A; Sacerdoti, G; Bonini, S; Levi-Schaffer, F; Rasi, G; Aloe, L

    2002-01-01

    An increasing body of evidence shows that nerve growth factor (NGF) exerts biological activity not only on the central and peripheral nervous system, but also on the immune system thereby influencing allergic diseases and asthma. (1) NGF circulating levels are increased in patients with allergic diseases and asthma, and are related to the severity of the inflammatory process and disease. In vernal keratoconjunctivitis, NGF plasma levels correlate with the number of mast cells infiltrating the conjunctiva, and NGF mRNA is increased in nasal mucosal scrapings of patients with allergic rhinitis who have high levels of NGF in serum and nasal fluids; NGF is further increased in nasal fluids after specific allergen challenge. (2) NGF is produced and released by several modulatory and effector cells of allergic inflammation and asthma, for example T-helper 2 lymphocytes, mast cells and eosinophils. (3) NGF receptors are expressed on the conjunctival epithelium of patients with allergic conjunctivitis and the number of NGF-receptor positive cells is increased in the conjunctiva of these patients. Indeed, local administration of NGF induces fibroblast activation and healing processes of human corneal ulcers, which suggests that NGF plays a role in tissue remodelling processes occurring in asthma. (4) NGF increases airway hyperreactivity to histamine in an animal model of asthma, while anti-NGF treatment reduces airway hyperreactivity induced by ovalbumin topical challenge in the sensitized mouse. PMID:12144547

  13. Selective translocation of protein kinase C-delta in PC12 cells during nerve growth factor-induced neuritogenesis.

    PubMed Central

    O'Driscoll, K R; Teng, K K; Fabbro, D; Greene, L A; Weinstein, I B

    1995-01-01

    The specific intracellular signals initiated by nerve growth factor (NGF) that lead to neurite formation in PC12 rat pheochromocytoma cells are as of yet unclear. Protein kinase C-delta (PKC delta) is translocated from the soluble to the particulate subcellular fraction during NGF-induced-neuritogenesis; however, this does not occur after treatment with the epidermal growth factor, which is mitogenic but does not induce neurite formation. PC12 cells also contain both Ca(2+)-sensitive and Ca(2+)-independent PKC enzymatic activities, and express mRNA and immunoreactive proteins corresponding to the PKC isoforms alpha, beta, delta, epsilon, and zeta. There are transient decreases in the levels of immunoreactive PKCs alpha, beta, and epsilon after 1-3 days of NGF treatment, and after 7 days there is a 2.5-fold increase in the level of PKC alpha, and a 1.8-fold increase in total cellular PKC activity. NGF-induced PC12 cell neuritogenesis is enhanced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) in a TPA dose- and time-dependent manner, and this differentiation coincides with abrogation of the down-regulation of PKC delta and other PKC isoforms, when the cells are treated with TPA. Thus a selective activation of PKC delta may play a role in neuritogenic signals in PC12 cells. Images PMID:7626808

  14. Side-stream tobacco smoke-induced airway hyperresponsiveness in early postnatal period is involved nerve growth factor.

    PubMed

    Wu, Z-X; Hunter, D D; Batchelor, T P; Dey, R D

    2016-03-01

    Epidemiological studies have shown that children are more susceptible to adverse respiratory effects of passive smoking than adults. The goal of this study is to elucidate the possible neural mechanism induced by exposure to passive smoking during early life. Postnatal day (PD) 2 and PD 21 mice were exposed to side-stream tobacco smoke (SS), a surrogate to secondhand smoke, or filtered air (FA) for 10 consecutive days. Pulmonary function, substance P (SP) airway innervation, neurotrophin gene expression in lung and nerve growth factor (NGF) release in bronchoalveolar lavage (BAL) fluid were measured at different times after the last SS or FA exposure. Exposure to SS significantly altered pulmonary function in PD2, accompanied with an enhanced SP innervation in airway. However, exposure to SS during the later developmental period (PD21) did not appear to affect pulmonary function and SP innervation of the airways. Interestingly, SS exposure in PD2 group significantly induced an increased gene expression on NGF, and decreased NGF receptor P75 in lung; parallel with high levels of NGF protein in BAL. Furthermore, pretreatment with NGF antibody significantly diminished SS-induced airway hyperresponsivenss and the increased SP airway innervation in the PD2 group. These findings suggest that enhanced NGF released in the lung contributes to SS-enhanced SP tracheal innervation and airway responsiveness in early life. PMID:26638730

  15. Nerve growth factor-induced differentiation of PC12 cells is accompanied by elevated adenylyl cyclase activity.

    PubMed

    Yung, H S; Lai, K H; Chow, K B S; Ip, N Y; Tsim, K W K; Wong, Y H; Wu, Z; Wise, H

    2010-01-01

    Rat pheochromocytoma (PC12) cells characteristically undergo differentiation when cultured with nerve growth factor (NGF). Here we show that NGF dramatically increased the adenylyl cyclase-activating property of forskolin in PC12 cells. This effect of NGF was well maintained even when NGF was removed after 4 days, even though the morphological features of neuronal differentiation were rapidly lost on removal of NGF. The enhanced cAMP production in response to forskolin could be due to a synergistic interaction between forskolin and endogenously released agonists acting on G(s)-coupled receptors. However, responses to forskolin were not attenuated by antagonists of adenosine A2 receptors or pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, suggesting that adenosine and PACAP were not involved. Adenylyl cyclases 3, 6 and 9 were the predominant isoforms expressed in PC12 cells, but we found no evidence for NGF-induced changes in expression levels of any of the 9 adenylyl cyclase isoforms, nor in the expression of Gα(s). These findings highlight that NGF has a subtle influence on adenylyl cyclase activity in PC12 cells which may influence more than the neurite extension process classically associated with neuronal differentiation. PMID:20389133

  16. Somatic tetraploidy in specific chick retinal ganglion cells induced by nerve growth factor

    PubMed Central

    Morillo, Sandra M.; Escoll, Pedro; de la Hera, Antonio; Frade, José M.

    2009-01-01

    A subset of neurons in the normal vertebrate nervous system contains double the normal amount of DNA in their nuclei. These neurons are all thought to derive from aberrant mitoses in neuronal precursor cells. Here we show that endogenous NGF induces DNA replication in a subpopulation of differentiating chick retinal ganglion cells that express both the neurotrophin receptor p75 and the E2F1 transcription factor, but that lack the retinoblastoma protein. Many of these neurons avoid G2/M transition and remain alive in the retina as tetraploid cells with large cell somas and extensive dendritic trees, and most of them express β2 nicotinic acetylcholine receptor subunits, a specific marker of retinal ganglion cells innervating lamina F in the stratum-griseum-et-fibrosum-superficiale of the tectal cortex. Tetraploid neurons were also observed in the adult mouse retina. Thus, a developmental program leading to somatic tetraploidy in specific retinal neurons exists in vertebrates. This program might occur in other vertebrate neurons during normal or pathological situations. PMID:20018664

  17. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons.

    PubMed

    Pittman, Sherry K; Gracias, Neilia G; Fehrenbacher, Jill C

    2016-05-01

    Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity. PMID:26883566

  18. Nerve growth factor (NGF) induces neuronal differentiation in neuroblastoma cells transfected with the NGF receptor cDNA

    SciTech Connect

    Matsushima, H.; Bogenmann, E. )

    1990-09-01

    Human nerve growth factor (NGF) receptor (NGFR) cDNA was transfected into a neuroblastoma cell line (HTLA 230) which does not express a functional NGF-NGFR signal transduction cascade. Short-term treatment of stably transfected cells (98-3) expressing membrane-bound NGF receptor molecules resulted in a cell cycle-dependent, transient expression of the c-fos gene upon treatment with NGF, suggesting the presence of functional high-affinity NGFR. Extensive outgrowth of neurites and cessation of DNA synthesis occurred in transfectants grown on an extracellular matrix after long-term treatment with NGF, suggesting terminal differentiation. Our data support the idea that introduction of a constitutively expressed NGFR cDNA into cells with neuronal background results in the assembly of a functional NGF-NGFR signal cascade in a permissive extracellular environment.

  19. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    PubMed Central

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  20. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects.

    PubMed

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-11-25

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  1. Seminal Plasma Induces Ovulation in Llamas in the Absence of a Copulatory Stimulus: Role of Nerve Growth Factor as an Ovulation-Inducing Factor.

    PubMed

    Berland, Marco A; Ulloa-Leal, Cesar; Barría, Miguel; Wright, Hollis; Dissen, Gregory A; Silva, Mauricio E; Ojeda, Sergio R; Ratto, Marcelo H

    2016-08-01

    Llamas are considered to be reflex ovulators. However, semen from these animals is reported to be rich in ovulation-inducing factor(s), one of which has been identified as nerve growth factor (NGF). These findings suggest that ovulation in llamas may be elicited by chemical signals contained in semen instead of being mediated by neural signals. The present study examines this notion. Llamas displaying a preovulatory follicle were assigned to four groups: group 1 received an intrauterine infusion (IUI) of PBS; group 2 received an IUI of seminal plasma; group 3 was mated to a male whose urethra had been surgically diverted (urethrostomized male); and group 4 was mated to an intact male. Ovulation (detected by ultrasonography) occurred only in llamas mated to an intact male or given an IUI of seminal plasma and was preceded by a surge in plasma LH levels initiated within an hour after coitus or IUI. In both ovulatory groups, circulating β-NGF levels increased within 15 minutes after treatment, reaching values that were greater and more sustained in llamas mated with an intact male. These results demonstrate that llamas can be induced to ovulate by seminal plasma in the absence of copulation and that copulation alone cannot elicit ovulation in the absence of seminal plasma. In addition, our results implicate β-NGF as an important mediator of seminal plasma-induced ovulation in llamas because ovulation does not occur if β-NGF levels do not increase in the bloodstream, a change that occurs promptly after copulation with an intact male or IUI of seminal plasma. PMID:27355492

  2. HemoHIM improves ovarian morphology and decreases expression of nerve growth factor in rats with steroid-induced polycystic ovaries.

    PubMed

    Kim, Sung Ho; Lee, Hae June; Kim, Joong Sun; Moon, Changjong; Kim, Jong Choon; Bae, Chun Sik; Park, Hae Ran; Jung, Uhee; Jo, Sung Kee

    2009-12-01

    Estradiol valerate (EV)-induced polycystic ovaries (PCOs) in rats cause the anovulation and cystic ovarian morphology. We investigated whether treatment with HemoHIM influences the ovarian morphology and the expression of nerve growth factor (NGF) in an EV-induced PCO rat model. PCO was induced by a single intramuscular injection of EV (4 mg, dissolved in sesame oil) in adult cycling rats. HemoHIM was either administered orally (100 mg/kg of body weight/day) for 35 consecutive days or injected intraperitoneally (50 mg/kg of body weight) every other day after EV injection. Ovarian morphology was almost normalized, and NGF was normalized in the PCO + HemoHIM group. HemoHIM lowered the high numbers of antral follicles and increased the number of corpora lutea in PCOs. The results are consistent with a beneficial effect of HemoHIM in the prevention and treatment of PCO syndrome. PMID:20041792

  3. NEUROBIOLOGICAL EFFECTS OF COLCHICINE: MODULATION BY NERVE GROWTH FACTOR

    EPA Science Inventory

    To study the effects of exogenously applied nerve growth factor (NGF) on colchicine-induced neurodegeneration in the dentate gyrus of the rat hippocampal formation, male Fischer 344 rats (n=75) weighing 275-325 grams received colchicine [COLCH; 2.5 ug/site in 0.5 ul of artificial...

  4. Gelatin Nanostructured Lipid Carriers Incorporating Nerve Growth Factor Inhibit Endoplasmic Reticulum Stress-Induced Apoptosis and Improve Recovery in Spinal Cord Injury.

    PubMed

    Zhu, Si-Pin; Wang, Zhou-Guang; Zhao, Ying-Zheng; Wu, Jiang; Shi, Hong-Xue; Ye, Li-Bing; Wu, Fen-Zan; Cheng, Yi; Zhang, Hong-Yu; He, Songbin; Wei, Xiaojie; Fu, Xiao-Bing; Li, Xiao-Kun; Xu, Hua-Zi; Xiao, Jian

    2016-09-01

    Clinical translation of growth factor therapies faces multiple challenges; the most significant one is the short half-life of the naked protein. Gelatin nanostructured lipid carriers (GNLs) had previously been used to encapsulate the basic fibroblast growth factor to enhance the functional recovery in hemiparkinsonian rats. In this research, we comparatively study the enhanced therapy between nerve growth factor (NGF) loaded GNLs (NGF-GNLs) and NGF only in spinal cord injury (SCI). The effects of NGF-GNLs and NGF only were tested by the Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test, and footprint analysis. Western blot analysis and immunofluorescent staining were further performed to identify the expression of ER stress-related proteins, neuron-specific marker neuronal nuclei (NeuN), and growth-associated protein 43 (GAP43). Correlated downstream signals Akt/GSK-3β and ERK1/2 were also analyzed with or without inhibitors. Results showed that NGF-GNLs, compared to NGF only, enhanced the neuroprotection effect in SCI rats. The ER stress-induced apoptosis response proteins CHOP, GRP78 and caspase-12 inhibited by NGF-GNL treatment were more obvious. Meanwhile, NGF-GNLs in the recovery of SCI are related to the inhibition of ER stress-induced cell death via the activation of downstream signals PI3K/Akt/GSK-3β and ERK1/2. PMID:26232067

  5. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  6. Reactive Oxygen Species, Ki-Ras, and Mitochondrial Superoxide Dismutase Cooperate in Nerve Growth Factor-induced Differentiation of PC12 Cells*

    PubMed Central

    Cassano, Silvana; Agnese, Savina; D'Amato, Valentina; Papale, Massimo; Garbi, Corrado; Castagnola, Patrizio; Ruocco, Maria Rosaria; Castellano, Immacolata; De Vendittis, Emmanuele; Santillo, Mariarosaria; Amente, Stefano; Porcellini, Antonio; Avvedimento, Enrico Vittorio

    2010-01-01

    Nerve growth factor (NGF) induces terminal differentiation in PC12, a pheochromocytoma-derived cell line. NGF binds a specific receptor on the membrane and triggers the ERK1/2 cascade, which stimulates the transcription of neural genes. We report that NGF significantly affects mitochondrial metabolism by reducing mitochondrial-produced reactive oxygen species and stabilizing the electrochemical gradient. This is accomplished by stimulation of mitochondrial manganese superoxide dismutase (MnSOD) both transcriptionally and post-transcriptionally via Ki-Ras and ERK1/2. Activation of MnSOD is essential for completion of neuronal differentiation because 1) expression of MnSOD induces the transcription of a neuronal specific promoter and neurite outgrowth, 2) silencing of endogenous MnSOD by small interfering RNA significantly reduces transcription induced by NGF, and 3) a Ki-Ras mutant in the polylysine stretch at the COOH terminus, unable to stimulate MnSOD, fails to induce complete differentiation. Overexpression of MnSOD restores differentiation in cells expressing this mutant. ERK1/2 is also downstream of MnSOD, as a SOD mimetic drug stimulates ERK1/2 with the same kinetics of NGF and silencing of MnSOD reduces NGF-induced late ERK1/2. Long term activation of ERK1/2 by NGF requires SOD activation, low levels of hydrogen peroxide, and the integrity of the microtubular cytoskeleton. Confocal immunofluorescence shows that NGF stimulates the formation of a complex containing membrane-bound Ki-Ras, microtubules, and mitochondria. We propose that active NGF receptor induces association of mitochondria with plasma membrane. Local activation of ERK1/2 by Ki-Ras stimulates mitochondrial SOD, which reduces reactive oxygen species and produces H2O2. Low and spatially restricted levels of H2O2 induce and maintain long term ERK1/2 activity and ultimately differentiation of PC12 cells. PMID:20495008

  7. Evidence that nerve growth factor promotes the recovery of peripheral neuropathy induced in mice by cisplatin: behavioral, structural and biochemical analysis.

    PubMed

    Aloe, L; Manni, L; Properzi, F; De Santis, S; Fiore, M

    2000-12-28

    In this study we investigate the neurotoxic action of Cisplatin (6 micrograms/g body weight for 5 treatment cycles during 15 weeks with a total dose of 30 micrograms/g), an antitumor drug, and its effect on the level of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in peripheral tissues. We found that Cisplatin in adult rodents impairs peripheral sensory function and both sympathetic and sensory peripheral innervation as shown by the hot-plate response, catecholamine distribution and substance P immunoreactivity respectively. These changes are associated with decreased NGF in intestine, paws, and bladder while NGF increased in the spinal cord. Also BDNF decreased in bladder and paws and increased in spinal cord and intestine. To further investigate the role of NGF in the pathogenesis of Cisplatin-induced peripheral neuropathies a group of animals was injected with NGF (1 microgram/g every 4 days for 4 times) following Cisplatin treatment and evaluated for sensory function, sympathetic and sensory innervation and BDNF levels. Data demonstrated that exogenous NGF administration is able to restore biochemical, structural and functional changes induced by Cisplatin. These findings suggest that the reduction of NGF availability could be a cause of Cisplatin-induced peripheral neuropathies and that NGF exogenous administration could prevent or reduce Cisplatin neurotoxicity also in cancer patients, reducing the side effects of chemotherapy. PMID:11269929

  8. Impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain

    PubMed Central

    Ding, Yuanyuan; Wang, Zhibin; Ma, Jiaming; Hong, Tao; Zhu, Yongqiang; Li, Hongxi; Pan, Shinong

    2016-01-01

    Objective To investigate the impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of μ-opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain. Methods The rats were randomly grouped and then injected with 10 μl of phosphate buffer saline or Walker256 tumor cells into the upper segment of left tibia. Thirteen days after the injection, the intrathecal catheterization was performed, followed by the injection of saline, anti-nerve growth factor, nerve growth factor, and naloxone twice a day. The pain ethological changes were measured at the set time points; the expression changes of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia were detected on the 18th day. Results After the tumor cells were injected into the tibia, hyperalgesia appeared and the expression of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia was increased, compared with the sham group; after intrathecally injected anti-nerve growth factor, the significant antinociceptive effects appeared, and the μ-opioid receptor expression was increased, compared with the cancer pain group; the μ-opioid receptor expressions in the other groups showed no statistical significance. The naloxone pretreatment could mostly inverse the antinociception effects of anti-nerve growth factor. Conclusions Anti-nerve growth factor could reduce hyperalgesia in the cancer-induced bone pain rats, and the antinociceptive effects were related with the upregulation of μ-opioid receptor. PMID:27118770

  9. Nerve Growth Factor Mediates a Switch in Intracellular Signaling for PGE2-Induced Sensitization of Sensory Neurons from Protein Kinase A to Epac

    PubMed Central

    Vasko, Michael R.; Habashy Malty, Ramy; Guo, Chunlu; Duarte, Djane B.; Zhang, Yihong; Nicol, Grant D.

    2014-01-01

    We examined whether nerve growth factor (NGF), an inflammatory mediator that contributes to chronic hypersensitivity, alters the intracellular signaling that mediates the sensitizing actions of PGE2 from activation of protein kinase A (PKA) to exchange proteins directly activated by cAMP (Epacs). When isolated sensory neurons are grown in the absence of added NGF, but not in cultures grown with 30 ng/ml NGF, inhibiting protein kinase A (PKA) activity blocks the ability of PGE2 to augment capsaicin-evoked release of the neuropeptide CGRP and to increase the number of action potentials (APs) evoked by a ramp of current. Growing sensory neurons in culture in the presence of increasing concentrations of NGF increases the expression of Epac2, but not Epac1. An intradermal injection of complete Freund's adjuvant into the rat hindpaw also increases the expression of Epac2, but not Epac1 in the dorsal root ganglia and spinal cord: an effect blocked by intraplantar administration of NGF antibodies. Treating cultures grown in the presence of 30 ng/ml NGF with Epac1siRNA significantly reduced the expression of Epac1, but not Epac2, and did not block the ability of PGE2 to augment capsaicin-evoked release of CGRP from sensory neurons. Exposing neuronal cultures grown in NGF to Epac2siRNAreduced the expression of Epac2, but not Epac1 and prevented the PGE2-induced augmentation of capsaicin and potassium-evoked CGRP release in sensory neurons and the PGE2-induced increase in the number of APs generated by a ramp of current. In neurons grown with no added NGF, Epac siRNAs did not attenuate PGE2-induced sensitization. These results demonstrate that NGF, through increasing Epac2 expression, alters the signaling cascade that mediates PGE2-induced sensitization of sensory neurons, thus providing a novel mechanism for maintaining PGE2-induced hypersensitivity during inflammation. PMID:25126967

  10. The exocytotic signaling pathway induced by nerve growth factor in the presence of lyso-phosphatidylserine in rat peritoneal mast cells involves a type D phospholipase.

    PubMed

    Seebeck, J; Westenberger, K; Elgeti, T; Ziegler, A; Schütze, S

    2001-12-15

    Nerve growth factor (NGF) has been previously shown to induce exocytosis in rat peritoneal mast cells (RPMCs) in the presence of lyso-phosphatidylserine (lysoPS) by interacting with high-affinity NGF receptors of the TrkA-type. In RPMCs, type D phosphatidylcholine-selective phospholipases (PLDs) have been postulated to be involved in some exocytotic signaling pathways induced by different agonists. The aim of the present study was to assess a putative functional role of PLD for NGF/lysoPS-induced exocytosis in RPMCs. In 1-[14C]palmitoyl-2-lyso-3-phosphatidylcholine-labelled RPMCs, NGF/lysoPS stimulated the formation of diacylglycerol (DAG) and, in the presence of ethanol (1% [v/v]), phosphatidylethanol (PEtOH). These data indicate PLD-activation by NGF/lysoPS in RPMCs. Preincubation of RPMCs for 2 min with ethanol, an inhibitor of PLD-derived DAG-formation, dose-dependently (IC(50): 0.6% [v/v]) and agonist-selectively inhibited the NGF/lysoPS induced release of [3H]serotonin ([3H]5-HT) in [3H]5-HT-loaded RPMCs, confirming the functional importance of PLD-action. Exocytosis and PEtOH-production was potently inhibited by the broad-spectrum serine/threonine kinase inhibitor staurosporine and activated by the protein kinase C(PKC)-activator PMA (phorbol-12-myristate-13-acetate) suggesting a role for PKC as mediator for NGF/lysoPS-induced activation of PLD. PMID:11730981

  11. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

    PubMed Central

    Lu, Jian

    2014-01-01

    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  12. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    PubMed Central

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-01-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)−1 and (−)−1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)−1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (−)−1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)−1 and (−)−1. PMID:26585042

  13. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    NASA Astrophysics Data System (ADS)

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-11-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)-1 and (-)-1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)-1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (-)-1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)-1 and (-)-1.

  14. Peripheral nerve morphogenesis induced by scaffold micropatterning

    PubMed Central

    Memon, Danish; Boneschi, Filippo Martinelli; Madaghiele, Marta; Brambilla, Paola; Del Carro, Ubaldo; Taveggia, Carla; Riva, Nilo; Trimarco, Amelia; Lopez, Ignazio D.; Comi, Giancarlo; Pluchino, Stefano; Martino, Gianvito; Sannino, Alessandro; Quattrini, Angelo

    2014-01-01

    Several bioengineering approaches have been proposed for peripheral nervous system repair, with limited results and still open questions about the underlying molecular mechanisms. We assessed the biological processes that occur after the implantation of collagen scaffold with a peculiar porous microstructure of the wall in a rat sciatic nerve transection model compared to commercial collagen conduits and nerve crush injury using functional, histological and genome wide analyses. We demonstrated that within 60 days, our conduit had been completely substituted by a normal nerve. Gene expression analysis documented a precise sequential regulation of known genes involved in angiogenesis, Schwann cells/axons interactions and myelination, together with a selective modulation of key biological pathways for nerve morphogenesis induced by porous matrices. These data suggest that the scaffold’s microstructure profoundly influences cell behaviors and creates an instructive micro-environment to enhance nerve morphogenesis that can be exploited to improve recovery and understand the molecular differences between repair and regeneration. PMID:24559639

  15. INCREASED PRODUCTION OF NERVE GROWTH FACTOR, NEUROTROPHIN-3, AND NEUROTROPHIN-4 IN A PENICILLIUM CHRYSOGENUM -INDUCED ALLERGIC ASTHMA MODEL IN MICE

    EPA Science Inventory

    Increased levels of neurotrophins (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin [NT]-3, and/or NT-4) have been associated with asthmatics and in animal models of allergic asthma. In our mouse model for fungal allergic asthma, repeated pulmona...

  16. DOSE-DEPENDENT INCREASE IN THE PRODUCTION OF NERVE GROWTH FACTOR, NEUROTROPHIN-3, AND NEUROTROPHIN-4 IN A PENICILLIUM CHRYSOGENUM-INDUCED ALLERGIC ASTHMA MODEL

    EPA Science Inventory


    Increased levels of neurotrophins (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin [NT]-3, and/or NT-4) have been associated with asthma as well as in animal models of allergic asthma. In our mouse model for fungal allergic asthma, repeated ...

  17. Biochemical and biological properties of the nerve growth factor receptor

    SciTech Connect

    Taniuchi, M.

    1988-01-01

    We have utilized a monoclonal antibody (192-IgG) to study the rat nerve growth factor receptor. After intraocular injection, {sup 125}I-192-IgG was retrogradely transported in sympathetic neuronal axons to the superior cervical ganglion. When the sciatic nerve was ligated to induce the accumulation of axonally transported materials, 192-IgG immunostaining was observed on both sides of the ligature, indicating that NGF receptors are transported in both orthograde and retrograde directions. By using {sup 125}I-NGF crosslinking and 192-IgG immunoprecipitation, we detected receptor molecules throughout the rat brain, thereby supporting the hypothesis that NGF is active in the central nervous system. We also discovered that sciatic nerve transection leads to a dramatic increase in the amount of NGF receptor found in the distal portion of the nerve. Immunostaining revealed that all Schwann cells in the distal axotomized nerve were expressing NGF receptors. We examined phosphorylation of NGF receptor in cultured sympathetic neurons and PC12 cells. We also examined pharmacological effects of 192-IgG. Systemic injection of 192-IgG into neonatal rats caused a permanent partial sympathectomy in a dose-dependent manner; a maximum of 50% of the cells were killed.

  18. The transcription of the human fructose-bisphosphate aldolase C gene is activated by nerve-growth-factor-induced B factor in human neuroblastoma cells.

    PubMed Central

    Buono, P; Conciliis, L D; Izzo, P; Salvatore, F

    1997-01-01

    A DNA region located at around -200 bp in the 5' flanking region (region D) of the human brain-type fructose-bisphosphate aldolase (aldolase C) gene has been analysed. We show by transient transfection assay and electrophoretic-mobility-shift assay (EMSA) that the binding of transcriptional activators to region D is much more efficient (80% versus 30%) in human neuroblastoma cells (SKNBE) than in the non-neuronal cell line A1251, which contains low levels of aldolase C mRNA. The sequence of region D, CAAGGTCA, is very similar to the AAAGGTCA motif present in the mouse steroid 21-hydroxylase gene; the latter motif binds nerve-growth-factor-induced B factor (NGFI-B), which is a member of the thyroid/steroid/retinoid nuclear receptor gene family. Competition experiments in EMSA and antibody-directed supershift experiments showed that NGFI-B is involved in the binding to region D of the human aldolase C gene. Furthermore, the regulation of the aldolase C gene (which is the second known target of NGFI-B) expression during development parallels that of NGFI-B. PMID:9173889

  19. Trauma-induced schwannoma of the recurrent laryngeal nerve after thyroidectomy.

    PubMed

    Kennedy, William P; Brody, Robert M; LiVolsi, Virginia A; Wang, Amber R; Mirza, Natasha A

    2016-06-01

    Laryngeal schwannomas are rare, benign tumors, most often arising from the superior laryngeal nerve. We describe a case of a 68-year-old female with a laryngeal schwannoma of the recurrent laryngeal nerve after traumatic injury. We postulate that trauma to the recurrent laryngeal nerve during thyroidectomy or thyroplasty incited growth of a nerve sheath tumor. This is the first reported case of a trauma-induced schwannoma of the recurrent laryngeal nerve and second case of a recurrent laryngeal nerve schwannoma. Although rare, this case demonstrates that these tumors should be considered during workup of vocal cord paresis after surgery or failed thyroplasty. Laryngoscope, 126:1408-1410, 2016. PMID:26421595

  20. Adipose-Derived Stem Cells Stimulate Regeneration of Peripheral Nerves: BDNF Secreted by These Cells Promotes Nerve Healing and Axon Growth De Novo

    PubMed Central

    Lopatina, Tatiana; Kalinina, Natalia; Karagyaur, Maxim; Stambolsky, Dmitry; Rubina, Kseniya; Revischin, Alexander; Pavlova, Galina; Parfyonova, Yelena; Tkachuk, Vsevolod

    2011-01-01

    Transplantation of adipose-derived mesenchymal stem cells (ASCs) induces tissue regeneration by accelerating the growth of blood vessels and nerve. However, mechanisms by which they accelerate the growth of nerve fibers are only partially understood. We used transplantation of ASCs with subcutaneous matrigel implants (well-known in vivo model of angiogenesis) and model of mice limb reinnervation to check the influence of ASC on nerve growth. Here we show that ASCs stimulate the regeneration of nerves in innervated mice's limbs and induce axon growth in subcutaneous matrigel implants. To investigate the mechanism of this action we analyzed different properties of these cells and showed that they express numerous genes of neurotrophins and extracellular matrix proteins required for the nerve growth and myelination. Induction of neural differentiation of ASCs enhances production of brain-derived neurotrophic factor (BDNF) as well as ability of these cells to induce nerve fiber growth. BDNF neutralizing antibodies abrogated the stimulatory effects of ASCs on the growth of nerve sprouts. These data suggest that ASCs induce nerve repair and growth via BDNF production. This stimulatory effect can be further enhanced by culturing the cells in neural differentiation medium prior to transplantation. PMID:21423756

  1. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  2. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  3. Ethanol induces upregulation of the nerve growth factor receptor CD271 in human melanoma cells via nuclear factor-κB activation

    PubMed Central

    RAPPA, GERMANA; ANZANELLO, FABIO; LORICO, AURELIO

    2015-01-01

    Alcohol consumption is one of the most important, and potentially avoidable, risk factors of human cancer, accounting for 3.6% of all types of cancer worldwide. In a recent meta-analysis, a 20% increased risk of melanoma was linked with regular alcohol consumption. In the present study, the effect of ethanol exposure on the expression of the nerve growth factor receptor, CD271, in human FEMX-I melanoma cells was investigated. Consistent with the derivation of melanocytes from the neural crest, the majority of melanomas express CD271, a protein that is crucial for maintaining the melanoma stem cell properties, including the capacity of self-renewal and resistance to chemotherapy and radiotherapy. Analysis of CD271-sorted subpopulations and clones of FEMX-I cells indicated no hierarchical organization of CD271+ and CD271− cells. In addition, CD271 expression was lost upon growth of FEMX-I melanoma cells in cancer stem cell-like conditions, while it was greatly increased upon CD133 knockdown or exposure to ethanol. After 24-h exposure to 100, 200 and 400 mM ethanol, the percentage of CD271+ cells increased from 14% in control cells to 24, 35 and 88%, respectively. An increase in the percentage of CD271+ cells was already evident 8 h after ethanol exposure and reached a maximum at 48 h. Ethanol-induced upregulation of CD271 was mediated by nuclear factor-κB (NF-κB). In fact, exposure of FEMX-I cells to 100–400 mM ethanol for 24 h resulted in a concentration- and time-dependent increase in NF-κB activity, up to 900% that of control cells. NF-κB activation was due to a decrease in p50 homodimers, which occupy the NF-κB binding site, blocking transactivation. No effects of ethanol on 9 additional signaling pathways of FEMX-I cells were observed. In the presence of CD271 blocking antibodies, NF-κB activation was not prevented, indicating that ethanol did not target CD271 directly. These data demonstrate that ethanol induces expression of CD271 in FEMX-I cells via

  4. Bioactivity of ovulation inducing factor (or nerve growth factor) in bovine seminal plasma and its effects on ovarian function in cattle.

    PubMed

    Tribulo, P; Bogle, O; Mapletoft, R J; Adams, G P

    2015-06-01

    To understand the role of ovulation-inducing factor (or nerve growth factor) (OIF [NGF]) in bovine seminal plasma, we (1) used an in vivo llama bioassay to test the hypothesis that bovine seminal plasma induces ovulation and CL development in llamas similar to that of llama seminal plasma when the dose of seminal plasma is adjusted to ovulation-inducing factor content (experiment 1) and (2) determined the effect of bovine seminal plasma on the interval to ovulation and luteal development in heifers (experiment 2). Within species, seminal plasma was pooled (n = 160 bulls, n = 4 llamas), and the volume of seminal plasma used for treatment was adjusted to a total dose of 250 μg of ovulation-inducing factor. In experiment 1, mature female llamas were assigned randomly to four groups and treated intramuscularly with either 10 mL of PBS (negative control, n = 5), 50-μg GnRH (positive control, n = 5), 6-mL of llama seminal plasma (n = 6), or 12 mL of bull seminal plasma (n = 6). Ovulation and CL development were monitored by transrectal ultrasonography. In experiment 2, beef heifers were given a luteolytic dose of prostaglandin followed by 25-mg porcine LH (pLH) 12 hours later to induce ovulation. Heifers were assigned randomly to three groups and given 12 mL bovine seminal plasma intramuscularly 12 hours after pLH treatment (n = 10), within 4 hours after ovulation (n = 9), or no treatment (control, n = 10). Ovulation was monitored by ultrasonography every 4 hours, and the CL development was monitored daily until the next ovulation. In experiment 1, ovulation was detected in 0/5, 4/5, 4/6, 4/6 llamas in the PBS, GnRH, llama seminal plasma, and bovine seminal plasma groups, respectively (P < 0.05). Luteal development was not different among groups. In experiment 2, the interval to ovulation was more synchronous (range: 4 vs. 22 hours; P < 0.0001) in heifers treated with seminal plasma before ovulation compared with the other groups. Luteal development was not different

  5. Peripheral nerve morphogenesis induced by scaffold micropatterning.

    PubMed

    Cerri, Federica; Salvatore, Luca; Memon, Danish; Martinelli Boneschi, Filippo; Madaghiele, Marta; Brambilla, Paola; Del Carro, Ubaldo; Taveggia, Carla; Riva, Nilo; Trimarco, Amelia; Lopez, Ignazio D; Comi, Giancarlo; Pluchino, Stefano; Martino, Gianvito; Sannino, Alessandro; Quattrini, Angelo

    2014-04-01

    Several bioengineering approaches have been proposed for peripheral nervous system repair, with limited results and still open questions about the underlying molecular mechanisms. We assessed the biological processes that occur after the implantation of collagen scaffold with a peculiar porous micro-structure of the wall in a rat sciatic nerve transection model compared to commercial collagen conduits and nerve crush injury using functional, histological and genome wide analyses. We demonstrated that within 60 days, our conduit had been completely substituted by a normal nerve. Gene expression analysis documented a precise sequential regulation of known genes involved in angiogenesis, Schwann cells/axons interactions and myelination, together with a selective modulation of key biological pathways for nerve morphogenesis induced by porous matrices. These data suggest that the scaffold's micro-structure profoundly influences cell behaviors and creates an instructive micro-environment to enhance nerve morphogenesis that can be exploited to improve recovery and understand the molecular differences between repair and regeneration. PMID:24559639

  6. Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice

    PubMed Central

    Ma, Chi Him Eddie; Omura, Takao; Cobos, Enrique J.; Latrémolière, Alban; Ghasemlou, Nader; Brenner, Gary J.; van Veen, Ed; Barrett, Lee; Sawada, Tomokazu; Gao, Fuying; Coppola, Giovanni; Gertler, Frank; Costigan, Michael; Geschwind, Dan; Woolf, Clifford J.

    2011-01-01

    Although peripheral nerves can regenerate after injury, proximal nerve injury in humans results in minimal restoration of motor function. One possible explanation for this is that injury-induced axonal growth is too slow. Heat shock protein 27 (Hsp27) is a regeneration-associated protein that accelerates axonal growth in vitro. Here, we have shown that it can also do this in mice after peripheral nerve injury. While rapid motor and sensory recovery occurred in mice after a sciatic nerve crush injury, there was little return of motor function after sciatic nerve transection, because of the delay in motor axons reaching their target. This was not due to a failure of axonal growth, because injured motor axons eventually fully re-extended into muscles and sensory function returned; rather, it resulted from a lack of motor end plate reinnervation. Tg mice expressing high levels of Hsp27 demonstrated enhanced restoration of motor function after nerve transection/resuture by enabling motor synapse reinnervation, but only within 5 weeks of injury. In humans with peripheral nerve injuries, shorter wait times to decompression surgery led to improved functional recovery, and, while a return of sensation occurred in all patients, motor recovery was limited. Thus, absence of motor recovery after nerve damage may result from a failure of synapse reformation after prolonged denervation rather than a failure of axonal growth. PMID:21965333

  7. A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms.

    PubMed

    Blackiston, Douglas J; Anderson, George M; Rahman, Nikita; Bieck, Clara; Levin, Michael

    2015-01-01

    A major goal of regenerative medicine is to restore the function of damaged or missing organs through the implantation of bioengineered or donor-derived components. It is necessary to understand the signals and cues necessary for implanted structures to innervate the host, as organs devoid of neural connections provide little benefit to the patient. While developmental studies have identified neuronal pathfinding molecules required for proper patterning during embryogenesis, strategies to initiate innervation in structures transplanted at later times or alternate locations remain limited. Recent work has identified membrane resting potential of nerves as a key regulator of growth cone extension or arrest. Here, we identify a novel role of bioelectricity in the generation of axon guidance cues, showing that neurons read the electric topography of surrounding cells, and demonstrate these cues can be leveraged to initiate sensory organ transplant innervation. Grafts of fluorescently labeled embryological eye primordia were used to produce ectopic eyes in Xenopus laevis tadpoles. Depolarization of host tissues through anion channel activation or other means led to a striking hyperinnervation of the body by these ectopic eyes. A screen of possible transduction mechanisms identified serotonergic signaling to be essential for hyperinnervation to occur, and our molecular data suggest a possible model of bioelectrical control of the distribution of neurotransmitters that guides nerve growth. Together, these results identify the molecular components of bioelectrical signaling among cells that regulates axon guidance, and suggest novel biomedical and bioengineering strategies for triggering neuronal outgrowth using ion channel drugs already approved for human use. PMID:25449797

  8. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia

    PubMed Central

    LI, QINWEN; CHEN, JIANGHAI; CHEN, YANHUA; CONG, XIAOBIN; CHEN, ZHENBING

    2016-01-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post-compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR-labeled DRG neurons were significantly higher, relative to the sham-operated group, however, the numbers of FG-labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)-extracellular signal-regulated kinase 1/2, and significantly lower levels of p-c-Jun N-terminal kinase and p-p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF-β1, CTGF and collagen type I, with involvement of the mitogen-activated protein kinase signaling pathway. PMID:26820076

  9. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia.

    PubMed

    Li, Qinwen; Chen, Jianghai; Chen, Yanhua; Cong, Xiaobin; Chen, Zhenbing

    2016-03-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post‑compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR‑labeled DRG neurons were significantly higher, relative to the sham‑operated group, however, the numbers of FG‑labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor‑β1 (TGF‑β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)‑extracellular signal‑regulated kinase 1/2, and significantly lower levels of p‑c‑Jun N‑terminal kinase and p‑p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF‑β1, CTGF and collagen type I, with involvement of the mitogen‑activated protein kinase signaling pathway. PMID:26820076

  10. In vitro and in vivo gene therapy with CMV vector-mediated presumed dog beta-nerve growth factor in pyridoxine-induced neuropathy dogs.

    PubMed

    Chung, Jin Young; Choi, Jung Hoon; Shin, Il Seob; Choi, Eun Wha; Hwang, Cheol Yong; Lee, Sang Koo; Youn, Hwa Young

    2008-12-01

    Due to the therapeutic potential of gene therapy for neuronal injury, many studies of neurotrophic factors, vectors, and animal models have been performed. The presumed dog beta-nerve growth factor (pdbeta-NGF) was generated and cloned and its expression was confirmed in CHO cells. The recombinant pdbeta-NGF protein reacted with a human beta-NGF antibody and showed bioactivity in PC12 cells. The pdbeta-NGF was shown to have similar bioactivity to the dog beta-NGF. The recombinant pdbeta-NGF plasmid was administrated into the intrathecal space in the gene therapy group. Twenty-four hours after the vector inoculation, the gene therapy group and the positive control group were intoxicated with excess pyridoxine for seven days. Each morning throughout the test period, the dogs' body weight was taken and postural reaction assessments were made. Electrophysiological recordings were performed twice, once before the experiment and once after the test period. After the experimental period, histological analysis was performed. Dogs in the gene therapy group had no weight change and were normal in postural reaction assessments. Electrophysiological recordings were also normal for the gene therapy group. Histological analysis showed that neither the axons nor the myelin of the dorsal funiculus of L4 were severely damaged in the gene therapy group. In addition, the dorsal root ganglia of L4 and the peripheral nerves (sciatic nerve) did not experience severe degenerative changes in the gene therapy group. This study is the first to show the protective effect of NGF gene therapy in a dog model. PMID:19043311

  11. Let-7 microRNAs Regenerate Peripheral Nerve Regeneration by Targeting Nerve Growth Factor

    PubMed Central

    Li, Shiying; Wang, Xinghui; Gu, Yun; Chen, Chu; Wang, Yaxian; Liu, Jie; Hu, Wen; Yu, Bin; Wang, Yongjun; Ding, Fei; Liu, Yan; Gu, Xiaosong

    2015-01-01

    Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to each other. Let-7 microRNAs (miRNAs) significantly reduced cell proliferation and migration of primary Schwann cells (SCs) by directly targeting NGF and suppressing its protein translation. Following sciatic nerve injury, the temporal change in let-7 miRNA expression was negatively correlated with that in NGF expression. Inhibition of let-7 miRNAs increased NGF secretion by primary cultured SCs and enhanced axonal outgrowth from a coculture of primary SCs and dorsal root gangalion neurons. In vivo tests indicated that let-7 inhibition promoted SCs migration and axon outgrowth within a regenerative microenvironment. In addition, the inhibitory effect of let-7 miRNAs on SCs apoptosis might serve as an early stress response to nerve injury, but this effect seemed to be not mediated through a NGF-dependent pathway. Collectively, our results provide a new insight into let-7 miRNA regulation of peripheral nerve regeneration and suggest a potential therapy for repair of peripheral nerve injury. PMID:25394845

  12. Comparison of divided sciatic nerve growth within dermis, venous and nerve graft conduit in rat

    PubMed Central

    Fatemi, Mohammad Javad; Foroutan, Kamal Seyed; Ashtiani, Abass Kazemi; Mansoori, Maryam Jafari; Vaghardoost, Reza; Pedram, Sepehr; Hosseinpolli, Aidin; Rajabi, Fatemeh; Mousavi, Seyed Jaber

    2010-01-01

    BACKGROUND: Considering the common origin of skin and peripheral nervous system, a tube of dermal layer of skin hypothetically can be an ideal conduit for nerve reconstruction. An experimental study performed to evaluate the nerve regeneration of efficacy into a dermal tube. METHODS: Sixty male Wistar rats were used. A 10 mm gap was produced in right sciatic nerves. In group A the autogenous nerve grafts were used to bridge the defects. In group B vein conduit were use to reconstruct the gaps. In group C dermal tube were used to bridge the defects. Morphologic studies were carried out after 3 month. RESULTS: The density of nerve fibers was significantly higher in autogenous nerve graft group. The efficacy of nerve growth into the dermal tube group was significantly poor in comparison to other groups. CONCLUSIONS: In the present study, dermis was used as the nerve conduit for the first time. This study indicates that the dermal tube is not a suitable conduit for nerve regeneration till further studies to resolve the problems before clinical application. PMID:21526083

  13. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  14. A photon-driven micromotor can direct nerve fibre growth

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Nieminen, Timo A.; Mohanty, Samarendra; Miotke, Jill; Meyer, Ronald L.; Rubinsztein-Dunlop, Halina; Berns, Michael W.

    2012-01-01

    Axonal path-finding is important in the development of the nervous system, nerve repair and nerve regeneration. The behaviour of the growth cone at the tip of the growing axon determines the direction of axonal growth and migration. We have developed an optical-based system to control the direction of growth of individual axons (nerve fibres) using laser-driven spinning birefringent spheres. One or two optical traps position birefringent beads adjacent to growth cones of cultured goldfish retinal ganglion cell axons. Circularly polarized light with angular momentum causes the trapped bead to spin. This creates a localized microfluidic flow generating an estimated 0.17 pN shear force against the growth cone that turns in response to the shear. The direction of axonal growth can be precisely manipulated by changing the rotation direction and position of this optically driven micromotor. A physical model estimating the shear force density on the axon is described.

  15. Improved peripheral nerve regeneration in streptozotocin-induced diabetic rats by oral lumbrokinase.

    PubMed

    Lee, Han-Chung; Hsu, Yuan-Man; Tsai, Chin-Chuan; Ke, Cherng-Jyh; Yao, Chun-Hsu; Chen, Yueh-Sheng

    2015-01-01

    We assessed the therapeutic effects of lumbrokinase, a group of enzymes extracted from the earthworm, on peripheral-nerve regeneration using well-defined sciatic nerve lesion paradigms in diabetic rats induced by the injection of streptozotocin (STZ). We found that lumbrokinase therapy could improve the rats' circulatory blood flow and promote the regeneration of axons in a silicone rubber conduit after nerve transection. Lumbrokinase treatment could also improve the neuromuscular functions with better nerve conductive performances. Immunohistochemical staining showed that lumbrokinase could dramatically promote calcitonin gene-related peptide (CGRP) expression in the lamina I-II regions in the dorsal horn ipsilateral to the injury and cause a marked increase in the number of macrophages recruited within the distal nerve stumps. In addition, the lumbrokinase could stimulate the secretion of interleukin-1 (IL-1), nerve growth factor (NGF), platelet-derived growth factor (PDGF), and transforming growth factor-β (TGF-β) in dissected diabetic sciatic nerve segments. In conclusion, the administration of lumbrokinase after nerve repair surgery in diabetic rats was found to have remarkable effects on promoting peripheral nerve regeneration and functional recovery. PMID:25787300

  16. Facilitation of facial nerve regeneration using chitosan-β-glycerophosphate-nerve growth factor hydrogel.

    PubMed

    Chao, Xiuhua; Xu, Lei; Li, Jianfeng; Han, Yuechen; Li, Xiaofei; Mao, YanYan; Shang, Haiqiong; Fan, Zhaomin; Wang, Haibo

    2016-06-01

    Conclusion C/GP hydrogel was demonstrated to be an ideal drug delivery vehicle and scaffold in the vein conduit. Combined use autologous vein and NGF continuously delivered by C/GP-NGF hydrogel can improve the recovery of facial nerve defects. Objective This study investigated the effects of chitosan-β-glycerophosphate-nerve growth factor (C/GP-NGF) hydrogel combined with autologous vein conduit on the recovery of damaged facial nerve in a rat model. Methods A 5 mm gap in the buccal branch of a rat facial nerve was reconstructed with an autologous vein. Next, C/GP-NGF hydrogel was injected into the vein conduit. In negative control groups, NGF solution or phosphate-buffered saline (PBS) was injected into the vein conduits, respectively. Autologous implantation was used as a positive control group. Vibrissae movement, electrophysiological assessment, and morphological analysis of regenerated nerves were performed to assess nerve regeneration. Results NGF continuously released from C/GP-NGF hydrogel in vitro. The recovery rate of vibrissae movement and the compound muscle action potentials of regenerated facial nerve in the C/GP-NGF group were similar to those in the Auto group, and significantly better than those in the NGF group. Furthermore, larger regenerated axons and thicker myelin sheaths were obtained in the C/GP-NGF group than those in the NGF group. PMID:26881479

  17. 15d-prostaglandin J2 enhancement of nerve growth factor-induced neurite outgrowth is blocked by the chemoattractant receptor- homologous molecule expressed on T-helper type 2 cells (CRTH2) antagonist CAY10471 in PC12 cells.

    PubMed

    Hatanaka, Michiyoshi; Shibata, Norihiro; Shintani, Norihito; Haba, Ryota; Hayata, Atsuko; Hashimoto, Hitoshi; Baba, Akemichi

    2010-01-01

    The chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) is the most recently identified prostaglandin (PG) receptor for both PGD(2) and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)). We examined the mechanism by which 15d-PGJ(2) enhances nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. CAY10471 (CRTH2 antagonist) inhibited both the neurite-promotion and p38 mitogen-activated protein (MAP) kinase phosphorylation induced by 15d-PGJ(2). In contrast, 13,14-dihydro-15-keto-PGD(2 )(DK-PGD(2)) (selective CRTH2 agonist) stimulated its phosphorylation but failed to produce neurite-promoting effects. These suggest, for the first time, the action of 15d-PGJ(2) is mediated by CRTH2, although the CRTH2 activation alone is insufficient for the underlying action. PMID:20424389

  18. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury.

    PubMed

    Li, Hong-Fei; Wang, Yi-Ru; Huo, Hui-Ping; Wang, Yue-Xiang; Tang, Jie

    2015-11-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration. PMID:26807123

  19. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    PubMed Central

    Li, Hong-fei; Wang, Yi-ru; Huo, Hui-ping; Wang, Yue-xiang; Tang, Jie

    2015-01-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration. PMID:26807123

  20. Nerve growth factor levels and localisation in human asthmatic bronchi.

    PubMed

    Olgart Höglund, C; de Blay, F; Oster, J P; Duvernelle, C; Kassel, O; Pauli, G; Frossard, N

    2002-11-01

    Nerve growth factor (NGF) has recently been suggested to be an important mediator of inflammation. In support of this, serum levels of NGF have been shown to be enhanced in asthmatics. However, it has not yet been shown whether the levels of NGF are also altered locally in asthmatic airways, when compared with healthy subjects, and the localisation of potential sources of NGF in the human bronchus have not yet been described. The aim of the present study was to assess NGF levels in bronchoalveolar lavage fluid (BALF) from asthmatics and to compare them to those of control subjects. Furthermore, the authors wanted to localise potential sources of NGF in bronchial tissue, and to number NGF-immunopositive infiltrating cells in the bronchial submucosa. BALF and bronchial biopsies were obtained from seven control subjects and seven asthmatic patients by fibreoptic bronchoscopy. NGF protein levels were quantified by enzyme-linked immunosorbent assay in BALF. NGF localisation was examined by immunohistochemistry on bronchial biopsy sections. The asthmatics exhibited significantly enhanced NGF levels in BALF. Intense NGF-immunoreactivity was observed in bronchial epithelium, smooth muscle cells and infiltrating inflammatory cells in the submucosa, and to a lesser extent in the connective tissue. The asthmatics exhibited a higher number of NGF-immunoreactive infiltrating cells in the bronchial submucosa than control subjects. This study provides evidence that nerve growth factor is locally produced in the airways, and shows that this production is enhanced in asthmatics. These findings suggest that nerve growth factor is produced by both structural cells and infiltrating inflammatory cells in human bronchus in vivo, and the authors suggest that the increase in nerve growth factor protein in bronchoalveolar lavage fluid observed in asthmatic patients may originate both from structural cells, producing increased nerve growth factor levels in inflammatory conditons, and from

  1. Nerve growth factor enhances Clara cell proliferation after lung injury.

    PubMed

    Sonar, S S; Schwinge, D; Kilic, A; Yildirim, A O; Conrad, M L; Seidler, K; Müller, B; Renz, H; Nockher, W A

    2010-07-01

    The lung epithelia facilitate wound closure by secretion of various cytokines and growth factors. Nerve growth factor (NGF) has been well described in airway inflammation; however, its likely role in lung repair has not been examined thus far. To investigate the repair function of NGF, experiments were performed in vitro using cultured alveolar epithelial cells and in vivo using a naphthalene-induced model of Clara epithelial cell injury. Both in vitro and in vivo experiments revealed airway epithelial cell proliferation following injury to be dependent on NGF and the expression of its receptor, tropomyosin-receptor-kinase A. Additionally, NGF also augmented in vitro migration of alveolar type II cells. In vivo, transgenic mice over-expressing NGF in Clara cells (NGFtg) did not reveal any proliferation or alteration in Clara cell phenotype. However, following Clara cell specific injury, proliferation was increased in NGFtg and impaired upon inhibition of NGF. Furthermore, NGF also promoted the expression of collagen I and fibronectin in vitro and in vivo during repair, where significantly higher levels were measured in re-epithelialising NGFtg mice. Our study demonstrates that NGF promotes the proliferation of lung epithelium in vitro and the renewal of Clara cells following lung injury in vivo. PMID:20075049

  2. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  3. Nerve growth factor mRNA in brain: localization by in situ hybridization

    SciTech Connect

    Rennert, P.D.; Heinrich, G.

    1986-07-31

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons.

  4. Nerve Growth Factor: A Focus on Neuroscience and Therapy

    PubMed Central

    Aloe, Luigi; Rocco, Maria Luisa; Omar Balzamino, Bijorn; Micera, Alessandra

    2015-01-01

    Nerve growth factor (NGF) is the firstly discovered and best characterized neurotrophic factor, known to play a critical protective role in the development and survival of sympathetic, sensory and forebrain cholinergic neurons. NGF promotes neuritis outgrowth both in vivo and in vitro and nerve cell recovery after ischemic, surgical or chemical injuries. Recently, the therapeutic property of NGF has been demonstrated on human cutaneous and corneal ulcers, pressure ulcer, glaucoma, maculopathy and retinitis pigmentosa. NGF eye drops administration is well tolerated, with no detectable clinical evidence of systemic or local adverse effects. The aim of this review is to summarize these biological properties and the potential clinical development of NGF. PMID:26411962

  5. Growth of injured rabbit optic axons within their degenerating optic nerve

    SciTech Connect

    Lavie, V.; Murray, M.; Solomon, A.; Ben-Bassat, S.; Belkin, M.; Rumelt, S.; Schwartz, M. )

    1990-08-15

    Spontaneous growth of axons after injury is extremely limited in the mammalian central nervous system (CNS). It is now clear, however, that injured CNS axons can be induced to elongate when provided with a suitable environment. Thus injured CNS axons can elongate, but they do not do so unless their environment is altered. We now show apparent regenerative growth of injured optic axons. This growth is achieved in the adult rabbit optic nerve by the use of a combined treatment consisting of: (1) supplying soluble substances originating from growing axons to be injured rabbit optic nerves, and (2) application of low energy He-Ne laser irradiation, which appears to delay degenerative changes in the injured axons. Two to 8 weeks after this treatment, unmyelinated and thinly myelinated axons are found at the lesion site and distal to it. Morphological and immunocytochemical evidence indicate that these thinly myelinated and unmyelinated axons are growing in close association with glial cells. Only these axons are identified as being growing axons. These newly growing axons transverse the site of injury and extend into the distal stump of the nerve, which contains degenerating axons. Axons of this type could be detected distal to the lesion only in nerves subjected to the combined treatment. No unmyelinated or thinly myelinated axons in association with glial cells were seen at 6 or 8 weeks postoperatively in nerves that were not treated, or in nerves in which the two stumps were completely disconnected. Two millimeters distal to the site of injury, the growing axons are confined to a compartment comprising 5%-30% of the cross section of the nerve. A temporal analysis indicates that axons have grown as far as 6 mm distal to the site of injury, by 8 weeks postoperatively.

  6. Changes induced by peripheral nerve injury in the morphology and nanomechanics of sensory neurons

    NASA Astrophysics Data System (ADS)

    Benzina, Ouafa; Szabo, Vivien; Lucas, Olivier; Saab, Marie-belle; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla; Martin, Marta

    2013-06-01

    Peripheral nerve injury in vivo promotes a regenerative growth in vitro characterized by an improved neurite regrowth. Knowledge of the conditioning injury effects on both morphology and mechanical properties of live sensory neurons could be instrumental to understand the cellular and molecular mechanisms leading to this regenerative growth. In the present study, we use differential interference contrast microscopy, fluorescence microscopy and atomic force microscopy (AFM) to show that conditioned axotomy, induced by sciatic nerve injury, does not increase somatic size of sensory neurons from adult mice lumbar dorsal root ganglia but promotes the appearance of longer and larger neurites and growth cones. AFM on live neurons is also employed to investigate changes in morphology and membrane mechanical properties of somas of conditioned neurons following sciatic nerve injury. Mechanical analysis of the soma allows distinguishing neurons having a regenerative growth from control ones, although they show similar shapes and sizes.

  7. Effects of medium flow on axon growth with or without nerve growth factor.

    PubMed

    Kumamoto, Junichi; Kitahata, Hiroyuki; Goto, Makiko; Nagayama, Masaharu; Denda, Mitsuhiro

    2015-09-11

    Axon growth is a crucial process in regeneration of damaged nerves. On the other hand, elongation of nerve fibers in the epidermis has been observed in skin of atopic dermatitis patients. Thus, regulation of nerve fiber extension might be an effective strategy to accelerate nerve regeneration and/or to reduce itching in pruritus dermatosis. We previously demonstrated that neurons and epidermal keratinocytes similarly contain multiple receptors that are activated by various environmental factors, and in particular, keratinocytes are influenced by shear stress. Thus, in the present study, we evaluated the effects of micro-flow of the medium on axon growth in the presence or absence of nerve growth factor (NGF), using cultured dorsal-root-ganglion (DRG) cells. The apparatus, AXIS™, consists of two chambers connected by a set of microgrooves, through which signaling molecules and axons, but not living cells, can pass. When DRG cells were present in chamber 1, NGF was present in chamber 2, and micro-flow was directed from chamber 1 to chamber 2, axon growth was significantly increased compared with other conditions. Acceleration of axon growth in the direction of the micro-flow was also observed in the absence of NGF. These results suggest that local micro-flow might significantly influence axon growth. PMID:26212442

  8. BREAST CANCER-INDUCED BONE REMODELING, SKELETAL PAIN AND SPROUTING OF SENSORY NERVE FIBERS

    PubMed Central

    Bloom, Aaron P.; Jimenez-Andrade, Juan M.; Taylor, Reid N.; Castañeda-Corral, Gabriela; Kaczmarska, Magdalena J.; Freeman, Katie T.; Coughlin, Kathleen A.; Ghilardi, Joseph R.; Kuskowski, Michael A.; Mantyh, Patrick W.

    2011-01-01

    Breast cancer metastasis to bone is frequently accompanied by pain. What remains unclear is why this pain tends to become more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression sensory nerve fibers that innervate the breast cancer bearing bone undergo a pathological sprouting and reorganization, which in other non-malignant pathologies has been shown to generate and maintain chronic pain. Injection of human breast cancer cells (MDA-MB-231-BO) into the femoral intramedullary space of female athymic nude mice induces sprouting of calcitonin gene-related peptide (CGRP+) sensory nerve fibers. Nearly all CGRP+ nerve fibers that undergo sprouting also co-express tropomyosin receptor kinase A (TrkA+) and growth associated protein-43 (GAP43+). This ectopic sprouting occurs in periosteal sensory nerve fibers that are in close proximity to breast cancer cells, tumor-associated stromal cells and remodeled cortical bone. Therapeutic treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. The present data suggest that the breast cancer cells and tumor-associated stromal cells express and release NGF, which drives bone pain and the pathological reorganization of nearby CGRP+ / TrkA+ / GAP43+ sensory nerve fibers. PMID:21497141

  9. Bicycling induced pudendal nerve pressure neuropathy.

    PubMed

    Silbert, P L; Dunne, J W; Edis, R H; Stewart-Wynne, E G

    1991-01-01

    Pudendal neuropathies are well recognised as part of more generalised peripheral neuropathies; however, focal abnormalities of the pudendal nerve due to cycling-related injuries have been infrequently reported. We describe two patients who developed pudendal neuropathies secondary to pressure effects on the perineum from racing-bicycle saddles. Both were male competitive athletes, one of whom developed recurrent numbness of the penis and scrotum after prolonged cycling; the other developed numbness of the penis, an altered sensation of ejaculation, with disturbance of micturition and reduced awareness of defecation. Both patients improved with alterations in saddle position and riding techniques. We conclude that pudendal nerve pressure neuropathy can result from prolonged cycling, particularly when using a poor riding technique. PMID:1821826

  10. Nerve agent-induced seizures and their pharmacological modulation

    SciTech Connect

    McDonough, J.H.; Shih, T.M.; Adams, N.L.; Koviak, T.A.; Cook, L.A.

    1993-05-13

    Intoxication with nerve agents produces prolonged central nervous system seizures (status epilepticus) that can produce irreversible brain pathology (15). This report summarizes our recent findings regarding the neurotransmitter changes that occur in discrete brain regions as a function of seizure duration and the differential effectiveness of anticholinergic, benzodiazepine and excitatory amino acid (EAA) antagonist drugs in terminating soman-induced seizures when given at different times after seizure onset. These results are discussed in relation to a model we have proposed to explain the sequence of electrophysiological, biochemical and neurochemical events and mechanisms controlling nerve agent-induced seizures.

  11. Computation of induced electric field for the sacral nerve activation

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Hattori, Junya; Laakso, Ilkka; Takagi, Airi; Shimada, Takuo

    2013-11-01

    The induced electric field/current in the sacral nerve by stimulation devices for the treatment of bladder overactivity is investigated. Implanted and transcutaneous electrode configurations are considered. The electric field induced in the sacral nerve by the implanted electrode is largely affected by its surrounding tissues, which is attributable to the variation in the input impedance of the electrode. In contrast, the electric field induced by the transcutaneous electrode is affected by the tissue conductivity and anatomical composition of the body. In addition, the electric field induced in the subcutaneous fat in close proximity of the electrode is comparable with the estimated threshold electric field for pain. These computational findings explain the clinically observed weakness and side effect of each configuration. For the transcutaneous stimulator, we suggest that the electrode contact area be increased to reduce the induced electric field in the subcutaneous fat.

  12. A Review of Bioactive Release from Nerve Conduits as a Neurotherapeutic Strategy for Neuronal Growth in Peripheral Nerve Injury

    PubMed Central

    Choonara, Yahya E.; Bijukumar, Divya; du Toit, Lisa C.

    2014-01-01

    Peripheral nerve regeneration strategies employ the use of polymeric engineered nerve conduits encompassed with components of a delivery system. This allows for the controlled and sustained release of neurotrophic growth factors for the enhancement of the innate regenerative capacity of the injured nerves. This review article focuses on the delivery of neurotrophic factors (NTFs) and the importance of the parameters that control release kinetics in the delivery of optimal quantities of NTFs for improved therapeutic effect and prevention of dose dumping. Studies utilizing various controlled-release strategies, in attempt to obtain ideal release kinetics, have been reviewed in this paper. Release strategies discussed include affinity-based models, crosslinking techniques, and layer-by-layer technologies. Currently available synthetic hollow nerve conduits, an alternative to the nerve autografts, have proven to be successful in the bridging and regeneration of primarily the short transected nerve gaps in several patient cases. However, current research emphasizes on the development of more advanced nerve conduits able to simulate the effectiveness of the autograft which includes, in particular, the ability to deliver growth factors. PMID:25143934

  13. Peripheral Nerve Repair in Rats Using Composite Hydrogel-Filled Aligned Nanofiber Conduits with Incorporated Nerve Growth Factor

    PubMed Central

    Jin, Jenny; Limburg, Sonja; Joshi, Sunil K.; Landman, Rebeccah; Park, Michelle; Zhang, Qia; Kim, Hubert T.

    2013-01-01

    Repair of peripheral nerve defects with current synthetic, tubular nerve conduits generally shows inferior recovery when compared with using nerve autografts, the current gold standard. We tested the ability of composite collagen and hyaluronan hydrogels, with and without the nerve growth factor (NGF), to stimulate neurite extension on a promising aligned, nanofiber poly-L-lactide-co-caprolactone (PLCL) scaffold. In vitro, the hydrogels significantly increased neurite extension from dorsal root ganglia explants. Consistent with these results, the addition of hydrogels as luminal fillers within aligned, nanofiber tubular PLCL conduits led to improved sensory function compared to autograft repair in a critical-size defect in the sciatic nerve in a rat model. Sensory recovery was assessed 3 and 12 weeks after repair using a withdrawal assay from thermal stimulation. The addition of hydrogel did not enhance recovery of motor function in the rat model. The NGF led to dose-dependent improvements in neurite out-growth in vitro, but did not have a significant effect in vivo. In summary, composite collagen/hyaluronan hydrogels enhanced sensory neurite outgrowth in vitro and sensory recovery in vivo. The use of such hydrogels as luminal fillers for tubular nerve conduits may therefore be useful in assisting restoration of protective sensation following peripheral nerve injury. PMID:23659607

  14. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration

    PubMed Central

    Ali, Sumia; Driscoll, Heather E.; Newton, Victoria L.; Gardiner, Natalie J.

    2014-01-01

    Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using

  15. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration.

    PubMed

    Ali, Sumia; Driscoll, Heather E; Newton, Victoria L; Gardiner, Natalie J

    2014-11-01

    Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using

  16. The nerve of ovulation-inducing factor in semen

    PubMed Central

    Ratto, Marcelo H.; Leduc, Yvonne A.; Valderrama, Ximena P.; van Straaten, Karin E.; Delbaere, Louis T. J.; Pierson, Roger A.; Adams, Gregg P.

    2012-01-01

    A component in seminal fluid elicits an ovulatory response and has been discovered in every species examined thus far. The existence of an ovulation-inducing factor (OIF) in seminal plasma has broad implications and evokes questions about identity, tissue sources, mechanism of action, role among species, and clinical relevance in infertility. Most of these questions remain unanswered. The goal of this study was to determine the identity of OIF in support of the hypothesis that it is a single distinct and widely conserved entity. Seminal plasma from llamas and bulls was used as representative of induced and spontaneous ovulators, respectively. A fraction isolated from llama seminal plasma by column chromatography was identified as OIF by eliciting luteinizing hormone (LH) release and ovulation in llamas. MALDI-TOF revealed a molecular mass of 13,221 Da, and 12–23 aa sequences of OIF had homology with human, porcine, bovine, and murine sequences of β nerve growth factor (β-NGF). X-ray diffraction data were used to solve the full sequence and structure of OIF as β-NGF. Neurite development and up-regulation of trkA in phaeochromocytoma (PC12) cells in vitro confirmed NGF-like properties of OIF. Western blot analysis of llama and bull seminal plasma confirmed immunorecognition of OIF using polyclonal mouse anti-NGF, and administration of β-NGF from mouse submandibular glands induced ovulation in llamas. We conclude that OIF in seminal plasma is β-NGF and that it is highly conserved. An endocrine route of action of NGF elucidates a previously unknown pathway for the direct influence of the male on the hypothalamo–pituitary–gonadal axis of the inseminated female. PMID:22908303

  17. Endodontic periapical lesion-induced mental nerve paresthesia

    PubMed Central

    Shadmehr, Elham; Shekarchizade, Neda

    2015-01-01

    Paresthesia is a burning or prickling sensation or partial numbness, resulting from neural injury. The symptoms can vary from mild neurosensory dysfunction to total loss of sensation in the innervated area. Only a few cases have described apical periodontitis to be the etiological factor of impaired sensation in the area innervated by the inferior alveolar and mental nerves. The aim of the present paper is to report a case of periapical lesion-induced paresthesia in the innervation area of the mental nerve, which was successfully treated with endodontic retreatment. PMID:25878687

  18. Endodontic periapical lesion-induced mental nerve paresthesia.

    PubMed

    Shadmehr, Elham; Shekarchizade, Neda

    2015-01-01

    Paresthesia is a burning or prickling sensation or partial numbness, resulting from neural injury. The symptoms can vary from mild neurosensory dysfunction to total loss of sensation in the innervated area. Only a few cases have described apical periodontitis to be the etiological factor of impaired sensation in the area innervated by the inferior alveolar and mental nerves. The aim of the present paper is to report a case of periapical lesion-induced paresthesia in the innervation area of the mental nerve, which was successfully treated with endodontic retreatment. PMID:25878687

  19. Glucagon Release Induced by Pancreatic Nerve Stimulation in the Dog

    PubMed Central

    Marliss, Errol B.; Girardier, Lucien; Seydoux, Josiane; Wollheim, Claes B.; Kanazawa, Yasunori; Orci, Lelio; Renold, Albert E.; Porte, Daniel

    1973-01-01

    A direct neural role in the regulation of immunoreactive glucagon (IRG) secretion has been investigated during stimulation of mixed autonomic nerves to the pancreas in anesthetized dogs. The responses were evaluated by measurement of blood flow and hormone concentration in the venous effluent from the stimulated region of pancreas. Electrical stimulation of the distal end of the discrete bundles of nerve fibers isolated along the superior pancreaticoduodenal artery was invariably followed by an increase in IRG output. With 10-min periods of nerve stimulation, the integrated response showed that the higher the control glucagon output, the greater was the increment. Atropinization did not influence the response to stimulation. That the preparation behaved in physiologic fashion was confirmed by a fall in IRG output, and a rise in immunoreactive insulin (IRI) output, during hyperglycemia induced by intravenous glucose (0.1 g/kg). The kinetics of this glucose effect on IRG showed characteristics opposite to those of nerve stimulation: the lower the control output, the less the decrement. Furthermore, during the control steady state, blood glucose concentration was tightly correlated with the IRI/IRG molar output ratio, the function relating the two parameters being markedly nonlinear. Injection or primed infusion of glucose diminished the IRG response to simultaneous nerve stimulation. Measurement of IRG was inferred to reflect response of pancreatic glucagon secretion on the basis of the site of sample collection (the superior pancreaticoduodenal vein), the absence of changes in arterial IRG, and similar responses being obtained using an antibody specific for pancreatic glucagon. These studies support a role for the autonomic nervous system in the control of glucagon secretion: direct nerve stimulation induces glucagon release. Such sympathetic activation may be interpreted as capable of shifting the sensitivity of the A cell to glucose in the direction of higher

  20. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  1. Mouse nerve growth factor gene: structure and expression.

    PubMed Central

    Selby, M J; Edwards, R; Sharp, F; Rutter, W J

    1987-01-01

    The organization and biologically significant sequences of the entire mouse nerve growth factor (NGF) gene have been determined. The gene spans 45 kilobases and contains several small 5' exons. Transcription of the gene results in four different mRNA species, which can be accounted for by alternative splicing and independent initiation from two promoters. These transcripts encode proteins which have divergent N termini and the NGF moiety at their C termini. The levels of the various NGF transcripts have been determined in different tissues and throughout postnatal development. We have also examined the expression of these transcripts in the brain in response to specific early sensory deprivation. The results suggest that the expression of NGF mRNA during postnatal development is regulated independently of the formation of complex neural networks. Images PMID:3670305

  2. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Peng; Luo, Shiwen; Zhang, Minhong; Hu, Guohui; Liu, Hongbing; Zhang, Yiwei; Cao, Bo; Baddoo, Melody; Flemington, Erik K; Zeng, Shelya X; Lu, Hua

    2016-01-01

    Cancer develops and progresses often by inactivating p53. Here, we unveil nerve growth factor receptor (NGFR, p75NTR or CD271) as a novel p53 inactivator. p53 activates NGFR transcription, whereas NGFR inactivates p53 by promoting its MDM2-mediated ubiquitin-dependent proteolysis and by directly binding to its central DNA binding domain and preventing its DNA-binding activity. Inversely, NGFR ablation activates p53, consequently inducing apoptosis, attenuating survival, and reducing clonogenic capability of cancer cells, as well as sensitizing human cancer cells to chemotherapeutic agents that induce p53 and suppressing mouse xenograft tumor growth. NGFR is highly expressed in human glioblastomas, and its gene is often amplified in breast cancers with wild type p53. Altogether, our results demonstrate that cancers hijack NGFR as an oncogenic inhibitor of p53. DOI: http://dx.doi.org/10.7554/eLife.15099.001 PMID:27282385

  3. Snoring-Induced Nerve Lesions in the Upper Airway

    PubMed Central

    Poothrikovil, Rajesh P; Al Abri, Mohammed A

    2012-01-01

    The prevalence of habitual snoring is extremely high in the general population, and is reported to be roughly 40% in men and 20% in women. The low-frequency vibrations of snoring may cause physical trauma and, more specifically, peripheral nerve injuries, just as jobs which require workers to use vibrating tools over the course of many years result in local nerve lesions in the hands. Histopathological analysis of upper airway (UA) muscles have shown strong evidence of a varying severity of neurological lesions in groups of snoring patients. Neurophysiological assessment shows evidence of active and chronic denervation and re-innervation in the palatopharyngeal muscles of obstructive sleep apnoea (OSA) patients. Neurogenic lesions of UA muscles induced by vibration trauma impair the reflex dilation abilities of the UA, leading to an increase in the possibility of UA collapse. The neurological factors which are partly responsible for the progressive nature of OSAS warrant the necessity of early assessment in habitual snorers. PMID:22548134

  4. Gamma Knife Irradiation of Injured Sciatic Nerve Induces Histological and Behavioral Improvement in the Rat Neuropathic Pain Model

    PubMed Central

    Yagasaki, Yuki; Hayashi, Motohiro; Tamura, Noriko; Kawakami, Yoriko

    2013-01-01

    We examined the effects of gamma knife (GK) irradiation on injured nerves using a rat partial sciatic nerve ligation (PSL) model. GK irradiation was performed at one week after ligation and nerve preparations were made three weeks after ligation. GK irradiation is known to induce immune responses such as glial cell activation in the central nervous system. Thus, we determined the effects of GK irradiation on macrophages using immunoblot and histochemical analyses. Expression of Iba-1 protein, a macrophage marker, was further increased in GK-treated injured nerves as compared with non-irradiated injured nerves. Immunohistochemical study of Iba-1 in GK-irradiated injured sciatic nerves demonstrated Iba-1 positive macrophage accumulation to be enhanced in areas distal to the ligation point. In the same area, myelin debris was also more efficiently removed by GK-irradiation. Myelin debris clearance by macrophages is thought to contribute to a permissive environment for axon growth. In the immunoblot study, GK irradiation significantly increased expressions of βIII-tubulin protein and myelin protein zero, which are markers of axon regeneration and re-myelination, respectively. Toluidine blue staining revealed the re-myelinated fiber diameter to be larger at proximal sites and that the re-myelinated fiber number was increased at distal sites in GK-irradiated injured nerves as compared with non-irradiated injured nerves. These results suggest that GK irradiation of injured nerves facilitates regeneration and re-myelination. In a behavior study, early alleviation of allodynia was observed with GK irradiation in PSL rats. When GK-induced alleviation of allodynia was initially detected, the expression of glial cell line-derived neurotrophic factor (GDNF), a potent analgesic factor, was significantly increased by GK irradiation. These results suggested that GK irradiation alleviates allodynia via increased GDNF. This study provides novel evidence that GK irradiation of

  5. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  6. Retrograde axonal transport of /sup 125/I-nerve growth factor in rat ileal mesenteric nerves. Effect of streptozocin diabetes

    SciTech Connect

    Schmidt, R.E.; Plurad, S.B.; Saffitz, J.E.; Grabau, G.G.; Yip, H.K.

    1985-12-01

    The retrograde axonal transport of intravenously (i.v.) administered /sup 125/I-nerve growth factor (/sup 125/I-NGF) was examined in mesenteric nerves innervating the small bowel of rats with streptozocin (STZ) diabetes using methods described in detail in the companion article. The accumulation of /sup 125/I-NGF distal to a ligature on the ileal mesenteric nerves of diabetic animals was 30-40% less than in control animals. The inhibition of accumulation of /sup 125/I-NGF in diabetic animals was greater at a ligature tied 2 h after i.v. administration than at a ligature tied after 14 h, which suggests that the diabetic animals may have a lag in initiation of NGF transport in the terminal axon or retardation of transport at some site along the axon. The /sup 125/I-NGF transport defect was observed as early as 3 days after the induction of diabetes, a time before the development of structural axonal lesions, and did not worsen at later times when dystrophic axonopathy is present. Both the ileal mesenteric nerves, which eventually develop dystrophic axonopathy in experimental diabetes, and the jejunal mesenteric nerves, which never develop comparable structural alterations, showed similar /sup 125/I-NGF transport deficits, suggesting that the existence of the transport abnormality does not predict the eventual development of dystrophic axonal lesions. Autoradiographic localization of /sup 125/I-NGF in the ileal mesenteric nerves of animals that had been diabetic for 11-13 mo demonstrated decreased amounts of /sup 125/I-NGF in transit in unligated paravascular nerve fascicles. There was, however, no evidence for focal retardation of transported /sup 125/I-NGF at the sites of dystrophic axonal lesions.

  7. Anti-nerve growth factor in pain management: current evidence

    PubMed Central

    Chang, David S; Hsu, Eugene; Hottinger, Daniel G; Cohen, Steven P

    2016-01-01

    There continues to be an unmet need for safe and effective pain medications. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) dominate the clinical landscape despite limited effectiveness and considerable side-effect profiles. Although significant advancements have identified myriad potential pain targets over the past several decades, the majority of new pain pharmacotherapies have failed to come to market. The discovery of nerve growth factor (NGF) and its interaction with tropomyosin receptor kinase A (trkA) have been well characterized as important mediators of pain initiation and maintenance, and pharmacotherapies targeting this pathway have the potential to be considered promising methods in the treatment of a variety of nociceptive and neuropathic pain conditions. Several methodologic approaches, including sequestration of free NGF, prevention of NGF binding and trkA activation, and inhibition of trkA function, have been investigated in the development of new pharmacotherapies. Among these, NGF-sequestering antibodies have exhibited the most promise in clinical trials. However, in 2010, reports of rapid joint destruction leading to joint replacement prompted the US Food and Drug Administration (FDA) to place a hold on all clinical trials involving anti-NGF antibodies. Although the FDA has since lifted this hold and a number of new trials are under way, the long-term efficacy and safety profile of anti-NGF antibodies are yet to be established. PMID:27354823

  8. Influence of congenital facial nerve palsy on craniofacial growth in craniofacial microsomia.

    PubMed

    Choi, Jaehoon; Park, Sang Woo; Kwon, Geun-Yong; Kim, Sang-Hyun; Hur, Ji An; Baek, Seung-Hak; Kim, Jae Chan; Choi, Tae Hyun; Kim, Sukwha

    2014-11-01

    Facial muscles are of major importance in human craniofacial growth and development. The purpose of our study was to investigate whether congenital facial nerve palsy influences craniofacial growth in craniofacial microsomia. Fifty-one patients with unilateral craniofacial microsomia and no history of craniofacial skeletal surgery whose radiographs were taken after craniofacial growth was complete were included in this study. These patients were divided into groups in which the facial nerve was involved or uninvolved. The authors evaluated a total of seven measurement items to analyze the midface and mandibular asymmetry. Twenty patients had facial nerve involvement, and 31 had no involvement. None of the measurement items revealed any significant differences between the facial nerve-involved group and the uninvolved group within the same modified Pruzansky grade. There was no correlation between the type of facial nerve involvement and the measurement items. In relationships among the measurement items within each group, maxillary asymmetry was indirectly correlated with mandibular asymmetry or midline deviation through the occlusal plane angle in the uninvolved groups. However, in the facial nerve-involved group, the relationships disappeared. When the correlations in the facial nerve-involved group were compared with those of the uninvolved group, the relationships in the uninvolved group appeared more significant than in the facial nerve-involved group. The loss of relationships between the upper and lower jaw in the facial nerve-involved group might have been caused by subtle changes, which occur in midfacial bones and in the mandible due to facial nerve palsy. The main limitation of our study is that aside from facial nerve palsy, craniofacial microsomia has many factors that can influence craniofacial growth, such as hypoplasia of the mandibular condyle and soft tissue deficiencies. PMID:25210001

  9. The Glucuronyltransferase GlcAT-P Is Required for Stretch Growth of Peripheral Nerves in Drosophila

    PubMed Central

    Pandey, Rahul; Blanco, Jorge; Udolph, Gerald

    2011-01-01

    During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail. PMID:22132223

  10. Growth-regulated synthesis and secretion of biologically active nerve growth factor by human keratinocytes.

    PubMed

    Di Marco, E; Marchisio, P C; Bondanza, S; Franzi, A T; Cancedda, R; De Luca, M

    1991-11-15

    Nerve growth factor (NGF) transcripts were identified in normal human keratinocytes in primary and secondary culture. The expression of the NGF mRNA was strongly down-regulated by corticosteroids and was maximal when keratinocytes were in the exponential phase of growth. Immunofluorescence studies on growing keratinocytes colonies and on elutriated keratinocytes obtained from growing colonies and mature stratified epithelium showed specific staining of the Golgi apparatus only in basal keratinocytes in the exponential phase of growth. The keratinocyte-derived NGF was secreted in a biologically active form as assessed by neurite induction in sensory neurons obtained from chick embryo dorsal root ganglia. Based on these data we suggest that the basal keratinocyte is the cell synthesizing and secreting NGF in the human adult epidermis. The paracrine secretion of NGF by keratinocytes might have a major role in regulating innervation, lymphocyte function, and melanocyte growth and differentiation in epidermal morphogenesis as well as during wound healing. PMID:1718982

  11. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    EPA Science Inventory

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  12. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance

    PubMed Central

    Turney, Stephen G.; Ahmed, Mostafa; Chandrasekar, Indra; Wysolmerski, Robert B.; Goeckeler, Zoe M.; Rioux, Robert M.; Whitesides, George M.; Bridgman, Paul C.

    2016-01-01

    Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion–cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation. PMID:26631553

  13. Administration of a tropomyosin receptor kinase inhibitor attenuates sarcoma-induced nerve sprouting, neuroma formation and bone cancer pain

    PubMed Central

    2010-01-01

    Pain often accompanies cancer and most current therapies for treating cancer pain have significant unwanted side effects. Targeting nerve growth factor (NGF) or its cognate receptor tropomyosin receptor kinase A (TrkA) has become an attractive target for attenuating chronic pain. In the present report, we use a mouse model of bone cancer pain and examine whether oral administration of a selective small molecule Trk inhibitor (ARRY-470, which blocks TrkA, TrkB and TrkC kinase activity at low nm concentrations) has a significant effect on cancer-induced pain behaviors, tumor-induced remodeling of sensory nerve fibers, tumor growth and tumor-induced bone remodeling. Early/sustained (initiated day 6 post cancer cell injection), but not late/acute (initiated day 18 post cancer cell injection) administration of ARRY-470 markedly attenuated bone cancer pain and significantly blocked the ectopic sprouting of sensory nerve fibers and the formation of neuroma-like structures in the tumor bearing bone, but did not have a significant effect on tumor growth or bone remodeling. These data suggest that, like therapies that target the cancer itself, the earlier that the blockade of TrkA occurs, the more effective the control of cancer pain and the tumor-induced remodeling of sensory nerve fibers. Developing targeted therapies that relieve cancer pain without the side effects of current analgesics has the potential to significantly improve the quality of life and functional status of cancer patients. PMID:21138586

  14. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor.

    PubMed

    De Santis, S; Pace, A; Bove, L; Cognetti, F; Properzi, F; Fiore, M; Triaca, V; Savarese, A; Simone, M D; Jandolo, B; Manzione, L; Aloe, L

    2000-01-01

    The aim of our study was to explore whether nerve growth factor (NGF) plays any role in the development of peripheral neuropathy induced by anticancer treatment. We measured the circulating NGF levels in 23 cancer patients before and after chemotherapy. We evaluated whether the development of peripheral neurotoxicity was associated with changes in basal NGF concentrations in patients studied with a comprehensive neurological and neurophysiological examination. The results of these studies showed that the circulating levels of NGF, which are about 20 pg/ml in plasma of controls, decrease during chemotherapy and in some cases completely disappeared after prolonged treatment with antitumor agents. The decrease in NGF levels seems to be correlated with the severity of neurotoxicity. These results clearly suggest that NGF might become a useful agent to prevent neuropathies induced by antineoplastic drugs and restore peripheral nerve dysfunction induced by these pharmacological compounds. PMID:10656436

  15. Genes that guide growth cones along the C. elegans ventral nerve cord.

    PubMed

    Wightman, B; Baran, R; Garriga, G

    1997-07-01

    During nervous system development, growth cone pioneering and fasciculation contribute to nerve bundle structure. Pioneer growth cones initially navigate along neuroglia to establish an axon scaffold that guides later extending growth cones. In C. elegans, the growth cone of the PVPR neuron pioneers the left ventral nerve cord bundle, providing a path for the embryonic extensions of the PVQL and AVKR growth cones. Later during larval development, the HSNL growth cone follows cues in the left ventral nerve cord bundle provided by the PVPR and PVQL axons. Here we show that mutations in the genes enu-1, fax-1, unc-3, unc-30, unc-42 and unc-115 disrupt pathfinding of growth cones along the left ventral nerve cord bundle. Our results indicate that unc-3 and unc-30 function in ventral nerve cord pioneering and that enu-1, fax-1, unc-42 and unc-115 function in recognition of the PVPR and PVQL axons by the AVKR and HSNL growth cones. PMID:9216999

  16. Nerve growth factor facilitates redistribution of adrenergic and non-adrenergic non-cholinergic perivascular nerves injured by phenol in rat mesenteric resistance arteries.

    PubMed

    Yokomizo, Ayako; Takatori, Shingo; Hashikawa-Hobara, Narumi; Goda, Mitsuhiro; Kawasaki, Hiromu

    2016-01-01

    We previously reported that nerve growth factor (NGF) facilitated perivascular sympathetic neuropeptide Y (NPY)- and calcitonin gene-related peptide (CGRP)-containing nerves injured by the topical application of phenol in the rat mesenteric artery. We also demonstrated that mesenteric arterial nerves were distributed into tyrosine hydroxylase (TH)-, substance P (SP)-, and neuronal nitric oxide synthase (nNOS)-containing nerves, which had axo-axonal interactions. In the present study, we examined the effects of NGF on phenol-injured perivascular nerves, including TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves, in rat mesenteric arteries in more detail. Wistar rats underwent the in vivo topical application of 10% phenol to the superior mesenteric artery, proximal to the abdominal aorta, under pentobarbital-Na anesthesia. The distribution of perivascular nerves in the mesenteric arteries of the 2nd to 3rd-order branches isolated from 8-week-old Wistar rats was investigated immunohistochemically using antibodies against TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves. The topical phenol treatment markedly reduced the density of all nerves in these arteries. The administration of NGF at a dose of 20µg/kg/day with an osmotic pump for 7 days significantly increased the density of all perivascular nerves over that of sham control levels. These results suggest that NGF facilitates the reinnervation of all perivascular nerves injured by phenol in small resistance arteries. PMID:26671004

  17. Neuroprotective role of nerve growth factor in hypoxicischemic injury. From brain to skin.

    PubMed

    Chiaretti, Antonio; Falsini, Benedetto; Aloe, Luigi; Pierri, Filomena; Fantacci, Claudia; Riccardi, Riccardo

    2011-06-01

    Hypoxic-ischemic injuries (HII) of the brain, optic pathways, and skin are frequently associated with poor neurological and clinical outcome. Unfortunately, no new therapeutic approaches have been proposed for these conditions. Recently, experimental and clinical studies showed that nerve growth factor (NGF) can improve neurological deficits, visual loss and skin damage after HII. Based on these studies, we report the effects of NGF administration in different lesions of the brain, optic pathways and skin. 2.5S NGF purified and lyophilized from male mouse submaxillary glands was utilized for the treatment. NGF administration was started in absence of recovery after conventional and standardized treatment. One mg NGF was administered via the external catheter into the brain, by drop administration in the eye, and by subcutaneous administration in the skin. We treated 4 patients: 2 children with hypoxic-ischemic brain damage, an adult patient with an optic glioma-induced visual loss and a child with a severe crush syndrome of the lower left limb. After NGF treatment, we observed an amelioration of both neurological and electrophysiological function of the brain, a subjective and objective improvement of visual function, and a gradual improvement of ischemic skin lesion. No side effects were related to NGF treatment in all patients studied. Our observation shows that NGF administration may be an effective and safe adjunct therapy in patients with severe HII. The beneficial and prolonged effect on nerve function suggests a neuroprotective mechanism exerted by NGF on the residual viable neurological pathways of these patients. PMID:21702000

  18. Nerve Growth Factor Inhibits Sympathetic Neurons' Response to an Injury Cytokine

    NASA Astrophysics Data System (ADS)

    Shadiack, Annette M.; Vaccariello, Stacey A.; Sun, Yi; Zigmond, Richard E.

    1998-06-01

    Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.

  19. A nerve growth factor peptide retards seizure development and inhibits neuronal sprouting in a rat model of epilepsy.

    PubMed Central

    Rashid, K; Van der Zee, C E; Ross, G M; Chapman, C A; Stanisz, J; Riopelle, R J; Racine, R J; Fahnestock, M

    1995-01-01

    Kindling, an animal model of epilepsy wherein seizures are induced by subcortical electrical stimulation, results in the upregulation of neurotrophin mRNA and protein in the adult rat forebrain and causes mossy fiber sprouting in the hippocampus. Intraventricular infusion of a synthetic peptide mimic of a nerve growth factor domain that interferes with the binding of neurotrophins to their receptors resulted in significant retardation of kindling and inhibition of mossy fiber sprouting. These findings suggest a critical role for neurotrophins in both kindling and kindling-induced synaptic reorganization. Images Fig. 2 PMID:7568161

  20. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    PubMed Central

    Xiong, Liu-lin; Chen, Zhi-wei; Wang, Ting-hua

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews. PMID:27212919

  1. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    PubMed

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews. PMID:27212919

  2. Minocycline inhibits the production of the precursor form of nerve growth factor by retinal microglial cells☆

    PubMed Central

    Yang, Xiaochun; Duan, Xuanchu

    2013-01-01

    A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into rats immediately after the operation for 3 consecutive days. Immunofluorescence, western blot assay and PCR detection revealed that the expression of the precursor form of nerve growth factor, nerve growth factor and the p75 neurotrophin receptor, and the mRNA expression of nerve growth factor and the p75 neurotrophin receptor, increased after acute ocular hypertension. The number of double-labeled CD11B- and precursor form of nerve growth factor-positive cells, glial fibrillary acidic protein- and p75 neurotrophin receptor-positive cells, glial fibrillary acidic protein- and caspase-3-positive cells in the retina markedly increased after acute ocular hypertension. The above-described expression decreased after minocycline treatment. These results suggested that minocycline inhibited the increased expression of the precursor form of nerve growth factor in microglia, the p75 neurotrophin receptor in astroglia, and protected cells from apoptosis. PMID:25206672

  3. Interaction of myenteric neurons and extrinsic nerves in the intestinal inhibitory response induced by mesenteric nerve stimulation.

    PubMed

    Yamasato, T; Nakayama, S

    1991-04-01

    Effects of the mesenteric nerve stimulation (MNS) on the twitch contraction induced by field stimulation were investigated regarding the relationship between myenteric neurons and extrinsic cholinergic nerves in the guinea-pig mesenteric nerve-ileal preparation. The twitch contraction was inhibited after MNS. The inhibition of the twitch contraction after MNS was induced twice, just after MNS (1st inhibition) and 2-3 min later (2nd inhibition) (type I), or once, just after MNS (1st inhibition) (type II), in recovery course of twitch contraction for 6-8 min. The 1st inhibition was slightly decreased by guanethidine and hexamethonium. The inhibitory response (1st inhibition) in both types I and II was recovered to the control level by pretreatment with naloxone (recovered twitch contraction), but the late inhibitory response (2nd inhibition) was markedly observed after 2-3 min in types I and II. Either the 1st or the 2nd inhibition was not altered by capsaicin, desensitization to calcitonin gene-related polypeptide (CGRP), vasoactive intestinal polypeptide (VIP), somatostatin, or galanin. The recovered twitch contraction in types I and II was decreased by CGRP-desensitization, or capsaicin. These results suggest that the first inhibitory response was induced by enteric opioid neurons connected with extrinsic cholinergic nerves, but the 2nd inhibition was induced by unknown substances other than CGRP, VIP, somatostatin, and galanin. The twitch contraction may partly be induced by endogenous neurokinin-like substances. And, some CGRP containing neurons, which connect with extrinsic cholinergic nerves, probably activate the intrinsic excitatory neurons. PMID:1678243

  4. Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells.

    PubMed Central

    Koike, T; Martin, D P; Johnson, E M

    1989-01-01

    Sympathetic neurons depend on nerve growth factor (NGF) for their survival both in vivo and in vitro; these cells die upon acute deprivation of NGF. We studied the effects of agents that cause membrane depolarization on neuronal survival after NGF deprivation. High-K+ medium (greater than or equal to 33 mM) prevented cell death; the effect of K+ was dose-dependent (EC50 = 21 mM). The protection by high K+ was abolished either by withdrawal of extracellular Ca2+ or by preloading the cells with a Ca2+ chelator. The involvement of Ca2+ flux across membranes in high-K+ saving of NGF-deprived neurons was also supported by experiments using Ca2+-channel antagonists and agonists. The Ca2+ antagonists nimodipine and nifedipine effectively blocked the survival-promoting effect of high K+. The Ca2+ agonists Bay K 8644 and (S)-202-791 did not by themselves save neurons from NGF deprivation but did strongly augment the effect of high K+; EC50 was shifted from 21 mM to 13 mM. These data suggest that dihydropyridine-sensitive L-type Ca2+ channels play a major role in the high-K+ saving. The depolarizing agents choline (EC50 = 1 mM) and carbamoylcholine (EC50 = 1 microM), acting through nicotinic cholinergic receptors, also rescued NGF-deprived neurons. The saving effect of nicotinic agonists was not blocked by withdrawal of extracellular Ca2+ but was counteracted by a chelator of intracellular Ca2+, suggesting the possible involvement of Ca2+ release from internal stores. Based on these findings we propose a "Ca2+ set-point hypothesis" for the degree of trophic-factor dependence of sympathetic neurons in vitro. Images PMID:2548215

  5. The trk Tyrosine Protein Kinase Mediates the Mitogenic Properties of Nerve Growth Factor and Neurotrophin-3

    PubMed Central

    Cordon-Cardo, Carlos; Tapley, Peter; Jing, Shuqian; Nanduri, Venkata; O’Rourke, Edward; Lamballe, Fabienne; Kovary, Karla; Klein, Rüdiger; Jones, Kevin R.; Reichardt, Louis F.; Barbacid, Mariano

    2009-01-01

    Summary The product of the trk proto-oncogene encodes a receptor for nerve growth factor (NGF). Here we show that NGF is a powerful mitogen that can induce resting NIH 3T3 cells to enter S phase, grow in semisolid medium, and become morphologically transformed. These mitogenic effects are absolutely dependent on expression of gp140trk receptors, but do not require the presence of the previously described low affinity NGF receptor. gp140trk also serves as a receptor for the related factor neurotrophin-3 (NT-3), but not for brain-derived neurotrophic factor. Both NGF and NT-3 induce the rapid phosphorylation of gp140trk receptors and the transient expression of c-Fos proteins. However, NT-3 appears to elicit more limited mitogenic responses than NGF. These results indicate that the product of the trk proto-oncogene is sufficient to mediate signal transduction processes induced by NGF and NT-3, at least in proliferating cells. PMID:1649007

  6. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels.

    PubMed

    Conovaloff, Aaron W; Beier, Brooke L; Irazoqui, Pedro P; Panitch, Alyssa

    2011-01-01

    Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. Furthermore, cultures of chick dorsal root ganglia in gels of hyaluronic acid or chondroitin sulfate revealed enhanced growth in chondroitin sulfate gels only upon addition of peptide. Taken together, these results suggest a synergistic nerve growth factor-binding activity between this peptide and chondroitin sulfate. PMID:23507745

  7. Obesity-induced increases in sympathetic nerve activity: sex matters

    PubMed Central

    Brooks, Virginia L.; Shi, Zhigang; Holwerda, Seth W.; Fadel, Paul J.

    2016-01-01

    Abundant evidence obtained largely from male human and animal subjects indicates that obesity increases sympathetic nerve activity (SNA), which contributes to hypertension development. However, recent studies that included women reported that the strong relationships between muscle SNA and waist circumference or body mass index (BMI) found in men are not present in overweight and obese women. A similar sex difference in the association between adiposity and hypertension development has been identified in animal models of obesity. In this brief review, we consider two possible mechanisms for this sex difference. First, visceral adiposity, leptin, insulin, and angiotensin II have been identified as potential culprits in obesity-induced sympathoexcitation in males. We explore if these factors wield the same impact in females. Second, we consider if sex differences in vascular reactivity to sympathetic activation contribute. Our survey of the literature suggests that premenopausal females may be able to resist obesity-induced sympathoexcitation and hypertension in part due to differences in adipose disposition as well as its muted inflammatory response and reduced production of pressor versus depressor components of the renin-angiotensin system. In addition, vascular responsiveness to increased SNA may be reduced. However, more importantly, we identify the urgent need for further study, not only of sex differences per se, but also of the mechanisms that may mediate these differences. This information is required not only to refine treatment options for obese premenopausal women but also to potentially reveal new therapeutic avenues in obese men and women. PMID:25435000

  8. Auditory nerve perinodal dysmyelination in noise-induced hearing loss.

    PubMed

    Tagoe, Thomas; Barker, Matt; Jones, Andrew; Allcock, Natalie; Hamann, Martine

    2014-02-12

    Exposure to loud sound (acoustic overexposure; AOE) induces hearing loss and damages cellular structures at multiple locations in the auditory pathway. Whether AOE can also induce changes in myelin sheaths of the auditory nerve (AN) is an important issue particularly because these changes can be responsible for impaired action potential propagation along the AN. Here we investigate the effects of AOE on morphological and electrophysiological features of the centrally directed part of the rat AN projecting from the cochlear spiral ganglion to brainstem cochlear nuclei. Using electron microscopy and immunocytochemistry, we show that AOE elongates the AN nodes of Ranvier and triggers notable perinodal morphological changes. Compound action potential recordings of the AN coupled to biophysical modeling demonstrated that these nodal and perinodal structural changes were associated with decreased conduction velocity and conduction block. Furthermore, AOE decreased the number of release sites in the cochlear nuclei associated with the reduced amplitudes of EPSCs evoked by AN stimulation. In conclusion, AN dysmyelination may be of fundamental importance in auditory impairment following exposure to loud sound. PMID:24523557

  9. Transforming Growth Factor-β Promotes Axonal Regeneration After Chronic Nerve Injury.

    PubMed

    Sulaiman, Wale A R

    2016-04-01

    When spinal cord injury (SCI) occurs, injured cells must survive and regenerate to close gaps caused by the injury and to create functional motor units. After peripheral nerve injury, Wallerian degeneration in the distal nerve stump creates a neurotrophic and growth-supportive environment for injured neurons and axons via Schwann cells and secreted cytokines/neurotrophins. In both SCI and peripheral nerve injury, injured motor and sensory neurons must regenerate axons, eventually reaching and reinnervating target tissue (SDC Figure 1, http://links.lww.com/BRS/B116). This process is often unsuccessful after SCI, and the highly complex anatomy of branching axons and nerves in the peripheral nervous system leads to slow recovery of function, even with careful and appropriate techniques. PMID:27015069

  10. Nano-scale Topographical Studies on the Growth Cones of Nerve Cells using AFM

    NASA Astrophysics Data System (ADS)

    Durkaya, Goksel; Zhong, Lei; Rehder, Vincent; Dietz, Nikolaus

    2009-11-01

    Nerve cells are the fundamental units which are responsible for intercommunication within the nervous system. The neurites, fibrous cable-like extensions for information delivery, of nerve cells are tipped by highly motile sensory structures known as the growth cones which execute important functions; neural construction, decision making and navigation during development and regeneration of the nervous system. The highly dynamic subcomponents of the growth cones are important in neural activity. Atomic Force Microscopy (AFM) is the most powerful microscopy technique which is capable of imaging without conductivity constraint and in liquid media. AFM providing nano-scale topographical information on biological structures is also informative on the physical properties such as: elasticity, adhesion, and softness. This contribution focuses on AFM analysis of the growth cones of the nerve cells removed from the buccal ganglion of Helisoma trivolvis. The results of nano-scale topography and softness analysis on growth cone central domain, filopodia and overlying lamellopodium (veil) are presented. The subcomponents of the growth cones of different nerve cells are compared to each other. The results of the analysis are linked to the mechanical properties and internal molecular density distribution of the growth cones.

  11. Mast Cell-Nerve Cell Interaction at Acupoint: Modeling Mechanotransduction Pathway Induced by Acupuncture

    PubMed Central

    Yao, Wei; Yang, Hongwei; Yin, Na; Ding, Guanghong

    2014-01-01

    Mast cells are found abundant at sites of acupoints. Nerve cells share perivascular localization with mast cells. Acupuncture (mechanical stimuli) can activate mast cells to release adenosine triphosphate (ATP) which can activate nerve cells and modulates pain-processing pathways in response to acupuncture. In this paper, a mathematical model was constructed for describing intracellular Ca2+ signal and ATP release in a coupled mast cell and nerve cell system induced by mechanical stimuli. The results showed mechanical stimuli lead to a intracellular Ca2+ rise in the mast cell and ATP release, ATP diffuses in the extracellular space (ECS) and activates the nearby nerve cells, then induces electrical current in the nerve cell which spreads in the neural network. This study may facilitate our understanding of the mechanotransduction process induced by acupuncture and provide a methodology for quantitatively analyzing acupuncture treatment. PMID:24910530

  12. Scaffolds from alternating block polyurethanes of poly(ɛ-caprolactone) and poly(ethylene glycol) with stimulation and guidance of nerve growth and better nerve repair than autograft.

    PubMed

    Niu, Yuqing; Li, Linjing; Chen, Kevin C; Chen, Feiran; Liu, Xiangyu; Ye, Jianfu; Li, Wei; Xu, Kaitian

    2015-07-01

    Nerve repair scaffolds from novel alternating block polyurethanes (PUCL-alt-PEG) based on PCL and PEG without additional growth factors or proteins were prepared by a particle leaching method. The scaffolds have pore size 10-20 µm and porosity 92%. Mechanical tests showed that the polyurethane scaffolds have maximum loads of 5.97 ± 0.35 N and maximal stresses of 8.84 ± 0.5 MPa. Histocompatiblity of the nerve repair scaffolds was tested in a SD rat model for peripheral nerve defect treatment. Two types of treatments including PUCL-alt-PEG scaffolds and autografts were compared in rat model. After 32 weeks, bridging of a 12 mm defect gap by the regenerated nerve was observed in all rats. The nerve regeneration was systematically characterized by sciatic function index (SFI), electrophysiology, histological assessment including HE staining, immunohistochemistry, ammonia sliver staining, Masson's trichrome staining and TEM observation. Results revealed that nerve repair scaffolds from PUCL-alt-PEG exhibit better regeneration effects compared to autografts. Electrophysiological recovery was seen in 90% and 87% of rats in PUCL-alt-PEG and autograft groups respectively. Biodegradation in vitro and in vivo shows good degradation match of PUCL-alt-PEG scaffolds with nerve regeneration. It demonstrates that plain nerve repair scaffolds from PUCL-alt-PEG biomaterials can achieve peripheral nerve regeneration satisfactorily. PMID:25410272

  13. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation

    NASA Astrophysics Data System (ADS)

    Neufeld, Esra; Vogiatzis Oikonomidis, Ioannis; Iacono, Maria Ida; Angelone, Leonardo M.; Kainz, Wolfgang; Kuster, Niels

    2016-06-01

    An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria.

  14. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation.

    PubMed

    Neufeld, Esra; Vogiatzis Oikonomidis, Ioannis; Ida Iacono, Maria; Angelone, Leonardo M; Kainz, Wolfgang; Kuster, Niels

    2016-06-21

    An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria. PMID:27223274

  15. Expression and modulation of nerve growth factor in murine keratinocytes (PAM 212)

    SciTech Connect

    Tron, V.A.; Coughlin, M.D.; Jang, D.E.; Stanisz, J.; Sauder, D.N. )

    1990-04-01

    Nerve growth factor (NGF) is a polypeptide that is required for normal development and maintenance of the sympathetic and sensory nervous systems. Skin has been shown to contain relatively high amounts of NGF, which is in keeping with the finding that the quantity of NGF in a tissue is proportional to the extent of sympathetic innervation of that organ. Since the keratinocyte, a major cellular constituent of the skin, is known to produce other growth factors and cytokines, our experiments were designed to determine whether keratinocytes are a source of NGF. Keratinocyte-conditioned media from the keratinocyte cell line PAM 212 contained NGF-like activity, approximately 2-3 ng/ml, as detected by the neurite outgrowth assay. Freshly isolated BALB/c keratinocytes contained approximately 0.1 ng/ml. Using a cDNA probe directed against NGF, we demonstrated the presence of a 1.3-kb NGF mRNA in both PAM 212 and BALB/c keratinocytes. Since ultraviolet radiation (UV) is a potentially important modulating factor for cytokines in skin, we examined the effect of UV on NGF mRNA expression. Although UV initially inhibited the expression of keratinocyte NGF mRNA (4 h), by 24 h an induction of NGF mRNA was seen. The NGF signal could also be induced by phorbol esters. Thus, keratinocytes synthesize and express NGF, and its expression is modulated by UVB and phorbol esters.

  16. Nerve growth factor preserves a critical motor period in rat striatum.

    PubMed

    Wolansky, M J; Paratcha, G C; Ibarra, G R; Azcurra, J M

    1999-01-01

    We previously found the occurrence of a critical motor period during rat postnatal development where circling training starting the 7-day schedule at 30 days-but not before or after-induces a lifetime drop in the binding to cholinergic muscarinic receptors (mAChRs) in striatum. Here, we studied whether nerve growth factor (NGF) participates in this restricted period of muscarinic sensitivity. For this purpose, we administered mouse salival gland 2.5S NGF (1.4 or 0.4 microg/day, infused by means of ALZA minipumps) by intrastriatal unilateral route between days 25 and 39, and then trained rats starting at 40 days. Under these conditions, NGF induced a long-term reduction in the striatal [3H] quinuclidilbenzylate (QNB) binding sites despite the fact that motor training was carried out beyond the natural critical period. Thus, at day 70, measurement of specific QNB binding in infused striata of trained rats showed decreases of 42% (p < .0004) and 33% (p < .02) after administration of the higher and lower NGF doses, respectively, with respect to trained rats treated with cytochrome C, for control. Noncannulated striata of the NGF-treated rats also showed a decrease in QNB binding sites (44%; p < .0001) only at the higher infusion rate. This effect was not found in the respective control groups. Our observations show that NGF modulates the critical period in which activity-dependent mAChR setting takes place during rat striatal maturation. PMID:10027568

  17. The trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes.

    PubMed Central

    Yaar, M; Eller, M S; DiBenedetto, P; Reenstra, W R; Zhai, S; McQuaid, T; Archambault, M; Gilchrest, B A

    1994-01-01

    We have recently shown that (a) human melanocytes express the p75 nerve growth factor (NGF) receptor in vitro; (b) that melanocyte dendricity and migration, among other behaviors, are regulated at least in part by NGF; and (c) that cultured human epidermal keratinocytes produce NGF. We now report that melanocyte stimulation with phorbol 12-tetra decanoate 13-acetate (TPA), previously reported to induce p75 NGF receptor, also induces trk in melanocytes, and TPA effect is further potentiated by the presence of keratinocytes in culture. Moreover, trk in melanocytes becomes phosphorylated within minutes after NGF stimulation. As well, cultures of dermal fibroblasts express neurotrophin-3 (NT-3) mRNA; NT-3 mRNA levels in cultured fibroblasts are modulated by mitogenic stimulation, UV irradiation, and exposure to melanocyte-conditioned medium. Moreover, melanocytes constitutively express low levels of trk-C, and its expression is downregulated after TPA stimulation. NT-3 supplementation to cultured melanocytes maintained in Medium 199 alone prevents cell death. These combined data suggest that melanocyte behavior in human skin may be influenced by neurotrophic factors, possibly of keratinocyte and fibroblast origin, which act through high affinity receptors. Images PMID:7929831

  18. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae.

    PubMed

    Shibata, Seiji B; Cortez, Sarah R; Beyer, Lisa A; Wiler, James A; Di Polo, Adriana; Pfingst, Bryan E; Raphael, Yehoash

    2010-06-01

    Sensory organs typically use receptor cells and afferent neurons to transduce environmental signals and transmit them to the CNS. When sensory cells are lost, nerves often regress from the sensory area. Therapeutic and regenerative approaches would benefit from the presence of nerve fibers in the tissue. In the hearing system, retraction of afferent innervation may accompany the degeneration of auditory hair cells that is associated with permanent hearing loss. The only therapy currently available for cases with severe or complete loss of hair cells is the cochlear implant auditory prosthesis. To enhance the therapeutic benefits of a cochlear implant, it is necessary to attract nerve fibers back into the cochlear epithelium. Here we show that forced expression of the neurotrophin gene BDNF in epithelial or mesothelial cells that remain in the deaf ear induces robust regrowth of nerve fibers towards the cells that secrete the neurotrophin, and results in re-innervation of the sensory area. The process of neurotrophin-induced neuronal regeneration is accompanied by significant preservation of the spiral ganglion cells. The ability to regrow nerve fibers into the basilar membrane area and protect the auditory nerve will enhance performance of cochlear implants and augment future cell replacement therapies such as stem cell implantation or induced transdifferentiation. This model also provides a general experimental stage for drawing nerve fibers into a tissue devoid of neurons, and studying the interaction between the nerve fibers and the tissue. PMID:20109446

  19. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae

    PubMed Central

    Shibata, Seiji B.; Cortez, Sarah R.; Beyer, Lisa A.; Wiler, Jim A.; Di Polo, Adriana; Pfingst, Bryan E.; Raphael, Yehoash

    2010-01-01

    Sensory organs typically use receptor cells and afferent neurons to transduce environmental signals and transmit them to the CNS. When sensory cells are lost, nerves often regress from the sensory area. Therapeutic and regenerative approaches would benefit from the presence of nerve fibers in the tissue. In the hearing system, retraction of afferent innervation may accompany the degeneration of auditory hair cells that is associated with permanent hearing loss. The only therapy currently available for cases with severe or complete loss of hair cells is the cochlear implant auditory prosthesis. To enhance the therapeutic benefits of a cochlear implant, it is necessary to attract nerve fibers back into the cochlear epithelium. Here we show that forced expression of the neurotrophin gene BDNF in epithelial or mesothelial cells that remain in the deaf ear, induces robust regrowth of nerve fibers towards the cells that secrete the neurotrophin, and results in re-innervation of the sensory area. The process of neurotrophin-induced neuronal regeneration is accompanied by significant preservation of the spiral ganglion cells. The ability to regrow nerve fibers into the basilar membrane area and protect the auditory nerve will enhance performance of cochlear implants and augment future cell replacement therapies such as stem cell implantation or induced transdifferentiation. This model also provides a general experimental stage for drawing nerve fibers into a tissue devoid of neurons, and studying the interaction between the nerve fibers and the tissue. PMID:20109446

  20. Stretch-induced nerve conduction deficits in guinea pig ex vivo nerve.

    PubMed

    Li, Jianming; Shi, Riyi

    2007-01-01

    In the current communication, we characterized supraphysiologic elongations that elicited short-term nerve dysfunction. This was accomplished by assessing the electrophysiology of guinea pig tibial and peroneal nerves at predetermined elongation magnitudes. Results showed that a longitudinal supraphysiological stretch of lambda = 1.05 caused a 16% reduction in the mean compound action potential (CAP) amplitude. Upon relaxation to physiologic length, a full recovery in the CAP was observed. At lambda = 1.10, the CAP decreased by 50% with an 88% recovery after relaxation. For a supraphysiologic stretch of lambda = 1.20, severe conduction block with minimal acute recovery was observed. Latency also increased during periods of stretch and was proportional to the stretch magnitude. Additional studies showed some electrophysiological recovery during the sustained stretch phase. This attribute may be related to internal stress relaxation mechanisms. Since whole nerve elongations are averaged global deformations, we also used an incremental digital image correlation (DIC) technique to characterize the strain at the micro-tissue level. The DIC analysis revealed considerable heterogeneity in the planar strain field, with some regions exhibiting strains above the macroscale stretch. This non-uniformity in the strain map arises from structural inconsistencies of the nerve and we presume that zones of high local strain may translate into the observed conduction deficits. PMID:16674962

  1. Osteoprotegerin ameliorates sciatic nerve crush induced bone loss.

    PubMed

    Bateman, T A; Dunstan, C R; Lacey, D L; Ferguson, V L; Ayers, R A; Simske, S J

    2001-07-01

    This study examines the ability of osteoprotegerin (OPG) to prevent the local bone resorption caused by sciatic nerve damage. Sixty-five 18-week-old male mice were assigned to one of six groups (n = 10-11/group). A baseline control group was sacrificed on day zero of the 10-day study. The remaining groups were placebo sham operated, placebo nerve crush (Plac NC) operated, 0.1 mg/kg/day OPG + nerve crush (LOW), 0.3 mg/kg/day OPG + nerve crush (MED), and 1.0 mg/kg/day OPG + nerve crush (HI). Nerve crush or sham operations were performed on the right leg. The left leg served as a contralateral control to the nerve crushed (ipsilateral) leg. The difference in mass between the right and left femur and tibia was examined. Additionally, quantitative histomorphometry was performed on the right and left femur and tibia diaphyses. Nerve crush resulted in a significant loss of bone mass in the ipsilateral side compared to the contralateral side. Bone mass for the ipsilateral bones of the Plac NC group were significantly reduced by 3.8% in the femur and 3.5% in the tibia compared to the contralateral limb. The percent diminution was reduced for OPG treated mice compared to the Plac NC group for both the femur and tibia. In the femur, the percent reduction of ipsilateral bone mass was reduced to 1.0% (LOW), 1.3% (MED) and 1.6% (HI) compared to the contralateral limb. In the tibia, loss of bone mass in the ipsilateral limb was reduced to 1.4% (LOW), 1.4% (MED), and 2.4% (HI) compared to the contralateral. OPG also decreased the amount of tibial endocortical resorption compared to the Plac NC group. In summary, OPG mitigated bone loss caused by damage to the sciatic nerve. PMID:11518255

  2. Radiation Pretreatment Does Not Protect the Rat Optic Nerve From Elevated Intraocular Pressure–Induced Injury

    PubMed Central

    Johnson, Elaine C.; Cepurna, William O.; Choi, Dongseok; Choe, Tiffany E.; Morrison, John C.

    2015-01-01

    Purpose. Optic nerve injury has been found to be dramatically reduced in a genetic mouse glaucoma model following exposure to sublethal, head-only irradiation. In this study, the same radiation treatment was used prior to experimental induction of elevated intraocular pressure (IOP) to determine if radiation is neuroprotective in another glaucoma model. Methods. Episcleral vein injection of hypertonic saline was used to elevate IOP unilaterally in two groups of rats: (1) otherwise untreated and (2) radiation pretreated, n > 25/group. Intraocular pressure histories were collected for 5 weeks, when optic nerves were prepared and graded for injury. Statistical analyses were used to compare IOP history and nerve injury. The density of microglia and macrophages in two nerve head regions was determined by Iba1 immunolabeling. Results. Mean and peak IOP elevations were not different between the two glaucoma model groups. Mean optic nerve injury grades were not different in glaucoma model optic nerves and were equivalent to approximately 35% of axons degenerating. Nerves selected for lower mean or peak IOP elevations did not differ in optic nerve injury. Similarly, nerves selected for lower injury grade did not differ in IOP exposure. By multiple regression modeling, nerve injury grade was most significantly associated with mean IOP (P < 0.002). There was no significant effect of radiation treatment. Iba1+ cell density was not altered by radiation treatment. Conclusions. In contrast to previous observations in a mouse genetic glaucoma model, head-only irradiation offers the adult rat optic nerve no protection from optic nerve degeneration due to chronic, experimentally induced IOP elevation. PMID:25525172

  3. Stretch-induced nerve injury: a proposed technique for the study of nerve regeneration and evaluation of the influence of gabapentin on this model

    PubMed Central

    Machado, J.A.; Ghizoni, M.F.; Bertelli, J.; Teske, Gabriel C.; Teske, Guilherme C.; Martins, D.F.; Mazzardo-Martins, L.; Cargnin-Ferreira, E.; Santos, A.R.S.; Piovezan, A.P.

    2013-01-01

    The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration. PMID:24270909

  4. Nerve growth factor: role in growth, differentiation and controlling cancer cell development.

    PubMed

    Aloe, Luigi; Rocco, Maria Luisa; Balzamino, Bijorn Omar; Micera, Alessandra

    2016-01-01

    Recent progress in the Nerve Growth Factor (NGF) research has shown that this factor acts not only outside its classical domain of the peripheral and central nervous system, but also on non-neuronal and cancer cells. This latter observation has led to divergent hypothesis about the role of NGF, its specific distribution pattern within the tissues and its implication in induction as well as progression of carcinogenesis. Moreover, other recent studies have shown that NGF has direct clinical relevance in certain human brain neuron degeneration and a number of human ocular disorders. These studies, by suggesting that NGF is involved in a plethora of physiological function in health and disease, warrant further investigation regarding the true role of NGF in carcinogenesis. Based on our long-lasting experience in the physiopathology of NGF, we aimed to review previous and recent in vivo and in vitro NGF studies on tumor cell induction, progression and arrest. Overall, these studies indicate that the only presence of NGF is unable to generate cell carcinogenesis, both in normal neuronal and non-neuronal cells/tissues. However, it cannot be excluded the possibility that the co-expression of NGF and pro-carcinogenic molecules might open to different consequence. Whether NGF plays a direct or an indirect role in cell proliferation during carcinogenesis remains to demonstrate. PMID:27439311

  5. Mesenchymal stem cells modified with nerve growth factor improve recovery of the inferior alveolar nerve after mandibular distraction osteogenesis in rabbits.

    PubMed

    Wang, L; Zhao, Y; Cao, J; Yang, X; Lei, D

    2015-03-01

    Distraction osteogenesis is widely used in the treatment of bony deformities and defects. However, injury to the inferior alveolar nerve is a concern. Our aim was to investigate the feasibility of using lentiviral-mediated human nerve growth factor beta (hNGFβ) of the inferior alveolar nerve in mandibular distraction osteogenesis in rabbits. To achieve this, mesenchymal stem cells (MSC) from the bone marrow of rabbit mandibles were isolated and genetically engineered using recombinant lentiviral vector containing hNGFβ. Twenty New Zealand white rabbits underwent mandibular distraction osteogenesis, and 5 million MSC transduced with hNGFβ-vector or control vector were transplanted around the nerve in the gap where the bone had been fractured during the operation (n=10 in each group). After gradual distraction, samples of the nerve were harvested for histological and histomorphometric analysis. We found that the genetically engineered MSC transduced by the lentiviral vector were able to secrete hNGFβ at physiologically relevant concentrations as measured by ELISA. Histological examination of the nerve showed more regenerating nerve fibres and less myelin debris in the group in which hNGFβ-modified MSC had been implanted than in the control group. Histomorphometric analysis of the nerve showed increased density of myelinated fibres in the group in which hNGFβ-modified MSC had been implanted than in the control group. The data suggest that implantation of hNGFβ-modified MSC can accelerate the morphological recovery of the inferior alveolar nerve during mandibular distraction osteogenesis in rabbits. The use of lentiviral-mediated gene treatment to deliver hNGFβ through MSC may be a promising way of minimising injury to the nerve. PMID:25600702

  6. Transforming growth factor-β3 promotes facial nerve injury repair in rabbits

    PubMed Central

    WANG, YANMEI; ZHAO, XINXIANG; HUOJIA, MUHTER; XU, HUI; ZHUANG, YOUMEI

    2016-01-01

    The present study investigated the effects of transforming growth factor (TGF)-β3 on the regeneration of facial nerves in rabbits. A total of 20 adult rabbits were randomly divided into three equal groups: Normal control (n=10), surgical control (n=10) and TGF-β3 treatment (n=10). The total number and diameter of the regenerated nerve fibers was significantly increased in the TGF-β3 treatment group, as compared with in the surgical control group (P<0.01). Furthermore, in the TGF-β3 treatment group, the epineurial repair of the facial nerves was intact and the nerve fibers, which were arranged in neat rows, were morphologically intact with visible myelin swelling. However, in the surgical control group, the epineurial repair was incomplete, as demonstrated by: Atrophic nerve fibers, partially disappeared axons and myelin of uneven thickness with fuzzy borders. Electron microscopy demonstrated that the regenerated fibers in the TGF-β3 treatment group were predominantly myelinated, with clear-layered myelin sheath structures and axoplasms rich in organelles. Although typical layered myelin sheath structures were observed in the surgical control group, the myelin sheaths of the myelinated nerve fibers were poorly developed and few organelles were detected in the axoplasms. Neuro-electrophysiological examination demonstrated that, as compared with the surgical control group, the latency period of the action potentials in the TGF-β3 treatment group were shorter, whereas the stimulus amplitudes of the action potentials were significantly increased (P<0.01). The results of the present study suggest that TGF-β3 may improve the regeneration of facial nerves following trauma or injury. PMID:26997982

  7. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea

    PubMed Central

    Bu, Meng; Tang, Jingling; Wei, Yinghui; Sun, Yanhui; Wang, Xinyu; Wu, Linhua; Liu, Hongzhuo

    2015-01-01

    Purpose Supplementation of exogenous nerve growth factor (NGF) into the cochlea of deafened animals rescues spiral ganglion cells from degeneration. However, a safe and potent delivery of therapeutic proteins, such as NGF, to spiral ganglion cells remains one of the greatest challenges. This study presents the development of self-assembled cubic lipid-based crystalline nanoparticles to enhance inner ear bioavailability of bioactive NGF via a round window membrane route. Methods A novel nanocarrier-entrapped NGF was developed based on phytantriol by a liquid precursor dilution, with Pluronic® F127 and propylene glycol as the surfactant and solubilizer, respectively. Upon dilution of the liquid lipid precursors, monodispersed submicron-sized particles with a slight negative charge formed spontaneously. Results Biological activity of entrapped NGF was assessed using pheochromocytoma cells with NGF-loaded reservoirs to induce significant neuronal outgrowth, similar to that seen in free NGF-treated controls. Finally, a 3.28-fold increase in inner ear bioavailability was observed after administration of phytantriol lipid-based crystalline nanoparticles as compared to free drug, contributing to an enhanced drug permeability of the round window membrane. Conclusion Data presented here demonstrate the potential of lipid-based crystalline nanoparticles to improve the outcomes of patients bearing cochlear implants. PMID:26604754

  8. Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth.

    PubMed

    Chmilewsky, Fanny; Ayaz, Warda; Appiah, James; About, Imad; Chung, Seung-Hyuk

    2016-01-01

    Given the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation. PMID:27539194

  9. Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth

    PubMed Central

    Chmilewsky, Fanny; Ayaz, Warda; Appiah, James; About, Imad; Chung, Seung-Hyuk

    2016-01-01

    Given the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation. PMID:27539194

  10. Erythropoietin promotes peripheral nerve regeneration in rats by upregulating expression of insulin-like growth factor-1

    PubMed Central

    Wang, Wei; Li, Dongsheng; Li, Qing; Wang, Lei; Bai, Guang; Yang, Tao; Li, Qiang; Zhu, Zhitu

    2015-01-01

    Introduction Erythropoietin (EPO) has been shown to have beneficial effects on peripheral nerve damage, but its mechanism of action remains incompletely understood. In this study we hypothesized that EPO promotes peripheral nerve repair via neurotrophic factor upregulation. Material and methods Thirty adult male Wistar rats were employed to establish a sciatic nerve injury model. They were then randomly divided into two groups to be subjected to different treatment: 0.9% saline (group A) and 5000 U/kg EPO (group B). The walking behavior of rats was evaluated by footprint analysis, and the nerve regeneration was assessed by electron microscopy. The expression of insulin-like growth factor-1 (IGF-1) in the injured sciatic nerves was detected by immunohistochemical analysis. Results Compared to saline treatment, EPO treatment led to the growth of myelin sheath, the recovery of normal morphology of axons and Schwann cells, and higher density of myelinated nerve fibers. Erythropoietin treatment promoted the recovery of SFI in the injured sciatic nerves. In addition, EPO treatment led to increased IGF-1 expression in the injured sciatic nerves. Conclusions Erythropoietin may promote peripheral nerve repair in a rat model of sciatic nerve injury through the upregulation of IGF-1 expression. These findings reveal a novel mechanism underlying the neurotrophic effects of EPO. PMID:25995763

  11. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    PubMed Central

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that

  12. Imbalance of the Nerve Growth Factor and Its Precursor: Implication in Diabetic Retinopathy

    PubMed Central

    Mohamed, Riyaz; El-Remessy, Azza B

    2015-01-01

    Diabetic retinopathy is the leading cause of blindness in working age in US and worldwide. Neurotrophins including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) are known to be essential for growth, differentiation and survival of neurons in the developing and mature retina. Nevertheless, a growing body of evidence supports an emerging role of neurotrophins in retinal diseases and in particular, diabetic retinopathy. Neurotrophins are initially synthesized in a pro-form and undergo proteolytic cleavage to produce the mature form that activates two distinctive receptors, the tyrosine kinase tropomycin receptor (Trk) and, to lesser extent, the common low affinity p75 neurotrophin receptor (p75NTR). Despite tight glycemic and metabolic control, many diabetic patients continue to experience progressive retinal damage. Understanding the molecular events involved in diabetic retinopathy is extremely important to identify novel therapeutic strategies to halt the disease progression. Diabetes induces imbalance in neurotrophins by increasing its proform, which is associated with upregulation of the p75NTR receptor in the retina. A growing body of evidence supports a link between the imbalance of pro-neurotrophins and early retinal inflammation, neuro-and microvascular degeneration. Therefore, examining changes in the levels of neurotrophins and its receptors might provide a therapeutically beneficial target to combat disease progression in diabetic patients. This commentary aims to highlight the impact of diabetes-impaired balance of neurotrophins and in particular, the NGF and its receptors; TrkA and p75NTR in the pathology of DR. PMID:26807305

  13. Radixin Is Involved in Lamellipodial Stability during Nerve Growth Cone Motility

    PubMed Central

    Castelo, Leslie; Jay, Daniel G.

    1999-01-01

    Immunocytochemistry and in vitro studies have suggested that the ERM (ezrin-radixin-moesin) protein, radixin, may have a role in nerve growth cone motility. We tested the in situ role of radixin in chick dorsal root ganglion growth cones by observing the effects of its localized and acute inactivation. Microscale chromophore-assisted laser inactivation (micro-CALI) of radixin in growth cones causes a 30% reduction of lamellipodial area within the irradiated region whereas all control treatments did not affect lamellipodia. Micro-CALI of radixin targeted to the middle of the leading edge often split growth cones to form two smaller growth cones during continued forward movement (>80%). These findings suggest a critical role for radixin in growth cone lamellipodia that is similar to ezrin function in pseudopodia of transformed fibroblasts. They are consistent with radixin linking actin filaments to each other or to the membrane during motility. PMID:10233159

  14. Nerve growth factor antibody exacerbates neuropathological signs of experimental allergic encephalomyelitis in adult lewis rats.

    PubMed

    Micera, A; Properzi, F; Triaca, V; Aloe, L

    2000-05-01

    In this study, experimental allergic encephalomyelitis (EAE) rats and rats exhibiting EAE expressing high circulating anti-nerve growth factor antibody were daily monitored for clinical signs and chronic relapses. Eighty-five days after EAE induction, blood, spinal cord and brain stem were used for histological examination, nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) evaluation. The results showed that NGF-deprived rats display more severe clinical signs of disease. These effects were associated with a significant reduction of NGF in the brain stem and spinal cord but not of BDNF, which decreased only in spinal cord. These observations provide additional support to the hypothesis of a protective NGF role in rats exhibiting EAE. PMID:10713350

  15. Molecular cloning of a human gene that is a member of the nerve growth factor family.

    PubMed Central

    Jones, K R; Reichardt, L F

    1990-01-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. We have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development. Images PMID:2236018

  16. Changes in myelin sheath thickness and internode geometry in the rabbit phrenic nerve during growth.

    PubMed Central

    Friede, R L; Brzoska, J; Hartmann, U

    1985-01-01

    The rabbit phrenic nerve was studied at seven phases of growth from the newborn to the adult to determine the length of the nerve fibres, the length of the internodes, the fibre calibre, the geometric proportions of the internodes and the thickness of the myelin sheaths. The elongation of the internodes corresponded precisely to the elongation of the nerve, indicating a constant number of approximately 140 internodes per fibre, each internode elongating commensurate with body growth. Internode elongation was accompanied by increases in fibre calibre, but these parameters did not change in precise proportion. The internodes of thick fibres were relatively short for calibre, as defined by the length/diameter quotient. This trend of foreshortening changed during growth. Sheath thickness, defined by the quotient axon diameter/fibre diameter, was determined with a computer-assisted method. Fibres of young rabbits had relatively thin sheaths for axon calibre, compared with adult rabbits. The changes in sheath thickness corresponded to the changes in internode geometry. This was consistent with previous studies showing that elongation or foreshortening of an internode of a given calibre has a slight, but definite effect on the thickness of its myelin sheath. PMID:3870716

  17. Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat

    PubMed Central

    Jang, Jun Ho; Nam, Taick Sang; Jun, Jaebeom; Jung, Se Jung; Kim, Dong-Wook; Leem, Joong Woo

    2015-01-01

    We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity. PMID:26770021

  18. Effect of local administration of platelet-derived growth factor B on functional recovery of peripheral nerve regeneration: A sciatic nerve transection model

    PubMed Central

    Golzadeh, Atefeh; Mohammadi, Rahim

    2016-01-01

    Background: Effects of platelet-derived growth factor B (PDGF-B) on peripheral nerve regeneration was studied using a rat sciatic nerve transection model. Materials and Methods: Forty-five male, white Wistar rats were divided into three experimental groups (n = 15), randomly: Normal control group (NC), silicon group (SIL), and PDGF-B treated group (SIL/PDGF). In NC group, left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In the SIL group, the left sciatic nerve was exposed in the same way and transected proximal to tibio-peroneal bifurcation leaving a 10-mm gap. Proximal and distal stumps were each inserted into a silicone conduit and filled with 10 μL phosphate buffered solution. In SIL/PDGF group, the silicon conduit was filled with 10 μL PDGF-B (0.5 ng/mL). Each group was subdivided into three subgroups of five and were studied in 4, 8, 12 weeks after surgery. Results: Behavioral testing, sciatic nerve functional study, gastrocnemius muscle mass, and histomorphometric studies showed earlier regeneration of axons in SIL/PDGF than in SIL group (P < 0.05). Conclusion: Local administration of PDGF-B combined with silicon grafting could accelerate functional recovery and may have clinical implications for the surgical management of patients after facial nerve transection. PMID:27274342

  19. Engrafted Human Induced Pluripotent Stem Cell-Derived Anterior Specified Neural Progenitors Protect the Rat Crushed Optic Nerve

    PubMed Central

    Satarian, Leila; Javan, Mohammad; Kiani, Sahar; Hajikaram, Maryam; Mirnajafi-Zadeh, Javad; Baharvand, Hossein

    2013-01-01

    Background Degeneration of retinal ganglion cells (RGCs) is a common occurrence in several eye diseases. This study examined the functional improvement and protection of host RGCs in addition to the survival, integration and neuronal differentiation capabilities of anterior specified neural progenitors (NPs) following intravitreal transplantation. Methodology/Principal Findings NPs were produced under defined conditions from human induced pluripotent stem cells (hiPSCs) and transplanted into rats whose optic nerves have been crushed (ONC). hiPSCs were induced to differentiate into anterior specified NPs by the use of Noggin and retinoic acid. The hiPSC-NPs were labeled by green fluorescent protein or a fluorescent tracer 1,1′ -dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) and injected two days after induction of ONC in hooded rats. Functional analysis according to visual evoked potential recordings showed significant amplitude recovery in animals transplanted with hiPSC-NPs. Retrograde labeling by an intra-collicular DiI injection showed significantly higher numbers of RGCs and spared axons in ONC rats treated with hiPSC-NPs or their conditioned medium (CM). The analysis of CM of hiPSC-NPs showed the secretion of ciliary neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor. Optic nerve of cell transplanted groups also had increased GAP43 immunoreactivity and myelin staining by FluoroMyelin™ which imply for protection of axons and myelin. At 60 days post-transplantation hiPSC-NPs were integrated into the ganglion cell layer of the retina and expressed neuronal markers. Conclusions/Significance The transplantation of anterior specified NPs may improve optic nerve injury through neuroprotection and differentiation into neuronal lineages. These NPs possibly provide a promising new therapeutic approach for traumatic optic nerve injuries and loss of RGCs caused by other diseases. PMID:23977164

  20. Nerve growth factor signaling following unilateral pelvic ganglionectomy in the rat ventral prostate is age dependent.

    PubMed

    Podlasek, Carol A; Ghosh, Rudrani; Onur Cakir, Omer; Bond, Christopher; McKenna, Kevin E; McVary, Kevin T

    2013-11-01

    Benign prostatic hyperplasia (BPH) is a serious health concern and is an underlying cause of lower urinary tract symptoms (LUTS) in many men. In affected men, LUTS/BPH is believed to result from benign proliferation of the prostate resulting in bladder outlet obstruction. Postnatal growth of the prostate is controlled via growth factor and endocrine mechanisms. However, little attention had been given to the function of the autonomic nervous system in prostate growth and differentiation. Nerve growth factor (NGF) is a prostatic mitogen that has a trophic role in autonomic sensory end organ interaction. In this study, we examine how the autonomic nervous system influences prostate growth as a function of age by quantifying NGF in the rat ventral prostate (VP) after pelvic ganglionectomy. Unilateral pelvic ganglionectomy was performed on postnatal days 30 (P30), 60 and 120 Sprague-Dawley rats in comparison to sham controls (n=39). Semiquantitative RT-PCR, Western blotting and immunohistochemical analysis for NGF were performed on denervated, intact (contralateral side) and sham control VP 7 days after surgery. Ngf RNA expression was significantly increased in the denervated and intact hyperplastic VP. Western blotting showed age-dependent increases in NGF protein at P60 in the contralateral intact VP. NGF was localized in the nerves, basal cells and columnar epithelium of the prostatic ducts. Denervation causes age-dependent increases in NGF in the VP, which is a potential mechanism by which the autonomic nervous system may regulate prostate growth and lead to BPH/LUTS. PMID:23872662

  1. The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats.

    PubMed

    Tang, Shuo; Zhu, Jixiang; Xu, Yangbin; Xiang, Andy Peng; Jiang, Mei Hua; Quan, Daping

    2013-09-01

    Introducing concentration gradients of nerve growth factor (NGF) into conduits for repairing of peripheral nerve injury is crucial for nerve regeneration and guidance. Herein, combining differential adsorption of NGF/silk fibroin (SF) coating, the gradient of NGF-immobilized membranes (G-Ms) and nanofibrous nerve conduits (G-nNCs) were successfully fabricated. The efficacy of NGF gradients was confirmed by a quantitative comparison of dorsal root ganglia (DRG) neurite outgrowth on the G-Ms or uniform NGF-immobilized membranes (U-Ms). Significantly, the neurite turning ratio was 0.48 ± 0.11 for G-M group, but it was close to zero for U-M group. The neurite length of DRGs in the middle of the G-Ms was significantly longer than that of U-M group, even though the average NGF concentration was approximated. Furthermore, 12 weeks after implantation in rats with a 14 mm gap of sciatic nerve injury, G-nNCs achieved satisfying outcomes of nerve regeneration associated with morphological and functional improvements, which was superior to that of the uniform NGF-immobilized nNCs (U-nNCs). Sciatic function index (SFI), compound muscle action potentials (CMAPs), total number of myelinated nerve fibers, thickness of myelin sheath were similar for the G-nNCs and autografts, with the G-nNCs having a higher density of axons than the autografts. Our results demonstrated the significant role of introducing NGF gradients into scaffolds in promoting nerve regeneration. PMID:23791502

  2. Nitric oxide: Mediator of nonadrenergic noncholinergic nerve-induced responses of opossum esophageal muscle

    SciTech Connect

    Murray, J.; Du, C.; Conklin, J.L.; Ledlow, A.; Bates, J.N. )

    1991-03-15

    Nonadrenergic noncholinergic (NANC) nerves of the opossum esophagus mediate relaxation of circular muscle from the lower esophageal sphincter (LES) and the off contraction of circular esophageal muscle. The latencies between the end of the stimulus and the off contraction describe a gradient such that the latency is longest in muscle from the caudad esophagus. N{sup G}-nitro-L-arginine (L-NNA), an inhibitor of nitric oxide synthase, and nitric oxide were used to test the hypothesis that NO is a mediator of these nerve-induced responses. Both electrical field stimulation (EFS) of intrinsic esophageal nerves and exogenous NO relaxed LES muscle. Only EFS-induced relaxation was inhibited by L-NNA. L-arginine, the substrate for NO synthase, antagonized the inhibitory effect of L-NNA. Exogenous NO neither relaxed nor contracted circular esophageal muscle. Both the amplitude and the latency of the off contraction were diminished by L-NNA. L-arginine antagonized the action of L-NNA. N{sup G}-nitro-L-arginine also attenuated the gradient in the latency of the off response by shortening latencies in muscle form the caudad esophagus. It had no effect on cholinergic nerve-induced contraction of longitudinal esophageal muscle. These data support the hypothesis that NO or an NO-containing compound mediates NANC nerve-induced responses of the esophagus and LES.

  3. The myelin oligodendrocyte glycoprotein directly binds nerve growth factor to modulate central axon circuitry

    PubMed Central

    Mei, Feng; Greenfield, Ariele; Jahn, Sarah; Shen, Yun-An A.; Reid, Hugh H.; McKemy, David D.

    2015-01-01

    Myelin oligodendrocyte glycoprotein (MOG) is a central nervous system myelin-specific molecule expressed on the outer lamellae of myelin. To date, the exact function of MOG has remained unknown, with MOG knockout mice displaying normal myelin ultrastructure and no apparent specific phenotype. In this paper, we identify nerve growth factor (NGF) as a binding partner for MOG and demonstrate that this interaction is capable of sequestering NGF from TrkA-expressing neurons to modulate axon growth and survival. Deletion of MOG results in aberrant sprouting of nociceptive neurons in the spinal cord. Binding of NGF to MOG may offer widespread implications into mechanisms that underlie pain pathways. PMID:26347141

  4. Immunohistochemical profile of cytokines and growth factors expressed in vestibular schwannoma and in normal vestibular nerve tissue.

    PubMed

    Taurone, Samanta; Bianchi, Enrica; Attanasio, Giuseppe; Di Gioia, Cira; Ierinó, Rocco; Carubbi, Cecilia; Galli, Daniela; Pastore, Francesco Saverio; Giangaspero, Felice; Filipo, Roberto; Zanza, Christian; Artico, Marco

    2015-07-01

    Vestibular schwannomas, also known as acoustic neuromas, are benign tumors, which originate from myelin-forming Schwann cells. They develop in the vestibular branch of the eighth cranial nerve in the internal auditory canal or cerebellopontine angle. The clinical progression of the condition involves slow and progressive growth, eventually resulting in brainstem compression. The objective of the present study was to investigate the expression level and the localization of the pro-inflammatory cytokines, transforming growth factor-β1 (TGF-β1) interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), as well as the adhesion molecules, intracellular adhesion molecule-1 and vascular endothelial growth factor (VEGF), in order to determine whether these factors are involved in the transformation and development of human vestibular schwannoma. The present study investigated whether changes in inflammation are involved in tumor growth and if so, the mechanisms underlying this process. The results of the current study demonstrated that pro-inflammatory cytokines, including TGF-β1, IL-1β and IL-6 exhibited increased expression in human vestibular schwannoma tissue compared with normal vestibular nerve samples. TNF-α was weakly expressed in Schwann cells, confirming that a lower level of this cytokine is involved in the proliferation of Schwann cells. Neoplastic Schwann cells produce pro-inflammatory cytokines that may act in an autocrine manner, stimulating cellular proliferation. In addition, the increased expression of VEGF in vestibular schwannoma compared with that in normal vestibular nerve tissue, suggests that this factor may induce neoplastic growth via the promotion of angiogenesis. The present findings suggest that inflammation may promote angiogenesis and consequently contribute to tumor progression. In conclusion, the results of the present study indicated that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in vestibular

  5. Enhanced sympathetic nerve activity induced by neonatal colon inflammation induces gastric hypersensitivity and anxiety-like behavior in adult rats.

    PubMed

    Winston, John H; Sarna, Sushil K

    2016-07-01

    Gastric hypersensitivity (GHS) and anxiety are prevalent in functional dyspepsia patients; their underlying mechanisms remain unknown largely because of lack of availability of live visceral tissues from human subjects. Recently, we demonstrated in a preclinical model that rats subjected to neonatal colon inflammation show increased basal plasma norepinephrine (NE), which contributes to GHS through the upregulation of nerve growth factor (NGF) expression in the gastric fundus. We tested the hypothesis that neonatal colon inflammation increases anxiety-like behavior and sympathetic nervous system activity, which upregulates the expression of NGF to induce GHS in adult life. Chemical sympathectomy, but not adrenalectomy, suppressed the elevated NGF expression in the fundus muscularis externa and GHS. The measurement of heart rate variability showed a significant increase in the low frequency-to-high frequency ratio in GHS vs. the control rats. Stimulus-evoked release of NE from the fundus muscularis externa strips was significantly greater in GHS than in the control rats. Tyrosine hydroxylase expression was increased in the celiac ganglia of the GHS vs. the control rats. We found an increase in trait but not stress-induced anxiety-like behavior in GHS rats in an elevated plus maze. We concluded that neonatal programming triggered by colon inflammation upregulates tyrosine hydroxylase in the celiac ganglia, which upregulates the release of NE in the gastric fundus muscularis externa. The increase of NE release from the sympathetic nerve terminals concentration dependently upregulates NGF, which proportionately increases the visceromotor response to gastric distention. Neonatal programming concurrently increases anxiety-like behavior in GHS rats. PMID:27151940

  6. Cross Talk between Neuroregulatory Molecule and Monocyte: Nerve Growth Factor Activates the Inflammasome

    PubMed Central

    Datta-Mitra, Ananya; Kundu-Raychaudhuri, Smriti; Mitra, Anupam; Raychaudhuri, Siba P.

    2015-01-01

    Background Increasing evidence points to a role for the extra-neuronal nerve growth factor (NGF) in acquired immune responses. However, very little information is available about its role and underlying mechanism in innate immunity. The role of innate immunity in autoimmune diseases is becoming increasingly important. In this study, we explored the contribution of pleiotropic NGF in the innate immune response along with its underlying molecular mechanism with respect to IL-1β secretion. Methods Human monocytes, null and NLRP3 deficient THP-1 cell lines were used for this purpose. We determined the effect of NGF on secretion of IL-1β at the protein and mRNA levels. To determine the underlying molecular mechanism, the effect of NGF on NLRP1/NLRP3 inflammasomes and its downstream key protein, activated caspase-1, were evaluated by ELISA, immunoflorescence, flow cytometry, and real-time PCR. Results In human monocytes and null THP-1 cell line, NGF significantly upregulates IL-1β at protein and mRNA levels in a caspase-1 dependent manner through its receptor, TrkA. Furthermore, we observed that NGF induces caspase-1 activation through NLRP1/NLRP3 inflammasomes, and it is dependent on the master transcription factor, NF-κB. Conclusions To best of our knowledge, this is the first report shedding light on the mechanistic aspect of a neuroregulatory molecule, NGF, in innate immune response, and thus enriches our understanding regarding its pathogenic role in inflammation. These observations add further evidence in favor of anti-NGF therapy in autoimmune diseases and also unlock a new area of research about the role of NGF in IL-1β mediated diseases. PMID:25876154

  7. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  8. Experimental optic neuritis induced by the microinjection of lipopolysaccharide into the optic nerve.

    PubMed

    Aranda, Marcos L; Dorfman, Damián; Sande, Pablo H; Rosenstein, Ruth E

    2015-04-01

    Optic neuritis (ON) is a condition involving primary inflammation, demyelination, and axonal injury in the optic nerve which leads to retinal ganglion cell (RGC) loss, and visual dysfunction. We investigated the ability of a single microinjection of bacterial lipopolysaccharide (LPS) directly into the optic nerve to induce functional and structural alterations compatible with ON. For this purpose, optic nerves from male Wistar rats remained intact or were injected with vehicle or LPS. The effect of LPS was evaluated at several time points post-injection in terms of: i) visual pathway and retinal function (visual evoked potentials (VEPs) and electroretinograms, (ERGs), respectively), ii) anterograde transport from the retina to its projection areas, iii) consensual pupil light reflex (PLR), iv) optic nerve histology, v) microglia/macrophage reactivity (by Iba-1- and ED1-immunostaining), vi) astrocyte reactivity (by glial fibrillary acid protein-immunostaining), vii) axon number (by toluidine blue staining), vii) demyelination (by myelin basic protein immunoreactivity and luxol fast blue staining), viii) optic nerve ultrastructure, and ix) RGC number (by Brn3a immunoreactivity). LPS induced a significant and persistent decrease in VEP amplitude and PLR, without changes in the ERG. In addition, LPS induced a deficit in anterograde transport, and an early inflammatory response consisting in an increased cellularity, and Iba-1 and ED1-immunoreactivity in the optic nerve, which were followed by changes in axonal density, astrocytosis, demyelination, and axon and RGC loss. These results suggest that the microinjection of LPS into the optic nerve may serve as a new experimental model of primary ON. PMID:25687552

  9. Corneal edema induced by cold in trigeminal nerve palsy

    SciTech Connect

    Thorgaard, G.L.; Holland, E.J.; Krachmer, J.H.

    1987-05-15

    We examined a 34-year-old man who complained of decreased visual acuity in the right eye when exposed to cold environmental temperatures. Although examination at room temperature was unremarkable, he developed prominent unilateral corneal edema of the right eye when placed in a cold room at 4 C. Corneal thickness increased from 525 to 789 microns in the affected eye. Further examination disclosed a right-sided trigeminal nerve palsy. He was eventually found to have a 3 X 2-cm tentorial ridge meningioma on the right.

  10. Carbachol stimulates a different phospholipid metabolism than nerve growth factor and basic fibroblast growth factor in PC12 cells.

    PubMed Central

    Pessin, M S; Altin, J G; Jarpe, M; Tansley, F; Bradshaw, R A; Raben, D M

    1991-01-01

    We have examined 1,2-diglycerides (DGs) generated in PC12 cells in response to the muscarinic agonist carbachol and compared them with those generated in response to the differentiation factors nerve growth factor and basic fibroblast growth factor. Whereas carbachol stimulates a greater release of inositol phosphates, all three agonists generate similar levels of DGs. In this report, we have analyzed the molecular species of PC12 DGs generated in response to these three agonists. Additionally, we have analyzed the molecular species of PC12 phospholipids. The data indicate that 1) after 1 min of either nerve growth factor or basic fibroblast growth factor stimulation, DGs arise primarily from phosphoinositide hydrolysis; 2) in contrast, after 1 min of carbachol stimulation, DG are generated equally by both phosphoinositide and phosphatidylcholine hydrolysis; and 3) after 15 min of stimulation by any of these agonists, DGs are generated largely by phosphatidylcholine hydrolysis, with a smaller component arising from the phosphoinositides. These results suggest that at least part of the mechanism by which PC12 cells distinguish between different agonists is via alterations in phospholipid sources and kinetics of DG generation. PMID:1892912

  11. Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation

    PubMed Central

    Schwend, Tyler; Deaton, Ryan J.; Zhang, Yuntao; Caterson, Bruce; Conrad, Gary W.

    2012-01-01

    Purpose. Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM–GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. Methods. Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. Results. At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C–rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. Conclusions. Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea. PMID:23132805

  12. Streptozotocin induced diabetes as a model of phrenic nerve neuropathy in rats.

    PubMed

    Rodrigues Filho, Omar Andrade; Fazan, Valéria Paula Sassoli

    2006-03-15

    Phrenic neuropathies are increasingly recognized in peripheral neuropathies but reports on experimental models of the phrenic nerves diabetic neuropathy are scanty. In the present study, we investigated the phrenic nerve neuropathy, due to experimental diabetes induced by streptozotocin (STZ) and the evolution of this neuropathy in diabetic rats treated with insulin. Proximal and distal segments of the left and right phrenic nerves were morphologically and morphometrically evaluated, from rats rendered diabetic for 12 weeks, by injection of STZ. Control rats received vehicle. Treated rats received a single subcutaneous injection of insulin on a daily basis. The nerves were prepared for light microcopy study by means of conventional techniques. Morphometry was carried out with the aid of computer software. The phrenic nerves of diabetic rats showed smaller myelinated axon diameters compared to controls. The g ratio was significantly smaller for myelinated fibers from diabetic rats compared to controls. Insulin treatment prevented these alterations. Histograms of size distribution for myelinated fibers and axons from control rats were bimodal. For diabetic animals, the myelinated fiber histogram was bimodal while the axon distribution turned to be unimodal. Insulin treatment also prevented these alterations. Our results confirm the phrenic nerve neuropathy in this experimental model of diabetes and suggest that conventional insulin treatment was able to prevent and/or correct the myelinated axon commitment by diabetes. PMID:16125783

  13. Radiotherapy-induced tumors of the spine, peripheral nerve, and spinal cord: Case report and literature review

    PubMed Central

    Falavigna, Asdrubal; da Silva, Pedro Guarise; Teixeira, William

    2016-01-01

    Background: The development of a secondary malignancy in the field of radiation is a rare but well-recognized hazard of cancer treatment. The radiotherapy-induced (RT-I) tumors are even more aggressive and potentially lethal than the primary tumor. To goal of this article is to report a case of RT-I neural tumor located in the peripheral nerve and spinal cord and to perform a literature review of the subject. Case Reports: Thirty-year male with symptoms of hypoesthesia and dysesthesia of the L5 nerve root distribution and previous treatment of a testicular seminoma 20 years previously. The lumbar magnetic resonance imaging showed the growth of a nerve root tumor. Surgery was performed, and a fusiform tumor was resected with clear margins. The anatomopathological and immunohistochemical studies were compatible with a malignant peripheral nerve sheath tumor. A total of 30 cases were included in the review. The mean age of the patients at diagnosis of the induced tumor was 39.36 (±16.74) years. Most were male (63.3%). The main type of primary disease was neural tumors (30%). The most common type of histology was fibrosarcoma (20.0%). No difference was found in age, gender, and time of diagnosis between neural and nonneural tumors. The mean survival after the diagnosis of the secondary tumor was 10.7 months (±13.27), and neural tumors had a longer survival period (P = 0.031). Conclusion: The current gold standard therapy is complete resection with clear margins, since most tumors do not respond to chemotherapy and RT. The neural type of RT-I tumor presented a longer survival period. PMID:26958426

  14. Nicotine Stimulates Nerve Growth Factor in Lung Fibroblasts through an NFκB-Dependent Mechanism

    PubMed Central

    Wongtrakool, Cherry; Grooms, Kora; Bijli, Kaiser M.; Crothers, Kristina; Fitzpatrick, Anne M.; Hart, C. Michael

    2014-01-01

    Rationale Airway hyperresponsiveness (AHR) is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM) cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF) secretion into the environment. Methods Primary lung fibroblasts isolated from wild type and α7 nicotinic acetylcholine receptor (α7 nAChR) deficient mice were treated with nicotine (50 µg/ml) in vitro for 72 hours. NGF levels were measured in culture media and in bronchoalveolar lavage (BAL) fluid from asthmatic, smoking and non-smoking subjects by ELISA. The role of the NFκB pathway in nicotine-induced NGF expression was investigated by measuring NFκB nuclear translocation, transcriptional activity, chromatin immunoprecipitation assays, and si-p65 NFκB knockdown. The ability of nicotine to stimulate a fibroblast-mediated, contractile ASM cell phenotype was confirmed by examining expression of contractile proteins in ASM cells cultured with fibroblast-conditioned media or BAL fluid. Results NGF levels were elevated in the bronchoalveolar lavage fluid of nicotine-exposed mice, current smokers, and asthmatic children. Nicotine increased NGF secretion in lung fibroblasts in vitro in a dose-dependent manner and stimulated NFκB nuclear translocation, p65 binding to the NGF promoter, and NFκB transcriptional activity. These responses were attenuated in α7 nAChR deficient fibroblasts and in wild type fibroblasts following NFκB inhibition. Nicotine-treated, fibroblast-conditioned media increased expression of contractile proteins in ASM cells. Conclusion Nicotine stimulates NGF release by lung fibroblasts through α7 nAChR and NFκB dependent pathways

  15. Combinatorial Therapy with Tamoxifen And Trifluoperazine Effectively Inhibits Malignant Peripheral Nerve Sheath Tumor Growth by Targeting Complementary Signaling Cascades

    PubMed Central

    Brosius, Stephanie N.; Turk, Amy N.; Byer, Stephanie J.; Longo, Jody Fromm; Kappes, John C.; Roth, Kevin A.; Carroll, Steven L.

    2014-01-01

    Chemotherapeutic agents effective against malignant peripheral nerve sheath tumors (MPNSTs) are urgently needed. We recently found that tamoxifen potently impedes xenograft growth. In vitro, tamoxifen inhibits MPNST proliferation and survival in an estrogen receptor-independent manner; these effects are phenocopied by the calmodulin inhibitor trifluoperazine. The present study was performed to establish the mechanism of action of tamoxifen in vivo and optimize its therapeutic effectiveness. To determine if tamoxifen has estrogen receptor-dependent effects in vivo, we grafted MPNST cells in castrated and ovariectomized mice; xenograft growth was unaffected by reductions in sex hormones. To establish whether tamoxifen and trifluoperazine additively or synergistically impede MPNST growth, mice xenografted with NF1-associated or sporadic MPNST cells were treated with tamoxifen, trifluoperazine, or both drugs for 30 days. Both monotherapies inhibited graft growth by 50%, whereas combinatorial treatment maximally reduced graft mass by 90% and enhanced decreases in proliferation and survival. Kinomic analyses showed that tamoxifen and trifluoperazine have both shared and distinct targets in MPNSTs. Additionally, trifluoperazine prevented tamoxifen-induced increases in serum/glucocorticoid regulated kinase 1, a protein linked to tamoxifen resistance. These findings suggest that combinatorial therapy with tamoxifen and trifluoperazine is effective against MPNSTs because these agents target complementary pathways that are essential for MPNST pathogenesis. PMID:25289889

  16. Berberine Ameliorates Allodynia Induced by Chronic Constriction Injury of the Sciatic Nerve in Rats.

    PubMed

    Kim, Hyun Jee

    2015-08-01

    The objective of this study was to investigate whether berberine could ameliorate allodynia induced by chronic constriction injury (CCI) of the sciatic nerve in rats. After inducement of CCI, significant increases in the number of paw lifts from a cold plate test (cold allodynia) and decreased paw withdrawal threshold in the von Frey hair stimulation test (mechanical allodynia) were observed. However, these cold and mechanical allodynia were markedly alleviated by berberine administration in a dose-dependent manner. Sciatic nerve myeloperoxidase and malondialdehyde activities were also attenuated by berberine administration. Continuous injection for 7 days induced no development of tolerance. The antiallodynic effect of 20 mg/kg berberine was comparable to that of amitriptyline 10 mg/kg. This study demonstrated that berberine could mitigate allodynia induced by CCI, a neuropathic pain model, and it suggested that the anti-inflammatory and antioxidative properties of berberine contributed to the antiallodynic effect in the CCI model. PMID:25674823

  17. Therapeutic targets for the management of peripheral nerve injury-induced neuropathic pain.

    PubMed

    Jaggi, Amteshwar Singh; Singh, Nirmal

    2011-08-01

    Neuropathic pain is a debilitating form of treatment resistant chronic pain and responds poorly to the clinically available therapies. Studies from animal models of neuropathic pain have led to understanding of its pathobiology which includes complex interrelated pathways leading to peripheral and central neuronal sensitization. Advancements in the elucidation of neuropathic pain mechanisms have revealed a number of key targets that have been hypothesized to modulate clinical status. The present review discusses these therapeutic targets including noradrenaline and 5-HT reuptake inhibitors; sodium, calcium and potassium channels; inhibitory and excitatory neurotransmitters; neuropeptides including bradykinin, tachykinin, cholecystokinin, neuropeptide Y, vasoactive intestinal peptide, and CGRP; pro-inflammatory cytokines; MAP kinases; PPAR γ; Na(+)/Ca(2+) exchanger; nitric oxide; purinergic receptors; neuronal nicotinic receptors; cation-dependent chloride transporters; oxidative stress; matrix metalloproteinase and plasminogen activators; growth factors; transient receptor potential (TRP) channels; endocannabinoids; histamine receptors; dopamine; sigma receptors, beta adrenergic receptors, endothelins, and D-amino acid oxidase. The exploitation of these targets may provide effective therapeutic agents for the management of peripheral nerve injury-induced neuropathic pain. PMID:21631400

  18. Muscle-targeted hydrodynamic gene introduction of insulin-like growth factor-1 using polyplex nanomicelle to treat peripheral nerve injury.

    PubMed

    Nagata, Kazuya; Itaka, Keiji; Baba, Miyuki; Uchida, Satoshi; Ishii, Takehiko; Kataoka, Kazunori

    2014-06-10

    The recovery of neurologic function after peripheral nerve injury often remains incomplete because of the prolonged reinnervation process, which leads to skeletal muscle atrophy and articular contracture from disuse over time. To rescue the skeletal muscle and promote functional recovery, insulin-like growth factor-1 (IGF-1), a potent myogenic factor, was introduced into the muscle by hydrodynamic injection of IGF-1-expressing plasmid DNA using a biocompatible nonviral gene carrier, a polyplex nanomicelle. In a mouse model of sciatic nerve injury, the introduction of IGF-1 into the skeletal muscle of the paralyzed limb effectively alleviated a decrease in muscle weight compared with that in untreated control mice. Histologic analysis of the muscle revealed the IGF-1-expressing plasmid DNA (pDNA) to have a myogenic effect, inducing muscle hypertrophy with the upregulation of the myogenic regulatory factors, myogenin and MyoD. The evaluation of motor function by walking track analysis revealed that the group that received the hydrodynamic injection of IGF-1-expressing pDNA using the polyplex nanomicelle had significantly early recovery of motor function compared with groups receiving negative control pDNA and untreated controls. Early recovery of sensation in the distal area of sciatic nerve injury was also induced by the introduction of IGF-1-expressing pDNA, presumably because of the effect of secreted IGF-1 protein in the vicinity of the injured sciatic nerve exerting a synergistic effect with muscle hypertrophy, inducing a more favorable prognosis. This approach of introducing IGF-1 into skeletal muscle is promising for the treatment of peripheral nerve injury by promoting early motor function recovery. PMID:24657809

  19. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells.

    PubMed

    Costantini, Todd W; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G; Peterson, Carrie Y; Loomis, William H; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P; Coimbra, Raul

    2010-12-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  20. Varying butyric acid amounts induce different stress- and cell death-related signals in nerve growth factor-treated PC12 cells: implications in neuropathic pain absence during periodontal disease progression.

    PubMed

    Seki, Keisuke; Cueno, Marni E; Kamio, Noriaki; Saito, Yuko; Kamimoto, Atsushi; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2016-06-01

    Neuropathic pain is absent from the early stages of periodontal disease possibly due to neurite retraction. Butyric acid (BA) is a periodontopathic metabolite that activates several stress-related signals and, likewise, induce neurite retraction. Neuronal cell death is associated to neurite retraction which would suggest that BA-induced neurite retraction is ascribable to neuronal cell death. However, the underlying mechanism of BA-related cell death signaling remains unknown. In this study, we exposed NGF-treated PC12 cells to varying BA concentrations [0 (control), 0.5, 1.0, 5.0 mM] and determined selected stress-related (H2O2, glutathione reductase, calcium (Ca(2+)), plasma membrane Ca(2+) ATPase (PMCA), and GADD153/CHOPS) and cell death-associated (extrinsic: FasL, TNF-α, TWEAK, and TRAIL; intrinsic: cytochrome C (CytC), NF-kB, CASP8, CASP9, CASP10, and CASP3) signals. Similarly, we confirmed cell death execution by chromatin condensation. Our results showed that low (0.5 mM) and high (1.0 and 5.0 mM) BA levels differ in stress and cell death signaling. Moreover, at periodontal disease-level BA concentration (5 mM), we observed that only FasL amounts were affected and occurred concurrently with chromatin condensation insinuating that cells have fully committed to neurodegeneration. Thus, we believe that both stress and cell death signaling in NGF-treated PC12 cells are affected differently depending on BA concentration. In a periodontal disease scenario, we hypothesize that during the early stages, low BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurite non-proliferation, whereas, during the later stages, high BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurodegeneration. More importantly, we propose that neuropathic pain absence at any stage of periodontal disease progression is ascribable to BA accumulation regardless of amount. PMID:26994613

  1. Action potentials induce uniform calcium influx in mammalian myelinated optic nerves.

    PubMed

    Zhang, Chuan-Li; Wilson, J Adam; Williams, Justin; Chiu, Shing Yan

    2006-08-01

    The myelin sheath enables saltatory conduction by demarcating the axon into a narrow nodal region for excitation and an extended, insulated internodal region for efficient spread of passive current. This anatomical demarcation produces a dramatic heterogeneity in ionic fluxes during excitation, a classical example being the restriction of Na influx at the node. Recent studies have revealed that action potentials also induce calcium influx into myelinated axons of mammalian optic nerves. Does calcium influx in myelinated axons show spatial heterogeneity during nerve excitation? To address this, we analyzed spatial profiles of axonal calcium transients during action potentials by selectively staining axons with calcium indicators and subjected the data to theoretical analysis with parameters for axial calcium diffusion empirically determined using photolysis of caged compounds. The results show surprisingly that during action potentials, calcium influx occurs uniformly along an axon of a fully myelinated mouse optic nerve. PMID:16835363

  2. Renal sympathetic nerve activity is increased in monosodium glutamate induced hyperadipose rats.

    PubMed

    da Silva Mattos, Alexandro Márcio; Xavier, Carlos Henrique; Karlen-Amarante, Marlusa; da Cunha, Natália Veronez; Fontes, Marco Antonio Peliky; Martins-Pinge, Marli Cardoso

    2012-08-01

    The literature suggests that both obesity and hypertension are associated with increased sympathetic nerve activity. In the present study we evaluated the renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) in hyperadipose rats induced by neonatal administration of monosodium glutamate (MSG). Neonatal Wistar male rats were injected with MSG (4 mg/g body weight ID) or equimolar saline (control) for 5 days. At 90th day, all rats were anesthetized (urethane 1.4 g/kg) and prepared for MAP, HR and renal sympathetic nerve activity recordings. The anesthetized MSG rats presented baseline hypertension and increased baseline RSNA compared with control. Our results suggest the involvement of the renal sympathetic nervous system in the physiopathology of the MSG obesity. PMID:22705582

  3. The function of intradental nerves in relation to the sensations induced by dental stimulation.

    PubMed

    Närhi, M; Hirvonen, T; Huopaniemi, T

    1984-01-01

    Stimulation of intradental nerves has been widely used in pain research as a method for selective activation of pain pathways. It is believed that the only sensation experienced by human subjects in response to activation of pulp nerves is that of pain. However, this concept is not strictly correct. With electrical stimulation at threshold level or near to it a sensation which is not necessarily painful ("prepain") is experienced. When the stimulus intensity is increased suprathreshold, the sensation tends to change to a painful and unpleasant one. The changes in sensations are probably caused by activation of intradental nerve units with different thresholds and conduction velocities. In cats the fastest conducting pulp nerve fibres have the lowest thresholds and slowly conducting units are activated at much higher current levels. In most experiments on human teeth using natural stimuli like hot and cold the only sensation experienced has been pain. It seems also difficult for the subjects to find any difference between different stimuli. Correspondingly, in animal experiments it has been shown that different stimuli applied to dentine are capable of activating the same intradental nerve units probably with a common mechanism (hydrodynamic). However, some recent studies indicate that sensation of cold could be induced by stimulating human teeth. PMID:6148844

  4. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries

    PubMed Central

    Nausch, Lydia W. M.; Bonev, Adrian D.; Heppner, Thomas J.; Tallini, Yvonne; Kotlikoff, Michael I.

    2012-01-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signals (“pulsars”) in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca2+ pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca2+ pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca2+ signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca2+ channels, suggesting a role for IP3, rather than Ca2+, in VSM-to-endothelium communication. Block of intermediate-conductance Ca2+-sensitive K+ channels, which have been shown to colocalize with IP3 receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca2+ signals to oppose vasoconstriction. PMID:22140050

  5. Reversal of Peripheral Nerve Injury-induced Hypersensitivity in the Postpartum Period: Role of Spinal Oxytocin

    PubMed Central

    Gutierrez, Silvia; Liu, Baogang; Hayashida, Ken-ichiro; Houle, Timothy T.; Eisenach, James C.

    2012-01-01

    Background Physical injury, including surgery, can result in chronic pain; yet chronic pain following childbirth, including cesarean delivery in women, is rare. The mechanisms involved in this protection by pregnancy or delivery have not been explored. Methods We examined the effect of pregnancy and delivery on hypersensitivity to mechanical stimuli of the rat hindpaw induced by peripheral nerve injury (spinal nerve ligation) and after intrathecal oxytocin, atosiban and naloxone. Additionally, oxytocin concentration in lumbar spinal cerebrospinal fluid was determined. Results Spinal nerve ligation performed at mid-pregnancy resulted in similar hypersensitivity to nonpregnant controls, but hypersensitivity partially resolved beginning after delivery. Removal of pups after delivery prevented this partial resolution. Cerebrospinal fluid concentrations of oxytocin were greater in normal postpartum rats prior to weaning. To examine the effect of injury at the time of delivery rather than during pregnancy, spinal nerve ligation was performed within 24 h of delivery. This resulted in acute hypersensitivity that partially resolved over the next 2–3 weeks. Weaning of pups resulted only in a temporary return of hypersensitivity. Intrathecal oxytocin effectively reversed the hypersensitivity following separation of the pups. Postpartum resolution of hypersensitivity was transiently abolished by intrathecal injection of the oxytocin receptor antagonist, atosiban. Conclusions These results suggest that the postpartum period rather than pregnancy protects against chronic hypersensitivity from peripheral nerve injury and that this protection may reflect sustained oxytocin signaling in the central nervous system during this period. PMID:23249932

  6. Distribution of elements and water in peripheral nerve of streptozocin-induced diabetic rats

    SciTech Connect

    Lowery, J.M.; Eichberg, J.; Saubermann, A.J.; LoPachin, R.M. Jr. )

    1990-12-01

    Accumulating evidence suggests that alterations in Na, Ca, K, and other biologically relevant elements play a role in the mechanism of cell injury. The pathogenesis of experimental diabetic neuropathy is unknown but might include changes in the distribution of these elements in morphological compartments. In this study, this possibility was examined via electron-probe X-ray microanalysis to measure both concentrations of elements (millimoles of element per kilogram dry or wet weight) and cell water content (percent water) in frozen, unfixed, unstained sections of peripheral nerve from control and streptozocin-induced diabetic rats. Our results indicate that after 20 wk of experimental diabetes, mitochondria and axoplasm from myelinated axons of proximal sciatic nerve displayed diminished K and Cl content, whereas in tibial nerve, the intraaxonal levels of these elements increased. In distal sciatic nerve, mitochondrial and axoplasmic levels of Ca were increased, whereas other elemental alterations were not observed. These regional changes resulted in a reversal of the decreasing proximodistal concentration gradients for K and Cl, which exist in nondiabetic rat sciatic nerve. Our results cannot be explained on the basis of altered water. Highly distinctive changes in elemental distribution observed might be a critical component of the neurotoxic mechanism underlying diabetic neuropathy.

  7. Identification of a Peripheral Nerve Neurite Growth-Promoting Activity by Development and Use of an in vitro Bioassay

    NASA Astrophysics Data System (ADS)

    Sandrock, Alfred W.; Matthew, William D.

    1987-10-01

    The effective regeneration of severed neuronal axons in the peripheral nerves of adult mammals may be explained by the presence of molecules in situ that promote the effective elongation of neurites. The absence of such molecules in the central nervous system of these animals may underlie the relative inability of axons to regenerate in this tissue after injury. In an effort to identify neurite growth-promoting molecules in tissues that support effective axonal regeneration, we have developed an in vitro bioassay that is sensitive to substrate-bound factors of peripheral nerve that influence the growth of neurites. In this assay, neonatal rat superior cervical ganglion explants are placed on longitudinal cryostat sections of fresh-frozen sciatic nerve, and the regrowing axons are visualized by catecholamine histofluorescence. Axons are found to regenerate effectively over sciatic nerve tissue sections. When ganglia are similarly explanted onto cryostat sections of adult rat central nervous system tissue, however, axonal regeneration is virtually absent. We have begun to identify the molecules in peripheral nerve that promote effective axonal regeneration by examining the effect of antibodies that interfere with the activity of previously described neurite growth-promoting factors. Axonal elongation over sciatic nerve tissue was found to be sensitive to the inhibitory effects of INO (for inhibitor of neurite outgrowth), a monoclonal antibody that recognizes and inhibits a neurite growth-promoting activity from PC-12 cell-conditioned medium. The INO antigen appears to be a molecular complex of laminin and heparan sulfate proteoglycan. In contrast, a rabbit antiserum that recognizes laminin purified from mouse Engelbreth-Holm-Swarm (EHS) sarcoma, stains the Schwann cell basal lamina of peripheral nerve, and inhibits neurite growth over purified laminin substrata has no detectable effect on the rate of axonal regeneration in our assay.

  8. The in vitro biological effect of nerve growth factor is inhibited by synthetic peptides.

    PubMed Central

    Longo, F M; Vu, T K; Mobley, W C

    1990-01-01

    Nerve growth factor (NGF)1 is a neurotrophic polypeptide that acts via specific receptors to promote the survival and growth of neurons. To delineate the NGF domain(s) responsible for eliciting biological activity, we synthesized small peptides corresponding to three regions in NGF that are hydrophilic and highly conserved. Several peptides from mouse NGF region 26-40 inhibited the neurite-promoting effect of NGF on sensory neurons in vitro. Inhibition was sequence-specific and could be overcome by increasing the concentration of NGF. Moreover, peptide actions were specific for NGF-mediated events in that they failed to block the neurotrophic activity of ciliary neuronotrophic factor (CNTF) or phorbol 12-myristate 13-acetate (PMA). In spite of the inhibition of NGF activity, peptides did not affect the binding of radiolabeled NGF. These studies define one region of NGF that may be required for neurotrophic activity. Images PMID:2100197

  9. Nerve growth factor regulates synaptophysin expression in developing trigeminal ganglion neurons in vitro.

    PubMed

    Tarsa, L; Balkowiec, A

    2009-02-01

    The role of neuronal growth factors in synaptic maturation of sensory neurons, including trigeminal ganglion (TG) neurons, remains poorly understood. Here, we show that nerve growth factor (NGF) regulates the intracellular distribution of the synaptic vesicle protein synaptophysin (Syp) in newborn rat TG neurons in vitro. While reducing the number of Syp-positive cell bodies, NGF dramatically increases Syp immunoreactivity in both proximal and distal segments of the neurite. Intriguingly, the increase in Syp immunoreactivity occurs only in neuron-enriched cultures, in which the number of non-neuronal cells is significantly reduced. Together, our data indicate that NGF is a candidate molecule involved in early postnatal maturation of TG neurons, including control of presynaptic assembly, and thereby formation of synaptic connections. PMID:19019428

  10. Nerve Growth Factor Regulates Synaptophysin Expression In Developing Trigeminal Ganglion Neurons In Vitro

    PubMed Central

    Tarsa, L.; Balkowiec, A.

    2008-01-01

    The role of neuronal growth factors in synaptic maturation of sensory neurons, including trigeminal ganglion (TG) neurons, remains poorly understood. Here, we show that nerve growth factor (NGF) regulates the intracellular distribution of the synaptic vesicle protein synaptophysin (Syp) in newborn rat TG neurons in vitro. While reducing the number of Syp-positive cell bodies, NGF dramatically increases Syp immunoreactivity in both proximal and distal segments of the neurite. Intriguingly, the increase in Syp immunoreactivity occurs only in neuron-enriched cultures, in which the number of non-neuronal cells is significantly reduced. Together, our data indicate that NGF is a candidate molecule involved in early postnatal maturation of TG neurons, including control of presynaptic assembly, and thereby formation of synaptic connections. PMID:19019428

  11. Up-Regulation of Nerve Growth Factor in Cholestatic Livers and Its Hepatoprotective Role against Oxidative Stress

    PubMed Central

    Tsai, Ming-Shian; Lin, Yu-Chun; Sun, Cheuk-Kwan; Huang, Shih-Che; Lee, Po-Huang; Kao, Ying-Hsien

    2014-01-01

    The role of nerve growth factor (NGF) in liver injury induced by bile duct ligation (BDL) remains elusive. This study aimed to investigate the relationship between inflammation and hepatic NGF expression, to explore the possible upstream molecules up-regulating NGF, and to determine whether NGF could protect hepatocytes from oxidative liver injury. Biochemical and molecular detection showed that NGF was up-regulated in cholestatic livers and plasma, and well correlated with systemic and hepatic inflammation. Conversely, systemic immunosuppression reduced serum NGF levels and resulted in higher mortality in BDL-treated mice. Immunohistochemistry showed that the up-regulated NGF was mainly localized in parenchymal hepatocytes. In vitro mechanistic study further demonstrated that TGF-β1 up-regulated NGF expression in clone-9 and primary rat hepatocytes. Exogenous NGF supplementation and endogenous NGF overexpression effectively protected hepatocytes against TGF-β1- and oxidative stress-induced cell death in vitro, along with reduced formation of oxidative adducted proteins modified by 4-HNE and 8-OHdG. TUNEL staining confirmed the involvement of anti-apoptosis in the NGF-exhibited hepatoprotection. Moreover, NGF potently induced Akt phosphorylation and increased Bcl-2 to Bax ratios, whereas these molecular alterations by NGF were only seen in the H2O2-, but not TGF-β1-treated hepatocytes. In conclusion, NGF exhibits anti-oxidative and hepatoprotective effects and is suggested to be therapeutically applicable in treating cholestatic liver diseases. PMID:25397406

  12. Up-regulation of nerve growth factor in cholestatic livers and its hepatoprotective role against oxidative stress.

    PubMed

    Tsai, Ming-Shian; Lin, Yu-Chun; Sun, Cheuk-Kwan; Huang, Shih-Che; Lee, Po-Huang; Kao, Ying-Hsien

    2014-01-01

    The role of nerve growth factor (NGF) in liver injury induced by bile duct ligation (BDL) remains elusive. This study aimed to investigate the relationship between inflammation and hepatic NGF expression, to explore the possible upstream molecules up-regulating NGF, and to determine whether NGF could protect hepatocytes from oxidative liver injury. Biochemical and molecular detection showed that NGF was up-regulated in cholestatic livers and plasma, and well correlated with systemic and hepatic inflammation. Conversely, systemic immunosuppression reduced serum NGF levels and resulted in higher mortality in BDL-treated mice. Immunohistochemistry showed that the up-regulated NGF was mainly localized in parenchymal hepatocytes. In vitro mechanistic study further demonstrated that TGF-β1 up-regulated NGF expression in clone-9 and primary rat hepatocytes. Exogenous NGF supplementation and endogenous NGF overexpression effectively protected hepatocytes against TGF-β1- and oxidative stress-induced cell death in vitro, along with reduced formation of oxidative adducted proteins modified by 4-HNE and 8-OHdG. TUNEL staining confirmed the involvement of anti-apoptosis in the NGF-exhibited hepatoprotection. Moreover, NGF potently induced Akt phosphorylation and increased Bcl-2 to Bax ratios, whereas these molecular alterations by NGF were only seen in the H2O2-, but not TGF-β1-treated hepatocytes. In conclusion, NGF exhibits anti-oxidative and hepatoprotective effects and is suggested to be therapeutically applicable in treating cholestatic liver diseases. PMID:25397406

  13. Swim therapy reduces mechanical allodynia and thermal hyperalgesia induced by chronic constriction nerve injury in rats

    PubMed Central

    Shen, Jun; Fox, Lyle E.; Cheng, Jianguo

    2013-01-01

    Objective Neuropathic pain is common and often difficult to treat because it generally does not respond well to the currently available pain medications or nerve blocks. Recent studies in both humans and animals have suggested that exercise may induce a transient analgesia and reduce acute pain in normal healthy individuals. We examined whether swim therapy could alleviate neuropathic pain in rats. Design Rats were trained to swim over a two week period in warm water. After the rats were trained, neuropathic pain was induced by constricting the right sciatic nerve and regular swimming was resumed. The sensitivity of each hind paw was monitored using the Hargreaves test and von Frey test to evaluate the withdrawal response thresholds to heat and touch. Results The paw ipsilateral to the nerve ligation expressed pain-like behaviors including thermal hyperalgesia and mechanical allodynia. Regular swim therapy sessions significantly reduced the mechanical allodynia and thermal hyperalgesia. Swim therapy had little effect on the withdrawal thresholds for the contralateral paw. In addition, swim therapy alone did not alter the thermal or mechanical thresholds of normal rats. Conclusions The results suggest that regular exercise, including swim therapy, may be an effective treatment for neuropathic pain caused by nerve injuries. This study, showing that swim therapy reduces neuropathic pain behavior in rats, provides a scientific rationale for clinicians to test the efficacy of exercise in the management of neuropathic pain. It may prove to be a safe and cost-effective therapy in a variety of neuropathic pain states. PMID:23438327

  14. Basic study on the influence of inhibition induced by the magnetic stimulation on the peripheral nerve

    NASA Astrophysics Data System (ADS)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Iramina, Keiji

    2015-05-01

    The purpose of this study is to analyze the inhibition mechanism of magnetic stimulation on motor function. A magnetic stimulator with a flat figure-eight coil was used to stimulate the peripheral nerve of the antebrachium. The intensity of magnetic stimulation was 0.8 T, and the stimulation frequency was 1 Hz. The amplitudes of the motor-evoked potentials (MEPs) at the abductor pollicis brevis muscle and first dorsal interosseous muscle were used to evaluate the effects of magnetic stimulation. The effects of magnetic stimulation were evaluated by analyzing the MEP amplitude before and after magnetic stimulation to the primary motor cortex. The results showed that MEP amplitude after magnetic stimulation compared with before magnetic stimulation decreased. Because there were individual differences in MEP amplitude induced by magnetic stimulation, the MEP amplitude after stimulation was normalized by the amplitude of each participant before stimulation. The MEP amplitude after stimulation decreased by approximately 58% (p < 0.01) on average compared with before stimulation. Previous studies suggested that magnetic stimulation to the primary motor cortex induced an increase or a decrease in MEP amplitude. Furthermore, previous studies have shown that the alteration in MEP amplitude was induced by cortical excitability based on magnetic stimulation. The results of this study showed that MEP amplitude decreased following magnetic stimulation to the peripheral nerve. We suggest that the decrease in MEP amplitude found in this study was obtained via the feedback from a peripheral nerve through an afferent nerve to the brain. This study suggests that peripheral excitement by magnetic stimulation of the peripheral nerve may control the central nervous system via afferent feedback.

  15. Anticonvulsants for nerve agent-induced seizures: The influence of the therapeutic dose of atropine.

    PubMed

    Shih, Tsung-Ming; Rowland, Tami C; McDonough, John H

    2007-01-01

    Two guinea pig models were used to study the anticonvulsant potency of diazepam, midazolam, and scopolamine against seizures induced by the nerve agents tabun, sarin, soman, cyclosarin, O-ethyl S-(2-(diisopropylamino)ethyl)methylphosphonothioate (VX), and O-isobutyl S-(2-diethylamino)ethyl)-methyl phosphonothioate (VR). Animals instrumented for electroencephalogram recording were pretreated with pyridostigmine bromide (0.026 mg/kg i.m.) 30 min before challenge with 2 x LD50 (s.c.) of a nerve agent. In model A, atropine sulfate (2.0 mg/kg i.m.) and pyridine-2-aldoxime methylchloride (2-PAM; 25.0 mg/kg i.m.) were given 1 min after nerve agent challenge, and the tested anticonvulsant was given (i.m.) 5 min after seizure onset. In model B, a lower dose of atropine sulfate (0.1 mg/kg i.m.) was given along with 2-PAM 1 min after nerve agent challenge, and the anticonvulsant was given at seizure onset. With the lower dose of atropine, seizure occurrence increased to virtually 100% for all agents; the time to seizure onset decreased for sarin, cyclosarin, and VX; the signs of nerve agent intoxication were more severe; and coma resulted frequently with cyclosarin. The anticonvulsant ED50 doses for scopolamine or diazepam were, in general, not different between the two models, whereas the anticonvulsant ED50 values of midazolam increased 3- to 17-fold with the lower atropine dose. Seizure termination times were not systematically effected by the different doses of atropine. The order of anticonvulsant effectiveness within each model was scopolamine > or = midazolam > diazepam. The findings indicate that the dose of atropine given as antidotal therapy can significantly influence measures of nerve agent toxicity and responsiveness to anticonvulsant therapy. PMID:17015638

  16. A relaxin-like peptide purified from radial nerves induces oocyte maturation and ovulation in the starfish, Asterina pectinifera

    PubMed Central

    Mita, Masatoshi; Yoshikuni, Michiyasu; Ohno, Kaoru; Shibata, Yasushi; Paul-Prasanth, Bindhu; Pitchayawasin, Suthasinee; Isobe, Minoru; Nagahama, Yoshitaka

    2009-01-01

    Gonad-stimulating substance (GSS) of starfish is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to the vertebrate luteinizing hormone (LH). Here, we purified GSS of starfish, Asterina pectinifera, from radial nerves and determined its amino acid sequence. The purified GSS was a heterodimer composed of 2 different peptides, A and B chains, with disulfide cross-linkages. Based on its cysteine motif, starfish GSS was classified as a member of the insulin/insulin-like growth factor (IGF)/relaxin superfamily. The cDNA of GSS encodes a preprohormone sequence with a C peptide between the A and B chains. Phylogenetic analyses revealed that starfish GSS was a relaxin-like peptide. Chemically synthesized GSS induced not only oocyte maturation and ovulation in isolated ovarian fragments, but also unique spawning behavior, followed by release of gametes shortly after the injection. Importantly, the action of the synthetic GSS on oocyte maturation and ovulation was mediated through the production of cAMP by isolated ovarian follicle cells, thereby producing the maturation-inducing hormone of this species, 1-methyladenine. In situ hybridization showed the transcription of GSS to occur in the periphery of radial nerves at the side of tube feet. Together, the structure, sequence, and mode of signal transduction strongly suggest that GSS is closely related to the vertebrate relaxin. PMID:19470645

  17. Activation of sensory nerves participates in stress-induced histamine release from mast cells in rats.

    PubMed

    Huang, Z L; Mochizuki, T; Watanabe, H; Maeyama, K

    1999-08-01

    To elucidate the mechanism by which stress induces rapid histamine release from mast cells, Wistar rats, pretreated as neonates with capsaicin, were subjected to immobilization stress for 2 h, and histamine release was measured in paws of anesthetized rats by using in vivo microdialysis after activation of sensory nerves by electrical or chemical stimulation. Immobilization stress studies indicated that in control rats stress induced a 2.7-fold increase in the level of plasma histamine compared to that in freely moving rats. Whereas pretreatment with capsaicin significantly decreased stress-induced elevation of plasma histamine. Microdialysis studies showed that electrical stimulation of the sciatic nerve resulted in a 4-fold increase of histamine release in rat paws. However, this increase was significantly inhibited in rats pretreated with capsaicin. Furthermore, injection of capsaicin into rat paw significantly increased histamine release in a dose-dependent manner. These results suggest that activation of sensory nerves participates in stress-induced histamine release from mast cells. PMID:10462124

  18. Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects

    PubMed Central

    Chen, Wei-hui; Mao, Chuan-qing; Zhuo, Li-li; Ong, Joo L.

    2015-01-01

    We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically applied β-nerve growth factor (β-NGF) on neurogenesis and angiogenesis in critical-sized bone defects filled with collagen bone substitute. We created two symmetrical defects, 2.5 mm in diameter, on either side of the parietal bone of the skull, and filled them with bone substitute. Subcutaneously implanted osmotic pumps were used to infuse 10 μg β-NGF in PBS (β-NGF + PBS) into the right-hand side defect, and PBS into the left (control) defect, over the 7 days following surgery. Immunohistochemical staining and hematoxylin-eosin staining were carried out at 3, 7, 14, 21 and 28 days postoperatively. On day 7, expression of β III-tubulin was lower on the β-NGF + PBS side than on the control side, and that of neurofilament 160 was greater. On day 14, β III-tubulin and protein gene product 9.5 were greater on the β-NGF + PBS side than on the control side. Vascular endothelial growth factor expression was greater on the experimental side than the control side at 7 days, and vascular endothelial growth factor receptor 2 expression was elevated on days 14 and 21, but lower than control levels on day 28. However, no difference in the number of blood vessels was observed between sides. Our results indicate that topical application of β-NGF promoted neurogenesis, and may modulate angiogenesis by promoting nerve regeneration in collagen bone substitute-filled defects. PMID:26330843

  19. Heparin modulation of the neurotropic effects of acidic and basic fibroblast growth factors and nerve growth factor on PC12 cells

    SciTech Connect

    Neufeld, G.; Gospodarowicz, D.; Dodge, L.; Fujii, D.K.

    1987-04-01

    Nerve growth factor (NGF) and acidic or basic fibroblast growth factor (aFGF and bFGF, respectively) induce neurite outgrowth from the rat pheochromocytoma cell line, PC12. The neurites induced by these three factors are stable for up to a month in cell culture in the continued presence of any of the above growth factors. bFGF (ED50 = 30 pg/ml) is 800 fold more potent in stimulating neurite outgrowth than aFGF (ED50 = 25 ng/ml) and 260 fold more potent than NGF (ED50 = 8 ng/ml). While the neurotropic activities of aFGF and NGF are potentiated by heparin, that of bFGF is both partially inhibited or stimulated, depending upon the concentration of bFGF. Radioreceptor binding experiments show that aFGF and bFGF bind to a common binding site on the PC12 cell surface. Affinity labeling studies demonstrate a single receptor with an apparent molecular weight of 145,000 daltons, which corresponds to the high molecular weight receptor identified in BHK-21 cells. NGF does not appear to compete with aFGF or bFGF for binding to the receptor. Heparin blocked the binding of bFGF to the receptor but had only a small inhibitory effect on the binding of aFGF to the receptor. Thus, it appears that heparin inhibition of the neurotropic effects of bFGF occurs, at least in part, by impairing the interaction of bFGF with the receptor, while having little effect on that of aFGF. The stimulatory effects of heparin on the neurotropic activity of aFGF, bFGF, and NGF may occur through a site not associated with the respective cellular receptor for the growth factors.

  20. Growth-associated protein 43 in differentiating peripheral nerve sheath tumors from other non-neural spindle cell neoplasms.

    PubMed

    Chen, Wei-Shen; Chen, Pei-Ling; Lu, Dongsi; Lind, Anne C; Dehner, Louis P

    2014-02-01

    The malignant peripheral nerve sheath tumor is a relatively uncommon type of soft tissue sarcoma arising from a peripheral nerve or extraneural soft tissues and showing nerve sheath differentiation. The diagnosis of malignant peripheral nerve sheath tumor is one of the most challenging tasks in surgical pathology because of its uncommon type (5-10% soft tissue sarcomas), morphologic resemblance to other spindle cell neoplasms and lack of sensitive and specific immunohistochemical markers. The pathologic diagnosis is more straightforward in the clinical setting of neurofibromatosis-1, but problems are mainly centered on the non-neurofibromatosis-1 malignant peripheral nerve sheath tumors. To date, S100 protein is the most widely applied marker in the case of a suspected malignant peripheral nerve sheath tumor, yet its suboptimal sensitivity and its expression in other spindle cell neoplasms, including spindle cell melanoma, clear-cell sarcoma, leiomyosarcoma and monophasic synovial sarcoma, add to the diagnostic conundrum. Growth-associated protein 43 (GAP43), a membrane-associated phosphoprotein expressed in neuronal growth cones and Schwann cell precursors during neural development and axonal regeneration, was applied to a set of nerve sheath and non-nerve sheath spindle cell neoplasms. The findings in this study indicate that GAP43 is expressed in malignant peripheral nerve sheath tumors (n=18/21; 86%) and demonstrates a sensitivity superior to S100 protein (n=13/21; 62%). GAP43 is also positive in neurofibromas (n=17/18; 94%), schwannomas (n=11/12; 92%) and desmoplastic melanomas (n=7/10; 70%). In contrast, it is negative in the non-desmoplastic spindle cell melanomas (n=20/22; 91%). Of the other non-neural soft tissue sarcomas, GAP43 is non-reactive in most leiomyosarcomas (n=14/16; 88%) and clear-cell sarcomas (n=8/8), and only focally positive in monophasic synovial sarcomas (n=3/7; 43%). GAP43 is seemingly a highly sensitive marker for peripheral nerve

  1. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  2. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    PubMed

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells. PMID:27128150

  3. Sargaquinoic acid supports the survival of neuronal PC12D cells in a nerve growth factor-independent manner.

    PubMed

    Tsang, Chi Kwan; Kamei, Yuto

    2004-03-19

    Sargaquinoic acid (designated previously as MC14) was isolated from a marine brown alga Sargassum macrocarpum, and has been found to possess a novel nerve growth factor (NGF)-dependent neurite outgrowth promoting activity in PC12D cells. In this study, we explored the neuroprotective effects of MC14 in terms of its survival supporting, antioxidant and neurite-regenerating activities under NGF deficient or deprived conditions. Intriguingly, MC14 did not only promote the NGF-induced survival support on neuronal PC12D cells, but also significantly abated neuronal PC12D cell death even in the absence of NGF. The pharmacological inhibition of phosphatidylinositol-3 kinase (PI3K) by wortmannin significantly suppressed the survival supporting activity of MC14, whereas the NGF receptor (tyrosine kinase A or TrkA) inhibitor K252a showed no detectable effect on MC14 activity. These results demonstrate that MC14 supports survival of neuronal PC12D cells in an NGF-independent manner, and that PI3K may be required for the neuroprotective activity of MC14. In addition, we have shown that MC14 markedly enhanced neurite-regeneration and protected PC12D cells from hydrogen peroxide (H(2)O(2))-induced oxidative stress. These pharmacological features suggest that MC14 may be a potentially important neuroprotective agent. PMID:15044030

  4. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex.

    PubMed Central

    Carmignoto, G; Pizzorusso, T; Tia, S; Vicini, S

    1997-01-01

    1. The effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) on excitatory synaptic transmission in the developing visual cortex was studied by whole-cell patch-clamp recordings from rat brain slices. 2. Both neurotrophins induced a rapid increase in the amplitude of impulse-evoked excitatory postsynaptic currents (EPSCs). BDNF also increased the frequency of spontaneous EPSCs. 3. Analysis of the currents revealed that alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated components contributing to the EPSC peak amplitude were equally potentiated by the neurotrophins. 4. When synaptic transmission was studied by minimal stimulation of intracortical afferents, neurotrophins induced a decrease in the occurrence of release failures. 5. A number of neurones were insensitive to the effects of the neurotrophins, possibly related to the considerable heterogeneity of neuronal types and to the uneven distribution of neurotrophin receptors in the visual cortex. 6. The probability of neurotransmitter release represents a rapidly modifiable synaptic feature by which neurotrophins can potentiate the efficacy of excitatory synaptic transmission in the visual cortex. PMID:9023775

  5. Nerve growth factor: a neurotrophin with activity on cells of the immune system.

    PubMed

    Aloe, L; Simone, M D; Properzi, F

    Numerous studies published in the last two decades provide evidence that nerve growth factor (NGF), a polypeptide originally discovered because of its neurotrophic activity, acts on a variety of cells of the immune system, including mast cells, eosinophils, and B and T lymphocytes. NGF has been shown to increase during inflammatory responses, autoimmune disorders, parasitic infections, and allergic diseases. Moreover, stress, which is characterized also by activation of a variety of immune cells, causes a significant increase in basal plasma NGF levels. Recently published studies reveal that hematopoietic progenitor cells seem to be able to produce and/or respond to NGF. We report these data and discuss the hypothesis of the possible implication of NGF on the functional activities of immune cells. PMID:10383121

  6. Measuring nerve growth factor in saliva by immunoassay: A cautionary note.

    PubMed

    Matin, Marla J; Li, Daming; Peterson, Jon; Taylor, Marcus K; Laurent, Heidemarie K; Lucas, Todd; Granger, Steve J; Granger, Douglas A; Granger, Steve W

    2016-01-01

    Nerve growth factor (NGF), a neurotrophin, modulates a diverse set of physiologic processes in the nervous, immune, and endocrine systems. Studies suggest that NGF can be measured in saliva (sNGF). Historically, the method for measuring sNGF involves the off-label use of an enzyme immunoassay designed for use with cell-culture supernatants/tissue extracts (Nam et al., 2007; Ruhl et al., 2004). In a series of experiments we reveal this measurement strategy is subject to non-specific interference by constituents present in oral fluids. We conclude that the measurement of sNGF by this assay is not optimal for use with oral fluid specimens. PMID:26519777

  7. Vanilloid receptors mediate adrenergic nerve- and CGRP-containing nerve-dependent vasodilation induced by nicotine in rat mesenteric resistance arteries

    PubMed Central

    Eguchi, Shinji; Tezuka, Satoko; Hobara, Narumi; Akiyama, Shinji; Kurosaki, Yuji; Kawasaki, Hiromu

    2004-01-01

    Previous studies showed that nicotine induces adrenergic nerve-dependent vasodilation that is mediated by endogenous calcitonin gene-related peptide (CGRP) released from CGRP-containing (CGRPergic) nerves. The mechanisms underlying the nicotine-induced vasodilation were further studied. Rat mesenteric vascular beds without endothelium were contracted by perfusion with Krebs solution containing methoxamine, and the perfusion pressure was measured with a pressure transducer. Perfusion of nicotine (1–100 μM) for 1 min caused concentration-dependent vasodilation. Capsazepine (vanilloid receptor-1 antagonist; 1–10 μM) and ruthenium red (inhibitor of vanilloid response; 1–30 μM) concentration-dependently inhibited the nicotine-induced vasodilation without affecting the vasodilator response to exogenous CGRP. Nicotine-induced vasodilation was not inhibited by treatment with 3,4-dihydroxyphenylalanine (DOPA) receptor antagonist (L-DOPA cyclohexyl ester; 0.001–10 μM), dopamine D1 receptor-selective antagonist (SCH23390; 1–10 μM), dopamine D2 receptor antagonist (haloperidol; 0.1–0.5 μM), ATP P2x receptor-desensitizing agonist (α,β-methylene ATP; 1–10 μM), adenosine A2 receptor antagonist (8(p-sulfophenyl)theophylline; 10–50 μM) or neuropeptide Y (NPY)-Y1 receptor antagonist (BIBP3226; 0.1–0.5 μM). Immunohistochemical staining of the mesenteric artery showed dense innervation of CGRP- and vanilloid receptor-1-positive nerves, with both immunostainings appearing in the same neuron. The mesenteric artery was also densely innervated by NPY-positive nerves. Double immunostainings showed that both NPY and CGRP immunoreactivities appeared in the same neuron of the artery. These results suggest that nicotine acts on presynaptic nicotinic receptors to release adrenergic neurotransmitter(s) or related substance(s), which then stimulate vanilloid receptor-1 on CGRPergic nerves, resulting in CGRP release and vasodilation. PMID:15249421

  8. M. leprae components induce nerve damage by complement activation: identification of lipoarabinomannan as the dominant complement activator.

    PubMed

    Bahia El Idrissi, Nawal; Das, Pranab K; Fluiter, Kees; Rosa, Patricia S; Vreijling, Jeroen; Troost, Dirk; Morgan, B Paul; Baas, Frank; Ramaglia, Valeria

    2015-05-01

    Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients. PMID:25772973

  9. Effect of an Adipose-Derived Stem Cell and Nerve Growth Factor-Incorporated Hydrogel on Recovery of Erectile Function in a Rat Model of Cavernous Nerve Injury

    PubMed Central

    Kim, In Gul; Piao, Shuyu; Lee, Ji Young; Hong, Sung Hoo; Hwang, Tae-Kon; Kim, Sae Woong; Kim, Choung Soo; Ra, Jeong Chan; Noh, Insup

    2013-01-01

    Postprostatectomy erectile dysfunction (ED) is the major problem for patients with clinically localized prostate cancer. Recently, gene and stem cell-based therapy of the corpus cavernosum has been attempted for postprostatectomy ED, but those therapies are limited by rapid blood flow and disruption of the normal architecture of the corpus cavernosum. In this study, we attempted to regenerate the damaged cavernous nerve (CN), which is the main cause of ED. We investigated the effectiveness of human adipose-derived stem cell (hADSC) and nerve growth factor-incorporated hyaluronic acid-based hydrogel (NGF-hydrogel) application on the CN in a rat model of bilateral cavernous nerve crush injury. Four weeks after the operation, erectile function was assessed by detecting the intracavernous pressure (ICP)/arterial pressure level by CN electrostimulation. The ICP was significantly increased by application of hADSC with NGF-hydrogel compared to the other experimental groups. CN and penile tissue were collected for histological examination. PKH-26 labeled hADSC colocalized with beta III tubulin were shown in CN tissue sections. hADSC/NGF-hydrogel treatment prevented smooth muscle atrophy in the corpus cavernosum. In addition, the hADSC/NGF-hydrogel group showed increased endothelial nitric oxide synthase protein expression. This study suggests that application of hADSCs with NGF-hydrogel on the CN might be a promising treatment for postprostatectomy ED. PMID:22834730

  10. [NERVE GROWTH FACTOR IN THE URINE OF PATIENTS WITH IDIOPATHIC DETRUSOR OVERACTIVITY AND OVERACTIVE BLADDER WITHOUT DETRUSOR OVERACTIVITY].

    PubMed

    Krivoborodov, G G; Kolesanova, E F; Tur, E I; Efremov, N S

    2015-01-01

    The purpose was to determine the concentration of the neurotrophin nerve growth factor in urine to assess its possible role as a marker in the diagnosis of various forms of overactive bladder. The study included patients with urinary frequency and urgency: 21 patients with idiopathic detrusor overactivity, 18--with overactive bladder without detrusor overactivity and 11 healthy volunteers (control group). The level of nerve growth factor in the urine was determined in all participants of the study by the enzyme immunoassay (ELISA). In the control group the average ratio of nerve growth factor level to the level of urine creatinine was 0.2 ± 0.06, in patients with overactive bladder without detrusor overactivity -0.33 ± 0.06 (p > 0.05). In patients with idiopathic detrusor overactivity the rate was significantly higher and amounted to 6.04 ± 0.9 (p < 0.05). Therefore, measurement of the concentration of nerve growth factor in the urine may be used for differential diagnosis of the presence or absence of detrusor overactivity in patients with overactive bladder. PMID:26390554

  11. Nerve Growth Factor Receptor TrkA Is Expressed by Horizontal and Amacrine Cells During Chicken Retinal Development

    PubMed Central

    KARLSSON, MIRIAM; CLARY, DOUGLAS O.; LEFCORT, FRANCES B.; REICHARDT, LOUIS F.; KARTEN, HARVEY J.; HALLBÖÖK, FINN

    2009-01-01

    Nerve growth factor is known to stimulate neurite outgrowth and support neuronal survival during embryonic development. We have studied the expression of the nerve growth factor receptor, TrkA, at both mRNA and protein levels during the course of chicken retinal development. Furthermore, we have compared the expression of trkA mRNA with that of the 75-kD low-affinity neurotrophin receptor (p75NTR). RNase protection assay identified peak-levels of trkA mRNA in the late embryonic retina. Using in situ hybridization and immunohistochemistry, we found cells expressing TrkA in both the internal and the external part of the inner nuclear layer, corresponding to amacrine and horizontal cells, respectively. The TrkA-expressing amacrine cell has a unistratified dendritic arborization in the second sublamina of the inner plexiform layer, and may represent the stellate amacrine cell described by Cajal. The horizontal cells, possessing arciform dendrite processes in the outer plexiform layer, showed strong TrkA immunoreactivity in both dendrites and cell bodies. During the course of retinal development, the TrkA-expressing amacrine cells decreased in number, whereas the TrkA-expressing horizontal cells persisted. Because nerve growth factor was expressed where the horizontal cells, but not where the amacrine cells were located, these findings raise the question of whether nerve growth factor could locally support the survival of TrkA-expressing interneurons during retinal development. PMID:9779944

  12. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  13. Pudendal Nerve and Internal Pudendal Artery Damage May Contribute to Radiation-Induced Erectile Dysfunction

    SciTech Connect

    Nolan, Michael W.; Marolf, Angela J.; Ehrhart, E.J.; Rao, Sangeeta; Kraft, Susan L.; Engel, Stephanie; Yoshikawa, Hiroto; Golden, Anne E.; Wasserman, Todd H.; LaRue, Susan M.

    2015-03-15

    Purpose/Objectives: Erectile dysfunction is common after radiation therapy for prostate cancer; yet, the etiopathology of radiation-induced erectile dysfunction (RI-ED) remains poorly understood. A novel animal model was developed to study RI-ED, wherein stereotactic body radiation therapy (SBRT) was used to irradiate the prostate, neurovascular bundles (NVB), and penile bulb (PB) of dogs. The purpose was to describe vascular and neurogenic injuries after the irradiation of only the NVB or the PB, and after irradiation of all 3 sites (prostate, NVB, and PB) with varying doses of radiation. Methods and Materials: Dogs were treated with 50, 40, or 30 Gy to the prostate, NVB, and PB, or 50 Gy to either the NVB or the PB, by 5-fraction SBRT. Electrophysiologic studies of the pudendal nerve and bulbospongiosus muscles and ultrasound studies of pelvic perfusion were performed before and after SBRT. The results of these bioassays were correlated with histopathologic changes. Results: SBRT caused slowing of the systolic rise time, which corresponded to decreased arterial patency. Alterations in the response of the internal pudendal artery to vasoactive drugs were observed, wherein SBRT caused a paradoxical response to papaverine, slowing the systolic rise time after 40 and 50 Gy; these changes appeared to have some dose dependency. The neurofilament content of penile nerves was also decreased at high doses and was more profound when the PB was irradiated than when the NVB was irradiated. These findings are coincident with slowing of motor nerve conduction velocities in the pudendal nerve after SBRT. Conclusions: This is the first report in which prostatic irradiation was shown to cause morphologic arterial damage that was coincident with altered internal pudendal arterial tone, and in which decreased motor function in the pudendal nerve was attributed to axonal degeneration and loss. Further investigation of the role played by damage to these structures in RI-ED is

  14. Bridging Grafts and Transient Nerve Growth Factor Infusions Promote Long-Term Central Nervous System Neuronal Rescue and Partial Functional Recovery

    NASA Astrophysics Data System (ADS)

    Tuszynski, Mark H.; Gage, Fred H.

    1995-05-01

    Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.

  15. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  16. Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells.

    PubMed

    Schmitt, Heather M; Schlamp, Cassandra L; Nickells, Robert W

    2016-06-20

    Optic neuropathies are characterized by retinal ganglion cell (RGC) death, resulting in the loss of vision. In glaucoma, the most common optic neuropathy, RGC death is initiated by axonal damage, and can be modeled by inducing acute axonal trauma through procedures such as optic nerve crush (ONC) or optic nerve axotomy. One of the early events of RGC death is nuclear atrophy, and is comprised of RGC-specific gene silencing, histone deacetylation, heterochromatin formation, and nuclear shrinkage. These early events appear to be principally regulated by epigenetic mechanisms involving histone deacetylation. Class I histone deacetylases HDACs 1, 2, and 3 are known to play important roles in the process of early nuclear atrophy in RGCs, and studies using both inhibitors and genetic ablation of Hdacs also reveal a critical role in the cell death process. Select inhibitors, such as those being developed for cancer therapy, may also provide a viable secondary treatment option for optic neuropathies. PMID:26733303

  17. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes

    PubMed Central

    Cheng, Hsinlin T.; Dauch, Jacqueline R.; Hayes, John M.; Yanik, Brandon M.; Feldman, Eva L

    2011-01-01

    Painful diabetic neuropathy (PDN) is a common, yet devastating complication of type 2 diabetes. At this time, there is no objective test for diagnosing PDN. In the current study, we measured the peptidergic intraepidermal nerve fiber densities (IENFD) from hind paws of the db/db mouse, an animal model for type 2 diabetes, during the period of mechanical allodynia from 6–12 wk of age. Intraepidermal nerve fibers (IENF) of the hind footpads were identified by protein gene product (PGP) 9.5 immunohistochemistry. The peptidergic IENF were determined by double immunofluorescence using anti-PGP9.5 and antibodies against tropomyosin-receptor-kinase (Trk) A. We observed a significant increase in PGP9.5-positive IENFD at 8 and 10 wk of age. Similarly, Trk A-positive peptidergic IENF, which also express substance P and calcitonin gene related peptide in db/db mice, were observed to be elevated from 1.5 to 2 fold over controls. This upregulation ended at 16 wk of age, in accordance with the reduction of mechanical allodynia. Anti-NGF treatment significantly inhibited the upregulation of peptidergic IENFD during the period of mechanical allodynia, suggesting increased neurotrophism may mediate this phenomenon. In addition, SB203580, an inhibitor of p38, blocked the increase in peptidergic IENFD in db/db mice. The current results suggest peptidergic IENFD could be a potential diagnostic indicator for PDN in type 2 diabetes. Furthermore, the inhibition of NGF-p38 signaling could be a potential therapeutic strategy for treating this painful condition. PMID:21872660

  18. Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons

    SciTech Connect

    Richardson, P.M.; Riopelle, R.J.

    1984-07-01

    To investigate the distribution of nerve growth factor (NGF) receptors on peripheral and central axons, (/sup 125/I)NGF was injected into the sciatic nerve or spinal cord of adult rats. Accumulation of (/sup 125/I)NGF in lumbar dorsal root ganglia was monitored by gamma emission counting and radioautography. (/sup 125/I)NGF, injected endoneurially in small quantities, was taken into sensory axons by a saturable process and was transported retrogradely to their cell bodies at a maximal rate of 2.5 to 7.5 mm/hr. Because very little (/sup 125/I)NGF reached peripheral terminals, the results were interpreted to indicate that receptors for NGF are present on nonterminal segments of sensory axons. The specificity and high affinity of NGF uptake were illustrated by observations that negligible amounts of gamma activity accumulated in lumbar dorsal root ganglia after comparable intraneural injection of (/sup 125/I) cytochrome C or (/sup 125/I)oxidized NGF. Similar techniques were used to demonstrate avid internalization and retrograde transport of (/sup 125/I)NGF by intraspinal axons arising from dorsal root ganglia. Following injection of (/sup 125/I)NGF into lumbar or cervical regions of the spinal cord, neuronal perikarya were clearly labeled in radioautographs of lumbar dorsal root ganglia. Sites for NGF uptake on primary sensory neurons in the adult rat are not restricted to peripheral axon terminals but are extensively distributed along both peripheral and central axons. Receptors on axons provide a mechanism whereby NGF supplied by glia could influence neuronal maintenance or axonal regeneration.

  19. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  20. Structural gene for beta-nerve growth factor not defective in familial dysautonomia.

    PubMed Central

    Breakefield, X O; Orloff, G; Castiglione, C; Coussens, L; Axelrod, F B; Ullrich, A

    1984-01-01

    The developmental loss of neurons in sympathetic, sensory, and some parasympathetic ganglia in familial dysautonomia suggests an inherited defect in the action of beta-nerve growth factor (beta-NGF). The role of this growth factor in dysautonomia has been difficult to resolve as there is no known source of authentic human beta-NGF. The availability of a cloned DNA probe for the human beta-NGF gene has allowed identification of some copies of the gene (alleles) in six affected families. Alleles differ in the length of restriction endonuclease fragments that hybridize to DNA probes for the gene. In two families, affected children did not inherit the same two alleles at the beta-NGF locus. Since this disease is transmitted in an autosomal recessive manner, affected children must share the same alleles at the locus causing the disease. This analysis excludes the beta-NGF gene region as the cause of this neurologic disease but does not eliminate other genes involved in beta-NGF action, such as those coding for processing enzymes, receptors, or other subunits of the NGF complex. Images PMID:6330750

  1. The role of nerve growth factor in the prophylaxis and treatment of diabetic foot ulcers

    PubMed Central

    Tiaka, Elisavet K; Papanas, Nikolaos; Manolakis, Anastassios C; Maltezos, Efstratios

    2011-01-01

    Diabetic foot ulcers are still particularly difficult to heal. Therefore, preventing and therapeutic adjuncts are increasingly being explored. Nerve growth factor (NGF) is a promising agent exhibiting beneficial actions on both diabetic peripheral neuropathy, one of the main causes of foot ulcers, and on ulcer healing. Indeed, preclinical research in animal models of diabetes has revealed the trophic effect of NGF on small C-fibres, while phase 2 human trials have provided evidence for a favourable effect on sensory neuropathy. However, the results of a phase 3 trial were moderate and, therefore, not enough to encourage widespread use of NGF in the treatment of diabetic neuropathy. Available literature on the role of NGF on diabetic wound healing is sparse but encouraging. Exogenous supplementation of NGF or the use of alternative techniques to increase its endogenous expression could emerge as a protective and therapeutic modality for diabetic foot ulcers in addition to standard treatment and other growth factors. The present review provides an outlook on the role of NGF in the prophylaxis and treatment of diabetic foot ulcers. PMID:22928161

  2. Anticonvulsant discovery through animal models of status epilepticus induced by organophosphorus nerve agents and pesticides.

    PubMed

    McCarren, Hilary S; McDonough, John H

    2016-06-01

    Organophosphorus pesticides (OPs) and nerve agents (NAs) are highly toxic chemicals that pose a significant threat to human health worldwide. These compounds induce status epilepticus (SE) by irreversibly blocking the ability of acetylcholinesterase to break down acetylcholine at neural synapses. Animal models of organophosphate-induced SE are a crucial resource for identifying new anticonvulsant therapies. Here, we describe the development of various animal models of SE induced by NA or OP exposure. Experiments in nonhuman primates, rats, mice, and guinea pigs have helped to identify novel therapeutic targets in the central nervous system, with particular success at modulating GABAergic and glutamatergic receptors. The anticonvulsants identified by NA- and OP-induced SE models are well poised for fast advancement into clinical development, and their potential utility in the broader field of epilepsy should make them all the more attractive for commercial pursuit. PMID:27258770

  3. NMDA-induced rhythmical activity in XII nerve of isolated CNS from newborn rats.

    PubMed

    Katakura, N; Jia, L; Nakamura, Y

    1995-03-01

    We tried to induce rhythmical oro-facial motor activities in an isolated brain stem-spinal cord preparation from newborn rats. Neural activities were monitored from the hypoglossal nerve (XII N) and the ventral roots of the cervical cord. Bath application of N-methyl-D-aspartate (NMDA) as well as glutamate induced rhythmical burst activity in XII N distinct from and much faster than respiratory rhythm. This NMDA-induced rhythmical activity was blocked by simultaneous application of 2-amino-5-phosphonovalerate (AP5). The results demonstrate that NMDA receptor activation can induce rhythmical XII N activity different from respiration in an isolated mammalian CNS. This preparation will be useful for the investigation of neural mechanisms underlying the central generation of food ingestive movements. PMID:7605909

  4. Episodic phrenic-inhibitory vagus nerve stimulation paradoxically induces phrenic long-term facilitation in rats

    PubMed Central

    Zhang, Yi; McGuire, Michelle; White, David P; Ling, Liming

    2003-01-01

    All respiratory long-term facilitation (LTF) is induced by inspiratory-excitatory stimulation, suggesting that LTF needs inspiratory augmentation and is the result of a Hebbian mechanism (coincident pre- and post-synaptic activity strengthens synapses). The present study examined the long-term effects of episodic inspiratory-inhibitory vagus nerve stimulation (VNS) on phrenic nerve activity. We hypothesized that episodic VNS would induce phrenic long-term depression. The results are compared with those obtained following serotonin receptor antagonism or episodic carotid sinus nerve stimulation (CSNS). Integrated phrenic neurograms were measured before, during and after three episodes of 5 min VNS (50 Hz, 0.1 ms), each separated by a 5 min interval, at a low (˜50 μA), medium (˜200 μA) or high (˜500 μA) stimulus intensity in anaesthetized, vagotomized, neuromuscularly blocked and artificially ventilated rats. Medium- and high-intensity VNS eliminated rhythmic phrenic activity during VNS, while low-intensity VNS only reduced phrenic burst frequency. At 60 min post-VNS, phrenic amplitude was higher than baseline (35 ± 5 % above baseline, mean ± S.E.M., P < 0.05) in the high-intensity group but not in the low- (−4 ± 4 %) or medium-intensity groups (−10 ± 15 %), or in the high-intensity with methysergide group (4 mg kg−1, I.P.) (−11 ± 5 %). These data, which are inconsistent with our hypothesis, indicate that phrenic-inhibitory VNS induces a serotonin-dependent phrenic LTF similar to that induced by phrenic-excitatory CSNS (33 ± 7 %) and may require activation of high-threshold afferent fibres. These data also suggest that the synapses on phrenic motoneurons do not use the Hebbian mechanism in this LTF, as these motoneurons were suppressed during VNS. PMID:12872010

  5. Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype.

    PubMed

    Heinen, André; Beyer, Felix; Tzekova, Nevena; Hartung, Hans-Peter; Küry, Patrick

    2015-09-01

    Successful regeneration of injured peripheral nerves is mainly attributed to the plastic behavior of Schwann cells. Upon loss of axons, these cells trans-differentiate into regeneration promoting repair cells which provide trophic support to regrowing axons. Among others, activation of cJun was revealed to be involved in this process, initiating the stereotypic pattern of Schwann cell phenotype alterations during Wallerian degeneration. Nevertheless, the ability of Schwann cells to adapt and therefore the nerve's potential to regenerate can be limited in particular after long term denervation or in neuropathies leading to incomplete regeneration only and thus emphasizing the need for novel therapeutic approaches. Here we stimulated primary neonatal and adult rat Schwann cells with Fingolimod/FTY720P and investigated its impact on the regeneration promoting phenotype. FTY720P activated a number of de-differentiation markers including cJun and interfered with maturation marker and myelin expression. Functionally, FTY720P treated Schwann cells upregulated growth factor expression and these cells enhanced dorsal root ganglion neurite outgrowth on inhibitory substrates. Our results therefore provide strong evidence that FTY720P application supports the generation of a repair promoting cellular phenotype and suggest that Fingolimod could be used as treatment for peripheral nerve injuries and diseases. PMID:25957629

  6. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats

    PubMed Central

    Dorfman, Damián; Aranda, Marcos L.; Rosenstein, Ruth E.

    2015-01-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE) or remained in a standard environment (SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein immunoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway. PMID:26312758

  7. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats.

    PubMed

    Dorfman, Damián; Aranda, Marcos L; Rosenstein, Ruth E

    2015-01-01

    Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE) or remained in a standard environment (SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein immunoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway. PMID:26312758

  8. Vitamin A increases nerve growth factor and retinoic acid receptor beta and improves diabetic neuropathy in rats.

    PubMed

    Hernández-Pedro, Norma; Granados-Soto, Vinicio; Ordoñez, Graciela; Pineda, Benjamin; Rangel-López, Edgar; Salazar-Ramiro, Aleli; Arrieta, Oscar; Sotelo, Julio

    2014-09-01

    All-trans retinoic acid (ATRA) promotes the endogenous expression of both nerve growth factor (NGF) and retinoic acid receptor beta (RAR-β). We have previously shown that the administration of ATRA partly reverts the damage induced by diabetic neuropathy (DN). In this investigation, we evaluated the effects of vitamin A, a commercial, inexpensive compound of retinoic acid, on the therapy of DN. A total of 70 rats were randomized into 4 groups. Group A was the control, and groups B, C, and D received a total dose of 60 mg/kg streptozotocin intraperitoneally. When signs of DN developed, groups C and D were treated either with vitamin A (20,000 IU) or with ATRA 25 mg/kg for 60 days. Plasma glucose, contents of NGF, thermal and nociceptive tests, and RAR-β expression were evaluated. All diabetic rats developed neuropathy. The treatment with vitamin A and ATRA reverted similarly the sensorial disturbances, which was associated with increased contents of NGF and RAR-β expression. Our results indicate that the administration of vitamin A has the same therapeutic effect as ATRA on peripheral neuropathy and suggest its potential therapeutic use in patients with diabetes. PMID:24768685

  9. Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons.

    PubMed

    Dey, Indranil; Midha, Nisha; Singh, Geeta; Forsyth, Amanda; Walsh, Sarah K; Singh, Bhagat; Kumar, Ranjan; Toth, Cory; Midha, Rajiv

    2013-12-01

    Schwann cells (SCs) are integral to peripheral nerve biology, contributing to saltatory conduction along axons, nerve and axon development, and axonal regeneration. SCs also provide a microenvironment favoring neural regeneration partially due to production of several neurotrophic factors. Dysfunction of SCs may also play an important role in the pathogenesis of peripheral nerve diseases such as diabetic peripheral neuropathy where hyperglycemia is often considered pathogenic. In order to study the impact of diabetes mellitus (DM) upon the regenerative capacity of adult SCs, we investigated the differential production of the neurotrophic factors nerve growth factor (NGF) and neurotrophin-3 (NT3) by SCs harvested from the sciatic nerves of murine models of type 1 DM (streptozotocin treated C57BL/6J mice) and type 2 DM (LepR(-/-) or db/db mice) or non-diabetic cohorts. In vitro, SCs from diabetic and control mice were maintained under similar hyperglycemic and euglycemic conditions respectively. Mature SCs from diabetic mice produced lower levels of NGF and NT3 under hyperglycemic conditions when compared to SCs in euglycemia. In addition, SCs from both DM and non-DM mice appear to be incapable of insulin production, but responded to exogenous insulin with greater proliferation and heightened myelination potentiation. Moreover, SCs from diabetic animals showed poorer association with co-cultured axons. Hyperglycemia had significant impact upon SCs, potentially contributing to the pathogenesis of diabetic peripheral neuropathy. PMID:24123456

  10. Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves

    PubMed Central

    Cattin, Anne-Laure; Burden, Jemima J.; Van Emmenis, Lucie; Mackenzie, Francesca E.; Hoving, Julian J.A.; Garcia Calavia, Noelia; Guo, Yanping; McLaughlin, Maeve; Rosenberg, Laura H.; Quereda, Victor; Jamecna, Denisa; Napoli, Ilaria; Parrinello, Simona; Enver, Tariq; Ruhrberg, Christiana; Lloyd, Alison C.

    2015-01-01

    Summary The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a ‘bridge’ of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as “tracks” to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue. PMID:26279190

  11. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspension induced disuse

    NASA Technical Reports Server (NTRS)

    Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.

    1984-01-01

    Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.

  12. Membrane proteins of the nerve growth cone and their developmental regulation

    SciTech Connect

    Simkowitz, P.; Ellis, L.; Pfenninger, K.H.

    1989-03-01

    The membrane polypeptides of growth cone fragments (growth cone particles, GCPs) isolated from fetal rat brain by subcellular fractionation have been analyzed in further detail. The major polypeptides of salt-washed GCP membranes detected by 1-dimensional gel electrophoresis resolve in 2-dimensional gels as a spot of 52 kDa that comigrates with beta-tubulin and reacts with anti-beta-tubulin; a 46 kDa, pl 4.3, polypeptide (pp46) that has no equivalent in the soluble fraction and is identical to one of the GCP's major phosphoproteins and to GAP43; a spot of 42 kDa that comigrates with actin; and a species of 34 kDa (p34) without soluble equivalent. The prominent 38 kDa doublet identified in 1-dimensional gels is difficult to resolve in 2-dimensional gels. The major phosphoproteins pp80ac, pp46, and pp40, as well as p34 partition into the oil phase of Triton X-114 extracts, suggesting that they are integral membrane proteins, at least in our experimental conditions. The properties of pp46 reported here are in conflict with the highly hydrophilic amino acid sequence predicted for GAP43/B50/F1. Growth-cone and presynaptic membrane proteins are compared as follows. After eye injection of 35S-methionine, GCPs and synaptosomes are isolated from the target areas of optic nerve of fetal and adult rats, respectively. Polypeptides are separated by 1- and 2-dimensional gel electrophoresis and the radiolabeled species identified fluorographically. The comparison of labeled GCP and synaptosome polypeptides shows that all 5 major Coomassie blue-stained polypeptides of GCP membranes (52, 46, 42, 38, 34 kDa) are intensely labeled after eye injection. However, in synaptosomes, these polypeptides are weakly labeled if at all; instead, an intensely labeled polypeptide of 28 kDa, and several additional species not seen in GCPs, have appeared.

  13. Surface-Step-Induced Oscillatory Oxide Growth

    NASA Astrophysics Data System (ADS)

    Li, Liang; Luo, Langli; Ciston, Jim; Saidi, Wissam A.; Stach, Eric A.; Yang, Judith C.; Zhou, Guangwen

    2014-09-01

    We report in situ atomic-resolution transmission electron microscopy observations of the oxidation of stepped Cu surfaces. We find that the presence of surface steps both inhibits oxide film growth and leads to the oxide decomposition, thereby resulting in oscillatory oxide film growth. Using atomistic simulations, we show that the oscillatory oxide film growth is induced by oxygen adsorption on the lower terrace along the step edge, which destabilizes the oxide film formed on the upper terrace.

  14. Do growth-stimulated retinal ganglion cell axons find their central targets after optic nerve injury? New insights by three-dimensional imaging of the visual pathway.

    PubMed

    Diekmann, Heike; Leibinger, Marco; Fischer, Dietmar

    2013-10-01

    Retinal ganglion cells (RGCs) do not normally regenerate injured axons. However, several strategies to transform RGCs into a potent regenerative state have been developed in recent years. Intravitreal CNTF application combined with conditional PTEN and SOCS3 deletion or zymosan-induced inflammatory stimulation together with cAMP analogue injection and PTEN-deletion in RGCs induce long-distance regeneration into the optic nerve of adult mice. A recent paper by the Benowitz group (de Lima et al.) claimed that the latter treatment enables full-length regeneration, with axons correctly navigating to their central target zones and partial recovery of visual behaviors. To gain a more detailed view of the extent and the trajectories of regenerating axons, Luo et al. applied a tissue clearing method and fluorescent microscopy to allow the tracing of naïve and regenerating RGC axons in whole ON and all the way to their brain targets. Using this approach, the authors found comparable axon regeneration in the optic nerve after both above-mentioned experimental treatments. Regeneration was accompanied by prevalent aberrant axon growth in the optic nerve and significant axonal misguidance at the optic chiasm. Less than 120 axons per animal reached the optic chiasm and only few entered the correct optic tract. Importantly, no axons reached visual targets in the olivary pretectal nucleus, the lateral geniculate nucleus or the superior colliculus, thereby contradicting and challenging previous claims by the Benowitz group. The data provided by Luo et al. rather suggest that potent stimulation of axonal growth per se is insufficient to achieve functional recovery and underscore the need to investigate regeneration-relevant axon guidance mechanisms in the mature visual system. PMID:23816572

  15. Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma

    SciTech Connect

    Johnson, M.A.; Drum, B.A.; Quigley, H.A.; Sanchez, R.M.; Dunkelberger, G.R.

    1989-05-01

    ERG and VEP responses to counterphase checkerboard stimuli were obtained from cynomolgus monkeys with monocular glaucoma induced by laser photocoagulation of the trabecular meshwork. The glaucomatous eyes showed reductions of PERG amplitude that were directly related to the histologically defined nerve damage. VEP amplitudes were also reduced in the glaucomatous eyes, but were more variable and less affected by damage than the PERG responses. An acute increase in eye pressure to 40 mm Hg in eyes without damage had no detectable effect on PERG amplitudes.

  16. Transcutaneous Auricular Vagus Nerve Stimulation Protects Endotoxemic Rat from Lipopolysaccharide-Induced Inflammation

    PubMed Central

    Zhao, Yu Xue; He, Wei; Jing, Xiang Hong; Liu, Jun Ling; Rong, Pei Jing; Ben, Hui; Liu, Kun; Zhu, Bing

    2012-01-01

    Background. Transcutaneous auricular vagus nerve stimulation (ta-VNS) could evoke parasympathetic activities via activating the brainstem autonomic nuclei, similar to the effects that are produced after vagus nerve stimulation (VNS). VNS modulates immune function through activating the cholinergic anti-inflammatory pathway. Methods. VNS, ta-VNS, or transcutaneous electrical acupoint stimulation (TEAS) on ST36 was performed to modulate the inflammatory response. The concentration of serum proinflammatory cytokines and tissue NF-kappa B p65 (NF-κB p65) were detected in endotoxaemia affected anesthetized rats. Results. Similar to the effect of VNS, ta-VNS suppressed the serum proinflammatory cytokines levels, such as tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as well as NF-kappa B p65 expressions of lung tissues. ST36 stimulation also decreases LPS-induced high TNF-α level and NF-κB signal, but it did not restrain proinflammatory cytokine IL-1β and IL-6. Neither ta-VNS nor ST36 stimulation could suppress LPS-induced TNF-α and NF-κB after vagotomy or with α7nAChR antagonist injection. Conclusions. The present paper demonstrated that ta-VNS could be utilized to suppress LPS-induced inflammatory responses via α7nAChR-mediated cholinergic anti-inflammatory pathway. PMID:23346208

  17. Mechanism of nicotine-induced release of noradrenaline from adrenergic nerve endings

    PubMed Central

    Jayasundar, S.; Vohra, M.M.

    1977-01-01

    1 A study of the mechanism of release of [3H]-noradrenaline ([3H]-NA) by nicotine from isolated vas deferens of the rat was made using incubation media of different ionic composition. 2 Nicotine (20 μg/ml)-induced release of [3H]-NA was significantly potentiated in K+-free Krebs solution as compared to that in normal Krebs-Ringer solution. 3 Nicotine-induced release of [3H]-NA was significantly reduced in Na+-deficient Krebs solution (containing only 11 mM Na+) and was abolished in Na+-free Krebs solution. 4 In totally depolarized tissues, nicotine failed to cause an outflow of [3H]-NA but Ca2+ (5 mM) did so. 5 Nicotine required the presence of Ca2+ in the incubation medium to cause release of [3H]-NA from adrenergic nerve terminals, the magnitude of release being dependent upon the concentration of Ca2+. 6 Nicotine-induced release of [3H]-NA was demonstrated in high Ca2+, Na+-free Krebs solution in which all Na+ had been replaced with Ca2+. 7 It is concluded that nicotine increases the membrane permeability to both Na+ and Ca2+. It is also suggested that the increase in permeability to Ca2+ alone is not sufficient but a local depolarizing action of nicotine is necessary to cause release of noradrenaline from adrenergic nerve endings. PMID:922247

  18. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells

    PubMed Central

    Mortazavi, Yousef; Sheikhsaran, Fatemeh; Khamisipour, Gholamreza Khamisipour; Soleimani, Masoud; Teimuri, Ali; Shokri, Somayeh

    2016-01-01

    Objective Treatment and repair of neurodegenerative diseases such as brain tumors, spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of mesenchymal stem cells (MSCs) as an alternative cell source to replace injured cells. However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve growth factor (NGF) and assessed their neural lineage genes. Materials and Methods In this experimental study, we cloned the NGF gene sequence into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP) gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses were generated in the human embryonic kidney 293 (HEK-293) packaging cell line with the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of neural differentiation. We evaluated expression of NGF through measurement of the NGF protein in culture medium by ELISA; neural specific genes were quantified by real-time polymerase chain reaction (PCR). Results We observed neural morphological changes after three days. Quantitative PCR showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF), glial fibrillary acidic protein (GFAP) and Microtubule-associated protein 2 (MAP2) genes increased following induction of NGF overexpression, whereas expressions of endogenous NGF and brain derived neural growth factor (BDNF) genes reduced. Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an alternative choice to overcome this obstacle may

  19. Sustained local delivery of bioactive nerve growth factor in the central nervous system via tunable diblock copolypeptide hydrogel depots.

    PubMed

    Song, Bingbing; Song, Jinsuk; Zhang, Shanshan; Anderson, Mark A; Ao, Yan; Yang, Chu-Ya; Deming, Timothy J; Sofroniew, Michael V

    2012-12-01

    Biomaterial vehicles that can provide sustained, site-specific molecular delivery in the central nervous system (CNS) have potential for therapeutic and investigative applications. Here, we present in vitro and in vivo proof of principle tests of diblock copolypeptide hydrogels (DCH) to serve as depots for sustained local release of protein effector molecules. We tested two DCH, K(180)L(20) and E(180)L(20), previously shown to self-assemble into biocompatible, biodegradable deposits that persist four to eight weeks after injection into mouse forebrain. In vitro tests demonstrated sustained release from dialysis cassettes of the representative protein, lysozyme, dissolved in K(180)L(20) or E(180)L(20) hydrogels. Release time in vitro varied in relation to DCH charge and mechanical properties, and ionic strength of the media. To evaluate bioactive protein delivery in vivo, we used nerve growth factor (NGF) and measured the size of mouse forebrain cholinergic neurons, which respond to NGF with cellular hypertrophy. For in vivo tests, the storage modulus of DCH depots was tuned to just below that of CNS tissue. In comparison with NGF injected in buffer, depots of NGF dissolved in either K(180)L(20) or E(180)L(20) provided significantly longer delivery of NGF bioactivity, maintaining hypertrophy of local forebrain cholinergic neurons for at least 4 weeks and inducing hypertrophy a further distance away (up to 5 mm) from injection sites. These findings show that depots of DCH injected into CNS can provide sustained delivery within the blood-brain barrier of a bioactive protein growth factor that exerts a predicted, quantifiable effect on local cells over a prolonged subacute time. PMID:22985994

  20. The multiple life of nerve growth factor: tribute to rita levi-montalcini (1909-2012).

    PubMed

    Aloe, Luigi; Chaldakov, George N

    2013-03-01

    At the end of the 19(th) century, it was envisaged by Santiago Ramon y Cajal, but not, proven, that life at the neuronal level requires trophic support. The proof was obtained in the early 1950's by work initiated by Rita Levi-Montalcini (RLM) discovering the nerve growth factor (NGF). Today, NGF and its relatives, collectively designated neurotrophins, are well recognized as mediators of multiple biological phenomena in health and disease, ranging from the neurotrophic through immunotrophic and epitheliotrophic to metabotrophic effects. Consequently, NGF and other neurotrophins are implicated in the pathogenesis of a large spectrum of neuronal and non-neuronal diseases, from Alzheimer's and other neurodegenerative diseases to atherosclerosis and other cardiometabolic diseases. Recent studies demonstrated the therapeutic potentials of NGF in these diseases, including ocular and cutaneous diseases. Furthermore, NGF TrkA receptor antagonists emerged as novel drugs for pain, prostate and breast cancer, melanoma, and urinary bladder syndromes. Altogether, NGF's multiple potential in health and disease is briefly described here. PMID:25207059

  1. Structural and functional insights into lipid-bound nerve growth factors.

    PubMed

    Tong, Qiong; Wang, Feng; Zhou, Hong-Zhe; Sun, Han-Li; Song, Hui; Shu, Yu-Yan; Gong, Yong; Zhang, Wen-Ting; Cai, Tan-Xi; Yang, Fu-Quan; Tang, Jie; Jiang, Tao

    2012-09-01

    Nerve growth factor (NGF) is a dimeric molecule that modulates the survival, proliferation, and differentiation of nervous cells and is also known to act on cells of the immune system and endocrine system. NGFs extracted from mouse submaxillary gland and cobra venom have different immunological behaviors, yet the underlying mechanism remains unclear. Here we report the crystal structure of the NGF purified from Chinese cobra Naja naja atra (cNGF), which unexpectedly reveals a 2-tailed lipid molecule that is embedded between the two protomers of the NGF homodimer. In addition, crystallographic analysis indicated that the purified mouse NGF(mNGF) is free from lipid but can bind lysophosphatidylserine (lyso-PS) in the same pocket as cNGF. Bioassays indicated that the binding of lipid molecules to cNGF and mNGF are essential for their mast cell activation activity and abates their p75(NTR) binding capacity. Taken together, these results suggest a new mechanism for the regulation of the function of NGF. PMID:22649032

  2. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  3. Nerve Growth Factor Regulates Neurolymphatic Remodeling during Corneal Inflammation and Resolution

    PubMed Central

    Fink, Darci M.; Connor, Alicia L.; Kelley, Philip M.; Steele, Maria M.; Hollingsworth, Michael A.; Tempero, Richard M.

    2014-01-01

    The cellular and physiologic mechanisms that regulate the resolution of inflammation remain poorly defined despite their widespread importance in improving inflammatory disease outcomes. We studied the resolution of two cardinal signs of inflammation–pain and swelling–by investigating molecular mechanisms that regulate neural and lymphatic vessel remodeling during the resolution of corneal inflammation. A mouse model of corneal inflammation and wound recovery was developed to study this process in vivo. Administration of nerve growth factor (NGF) increased pain sensation and inhibited neural remodeling and lymphatic vessel regression processes during wound recovery. A complementary in vivo approach, the corneal micropocket assay, revealed that NGF-laden pellets stimulated lymphangiogenesis and increased protein levels of VEGF-C. Adult human dermal lymphatic endothelial cells did not express canonical NGF receptors TrkA and p75NTR or activate downstream MAPK- or Akt-pathway effectors in the presence of NGF, although NGF treatment increased their migratory and tubulogenesis capacities in vitro. Blockade of the VEGF-R2/R3 signaling pathway ablated NGF-mediated lymphangiogenesis in vivo. These findings suggest a hierarchical relationship with NGF functioning upstream of the VEGF family members, particularly VEGF-C, to stimulate lymphangiogenesis. Taken together, these studies show that NGF stimulates lymphangiogenesis and that NGF may act as a pathogenic factor that negatively regulates the normal neural and lymphatic vascular remodeling events that accompany wound recovery. PMID:25383879

  4. Effects of Myoga on Memory and Synaptic Plasticity by Regulating Nerve Growth Factor-Mediated Signaling.

    PubMed

    Kim, Hyo Geun; Lim, Soonmin; Hong, Jongki; Kim, Ae-Jung; Oh, Myung Sook

    2016-02-01

    The flower bud of Zingiber mioga Roscoe, known as 'myoga' or Japanese ginger, has a pungent aroma and is commonly consumed as a spice, with pickles, or as a health supplement in Eastern Asia. Here, we evaluated the activity of myoga in the brain, focusing especially on nerve growth factor (NGF), which is believed to mediate synaptic plasticity, supporting learning and memory. In a rat primary hippocampal astrocyte culture system, treatment with myoga extract for 24 h significantly stimulated the production of NGF. In mice administered myoga extract for 14 days, 200 and 400 mg/kg/day treatment resulted in increased NGF levels in the hippocampus. Myoga extract treatment also regulated the phosphorylation of extracellular signal-regulated kinases and cAMP response element-binding protein in the mouse hippocampus, leading to increased synaptic plasticity. In addition, it significantly increased novel object recognition time and spontaneous alternation, indicating improvement in learning and memory. These results suggest that myoga helps regulate NGF and synaptic plasticity, increasing memory ability. PMID:26563629

  5. Serum brain-derived neurotrophic factor and nerve growth factor decreased in chronic ketamine abusers

    PubMed Central

    Ke, Xiaoyin; Ding, Yi; Xu, Ke; He, Hongbo; Zhang, Minling; Wang, Daping; Deng, Xuefeng; Zhang, Xifan; Zhou, Chao; Liu, Yuping; Ning, Yuping; Fan, Ni

    2016-01-01

    Aims This study investigated the serum levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in a group of chronic ketamine abusers in comparison to healthy controls. The correlations between the serum BDNF, NGF level with the subjects’ demographic, pattern of ketamine use were also examined. Methods 93 subjects who met the criteria of ketamine dependence and 39 healthy subjects were recruited. Serum BDNF and NGF levels were assayed by enzyme-linked immunosorbent assay (ELISA). Psychopathological symptoms were assessed using Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). Results Both serum levels of BDNF and NGF were significant lower in the ketamine users compared to the healthy control subjects (9.50 ± 6.68 versus 14.37 ± 6.07 ng/ml, p = 0.019 for BDNF; 1.93 ± 0.80 versus 2.60 ± 1.07 ng/ml, p = 0.011 for NGF). BDNF level was negatively associated with current frequency of ketamine use (r = −0.209, p = 0.045). Conclusions Both BDNF and NGF serum concentrations were significantly lower among chronic ketamine users than among health controls. PMID:25064020

  6. Binding and internalization of nerve growth factor by PC12 cells

    SciTech Connect

    Kasaian, M.T.

    1987-01-01

    The interaction of nerve growth factor (NGF) with its cell surface receptors has been studied using both fluorescent- and radio-labelled NGF. The fluorescence studies were done by flow cytometry, and gave information about the concentration dependence and time course of NGF binding to rat pheochromocytoma cells (PC12) and human melanoma cells (A875). /sup 125/I-NGF was used to study the fate of NGF in PC12 cells following its association with cell surface receptors. Variations of the PC12 binding assay were used to distinguish ligand bound to fast and slowly dissociating receptors at the cell surface, internalized ligand, and cytoskeletally-associated NGF. Ligand uptake into each of these pools was followed in untreated cells, as well as in cells exposed to colchicine and/or cytochalasin B to disrupt the cytoskeleton. NGF degradation was also followed in these cells, and chloroquine was used to inhibit this process. In a separate project, NGF activity was assayed in samples of human amniotic fluid and cerebrospinal fluid (CSF). A range of activities was found in these samples, with the CSF samples containing somewhat more activity than the amniotic fluid samples.

  7. Clinical significance of nerve growth factor and tropomyosin-receptor-kinase signaling pathway in intrahepatic cholangiocarcinoma

    PubMed Central

    Yang, Xiao-Qing; Xu, Yun-Fei; Guo, Sen; Liu, Yi; Ning, Shang-Lei; Lu, Xiao-Fei; Yang, Hui; Chen, Yu-Xin

    2014-01-01

    AIM: To investigate the correlation between nerve growth factor-tropomyosin-receptor-kinase (NGF-TrkA) signaling pathway and prognosis in intrahepatic cholangiocarcinoma (IHCC). METHODS: NGF and TrkA expression in 83 samples of IHCC was assessed by immunohistochemistry. Correlations between NGF-TrkA expression and clinicopathological features were analyzed by χ2 test. Moreover, we evaluated the association between NGF-TrkA and overall survival by univariate and multivariate analysis. With experiments in vitro, we investigated the crucial role of NGF-TrkA on proliferation and invasion of IHCC cells with recombinant NGF-β stimulation. RESULTS: We found that NGF and TrkA expression was significantly related with differentiation (P = 0.024) and intraneural invasion (P = 0.003), respectively. Additionally, double higher expression of NGF and TrkA was identified as an independent prognostic factor in IHCC (P = 0.003). Moreover, we demonstrated that NGF-TrkA signaling pathway can promote IHCC proliferation and invasion. CONCLUSION: NGF-TrkA double higher expression is an independent prognostic factor in IHCC. NGF-TrkA pathway can promote IHCC progression, indicating that NGF-TrkA may become a potential drug target. PMID:24744599

  8. Treatment of PC12 cells with nerve growth factor increases iron uptake.

    PubMed Central

    Mwanjewe, J; Hui, B K; Coughlin, M D; Grover, A K

    2001-01-01

    Phaeochromocytoma PC12 cells treated with nerve growth factor (NGF) differentiate into a neuronal phenotype. Here we compare the uptake of transferrin-bound and non-transferrin-bound iron in NGF-treated (neuronal phenotype) and control (proliferating) PC12 cells. The non-transferrin-bound iron uptake was greater in the NGF-treated cells than in the control, independently of the uptake time, the iron-chelating agents used, the oxidation state of iron (Fe(2+) or Fe(3+)) and the iron concentration tested. The NGF-treated cells expressed L-type and N-type voltage-operated Ca(2+) channels. Nitrendipine (an L-type inhibitor) and possibly omega-conotoxin (an N-type inhibitor) inhibited the iron uptake by 20%. Thapsigargin inhibits the endoplasmic reticulum Ca(2+) pump and allowed Mn(2+) entry into cells. Preincubating PC12 cells with thapsigargin increased the iron uptake. The rate of transferrin-bound iron uptake was less than 1% of the non-transferrin-bound iron uptake and the maximum transferrin-bound iron uptake was also very low. We conclude that an increase in the iron uptake by multiple pathways accompanies the transition of PC12 cells from the proliferating to the neuronal phenotype. PMID:11463361

  9. Nerve Growth Factor Promotes Angiogenesis and Skeletal Muscle Fiber Remodeling in a Murine Model of Hindlimb Ischemia

    PubMed Central

    Diao, Yong-Peng; Cui, Feng-Kui; Yan, Sheng; Chen, Zuo-Guan; Lian, Li-Shan; Guo, Li-Long; Li, Yong-Jun

    2016-01-01

    Background: Therapeutic angiogenesis has been shown to promote blood vessel growth and improve tissue perfusion. Nerve growth factor (NGF) has been reported to play an important role in both physiological and pathological angiogenesis. This study aimed to investigate the effects of NGF on angiogenesis and skeletal muscle fiber remodeling in a murine model of hindlimb ischemia and study the relationship between NGF and vascular endothelial growth factor (VEGF) in angiogenesis. Methods: Twenty-four mice were randomly allocated to normal control group (n = 6), blank control group (n = 6), VEGF gene transfection group (n = 6), and NGF gene transfection group (n = 6). The model of left hindlimb ischemia model was established by ligating the femoral artery. VEGF165 plasmid (125 μg) and NGF plasmid (125 μg) was injected into the ischemic gastrocnemius of mice from VEGF group and NGF group, respectively. Left hindlimb function and ischemic damage were assessed with terminal points at 21th day postischemia induction. The gastrocnemius of four groups was tested by hematoxylin-eosin staining, proliferating cell nuclear antigen and CD34 immunohistochemistry staining, and myosin ATPase staining. NGF and VEGF protein expression was detected by enzyme-linked immunosorbent assay. Results: On the 21th day after surgery, the functional assessment score and skeletal muscle atrophy degree of VEGF group and NGF group were significantly lower than those of normal control group and blank control group. The endothelial cell proliferation index and the capillary density of VEGF group and NGF group were significantly increased compared with normal control group and blank control group (P < 0.05). The NGF and VEGF protein expression of NGF group showed a significant rise when compared with blank control group (P < 0.05). Similarly, the VEGF protein expression of VEGF group was significantly higher than that of blank control group (P < 0.05), but there was no significant difference of the

  10. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    PubMed Central

    Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  11. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    PubMed

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158

  12. Temporary Neurotrophin Treatment Prevents Deafness-Induced Auditory Nerve Degeneration and Preserves Function.

    PubMed

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B; Klis, Sjaak F L; Grolman, Wilko

    2015-09-01

    After substantial loss of cochlear hair cells, exogenous neurotrophins prevent degeneration of the auditory nerve. Because cochlear implantation, the current therapy for profound sensorineural hearing loss, depends on a functional nerve, application of neurotrophins is being investigated. We addressed two questions important for fundamental insight into the effects of exogenous neurotrophins on a degenerating neural system, and for translation to the clinic. First, does temporary treatment with brain-derived neurotrophic factor (BDNF) prevent nerve degeneration on the long term? Second, how does a BDNF-treated nerve respond to electrical stimulation? Deafened guinea pigs received a cochlear implant, and their cochleas were infused with BDNF for 4 weeks. Up to 8 weeks after treatment, their cochleas were analyzed histologically. Electrically evoked compound action potentials (eCAPs) were recorded using stimulation paradigms that are informative of neural survival. Spiral ganglion cell (SGC) degeneration was prevented during BDNF treatment, resulting in 1.9 times more SGCs than in deafened untreated cochleas. Importantly, SGC survival was almost complete 8 weeks after treatment cessation, when 2.6 times more SGCs were observed. In four eCAP characteristics (three involving alteration of the interphase gap of the biphasic current pulse and one involving pulse trains), we found large and statistically significant differences between normal-hearing and deaf controls. Importantly, for BDNF-treated animals, these eCAP characteristics were near normal, suggesting healthy responsiveness of BDNF-treated SGCs. In conclusion, clinically practicable short-term neurotrophin treatment is sufficient for long-term survival of SGCs, and it can restore or preserve SGC function well beyond the treatment period. Significance statement: Successful restoration of hearing in deaf subjects by means of a cochlear implant requires a healthy spiral ganglion cell population. Deafness-induced

  13. Peripheral nerve metabolism and zinc levels in streptozotocin induced diabetic rats. Effect of diets high in fish and corn oil

    SciTech Connect

    Burke, J.P.; Fenton, M.R. )

    1991-03-15

    This study was designed to assess the effects of diets high in fish and corn oil on peripheral nerve metabolism in streptozotocin (STZ) induced diabetic rats. A type I diabetic state was induced in female Sprague-Dawley rats by injection of STZ. Animals were divided into three dietary groups; normal rat chow, high corn oil diet and high fish oil diet. After 4 weeks animals were analyzed for nerve conduction velocity, bled and then sacrificed. Sciatic nerves were removed, processed and several biochemical parameters determined. Plasma zinc levels were elevated in the STZ normal chow group compared to non-diabetic controls. Both corn oil and fish oil diets tended to eliminate the rise in plasma zinc. Differences in subcellular distribution of zinc in sciatic nerves were also observed. Normal chow STZ animals displayed a 20% decrease in nerve conduction velocity compared to control. Dietary supplementation with either fish or corn oil seemed to ameliorate these effects. Biochemical analysis of Na{sup +}-K{sup +}-ATPase and protein kinase C revealed a decrease in activity in normal chow animals compared to control groups. Again, dietary intervention with either fish or corn oil seemed to return these activities back to normal. The results suggest a link between zinc metabolism and peripheral nerve metabolism which can be modified by dietary intervention.

  14. Polymer-encapsulated cells genetically modified to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons.

    PubMed Central

    Winn, S R; Hammang, J P; Emerich, D F; Lee, A; Palmiter, R D; Baetge, E E

    1994-01-01

    Effective treatments for neurodegenerative disorders are limited by our inability to alter the progression of the diseases. A number of proteins have specific neuroprotective activities in vitro; however, the delivery of these factors into the central nervous system over the long term at therapeutic levels has been difficult to achieve. BHK cells engineered to express and release human nerve growth factor were encapsulated in an immunoisolation polymeric device and transplanted into both fimbria-fornix-lesioned rat brains and naive controls. In the lesioned rat brain, chronic delivery of human nerve growth factor by the encapsulated BHK cells provided nearly complete protection of axotomized medial septal cholinergic neurons. Human nerve growth factor continued to be released by encapsulated cells upon removal from the aspirative site after 3 weeks or from normal rat striatum after 3 and 6 months in vivo. Long-term encapsulated cell survival was confirmed by histologic analysis. This encapsulated xenogeneic system may provide therapeutically effective amounts of a number of neurotrophic factors, alone or in combination, to virtually any site within the body. Images PMID:8134395

  15. Enhanced synthesis and secretion of apolipoprotein E from sciatic nerves of streptozotocin-induced diabetic rats after injury

    SciTech Connect

    Ishibashi, S.; Yamada, N.; Oka, Y.; Shimano, H.; Mori, N.; Yoon, T.H.; Shimada, M.; Kanazawa, Y.; Akanuma, Y.; Murase, T.

    1988-08-30

    To elucidate the pathogenesis of diabetic neuropathy, synthesis and secretion of apolipoprotein E (apo E) from sciatic nerves after injury was studied in normal and streptozotocin-induced diabetic rats. Seven, 14, 28, 45 and 59 days after making crush injury on sciatic nerves with concomitant administration of streptozotocin (50 mg/kg body weight), the nerves were taken out and incubated with (/sup 35/S)methionine. The (/sup 35/S)labeled apo E was precipitated with specific antiserum. The amounts of apo E secreted into medium by nerves of diabetic rats were 7 times greater than those of non-diabetic rats 7 days after injury. This enhanced secretion of apo E was relatively selective for this protein, since the ratio of the immunoprecipitable apo E to the TCA preciptitable protein in the medium increased in diabetic rats. Intriguing possibility deduced from these results is that the secretion of apo E is involved in the development of diabetic neuropathy.

  16. The therapeutic dilemma of vagus nerve stimulator-induced sleep disordered breathing

    PubMed Central

    Upadhyay, Hinesh; Bhat, Sushanth; Gupta, Divya; Mulvey, Martha; Ming, Sue

    2016-01-01

    Intermittent vagus nerve stimulation (VNS) can reduce the frequency of seizures in patients with refractory epilepsy, but can affect respiration in sleep. Untreated obstructive sleep apnea (OSA) can worsen seizure frequency. Unfortunately, OSA and VNS-induced sleep disordered breathing (SDB) may occur in the same patient, leading to a therapeutic dilemma. We report a pediatric patient in whom OSA improved after tonsillectomy, but coexistent VNS-induced SDB persisted. With decrease in VNS output current, patient's SDB improved, but seizure activity exacerbated, which required a return to the original settings. Continuous positive airway pressure titration was attempted, which showed only a partial improvement in apnea–hypopnea index. This case illustrates the need for clinicians to balance seizure control and SDB in patients with VNS. PMID:27168865

  17. The therapeutic dilemma of vagus nerve stimulator-induced sleep disordered breathing.

    PubMed

    Upadhyay, Hinesh; Bhat, Sushanth; Gupta, Divya; Mulvey, Martha; Ming, Sue

    2016-01-01

    Intermittent vagus nerve stimulation (VNS) can reduce the frequency of seizures in patients with refractory epilepsy, but can affect respiration in sleep. Untreated obstructive sleep apnea (OSA) can worsen seizure frequency. Unfortunately, OSA and VNS-induced sleep disordered breathing (SDB) may occur in the same patient, leading to a therapeutic dilemma. We report a pediatric patient in whom OSA improved after tonsillectomy, but coexistent VNS-induced SDB persisted. With decrease in VNS output current, patient's SDB improved, but seizure activity exacerbated, which required a return to the original settings. Continuous positive airway pressure titration was attempted, which showed only a partial improvement in apnea-hypopnea index. This case illustrates the need for clinicians to balance seizure control and SDB in patients with VNS. PMID:27168865

  18. Simian adenovirus type 7 (SA-7) induces tumours of nerve-supporting or paraneural cell origin in newborn hamsters.

    PubMed Central

    Ohtaki, S.; Kato, K.

    1989-01-01

    Simian adenovirus type 7 (SA-7) was found to induce tumours originating from nerve-supporting or paraneural cells in newborn hamsters, regardless of injection site or tissues. SA-7 induces glioblastomas characterized by definite localization (subependymal regions) and its main cell type, bipolar spongioblast-like cells, in the brain of hamsters inoculated as newborns. When the eyes of newborn hamsters were directly inoculated, SA-7 failed to induce retinoblastoma (0/27), but retro or peri-bulbar SA-7 tumours frequently occurred in tissues closely related to the peripheral nerve apparatus, including the oculomotor nerve or ciliary ganglion. These tumour cells were situated like stromal cells in these nerve tissues. The histological features of the orbital tumours were similar to those of SA-7-induced subcutaneous tumours but not to brain tumours. In contrast with other hamster brain tumours induced by human adenovirus type 12 or human papova JC virus, medulloepithelioma or medulloblastoma, SA-7 induced tumours exhibit distinctive histological and localization characteristics. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6a Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12a PMID:2765394

  19. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells.

    PubMed

    Kosaka, Kunio; Yokoi, Toshio

    2003-11-01

    Nerve growth factor (NGF) is a factor vital for the growth and functional maintenance of nerve tissue. The authors found that a rosemary (Rosmarinus officinalis L.) extract enhanced the production of NGF in T98G human glioblastoma cells. Furthermore, the results indicated that carnosic acid and carnosol, which are major components of the rosemary extract, were able to promote markedly enhanced synthesis of NGF. PMID:14600414

  20. Variations of blood flow at optic nerve head induced by sinusoidal flicker stimulation in cats.

    PubMed

    Vo Van Toi; Riva, C E

    1995-01-01

    1. The present investigation explored, in thirty-four anaesthetized cats, the blood flow changes at the optic nerve head elicited by sinusoidally modulated photic stimuli. 2. The stimuli were achromatic, diffuse and had 30 deg diameter field size; the stimulus frequency was varied from 0 to 100 Hz, modulation depth from 0 to 100% and mean retinal illuminance up to 50,000 trolands (td); the blood flow was measured with a near-infrared (810 nm) laser Doppler flowmeter. 3. At various frequencies, modulation depths and mean retinal illuminance, sinusoidal flicker stimulation always caused an increase in blood flow at the optic nerve head relative to steady stimulation. 4. The frequency response and temporal contrast sensitivity function of the blood flow changes had a bandpass shape; the high-frequency slope of the frequency response was 3 decades (dec) per decade and that of the temporal contrast sensitivity function was 1.7 dec per dec, close to the slope for cat 'on' ganglion cells (2.6 dec per dec). 5. In most cats, the magnitude of the increase in blood flow was a sigmoidal function of modulation depth; in the remainder, the relationship was close to linear. 6. The threshold of blood flow changes varied with respect to mean retinal illuminance similar to Ferry-Porter's law and the photopic linear slope was 50 Hz dec-1. 7. In comparison with reported psychophysical and electrophysiological responses elicited by similar stimulations, the results of the present study resemble more those obtained from ganglion cells than those from electroretinograms, visual-evoked potentials and psychophysics. It is suggested that the blood flow changes at the optic nerve head are induced by the activity of ganglion cells. PMID:7730982

  1. Expression of nerve growth factor and its receptors in the uterus of rabbits: functional involvement in prostaglandin synthesis.

    PubMed

    Maranesi, M; Parillo, F; Leonardi, L; Rebollar, P G; Alonso, B; Petrucci, L; Gobbetti, A; Boiti, C; Arruda-Alencar, J; Moura, A; Zerani, M

    2016-07-01

    The aim of the present study was to evaluate: (1) the presence of nerve growth factor (NGF), neurotrophic tyrosine kinase receptor 1 (NTRK1), and nerve growth factor receptor (NGFR) in the rabbit uterus; and (2) the in vitro effects of NGF on PGF2α and PGE2 synthesis and on the PGE2-9-ketoreductase (PGE2-9-K) activity by the rabbit uterus. Nerve growth factor, NTRK1, and NGFR were immunolocalized in the luminal and glandular epithelium and stroma cells of the endometrium. reverse transcriptase polymerase chain reaction indicated the presence of messenger RNA for NGF, NTRK1, and NGFR in the uterus. Nerve growth factor increased (P < 0.01) in vitro secretions of PGF2α and PGE2 but coincubation with either NTRK1 or oxide nitric synthase (NOS) inhibitors reduced (P < 0.01) PGF2α production and blocked (P < 0.01) PGE2 secretion. Prostaglandins releases were lower (P < 0.01) than control when uterine samples were treated with NGF plus cyclooxygenase inhibitor. However, addition of NGFR inhibitor reduced (P < 0.01) PGF2α secretion less efficiently than NTRK1 or NOS inhibitors but had no effect on PGE2 yield. Nerve growth factor increased (P < 0.01) the activity of PGE2-9-K, whereas coincubation with NTRK1 or NOS inhibitors abolished (P < 0.01) this increase in PGE2-9-K activity. However, cotreatment with either cyclooxygenase or NGFR inhibitors had no effect on PGE2-9-K activity. This is the first study to document the distribution of NGF/NTRK1 and NGFR systems and their effects on prostaglandin synthesis in the rabbit uterus. NGF/NTRK1 increases PGF2α and PGE2 productions by upregulating NOS and PGE2-9-K activities, whereas NGF/NGFR augments only PGF2α secretion, through an intracellular mechanism that is still unknown. PMID:26986844

  2. Lower Levels of Urinary Nerve Growth Factor Might Predict Recurrent Urinary Tract Infections in Women

    PubMed Central

    2016-01-01

    Purpose: To investigate the changes in urinary nerve growth factor (uNGF) levels after acute urinary tract infection (UTI) and to assess the role of uNGF in predicting UTI recurrence in women. Methods: Women with uncomplicated, symptomatic UTIs were enrolled. Cephalexin 500 mg (every 6 hours) was administered for 7–14 days to treat acute UTIs. Subsequently, the patients were randomized to receive either sulfamethoxazole/trimethoprim 800 mg/160 mg daily at bedtime, or celecoxib 200 mg daily for 3 months and were monitored for up to 12 months. NGF levels in the urine were determined at baseline, 1, 4, and 12 weeks after the initiation of prophylactic therapy, and were compared between women with first-time UTIs and recurrent UTIs, sulfamethoxazole/trimethoprim and celecoxib-treated women, and no UTI recurrence and UTI recurrence that occurred during the follow-up period. Twenty women free of UTIs served as controls. Results: A total of 139 women with UTI and 20 controls were enrolled in the study, which included 50 women with a first-time UTI and 89 women with recurrent UTIs. Thirty-seven women completed the study. Women with recurrent UTIs (n=23) had a trend of lower uNGF levels than women with first-time UTIs (n=14). During follow-up, 9 women had UTI recurrence. The serial uNGF levels in women with UTI recurrence were significantly lower than those in women who did not have UTI recurrence during the follow-up period. Conclusions: The lower levels of uNGF in women with recurrent UTI and the incidence of UTI recurrence during follow-up suggest that lower uNGF might reflect the defective innate immunity in women with recurrent UTI. PMID:27032555

  3. Cortical neurons express nerve growth factor receptors in advanced age and Alzheimer disease.

    PubMed Central

    Mufson, E J; Kordower, J H

    1992-01-01

    Using a monoclonal antibody directed against the primate nerve growth factor (NGF) receptor, we examined the expression of NGF receptors within neuronal perikarya of normal adult human cerebral cortex (27-98 years old) and individuals with Alzheimer disease (AD). This expression of cortical NGF receptors was compared with that seen in other neurological diseases and normal human development as well as in young and aged nonhuman primates. NGF receptor-containing cortical neurons were not observed in young adults (less than 50 years old) and were observed only infrequently in non-demented elderly individuals (50-80 years old). In contrast, numerous NGF receptor-containing cortical neurons were seen in AD patients of all ages and in one 98-year-old nondemented patient. In advanced age and AD, numerous NGF receptor-positive neurons were located within laminae II-VI of temporal association cortices whereas only a few were seen in the subicular complex, entorhinal cortex, parahippocampal gyrus, and amygdaloid complex. These perikarya appeared healthy, with bipolar, fusiform, or multipolar morphologies and extended varicose dendritic arbors. These neurons failed to express neurofibrillary tangle-bearing material. In contrast to AD, NGF receptor-containing cortical neurons were not observed in Parkinson disease, Pick disease, or Shy-Drager syndrome. The NGF receptor-containing cortical neurons seen in advanced age and AD were similar in morphology to those observed in human fetal cortex. No NGF receptor-containing cortical neurons were observed in young or aged nonhuman primates. These findings suggest that neurons within the human cerebral cortex exhibit plasticity in their expression of NGF receptors in AD and extreme advanced aging. Images PMID:1309947

  4. Prognostic roles for fibroblast growth factor receptor family members in malignant peripheral nerve sheath tumor

    PubMed Central

    Song, Fengju; Zheng, Hong; Chen, Kexin; Zhang, Wei; Yang, Jilong

    2016-01-01

    Background Malignant peripheral nerve sheath tumors (MPNST) are rare, highly malignant, and poorly understood sarcomas. The often poor outcome of MPNST highlights the necessity of identifying prognostic predictors for this aggressive sarcoma. Here, we investigate the role of fibroblast growth factor receptor (FGFR) family members in human MPNSTs. Results aCGH and bioinformatics analysis identified frequent amplification of the FGFR1 gene. FISH analysis revealed that 26.9% MPNST samples had amplification of FGFR1, with both focal and polysomy patterns observed. IHC identified that FGFR1 protein expression was positively correlated with FGFR1 gene amplification. High expression of FGFR1 protein was associated with better overall survival (OS) and was an independent prognostic predictor for OS of MPNST patients. Additionally, combined expression of FGFR1 and FGFR2 protein characterized a subtype of MPNST with better OS. FGFR4 protein was expressed 82.3% of MPNST samples, and was associated with poor disease-free survival. Materials and Methods We performed microarray-based comparative genomic hybridization (aCGH) profiling of two cohorts of primary MPNST tissue samples including 25 patients treated at The University of Texas MD Anderson Cancer Center and 26 patients from Tianjin Medical University Cancer Institute and Hospital. Fluorescence in situ hybridization (FISH) was used to validate the gene amplification detected by aCGH analysis. Another cohort of 63 formalin-fixed paraffin-embedded MPNST samples (including 52 samples for FISH assay) was obtained to explore FGFR1, 2, 3, and 4 protein expression by immunohistochemical (IHC) analysis. Conclusions Our integrated genomic and molecular studies provide evidence that FGFRs play different prognostic roles in MPNST. PMID:26993773

  5. Microtubules and Microfilaments in Fixed and Permeabilized Cells are Selectively Decorated by Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Nasi, S.; Cirillo, D.; Naldini, L.; Marchisio, P. C.; Calissano, P.

    1982-02-01

    A specific antibody against nerve growth factor (NGF) and indirect immunofluorescence microscopy have been used to follow the in vitro binding of NGF to cells made permeable to large molecules. All cells tested, both target (sensory neurons and PC12 cells) and nontarget (3T3, BKH 2I, C6 glioma cells), revealed a decoration of cytoskeletal structures which on the basis of their form, reactivity with antibodies, and sensitivity to specific drugs may be identified as microtubules (MTs) and microfilaments (MFs). The decoration of either structure depends on the fixation and permeabilization conditions: MFs, in the form of stress fibers, are stained by NGF when the plasma membrane is permeabilized with methanol/acetone; MTs become intensely stained when the plasma membrane is solubilized with a nonionic detergent in the presence of a MT-stabilizing medium. The two procedures do not affect the staining of these structures with specific antibodies. Binding of 125I-labeled NGF to PC12 cells was not competitively inhibited by a 100-fold excess of several positively charged proteins but it was markedly decreased in the presence of DNase I. 125I-Labeled NGF interacted with MTs and F-actin (fixed with paraformaldehyde) in a range of concentrations similar to that used for their cellular localization with NGF-anti-NGF. Our studies show that the specificity and affinity of NGF binding to MTs and MFs is in the range of that of antibodies against tubulin and actin. The possible relevance of these findings to the mechanism of action of NGF in target cells is discussed.

  6. Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma.

    PubMed Central

    Bonini, S; Lambiase, A; Bonini, S; Angelucci, F; Magrini, L; Manni, L; Aloe, L

    1996-01-01

    Nerve growth factor (NGF) serum levels were measured in 49 patients with asthma and/or rhinoconjunctivitis and/or urticaria-angioedema. Clinical and biochemical parameters, such as bronchial reactivity, total and specific serum IgE levels, and circulating eosinophil cationic protein levels, were evaluated in relation to NGF values in asthma patients. NGF was significantly increased in the 42 allergic (skin-test- or radioallergosorbent-test-positive) subjects (49.7 +/- 28.8 pg/ml) versus the 18 matched controls (3.8 +/- 1.7 pg/ml; P < 0.001). NGF levels in allergic patients with asthma, rhinoconjunctivitis, and urticaria-angioedema were 132.1 +/- 90.8, 17.6 +/- 6.1, and 7.6 +/- 1.8 pg/ml (P < 0.001, P < 0.002, and P < 0.05 versus controls), respectively. Patients with more than one allergic disease had higher NGF serum values than those with a single disease. When asthma patients were considered as a group, NGF serum values (87.6 +/- 59.8 pg/ml) were still significantly higher than those of control groups (P < 0.001), but allergic asthma patients had elevated NGF serum levels compared with nonallergic asthma patients (132.1 +/- 90.8 versus 4.9 +/- 2.9 pg/ml; P < 0.001). NGF serum levels correlate to total IgE serum values (rho = 0.43; P < 0.02). The highest NGF values were found in patients with severe allergic asthma, a high degree of bronchial hyperreactivity, and high total IgE and eosinophil cationic protein serum levels. This study represents the first observation (that we know of) that NGF is increased in human allergic inflammatory diseases and asthma. Images Fig. 2 PMID:8855290

  7. Nerve Growth Factor Is Regulated by Toll-Like Receptor 2 in Human Intervertebral Discs.

    PubMed

    Krock, Emerson; Currie, J Brooke; Weber, Michael H; Ouellet, Jean A; Stone, Laura S; Rosenzweig, Derek H; Haglund, Lisbet

    2016-02-12

    Nerve growth factor (NGF) contributes to the development of chronic pain associated with degenerative connective tissue pathologies, such as intervertebral disc degeneration and osteoarthritis. However, surprisingly little is known about the regulation of NGF in these conditions. Toll-like receptors (TLR) are pattern recognition receptors classically associated with innate immunity but more recently were found to be activated by endogenous alarmins such as fragmented extracellular matrix proteins found in degenerating discs or cartilage. In this study we investigated if TLR activation regulates NGF and which signaling mechanisms control this response in intervertebral discs. TLR2 agonists, TLR4 agonists, or IL-1β (control) treatment increased NGF, brain-derived neurotrophic factor (BDNF), and IL-1β gene expression in human disc cells isolated from healthy, pain-free organ donors. However, only TLR2 activation or IL-1β treatment increased NGF protein secretion. TLR2 activation increased p38, ERK1/2, and p65 activity and increased p65 translocation to the cell nucleus. JNK activity was not affected by TLR2 activation. Inhibition of NF-κB, and to a lesser extent p38, but not ERK1/2 activity, blocked TLR2-driven NGF up-regulation at both the transcript and protein levels. These results provide a novel mechanism of NGF regulation in the intervertebral disc and potentially other pathogenic connective tissues. TLR2 and NF-κB signaling are known to increase cytokines and proteases, which accelerate matrix degradation. Therefore, TLR2 or NF-κB inhibition may both attenuate chronic pain and slow the degenerative progress in vivo. PMID:26668319

  8. Olfactory nerve stimulation-induced calcium signaling in the mitral cell distal dendritic tuft.

    PubMed

    Yuan, Q; Knöpfel, T

    2006-04-01

    Olfactory receptor neuron axons form the olfactory nerve (ON) and project to the glomerular layer of the olfactory bulb, where they form excitatory synapses with terminal arborizations of the mitral cell (MC) tufted primary dendrite. Clusters of MC dendritic tufts define olfactory glomeruli, where they involve in complex synaptic interactions. The computational function of these cellular interactions is not clear. We used patch-clamp electrophysiology combined with whole field or two-photon Ca2+ imaging to study ON stimulation-induced Ca2+ signaling at the level of individual terminal branches of the MC primary dendrite in mice. ON-evoked subthreshold excitatory postsnaptic potentials induced Ca2+ transients in the MC tuft dendrites that were spatially inhomogeneous, exhibiting discrete "hot spots." In contrast, Ca2+ transients induced by backpropagating action potentials occurred throughout the dendritic tuft, being larger in the thin terminal dendrites than in the base of the tuft. Single ON stimulation-induced Ca2+ transients were depressed by the NMDA receptor antagonist D-aminophosphonovaleric acid (D-APV), increased with increasing stimulation intensity, and typically showed a prolonged rising phase. The synaptically induced Ca2+ signals reflect, at least in part, dendrodendritic interactions that support intraglomerular coupling of MCs and generation of an output that is common to all MCs associated with one glomerulus. PMID:16319202

  9. Treadmill Exercise Induced Functional Recovery after Peripheral Nerve Repair Is Associated with Increased Levels of Neurotrophic Factors

    PubMed Central

    Park, Jae-Sung; Höke, Ahmet

    2014-01-01

    Benefits of exercise on nerve regeneration and functional recovery have been reported in both central and peripheral nervous system disease models. However, underlying molecular mechanisms of enhanced regeneration and improved functional outcomes are less understood. We used a peripheral nerve regeneration model that has a good correlation between functional outcomes and number of motor axons that regenerate to evaluate the impact of treadmill exercise. In this model, the median nerve was transected and repaired while the ulnar nerve was transected and prevented from regeneration. Daily treadmill exercise resulted in faster recovery of the forelimb grip function as evaluated by grip power and inverted holding test. Daily exercise also resulted in better regeneration as evaluated by recovery of compound motor action potentials, higher number of axons in the median nerve and larger myofiber size in target muscles. Furthermore, these observations correlated with higher levels of neurotrophic factors, glial derived neurotrophic factor (GDNF), brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), in serum, nerve and muscle suggesting that increase in muscle derived neurotrophic factors may be responsible for improved regeneration. PMID:24618564

  10. Electron beam induced growth of tin whiskers

    SciTech Connect

    Vasko, A. C.; Karpov, V. G.; Warrell, G. R.; Parsai, E. I.; Shvydka, Diana

    2015-09-28

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.