Science.gov

Sample records for nerve magnetic stimulation

  1. Unilateral magnetic stimulation of the phrenic nerve.

    PubMed Central

    Mills, G. H.; Kyroussis, D.; Hamnegard, C. H.; Wragg, S.; Moxham, J.; Green, M.

    1995-01-01

    BACKGROUND--Electrical stimulation of the phrenic nerve is a useful non-volitional method of assessing diaphragm contractility. During the assessment of hemidiaphragm contractility with electrical stimulation, low twitch transdiaphragmatic pressures may result from difficulty in locating and stimulating the phrenic nerve. Cervical magnetic stimulation overcomes some of these problems, but this technique may not be absolutely specific and does not allow the contractility of one hemidiaphragm to be assessed. This study assesses both the best means of producing supramaximal unilateral magnetic phrenic stimulation and its reproducibility. This technique is then applied to patients. METHODS--The ability of four different magnetic coils to produce unilateral phrenic stimulation in five normal subjects was assessed from twitch transdiaphragmatic pressure (TwPDI) measurements and diaphragmatic electromyogram (EMG) recordings. The results from magnetic stimulation were compared with those from electrical stimulation. To determine whether the magnetic field affects the contralateral phrenic nerve as well as the intended phrenic nerve, EMG recordings from each hemidiaphragm were compared during stimulation on the same side and the opposite side relative to the recording electrodes. The EMG recordings were made from skin surface electrodes in five normal subjects and from needle electrodes placed in the diaphragm during cardiac surgery in six patients. Similarly, the direction of hemidiaphragm movement was evaluated by ultrasonography. To determine the usefulness of the technique in patients the 43 mm mean diameter double coil was used in 54 patients referred for assessment of possible respiratory muscle weakness. These results were compared with unilateral electrical phrenic stimulation, maximum sniff PDI, and TwPDI during cervical magnetic stimulation. RESULTS--In the five normal subjects supramaximal stimulation was established for eight out of 10 phrenic nerves with the 43

  2. Localization of nerve depolarization with magnetic stimulation.

    PubMed

    Odderson, I R; Halar, E M

    1992-06-01

    The specific location on the magnetic stimulation (MS) coil that may correspond to the area of nerve depolarization has not been determined. In order to localize such an area, MS with 9-cm and 5-cm diameter coils was compared with conventional percutaneous electric stimulation (ES). On the 9-cm coil the distribution of points of nerve depolarization corresponded to that quarter of the coil which was placed over and parallel to the median nerve, whereas on the 5-cm coil, this area also extended outside the coil. The points of median nerve depolarization with MS were distributed over a distance of 7 cm on the stimulator head and was nearly identical for the 2 coil sizes at the wrist and elbow. Ulnar nerve costimulation was less frequent with the smaller coil at the wrist. A calculated reference point on the coil is suggested for more accurate NCV determinations. PMID:1508235

  3. Magnetic stimulation of peripheral nerves in dogs: a pilot study.

    PubMed

    Soens, Iris Van; Polis, Ingeborgh E; Nijs, Jozef X; Struys, Michel M; Bhatti, Sofie F; Ham, Luc M Van

    2008-11-01

    A model for magnetic stimulation of the radial and sciatic nerves in dogs was evaluated. Onset-latencies and peak-to-peak amplitudes of magnetic and electrical stimulation of the sciatic nerve were compared, and the effect of the direction of the current in the magnetic coil on onset-latencies and peak-to-peak amplitude of the magnetic motor evoked potential was studied in both nerves. The results demonstrate that magnetic stimulation is a feasible method for stimulating the radial and sciatic nerves in dogs. No significant differences were observed in onset-latencies and peak-to-peak amplitudes during magnetic and electrical stimulation, indicating conformity between the techniques. Orthodromic or antidromic magnetic nerve stimulation resulted in no significant differences. This pilot study demonstrates the potential of magnetic stimulation of nerves in dogs. PMID:17869140

  4. Differential activation of nerve fibers with magnetic stimulation in humans

    PubMed Central

    Tuday, Eric C; Olree, Kenneth S; Horch, Kenneth W

    2006-01-01

    Background Earlier observations in our lab had indicated that large, time-varying magnetic fields could elicit action potentials that travel in only one direction in at least some of the myelinated axons in peripheral nerves. The objective of this study was to collect quantitative evidence for magnetically induced unidirectional action potentials in peripheral nerves of human subjects. A magnetic coil was maneuvered to a location on the upper arm where physical effects consistent with the creation of unidirectional action potentials were observed. Electromyographic (EMG) and somatosensory evoked potential (SEP) recordings were then made from a total of 20 subjects during stimulation with the magnetic coil. Results The relative amplitudes of the EMG and SEP signals changed oppositely when the current direction in the magnetic coil was reversed. This effect was consistent with current direction in the coil relative to the arm for all subjects. Conclusion A differential evocation of motor and sensory fibers was demonstrated and indicates that it may be possible to induce unidirectional action potentials in myelinated peripheral nerve fibers with magnetic stimulation. PMID:16863593

  5. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  6. Basic study on the influence of inhibition induced by the magnetic stimulation on the peripheral nerve

    NASA Astrophysics Data System (ADS)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Iramina, Keiji

    2015-05-01

    The purpose of this study is to analyze the inhibition mechanism of magnetic stimulation on motor function. A magnetic stimulator with a flat figure-eight coil was used to stimulate the peripheral nerve of the antebrachium. The intensity of magnetic stimulation was 0.8 T, and the stimulation frequency was 1 Hz. The amplitudes of the motor-evoked potentials (MEPs) at the abductor pollicis brevis muscle and first dorsal interosseous muscle were used to evaluate the effects of magnetic stimulation. The effects of magnetic stimulation were evaluated by analyzing the MEP amplitude before and after magnetic stimulation to the primary motor cortex. The results showed that MEP amplitude after magnetic stimulation compared with before magnetic stimulation decreased. Because there were individual differences in MEP amplitude induced by magnetic stimulation, the MEP amplitude after stimulation was normalized by the amplitude of each participant before stimulation. The MEP amplitude after stimulation decreased by approximately 58% (p < 0.01) on average compared with before stimulation. Previous studies suggested that magnetic stimulation to the primary motor cortex induced an increase or a decrease in MEP amplitude. Furthermore, previous studies have shown that the alteration in MEP amplitude was induced by cortical excitability based on magnetic stimulation. The results of this study showed that MEP amplitude decreased following magnetic stimulation to the peripheral nerve. We suggest that the decrease in MEP amplitude found in this study was obtained via the feedback from a peripheral nerve through an afferent nerve to the brain. This study suggests that peripheral excitement by magnetic stimulation of the peripheral nerve may control the central nervous system via afferent feedback.

  7. A conduction block in sciatic nerves can be detected by magnetic motor root stimulation.

    PubMed

    Matsumoto, Hideyuki; Konoma, Yuko; Fujii, Kengo; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-08-15

    Useful diagnostic techniques for the acute phase of sciatic nerve palsy, an entrapment neuropathy, are not well established. The aim of this paper is to demonstrate the diagnostic utility of magnetic sacral motor root stimulation for sciatic nerve palsy. We analyzed the peripheral nerves innervating the abductor hallucis muscle using both electrical stimulations at the ankle and knee and magnetic stimulations at the neuro-foramina and conus medullaris levels in a patient with sciatic nerve palsy at the level of the piriformis muscle due to gluteal compression related to alcohol consumption. On the fourth day after onset, magnetic sacral motor root stimulation using a MATS coil (the MATS coil stimulation method) clearly revealed a conduction block between the knee and the sacral neuro-foramina. Two weeks after onset, needle electromyography supported the existence of the focal lesion. The MATS coil stimulation method clearly revealed a conduction block in the sciatic nerve and is therefore a useful diagnostic tool for the abnormal neurophysiological findings associated with sciatic nerve palsy even at the acute phase. PMID:23809191

  8. The boundary effect in magnetic stimulation. Analysis at the peripheral nerve.

    PubMed

    Mathis, J; Seemann, U; Weyh, T; Jakob, C; Struppler, A

    1995-10-01

    The optimal stimulus position for a figure-8-shaped coil for magnetic stimulation of the ulnar nerve at the wrist was not coincident with the optimal electrical stimulus point but was shifted 18.3 mm to the ulnar side (P < 0.01). For the median nerve the optimal stimulus site was 9.6 mm radial to the optimal position for electrical stimulation (P < 0.05). This shift of the stimulus point for magnetic stimulation is significantly smaller after interposition of a homogenous electrically conducting medium between coil and arm but not changed after interposition of distilled water. This so-called boundary effect is therefore due to the different conductivities of the medium interposed between coil and nerve. It may also distort precise localisation of other excitable structures such as cranial nerves, nerve roots and cortical areas by means of magnetic stimuli. The amplitudes of the compound muscle action potentials elicited with identical magnetic stimulus strength were larger after the interposition of isotonic solution between coil and skin but not after interposition of distilled water. Consideration of the boundary effect provided an improved response amplitude to magnetic stimulation, but this could not adequately compensate for its poor localisation compared to electrical stimulation. PMID:7489685

  9. Comparison of cervical magnetic stimulation and bilateral percutaneous electrical stimulation of the phrenic nerves in normal subjects.

    PubMed

    Wragg, S; Aquilina, R; Moran, J; Ridding, M; Hamnegard, C; Fearn, T; Green, M; Moxham, J

    1994-10-01

    Cervical magnetic stimulation is a new technique for stimulating the phrenic nerves, and may offer an alternative to percutaneous electrical stimulation for assessing diaphragmatic strength in normal subjects and patients in whom electrical stimulation is technically difficult or poorly tolerated. We compared cervical magnetic stimulation with conventional supramaximal bilateral percutaneous electrical stimulation in nine normal subjects. We measured oesophageal pressure (Poes), gastric pressure (Pgas) and transdiaphragmatic pressure (Pdi). The maximal relaxation rate (MRR) was also measured. The mean magnetic twitch Pdi was 36.5 cmH2O (range 27-48 cmH2O), significantly larger than electrical twitch Pdi, mean 29.7 cmH2O (range 22-40 cmH2O). The difference in twitch Pdi was explained entirely by twitch Poes, and it is possible that the magnetic technique stimulates some of the nerves to the upper chest wall muscles as well as the phrenic nerves. We compared bilateral, rectified, integrated, diaphragm surface electromyographic (EMG) responses in three subjects and found results within 10% in each subject, indicating similar diaphragmatic activation. The within occasion coefficient of variation, i.e. same subject/same session, was 6.7% both for magnetic and electrical twitch Pdi. The between occasion coefficient of variation, i.e. same subject/different days, was 6.6% for magnetic stimulation and 8.8% for electrical. There was no difference between relaxation rates measured with either technique. We conclude that magnetic stimulation is a reproducible and acceptable technique for stimulating the phrenic nerves, and that it provides a potentially useful alternative to conventional electrical stimulation as a nonvolitional test of diaphragm strength. PMID:7828686

  10. Detection of a diabetic sural nerve from the magnetic field after electric stimulation

    NASA Astrophysics Data System (ADS)

    Hayami, Takehito; Iramina, Keiji; Hyodo, Akira; Chen, Xian; Sunagawa, Kenji

    2009-04-01

    In this study, we proposed a new diagnostic technique for diabetic neuropathy using biomagnetic measurement. Peripheral neuropathy is one of the most common complications of diabetes. To examine the injury, the skin potential around the nerve is often measured after electric stimulation. However, measuring the magnetic field may reveal precise condition of the injury. To evaluate the effect of measuring the magnetic field, a simulation study was performed. A diabetic sural nerve was simulated as a bundle of myelinated nerve fibers. Each fiber was modeled as an electric cable of Ranvier's nodes. Anatomical data were used to determine the number of nerve fibers and distribution of nerve fiber diameters. The electric potential and the magnetic field on the skin after electric stimulation were computed to the boundary element method. Biphasic time courses were obtained as the electric potential and the magnetic flux density at measurement points. In diabetic nerves, the longer interpeak latency of the electric potential wave and the shorter interpeak latency of the magnetic flux wave were obtained. Measuring both the electric potential and the magnetic flux density seemed to provide a noninvasive and objective marker for diabetic neuropathy.

  11. A complete model for the evaluation of the magnetic stimulation of peripheral nerves.

    PubMed

    Pisa, Stefano; Apollonio, Francesca; d'Inzeo, Guglielmo

    2014-01-01

    In this paper, a numerical procedure for the analysis of peripheral nerve excitation through magnetic stimulation is presented and used to investigate the physical parameters influencing stimulation. The finite difference technique is used to evaluate the electric field distribution induced inside an arm by the current flowing through a coil, and a nonlinear cable model is used to describe the response of the nerve fiber to the induced electric field. The comparison among several forearm structures has evidenced that the heterogeneous non dispersive forearm model is a good reference condition. With this model, the lowest charging voltage on the stimulator capacitance, able to produce the nerve stimulation, is achieved when the coil is shifted, with respect to the nerve, of a quantity slightly lower than the coil radius but it is also possible to excite the nerve fiber by applying a shift equal to zero. The charging voltage increases when the coil radius is increased and when a three-dimensional coil geometry is considered. Moreover, this voltage is strongly dependent on the nerve position inside the forearm and on the kind of tissue surrounding the nerve. PMID:24511330

  12. A Complete Model for the Evaluation of the Magnetic Stimulation of Peripheral Nerves

    PubMed Central

    Pisa, Stefano; Apollonio, Francesca; d'Inzeo, Guglielmo

    2014-01-01

    In this paper, a numerical procedure for the analysis of peripheral nerve excitation through magnetic stimulation is presented and used to investigate the physical parameters influencing stimulation. The finite difference technique is used to evaluate the electric field distribution induced inside an arm by the current flowing through a coil, and a nonlinear cable model is used to describe the response of the nerve fiber to the induced electric field. The comparison among several forearm structures has evidenced that the heterogeneous non dispersive forearm model is a good reference condition. With this model, the lowest charging voltage on the stimulator capacitance, able to produce the nerve stimulation, is achieved when the coil is shifted, with respect to the nerve, of a quantity slightly lower than the coil radius but it is also possible to excite the nerve fiber by applying a shift equal to zero. The charging voltage increases when the coil radius is increased and when a three-dimensional coil geometry is considered. Moreover, this voltage is strongly dependent on the nerve position inside the forearm and on the kind of tissue surrounding the nerve. PMID:24511330

  13. [Role of transcranial magnetic stimulation in clinical diagnosis: facial nerve neurography].

    PubMed

    Arányi, Zsuzsanna; Simó, Magdolna

    2002-11-20

    Facial nerve neurography involving magnetic stimulation techniques can be used to assess the intracranial segment of the facial nerve and the entire facial motor pathway, as opposed to the traditional neurography, involving only extracranial electric stimulation of the nerve. Both our own experience and data published in the literature underline the value of the method in localising facial nerve dysfunction and its role in clinical diagnosis. It is non-invasive and easy to perform. Canalicular hypoexcitability has proved to be the most useful and sensitive parameter, which indicates the dysfunction of the nerve between the brain stem and the facial canal. This is an electrophysiological finding which offers for the first time positive criteria for the diagnosis of Bell's palsy. The absence of canalicular hypoexcitability practically excludes the possibility of Bell's palsy. The technique is also able to demonstrate subclinical dysfunction of the nerve, which can be of considerable help in the etiological diagnosis of facial palsies. For example, in a situation where clinically unilateral facial weakness is observed, but facial nerve neurography demonstrates bilateral involvement, etiologies other than Bell's palsy are more likely, such as Lyme's disease, Guillain-Barré syndrome, meningeal affections etc. Furthermore, the technique differentiates reliably between peripheral facial nerve lesion involving the segment in the brain stem or the segment after leaving the brainstem. PMID:12632796

  14. [Physiological approach to peripheral neuropathy. Conventional nerve conduction studies and magnetic motor root stimulation].

    PubMed

    Ugawa, Yoshikazu

    2004-11-01

    In this communication, I first show some points we should mind in the conventional peripheral nerve conduction studies and later present clinical usefulness of motor root stimulation for peripheral neuropathy. CONVENTIONAL NERVE CONDUCTION STUDIES (NCS): The most important point revealed by the conventional NCSs is whether neuropathy is due to axonal degeneration or demyelinating process. Precise clinical examination with this neurophysiological information leads us to a diagnosis and treatment. Poor clinical examination makes these findings useless. Long standing axonal degeneration sometimes induces secondary demyelination at the most distal part of involved nerves. On the other hand, severe segmental demyelination often provokes secondary axonal degeneration at distal parts to the site of demyelination. These secondary changes show the same abnormal neurophysiological findings as those of the primary involvement. We should be careful of this possibility when interpreting the results of NCS. NCS of sensory nerves is not good at revealing demyelinating process. Mild temporal dispersion of potentials often reduces an amplitude of SNAP or loss of responses, which usually suggests axonal degeneration, because of short duration of sensory nerve potentials. MOTOR ROOT STIMULATION IN PERIPHERAL NEUROPATHY: Magnetic stimulation with a coil placed over the spine activates motor roots and evokes EMG responses from upper and lower limb muscles. The site of activation with this method was determined to be where the motor roots exit from the spinal canal (intervertebral foramina) (J Neurol Neurosurg Psychiatry 52 (9): 1025-1032, 1989) because induced currents are very dense at such a foramen made by electric resistant bones. In several kinds of peripheral neuropathy, this method has been used to detect a lesion at a proximal part of the peripheral nerves which can not be detected by the conventional NCSs. I present a few cases in whom motor root stimulation had a clinical

  15. The site of impulse generation in transcranial magnetic stimulation of the facial nerve.

    PubMed

    Rimpiläinen, I; Pyykkö, I; Blomstedt, G; Kuurne, T; Karma, P

    1993-05-01

    The facial nerve can be stimulated in its intracranial course through transcranial magnetic stimulation (TMS). We studied the site of impulse generation produced by TMS by comparing the latencies of the muscle evoked potentials (MEPs) elicited with TMS and intracranial electrical stimulation (IES) of the facial nerve during neurosurgical posterior fossa procedures. In a series of 25 patients, the mean latency of the TMS elicited MEPs, recorded in the orbicularis oris muscle, was 5.0 ms (SD 0.58). Also IES of the distal part of the facial nerve in the internal acoustic meatus showed a mean latency of 5.0 ms (SD 0.68). Proximal IES in the root entry zone of the facial nerve, and intermediate IES between root entry zone and meatus, produced MEPs with significantly longer latencies compared to TMS and distal IES (p < 0.05). The findings suggest that the TMS induced facial nerve activation, leading to a MEP response, takes place within the internal acoustic meatus. PMID:8517138

  16. Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS)

    PubMed Central

    George, Mark S; Aston-Jones, Gary

    2010-01-01

    Although the preceding chapters discuss much of the new knowledge of neurocircuitry of neuropsychiatric diseases, and an invasive approach to treatment, this chapter describes and reviews the noninvasive methods of testing circuit-based theories and treating neuropsychiatric diseases that do not involve implanting electrodes into the brain or on its surface. These techniques are transcranial magnetic stimulation, vagus nerve stimulation, and transcranial direct current stimulation. Two of these approaches have FDA approval as therapies. PMID:19693003

  17. Reference values and clinical application of magnetic peripheral nerve stimulation in cats.

    PubMed

    Van Soens, Iris; Struys, Michel M R F; Bhatti, Sofie F M; Van Ham, Luc M L

    2012-07-01

    Magnetic stimulation of radial (RN) and sciatic (SN) nerves was performed bilaterally in 40 healthy cats. Reference values for onset latency and peak-to-peak amplitude of magnetic motor evoked potentials (MMEPs) were obtained and compared with values of electric motor evoked potentials (EMEPs) in 10/40 cats. Onset latencies and peak-to-peak amplitudes of the MMEPs of three cats with polyneuropathy (PNP) were compared to the reference values. Magnetic motor evoked responses were easily recorded in all normal cats. Significant differences were found in onset latencies between MMEPs and EMEPs, but peak-to-peak amplitudes were equal. The MMEPs of three cats with PNP can be seen as outliers in comparison to the reference values. MMEPs from the RN and SN were easily obtained and reproducible in normal cats. The technique could represent a useful adjunct in the assessment of peripheral nerve disorders. PMID:22070914

  18. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  19. A compact theory of magnetic nerve stimulation: predicting how to aim

    PubMed Central

    2014-01-01

    Background A compact theory that predicts quantitatively when and where magnetic neurostimulation will occur is needed as a guide to therapy, ideally providing a single equation that defines the target volume of tissue excited by single or dual coils. Methods A first-principles analysis of magnetic stimulation incorporating a simplified description of electromagnetic fields and a simplified cable theory of the axon yields a mathematical synthesis predicting how to aim. Results Nerve stimulation produced by a single circular coil having one or more closely packed turns occurs in donut shaped volume of tissue beneath the coil. Axons spanning several millimeters are the sites of magnetic stimulation. The sites of maximal transmembrane depolarization in nerve fibers correspond to points where the axons enter or exit this volume of magnetically induced voltage and current. The axonal membrane at one end is depolarized locally during the rising phase of current in the coil. The axonal membrane at the opposite end is depolarized locally during the falling phase of current in the coil. Penetration depths of several centimeters from the skin surface or approximately one to two coil radii are practical. With two coils placed in a figure-of-eight configuration the separate clockwise and counterclockwise currents generate magnetic fields that add, producing maximal stimulation of a spindle shaped volume, centered at a depth of one-third to one-half coil radius from the body surface. Conclusions This condensed synthesis of electromagnetic theory and cable theories of axon physiology provides a partial solution to the targeting problem in peripheral and in transcranial magnetic stimulation. PMID:24885299

  20. Assessment of neonatal diaphragm function using magnetic stimulation of the phrenic nerves.

    PubMed

    Rafferty, G F; Greenough, A; Dimitriou, G; Kavadia, V; Laubscher, B; Polkey, M I; Harris, M L; Moxham, J

    2000-12-01

    A nonvolitional test to assess diaphragm strength in neonates has not been previously described. Our aim was to assess the feasibility of cervical (CMS) and anterior (AMS) magnetic stimulation of the phrenic nerves in neonates. Double circular stimulating coils (90-mm) were used. For CMS, one coil was placed over the cervical spine to bilaterally stimulate the phrenic nerve roots, whereas for AMS the coils were placed on the anterolateral aspect of the neck to allow unilateral and bilateral stimulation. Diaphragm contractility was assessed as transdiaphragmatic pressure (Pdi) measured with balloon catheters positioned in the midesophagus and stomach. Stimulus supramaximality was assessed by examining diaphragm twitch Pdi (TwPdi) across a range of stimulator outputs; 85, 90, 95, and 100% of maximum. Pressure signals were measured by differential pressure transducer and displayed in real time on a computer. Patients were studied supine during sleep. CMS was performed on seven neonates (mean gestational age [GA] 38 wk, range 33 to 40 wk) and AMS on 18 neonates (mean GA 37 wk, range 32 to 41 wk). The mean (SD) TwPdi with CMS was 2.5 (0.8) cm H(2)O. CMS was not supramaximal; reducing the stimulator output below 100% caused marked reductions in TwPdi, also the shape of the pressure waveforms suggested that CMS may not have activated the diaphragm alone. Mean (SD) TwPdi with AMS was 4.5 (1.3) cm H(2)O on the left, 4.1 (0.9) cm H(2)O on the right, and 8.7 (3.9) cm H(2)O for bilateral stimulation. The shape of the pressure waveforms suggested that AMS was more specific and a plateau in TwPdi at higher stimulator outputs indicated supramaximality. We conclude that AMS may provide a useful technique to assess diaphragm function in the neonate. PMID:11112160

  1. Mouth pressure in response to magnetic stimulation of the phrenic nerves.

    PubMed Central

    Hamnegåard, C. H.; Wragg, S.; Kyroussis, D.; Mills, G.; Bake, B.; Green, M.; Moxham, J.

    1995-01-01

    BACKGROUND--Diaphragm strength can be assessed by the measurement of gastric (TW PGA), oesophageal (TW POES), and transdiaphragmatic (TW PDI) pressure in response to phrenic nerve stimulation. However, this requires the passage of two balloon catheters. A less invasive method of assessing diaphragm contractility during stimulation of the phrenic nerves would be of clinical value. A study was undertaken to determine whether pressure measured at the mouth (TW PM) during magnetic stimulation of the phrenic nerves accurately reflects TW POES, and to investigate the relations between TW PM and TW PDI; and also to see whether glottic closure and twitch potentiation can be avoided during these measurements. METHODS--Eight normal subjects and eight patients with suspected respiratory muscle weakness without lung disease were studied. To prevent glottic closure magnetic stimulation of the phrenic nerves was performed at functional residual capacity during a gentle expiratory effort against an occluded airway incorporating a small leak. TW PDI, TW POES, and TW PM were recorded. Care was taken to avoid potentiation of the diaphragm. RESULTS--In normal subjects mean TW PM was 13.7 cm H2O (range 11.3-16.1) and TW POES was 13.3 cm H2O (range 10.4-15.9) with a mean (SD) difference of 0.4 (0.81) cm H2O. In patients mean TW PM was 9.1 cm H2O (range 0.5-18.2) and TW POES was 9.3 (range 0.7-18.7) with a mean (SD) difference of -0.2 (0.84) cm H2O. The relation between TW PM and TW PDI was less close but was well described by a linear function. In patients with diaphragm weakness (low sniff PDI) TW PM was < 10 cm H2O. CONCLUSIONS--TW PM reliably reflects TW POES and can be used to predict TW PDI in normal subjects and patients without lung disease. TW PM may therefore be a promising non-invasive, non-volitional technique for the assessment of diaphragm strength. PMID:7638802

  2. The effect of single-pulse transcranial magnetic stimulation and peripheral nerve stimulation on complexity of EMG signal: fractal analysis.

    PubMed

    Cukic, M; Oommen, J; Mutavdzic, D; Jorgovanovic, N; Ljubisavljevic, M

    2013-07-01

    The aim of this study was to examine whether single-pulse transcranial magnetic stimulation (spTMS) affects the pattern of corticospinal activity once voluntary drive has been restored after spTMS-induced EMG silence. We used fractal dimension (FD) to explore the 'complexity' of the electromyography (EMG) signal, and median frequency of the spectra (MDF) to examine changes in EMG spectral characteristics. FD and MDF of the raw EMG epochs immediately before were compared with those obtained from epochs after the EMG silence. Changes in FD and MDF after spTMS were examined with three levels of muscle contraction corresponding to weak (20-40%), moderate (40-60%) and strong (60-80% of maximal voluntary contraction) and three intensities of stimulation set at 10, 20 and 30% above the resting motor threshold. FD was calculated using the Higuchi fractal dimension algorithm. Finally, to discern the origin of FD changes between the CNS and muscle, we compared the effects of spTMS with the effects of peripheral nerve stimulation (PNS) on FD and MDF. The results show that spTMS induced significant decrease in both FD and MDF of EMG signal after stimulation. PNS did not have any significant effects on FD nor MDF. Changes in TMS intensity did not have any significant effect on FD or MDF after stimulation nor had the strength of muscle contraction. However, increase in contraction strength decreased FD before stimulation but only between weak and moderate contraction. The results suggest that the effects of spTMS on corticospinal activity, underlying voluntary motor output, outlast the TMS stimulus. It appears that the complexity of the EMG signal is reduced after spTMS, suggesting that TMS alters the dynamics of the ongoing corticospinal activity most likely temporarily synchronizing the neural network activity. Further studies are needed to confirm whether observed changes after TMS occur at the cortical level. PMID:23652725

  3. Influence of maturation on infant diaphragm function assessed by magnetic stimulation of phrenic nerves.

    PubMed

    Dimitriou, Gabriel; Greenough, Anne; Moxham, John; Rafferty, Gerrard F

    2003-01-01

    Infant diaphragm function may be adversely affected in a variety of disorders and conditions. Key to establishing an accurate diagnosis are appropriate control data. The aim of this study was to determine the effect of maturation on diaphragm function, using a nonvolitional test. Diaphragm function was assessed by measuring the transdiaphragmatic pressure (Pdi) generated by magnetic stimulation of the phrenic nerves. Ballon catheters were positioned in the lower third of the esophagus and stomach. Esophageal (Pes) and gastric (Pgas) pressure changes were measured using differential pressure transducers. The pressure signals were amplified and displayed in real time on a computer (running Labview trade mark software) and Pdi derived by online subtraction of Pes from Pgas. Twenty-nine infants (14 born preterm), at a median gestational age of 37 (range, 25-42) weeks, were studied at a median postconceptional age (PCA) of 39 (range, 32-44) weeks. At time of measurement, none had respiratory problems or were hyperinflated (functional residual capacity ranged from 23-35 mL/kg). The preterm infants had significantly lower transdiaphragmatic pressures responses following median left (4.0, range 2.5-6.8 cmH(2)O vs. 4.8, range 2.8-7.2 cmH(2)O) and median right phrenic nerve stimulation (3.6, range 2.6-4.8 cmH(2)O vs. 4.3, range 2.7-6.8 cmH(2)O) (P < 0.05) than term infants. Following left and right phrenic nerve stimulation, Pdi correlated significantly with gestational age (r = 0.4, P < 0.05, and r = 0.4, P < 0.05, respectively) and PCA (r = 0.37, P = 0.05, and r = 0.56, P < 0.01, respectively). We conclude that gestational age at birth and postconceptional age at time of measurements must be taken into account when interpreting the results of infant diaphragm function tests. PMID:12461734

  4. Stump nerve signals during transcranial magnetic motor cortex stimulation recorded in an amputee via longitudinal intrafascicular electrodes.

    PubMed

    Rossini, P M; Rigosa, Jacopo; Micera, Silvestro; Assenza, Giovanni; Rossini, Luca; Ferreri, Florinda

    2011-04-01

    Do central and peripheral motor pathways associated with an amputated limb retain at least some functions over periods of years? This problem could be addressed by evaluating the response patterns of nerve signals from peripheral motor fibers during transcranial magnetic stimulation (TMS) of corticospinal tracts. The aim of this study was to record for the first time TMS-related responses from the nerves of a left arm stump of an amputee via intrafascicular longitudinal flexible multi-electrodes (tfLIFE4) implanted for a prosthetic hand control. After tfLIFE4 implant in the stump median and ulnar nerves, TMS impulses of increasing intensity were delivered to the contralateral motor cortex while tfLIFE4 recordings were carried out. Combining TMS of increasing intensity and tfLIFE4 electrodes recordings, motor nerve activity possibly related to the missing limb motor control and selectively triggered by brain stimulation without significant electromyographic contamination was identified. These findings are entirely original and indicate that tfLIFE4 signals are clearly driven from M1 stimulation, therefore witnessing the presence in the stump nerves of viable motor signals from the CNS possibly useful for artificial prosthesis control. PMID:21390489

  5. Occipital nerve stimulation.

    PubMed

    Mammis, Antonios; Agarwal, Nitin; Mogilner, Alon Y

    2015-01-01

    Occipital nerve stimulation (ONS) is a form of neuromodulation therapy aimed at treating intractable headache and craniofacial pain. The therapy utilizes neurostimulating electrodes placed subcutaneously in the occipital region and connected to a permanently implanted programmable pulse generator identical to those used for dorsal column/spinal cord stimulation. The presumed mechanisms of action involve modulation of the trigeminocervical complex, as well as closure of the physiologic pain gate. ONS is a reversible, nondestructive therapy, which can be tailored to a patient's individual needs. Typically, candidates for successful ONS include those patients with migraines, Chiari malformation, or occipital neuralgia. However, recent MRSA infections, unrealistic expectations, and psychiatric comorbidities are generally contraindications. As with any invasive procedure, complications may occur including lead migration, infection, wound erosion, device failure, muscle spasms, and pain. The success of this therapy is dependent on careful patient selection, a preimplantation trial, meticulous implantation technique, programming strategies, and complication avoidance. PMID:25411143

  6. Magnetoneurographic registration of propagating magnetic fields in the lumbar spine after stimulation of the posterior tibial nerve

    NASA Astrophysics Data System (ADS)

    Klein, Anita; van Leeuwen, Peter; Hoormann, Jörg; Grönemeyer, Dietrich

    2006-06-01

    Stimulation of the posterior tibial nerve has been associated with different somatosensory evoked potentials (SEP) recorded along the spine and thorax. The aim of this study was to register and describe the magnetic fields corresponding to different components of spinal SEP after stimulation of tibial nerves. In nine healthy subjects, right and left posterior tibial nerves were transcutaneously electrostimulated at the ankles. Neuromagnetic fields were registered over a circular 800 cm2 area of the lumbosacral spine using a 61-channel biomagnetometer. Magnetic field maps were constructed and examined visually for dipolar patterns. Equivalent current dipoles (ECD) were calculated for each somatosensory evoked field (SEF) using a least-squares fit in a spherical model. In seven subjects dipolar SEF were detected over the lower back at two separate latencies and locations and propagating ECD could be localized. Both the first and second components found agreed anatomically and functionally with respect to propagation in the underlying nerve fibers. It was possible to record and identify SEF which correspond to the SEP described in the literature. Dipole localization based on an equivalent current dipole model allowed a basic evaluation of the plausibility of the measurements with respect to the processes being examined.

  7. Low Intensity Repetitive Transcranial Magnetic Stimulation Does Not Induce Cell Survival or Regeneration in a Mouse Optic Nerve Crush Model

    PubMed Central

    Tang, Alexander D.; Makowiecki, Kalina; Bartlett, Carole; Rodger, Jennifer

    2015-01-01

    Low intensity repetitive Transcranial Magnetic Stimulation (LI-rTMS), a non-invasive form of brain stimulation, has been shown to induce structural and functional brain plasticity, including short distance axonal sprouting. However, the potential for LI-rTMS to promote axonal regeneration following neurotrauma has not been investigated. This study examined the effect of LI-rTMS on retinal ganglion cell (RGC) survival, axon regeneration and levels of BDNF in an optic nerve crush neurotrauma model. Adult C57Bl/6J mice received a unilateral intraorbital optic nerve crush. Mice received 10 minutes of sham (handling control without stimulation) (n=6) or LI-rTMS (n = 8) daily stimulation for 14 days to the operated eye. Immunohistochemistry was used to assess RGC survival (β-3 Tubulin) and axon regeneration across the injury (GAP43). Additionally, BDNF expression was quantified in a separate cohort by ELISA in the retina and optic nerve of injured (optic nerve crush) (sham n = 5, LI-rTMS n = 5) and non-injured mice (sham n = 5, LI-rTMS n = 5) that received daily stimulation as above for 7 days. Following 14 days of LI-rTMS there was no significant difference in mean RGC survival between sham and treated animals (p>0.05). Also, neither sham nor LI-rTMS animals showed GAP43 positive labelling in the optic nerve, indicating that regeneration did not occur. At 1 week, there was no significant difference in BDNF levels in the retina or optic nerves between sham and LI-rTMS in injured or non-injured mice (p>0.05). Although LI-rTMS has been shown to induce structural and molecular plasticity in the visual system and cerebellum, our results suggest LI-rTMS does not induce neuroprotection or regeneration following a complete optic nerve crush. These results help define the therapeutic capacity and limitations of LI-rTMS in the treatment of neurotrauma. PMID:25993112

  8. Assessment of nerve morphology in nerve activation during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  9. Repetitive magnetic stimulation affects the microenvironment of nerve regeneration and evoked potentials after spinal cord injury

    PubMed Central

    Jiang, Jin-lan; Guo, Xu-dong; Zhang, Shu-quan; Wang, Xin-gang; Wu, Shi-feng

    2016-01-01

    Repetitive magnetic stimulation has been shown to alter local blood flow of the brain, excite the corticospinal tract and muscle, and induce motor function recovery. We established a rat model of acute spinal cord injury using the modified Allen's method. After 4 hours of injury, rat models received repetitive magnetic stimulation, with a stimulus intensity of 35% maximum output intensity, 5-Hz frequency, 5 seconds for each sequence, and an interval of 2 minutes. This was repeated for a total of 10 sequences, once a day, 5 days in a week, for 2 consecutive weeks. After repetitive magnetic stimulation, the number of apoptotic cells decreased, matrix metalloproteinase 9/2 gene and protein expression decreased, nestin expression increased, somatosensory and motor-evoked potentials recovered, and motor function recovered in the injured spinal cord. These findings confirm that repetitive magnetic stimulation of the spinal cord improved the microenvironment of neural regeneration, reduced neuronal apoptosis, and induced neuroprotective and repair effects on the injured spinal cord. PMID:27335567

  10. The impact of high-frequency magnetic stimulation of peripheral nerves: muscle hardness, venous blood flow, and motor function of upper extremity in healthy subjects.

    PubMed

    Okudera, Yoshihiko; Matsunaga, Toshiki; Sato, Mineyoshi; Chida, Satoaki; Hatakeyama, Kazutoshi; Watanabe, Motoyuki; Shimada, Yoichi

    2015-01-01

    The purpose of this study was to investigate the impact of high-frequency peripheral nerve magnetic stimulation on the upper limb function. Twenty-five healthy adults (16 men and 9 women) participated in this study. The radial nerve of the non-dominant hand was stimulated by high-frequency magnetic stimulation device. A total of 600 impulses were applied at a frequency of 20 Hz and intensity of 1.2 resting motor threshold (rMT). At three time points (before, immediately after, and 15 min after stimulation), muscle hardness of the extensor digitorum muscle on the stimulated side was measured using a mechanical tissue hardness meter and a shear wave imaging device, cephalic venous blood flow on the stimulated side was measured using an ultrasound system, and the Box and Block test (BBT) was performed. Mechanical tissue hardness results did not show any significant differences between before, immediately after, and 15 min after stimulation. Measurements via shear wave imaging showed that muscle hardness significantly decreased both immediately and 15 min after stimulation compared to before stimulation (P < 0.05). Peripheral venous blood flow and BBT score significantly increased both immediately and 15 min after stimulation compared to before stimulation (P < 0.01). High-frequency peripheral nerve magnetic stimulation can achieve effects similar to electrical stimulation in a less invasive manner, and may therefore become an important element in next-generation rehabilitation. PMID:25876657

  11. Magnetic stimulation of the radial nerve in dogs and cats with brachial plexus trauma: a report of 53 cases.

    PubMed

    Van Soens, Iris; Struys, Michel M; Polis, Ingeborgh E; Bhatti, Sofie F; Van Meervenne, Sofie A; Martlé, Valentine A; Nollet, Heidi; Tshamala, Mulenda; Vanhaesebrouck, An E; Van Ham, Luc M

    2009-10-01

    Brachial plexus trauma is a common clinical entity in small animal practice and prognostic indicators are essential early in the course of the disease. Magnetic stimulation of the radial nerve and consequent recording of the magnetic motor evoked potential (MMEP) was examined in 36 dogs and 17 cats with unilateral brachial plexus trauma. Absence of deep pain perception (DPP), ipsilateral loss of panniculus reflex, partial Horner's syndrome and a poor response to MMEP were related to the clinical outcome in 29 of the dogs and 13 of the cats. For all animals, a significant difference was found in MMEP between the normal and the affected limb. Absence of DPP and unilateral loss of the panniculus reflex were indicative of an unsuccessful outcome in dogs. Additionally, the inability to evoke a MMEP was associated with an unsuccessful outcome in all animals. It was concluded that magnetic stimulation of the radial nerve in dogs and cats with brachial plexus trauma may provide an additional diagnostic and prognostic tool. PMID:18602850

  12. A precision mechanical nerve stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1988-01-01

    An electromechanical device, used to apply and monitor stimulating pulses to a mammalian motor nerve, has been successfully developed at NASA Langley Research Center. Two existing force transducers, a flight skin friction balance and a miniature skin friction balance which were designed for making aerodynamic drag measurements, were modified and incorporated to form this precision instrument. The nerve stimulator is a type one servomechanism capable of applying and monitoring stimulating pulses of 0 to 10 grams with a precision of better than +/- 0.05 grams. Additionally, the device can be independently used to apply stimulating pulses by displacing the nerve from 0 to 0.25 mm with a precision of better than +/- 0.001 mm while measuring the level of the load applied.

  13. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. PMID:26420473

  14. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients

    PubMed Central

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-01-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  15. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients.

    PubMed

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-07-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  16. Vagal nerve stimulator: Evolving trends

    PubMed Central

    Ogbonnaya, Sunny; Kaliaperumal, Chandrasekaran

    2013-01-01

    Over three decades ago, it was found that intermittent electrical stimulation from the vagus nerve produces inhibition of neural processes, which can alter brain activity and terminate seizures. This paved way for the concept of vagal nerve stimulator (VNS). We describe the evolution of the VNS and its use in different fields of medicine. We also review the literature focusing on the mechanism of action of VNS producing desired effects in different conditions. PUBMED and EMBASE search was performed for ‘VNS’ and its use in refractory seizure management, depression, obesity, memory, and neurogenesis. VNS has been in vogue over for the past three decades and has proven to reduce the intensity and frequency of seizure by 50% in the management of refractory seizures. Apart from this, VNS has been shown to promote neurogenesis in the dentate gyrus of rat hippocampus after 48 hours of stimulation of the vagus nerve. Improvement has also been observed in non-psychotic major depression from a randomized trial conducted 7 years ago. The same concept has been utilized to alter behavior and cognition in rodents, and good improvement has been observed. Recent studies have proven that VNS is effective in obesity management in patients with depression. Several hypotheses have been postulated for the mechanism of action of VNS contributing to its success. VNS has gained significant popularity with promising results in epilepsy surgery and treatment-resistant depression. The spectrum of its use has also extended to other fields of medicine including obesity, memory, and neurogenesis, and there is still a viable scope for its utility in the future. PMID:23633829

  17. Optical stimulation of peripheral nerves in vivo

    NASA Astrophysics Data System (ADS)

    Wells, Jonathon D.

    This dissertation documents the emergence and validation of a new clinical tool that bridges the fields of biomedical optics and neuroscience. The research herein describes an innovative method for direct neurostimulation with pulsed infrared laser light. Safety and effectiveness of this technique are first demonstrated through functional stimulation of the rat sciatic nerve in vivo. The Holmium:YAG laser (lambda = 2.12 mum) is shown to operate at an optimal wavelength for peripheral nerve stimulation with advantages over standard electrical neural stimulation; including contact-free stimulation, high spatial selectivity, and lack of a stimulation artifact. The underlying biophysical mechanism responsible for transient optical nerve stimulation appears to be a small, absorption driven thermal gradient sustained at the axonal layer of nerve. Results explicitly prove that low frequency optical stimulation can reliably stimulate without resulting in tissue thermal damage. Based on the positive results from animal studies, these optimal laser parameters were utilized to move this research into the clinic with a combined safety and efficacy study in human subjects undergoing selective dorsal rhizotomy. The clinical Holmium:YAG laser was used to effectively stimulate human dorsal spinal roots and elicit functional muscle responses recorded during surgery without evidence of nerve damage. Overall these results predict that this technology can be a valuable clinical tool in various neurosurgical applications.

  18. Magnetic-motor-root stimulation: review.

    PubMed

    Matsumoto, Hideyuki; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-06-01

    Magnetic stimulation can activate the human central and peripheral nervous systems non-invasively and virtually painlessly. Magnetic stimulation over the spinal enlargements can activate spinal nerves at the neuroforamina (magnetic-neuroforamina stimulation). This stimulation method provides us with information related to the latency of compound-muscle action potential (CMAP), which is usually interpreted as peripheral motor-conduction time (PMCT). However, this stimulation method has faced several problems in clinical applications. One is that supramaximal CMAPs were unobtainable. Another is that magnetic stimulation did not usually activate the spinal nerves in the spinal canal, i.e., the cauda equina, which prevented an evaluation of its conduction. For these reasons, magnetic-neuroforamina stimulation was rarely used to evaluate the conduction of peripheral nerves. It was mainly used to evaluate the conduction of the corticospinal tract using the parameter of central motor-conduction time (CMCT), which was calculated by subtracting PMCT from the latency of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex. Recently, supramaximal stimulation has been achieved in magnetic-neuroforamina stimulation, and this has contributed to the measurement of both CMAP size and latency. The achievement of supramaximal stimulation is ascribed to the increase in magnetic-stimulator output and a novel coil, the magnetic augmented translumbosacral stimulation (MATS) coil. The most proximal part of the cauda equina can be reliably activated using the MATS coil (magnetic-conus stimulation), thus contributing to the measurement of cauda equina conduction time (CECT) and cortico-conus motor-conduction time (CCCT). These recent developments in magnetic-motor-root stimulation enable us to more precisely evaluate the conduction of the proximal part of peripheral nerves and that of the corticospinal tract for lower-limb muscles

  19. Vagus Nerve Stimulation for Major Depressive Episodes.

    PubMed

    Eljamel, Sam

    2015-01-01

    Stimulation of the left vagus nerve is a novel antidepressive therapy that relies upon the vagal projections to the brain stem to modulate brain circuits involved in mood regulation. There is cumulative evidence from prospective and long-term studies that has demonstrated tolerability and effectiveness of vagus nerve stimulation (VNS) in major depressive episodes (MDE). VNS in MDE has the following advantages: symptomatic response (defined as at least a 50% improvement in MDE severity) occurs in at least 15-17% of patients after 10 weeks of VNS treatment and in at least 22-37% of patients after 12 months of VNS treatment, remissions are observed in at least 15-17% of patients after 12 months of treatment, there is a sustained response in 13-27% of patients during 12 months of VNS, and successful maintenance of the initial improvement is observed in a high percentage of patients (73-77% of patients who had meaningful or greater benefit after 3 months of treatment maintained at least meaningful benefit after 12 months of treatment). VNS is a well-tolerated treatment as indicated by the high continuation rates of VNS therapy in the D01 and D02 studies after 12 months of therapy (90-98%) and the low rate of adverse event-related study discontinuations through 12 months or more in these studies (3%). Adverse effects are characterized by the absence of systemic effects associated with drug therapy and are primarily limited to those related to stimulation of the vagus nerve; many of the common adverse effects only occurred when VNS was on with the ability to stop acute stimulation-related adverse effects immediately through the use of magnet deactivation of the VNS device. More importantly, there were no adverse cognitive and psychomotor effects observed with antidepressant drugs and electroconvulsive therapy, no overdose toxicity observed with antidepressant drugs, favorable findings in animal reproductive studies, and an ability to add VNS therapy to antidepressant drug

  20. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carotid sinus nerve stimulator. 870.3850 Section... nerve stimulator. (a) Identification. A carotid sinus nerve stimulator is an implantable device used to decrease arterial pressure by stimulating Hering's nerve at the carotid sinus. (b) Classification....

  1. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carotid sinus nerve stimulator. 870.3850 Section... nerve stimulator. (a) Identification. A carotid sinus nerve stimulator is an implantable device used to decrease arterial pressure by stimulating Hering's nerve at the carotid sinus. (b) Classification....

  2. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carotid sinus nerve stimulator. 870.3850 Section... nerve stimulator. (a) Identification. A carotid sinus nerve stimulator is an implantable device used to decrease arterial pressure by stimulating Hering's nerve at the carotid sinus. (b) Classification....

  3. Optical nerve stimulation for a vestibular prosthesis

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Bierer, Steven M.; Wells, Jonathon D.; Phillips, James O.

    2009-02-01

    Infrared Nerve Stimulation (INS) offers several advantages over electrical stimulation, including more precise spatial selectivity and improved surgical access. In this study, INS and electrical stimulation were compared in their ability to activate the vestibular branch of the VIIIth nerve, as a potential way to treat balance disorders. The superior and lateral canals of the vestibular system of Guinea pigs were identified and approached with the aid of precise 3-D reconstructions. A monopolar platinum stimulating electrode was positioned near the ampullae of the canals, and biphasic current pulses were used to stimulate vestibular evoked potentials and eye movements. Thresholds and input/output functions were measured for various stimulus conditions. A short pulsed diode laser (Capella, Lockheed Martin-Aculight, Inc., Bothell WA) was placed in the same anatomical position and various stimulus conditions were evaluated in their ability to evoke similar potentials and eye movements.

  4. Transcutaneous Electrical Nerve Stimulation: Research Update.

    ERIC Educational Resources Information Center

    Johns, Florene Carnicelli

    Currently, research is being performed in the area of nonsurgical and nonchemical means for influencing the body's threshold for pain. Today, transcutaneous electrical nerve stimulation (TENS) is being widely used for this purpose. Application of this treatment can be confusing, however, because determining such things as selection of the proper…

  5. Optical stimulation of the cavernous nerves in the rat prostate

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Lagoda, Gwen A.; Scott, Nicholas J.; Su, Li-Ming; Burnett, Arthur L.

    2008-02-01

    Laser nerve stimulation has recently been studied as an alternative to electrical stimulation in neuroscience. Advantages include non-contact stimulation, improved spatial selectivity, and elimination of electrical stimulation artifacts. This study explores laser stimulation of the rat cavernous nerves, as a potential alternative to electrical nerve mapping during nerve-sparing radical prostatectomy. The cavernous nerves were surgically exposed in a total of 10 male rats. A Thulium fiber laser stimulated the nerves, with a wavelength of 1870 nm, pulse energy of 7.5 mJ, radiant exposure of 1 J/cm2, pulse duration of 2.5 ms, pulse rate of 10 Hz, and 1-mm laser spot diameter, for a stimulation time of 60 s. A significant increase in the intracavernosal pressure was detected upon laser stimulation, with pressure returning to baseline levels after stimulation. This study demonstrates the feasibility of non-contact laser stimulation of the cavernous nerves using near-infrared laser radiation.

  6. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor)...

  7. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor)...

  8. Function electrical stimulation signals generator circuits for the central nerve and the sciatic nerve.

    PubMed

    Wenyuan, Li; Zhenyu, Zhang; Zhi-Gong, Wang

    2005-01-01

    Circuits for the signal generation of the FES (functional electrical stimulation) of the central nerve and the sciatic nerve have been designed. The circuits were implemented by using discrete devices. The FES circuits consist of two or three operational amplifiers. The bandwidths of the circuits are more than 10 kHz and their gains are variable from 20 dB to 60 dB. To a load of several kilo-ohms, according to the microelectrode with the nerve, the circuit for stimulating central nerve can provide a current signal, and the signal value is more than 1mA. The circuit for stimulating sciatic nerve can provide a stimulating voltage signal of more than 10 Vs. The loads of the circuits are microelectrodes contacted with nerves. The circuits can be used with two kinds of microelectrodes: cuff microelectrodes which for stimulating sciatic nerve and shaft microelectrodes which for stimulating central nerve. PMID:17281443

  9. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.

    PubMed

    Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U

    2015-06-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. PMID:25797650

  10. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation.

    PubMed

    Neufeld, Esra; Vogiatzis Oikonomidis, Ioannis; Ida Iacono, Maria; Angelone, Leonardo M; Kainz, Wolfgang; Kuster, Niels

    2016-06-21

    An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria. PMID:27223274

  11. Investigation of assumptions underlying current safety guidelines on EM-induced nerve stimulation

    NASA Astrophysics Data System (ADS)

    Neufeld, Esra; Vogiatzis Oikonomidis, Ioannis; Iacono, Maria Ida; Angelone, Leonardo M.; Kainz, Wolfgang; Kuster, Niels

    2016-06-01

    An intricate network of a variety of nerves is embedded within the complex anatomy of the human body. Although nerves are shielded from unwanted excitation, they can still be stimulated by external electromagnetic sources that induce strongly non-uniform field distributions. Current exposure safety standards designed to limit unwanted nerve stimulation are based on a series of explicit and implicit assumptions and simplifications. This paper demonstrates the applicability of functionalized anatomical phantoms with integrated coupled electromagnetic and neuronal dynamics solvers for investigating the impact of magnetic resonance exposure on nerve excitation within the full complexity of the human anatomy. The impact of neuronal dynamics models, temperature and local hot-spots, nerve trajectory and potential smoothing, anatomical inhomogeneity, and pulse duration on nerve stimulation was evaluated. As a result, multiple assumptions underlying current safety standards are questioned. It is demonstrated that coupled EM-neuronal dynamics modeling involving realistic anatomies is valuable to establish conservative safety criteria.

  12. Enhancing Rehabilitative Therapies with Vagus Nerve Stimulation.

    PubMed

    Hays, Seth A

    2016-04-01

    Pathological neural activity could be treated by directing specific plasticity to renormalize circuits and restore function. Rehabilitative therapies aim to promote adaptive circuit changes after neurological disease or injury, but insufficient or maladaptive plasticity often prevents a full recovery. The development of adjunctive strategies that broadly support plasticity to facilitate the benefits of rehabilitative interventions has the potential to improve treatment of a wide range of neurological disorders. Recently, stimulation of the vagus nerve in conjunction with rehabilitation has emerged as one such potential targeted plasticity therapy. Vagus nerve stimulation (VNS) drives activation of neuromodulatory nuclei that are associated with plasticity, including the cholinergic basal forebrain and the noradrenergic locus coeruleus. Repeatedly pairing brief bursts of VNS sensory or motor events drives robust, event-specific plasticity in neural circuits. Animal models of chronic tinnitus, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, and post-traumatic stress disorder benefit from delivery of VNS paired with successful trials during rehabilitative training. Moreover, mounting evidence from pilot clinical trials provides an initial indication that VNS-based targeted plasticity therapies may be effective in patients with neurological diseases and injuries. Here, I provide a discussion of the current uses and potential future applications of VNS-based targeted plasticity therapies in animal models and patients, and outline challenges for clinical implementation. PMID:26671658

  13. Regulation of Peripheral Nerve Stimulation Technology.

    PubMed

    Birk, Daniel M; Yin, Dali; Slavin, Konstantin V

    2015-01-01

    The number of peripheral nerve stimulation (PNS) indications, targets, and devices is expanding, yet the development of the technology has been slow because many devices used for PNS do not have formal regulatory approval. Manufacturers have not sought Food and Drug Administration (FDA) approval for PNS devices because of a perceived lack of interest amongst practitioners and patients. Without FDA approval, companies cannot invest in marketing to educate the implanters and the patients about the benefits of PNS in the treatment of chronic pain. Violation of this has resulted in governmental investigation and prosecution. Most of the PNS devices currently used to treat chronic pain are FDA approved for epidural spinal cord stimulation. Many of the complications seen in PNS surgery can be attributed to the lack of purpose-built hardware with FDA approval. Despite the lack of regulatory approval, there are insurance companies that approve PNS procedures when deemed medically necessary. As the targets and indications for PNS continue to expand, there will be an even greater need for customized technological solutions. It is up to the medical device industry to invest in the design and marketing of PNS technology and seek out FDA approval. Market forces will continue to push PNS into the mainstream and physicians will increasingly have the choice to implant devices specifically designed and approved to treat chronic peripheral nerve pain. PMID:26394389

  14. Early experiences with tachycardia-triggered vagus nerve stimulation using the AspireSR stimulator.

    PubMed

    El Tahry, Riëm; Hirsch, Martin; Van Rijckevorsel, Kenou; Santos, Susana Ferrao; de Tourtchaninoff, Marianne; Rooijakkers, Herbert; Coenen, Volker; Schulze-Bonhage, Andreas

    2016-06-01

    Many epilepsy patients treated with vagus nerve stimulation additionally use an "on-demand" function, triggering an extra stimulation to terminate a seizure or diminish its severity. Nevertheless, a substantial number of patients are not able to actively trigger stimulations by use of a magnet, due to the absence of an aura or inability for voluntary actions in the early phase of a seizure. To address this need, a novel implantable pulse generator, the AspireSR VNS system, was developed to provide automated ictal stimulation triggered by a seizure-detecting algorithm. We report our experience with three patients in assessing the functionality of ictal stimulation, illustrating the detection system in practice. Detection of ictal tachycardia and variable additional detections of physiological tachycardia depended on the individual seizure-detecting algorithm settings. PMID:27248796

  15. Transcutaneous nerve stimulation (TNS) in tinnitus.

    PubMed

    Kaada, B; Hognestad, S; Havstad, J

    1989-01-01

    Low-frequency (2 Hz) TNS applied distally to peripheral nerves of the upper extremity is known to induce a wide-spread, non-segmental and prolonged relief of pain and an increased microcirculation due to sympatho-inhibition in a number of vascular beds. Such stimulation was administered in 29 tinnitus patients of various etiology. Reduction of tinnitus was encountered in 9 subjects in response to a 45-min TNS-session. The improvement was mainly seen in tinnitus characterized by lower frequencies (125-500 Hz). In 7 of the 9 patients, the tinnitus reduction was associated with improvement of hearing, predominantly in the low-frequency band. The effects were still present after one week following daily stimulation at home. On continued treatment, the effects were found to be transitory in 4 of the patients, whereas the remaining 5 patients are still using the stimulator after 2 to 5 years. It is suggested that the mechanism behind the beneficial effects is increased microcirculation in part of the auditory pathways. PMID:2609098

  16. The effect of transcutaneous vagus nerve stimulation on cortical excitability.

    PubMed

    Capone, Fioravante; Assenza, Giovanni; Di Pino, Giovanni; Musumeci, Gabriella; Ranieri, Federico; Florio, Lucia; Barbato, Carmen; Di Lazzaro, Vincenzo

    2015-05-01

    There is great interest about the therapeutic potentialities of transcutaneous vagus nerve stimulation (tVNS) applied to neuropsychiatric disorders. However, the mechanisms of action of tVNS and its impact on cortical excitability are unclear. To this regard, transcranial magnetic stimulation (TMS) can be useful because it is able of evaluating non-invasively excitatory and inhibitory circuitry of the human cortex. Aim of the present study is to investigate the effects of tVNS on cerebral cortex excitability in healthy volunteers by means of TMS. Ten healthy subjects participated in this randomized placebo-controlled double-blind study. Real tVNS was administered at left external acoustic meatus, while sham stimulation was performed at left ear lobe, both of them for 60 min. We evaluated motor thresholds, motor evoked potential amplitude, recruitment curves, and short-interval intracortical inhibition (SICI) in right and left motor cortex. Such parameters were evaluated before and 60 min after the exposure to tVNS, for both the real and the sham stimulation. Cardiovascular parameters were monitored during the stimulation. A generalized linear model for repeated measures was implemented to assess the effect of time and stimulation type on cardiovascular and neurophysiological variables. SICI, a double-pulse TMS paradigm informative of GABA-A activity, was significantly increased in right motor cortex after real tVNS. Other neurophysiological parameters, as well as cardiovascular variables, remained unchanged. Our findings confirm that tVNS is a safe and effective way to stimulate vagus nerve and provide innovative data about the possible mechanisms of action that supports the potential therapeutic application of this technique. PMID:25182412

  17. Vagus Nerve Stimulation and Food Intake

    PubMed Central

    Schneider, Kristin L.; Oleski, Jessica; Gordon, Katherine; Rothschild, Anthony J.; Pagoto, Sherry L.

    2014-01-01

    Animal research suggests that vagus nerve stimulation (VNS) is associated with weight loss and decreased appetite. Results from human studies are mixed; some suggest that VNS affects weight whereas others do not, and it is unclear how VNS affects eating behaviors. Baseline body mass index (BMI) and VNS device settings may moderate the effects of VNS on caloric intake. This study investigates the association among BMI, VNS device settings, and caloric intake of highly palatable foods during VNS on versus VNS off sessions in 16 adult patients (62.5% female; BMI mean = 29.11 ± 6.65) using VNS therapy for either epilepsy or depression. Participants attended 2 experimental sessions (VNS on versus off) where they were presented with 4 preferred snack foods totaling 1600 calories. At the start of the session, they either had their VNS devices turned off or left on. Caloric intake was calculated by weighing foods before and after each session. BMI category (overweight/obese and lean) was the between group factor in the analysis. After controlling for covariates, an interaction of condition and BMI category (P = .03) was found. There was an interaction of condition and device output current (P = .05) and a trend toward an interaction of condition and device on time (P = .07). Excess weight may impact how neurobiological signals from the vagus nerve affect appetite and eating. Future research is needed to further elucidate this relationship. PMID:24876624

  18. Electroactive biocompatible materials for nerve cell stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Chen, Jun; Liu, Yong

    2015-04-01

    In the past decades, great efforts have been developed for neurobiologists and neurologists to restore nervous system functions. Recently much attention has been paid to electrical stimulation (ES) of the nervous system as a potential way to repair it. Various conductive biocompatible materials with good electrical conductivity, biocompatibility, and long-term ES or electrical stability have been developed as the substrates for ES. In this review, we summarized different types of materials developed in the purpose for ES of nervous system, including conducting polymers, carbon nanomaterials and composites from conducting polymer/carbon nanomaterials. The present review will give our perspective on the future research directions for further investigation on development of ES particularly on the nerve system.

  19. Bladder emptying by intermittent electrical stimulation of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Boggs, Joseph W.; Wenzel, Brian J.; Gustafson, Kenneth J.; Grill, Warren M.

    2006-03-01

    Persons with a suprasacral spinal cord injury cannot empty their bladder voluntarily. Bladder emptying can be restored by intermittent electrical stimulation of the sacral nerve roots (SR) to cause bladder contraction. However, this therapy requires sensory nerve transection to prevent dyssynergic contraction of the external urethral sphincter (EUS). Stimulation of the compound pudendal nerve trunk (PN) activates spinal micturition circuitry, leading to a reflex bladder contraction without a reflex EUS contraction. The present study determined if PN stimulation could produce bladder emptying without nerve transection in cats anesthetized with α-chloralose. With all nerves intact, intermittent PN stimulation emptied the bladder (64 ± 14% of initial volume, n = 37 across six cats) more effectively than either distention-evoked micturition (40 ± 19%, p < 0.001, n = 27 across six cats) or bilateral intermittent SR stimulation (25 ± 23%, p < 0.005, n = 4 across two cats). After bilateral transection of the nerves innervating the urethral sphincter, intermittent SR stimulation voided 79 ± 17% (n = 12 across three cats), comparable to clinical results obtained with SR stimulation. Voiding via intermittent PN stimulation did not increase after neurotomy (p > 0.10), indicating that PN stimulation was not limited by bladder-sphincter dyssynergia. Intermittent PN stimulation holds promise for restoring bladder emptying following spinal injury without requiring nerve transection.

  20. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775 Section 868.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification....

  1. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775 Section 868.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification....

  2. Optic nerve evoked potentials elicited by electrical stimulation.

    PubMed

    Kikuchi, Yasuhiro; Sasaki, Tatsuya; Matsumoto, Masato; Oikawa, Tomoyoshi; Itakura, Takeshi; Kodama, Namio

    2005-07-01

    This study investigated whether the optic nerve evoked potential (ONEP) elicited by electrical stimulation of the optic nerve can serve as a reliable intraoperative indicator of visual function. In the experimental study, two silver-ball stimulating electrodes were placed on the dog optic nerve adjacent to the apex of the orbit and one recording electrode was placed on the optic nerve near the chiasm. The nerve was stimulated with 0.1 to 10 mA rectangular pulses. Stable and reproducible ONEPs were obtained. The ONEPs were not influenced by electromyographic potentials and were recorded more clearly on the optic nerve than on the surrounding tissue. Stepwise incremental transection of the thickness of the nerve resulted in incremental amplitude reduction proportional to the transected area. No response was recorded after complete sectioning of the nerve. In the clinical study, recordings were obtained from 15 patients after craniotomy to treat parasellar tumors or cerebral aneurysms. Reproducible ONEPs were recorded intraoperatively from the electrode placed on the optic nerve near the chiasm in 14 of 15 patients. In the remaining patient, the ONEP, recorded only after tumor removal because the optic nerve was stretched and extremely thin, was remarkably small and the patient developed unilateral blindness postoperatively. These experimental and clinical results suggest the possibility of intraoperative monitoring of visual function in patients undergoing craniotomy for the treatment of lesions near the optic nerve. PMID:16041180

  3. Laterality effects of human pudendal nerve stimulation on corticoanal pathways: evidence for functional asymmetry

    PubMed Central

    Hamdy, S; Enck, P; Aziz, Q; Uengoergil, S; Hobson, A; Thompson, D

    1999-01-01

    BACKGROUND—Although motor and sensory pathways to the human external anal sphincter are bilateral, a unilateral pudendal neuropathy may still disrupt anal continence. Anal continence can, however, be preserved despite unilateral pudendal damage, and so to explain those differing observations, we postulated that pudendal innervation might be asymmetric.
AIMS—To explore the individual effects of right and left pudendal nerve stimulation on the corticofugal pathways to the human external anal sphincter and thus assess evidence for functional asymmetric pelvic innervation.
METHODS—In eight healthy subjects, anal sphincter electromyographic responses, evoked to transcranial magnetic stimulation of the motor cortex, were recorded 5-500 msec after digital transrectal electrical conditioning stimuli applied to each pudendal nerve.
RESULTS—Right or left pudendal nerve stimulation evoked anal responses of similar latencies but asymmetric amplitudes in six subjects: dominant responses (>50% contralateral side) from the right pudendal in four subjects and from the left in two. Cortical stimulation also evoked anal responses with amplitude 448 (121) µV and latency 20.9 (1.1) msec. When cortical stimulation was preceded by pudendal nerve stimulation, the cortical responses were facilitated at interstimulus intervals of 5-20 msec. Dominant pudendal nerve stimulation induced greater facilitation of the cortically evoked responses than the non-dominant nerve.
CONCLUSIONS—Cortical pathways to the external anal sphincter are facilitated by pudendal nerve conditioning, in an asymmetric manner. This functional asymmetry may explain the presence and absence of anal incontinence after unilateral pudendal nerve injury.


Keywords: cerebral cortex; continence; electromyography; external anal sphincter; incontinence; magnetic stimulation PMID:10369705

  4. Laryngeal elevation by selective stimulation of the hypoglossal nerve

    NASA Astrophysics Data System (ADS)

    Hadley, Aaron J.; Kolb, Ilya; Tyler, Dustin J.

    2013-08-01

    Objective. Laryngeal elevation protects the airway and assists opening of the esophagus during swallowing. The GH, thyrohyoid, and MH muscles provide a majority of this elevatory motion. This study applied functional electrical stimulation to the XII/C1 nerve complex using a nerve cuff electrode to determine the capabilities of neural stimulation to induce laryngeal elevation. Approach. Multi-contact FINE electrodes were implanted onto the XII/C1 nerve complex at locations proximal and distal to the thyrohyoid branching point in five anesthetized canines. Motion of the thyroid cartilage and the hyoid bone was recorded during stimulation of nerve cuffs and intramuscular electrodes. Main Results. Nerve stimulation induced 260% more laryngeal elevation than intramuscular stimulation (18.8 mm versus 5.2 mm, p ≪ 0.01), and 228% higher velocity (143.8 versus 43.9 mm s-1, p ≪ 0.01). While stimulation at all cuff and electrode locations elevated the larynx, only the proximal XII/C1 nerve cuff significantly elicited both thyroid-hyoid approximation and hyoid elevation. In all proximal XII/C1 nerve cuffs (n = 7), stimulation was able to obtain selectivity of greater than 75% of at least one elevatory muscle. Significance. These results support the hypothesis that an implanted neural interface system can produce increased laryngeal elevation, a significant protective mechanism of deglutition.

  5. Can ultrasound be used to stimulate nerve tissue?

    PubMed Central

    Norton, Stephen J

    2003-01-01

    Background The stimulation of nerve or cortical tissue by magnetic induction is a relatively new tool for the non-invasive study of the brain and nervous system. Transcranial magnetic stimulation (TMS), for example, has been used for the functional mapping of the motor cortex and may have potential for treating a variety of brain disorders. Methods and Results A new method of stimulating active tissue is proposed by propagating ultrasound in the presence of a magnetic field. Since tissue is conductive, particle motion created by an ultrasonic wave will induce an electric current density generated by Lorentz forces. An analytical derivation is given for the electric field distribution induced by a collimated ultrasonic beam. An example shows that peak electric fields of up to 8 V/m appear to be achievable at the upper range of diagnostic intensities. This field strength is about an order of magnitude lower than fields typically associated with TMS; however, the electric field gradients induced by ultrasound can be quite high (about 60 kV/m2 at 4 MHz), which theoretically play a more important role in activation than the field magnitude. The latter value is comparable to TMS-induced gradients. Conclusion The proposed method could be used to locally stimulate active tissue by inducing an electric field in regions where the ultrasound is focused. Potential advantages of this method compared to TMS is that stimulation of cortical tissue could be highly localized as well as achieved at greater depths in the brain than is currently possible with TMS. PMID:12702213

  6. Revision surgeries following vagus nerve stimulator implantation.

    PubMed

    Lam, Sandi; Lin, Yimo; Curry, Daniel J; Reddy, Gaddum D; Warnke, Peter C

    2016-08-01

    The vagus nerve stimulator (VNS) has been shown to provide a safe, albeit costly, treatment for intractable epilepsy. We aimed to analyze the incidence, timing, and clinical/demographic associations of revision surgery post-VNS implantation in epilepsy patients. The Thomson Reuters MarketScan database, containing data from 23-50million individuals, was used. Epilepsy patients receiving VNS implantations from 2003 to 2009 were identified by Current Procedural Terminology and International Classification Of Diseases Ninth Revision codes. Incidence and timing of subsequent implant-related surgeries were recorded. Events were described using time-to-event methodology, with Kaplan-Meier failure estimation/Cox proportional hazard models adjusted for clinical/demographic factors. In 1234 patients, average incidence of revision surgeries over 6years of follow-up were <1%, <3%, 4-10%, and <1% for VNS electrode revision, battery revision/removal, battery replacement/implantation, and infection washout, respectively. For electrode revision and battery revision/replacement, the incidence was higher in the first year and for battery replacement in later years. Age, sex, insurance type, or geographic region did not significantly impact event occurrence. Implant-related revision surgeries are rare. Some events occur more often in certain follow-up years than others; none are significantly impacted by age, sex, insurance type, or geographic region. The most common reason for revision was battery replacement several years after VNS placement. PMID:27050913

  7. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... III (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice... sinus nerve stimulator shall have an approved PMA or a declared completed PDP in effect before...

  8. 21 CFR 870.3850 - Carotid sinus nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... III (premarket approval). (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice... sinus nerve stimulator shall have an approved PMA or a declared completed PDP in effect before...

  9. Stimulation of the human auditory nerve with optical radiation

    NASA Astrophysics Data System (ADS)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  10. Optical stimulation of the facial nerve: a surgical tool?

    NASA Astrophysics Data System (ADS)

    Richter, Claus-Peter; Teudt, Ingo Ulrik; Nevel, Adam E.; Izzo, Agnella D.; Walsh, Joseph T., Jr.

    2008-02-01

    One sequela of skull base surgery is the iatrogenic damage to cranial nerves. Devices that stimulate nerves with electric current can assist in the nerve identification. Contemporary devices have two main limitations: (1) the physical contact of the stimulating electrode and (2) the spread of the current through the tissue. In contrast to electrical stimulation, pulsed infrared optical radiation can be used to safely and selectively stimulate neural tissue. Stimulation and screening of the nerve is possible without making physical contact. The gerbil facial nerve was irradiated with 250-μs-long pulses of 2.12 μm radiation delivered via a 600-μm-diameter optical fiber at a repetition rate of 2 Hz. Muscle action potentials were recorded with intradermal electrodes. Nerve samples were examined for possible tissue damage. Eight facial nerves were stimulated with radiant exposures between 0.71-1.77 J/cm2, resulting in compound muscle action potentials (CmAPs) that were simultaneously measured at the m. orbicularis oculi, m. levator nasolabialis, and m. orbicularis oris. Resulting CmAP amplitudes were 0.3-0.4 mV, 0.15-1.4 mV and 0.3-2.3 mV, respectively, depending on the radial location of the optical fiber and the radiant exposure. Individual nerve branches were also stimulated, resulting in CmAP amplitudes between 0.2 and 1.6 mV. Histology revealed tissue damage at radiant exposures of 2.2 J/cm2, but no apparent damage at radiant exposures of 2.0 J/cm2.

  11. Magnetic resonance imaging of optic nerve

    PubMed Central

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies. PMID:26752822

  12. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  13. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  14. Heart Stimulation by Time-Varying Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masuhiro; Andoh, Tomio; Goto, Tsuneaki; Hosono, Akihiko; Kawakami, Tadashi; Okumura, Fukuichiro; Takenaka, Toshifumi; Yamamoto, Isao

    1992-07-01

    A strong magnetic stimulator adopted for cardiac muscle was constructed with the stored energy of 50 kJ. Pulsed magnetic fields were applied to dog hearts with normal activity from outside of the body. The magnetic stimulus triggered on the T wave of the electrocardiograph caused arrhythmias in the first and second beats after the stimulus. It has been confirmed that this magnetic effect is due to a direct stimulation of cardiac muscle, not to an indirect stimulation on the vagus nerve. The threshold strength was determined for different pulse durations. The obtained strength-duration relationship is comparable to that for the electric stimulation of the dog heart.

  15. Peripheral nerve/field stimulation for neuropathic pain.

    PubMed

    Deogaonkar, Milind; Slavin, Konstantin V

    2014-01-01

    Peripheral nerve stimulation and peripheral nerve field stimulation are emerging as a viable neuromodulatory therapy in the treatment of refractory pain. Although the technology of percutaneous stimulation has been available for decades, recent advancements have broadened the number of indications. Success of treatment revolves around identifying the correct patient population, and the selection and placement of the appropriate electrodes and implantable pulse generators. Most results to date have come from case reports and retrospective studies. However, given the promising outcomes in reducing otherwise medically refractory pain, future randomized controlled studies are needed to assess this emerging technology. PMID:24262894

  16. A Computational Framework for Electrical Stimulation of Vestibular Nerve.

    PubMed

    Marianelli, Prisca; Capogrosso, Marco; Bassi Luciani, Lorenzo; Panarese, Alessandro; Micera, Silvestro

    2015-09-01

    The vestibular organs are very important to generate reflexes critical for stabilizing gaze and body posture. Vestibular diseases significantly reduce the quality of life of people who are affected by them. Some research groups have recently started developing vestibular neuroprostheses to mitigate these symptoms. However, many scientific and technological issues need to be addressed to optimise their use in clinical trials. We developed a computational model able to mimic the response of human vestibular nerves and which can be exploited for "in-silico" testing of new strategies to design implantable vestibular prostheses. First, a digital model of the vestibular system was reconstructed from anatomical data. Monopolar stimulation was delivered at different positions and distances from ampullary nerves. The electrical potential induced by the injected current was computed through finite-element methods and drove extra-cellular stimulation of fibers in the vestibular, facial, and cochlear nerves. The electrical activity of vestibular nerves and the resulting eye movements elicited by different stimulation protocols were investigated. A set of electrode configurations was analyzed in terms of selectivity at increasing injected current. Electrode position along the nerve plays a major role in producing undesired activity in other nontargeted nerves, whereas distance from the fiber does not significantly affect selectivity. Indications are provided to minimize misalignment in nonoptimal electrode locations. Eye movements elicited by the different stimulation protocols are calculated and compared to experimental values, for the purpose of model validation. PMID:25751868

  17. Glucagon Release Induced by Pancreatic Nerve Stimulation in the Dog

    PubMed Central

    Marliss, Errol B.; Girardier, Lucien; Seydoux, Josiane; Wollheim, Claes B.; Kanazawa, Yasunori; Orci, Lelio; Renold, Albert E.; Porte, Daniel

    1973-01-01

    A direct neural role in the regulation of immunoreactive glucagon (IRG) secretion has been investigated during stimulation of mixed autonomic nerves to the pancreas in anesthetized dogs. The responses were evaluated by measurement of blood flow and hormone concentration in the venous effluent from the stimulated region of pancreas. Electrical stimulation of the distal end of the discrete bundles of nerve fibers isolated along the superior pancreaticoduodenal artery was invariably followed by an increase in IRG output. With 10-min periods of nerve stimulation, the integrated response showed that the higher the control glucagon output, the greater was the increment. Atropinization did not influence the response to stimulation. That the preparation behaved in physiologic fashion was confirmed by a fall in IRG output, and a rise in immunoreactive insulin (IRI) output, during hyperglycemia induced by intravenous glucose (0.1 g/kg). The kinetics of this glucose effect on IRG showed characteristics opposite to those of nerve stimulation: the lower the control output, the less the decrement. Furthermore, during the control steady state, blood glucose concentration was tightly correlated with the IRI/IRG molar output ratio, the function relating the two parameters being markedly nonlinear. Injection or primed infusion of glucose diminished the IRG response to simultaneous nerve stimulation. Measurement of IRG was inferred to reflect response of pancreatic glucagon secretion on the basis of the site of sample collection (the superior pancreaticoduodenal vein), the absence of changes in arterial IRG, and similar responses being obtained using an antibody specific for pancreatic glucagon. These studies support a role for the autonomic nervous system in the control of glucagon secretion: direct nerve stimulation induces glucagon release. Such sympathetic activation may be interpreted as capable of shifting the sensitivity of the A cell to glucose in the direction of higher

  18. [Implantable nerve stimulation for obstructive sleep apnea hypopnea syndrome].

    PubMed

    Afonso Delgado, Lidia; Micoulaud Franchi, Jean-Arthur; Monteyrol, Pierre-Jean; Philip, Pierre

    2016-02-01

    Obstructive sleep apnea hypopnea syndrome (OSAHS) is a common disorder that has been identified as a contributor to cardiovascular disease making it a major public health problem. Continuous positive airway pressure is the standard treatment but compliance is suboptimal. Mandibular advancement devices and surgery have limited indications, inconstant efficiency and potential irreversible side effects. Stimulation of the hypoglossal nerve, that innervates the genioglossus, a protrusor muscle of the tongue, is now a new treatment option for moderate and severe cases of OSAHS. Two types of stimulation are currently available: stimulation synchronous with inspiration and continuous stimulation. The indication of each type of stimulation and long-term effects still need to be assessed but the implantable nerve stimulation is a promising treatment for patients without a therapy solution so far. PMID:26796478

  19. Diabetic neuropathy increases stimulation threshold during popliteal sciatic nerve block†

    PubMed Central

    Heschl, S.; Hallmann, B.; Zilke, T.; Gemes, G.; Schoerghuber, M.; Auer-Grumbach, M.; Quehenberger, F.; Lirk, P.; Hogan, Q.; Rigaud, M.

    2016-01-01

    Background Peripheral nerve stimulation is commonly used for nerve localization in regional anaesthesia, but recommended stimulation currents of 0.3–0.5 mA do not reliably produce motor activity in the absence of intraneural needle placement. As this may be particularly true in patients with diabetic neuropathy, we examined the stimulation threshold in patients with and without diabetes. Methods Preoperative evaluation included a neurological exam and electroneurography. During ultrasound-guided popliteal sciatic nerve block, we measured the current required to produce motor activity for the tibial and common peroneal nerve in diabetic and non-diabetic patients. Proximity to the nerve was evaluated post-hoc using ultrasound imaging. Results Average stimulation currents did not differ between diabetic (n=55) and non-diabetic patients (n=52). Although the planned number of patients was not reached, the power goal for the mean stimulation current was met. Subjects with diminished pressure perception showed increased thresholds for the common peroneal nerve (median 1.30 vs. 0.57 mA in subjects with normal perception, P=0.042), as did subjects with decreased pain sensation (1.60 vs. 0.50 mA in subjects with normal sensation, P=0.038). Slowed ulnar nerve conduction velocity predicted elevated mean stimulation current (r=−0.35, P=0.002). Finally, 15 diabetic patients required more than 0.5 mA to evoke a motor response, despite intraneural needle placement (n=4), or required currents ≥2 mA despite needle-nerve contact, vs three such patients (1 intraneural, 2 with ≥2 mA) among non-diabetic patients (P=0.003). Conclusions These findings suggest that stimulation thresholds of 0.3–0.5 mA may not reliably determine close needle-nerve contact during popliteal sciatic nerve block, particularly in patients with diabetic neuropathy. Clinical trial registration NCT01488474 PMID:26994231

  20. Centrally administered glucagon stimulates sympathetic nerve activity in rat.

    PubMed

    Krzeski, R; Czyzyk-Krzeska, M F; Trzebski, A; Millhorn, D E

    1989-12-18

    The effect of pancreatic glucagon given intravenously, intracerebroventricularly and microinjected into the nucleus of the solitary tract on sympathetic activity in the cervical trunk and adrenal nerve was examined in rat. In each case glucagon caused a relatively long-lasting substantial increase in discharge of both nerves. This finding shows that glucagon can act centrally to stimulate sympathetic activity. The most probable site for the sympathoexcitatory effect of glucagon is the nucleus of the solitary tract. PMID:2598031

  1. Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation

    PubMed Central

    Patel, Yogi A.

    2015-01-01

    Kilohertz electrical stimulation (KES) has been shown to induce repeatable and reversible nerve conduction block in animal models. In this study, we characterized the ability of KES stimuli to selectively block specific components of stimulated nerve activity using in vivo preparations of the rat sciatic and vagus nerves. KES stimuli in the frequency range of 5–70 kHz and amplitudes of 0.1–3.0 mA were applied. Compound action potentials were evoked using either electrical or sensory stimulation, and block of components was assessed through direct nerve recordings and muscle force measurements. Distinct observable components of the compound action potential had unique conduction block thresholds as a function of frequency of KES. The fast component, which includes motor activity, had a monotonically increasing block threshold as a function of the KES frequency. The slow component, which includes sensory activity, showed a nonmonotonic block threshold relationship with increasing KES frequency. The distinct trends with frequency of the two components enabled selective block of one component with an appropriate choice of frequency and amplitude. These trends in threshold of the two components were similar when studying electrical stimulation and responses of the sciatic nerve, electrical stimulation and responses of the vagus nerve, and sensorimotor stimulation and responses of the sciatic nerve. This differential blocking effect of KES on specific fibers can extend the applications of KES conduction block to selective block and stimulation of neural signals for neuromodulation as well as selective control of neural circuits underlying sensorimotor function. PMID:25878155

  2. Assessment of Neuromuscular Function Using Percutaneous Electrical Nerve Stimulation.

    PubMed

    Rozand, Vianney; Grosprêtre, Sidney; Stapley, Paul J; Lepers, Romuald

    2015-01-01

    Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise. PMID:26436986

  3. Development of VCSELs for optical nerve stimulation

    NASA Astrophysics Data System (ADS)

    Dummer, Matthew; Johnson, Klein; Hibbs-Brenner, Mary; Keller, Matthew; Gong, Tim; Wells, Jonathon; Bendett, Mark

    2011-03-01

    Neural stimulation using infrared optical pulses has numerous potential advantages over traditional electrical stimulation, including improved spatial precision and no stimulation artifact. However, realization of optical stimulation in neural prostheses will require a compact and efficient optical source. One attractive candidate is the vertical cavity surface emitting laser. This paper presents the first report of VCSELs developed specifically for neurostimulation applications. The target emission wavelength is 1860 nm, a favorable wavelength for stimulating neural tissues. Continuous wave operation is achieved at room temperature, with maximum output power of 2.9 mW. The maximum lasing temperature observed is 60° C. Further development is underway to achieve power levels necessary to trigger activation thresholds.

  4. Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording of electric and magnetic fields combined with 3D-MR tomography.

    PubMed

    Buchner, H; Fuchs, M; Wischmann, H A; Dössel, O; Ludwig, I; Knepper, A; Berg, P

    1994-01-01

    At the current state of technology, multichannel simultaneous recording of combined electric potentials and magnetic fields should constitute the most powerful tool for separation and localization of focal brain activity. We performed an explorative study of multichannel simultaneous electric SEPs and magnetically recorded SEFs. MEG only sees tangentially oriented sources, while EEG signals include the entire activity of the brain. These characteristics were found to be very useful in separating multiple sources with overlap of activity in time. The electrically recorded SEPs were adequately modelled by three equivalent dipoles located: (1) in the region of the brainstem, modelling the P14 peak at the scalp, (2) a tangentially oriented dipole, modelling the N20-P20 and N30-P30 peaks, and part of the P45, and (3) a radially oriented dipole, modelling the P22 peak and part of the P45, both located in the region of the somatosensory cortex. Magnetically recorded SEFs were adequately modelled by a single equivalent dipole, modelling the N20-P20 and N30-P30 peaks, located close to the posterior bank of the central sulcus, in area 3b (mean deviation: 3 mm). The tangential sources in the electrical data were located 6 mm on average from the area 3b. MEG and EEG was able to locate the sources of finger stimulated SEFs in accordance with the somatotopic arrangement along the central fissure. A combined analysis demonstrated that MEG can provide constraints to the orientation and location of sources and helps to stabilize the inverse solution in a multiple-source model of the EEG. PMID:7946929

  5. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  6. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  7. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  8. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  9. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  10. Patterning of sympathetic nerve activity in response to vestibular stimulation

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  11. Infrared neural stimulation of human spinal nerve roots in vivo

    PubMed Central

    Cayce, Jonathan M.; Wells, Jonathon D.; Malphrus, Jonathan D.; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B.; Konrad, Peter E.; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2015-01-01

    Abstract. Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients (n=7) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and 1.23  J/cm2. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at 1.09  J/cm2 and a 2∶1 safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans. PMID:26157986

  12. Phrenic Nerve Stimulation for Diaphragm Pacing in a Quadriplegic Patient

    PubMed Central

    Kim, Deog-ryung; Kim, Il-sup; Hong, Jae Taek

    2013-01-01

    Chronic hypoventilation due to injury to the brain stem respiratory center or high cervical cord (above the C3 level) can result in dependence to prolonged mechanical ventilation with tracheostomy, frequent nosocomial pneumonia, and prolonged hospitalization. Diaphragm pacing through electrical stimulation of the phrenic nerve is an established treatment for central hypoventilation syndrome. We performed chronic phrenic nerve stimulation for diaphragm pacing with the spinal cord stimulator for pain control in a quadriplegic patient with central apnea due to complete spinal cord injury at the level of C2 from cervical epidural hematoma. After diaphragmatic pacing, the patient who was completely dependent on the mechanical ventilator could ambulate up to three hours every day without aid of mechanical ventilation during the 12 months of follow-up. Diaphragm pacing through unilateral phrenic nerve stimulation with spinal cord stimulator was feasible in an apneic patient with complete quadriplegia who was completely dependent on mechanical ventilation. Diaphragm pacing with the spinal cord stimulator is feasible and effective for the treatment of the central hypoventilation syndrome. PMID:24294464

  13. 21 CFR 874.1820 - Surgical nerve stimulator/locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Surgical nerve stimulator/locator. 874.1820 Section 874.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1820 Surgical...

  14. 21 CFR 874.1820 - Surgical nerve stimulator/locator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Surgical nerve stimulator/locator. 874.1820 Section 874.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1820 Surgical...

  15. 21 CFR 874.1820 - Surgical nerve stimulator/locator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Surgical nerve stimulator/locator. 874.1820 Section 874.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1820 Surgical...

  16. 21 CFR 874.1820 - Surgical nerve stimulator/locator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Surgical nerve stimulator/locator. 874.1820 Section 874.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1820 Surgical...

  17. 21 CFR 874.1820 - Surgical nerve stimulator/locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical nerve stimulator/locator. 874.1820 Section 874.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1820 Surgical...

  18. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775 Section 868.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral...

  19. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.

    PubMed

    Huang, Jinghui; Zhang, Yongguang; Lu, Lei; Hu, Xueyu; Luo, Zhuojing

    2013-12-01

    The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. PMID:24118464

  20. Magnetically stimulated fluid flow patterns

    ScienceCinema

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  1. Magnetically stimulated fluid flow patterns

    SciTech Connect

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  2. Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve

    PubMed Central

    Wells, Jonathon; Kao, Chris; Konrad, Peter; Milner, Tom; Kim, Jihoon; Mahadevan-Jansen, Anita; Jansen, E. Duco

    2007-01-01

    A new method for in vivo neural activation using low-intensity, pulsed infrared light exhibits advantages over standard electrical means by providing contact-free, spatially selective, artifact-free stimulation. Here we investigate the biophysical mechanism underlying this phenomenon by careful examination of possible photobiological effects after absorption-driven light-tissue interaction. The rat sciatic nerve preparation was stimulated in vivo with a Holmium:yttrium aluminum garnet laser (2.12 μm), free electron laser (2.1 μm), alexandrite laser (750 nm), and prototype solid-state laser nerve stimulator (1.87 μm). We systematically determined relative contributions from a list of plausible interaction types resulting in optical stimulation, including thermal, pressure, electric field, and photochemical effects. Collectively, the results support our hypothesis that direct neural activation with pulsed laser light is induced by a thermal transient. We then present data that characterize and quantify the spatial and temporal nature of this required temperature rise, including a measured surface temperature change required for stimulation of the peripheral nerve (6°C–10°C). This interaction is a photothermal effect from moderate, transient tissue heating, a temporally and spatially mediated temperature gradient at the axon level (3.8°C–6.4°C), resulting in direct or indirect activation of transmembrane ion channels causing action potential generation. PMID:17526565

  3. Toward functional magnetic stimulation (FMS) theory and experiment.

    PubMed

    Davey, K; Luo, L; Ross, D A

    1994-11-01

    This paper examines the use of magnetic fields to functionally stimulate peripheral nerves. All electric fields are induced via a changing magnetic field whose flux is entirely confined within a closed magnetic circuit. Induced electric fields are simulated using a nonlinear boundary element solver. The induced fields are solved using duality theory. The accuracy of these predictions is verified by saline bath experiments. Next, the theory is applied to the stimulation of nerves using small, partially occluded ferrite and laminated vanadium permendur cores. Experiments demonstrate the successful stimulation of peripheral nerves in the African bullfrog with 11 mA, 153 mV excitations. These results offer a new vista of possibilities in the area of functional nerve stimulation. Unlike functional electric stimulation (FES), FMS does not involve any half cell reactions, and thus would not have the commensurate FES restrictions regarding balanced biphasic stimulation, strength duration balances, and oxidation issues, always exercising care that the electrodes remain in the reversible operating regime. PMID:8001991

  4. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an

  5. Mesencephalic stimulation elicits inhibition of phrenic nerve activity in cat.

    PubMed

    Gallman, E A; Lawing, W L; Millhorn, D E

    1991-05-01

    1. Previous work from this laboratory has indicated that the mesencephalon is the anatomical substrate for a mechanism capable of inhibiting central respiratory drive in glomectomized cats for periods of up to 1 h or more following brief exposure to systemic hypoxia; phrenic nerve activity was used as an index of central respiratory drive. 2. The present study was undertaken to further localize the region responsible for the observed post-hypoxic inhibition of respiratory drive. We studied the phrenic nerve response to stimulations of the mesencephalon in anaesthetized, paralysed peripherally chemo-denervated cats with end-expired PCO2 and body temperature servo-controlled. 3. Stimulations of two types were employed. Electrical stimulation allowed rapid determination of sites from which phrenic inhibition could be elicited. Microinjections of excitatory amino acids were used subsequently in order to confine excitation to neuronal cell bodies and not axons of passage. 4. Stimulation of discrete regions of the ventromedial aspect of the mesencephalon in the vicinity of the red nucleus produced substantial inhibition of phrenic activity which lasted up to 45 min. Stimulation of other areas of the mesencephalon either produced no phrenic inhibition or resulted in a slight stimulation of phrenic activity. 5. The results are discussed in the context of the central respiratory response to hypoxia. PMID:1676420

  6. Continuous Femoral Nerve Analgesia after Unilateral Total Knee Arthroplasty: Stimulating versus Non-Stimulating Catheters

    PubMed Central

    Hayek, Salim M.; Ritchey, R. Michael; Sessler, Daniel; Helfand, Robert; Samuel, Samuel; Xu, Meng; Beven, Michael; Bourdakos, Demetrios; Barsoum, Wael; Brooks, Peter

    2006-01-01

    Continuous femoral analgesia provides extended pain relief and improved functional recovery for total knee arthroplasty (TKA). Successful continuous peripheral nerve analgesia depends on the catheter proximity to the target nerve. If the catheter is not close to the nerve, high infusion rates may be required to provide analgesia or analgesia may be sub-optimal. Stimulating catheters may allow more accurate placement of catheters in close proximity to the nerve. This randomized prospective study examined the use stimulating catheters versus non-stimulating catheters in 41 patients undergoing TKA. All patients had intravenous patient controlled anesthesia (IVPCA) for supplementary pain relief. The principal aim of the trial was to examine whether the use of a stimulating catheter allowed the use of lesser amounts of local anesthetics than a non-stimulating catheter. Additional parameters examined included post-operative pain scores, opioid use, side effects and acute functional orthopedic outcomes. Analgesia was good in both groups, but there were no statistically significant differences in the amount of ropivacaine administered; the median amount of ropivacaine given to patients in the stimulating catheter group was 8.2 ml/h vs. 8.8 ml/h for patients with non-stimulating catheters, P = 0.26 (median difference -0.6; 95% confidence interval, -2.3 to 0.6). No significant differences between the treatment groups were noted for the amount of fentanyl dispensed by the IVPCA, numeric pain rating scale scores, acute functional orthopedic outcomes, side effects or amounts of oral opioids consumed. Implications: For total knee arthroplasty, there seems to be no significant advantage for the use of stimulating catheters over traditional non-stimulating catheters in continuous femoral nerve blocks. PMID:17122240

  7. A charge-balanced pulse generator for nerve stimulation applications.

    PubMed

    Gwilliam, James Christian; Horch, Kenneth

    2008-02-15

    Nerve stimulation typically employs charge-balanced current injection with a delay between the cathodal and anodal phases. Typically these waveforms are produced using a microprocessor. However, once appropriate stimulus parameters are chosen, they tend to remain fixed within an application, making computational power unnecessary. In such cases, it would be advantageous to replace the microprocessor with integrated circuitry and hardware controls for maintaining fixed pulse parameters. We describe here an architecture that generates controllable charge-balanced pulses but requires no computer processing components. The circuitry has been engineered such that minimum size and power consumption can be achieved when fabricated into an IC chip, making it ideal for many long term, portable nerve stimulation devices and applications. PMID:17950907

  8. Vagus nerve stimulation in neuropsychiatry: Targeting anatomy-based stimulation sites.

    PubMed

    Trevizol, Alisson; Barros, Mirna Duarte; Liquidato, Bianca; Cordeiro, Quirino; Shiozawa, Pedro

    2015-10-01

    The vagus nerve (VN) is the longest cranial nerve, extending from the brain to the abdominal cavity. The VN consists of both afferent and efferent fibers (respectively 80% and 20%). Vagus nerve stimulation (VNS) is a neuromodulation strategy first developed in the 1980s for epilepsy. More recently, growing efforts in clinical research have been underscoring possible clinical benefits of VNS for different medical conditions such as epilepsy, major depression, anxiety disorders, and Tourette syndrome. Following the rational of VN anatomy and cranial innervation presented above, we hereby hypothesize that transcutaneously placing electrodes over the mastoid process could be a useful study protocol for future tVNS trials. PMID:26262931

  9. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    NASA Astrophysics Data System (ADS)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  10. ["Dual Guidance"?- Parallel combination of ultrasound-guidance and nerve stimulation - Pro].

    PubMed

    Neuburger, Michael

    2015-07-01

    Combination of ultrasound and nerve stimulation technique could be useful under several conditions. Nerve stimulation canvarify the position of the nerve in case of bad preconditions during ultrasound. The knowledge of the importance of low and critical threshold currents could help to identify the needle tip. Thus the combination of ultrasound and nerve stimulation could lead to reduced unintentional intraneural injections and may result in a higher safety standard in peripheral regional anesthesia. PMID:26230888

  11. Giant early components of somatosensory evoked potentials to tibial nerve stimulation in cortical myoclonus.

    PubMed

    Anzellotti, Francesca; Onofrj, Marco; Bonanni, Laura; Saracino, Antonio; Franciotti, Raffaella

    2016-01-01

    Enlarged cortical components of somatosensory evoked potentials (giant SEPs) recorded by electroencephalography (EEG) and abnormal somatosensory evoked magnetic fields (SEFs) recorded by magnetoencephalography (MEG) are observed in the majority of patients with cortical myoclonus (CM). Studies on simultaneous recordings of SEPs and SEFs showed that generator mechanism of giant SEPs involves both primary sensory and motor cortices. However the generator sources of giant SEPs have not been fully understood as only one report describes clearly giant SEPs following lower limb stimulation. In our study we performed a combined EEG-MEG recording on responses elicited by electric median and tibial nerve stimulation in a patient who developed consequently to methyl bromide intoxication CM with giant SEPs to median and tibial nerve stimuli. SEPs wave shapes were identified on the basis of polarity-latency components (e.g. P15-N20-P25) as defined by earlier studies and guidelines. At EEG recording, the SEP giant component did not appear in the latency range of the first cortical component for median nerve SEP (N20), but appeared instead in the range of the P37 tibial nerve SEP, which is currently identified as the first cortical component elicited by tibial nerve stimuli. Our MEG and EEG SEPs recordings also showed that components in the latency range of P37 were preceded by other cortical components. These findings suggest that lower limb P37 does not correspond to upper limb N20. MEG results confirmed that giant SEFs are the second component from both tibial (N43m-P43m) and median (N27m-P27m) nerve stimulation. MEG dipolar sources of these giant components were located in the primary sensory and motor area. PMID:27489768

  12. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  13. Hypothalamic stimulation and baroceptor reflex interaction on renal nerve activity.

    NASA Technical Reports Server (NTRS)

    Wilson, M. F.; Ninomiya, I.; Franz, G. N.; Judy, W. V.

    1971-01-01

    The basal level of mean renal nerve activity (MRNA-0) measured in anesthetized cats was found to be modified by the additive interaction of hypothalamic and baroceptor reflex influences. Data were collected with the four major baroceptor nerves either intact or cut, and with mean aortic pressure (MAP) either clamped with a reservoir or raised with l-epinephrine. With intact baroceptor nerves, MRNA stayed essentially constant at level MRNA-0 for MAP below an initial pressure P1, and fell approximately linearly to zero as MAP was raised to P2. Cutting the baroceptor nerves kept MRNA at MRNA-0 (assumed to represent basal central neural output) independent of MAP. The addition of hypothalamic stimulation produced nearly constant increments in MRNA for all pressure levels up to P2, with complete inhibition at some level above P2. The increments in MRNA depended on frequency and location of the stimulus. A piecewise linear model describes MRNA as a linear combination of hypothalamic, basal central neural, and baroceptor reflex activity.

  14. Vagus nerve stimulation therapy in partial epilepsy: a review.

    PubMed

    Panebianco, Mariangela; Zavanone, Chiara; Dupont, Sophie; Restivo, Domenico A; Pavone, Antonino

    2016-09-01

    Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked epileptic seizures. The majority of people given a diagnosis of epilepsy have a good prognosis, but 20-30 % will develop drug-resistant epilepsy. Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with medically refractory epilepsy. It consists of chronic intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator (Neuro-Cybernetic Prosthesis). In 1997, the Food and Drug Administration approved VNS as adjunctive treatment for medically refractory partial-onset seizures in adults and adolescents. This article reviews the literature from 1988 to nowadays. We discuss thoroughly the anatomy and physiology of vagus nerve and the potential mechanisms of actions and clinical applications involved in VNS therapy, as well as the management, safety, tolerability and effectiveness of VNS therapy. VNS for partial seizures appears to be an effective and well tolerated treatment in adult and pediatric patients. People noted improvements in feelings of well-being, alertness, memory and thinking skills, as well as mood. The adverse effect profile is substantially different from the adverse effect profile associated with antiepileptic drugs, making VNS a potential alternative for patients with difficulty tolerating antiepileptic drug adverse effects. Despite the passing years and the advent of promising neuromodulation technologies, VNS remains an efficacy treatment for people with medically refractory epilepsy. Past and ongoing investigations in other indications have provided signals of the therapeutic potential in a wide variety of conditions. PMID:26908034

  15. Cerebral blood flow changes during vagus nerve stimulation for depression.

    PubMed

    Conway, Charles R; Sheline, Yvette I; Chibnall, John T; George, Mark S; Fletcher, James W; Mintun, Mark A

    2006-03-31

    Positron emission tomography (PET oxygen-15 labeled water or PET [15O]H2O) was used to identify changes in regional cerebral blood flow (rCBF) in response to acute vagus nerve stimulation (VNS) in four subjects with treatment-resistant major depression (TRMD). Four 90-s PET [15O]H2O scans were performed on each subject in an off-on sequence (2 VNS de-activated; 2 VNS activated). PET images were aligned, normalized for global uptake, and resampled to standard atlas space. Statistical t-images were used to evaluate change. VNS-induced increases in rCBF were found in the bilateral orbitofrontal cortex, bilateral anterior cingulate cortex, and right superior and medial frontal cortex. Decreases were found in the bilateral temporal cortex and right parietal area. Regions of change were consistent with brain structures associated with depression and the afferent pathways of the vagus nerve. PMID:16510266

  16. Inspiratory flow dynamics during phrenic nerve stimulation in awake normals during nasal breathing.

    PubMed

    Sériès, F; Demoule, A; Marc, I; Sanfaçon, C; Derenne, J P; Similowski, T

    1999-08-01

    The loss of upper airway (UA) dilators preactivation before inspiratory muscle contraction is an important determinant of the pathophysiology of obstructive sleep apnea. We hypothetized that phrenic nerve stimulation could provide a practical way to explore the effects of the dissociation between UA dilators and inspiratory muscles, and possibly to determine UA critical closing pressure during wakefulness. The pattern of inspiratory airflow was therefore studied in normal awake subjects during diaphragm twitches induced by either electrical phrenic stimulation (ES) or cervical magnetic stimulation (CMS) (n = 9) and with and without a nasal stent during ES (n = 7). End-expiratory stimulations applied during exclusive nasal breathing induced 200 to 300 ms twitch inspiratory flow. The average maximal twitch flow of flow-limited twitches was higher during CMS than ES (1.18 +/- 0.29 L. PMID:10430737

  17. Cortical Brain Mapping of Peripheral Nerves Using Functional Magnetic Resonance Imaging in a Rodent Model

    PubMed Central

    Cho, Younghoon R.; Jones, Seth R.; Pawela, Christopher P.; Li, Rupeng; Kao, Dennis S.; Schulte, Marie L.; Runquist, Matthew L.; Yan, Ji-Geng; Hudetz, Anthony G.; Jaradeh, Safwan S.; Hyde, James S.; Matloub, Hani S.

    2008-01-01

    The regions of the body have cortical and subcortical representation in proportion to their degree of innervation. The rat forepaw has been studied extensively in recent years using functional magnetic resonance imaging (fMRI)—typically by stimulation using electrodes directly inserted into the skin of the forepaw. Here, we stimulate using surgically implanted electrodes. A major distinction is that stimulation of the skin of the forepaw is mostly sensory, whereas direct nerve stimulation reveals not only the sensory system but also deep brain structures associated with motor activity. In this paper, we seek to define both the motor and sensory cortical and subcortical representations associated with the four major nerves of the rodent upper extremity. We electrically stimulated each nerve (median, ulnar, radial, and musculocutaneous) during fMRI acquisition using a 9.4T Bruker scanner. A current level of 0.5-1.0 mA and a frequency of 5 Hz were used while keeping the duration constant. A distinct pattern of cortical activation was found for each nerve that can be correlated with known sensorimotor afferent and efferent pathways to the rat forepaw. This direct nerve stimulation rat model can provide insight into peripheral nerve injury. PMID:18924070

  18. Stimulation of the medial plantar nerve for complex regional pain syndrome.

    PubMed

    Mobbs, Ralph J; Lazarro, Amanda

    2010-11-01

    We describe a 47-year old male with complex regional pain syndrome II in the distribution of the medial plantar nerve following metatarsal fracture, which was treated with peripheral nerve stimulation. Using a new technique of nerve stimulation with a percutaneous-type electrode, the patient experienced sustained relief at 12 months follow-up. To our knowledge, this is the first report of peripheral neurostimulation effectively managing pain for the medial plantar nerve. PMID:20708936

  19. Magnetic resonance imaging of the optic nerves and chiasm

    SciTech Connect

    Daniels, D.L.; Herfkins, R.; Gager, W.E.; Meyer, G.A.; Koehler, P.R.; Williams, A.L.; Haughton, V.M.

    1984-07-01

    Magnetic resonance imaging (MR) of the optic nerves and chiasm was compared with computed tomography (CT) in 4 healthy volunteers, 4 patients without orbital or chiasmal abnormalities, and 4 patients with tumor (anterior clinoid meningioma in 2, optic nerve glioma in 1, and optic nerve sheath meningioma in 1). MR was found to be effective in demonstrating the optic nerves and related structures, particularly the intracanalicular portion of the nerve which is difficult to see with CT. Best results were achieved with partial saturation recovery (SR) images. As axial views cannot always distinguish the ethmoid sinus tissue from the optic nerve, it may be necessary to employ both axial and coronal images.

  20. Multielectrode nerve cuff stimulation of the median nerve produces selective movements in a raccoon animal model.

    PubMed

    Walter, J S; Griffith, P; Sweeney, J; Scarpine, V; Bidnar, M; McLane, J; Robinson, C

    1997-04-01

    In this study, an electrode system consisting of twelve small platinum dot electrodes imbedded in a spiral silicone rubber insulating cuff was used to investigate the feasibility of selective (regional) stimulation of the median nerves of the raccoon. Acute experiments in four raccoons consisted of functional responses observations, isometric force recordings from tendon attachments and postmortem fascicular mapping. Functional responses (elbow, wrist and/or digit flexion, pronation and/or thumb abduction) to selective stimulation were noted as dependent upon cuff electrode configuration (longitudinal tripole with and without field steering, as well as a transverse bipolar arrangement) and current level (threshold, 1/2 maximal, maximal). Muscle force recruitment curves (force as a function of stimulus amplitude) were plotted for flexor digitorum superficialis, flexor digitorum profundus, flexor carpi radialis, palmaris longus and pronator teres of three raccoons. Fascicular maps at the level of the nerve cuff were created indicating the approximate position of innervation to each of the aforementioned muscles, as well as other innervation such as paw fascicles, sensory fascicles, and elbow innervation (such as coracobrachialis). The greatest selectivity was observed at or near threshold current levels. In all four raccoons studied, a threshold electrode choice and stimulation strategy could be identified enabling selective production of either digit flexion, wrist flexion and/or digit and wrist flexion. It was possible to elicit a selective pronation response at threshold in three of the four animals. Selective elbow flexion at threshold could be produced in all four experiments. With stronger currents, additional movements were usually induced. The raccoon therefore appears to be a suitable, if challenging, animal model for further development of not only nerve cuff electrode approaches but perhaps other stimulation electrode technologies prior to human

  1. Continuous-wave infrared optical nerve stimulation for potential diagnostic applications

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-09-01

    Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  2. Continuous-wave vs. pulsed infrared laser stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2011-03-01

    Optical nerve stimulation has recently been developed as an alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuouswave (CW) infrared laser radiation, for potential diagnostic applications. A Thulium fiber laser (λ = 1870 nm) was used for non-contact optical stimulation of the rat prostate cavernous nerves, in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in either CW mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation was observed to be primarily dependent on a threshold nerve temperature (42-45 °C), not an incident fluence, as previously reported. CW optical nerve stimulation provides a significantly faster ICP response time using a laser with lower power output than pulsed stimulation. CW optical nerve stimulation may therefore represent an alternative mode of stimulation for intra-operative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  3. Identification of the motor laryngeal nerves - a new electrical stimulation technique.

    PubMed

    Spahn, J G; Bizal, J; Ferguson, S; Lingeman, R E

    1981-11-01

    Head and neck surgeons are familiar with the technique of identifying motor nerves in the head and neck region by using electrical stimulation especially in the identification of the facial and the spinal accessory nerves. The identification of the motor laryngeal nerves by electrical stimulation intra-operatively has been described; but, the difficulty of visualization of intrinsic laryngeal muscle movement has prevented the wide spread use of this technique. This paper will introduce a simple, safe and reliable method to allow the surgeon to recognize true vocal cord movement while stimulating the recurrent laryngeal nerve. The movement of a two inch 27 gauge needle placed through the cricothyroid membrane into the ipsilateral true vocal cord permits identification of intrinsic laryngeal muscle movement during electrical stimulation of the recurrent laryngeal nerve. This method has been successfully used in confirming conductivity of the laryngeal nerve during thyroid surgery, Zenker's diverticulum surgery, cricotracheal trauma and recurrent nerve neurectomy for spasmodic dysphonia. PMID:7300536

  4. Prolonged electrical stimulation causes no damage to sacral nerve roots in rabbits

    PubMed Central

    Yan, Peng; Yang, Xiaohong; Yang, Xiaoyu; Zheng, Weidong; Tan, Yunbing

    2014-01-01

    Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root remains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9–10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimulation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation. PMID:25206785

  5. Right Median Nerve Electrical Stimulation for Acute Traumatic Coma Patients.

    PubMed

    Lei, Jin; Wang, Lei; Gao, Guoyi; Cooper, Edwin; Jiang, Jiyao

    2015-10-15

    The right median nerve as a peripheral portal to the central nervous system can be electrically stimulated to help coma arousal after traumatic brain injury (TBI). The present study set out to examine the efficacy and safety of right median nerve electrical stimulation (RMNS) in a cohort of 437 comatose patients after severe TBI from August 2005 to December 2011. The patients were enrolled 2 weeks after their injury and assigned to the RMNS group (n=221) receiving electrical stimulation for 2 weeks or the control group (n = 216) treated by standard management according to the date of birth in the month. The baseline data were similar. After the 2-week treatment, the RMNS-treated patients demonstrated a more rapid increase of the mean Glasgow Coma Score, although statistical significance was not reached (8.43 ± 4.98 vs. 7.47 ± 5.37, p = 0.0532). The follow-up data at 6-month post-injury showed a significantly higher proportion of patients who regained consciousness (59.8% vs. 46.2%, p = 0.0073). There was a lower proportion of vegetative persons in the RMNS group than in the control group (17.6% vs. 22.0%, p = 0.0012). For persons regaining consciousness, the functional independence measurement (FIM) score was higher among the RMNS group patients (91.45 ± 8.65 vs. 76.23 ± 11.02, p < 0.001). There were no unique complications associated with the RMNS treatment. The current study, although with some limitations, showed that RMNS may serve as an easy, effective, and noninvasive technique to promote the recovery of traumatic coma in the early phase. PMID:25664378

  6. Assessment of upper airway dynamics in awake patients with sleep apnea using phrenic nerve stimulation.

    PubMed

    Sériès, F; Straus, C; Demoule, A; Attali, V; Arnulf, I; Derenne, J P; Similowski, T

    2000-09-01

    Phrenic nerve stimulation can reproduce during wakefulness the dissociation between upper airway and inspiratory muscles that is associated with obstructive sleep-related breathing disorders. This could provide a useful management tool in the study of passive upper airway (UA) dynamics during wakefulness in patients with the obstructive sleep apnea-hypopnea syndrome (OSAHS). To assess the feasibility of the technique in this setting, we studied the dynamics of diaphragm twitch-associated inspiratory flow in eight patients with OSAHS. Cervical magnetic stimulation (CMS) and bilateral anterior magnetic phrenic stimulation (BAMPS) were applied at end-expiration during exclusive nasal breathing. Electrical phrenic nerve stimulation (ES) proved not feasible. The driving pressure and the respiratory resistance at peak twitch esophageal pressure obtained at maximal stimulation intensity were significantly higher with BAMPS than with CMS. A twitch-flow limitation pattern was observed in seven of eight subjects; VI(max) values of flow-limited twitches obtained at 100% stimulation intensity was 0.81 +/- 0.5 L/s with BAMPS and 0.87 +/- 0.5 L/s with CMS (p = 0.4). The number of flow-limited BAMPS twitches dropped from an average 77.5% to 18.4% with nasal continuous positive airway pressure (CPAP) levels corresponding to the patient's home treatment. We conclude that (1) BAMPS is potentially a useful tool to evaluate the dynamics of flow through the passive UA in awake OSAHS patients, (2) BAMPS may be superior to CMS in evaluating UA properties in OSAHS. PMID:10988085

  7. Effects of sciatic nerve stimulation on the propagation of cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Yu, Zhidong; Zeng, Shaoqun; Luo, Qingming; Li, Pengcheng

    2008-02-01

    Cortical spreading depression (CSD) is an important pathological model of migraine and is related to other neural disorders, such as cerebral ischemia and epilepsy. It has been reported that brain stimulation is a quite effective way to treat neural diseases. However, direct stimulation could cause harm to brain. If peripheral nerve stimulation could have the same treatment, it would be essential to investigate the mechanisms of peripheral nerve and the study of sciatic nerve stimulation would have profound clinical meaning. In this paper, we used optical intrinsic signal imaging (OISI) and extracellular electrophysiologic recording techniques to study the effects of sciatic nerve stimulation on the propagation of CSD. We found that: (1) continuous sciatic nerve stimulation on rats caused a decrease in light intensity on the whole cortex, which meant an increase in cerebral blood volume(CBV); (2) the spreading velocity of CSD declined from 3.63+/- 0.272 mm/min to 3.06+/-0.260 mm/min during sciatic nerve stimulation, compared with that without sciatic nerve stimulation. In summary, data suggests that sciatic nerve stimulation elicits a response of cortex and causes a slowdown in the propagation of CSD.

  8. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    PubMed

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102

  9. Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve

    PubMed Central

    Fisher, L E; Tyler, D J; Anderson, J S; Triolo, R J

    2010-01-01

    This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 ± 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 Nm. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 Nm in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications. PMID:19602729

  10. Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve

    NASA Astrophysics Data System (ADS)

    Fisher, L. E.; Tyler, D. J.; Anderson, J. S.; Triolo, R. J.

    2009-08-01

    This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 ± 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 N m. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 N m in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications.

  11. Electrical stimulation vs. pulsed and continuous-wave optical stimulation of the rat prostate cavernous nerves, in vivo

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.

    2015-07-01

    Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.

  12. Transcutaneous electrical nerve stimulation for chronic post-herpetic neuralgia.

    PubMed

    Ing, Malcolm R; Hellreich, Philip D; Johnson, Douglas W; Chen, John J

    2015-04-01

    Postherpetic neuralgia remains a therapeutic challenge for the clinician. Many modalities have been utilized with limited success. In this pilot randomized study of patients who were refractory to previous medicinal treatment, the patients were treated with transcutaneous nerve stimulation with a biofeedback capability. After every two treatments with the sham and true device, the patients were required to fill out a standard neuropathic pain scale score. The patients were allowed to select the other device after three consecutive treatments if they felt an inadequate decrease in their pain. The true device was chosen over the sham device by all patients. The majority of these patients treated by the true device reported a statistically significant decrease in pain scores (P < 0.001). Further investigation of this Food and Drug Administration, class 2 accepted, electronic device for relief of pain is warranted for patients with a history of recalcitrant postherpetic neuralgia. PMID:25600258

  13. Deqi Sensations of Transcutaneous Electrical Nerve Stimulation on Auricular Points

    PubMed Central

    Wang, Xiaoling; Fang, Jiliang; Zhao, Qing; Fan, Yangyang; Liu, Jun; Hong, Yang; Wang, Honghong; Ma, Yunyao; Xu, Chunhua; Shi, Shan; Kong, Jian; Rong, Peijing

    2013-01-01

    Deqi sensation, a psychophysical response characterized by a spectrum of different needling sensations, is essential for Chinese acupuncture clinical efficacy. Previous research works have investigated the component of Deqi response upon acupuncture on acupoints on the trunk and limbs. However, the characteristics of Deqi sensations of transcutaneous electrical nerve stimulation (TENS) on auricular points are seldom reported. In this study, we investigated the individual components of Deqi during TENS on auricular concha area and the superior scapha using quantitative measurements in the healthy subjects and depression patients. The most striking characteristics of Deqi sensations upon TENS on auricular points were tingling, numbness, and fullness. The frequencies of pressure, warmness, heaviness, and soreness were relatively lower. The dull pain and coolness are rare. The characteristics of Deqi were similar for the TENS on concha and on the superior scapha. PMID:23935663

  14. System identification of mechanomyogram evoked by common peroneal nerve stimulation.

    PubMed

    Higuchi, Tatsuya; Yamaguchi, Takumasa; Uchiyama, Takanori

    2008-01-01

    In the quantitative assessment of a system, a description of the low-order transfer function model is important. The objective of this study was to identify the system of a mechanomyogram (MMG) with SubSpace-based State Space model IDentification (4SID). The input data consisted of the electrical stimulation of the common peroneal nerve, which made the anterior tibial muscle contract. The output data consisted of the evoked MMG. We applied Fourier transform to the MMG signal and obtained a power spectrum. The 10th-order model was estimated by the 4SID method. It was suggested that the frequency band separation of the power spectrum reflected the types of recruited muscle fiber. The results suggest that the MMG is a linear system which can be estimated in the lower-order transfer function model by applying the 4SID to each frequency band. PMID:19162658

  15. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review

    PubMed Central

    Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara

    2014-01-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS. PMID:25674327

  16. Supratrochlear and Supraorbital Nerve Stimulation for Chronic Headache: a Review.

    PubMed

    Goldberg, Stephanie Wrobel; Nahas, Stephanie J

    2015-07-01

    Chronic daily headache accounts for a significant socioeconomic burden due to decreased productivity, work absenteeism, multiple office and ER visits, and hospital admissions for pain control. Associated comorbidities add to this cost. Current traditional medical therapies may fail to provide adequate relief leading to the search for and use of other therapeutic modalities such as innovative medical devices. It is in this setting of the urgent demand for better pain control and to assimilate chronic headache sufferers back into society that a variety of neuromodulatory approaches have been emerging. This review aims to familiarize the reader with current literature regarding supraorbital and supratrochlear nerve stimulation for chronic headache, point out the advantages of this approach, address unanswered questions about this subject, and highlight future directions. PMID:26049769

  17. Sphenopalatine ganglion electrical nerve stimulation implant for intractable facial pain.

    PubMed

    Elahi, Foad; Reddy, Chandan G

    2015-01-01

    Persistent idiopathic facial pain can be extremely difficult and significantly challenging to manage for the patient and the clinician. Pharmacological treatment of these painful conditions is not always successful. It has been suggested that the autonomic reflex plays an important role in the pathophysiology of headaches and facial neuralgia. The key structure in the expression of cranial autonomic symptoms is the sphenopalatine ganglion (SPG), also known as the pterygopalatine ganglion. The role of the SPG in the pathophysiology of headaches and facial pain has become clearer in the past decade. In this case report, we describe a 30 year-old woman with insidious onset of right facial pain. She was suffering from daily pain for more than 9 years prior to her visit at the pain clinic. Her pain was constant with episodic aggravation without a predisposing trigger factor. The patient was evaluated by multiple different specialties and tried multimodal therapy, which included antiepileptic medications, with minimal pain relief. A SPG block using short-acting local anesthetic provided significant temporary pain relief. The second and third attempt of SPG block using different local anesthetic medications demonstrated the same responses. After a thorough psychological assessment and ruling out the presence of a correctable cause for the pain, we decided to proceed with SPG electrical neuromodulation. The patient reported significant pain relief during the electrical nerve stimulation trial. The patient underwent a permanent implant of the neurostimulation electrode in the SPG region. The patient was successfully taken off opioid medication and her pain was dramatically responsive during a 6 month follow-up visit. In this article we describe the SPG nerve stimulation and the technical aspect of pterygopalatine fossa electrode placement. The pterygoplatine fossa is an easily accessible location. This case report will be encouraging for physicians treating intractable

  18. Combined Spinal Cord Stimulation and Peripheral Nerve Stimulation for Brachial Plexopathy: A Case Report.

    PubMed

    Choi, Ji Hye; Choi, Shu Chung; Kim, Dong Kyu; Sung, Choon Ho; Chon, Jin Young; Hong, Sung Jin; Lee, Ji Young; Moon, Ho Sik

    2016-03-01

    Brachial plexopathy usually results from an iatrogenic brachial plexus injury and can sometimes cause severe chronic pain and disability. There are a number of possible treatments for this condition, including medication, physical therapy, nerve blocks, and neuromodulation, but they are not always successful. Recently, combined spinal cord stimulation (SCS) and peripheral nerve stimulation (PNS) have been tried for various chronic pain diseases because of their different mechanisms of action.Here, we describe the case of a 54-year-old man who was diagnosed with brachial plexopathy 8 years ago. He underwent video-assisted thoracoscopic surgery to remove a superior mediastinal mass. However, his brachial plexus was damaged during the surgery. Although he had received various treatments, the pain did not improve. For the management of intractable severe pain, he underwent SCS 2 years ago, which initially reduced his pain from numeric rating scale (NRS) 10/10 to NRS 4 - 5/10, but the pain then gradually increased, reaching NRS 8/10, 6 months ago. At that time, he was refractory to other treatments, and we therefore applied PNS in combination with SCS. The PNS electrode was positioned on the radial nerve under ultrasound guidance. After combined PNS and SCS, his background pain disappeared, although a breakthrough pain (NRS 3 - 4/10) was caused intermittently by light touch. Furthermore, the patient's need for analgesics decreased, and he was satisfied with the outcome of this combined treatment. We concluded that combined SCS and PNS is a very useful treatment modality, which can stimulate the target nerve both directly and indirectly, and hence, relieve pain from brachial plexopathy. PMID:27008302

  19. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Special payment rules for transcutaneous electrical nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... § 414.232 Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a)...

  20. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  1. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  2. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  3. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  4. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... § 414.232 Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a...

  5. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis...

  6. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Surgical Dressings § 414.232 Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS...

  7. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis...

  8. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pain relief. 882.5890 Section 882.5890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current...

  9. Stimulation Stability and Selectivity of Chronically Implanted Multicontact Nerve Cuff Electrodes in the Human Upper Extremity

    PubMed Central

    Polasek, Katharine H.; Hoyen, Harry A.; Keith, Michael W.; Kirsch, Robert F.; Tyler, Dustin J.

    2010-01-01

    Nine spiral nerve cuff electrodes were implanted in two human subjects for up to three years with no adverse functional effects. The objective of this study was to look at the long term nerve and muscle response to stimulation through nerve cuff electrodes. The nerve conduction velocity remained within the clinically accepted range for the entire testing period. The stimulation thresholds stabilized after approximately 20 weeks. The variability in the activation over time was not different from muscle-based electrodes used in implanted functional electrical stimulation systems. Three electrodes had multiple, independent contacts to evaluate selective recruitment of muscles. A single muscle could be selectively activated from each electrode using single-contact stimulation and the selectivity was increased with the use of field steering techniques. The selectivity after three years was consistent with selectivity measured during the implant surgery. Nerve cuff electrodes are effective for chronic muscle activation and multichannel functional electrical stimulation in humans. PMID:19775987

  10. Bridging peripheral nerves using a deacetyl chitin conduit combined with short-term electrical stimulation.

    PubMed

    Zhang, Zhongli; Li, Xin; Zuo, Songjie; Xin, Jie; Zhang, Peixun

    2014-05-15

    Previous studies have demonstrated that deacetyl chitin conduit nerve bridging or electrical stimulation can effectively promote the regeneration of the injured peripheral nerve. We hypothesized that the combination of these two approaches could result in enhanced regeneration. Rats with right sciatic nerve injury were subjected to deacetyl chitin conduit bridging combined with electrical stimulation (0.1 ms, 3 V, 20 Hz, for 1 hour). At 6 and 12 weeks after treatment, nerve conduction velocity, myelinated axon number, fiber diameter, axon diameter and the thickness of the myelin sheath in the stimulation group were better than in the non-stimulation group. The results indicate that deacetyl chitin conduit bridging combined with temporary electrical stimulation can promote peripheral nerve repair. PMID:25206762

  11. Artifacts produced during electrical stimulation of the vestibular nerve in cats. [autonomic nervous system components of motion sickness

    NASA Technical Reports Server (NTRS)

    Tang, P. C.

    1973-01-01

    Evidence is presented to indicate that evoked potentials in the recurrent laryngeal, the cervical sympathetic, and the phrenic nerve, commonly reported as being elicited by vestibular nerve stimulation, may be due to stimulation of structures other than the vestibular nerve. Experiments carried out in decerebrated cats indicated that stimulation of the petrous bone and not that of the vestibular nerve is responsible for the genesis of evoked potentials in the recurrent laryngeal and the cervical sympathetic nerves. The phrenic response to electrical stimulation applied through bipolar straight electrodes appears to be the result of stimulation of the facial nerve in the facial canal by current spread along the petrous bone, since stimulation of the suspended facial nerve evoked potentials only in the phrenic nerve and not in the recurrent laryngeal nerve. These findings indicate that autonomic components of motion sickness represent the secondary reactions and not the primary responses to vestibular stimulation.

  12. Electrically induced blink reflex and facial motor nerve stimulation in beagles.

    PubMed

    Añor, S; Espadaler, J M; Pastor, J; Pumarola, M

    2000-01-01

    Electrophysiologic assessment of the blink reflex test and the muscle-evoked potentials evoked by stimulation of the facial nerve were performed in 15 healthy adult Beagles before and after supraorbital (trigeminal) and facial anesthetic nerve blocks performed by lidocaine injections. Unilateral electrical stimulation of the supraorbital nerve elicited 2 ipsilateral (R1 and R2) and a contralateral (Rc) reflex muscle potential in orbicularis oculi muscles. Electrical stimulation of the facial nerve elicited 2 muscle potentials (a direct response [D] and a reflex faciofacial response [RF]) in the ipsilateral orbicularis oculi muscle. Anesthetic block of the left supraorbital nerve resulted in bilateral lack of responses upon left supraorbital nerve stimulation, but normal responses in right and left orbicularis oculi muscles upon right supraorbital stimulation. Right facial anesthetic block produced lack of responses in the right orbicularis oculi muscle regardless the side of supraorbital nerve stimulation. Results of this study demonstrate that the blink reflex can be electrically elicited and assessed in dogs. Reference values for the blink reflex responses and for the muscle potentials evoked by direct facial nerve stimulation in dogs are provided. The potential usefulness of the electrically elicited blink reflex test in the diagnosis of peripheral facial and trigeminal dysfunction in dogs was demonstrated. PMID:10935892

  13. Electrical nerve stimulation method for intraoperative localization of the inferior alveolar nerve within the mandible: a pilot study in rabbits.

    PubMed

    Kuyumcu, F; Erdogan, Ö; Güçlü, B

    2015-11-01

    The efficacy of the electrical nerve stimulation method for localizing the inferior alveolar nerve (IAN) within the mandibular bone was evaluated. Six New Zealand rabbits were used (both sides of the mandible). The IAN was stimulated through the mandibular bone and compound action potentials (CAPs) were recorded proximally from the main trunk of the nerve. Stimulation current pulse widths were set at 0.05, 0.1, 0.3, 0.5, and 1ms. The minimum current magnitude that generated a CAP with a criterion level (300mV peak-to-peak amplitude) was measured in the range of 0.05-5mA. Correlations between the distance of the IAN from the active electrode site and the minimum current magnitudes were studied for each pulse width. The correlation coefficients were 0.678, 0.807, 0.893, 0.851, and 0.890 for the pulse widths of 0.05, 0.1, 0.3, 0.5, and 1ms, respectively. The minimum current producing the criterion CAP response in the IAN was significantly (P<0.0001 for all pulse widths) and highly correlated with the distance between the stimulation site and the nerve. The results suggest that electrical nerve stimulation is a promising method that can be used for the localization of the IAN, especially during mandibular implant surgery. PMID:26116064

  14. Intractable sacroiliac joint pain treated with peripheral nerve field stimulation

    PubMed Central

    Chakrabortty, Shushovan; Kumar, Sanjeev; Gupta, Deepak; Rudraraju, Sruthi

    2016-01-01

    As many as 62% low back pain patients can have sacroiliac joint (SIJ) pain. There is limited (to poor) evidence in regards to long-term pain relief with therapeutic intra-articular injections and/or conventional (heat or pulsed) radiofrequency ablations (RFAs) for SIJ pain. We report our pain-clinic experience with peripheral nerve field stimulation (PNFS) for two patients of intractable SIJ pain. They had reported absence of long-term pain relief (pain relief >50% for at least 2 weeks postinjection and at least 3 months post-RFA) with SIJ injections and SIJ RFAs. Two parallel permanent 8-contact subcutaneous stimulating leads were implanted under the skin overlying their painful SIJ. Adequate stimulation in the entire painful area was confirmed. For implantable pulse generator placement, a separate subcutaneous pocket was made in the upper buttock below the iliac crest level ipsilaterally. During the pain-clinic follow-up period, the patients had reduced their pain medications requirements by half with an additional report of more than 50% improvement in their functional status. The first patient passed away 2 years after the PNFS procedure due to medical causes unrelated to his chronic pain. The second patient has been comfortable with PNFS-induced analgesic regimen during her pain-clinic follow-up during last 5 years. In summary, PNFS can be an effective last resort option for SIJ pain wherein conventional interventional pain techniques have failed, and analgesic medication requirements are escalating or causing unwarranted side-effects. PMID:27625495

  15. Intractable sacroiliac joint pain treated with peripheral nerve field stimulation.

    PubMed

    Chakrabortty, Shushovan; Kumar, Sanjeev; Gupta, Deepak; Rudraraju, Sruthi

    2016-01-01

    As many as 62% low back pain patients can have sacroiliac joint (SIJ) pain. There is limited (to poor) evidence in regards to long-term pain relief with therapeutic intra-articular injections and/or conventional (heat or pulsed) radiofrequency ablations (RFAs) for SIJ pain. We report our pain-clinic experience with peripheral nerve field stimulation (PNFS) for two patients of intractable SIJ pain. They had reported absence of long-term pain relief (pain relief >50% for at least 2 weeks postinjection and at least 3 months post-RFA) with SIJ injections and SIJ RFAs. Two parallel permanent 8-contact subcutaneous stimulating leads were implanted under the skin overlying their painful SIJ. Adequate stimulation in the entire painful area was confirmed. For implantable pulse generator placement, a separate subcutaneous pocket was made in the upper buttock below the iliac crest level ipsilaterally. During the pain-clinic follow-up period, the patients had reduced their pain medications requirements by half with an additional report of more than 50% improvement in their functional status. The first patient passed away 2 years after the PNFS procedure due to medical causes unrelated to his chronic pain. The second patient has been comfortable with PNFS-induced analgesic regimen during her pain-clinic follow-up during last 5 years. In summary, PNFS can be an effective last resort option for SIJ pain wherein conventional interventional pain techniques have failed, and analgesic medication requirements are escalating or causing unwarranted side-effects. PMID:27625495

  16. Afferent vagal nerve stimulation resets baroreflex neural arc and inhibits sympathetic nerve activity

    PubMed Central

    Saku, Keita; Kishi, Takuya; Sakamoto, Kazuo; Hosokawa, Kazuya; Sakamoto, Takafumi; Murayama, Yoshinori; Kakino, Takamori; Ikeda, Masataka; Ide, Tomomi; Sunagawa, Kenji

    2014-01-01

    Abstract It has been established that vagal nerve stimulation (VNS) benefits patients and/or animals with heart failure. However, the impact of VNS on sympathetic nerve activity (SNA) remains unknown. In this study, we investigated how vagal afferent stimulation (AVNS) impacts baroreflex control of SNA. In 12 anesthetized Sprague–Dawley rats, we controlled the pressure in isolated bilateral carotid sinuses (CSP), and measured splanchnic SNA and arterial pressure (AP). Under a constant CSP, increasing the voltage of AVNS dose dependently decreased SNA and AP. The averaged maximal inhibition of SNA was ‐28.0 ± 10.3%. To evaluate the dynamic impacts of AVNS on SNA, we performed random AVNS using binary white noise sequences, and identified the transfer function from AVNS to SNA and that from SNA to AP. We also identified transfer functions of the native baroreflex from CSP to SNA (neural arc) and from SNA to AP (peripheral arc). The transfer function from AVNS to SNA strikingly resembled the baroreflex neural arc and the transfer functions of SNA to AP were indistinguishable whether we perturbed ANVS or CSP, indicating that they likely share common central and peripheral neural mechanisms. To examine the impact of AVNS on baroreflex, we changed CSP stepwise and measured SNA and AP responses with or without AVNS. AVNS resets the sigmoidal neural arc downward, but did not affect the linear peripheral arc. In conclusion, AVNS resets the baroreflex neural arc and induces sympathoinhibition in the same manner as the control of SNA and AP by the native baroreflex. PMID:25194023

  17. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex.

    PubMed

    Ju, Yan-He; Liao, Li-Min

    2016-04-01

    Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function. PMID:27212934

  18. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    PubMed Central

    Ju, Yan-he; Liao, Li-min

    2016-01-01

    Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15–25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function. PMID:27212934

  19. Magnetic resonance neurography of peripheral nerve tumors and tumorlike conditions.

    PubMed

    Ahlawat, Shivani; Chhabra, Avneesh; Blakely, Jaishri

    2014-02-01

    Peripheral nerve enlargement may be seen in multiple conditions including hereditary or inflammatory neuropathies, sporadic or syndromic peripheral nerve sheath tumors, perineurioma, posttraumatic neuroma, and intraneural ganglion. Malignancies such as neurolymphoma, intraneural metastases, or sarcomas may also affect the peripheral nervous system and result in nerve enlargement. The imaging appearance and differentiating factors become especially relevant in the setting of tumor syndromes such as neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. This article reviews the typical magnetic resonance neurography imaging appearances of neurogenic as well as nonneurogenic neoplasms and tumorlike lesions of peripheral nerves, with emphasis on distinguishing factors. PMID:24210319

  20. Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury.

    PubMed

    Neren, Daniel; Johnson, Matthew D; Legon, Wynn; Bachour, Salam P; Ling, Geoffrey; Divani, Afshin A

    2016-04-01

    The objective of this paper is to review the current literature regarding the use of vagus nerve stimulation (VNS) in preclinical models of traumatic brain injury (TBI) as well as discuss the potential role of VNS along with alternative neuromodulation approaches in the treatment of human TBI. Data from previous studies have demonstrated VNS-mediated improvement following TBI in animal models. In these cases, VNS was observed to enhance motor and cognitive recovery, attenuate cerebral edema and inflammation, reduce blood brain barrier breakdown, and confer neuroprotective effects. Yet, the underlying mechanisms by which VNS enhances recovery following TBI remain to be fully elucidated. Several hypotheses have been offered including: a noradrenergic mechanism, reduction in post-TBI seizures and hyper-excitability, anti-inflammatory effects, attenuation of blood-brain barrier breakdown, and cerebral edema. We present other potential mechanisms by which VNS acts including enhancement of synaptic plasticity and recruitment of endogenous neural stem cells, stabilization of intracranial pressure, and interaction with the ghrelin system. In addition, alternative methods for the treatment of TBI including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are discussed. Although the primary source data show that VNS improves TBI outcomes, it remains to be determined if these findings can be translated to clinical settings. PMID:26399249

  1. Optimization of epilepsy treatment with vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Uthman, Basim; Bewernitz, Michael; Liu, Chang-Chia; Ghacibeh, Georges

    2007-11-01

    Epilepsy is one of the most common chronic neurological disorders that affects close to 50 million people worldwide. Antiepilepsy drugs (AEDs), the main stay of epilepsy treatment, control seizures in two thirds of patients only. Other therapies include the ketogenic diet, ablative surgery, hormonal treatments and neurostimulation. While other approaches to stimulation of the brain are currently in the experimental phase vagus nerve stimulation (VNS) has been approved by the FDA since July 1997 for the adjunctive treatment of intractable partial onset epilepsy with and without secondary generalization in patients twelve years of age or older. The safety and efficacy of VNS have been proven and duplicated in two subsequent double-blinded controlled studies after two pilot studies demonstrated the feasibility of VNS in man. Long term observational studies confirmed the safety of VNS and that its effectiveness is sustained over time. While AEDs influence seizure thresholds via blockade or modulation of ionic channels, inhibit excitatory neurotransmitters or enhance inhibitory neurotransmitters the exact mechanism of action of VNS is not known. Neuroimaging studies revealed that VNS increases blood flow in certain regions of the brain such as the thalamus. Chemical lesions in the rat brains showed that norepinephrine is an important link in the anticonvulsant effect of VNS. Analysis of cerebrospinal fluid obtained from patients before and after treatment with VNS showed modest decreases in excitatory neurotransmitters. Although Hammond et al. reported no effect of VNS on scalp EEG by visual analysis and Salinsky et al. found no effect of VNS on scalp EEG by spectral analysis, Kuba et al. suggested that VNS reduces interictal epileptiform activity. Further, nonlinear dynamical analysis of the electroencephalogram in the rat and man have reportedly shown predictable changes (decrease in the short term Lyapunov exponent STLmax and T-index) more than an hour prior to the

  2. Vagus Nerve Stimulation Therapy: Indications, Programing, and Outcomes

    PubMed Central

    YAMAMOTO, Takamichi

    2015-01-01

    Vagus nerve stimulation (VNS) provides palliation of seizure reduction for patients with medically refractory epilepsy. VNS is indicated for symptomatic localization-related epilepsy with multiple and bilateral independent foci, symptomatic generalized epilepsy with diffuse epileptogenic abnormalities, refractory idiopathic generalized epilepsy, failed intracranial epilepsy surgery, and other several reasons of contraindications to epilepsy surgery. Programing of the parameters is a principal part in VNS. Output current and duty cycle should be adjusted to higher settings particularly when a patient does not respond to the initial setting, since the pivotal randomized trials performed in the United States demonstrated high stimulation made better responses in seizure frequency. These trials revealed that a ≥ 50% seizure reduction occurred in 36.8% of patients at 1 year, in 43.2% at 2 years, and in 42.7% at 3 years in 440 patients. Safety of VNS was also confirmed because side effects including hoarseness, throat discomfort, cough, paresthesia, and headache improved progressively during the period of 3 years. The largest retrospective study with 436 patients demonstrated the mean seizure reduction of 55.8% in nearly 5 years, and also found 75.5% at 10 years in 65 consecutive patients. The intermediate analysis report of the Japan VNS Registry showed that 60% of 164 cases got a ≥ 50% seizure reduction in 12 months. In addition to seizure reduction, VNS has positive effects in mood and improves energy level, memory difficulties, social aspects, and fear of seizures. VNS is an effective and safe option for patients who are not suitable candidates for intracranial epilepsy surgery. PMID:25925759

  3. Use of transcutaneous electrical nerve stimulation for chronic pruritus.

    PubMed

    Mohammad Ali, Basma Mourad; Hegab, Doaa Salah; El Saadany, Hanan Mohammad

    2015-01-01

    Pruritus is a distressing symptom in many dermatological as well as systemic conditions, and it is sometimes very chronic and relapsing. Transcutaneous electrical nerve stimulation (TENS) is an inexpensive form of analgesia that could also ameliorate itching. This study aimed to evaluate TENS efficacy in patients with pruritus due to some types of chronic eczema, and in patients with chronic hepatic disease. Ten patients with atopic dermatitis (AD), 20 patients with lichen simplex chronicus (LSC), and 16 patients with chronic liver disease having chronic distressing pruritus received three sessions of TENS weekly for 12 sessions, and the effect on the visual analogue scale (VAS) scores was recorded after 2 weeks of therapy, at treatment end, and after an additional month for follow up. There was a statistically significant decline in the mean VAS score for studied groups at weeks 2 and 4 of therapy compared to baseline, but the improvement was more significant in patients with AD, and LSC (p < 0.001 for both) than in those with chronic liver disease (p < 0.01) who also showed an early re-elevation of VAS score on follow up. TENS therapy holds promise as a palliative, alternative, safe and inexpensive treatment for patients with some chronic pruritic conditions. PMID:25973931

  4. Transcutaneous Electrical Nerve Stimulation: Mechanisms, Clinical Application and Evidence

    PubMed Central

    2007-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a non-invasive, inexpensive, self-administered technique to relieve pain.There are few side effects and no potential for overdose so patients can titrate the treatment as required.TENS techniques include conventional TENS, acupuncture-like TENS and intense TENS. In general, conventional TENS is used in the first instance.The purpose of conventional TENS is to selectively activate large diameter non-noxious afferents (A-beta) to reduce nociceptor cell activity and sensitization at a segmental level in the central nervous system.Pain relief with conventional TENS is rapid in onset and offset and is maximal when the patient experiences a strong but non-painful paraesthesia beneath the electrodes. Therefore, patients may need to administer TENS throughout the day.Clinical experience suggests that TENS may be beneficial as an adjunct to pharmacotherapy for acute pain although systematic reviews are conflicting. Clinical experience and systematic reviews suggest that TENS is beneficial for chronic pain. PMID:26526976

  5. Targeting plasticity with vagus nerve stimulation to treat neurological disease.

    PubMed

    Hays, Seth A; Rennaker, Robert L; Kilgard, Michael P

    2013-01-01

    Pathological neural activity in a variety of neurological disorders could be treated by directing plasticity to specifically renormalize aberrant neural circuits, thereby restoring normal function. Brief bursts of acetylcholine and norepinephrine can enhance the neural plasticity associated with coincident events. Vagus nerve stimulation (VNS) represents a safe and effective means to trigger the release of these neuromodulators with a high degree of temporal control. VNS-event pairing can generate highly specific and long-lasting plasticity in sensory and motor cortex. Based on the capacity to drive specific changes in neural circuitry, VNS paired with experience has been successful in effectively ameliorating animal models of chronic tinnitus, stroke, and posttraumatic stress disorder. Targeted plasticity therapy utilizing VNS is currently being translated to humans to treat chronic tinnitus and improve motor recovery after stroke. This chapter will discuss the current progress of VNS paired with experience to drive specific plasticity to treat these neurological disorders and will evaluate additional future applications of targeted plasticity therapy. PMID:24309259

  6. Variable spatial magnetic field influences peripheral nerves regeneration in rats.

    PubMed

    Suszyński, Krzysztof; Marcol, Wiesław; Szajkowski, Sebastian; Pietrucha-Dutczak, Marita; Cieślar, Grzegorz; Sieroń, Aleksander; Lewin-Kowalik, Joanna

    2014-09-01

    Generator of spatial magnetic field is one of most recent achievements among the magnetostimulators. This apparatus allows to obtain the rotating magnetic field. This new method may be more effective than other widely used techniques of magnetostimulation and magnetotherapy. We investigated the influence of alternating, spatial magnetic field on the regeneration of the crushed rat sciatic nerves. Functional and morphological evaluations were used. After crush injury of the right sciatic nerve, Wistar C rats (n = 80) were randomly divided into four groups (control and three experimental). The experimental groups (A, B, C) were exposed (20 min/day, 5 d/week, 4 weeks) to alternating spatial magnetic field of three different intensities. Sciatic Functional Index (SFI) and tensometric assessments were performed every week after nerve crush. Forty-eight hours before the sacrificing of animals, DiI (1,1'-di-octadecyl-3,3,3',3'-tetramethyloindocarbocyanine perchlorate) was applied 5 mm distally to the crush site. Collected nerves and dorsal root ganglia (DRG) were subjected to histological and immunohistochemical staining. The survival rate of DRG neurons was estimated. Regrowth and myelination of the nerves was examined. The results of SFI and tensometric assessment showed improvement in all experimental groups as compared to control, with best outcome observed in group C, exposed to the strongest magnetic field. In addition, DRG survival rate and nerve regeneration intensity were significantly higher in the C group. Above results indicate that strong spatial alternating magnetic field exerts positive effect on peripheral nerve regeneration and its application could be taken under consideration in the therapy of injured peripheral nerves. PMID:23781984

  7. Fascicular selectivity in transverse stimulation with a nerve cuff electrode: a theoretical approach.

    PubMed

    Deurloo, Kirsten E I; Holsheimer, Jan; Bergveld, Piet

    2003-10-01

    The performance of cathode-anode configurations in a cuff electrode to stimulate a single fascicle in a nerve trunk has been investigated theoretically. A three-dimensional volume conductor model of a nerve trunk with four fascicles in a cuff electrode and a model of myelinated nerve fiber stimulation were used to calculate the recruitment of 15 m fibers in each fascicle. The effect of a monopole, a transverse bipole (anode opposite the cathode), and a narrow transverse tripole (guarded cathode) in selectively stimulating 15 m fibers in each fascicle has been quantified and presented as recruitment curves. It is predicted that selective fascicle stimulation is advanced most by stimulation with a bipole in a plane perpendicular to the axis of the nerve trunk. Monopoles and conventional longitudinal tripoles perform less well, as does a longitudinal tripole with an additional "steering" anode. Apart from transverse bipolar stimulation an additional anode may be used to maximally fit the area of excitation to the topography of the fascicle to be recruited. As compared to monopolar and longitudinal tripolar stimulation, the slope of the recruitment curves in transverse bipolar stimulation is reduced considerably, thus allowing improved fine tuning of nerve (and thus force) recruitment. Another advantage of this method is a minimal number of cable connections to the cuff electrode. The cost of the improved selectivity is an increased stimulation current. PMID:22151073

  8. Periodical assessment of electrophysiological recovery following sciatic nerve crush via surface stimulation in rats.

    PubMed

    Wang, Yaxian; Wang, Hongkui; Mi, Daguo; Gu, Xiaosong; Hu, Wen

    2015-03-01

    When evaluating peripheral nerve regeneration, electrophysiological test is recognized as an optimal assessment, which is a quantitative, objective, and direct evidence reflecting function as compared to morphological examinations. In murine models of nerve regeneration, however, it remains a challenge to record compound muscle action potentials (CMAPs) periodically and non-invasively, i.e., with no insult to the nerve. In the present study, we recorded CMAPs in the gastrocnemius muscle weekly until 8 weeks after sciatic nerve crush by stimulating the nerve in a surface manner, and the electric stimuli were delivered to the skin between ischial tuberosity and major trochanter using bipolar hook electrodes. The CMAPs were reproducibly recorded in this way from 3 weeks post-injury, and both amplitude and latency were well correlated to post-operative time. Furthermore, a strong positive correlation was observed between CMAP amplitude and sciatic function index (SFI), a well-recognized assessment for sciatic nerve function. CMAP recordings by direct nerve stimulation at 8 weeks post-injury showed no significant difference in amplitude compared to surface stimulation, but the peak latency was relatively longer than the latter. This study indicated that non-invasive surface stimulation-based periodical recording of CMAPs was a practical electrophysiological approach to monitor the progression of peripheral nerve regeneration in murine models. PMID:25394740

  9. Left phrenic nerve anatomy relative to the coronary venous system: Implications for phrenic nerve stimulation during cardiac resynchronization therapy.

    PubMed

    Spencer, Julianne H; Goff, Ryan P; Iaizzo, Paul A

    2015-07-01

    The objective of this study was to quantitatively characterize anatomy of the human phrenic nerve in relation to the coronary venous system, to reduce undesired phrenic nerve stimulation during left-sided lead implantations. We obtained CT scans while injecting contrast into coronary veins of 15 perfusion-fixed human heart-lung blocs. A radiopaque wire was glued to the phrenic nerve under CT, then we created three-dimensional models of anatomy and measured anatomical parameters. The left phrenic nerve typically coursed over the basal region of the anterior interventricular vein, mid region of left marginal veins, and apical region of inferior and middle cardiac veins. There was large variation associated with the average angle between nerve and veins. Average angle across all coronary sinus tributaries was fairly consistent (101.3°-111.1°). The phrenic nerve coursed closest to the middle cardiac vein and left marginal veins. The phrenic nerve overlapped a left marginal vein in >50% of specimens. PMID:25851773

  10. Risk of Encountering Dorsal Scapular and Long Thoracic Nerves during Ultrasound-guided Interscalene Brachial Plexus Block with Nerve Stimulator

    PubMed Central

    Kim, Yeon Dong; Yu, Jae Yong; Shim, Junho; Heo, Hyun Joo

    2016-01-01

    Background Recently, ultrasound has been commonly used. Ultrasound-guided interscalene brachial plexus block (IBPB) by posterior approach is more commonly used because anterior approach has been reported to have the risk of phrenic nerve injury. However, posterior approach also has the risk of causing nerve injury because there are risks of encountering dorsal scapular nerve (DSN) and long thoracic nerve (LTN). Therefore, the aim of this study was to evaluate the risk of encountering DSN and LTN during ultrasound-guided IBPB by posterior approach. Methods A total of 70 patients who were scheduled for shoulder surgery were enrolled in this study. After deciding insertion site with ultrasound, awake ultrasound-guided IBPB with nerve stimulator by posterior approach was performed. Incidence of muscle twitches (rhomboids, levator scapulae, and serratus anterior muscles) and current intensity immediately before muscle twitches disappeared were recorded. Results Of the total 70 cases, DSN was encountered in 44 cases (62.8%) and LTN was encountered in 15 cases (21.4%). Both nerves were encountered in 10 cases (14.3%). Neither was encountered in 21 cases (30.4%). The average current measured immediately before the disappearance of muscle twitches was 0.44 mA and 0.50 mA at DSN and LTN, respectively. Conclusions Physicians should be cautious on the risk of injury related to the anatomical structures of nerves, including DSN and LTN, during ultrasound-guided IBPB by posterior approach. Nerve stimulator could be another option for a safer intervention. Moreover, if there is a motor response, it is recommended to select another way to secure better safety. PMID:27413483

  11. Transcutaneous Electrical Nerve Stimulation Improves Exercise Tolerance in Healthy Subjects.

    PubMed

    Tomasi, F P; Chiappa, G; Maldaner da Silva, V; Lucena da Silva, M; Lima, A S C G B; Arena, R; Bottaro, M; Cipriano, G

    2015-07-01

    Transcutaneous electrical nerve stimulation (TENS) increases peripheral blood flow by attenuation of the muscle metaboreflex, improving oxygen supply to working muscles. We tested the hypothesis that application of TENS at ganglion improves exercise performance. 11 subjects underwent constant-work rate tests (CWR) to the limit of tolerance (Tlim) while receiving TENS or placebo. Oxygen uptake (V.O2), carbon dioxide (V.CO2), minute ventilation (V.E), ventilatory equivalent (V.E/V.CO2), heart rate (HR) and oxygen pulse (V.O2/HR) were analyzed at isotime separated by percentile and Tlim. V.O2 was lower and V.CO2 was higher at 100% of isotime during TENS, while there were no differences in V.E and V.E/V.CO2. HR was lower during exercise with TENS, and V.O2/HR increased at peak exercise (17.96±1.9 vs. 20.38±1 ml/min/bpm, P<0.05). TENS increased mechanical efficiency at isotime and Tlim (4.10±0.50 vs. 3.39±0.52%, P<0.05 and 3.95±0.67 vs. 3.77±0.45%, P<0.05) and exercise tolerance compared to P-TENS (390±41 vs. 321±41 s; P<0.05). Our data shows that the application of TENS can potentially increase exercise tolerance and oxygen supply in healthy subjects. PMID:25607523

  12. Device-Based Autonomic Modulation in Arrhythmia Patients: the Role of Vagal Nerve Stimulation

    PubMed Central

    Huang, William A.; Shivkumar, Kalyanam; Vaseghi, Marmar

    2015-01-01

    Opinion statement Vagal nerve stimulation (VNS) has shown promise as an adjunctive therapy for management of cardiac arrhythmias by targeting the cardiac parasympathetic nervous system. VNS has been evaluated in the setting of ischemia-driven ventricular arrhythmias and atrial arrhythmias, as well as a treatment option for heart failure. As better understanding of the complexities of the cardiac autonomic nervous system is obtained, vagal nerve stimulation will likely become a powerful tool in the current cardiovascular therapeutic armamentarium. PMID:25894588

  13. Microscopic magnetic stimulation of neural tissue

    PubMed Central

    Bonmassar, Giorgio; Lee, Seung Woo; Freeman, Daniel K.; Polasek, Miloslav; Fried, Shelley I.; Gale, John T.

    2012-01-01

    Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices. PMID:22735449

  14. Transcutaneous electrical nerve stimulation (TENS) for pain management in labour

    PubMed Central

    Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P

    2014-01-01

    Background Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. TENS machines are frequently operated by women, which may increase a sense of control in labour. Objectives To assess the effects of TENS on pain in labour. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (30 April 2011) and reference lists of retrieved papers. Selection criteria Randomised controlled trials comparing women receiving TENS for pain management in labour versus routine care, alternative non-pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Data collection and analysis Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. Main results Seventeen trials with 1466 women contribute data to the review. Thirteen examined TENS applied to the back, two to acupuncture points, and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (average risk ratio 0.41, 95% confidence interval 0.31 to 0.54; measured in two studies). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No

  15. Nerve stimulation with a multi-contact cuff electrode: validation of model predictions.

    PubMed

    Deurloo, K E; Holsheimer, J; Bergveld, P

    2000-10-01

    The recruitment characteristics of muscle selective nerve stimulation by a multi-contact nerve cuff electrode, as predicted by computer modeling, have been investigated in acute experiments on rabbits. A nerve cuff containing five or six dot electrodes was placed around the sciatic nerve in five rabbits. M-waves were recorded with wire electrodes from the lateral gastrocnemius, soleus, tibialis anterior, and extensor digitorum longus muscles. The muscle recruitment performances of three contact configurations (monopole, transverse bipole, transverse tripole) were compared. The selectivity was quantified by the recruitment of two muscles (one extensor and one flexor) in response to a particular stimulus. The results showed that only in a few cases, transverse bi- and tripolar stimulation provided a better selectivity than monopolar stimulation. Neither of the two extensors, nor of the two flexors could be stimulated separately. In accordance with the results of the modeling studies, bi- and tripolar stimulation required higher stimulus currents than monopolar stimulation, whereas maximum recruitment and slopes of recruitment curves were lower. The rabbit sciatic nerve appears to be a less suitable preparation for reproducible selectivity experiments, due to the variability in the number and size of the fascicles and their position in this nerve. PMID:11094386

  16. Magnetic stimulation in the diagnosis of lumbosacral radiculopathy.

    PubMed Central

    Chokroverty, S; Sachdeo, R; Dilullo, J; Duvoisin, R C

    1989-01-01

    Five patients presenting with sensory-motor disturbances consistent with a clinical diagnosis of L5 or S1 radiculopathy were studied. All had conventional nerve conduction tests and electromyography. The lumbosacral roots were stimulated in the lumbosacral region by using the Cadwell MES-10 Magneto-electric stimulator. The compound muscle action potentials were recorded bilaterally by surface electrodes applied to the soleus and tibialis anterior muscles. The latencies to the affected muscles were significantly prolonged. The appropriate root dysfunction was confirmed at operation or by the imaging techniques. It was concluded that surface stimulation of the lumbosacral roots by a magnetic coil is a potentially useful technique for the non-invasive evaluation of the function of the lumbosacral roots. Images PMID:2746269

  17. Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings.

    PubMed

    Song, Tao; Cui, Li; Gaa, Kathleen; Feffer, Lori; Taulu, Samu; Lee, Roland R; Huang, Mingxiong

    2009-12-01

    Magnetoencephalography (MEG) has been successfully applied to presurgical epilepsy foci localization and brain functional mapping. Because the neuronal magnetic signals from the brain are extremely weak, MEG measurement requires both low environment noise and the subject/patient being free of artifact-generating metal objects. This strict requirement makes it hard for patients with vagus nerve stimulator, or other similar medical devices, to benefit from the presurgical MEG examinations. Therefore, an approach that can effectively reduce the environmental noise and faithfully recover the brain signals is highly desirable. We applied spatiotemporal signal space separation method, an advanced signal processing approach that can recover bio-magnetic signal from inside the MEG sensor helmet and suppress external disturbance from outside the helmet in empirical MEG measurements, on MEG recordings from normal control subjects and patients who has vagus nerve stimulator. The original MEG recordings were heavily contaminated, and the data could not be assessed. After applying temporal signal space separation, the strong external artifacts from outside the brain were successfully removed, and the neuronal signal from the human brain was faithfully recovered. Both of the goodness-of-fit and 95% confident limit volume confirmed the significant improvement after temporal signal space separation. Hence, temporal signal space separation makes presurgical MEG examinations possible for patients with implanted vagus nerve stimulator or similar medical devices. PMID:19952563

  18. Temperature-controlled optical stimulation of the rat prostate cavernous nerves.

    PubMed

    Tozburun, Serhat; Hutchens, Thomas C; McClain, Michael A; Lagoda, Gwen A; Burnett, Arthur L; Fried, Nathaniel M

    2013-06-01

    Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (~42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs. PMID:23733025

  19. Temperature-controlled optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Hutchens, Thomas C.; McClain, Michael A.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2013-06-01

    Optical nerve stimulation (ONS) may be useful as a diagnostic tool for intraoperative identification and preservation of the prostate cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. Successful ONS requires elevating the nerve temperature to within a narrow range (˜42 to 47°C) for nerve activation without thermal damage to the nerve. This preliminary study explores a prototype temperature-controlled optical nerve stimulation (TC-ONS) system for maintaining a constant (±1°C) nerve temperature during short-term ONS of the rat prostate CNs. A 150-mW, 1455-nm diode laser was operated in continuous-wave mode, with and without temperature control, during stimulation of the rat CNs for 15 to 30 s through a fiber optic probe with a 1-mm-diameter spot. A microcontroller opened and closed an in-line mechanical shutter in response to an infrared sensor, with a predetermined temperature set point. With TC-ONS, higher laser power settings were used to rapidly and safely elevate the CNs to a temperature necessary for a fast intracavernous pressure response, while also preventing excessive temperatures that would otherwise cause thermal damage to the nerve. With further development, TC-ONS may provide a rapid, stable, and safe method for intraoperative identification and preservation of the prostate CNs.

  20. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

  1. Electrical Nerve Stimulation Enhances Perilesional Branching after Nerve Grafting but Fails to Increase Regeneration Speed in a Murine Model.

    PubMed

    Witzel, Christian; Brushart, Thomas M; Koulaxouzidis, Georgios; Infanger, Manfred

    2016-07-01

    Background Electrical stimulation immediately following nerve lesion helps regenerating axons cross the subsequently grafted nerve repair site. However, the results and the mechanisms remain open to debate. Some findings show that stimulation after crush injury increases axonal crossing of the repair site without affecting regeneration speed. Others show that stimulation after transection and fibrin glue repair doubles regeneration distance. Methods Using a sciatic-nerve-transection-graft in vivo model, we investigated the morphological behavior of regenerating axons around the repair site after unilateral nerve stimulation (20 Hz, 1 hour). With mice expressing axonal fluorescent proteins (thy1-YFP), we were able to calculate the following at 5 and 7 days: percentage of regenerating axons and arborizing axons, branches per axon, and regeneration distance and speed. Results Brief stimulation significantly increases the percentage of regenerating axons (5 days: 35.5 vs. 27.3% nonstimulated, p < 0.05; 7 days: 43.3 vs. 33.9% nonstimulated, p < 0.05), mainly by increasing arborizing axons (5 days: 49.3 [4.4] vs. 33.9 [4.1]% [p < 0.001]; 7 days: 42.2 [5.6] vs. 33.2 [3.1]% [p < 0.001]). Neither branches per arborizing axon nor regeneration speed were affected. Conclusion Our morphological data analysis revealed that electrical stimulation in this model increases axonal crossing of the repair site and promotes homogeneous perilesional branching, but does not affect regeneration speed. PMID:26975563

  2. Electrical potentials from the eye and optic nerve of Strombus: effects of electrical stimulation of the optic nerve.

    PubMed

    Gillary, H L

    1977-02-01

    1. Photic stimulation of the mature eye of Strombus can evoke in the optic nerve 'on' activity in numerous small afferent fibres and repetitive 'off' bursts of afferent impulses in a smaller number of larger fibres. 2. Synchronous invasion of the eye by electrically evoked impulses in small optic nerve fibres (apparently the 'on' afferents, antidromically activated) can evoke a burst of impulses in the larger 'off' fibres which propagate away from the eye. Invasion of the eye via one branch of optic nerve can evoke an answering burst in another branch. 3. Such electrically evoked bursts are similar to light-evoked 'off' bursts with respect to their impulse composition, their ability to be inhibited by illumination of the eye, and their susceptibility to MgCl2 anaesthesia. 4. Invasion of the eye by a train of repetitive electrically evoked impulses in the absence of photic stimulation can give rise to repetitive 'off' bursts as well as concomitant oscillatory potentials in the eye which are similar to those normally evoked by cessation of a photic stimulus. 5. The electrically evoked 'off' bursts appear to be caused by an excitatory rebound following the cessation of inhibitory synaptic input from photoreceptors which can be antidromically activated by electrical stimulation of the optic nerve. 6. The experimental results suggest that the rhythmic discharge of the 'off' fibres evoked by the cessation of a photic stimulus is mediated by the abrupt decrease of inhibitory synaptic input from the receptors. PMID:192827

  3. Renal opiate receptor mediation of renin secretion to renal nerve stimulation in the dog.

    PubMed

    Koyama, S; Hosomi, H

    1986-06-01

    The present study was designed to evaluate renal opiate receptor mediation of the renin secretion response to electrical stimulation of the renal nerves in the pentobarbital sodium-anesthetized dog by use of the opiate agonist leucine-enkephalin (Leu-enk) and the opiate antagonist naloxone. In all animals studied, left kidneys were pump perfused at a constant renal blood flow. Renal perfusion pressure (RPP) and glomerular filtration rate (GFR) were unaltered at a stimulation frequency of 1.0 Hz; however, renin secretion rate (RSR) increased significantly in the nontreated group. High-frequency renal nerve stimulation (10 Hz) increased RPP and decreased GFR. RSR at the high-frequency stimulation was significantly augmented in the nontreated group. Renal arterial infusion of either Leu-enk (25 micrograms X kg-1 X min-1) or naloxone (7 micrograms X kg-1 X min-1) did not alter base-line levels of renal hemodynamics and RSR and did not produce significant changes in these variables even when renal nerves were stimulated at the low frequency; however, Leu-enk inhibited RPP and RSR responses to the high-frequency stimulation, and naloxone augmented these responses. Phentolamine (13 micrograms X kg-1 X min-1) prevented renal hemodynamic responses to the renal nerve stimulation, whereas RSR responses to the stimulation were unaffected. Propranolol (8 micrograms X kg-1 X min-1) resulted in decreases in RSR at the renal nerve stimulation despite the presence of changes in renal hemodynamics similar to the other groups. The results indicate that intrarenal opiate receptors may participate in inhibiting renal secretion of renin mediated by the renal nerves when renal vasoconstriction and reduction of GFR occurred at the high-frequency stimulation. PMID:3013030

  4. Spinal evoked potentials following transcranial magnetic stimulation.

    PubMed

    Nemoto, J; Sasaki, T; Kikuchi, Y; Konno, Y; Sakuma, J; Kodama, N

    2001-06-01

    Motor evoked potentials by magnetic stimulation is less invasive and causes no pain as opposed to high current electric stimulation. However, the distribution of the magnetic field generated by the round coil has not been fully studied. In this report, we mapped the extent of the magnetic induction flux density, and then the evoked potentials from the spinal cord were investigated by transcranial magnetic stimulation. We also examined the origin of the evoked potentials obtained by the magnetic stimulation. The following results were obtained. The magnetic induction flux density was at its maximum at the edge of the coil. The potentials consisted of a first negative wave and subsequent multiphasic waves. The first negative wave was similar to a response of the subcorticospinal tract in the lower brain stem, while the subsequent multiphasic waves were similar to those of the pyramidal tract. Although magnetic stimulation has certain advantages over electric stimulation, several problems remain to be solved for the monitoring of motor functions in the clinical settings. PMID:11764415

  5. Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses

    PubMed Central

    Ledbetter, Noah M.; Ethier, Christian; Oby, Emily R.; Hiatt, Scott D.; Wilder, Andrew M.; Ko, Jason H.; Agnew, Sonya P.; Miller, Lee E.

    2013-01-01

    High-count microelectrode arrays implanted in peripheral nerves could restore motor function after spinal cord injury or sensory function after limb loss. In this study, we implanted Utah Slanted Electrode Arrays (USEAs) intrafascicularly at the elbow or shoulder in arm nerves of rhesus monkeys (n = 4) under isoflurane anesthesia. Input-output curves indicated that pulse-width-modulated single-electrode stimulation in each arm nerve could recruit single muscles with little or no recruitment of other muscles. Stimulus trains evoked specific, natural, hand movements, which could be combined via multielectrode stimulation to elicit coordinated power or pinch grasp. Stimulation also elicited short-latency evoked potentials (EPs) in primary somatosensory cortex, which might be used to provide sensory feedback from a prosthetic limb. These results demonstrate a high-resolution, high-channel-count interface to the peripheral nervous system for restoring hand function after neural injury or disruption or for examining nerve structure. PMID:23076108

  6. Dilation of the oropharynx via selective stimulation of the hypoglossal nerve

    NASA Astrophysics Data System (ADS)

    Huang, Jingtao; Sahin, Mesut; Durand, Dominique M.

    2005-12-01

    The functional effects of selective hypoglossal nerve (HG) stimulation with a multi-contact peripheral nerve electrode were assessed using images of the upper airways and the tongue in anesthetized beagles. A biphasic pulse train of 50 Hz frequency and 2 s duration was applied through each one of the tripolar contact sets of the nerve electrode while the pharyngeal images were acquired into a computer. The stimulation current was limited to 20% above the activation threshold for maximum selectivity. The images showed that various contact sets could generate several different activation patterns of the tongue muscles resulting in medial and/or lateral dilation and closing of the airways at the tongue root. Some of these patterns translated into an increase in the oropharyngeal size while others did not have any effect. The pharyngeal sizes were not statistically different during stimulation either between the two different positions of the head (30° and 60°), or when the lateral contacts were compared with the medial ones. The contacts that had the least effect generated an average of 53 ± 15% pharyngeal dilation relative to the best contacts, indicating that the results are marginally sensitive to the contact position around the HG nerve trunk. These results suggest that selective HG nerve stimulation can be a useful technique to produce multiple tongue activation patterns that can dilate the pharynx. This may in turn increase the size of the patient population who can benefit from HG nerve stimulation as a treatment method for obstructive sleep apnea.

  7. Dilation of the oropharynx via selective stimulation of the hypoglossal nerve.

    PubMed

    Huang, Jingtao; Sahin, Mesut; Durand, Dominique M

    2005-12-01

    The functional effects of selective hypoglossal nerve (HG) stimulation with a multi-contact peripheral nerve electrode were assessed using images of the upper airways and the tongue in anesthetized beagles. A biphasic pulse train of 50 Hz frequency and 2 s duration was applied through each one of the tripolar contact sets of the nerve electrode while the pharyngeal images were acquired into a computer. The stimulation current was limited to 20% above the activation threshold for maximum selectivity. The images showed that various contact sets could generate several different activation patterns of the tongue muscles resulting in medial and/or lateral dilation and closing of the airways at the tongue root. Some of these patterns translated into an increase in the oropharyngeal size while others did not have any effect. The pharyngeal sizes were not statistically different during stimulation either between the two different positions of the head (30 degrees and 60 degrees), or when the lateral contacts were compared with the medial ones. The contacts that had the least effect generated an average of 53 +/- 15% pharyngeal dilation relative to the best contacts, indicating that the results are marginally sensitive to the contact position around the HG nerve trunk. These results suggest that selective HG nerve stimulation can be a useful technique to produce multiple tongue activation patterns that can dilate the pharynx. This may in turn increase the size of the patient population who can benefit from HG nerve stimulation as a treatment method for obstructive sleep apnea. PMID:16317230

  8. Chronic migraine headache prevention with noninvasive vagus nerve stimulation

    PubMed Central

    Calhoun, Anne H.; Lipton, Richard B.; Grosberg, Brian M.; Cady, Roger K.; Dorlas, Stefanie; Simmons, Kristy A.; Mullin, Chris; Liebler, Eric J.; Goadsby, Peter J.; Saper, Joel R.

    2016-01-01

    Objective: To evaluate the feasibility, safety, and tolerability of noninvasive vagus nerve stimulation (nVNS) for the prevention of chronic migraine (CM) attacks. Methods: In this first prospective, multicenter, double-blind, sham-controlled pilot study of nVNS in CM prophylaxis, adults with CM (≥15 headache d/mo) entered the baseline phase (1 month) and were subsequently randomized to nVNS or sham treatment (2 months) before receiving open-label nVNS treatment (6 months). The primary endpoints were safety and tolerability. Efficacy endpoints in the intent-to-treat population included change in the number of headache days per 28 days and acute medication use. Results: Fifty-nine participants (mean age, 39.2 years; mean headache frequency, 21.5 d/mo) were enrolled. During the randomized phase, tolerability was similar for nVNS (n = 30) and sham treatment (n = 29). Most adverse events were mild/moderate and transient. Mean changes in the number of headache days were −1.4 (nVNS) and −0.2 (sham) (Δ = 1.2; p = 0.56). Twenty-seven participants completed the open-label phase. For the 15 completers initially assigned to nVNS, the mean change from baseline in headache days after 8 months of treatment was −7.9 (95% confidence interval −11.9 to −3.8; p < 0.01). Conclusions: Therapy with nVNS was well-tolerated with no safety issues. Persistent prophylactic use may reduce the number of headache days in CM; larger sham-controlled studies are needed. ClinicalTrials.gov identifier: NCT01667250. Classification of evidence: This study provides Class II evidence that for patients with CM, nVNS is safe, is well-tolerated, and did not significantly change the number of headache days. This pilot study lacked the precision to exclude important safety issues or benefits of nVNS. PMID:27412146

  9. Transcranial magnetic stimulation in disorders of consciousness.

    PubMed

    Lapitska, Natallia; Gosseries, Olivia; Delvaux, Valérie; Overgaard, Morten; Nielsen, Feldbaek; Maertens de Noordhout, Alain; Moonen, Gustave; Laureys, Steven

    2009-01-01

    We have reviewed the literature on transcranial magnetic stimulation studies in patients with brain death, coma, vegetative, minimally conscious, and locked-in states. Transcranial magnetic stimulation permits non-invasive study of brain excitability and may extend our understanding of the underlying mechanisms of these disorders. However, use of this technique in severe brain damage remains methodologically ill-defined and must be further validated prior to clinical application in these challenging patients. PMID:20157993

  10. Selectivity for specific cardiovascular effects of vagal nerve stimulation with a multi-contact electrode cuff.

    PubMed

    Ordelman, Simone C M A; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P J; Veltink, Peter H

    2013-01-01

    The cardiovascular system can be influenced by electrically stimulating the vagal nerve. Selectivity for specific cardiac fibers may be limited when stimulating at the cervical level. Our objective was to increase effectiveness and selectivity for cardiovascular effects of vagal nerve stimulation by using local bipolar stimulation in one nerve cross section using a multi-contact cuff instead of less localized stimulation using a tripolar ring electrode. Both types of cuff electrodes were compared with respect to their relative effects on R-R interval (RRI), P-Q interval (PQI), left ventricular contractility (LVC), and left ventricular pressure (P(LV)) in seven pigs. Stimulation using the optimal bipolar configuration on the multi-contact cuff significantly affected RRI, PQI, LVC, and P(LV), whereas stimulation with the ring electrode only significantly affected RRI and PQI. The cardiovascular parameters that could be significantly influenced varied between the bipolar configurations. These novel findings may be relevant for optimizing electrode configurations for clinical cardiac applications of vagal nerve stimulation. PMID:22987542

  11. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells.

    PubMed

    Costantini, Todd W; Bansal, Vishal; Krzyzaniak, Michael; Putnam, James G; Peterson, Carrie Y; Loomis, William H; Wolf, Paul; Baird, Andrew; Eliceiri, Brian P; Coimbra, Raul

    2010-12-01

    The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary acidic protein (GFAP), a marker of enteric glial activation. We also sought to define the effects of vagal nerve stimulation on enteric glia activation and intestinal barrier function using a model of systemic injury and local gut mucosal involvement. Mice with 30% total body surface area steam burn were used as model of severe injury. Vagal nerve stimulation was performed to assess the role of parasympathetic signaling on enteric glia activation. In vivo intestinal permeability was measured to assess barrier function. Intestine was collected to investigate changes in histology; GFAP expression was assessed by quantitative PCR, by confocal microscopy, and in GFAP-luciferase transgenic mice. Stimulation of the vagus nerve prevented injury-induced intestinal barrier injury. Intestinal GFAP expression increased at early time points following burn and returned to baseline by 24 h after injury. Vagal nerve stimulation prior to injury increased GFAP expression to a greater degree than burn alone. Gastrointestinal bioluminescence was imaged in GFAP-luciferase transgenic animals following either severe burn or vagal stimulation and confirmed the increased expression of intestinal GFAP. Injection of S-nitrosoglutathione, a signaling molecule released by activated enteric glia cells, following burn exerts protective effects similar to vagal nerve stimulation. Intestinal expression of GFAP increases following severe burn injury. Stimulation of the vagus nerve increases enteric glia activation, which is associated with improved intestinal barrier function. The vagus nerve may mediate the

  12. Visualization of a moving quadrupole with magnetic measurements of peripheral nerve action fields.

    PubMed

    Hashimoto, I; Mashiko, T; Mizuta, T; Imada, T; Iwase, K; Okazaki, H

    1994-12-01

    Magnetic compound action fields (CAFs) over the right arm were measured from 63 sensor positions with two 7-channel SQUID gradiometer systems following electrical stimulation of the median nerve at the wrist. The field mapping of the CAFs revealed a propagating quadrupolar pattern with the leading depolarization and trailing repolarization fronts. The average distribution of the CAFs in the longitudinal direction was 9.0 cm in length for the depolarization field and 7.3 cm for the repolarization field in good agreement with a theoretical prediction based on the duration (3 msec) of the CAFs and the conduction velocity of the nerve (50 m/sec). The distance between the maxima of the depolarization front and the minima of the repolarization front was 6.3 cm. This spatial separation of the leading and trailing dipole locations suggests in part mutual cancellation of the fields with opposite polarity at or near the depolarized segment of nerve fibers. PMID:7529697

  13. Optic Nerve Assessment Using 7-Tesla Magnetic Resonance Imaging

    PubMed Central

    Singh, Arun D.; Platt, Sean M.; Lystad, Lisa; Lowe, Mark; Oh, Sehong; Jones, Stephen E.; Alzahrani, Yahya; Plesec, Thomas

    2016-01-01

    Purpose The purpose of this study was to correlate high-resolution magnetic resonance imaging (MRI) and histologic findings in a case of juxtapapillary choroidal melanoma with clinical evidence of optic nerve invasion. Methods With institutional review board approval, an enucleated globe with choroidal melanoma and optic nerve invasion was imaged using a 7-tesla MRI followed by histopathologic evaluation. Results Optical coherence tomography, B-scan ultrasonography, and 1.5-tesla MRI of the orbit (1-mm sections) could not detect optic disc invasion. Ex vivo, 7-tesla MRI detected optic nerve invasion, which correlated with histopathologic features. Conclusions Our case demonstrates the potential to document the existence of optic nerve invasion in the presence of an intraocular tumor, a feature that has a major bearing on decision making, particularly for consideration of enucleation. PMID:27239461

  14. Peripheral nerve stimulation for the treatment of postamputation pain--a case report.

    PubMed

    Rauck, Richard L; Kapural, Leonardo; Cohen, Steven P; North, James M; Gilmore, Christopher A; Zang, Rosemary H; Boggs, Joseph W

    2012-11-01

    Many amputees suffer from postamputation pain, which can be extremely debilitating, decrease quality of life, increase the risk of depression, and negatively affect interpersonal relationships and the ability to work. Present methods of treatment, including medications, are often unsatisfactory in reducing postamputation pain. Electrical stimulation of the nerve innervating the painful area could reduce the pain, but peripheral nerve stimulation is rarely used to treat postamputation pain because present methods require invasive surgical access and precise placement of the leads in close proximity (≤ 2 mm) with the nerve. The present study investigated a novel approach to peripheral nerve stimulation in which a lead was placed percutaneously a remote distance (> 1 cm) away from the femoral nerve in a patient with severe residual limb pain (RLP) 33 years following a below-knee amputation. Electrical stimulation generated ≥ 75% paresthesia coverage, reduced RLP by > 60%, and improved quality of life outcomes as measured by the pain interference scale of the Brief Pain Inventory-Short Form (100% reduction in pain interference), Pain Disability Index (74% reduction in disability), and the Patient Global Impression of Change (very much improved) during a 2-week home trial. There were no adverse events. The ability to generate significant paresthesia coverage and pain relief with a single lead inserted percutaneously and remotely from the target nerve holds promise for providing relief of postamputation pain. PMID:22548686

  15. Peripheral Nerve Stimulation for Treatment of Post-Amputation Pain – A Case Report

    PubMed Central

    Rauck, Richard L.; Kapural, Leonardo; Cohen, Steven P.; North, James M.; Gilmore, Christopher A.; Zang, Rosemary H.; Boggs, Joseph W.

    2012-01-01

    Many amputees suffer from post-amputation pain, which can be extremely debilitating, decrease quality of life, increase the risk of depression, and negatively affect interpersonal relationships and the ability to work. Present methods of treatment, including medications, are often unsatisfactory in reducing post-amputation pain. Electrical stimulation of the nerve innervating the painful area could reduce the pain, but peripheral nerve stimulation is rarely used to treat post-amputation pain because present methods require invasive surgical access and precise placement of the leads in close proximity (≤ 2 mm) with the nerve. The present study investigated a novel approach to peripheral nerve stimulation in which a lead was placed percutaneously a remote distance (> 1 cm) away from the femoral nerve in a patient with severe residual limb pain 33 years following a below-knee amputation. Electrical stimulation generated ≥ 75% paresthesia coverage, reduced residual limb pain by > 60%, and improved quality of life outcomes as measured by the pain interference scale of the Brief Pain Inventory-Short Form (100% reduction in pain interference), Pain Disability Index (74% reduction in disability), and the Patient Global Impression of Change (Very Much Improved) during a 2-week home trial. There were no adverse events. The ability to generate significant paresthesia coverage and pain relief with a single lead inserted percutaneously and remotely from the target nerve holds promise for providing relief of post-amputation pain. PMID:22548686

  16. Minimizing Stimulus Current in a Wearable Pudendal Nerve Stimulator Using Computational Models.

    PubMed

    Shiraz, Arsam N; Craggs, Michael; Leaker, Brian; Demosthenous, Andreas

    2016-04-01

    After spinal cord injury, functions of the lower urinary tract may be disrupted. A wearable device with surface electrodes which can effectively control the bladder functions would be highly beneficial to the patients. A trans-rectal pudendal nerve stimulator may provide such a solution. However, the major limiting factor in such a stimulator is the high level of current it requires to recruit the nerve fibers. Also, the variability of the trajectory of the nerve in different individuals should be considered. Using computational models and an approximate trajectory of the nerve derived from an MRI study, it is demonstrated in this paper that it may be possible to considerably reduce the required current levels for trans-rectal stimulation of the pudendal nerve compared to the values previously reported in the literature. This was corroborated by considering an ensemble of possible and probable variations of the trajectory. The outcome of this study suggests that trans-rectal stimulation of the pudendal nerve is a plausible long term solution for treating lower urinary tract dysfunctions after spinal cord injury. PMID:26415182

  17. Electrochemical and Electrophysiological Performance of Platinum Electrodes Within the Ninety-Nine-Electrode Stimulating Nerve Cuff.

    PubMed

    Pečlin, Polona; Mehle, Andraž; Karpe, Blaž; Rozman, Janez

    2015-10-01

    The trend in neural prostheses using selective nerve stimulation for electrical stimulation therapies is headed toward single-part systems having a large number of working electrodes (WEs), each of which selectively stimulate neural tissue or record neural response (NR). The present article reviews the electrochemical and electrophysiological performance of platinum WE within a ninety-nine-electrode spiral cuff for selective nerve stimulation and recording of peripheral nerves, with a focus on the vagus nerve (VN). The electrochemical properties of the WE were studied in vitro using the electrochemical impedance spectroscopy (EIS) technique. The equivalent circuit model (ECM) of the interface between the WE and neural tissue was extracted from the EIS data and simulated in the time domain using a preset current stimulus. Electrophysiological performance of in-space and fiber-type highly selective vagus nerve stimulation (VNS) was tested using an isolated segment of a porcine VN and carotid artery as a reference. A quasitrapezoidal current-controlled pulse (stimulus) was applied to the VN or arterial segment using an appointed group of three electrodes (triplet). The triplet and stimulus were configured to predominantly stimulate B-fibers and minimize the stimulation of A-fibers. The EIS results revealed capacitive charge transfer predominance, which is a highly desirable property. Electrophysiological performance testing indicated the potential existence of certain parameters and waveforms of the stimulus for which the contribution of the A-fibers to the NR decreased slightly and that of the B-fibers increased slightly. Findings show that the design of the stimulating electrodes, based on the EIS and ECM results, could act as a useful tool for nerve cuff development. PMID:26471140

  18. Does Pulsed Magnetic Field Therapy Influence Nerve Regeneration in the Median Nerve Model of the Rat?

    PubMed Central

    Beck-Broichsitter, Benedicta E.; Lamia, Androniki; Fregnan, Federica; Smeets, Ralf; Becker, Stephan T.; Sinis, Nektarios

    2014-01-01

    The aim of this study was to evaluate the impact of pulsed magnetic field therapy on peripheral nerve regeneration after median nerve injury and primary coaptation in the rat. Both median nerves were surgically exposed and denervated in 24 female Wistar rats. A microsurgical coaptation was performed on the right side, whereas on the left side a spontaneous healing was prevented. The study group underwent a daily pulsed magnetic field therapy; the other group served as a control group. The grasping force was recorded 2 weeks after the surgical intervention for a period of 12 weeks. The right median nerve was excised and histologically examined. The histomorphometric data and the functional assessments were analyzed by t-test statistics and one-way ANOVA. One-way ANOVA indicated a statistically significant influence of group affiliation and grasping force (P = 0.0078). Grasping strength was higher on a significant level in the experimental group compared to the control group permanently from the 9th week to the end of the study. T-test statistics revealed a significantly higher weight of the flexor digitorum sublimis muscle (P = 0.0385) in the experimental group. The histological evaluation did not reveal any statistically significant differences concerning the histomorphometric parameters. Our results suggest that the pulsed magnetic field therapy has a positive influence on the functional aspects of neural regeneration. More studies are needed to precisely evaluate and optimize the intensity and duration of the application. PMID:25143937

  19. Magnetic stimulation of marigold seed

    NASA Astrophysics Data System (ADS)

    Afzal, I.; Mukhtar, K.; Qasim, M.; Basra, S. M. A.; Shahid, M.; Haq, Z.

    2012-10-01

    The effects of magnetic field treatments of French marigold seeds on germination, early seedling growth and biochemical changes of seedlings were studied under controlled conditions. For this purpose, seeds were exposed to five different magnetic seed treatments for 3 min each. Most of seed treatments resulted in improved germination speed and spread, root and shoot length, seed soluble sugars and a-amylase activity. Magnetic seed treatment with 100 mT maximally improved germination, seedling vigour and starch metabolism as compared to control and other seed treatments. In emergence experiment, higher emergence percentage (4-fold), emergence index (5-fold) and vigorous seedling growth were obtained in seeds treated with 100 mT. Overall, the enhancement of marigold seeds by magnetic seed treatment with 100 mT could be related to enhanced starch metabolism. The results suggest that magnetic field treatments of French marigold seeds have the potential to enhance germination, early growth and biochemical parameters of seedlings.

  20. Stimulation of presynaptic β-adrenoceptors enhances [3H]-noradrenaline release during nerve stimulation in the perfused cat spleen

    PubMed Central

    Celuch, Stella M.; Dubocovich, Margarita L.; Langer, S. Z.

    1978-01-01

    1 The effects of isoprenaline, propranolol and phosphodiesterase inhibitors on 3H-transmitter overflow elicited by low frequency nerve stimulation were determined in the isolated perfused spleen of the cat. 2 (-)-Isoprenaline (0.14, 1.4, and 14 nM) produced a concentration-dependent increase in [3H]-transmitter overflow evoked by nerve stimulation at 1 Hz and was more effective at 1 Hz than at 2 hertz. 3 A concentration of propranolol (0.1 μM), devoid of neurone blocking activity, blocked this effect of (-)-isoprenaline. These results are compatible with the presence of β-adrenoceptors in the noradrenergic nerve endings of the cat spleen. 4 (+)-Isoprenaline (140 nM) failed to increase the release of radioactivity induced by nerve stimulation, indicating that the β-adrenoceptor mediating the facilitation of transmitter release was stereospecific. 5 The increase in 3H-transmitter overflow induced by nerve stimulation during exposure to the phosphodiesterase inhibitor, papaverine (27 μM) was more pronounced than that obtained in the presence of 3-isobutyl-1-methyl xanthine (IBMX) 0.5 mM. The facilitation in transmitter release induced by papaverine was not correlated with the granular effect produced by this drug. 6 In the presence of papaverine, the concentration-effect curve for (-)-isoprenaline on transmitter release was shifted to the left and its maximum was increased. In addition, propranolol significantly reduced the enhancement in noradrenaline release obtained by exposure to papaverine under conditions in which the granular effect produced by the phosphodiesterase inhibitor was even greater than in the absence of the β-blocker. 7 It is concluded that activation of presynaptic β-adrenoceptors in the perfused cat spleen leads to an enhancement in transmitter release which appears to be linked to an increase in cyclic adenosine 3′,5′-monophosphate levels in noradrenergic nerve endings. PMID:206310

  1. The adrenal contribution to the neuroendocrine responses to splanchnic nerve stimulation in conscious calves.

    PubMed Central

    Bloom, S R; Edwards, A V; Jones, C T

    1988-01-01

    1. The extent to which the adrenal gland contributes to neuroendocrine responses to electrical stimulation of the peripheral end of the splanchnic nerve has been investigated in conscious calves in which the right nerve was stimulated either at 4 Hz continuously for 10 min or at 40 Hz in 1 s bursts at 10 s intervals for the same period. 2. It was confirmed that the release of neuropeptide Y (NPY) and of gastrin-releasing peptide (GRP) is potentiated by stimulation in bursts at a relatively high frequency and shown that the adrenal gland made a negligible contribution to these responses. 3. There was no detectable change in the concentration of vasoactive intestinal peptide (VIP) in the arterial plasma but the existence of a very small but highly significant rise in the output of VIP from the adrenal provided evidence that it was released within the gland in response to splanchnic nerve stimulation. 4. The concentration of calcitonin gene-related peptide (CGRP) in the arterial and adrenal venous effluent plasma was consistently below the level of detection of the assay. 5. Splanchnic nerve stimulation resulted in an abrupt rise in the output of both free and total met5-enkephalin-like immunoreactivity from the adrenal gland which was substantially potentiated by stimulating in bursts. This pattern of stimulation also increased the proportion released in a high-molecular-weight form. 6. Stimulation in bursts significantly enhanced the output of both adrenaline and noradrenaline from the adrenal and resulted in the release of proportionately more noradrenaline. Small amounts of dopamine and DOPAC were also released during splanchnic nerve stimulation and the output of dopamine was significantly increased by stimulating in bursts. 7. Both patterns of stimulation elicited an abrupt rise in mean plasma adrenocorticotrophic hormone (ACTH) concentration, which was associated with an increase in mean adrenal cortisol output and the former effect was significantly enhanced

  2. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    PubMed

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients. PMID:21265597

  3. Tactile stimulation during development alters the neuroanatomical organization of the optic nerve in normal rats.

    PubMed

    Horiquini-Barbosa, Everton; Lachat, João-José

    2016-06-01

    This study was designed to investigate the progressive effect of tactile stimulation in the cytoarchitecture of the optic nerve of normal rats during early postnatal development. We used 36 male pups which were randomly assigned to either the tactile-stimulated group (TS-stimulation for 3 min, once a day, from postnatal day (P) 1 to 32) or the non-tactile-stimulated (NTS) group. Morphological analysis were performed to evaluate the alterations caused by tactile stimulation, and morphometric analysis were carried out to determine whether the observed changes in optic nerve cytoarchitecture were significantly different between groups and at three different ages (P18, P22, and P32), thereby covering the entire progression of development of the optic nerve from its start to its completion. The rats of both groups presented similar increase in body weight. The morphometric analysis revealed no difference in the astrocyte density between age-matched groups; however, the oligodendrocyte density of TS group was higher compared to the NTS at P22, and P32, but not at P18. The optic nerve of TS group showed an increase of blood vessels and a reduction of damage fiber density when compared to the age-matched pups of NTS. Taken together, these findings support the view that tactile stimulation, an enriching experience, can positively affects the neuroanatomy of the brain, modifying its cellular components by progressive morphological and morphometric changes. PMID:26879768

  4. Stimulation of raphe (obscurus) nucleus causes long-term potentiation of phrenic nerve activity in cat.

    PubMed

    Millhorn, D E

    1986-12-01

    1. The respiratory response, measured as integrated phrenic nerve activity, during and for up to an hour following 10 min of continuous electrical stimulation of raphe obscurus was quantitated in anaesthetized, artificially ventilated cats whose carotid sinus nerves and vagus nerves had been cut. End-tidal PCO2 and body temperature were kept constant with servocontrollers. 2. Stimulation of raphe obscurus caused a significant increase in both phrenic tidal activity and respiratory frequency that persisted following cessation of the stimulus. This persistent facilitation is referred to as 'long-term potentiation' of respiration. 3. Control stimulations in the parenchyma of the medulla oblongata failed to stimulate respiration and cause the long-term potentiation. 4. Both the direct facilitatory effects of raphe obscurus stimulation on phrenic nerve activity and the long-term potentiation of respiration following the stimulus were prevented by pre-treating cats with methysergide, a serotonin receptor antagonist. 5. The results are discussed in terms of the raphe obscurus being the potential source of the long-term potentiation of respiration that occurs following stimulation of carotid body afferents (Millhorn, Eldridge & Waldrop, 1980a, b). PMID:3114470

  5. Interaction of myenteric neurons and extrinsic nerves in the intestinal inhibitory response induced by mesenteric nerve stimulation.

    PubMed

    Yamasato, T; Nakayama, S

    1991-04-01

    Effects of the mesenteric nerve stimulation (MNS) on the twitch contraction induced by field stimulation were investigated regarding the relationship between myenteric neurons and extrinsic cholinergic nerves in the guinea-pig mesenteric nerve-ileal preparation. The twitch contraction was inhibited after MNS. The inhibition of the twitch contraction after MNS was induced twice, just after MNS (1st inhibition) and 2-3 min later (2nd inhibition) (type I), or once, just after MNS (1st inhibition) (type II), in recovery course of twitch contraction for 6-8 min. The 1st inhibition was slightly decreased by guanethidine and hexamethonium. The inhibitory response (1st inhibition) in both types I and II was recovered to the control level by pretreatment with naloxone (recovered twitch contraction), but the late inhibitory response (2nd inhibition) was markedly observed after 2-3 min in types I and II. Either the 1st or the 2nd inhibition was not altered by capsaicin, desensitization to calcitonin gene-related polypeptide (CGRP), vasoactive intestinal polypeptide (VIP), somatostatin, or galanin. The recovered twitch contraction in types I and II was decreased by CGRP-desensitization, or capsaicin. These results suggest that the first inhibitory response was induced by enteric opioid neurons connected with extrinsic cholinergic nerves, but the 2nd inhibition was induced by unknown substances other than CGRP, VIP, somatostatin, and galanin. The twitch contraction may partly be induced by endogenous neurokinin-like substances. And, some CGRP containing neurons, which connect with extrinsic cholinergic nerves, probably activate the intrinsic excitatory neurons. PMID:1678243

  6. A flexible platform for biofeedback-driven control and personalization of electrical nerve stimulation therapy.

    PubMed

    Ward, Matthew P; Qing, Kurt Y; Otto, Kevin J; Worth, Robert M; John, Simon W M; Irazoqui, Pedro P

    2015-05-01

    Electrical vagus nerve stimulation is a treatment alternative for many epileptic and depressed patients whose symptoms are not well managed with pharmaceutical therapy. However, the fixed stimulus, open loop dosing mechanism limits its efficacy and precludes major advances in the quality of therapy. A real-time, responsive form of vagus nerve stimulation is needed to control nerve activation according to therapeutic need. This personalized approach to therapy will improve efficacy and reduce the number and severity of side effects. We present autonomous neural control, a responsive, biofeedback-driven approach that uses the degree of measured nerve activation to control stimulus delivery. We demonstrate autonomous neural control in rats, showing that it rapidly learns how to most efficiently activate any desired proportion of vagal A, B, and/or C fibers over time. This system will maximize efficacy by minimizing patient response variability and by minimizing therapeutic failures resulting from longitudinal decreases in nerve activation with increasing durations of treatment. The value of autonomous neural control equally applies to other applications of electrical nerve stimulation. PMID:25167554

  7. Near-infrared signals associated with electrical stimulation of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  8. Peripheral nerve stimulation for treatment of chronic headache: a case report.

    PubMed

    Green, Adam; Issa, Mohammed A; Kim, Chong H

    2013-01-01

    Chronic daily headaches can be debilitating. Multiple treatments have been suggested with varying degrees of success. We present a case of a 27-year-old female with greater than ten years of chronic daily headaches. The patient was evaluated at the headache clinic where she was diagnosed with complex migraine with components of occipital neuralgia. Multiple medication regimens were tried without significant benefit. The patient also underwent bilateral occipital blocks along with trigger point injections of various muscles including the semispinalis capitis with significant but limited duration of benefit. After other treatments were unsuccessful, the patient was referred to the Pain Management Center and underwent a trial of peripheral nerve stimulation with significant pain relief without complications. She then proceeded with permanent implantation of the peripheral nerve stimulator with continued pain relief. This case demonstrates the utility of peripheral nerve stimulation for the treatment of refractory chronic daily headaches and should be part of our armamentarium. PMID:24371861

  9. A new job for an old device: a novel use for nerve stimulators in anorectal malformations.

    PubMed

    Kapuller, Vadim; Arbell, Dan; Udassin, Raphael; Armon, Yaron

    2014-03-01

    Muscle stimulation of the perineum is a crucial step in the repair of anorectal malformations. This allows the surgeon to assess muscle function and locate precisely the sphincter muscles during a pull-through operation. Presently, the device commonly used is very expensive. In searching for a cheaper and amenable device we explored utilizing the nerve stimulator MiniStim (model MS-IIIA, Life-Tech, Inc., Houston, TX) normally used for the "train of four" sign in assessing paralysis during general anesthesia. We have used this device in seven consecutive posterior sagittal anorectoplasties and compared its effectiveness with the regular muscle stimulator. In our experience, the nerve stimulator is easier to work with and is a common device in the operating theater. It gave us information that was at least equal to the regular muscle stimulator. PMID:24650485

  10. Increased Extracellular Concentrations of Norepinephrine in Cortex and Hippocampus Following Vagus Nerve Stimulation in the Rat.

    PubMed Central

    Roosevelt, Rodney W.; Smith, Douglas C.; Clough, Richard W.; Jensen, Robert A.; Browning, Ronald A.

    2006-01-01

    The vagus nerve is an important source of afferent information about visceral states and it provides input to the locus coeruleus (LC), the major source of norepinephrine (NE) in the brain. It has been suggested that the effects of electrical stimulation of the vagus nerve on learning and memory, mood, seizure suppression, and recovery of function following brain damage are mediated, in part, by the release of brain NE. The hypothesis that left vagus nerve stimulation (VNS) at the cervical level results in increased extracellular NE concentrations in the cortex and hippocampus was tested at four stimulus intensities 0.0, 0.25, 0.5, and 1.0 mA. Stimulation at 0.0 and 0.25 mA had no effect on NE concentrations, while the 0.5 mA stimulation increased NE concentrations significantly in the hippocampus (23%), but not the cortex. However, 1.0 mA stimulation significantly increased NE concentrations in both the cortex (39%) and hippocampus (28%) bilaterally. The increases in NE were transient and confined to the stimulation periods. VNS did not alter NE concentrations in either structure during the inter-stimulation baseline periods. No differences were observed between NE levels in the initial baseline and the post-stimulation baselines. These findings support the hypothesis that VNS increases extracellular NE concentrations in both the hippocampus and cortex. PMID:16962076

  11. Intraoperative identification of the facial nerve by needle electromyography stimulation with a burr

    PubMed Central

    KHAMGUSHKEEVA, N.N.; ANIKIN, I.A.; KORNEYENKOV, A.A.

    2016-01-01

    The purpose of this research is to improve the safety of surgery for patients with a pathology of the middle and inner ear by preventing damage to the facial nerve by conducting intraoperative monitoring of the facial nerve by needle electromyography with continuous stimulation with a burr. Patients and Methods The clinical part of the prospective study was carried out on 48 patients that were diagnosed with suppurative otitis media. After the surgery with intraoperative monitoring, the facial nerve with an intact bone wall was stimulated electrically in the potentially dangerous places of damage. Minimum (threshold) stimulation (mA) of the facial nerve with a threshold event of 100 μV was used to register EMG events. The anatomical part of the study was carried out on 30 unformalinized cadaver temporal bones from adult bodies. The statistical analysis of obtained data was carried out with parametric methods (Student’s t-test), non-parametric correlation (Spearman’s method) and regression analysis. Results It was found that 1 mA of threshold amperage corresponded to 0.8 mm thickness of the bone wall of the facial canal. Values of transosseous threshold stimulation in potentially dangerous sections of the injury to the facial nerve were obtained. Conclusion These data lower the risk of paresis (paralysis) of the facial muscles during otologic surgery. PMID:27142821

  12. Design of a compact laparoscopic probe for optical stimulation of the cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Fried, Nathaniel M.

    2009-02-01

    The cavernous nerves are responsible for erectile function and course along the prostate surface, varying in size and location among patients, making preservation of sexual function challenging after prostate cancer surgery. Electrical stimulation has proven inconsistent and unreliable in identifying these nerves and evaluating nerve function. Optical stimulation of the rat cavernous nerves has recently been reported as a alternative to electrical stimulation, with potential advantages including noncontact stimulation and improved spatial selectivity. This study describes the design of a compact laparoscopic probe for future clinical use in optical nerve stimulation. The 10-Fr (3.4-mm-OD) prototype laparoscopic probe includes an aspheric lens for collimation of the laser beam with a 0.8- mm-diameter spot, coupled with a 200-μm-core optical fiber. A 45° gold-coated rod mirror in the probe tip provides side-firing delivery of the laser radiation. The probe handle houses a miniature linear motorized stage for lateral scanning of the probe tip over a 25-mm line along the prostate surface. A 5.5-W Thulium fiber laser with tunable wavelength range of 1850-1880 nm was tested with the probe. The probe fits through a standard 5-mm-ID laparoscopic port and is capable of delivering pulse energies up to 8 mJ (1.6 J/cm2) at a 2.5-ms pulse duration, well above the threshold (~ 0.35 J/cm2) for optical stimulation of the cavernous nerves.

  13. Treatment Pulse Application for Magnetic Stimulation

    PubMed Central

    Choi, Sun-Seob; Kim, Whi-Young

    2011-01-01

    Treatment and diagnosis can be made in difficult areas simply by changing the output pulse form of the magnetic stimulation device. However, there is a limitation in the range of treatments and diagnoses of a conventional sinusoidal stimulation treatment pulse because the intensity, width, and form of the pulse must be changed according to the lesion type. This paper reports a multidischarge method, where the stimulation coils were driven in sequence via multiple switching control. The limitation of the existing simple sinusoidal pulse form could be overcome by changing the intensity, width, and form of the pulse. In this study, a new sequential discharge method was proposed to freely alter the pulse width. The output characteristics of the stimulation treatment pulse were examined according to the trigger signal delay applied to the switch at each stage by applying a range of superposition pulses to the magnetic simulation device, which is widely used in industry and medicine. PMID:21738404

  14. Diaphragmatic paralysis evaluated by phrenic nerve stimulation during fluoroscopy or real-time ultrasound

    SciTech Connect

    McCauley, R.G.K.; Labib, K.B.

    1984-10-01

    Stimulation of the phrenic nerve by supplying an electrical impulse to the neck during fluoroscopy or real-time ultrasound (sonoscopy) of the diaphragm allows more precise functional evaluation than fluoroscopy and/or sonoscopy alone. This is especially true of patients who are unable to cooperate because the are on a ventilator, unconscious, or very young. The authors cite cases in which diaphragmatic paralysis was diagnosed by conventional methods but stimulation of the phrenic nerve demonstrated good diaphragmatic motion, leading to a change in prognosis in some cases and a change in therapy in others.

  15. Effects of acute selective pudendal nerve electrical stimulation after simulated childbirth injury

    PubMed Central

    Gill, Bradley C.; Dissaranan, Charuspong; Zutshi, Massarat; Balog, Brian M.; Lin, Danli; Damaser, Margot S.

    2013-01-01

    During childbirth, a combinatorial injury occurs and can result in stress urinary incontinence (SUI). Simulated childbirth injury, consisting of vaginal distension (VD) and pudendal nerve crush (PNC), results in slowed recovery of continence, as well as decreased expression of brain-derived neurotrophic factor (BDNF), a regenerative cytokine. Electrical stimulation has been shown to upregulate BDNF in motor neurons and facilitate axon regrowth through the increase of βII-tubulin expression after injury. In this study, female rats underwent selective pudendal nerve motor branch (PNMB) stimulation after simulated childbirth injury or sham injury to determine whether such stimulation affects bladder and anal function after injury and whether the stimulation increases BDNF expression in Onuf's nucleus after injury. Rats received 4 h of VD followed by bilateral PNC and 1 h of subthreshold electrical stimulation of the left PNMB and sham stimulation of the right PNMB. Rats underwent filling cystometry and anal pressure recording before, during, and after the stimulation. Bladder and anal contractile function were partially disrupted after injury. PNMB stimulation temporarily inhibited bladder contraction after injury. Two days and 1 wk after injury, BDNF expression in Onuf's nucleus of the stimulated side was significantly increased compared with the sham-stimulated side, whereas βII-tubulin expression in Onuf's nucleus of the stimulated side was significantly increased only 1 wk after injury. Acute electrical stimulation of the pudendal nerve proximal to the crush site upregulates BDNF and βII-tubulin in Onuf's nucleus after simulated childbirth injury, which could be a potential preventive option for SUI after childbirth injury. PMID:23152293

  16. Secretion of corticotrophin releasing factor from the adrenal during splanchnic nerve stimulation in conscious calves.

    PubMed Central

    Edwards, A V; Jones, C T

    1988-01-01

    1. The output of corticotrophin releasing factor-like immunoreactivity (CRF) from the adrenal gland has been investigated using the 'adrenal clamp' technique in conscious calves. 2. Stimulation of the peripheral end of the splanchnic nerve for 10 min increased the mean output of CRF progressively, so that it had risen by about twentyfold, to a peak incremental value of 24 +/- 4 pmol min-1 kg-1 at 10 min. This response was significantly increased by stimulating in bursts at 40 Hz for 1 s at 10 s intervals, which raised the mean CRF output by 44 +/- 7 pmol min-1 kg-1 at 10 min (P less than 0.05). 3. The mean output of adrenaline and noradrenaline rose more abruptly in response to splanchnic nerve stimulation with peak incremental values realized within 2.5 min. However, the ratios of adrenal CRF to catecholamine output were closely similar during the later stages of stimulation (7.5-10 min). There was a similarly abrupt rise in adrenal cortisol output in response to splanchnic nerve stimulation which was, nevertheless, linearly related to arterial plasma ACTH concentration throughout. 4. In hypophysectomized calves, administration of adrenocorticotrophic hormone (ACTH1-24) at a dose of 5 ng min-1 kg-1 reduced the output of adrenal CRF in response to splanchnic nerve stimulation by about 50% (P less than 0.05). 5. CRF isolated from adrenal venous effluent plasma, collected both at rest and during splanchnic nerve stimulation, was separated by reverse-phase high-pressure liquid chromatography and found to elute in a position identical to that of human 41CRF. This suggests that adrenal CRF is structurally closely similar to its pituitary counterpart. PMID:2843642

  17. Numerical dosimetry of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  18. Adrenal responses to splanchnic nerve stimulation in conscious calves given naloxone.

    PubMed Central

    Edwards, A V; Jones, C T

    1989-01-01

    1. The effects of stimulating the peripheral end of the right splanchnic nerve in the presence of naloxone (2 mg kg-1) have been investigated in conscious 3 to 6-week-old calves. 2. Mean aortic blood pressure rose to significantly higher levels during splanchnic stimulation in bursts at 40 Hz for 1 s at 10 s intervals than it did during stimulation at the corresponding continuous frequency (4 Hz). Furthermore, naloxone significantly reduced the fall in mean vascular resistance in response to both patterns of stimulation. 3. The output of catecholamines from the adrenal gland, together with the proportion of noradrenaline released, was significantly enhanced by stimulating the splanchnic nerves in bursts in animals pre-treated with naloxone and the proportion of noradrenaline released also increased. In both cases the output of adrenaline and noradrenaline was within the same range as that reported previously in normal control animals. 4. Naloxone significantly increased the amounts of enkephalin-like immunoreactivity and corticotrophin-releasing factor (CRF)-like immunoreactivity released from the adrenal gland in response to splanchnic nerve stimulation and raised the proportion of total to free met5-enkephalin that was secreted. 5. Naloxone also inhibited the rise in plasma adrenocorticotrophic hormone (ACTH) concentration during continuous stimulation at 4 Hz, but not during stimulation at 40 Hz in bursts. Under these latter conditions the output of cortisol apparently directly from the adrenal gland was inhibited. The finding that splanchnic nerve stimulation can potentiate the output of cortisol in response to ACTH was confirmed. 6. These results provide evidence that release of enkephalins and of CRF from the adrenal is inhibited by activating opioid receptors within the gland itself. PMID:2559970

  19. Blood pressure control with selective vagal nerve stimulation and minimal side effects

    NASA Astrophysics Data System (ADS)

    Plachta, Dennis T. T.; Gierthmuehlen, Mortimer; Cota, Oscar; Espinosa, Nayeli; Boeser, Fabian; Herrera, Taliana C.; Stieglitz, Thomas; Zentner, Joseph

    2014-06-01

    Objective. Hypertension is the largest threat to patient health and a burden to health care systems. Despite various options, 30% of patients do not respond sufficiently to medical treatment. Mechanoreceptors in the aortic arch relay blood pressure (BP) levels through vagal nerve (VN) fibers to the brainstem and trigger the baroreflex, lowering the BP. Selective electrical stimulation of these nerve fibers reduced BP in rats. However, there is no technique described to localize and stimulate these fibers inside the VN without inadvertent stimulation of non-baroreceptive fibers causing side effects like bradycardia and bradypnea. Approach. We present a novel method for selective VN stimulation to reduce BP without the aforementioned side effects. Baroreceptor compound activity of rat VN (n = 5) was localized using a multichannel cuff electrode, true tripolar recording and a coherent averaging algorithm triggered by BP or electrocardiogram. Main results. Tripolar stimulation over electrodes near the barofibers reduced the BP without triggering significant bradycardia and bradypnea. The BP drop was adjusted to 60% of the initial value by varying the stimulation pulse width and duration, and lasted up to five times longer than the stimulation. Significance. The presented method is robust to impedance changes, independent of the electrode's relative position, does not compromise the nerve and can run on implantable, ultra-low power signal processors.

  20. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve

    PubMed Central

    Kent, Alexander R; Grill, Warren M

    2013-01-01

    Objective Electrical stimulation of the pudendal nerve (PN) is being developed as a means to restore bladder function in persons with spinal cord injury. A single nerve cuff electrode placed on the proximal PN trunk may enable selective stimulation of distinct fascicles to maintain continence or evoke micturition. The objective of this study was to design a nerve cuff that enabled selective stimulation of the PN. Approach We evaluated the performance of both flat interface nerve electrode (FINE) cuff and round cuff designs, with a range of FINE cuff heights and number of contacts, as well as multiple contact orientations. This analysis was performed using a computational model, in which the nerve and fascicle cross-sectional positions from five human PN trunks were systematically reshaped within the nerve cuff. These cross-sections were used to create finite element models, with electric potentials calculated and applied to a cable model of a myelinated axon to evaluate stimulation selectivity for different PN targets. Subsequently, the model was coupled to a genetic algorithm (GA) to identify solutions that used multiple contact activation to maximize selectivity and minimize total stimulation voltage. Main results Simulations did not identify any significant differences in selectivity between FINE and round cuffs, although the latter required smaller stimulation voltages for target activation due to preserved localization of targeted fascicle groups. Further, it was found that a 10 contact nerve cuff generated sufficient selectivity for all PN targets, with the degree of selectivity dependent on the relative position of the target within the nerve. The GA identified solutions that increased fitness by 0.7–45.5% over single contact activation by decreasing stimulation of non-targeted fascicles. Significance This study suggests that using an optimal nerve cuff design and multiple contact activation could enable selective stimulation of the human PN trunk for

  1. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Kent, Alexander R.; Grill, Warren M.

    2013-06-01

    Objective. Electrical stimulation of the pudendal nerve (PN) is being developed as a means to restore bladder function in persons with spinal cord injury. A single nerve cuff electrode placed on the proximal PN trunk may enable selective stimulation of distinct fascicles to maintain continence or evoke micturition. The objective of this study was to design a nerve cuff that enabled selective stimulation of the PN. Approach. We evaluated the performance of both flat interface nerve electrode (FINE) cuff and round cuff designs, with a range of FINE cuff heights and number of contacts, as well as multiple contact orientations. This analysis was performed using a computational model, in which the nerve and fascicle cross-sectional positions from five human PN trunks were systematically reshaped within the nerve cuff. These cross-sections were used to create finite element models, with electric potentials calculated and applied to a cable model of a myelinated axon to evaluate stimulation selectivity for different PN targets. Subsequently, the model was coupled to a genetic algorithm (GA) to identify solutions that used multiple contact activation to maximize selectivity and minimize total stimulation voltage. Main results. Simulations did not identify any significant differences in selectivity between FINE and round cuffs, although the latter required smaller stimulation voltages for target activation due to preserved localization of targeted fascicle groups. Further, it was found that a ten contact nerve cuff generated sufficient selectivity for all PN targets, with the degree of selectivity dependent on the relative position of the target within the nerve. The GA identified solutions that increased fitness by 0.7-45.5% over single contact activation by decreasing stimulation of non-targeted fascicles. Significance. This study suggests that using an optimal nerve cuff design and multiple contact activation could enable selective stimulation of the human PN trunk for

  2. The function of intradental nerves in relation to the sensations induced by dental stimulation.

    PubMed

    Närhi, M; Hirvonen, T; Huopaniemi, T

    1984-01-01

    Stimulation of intradental nerves has been widely used in pain research as a method for selective activation of pain pathways. It is believed that the only sensation experienced by human subjects in response to activation of pulp nerves is that of pain. However, this concept is not strictly correct. With electrical stimulation at threshold level or near to it a sensation which is not necessarily painful ("prepain") is experienced. When the stimulus intensity is increased suprathreshold, the sensation tends to change to a painful and unpleasant one. The changes in sensations are probably caused by activation of intradental nerve units with different thresholds and conduction velocities. In cats the fastest conducting pulp nerve fibres have the lowest thresholds and slowly conducting units are activated at much higher current levels. In most experiments on human teeth using natural stimuli like hot and cold the only sensation experienced has been pain. It seems also difficult for the subjects to find any difference between different stimuli. Correspondingly, in animal experiments it has been shown that different stimuli applied to dentine are capable of activating the same intradental nerve units probably with a common mechanism (hydrodynamic). However, some recent studies indicate that sensation of cold could be induced by stimulating human teeth. PMID:6148844

  3. Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity.

    PubMed

    Deurloo, K E; Holsheimer, J; Boom, H B

    1998-01-01

    Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of fibres. As well as the usual configurations (monopole, bipole, longitudinal tripole, 'steering' anode), a transverse tripolar configuration (central cathode) is examined. It is found that the transverse tripole is the only configuration giving convex recruitment contours and therefore maximises activation selectivity for a small (cylindrical) bundle of fibres in the periphery of a monofascicular nerve trunk. As the electrode configuration is changed to achieve greater selectivity, the threshold current increases. Therefore threshold currents for fibre excitation with a transverse tripole are relatively high. Inverse recruitment is less extreme than for the other configurations. The influences of several geometrical parameters and model conductivities of the transverse tripole on selectivity and threshold current are analysed. In chronic implantation, when electrodes are encapsulated by a layer of fibrous tissue, threshold currents are low, whereas the shape of the recruitment contours in transverse tripolar stimulation does not change. PMID:9614751

  4. [Transcranial magnetic stimulation used in psychiatry].

    PubMed

    Bouché, Christophe; Marigaux, Sandrine; Pattedoie, Nicolas

    2015-11-01

    Repetitive transcranial magnetic stimulation is a non-invasive treatment technique, using electromagnetism properties. It has been used for around twenty years in neurology (treatment of neuropathic pain, certain abnormal movements, Parkinson's disease), and in psychiatry (obsessive compulsive disorder, hallucinations, mood disorders, etc.). The presence and support of a nurse during the sessions is essential. PMID:26548388

  5. Magnetized stimulated scattering in pulsar winds

    NASA Technical Reports Server (NTRS)

    Sincell, Mark W.; Krolik, Julian H.

    1992-01-01

    The effects of stimulated scattering on a collimated high brightness temperature beam of photons traversing a relativistically streaming magnetized plasma are studied. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and the Lorentz factor gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency, the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam.

  6. Magnetic Stimulation Studies of Foveal Representation

    ERIC Educational Resources Information Center

    Lavidor, Michal; Walsh, Vincent

    2004-01-01

    The right and left visual fields each project to the contralateral cerebral hemispheres, but the extent of the functional overlap of the two hemifields along the vertical meridian is still under debate. After presenting the spatial, temporal, and functional specifications of Transcranial Magnetic Stimulation (TMS), we show that TMS is particularly…

  7. A randomised comparison between ultrasound and nerve stimulation for infraclavicular catheter placement.

    PubMed

    Dhir, S; Armstrong, K; Armstrong, P; Bouzari, A; Mall, J; Yu, J; Ganapathy, S; King, G

    2016-02-01

    We conducted this study to determine if placement of infraclavicular catheters guided by ultrasound is quicker than placement guided by nerve stimulation. Infraclavicular brachial plexus catheters were inserted in 210 randomly allocated patients who were scheduled for elective hand or elbow surgery. Needle and catheter placement was guided by ultrasound (n = 105) or by nerve stimulation (n = 105). The primary outcome was time to sensory block success. Success rate was similar between the two techniques (83.2% vs 81.4%, p = 0.738). However, placement of ultrasound-guided catheters took less time (7.2 [2.5] vs 9.6 [3.6] min, p < 0 .001). Pain and satisfaction scores, and incidence of nerve deficit, were also similar with both techniques. PMID:26566960

  8. Repetitive Nerve Stimulation Transiently Opens the Mitochondrial Permeability Transition Pore in Motor Nerve Terminals of Symptomatic Mutant SOD1 Mice

    PubMed Central

    Nguyen, Khanh T.; Barrett, John N.; García-Chacón, Luis; David, Gavriel; Barrett, Ellen F.

    2011-01-01

    Mitochondria in motor nerve terminals temporarily sequester large Ca2+ loads during repetitive stimulation. In wild-type mice this Ca2+ uptake produces a small (<5 mV), transient depolarization of the mitochondrial membrane potential (Ψm, motor nerve stimulated with at 100 Hz for 5 s). We demonstrate that this stimulation-induced Ψm depolarization attains much higher amplitudes in motor terminals of symptomatic mice expressing the G93A or G85R mutation of human superoxide dismutase 1 (SOD1), models of familial amyotrophic lateral sclerosis (fALS). These large Ψm depolarizations decayed slowly and incremented with successive stimulus trains. Additional Ψm depolarizations occurred that were not synchronized with stimulation. These large Ψm depolarizations were reduced (a) by cyclosporin A (CsA, 1-2 uM), which inhibits opening of the mitochondrial permeability transition pore (mPTP), or (b) by replacing bath Ca2+ with Sr2+, which enters motor terminals and mitochondria but does not support mPTP opening. These results are consistent with the hypothesis that the large Ψm depolarizations evoked by repetitive stimulation in motor terminals of symptomatic fALS mice result from mitochondrial dysfunction that increases the likelihood of transient mPTP opening during Ca2+ influx. Such mPTP openings, a sign of mitochondrial stress, would disrupt motor terminal handling of Ca2+ loads and might thereby contribute to motor terminal degeneration in fALS mice. Ψm depolarizations resembling those in symptomatic fALS mice could be elicited in wild-type mice following 0.5-1 hr exposure to diamide (200 μM), which produces an oxidative stress, but these depolarizations were not reduced by CsA. PMID:21310237

  9. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice.

    PubMed

    Nguyen, Khanh T; Barrett, John N; García-Chacón, Luis; David, Gavriel; Barrett, Ellen F

    2011-06-01

    Mitochondria in motor nerve terminals temporarily sequester large Ca(2+) loads during repetitive stimulation. In wild-type mice this Ca(2+) uptake produces a small (<5 mV), transient depolarization of the mitochondrial membrane potential (Ψ(m), motor nerve stimulated at 100 Hz for 5s). We demonstrate that this stimulation-induced Ψ(m) depolarization attains much higher amplitudes in motor terminals of symptomatic mice expressing the G93A or G85R mutation of human superoxide dismutase 1 (SOD1), models of familial amyotrophic lateral sclerosis (fALS). These large Ψ(m) depolarizations decayed slowly and incremented with successive stimulus trains. Additional Ψ(m) depolarizations occurred that were not synchronized with stimulation. These large Ψ(m) depolarizations were reduced (a) by cyclosporin A (CsA, 1-2 μM), which inhibits opening of the mitochondrial permeability transition pore (mPTP), or (b) by replacing bath Ca(2+) with Sr(2+), which enters motor terminals and mitochondria but does not support mPTP opening. These results are consistent with the hypothesis that the large Ψ(m) depolarizations evoked by repetitive stimulation in motor terminals of symptomatic fALS mice result from mitochondrial dysfunction that increases the likelihood of transient mPTP opening during Ca(2+) influx. Such mPTP openings, a sign of mitochondrial stress, would disrupt motor terminal handling of Ca(2+) loads and might thereby contribute to motor terminal degeneration in fALS mice. Ψ(m) depolarizations resembling those in symptomatic fALS mice could be elicited in wild-type mice following a 0.5-1h exposure to diamide (200 μM), which produces an oxidative stress, but these depolarizations were not reduced by CsA. PMID:21310237

  10. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.

    PubMed

    Koopman, Frieda A; Chavan, Sangeeta S; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P Richard; Mehta, Ashesh D; Levine, Yaakov A; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J; Tak, Paul P

    2016-07-19

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the "inflammatory reflex," is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases. PMID:27382171

  11. Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog.

    PubMed

    Yoo, Paul B; Liu, Haoran; Hincapie, Juan G; Ruble, Stephen B; Hamann, Jason J; Grill, Warren M

    2016-02-01

    Despite current knowledge of the myriad physiological effects of vagus nerve stimulation (VNS) in various mammalian species (including humans), the impact of varying stimulation parameters on nerve recruitment and physiological responses is not well understood. We investigated nerve recruitment, cardiovascular responses, and skeletal muscle responses to different temporal patterns of VNS across 39 combinations of stimulation amplitude, frequency, and number of pulses per burst. Anesthetized dogs were implanted with stimulating and recording cuff electrodes around the cervical vagus nerve, whereas laryngeal electromyogram (EMG) and heart rate were recorded. In seven of eight dogs, VNS-evoked bradycardia (defined as ≥10% decrease in heart rate) was achieved by applying stimuli at amplitudes equal to or greater than the threshold for activating slow B-fibers. Temporally patterned VNS (minimum 5 pulses per burst) was sufficient to elicit bradycardia while reducing the concomitant activation of laryngeal muscles by more than 50%. Temporal patterns of VNS can be used to modulate heart rate while minimizing laryngeal motor fiber activation, and this is a novel approach to reduce the side effects produced by VNS. PMID:26811057

  12. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... III (premarket approval). (c) Date premarket approval application (PMA) or notice of completion of a product development protocol (PDP) is required. A PMA or a notice of completion of a PDP is required to be... nerve stimulator shall have an approved PMA or a declared completed PDP in effect before being placed...

  13. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... III (premarket approval). (c) Date premarket approval application (PMA) or notice of completion of a product development protocol (PDP) is required. A PMA or a notice of completion of a PDP is required to be... nerve stimulator shall have an approved PMA or a declared completed PDP in effect before being placed...

  14. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis

    PubMed Central

    Koopman, Frieda A.; Chavan, Sangeeta S.; Miljko, Sanda; Grazio, Simeon; Sokolovic, Sekib; Schuurman, P. Richard; Mehta, Ashesh D.; Levine, Yaakov A.; Faltys, Michael; Zitnik, Ralph; Tracey, Kevin J.; Tak, Paul P.

    2016-01-01

    Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the “inflammatory reflex,” is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases. PMID:27382171

  15. Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat

    PubMed Central

    Jang, Jun Ho; Nam, Taick Sang; Jun, Jaebeom; Jung, Se Jung; Kim, Dong-Wook; Leem, Joong Woo

    2015-01-01

    We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity. PMID:26770021

  16. Electroejaculation using standard nerve stimulation equipment and Teflon-coated needles.

    PubMed

    Ozkurkcugil, C; Cardenas, D; Hartsell, C; Berger, R E

    1993-12-01

    We attempted transperineal needle electroejaculation using a Digistim nerve stimulator and Teflon-coated needles in 12 anejaculatory men. We obtained semen in 11 men. Five of the 12 men also underwent electroejaculation using a transrectal probe. Comparable semen parameters were obtained by transrectal probe and transperineal needles. PMID:8243692

  17. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  18. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  19. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  20. Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury

    PubMed Central

    Butler, Jane E.; Godfrey, Sharlene; Thomas, Christine K.

    2016-01-01

    Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury. PMID:27049521

  1. Enhancement of peripheral nerve regeneration due to treadmill training and electrical stimulation is dependent on androgen receptor signaling.

    PubMed

    Thompson, Nicholas J; Sengelaub, Dale R; English, Arthur W

    2014-05-01

    Moderate exercise in the form of treadmill training and brief electrical nerve stimulation both enhance axon regeneration after peripheral nerve injury. Different regimens of exercise are required to enhance axon regeneration in male and female mice (Wood et al.: Dev Neurobiol 72 (2012) 688-698), and androgens are suspected to be involved. We treated mice with the androgen receptor blocker, flutamide, during either exercise or electrical stimulation, to evaluate the role of androgen receptor signaling in these activity-based methods of enhancing axon regeneration. The common fibular (CF) and tibial (TIB) nerves of thy-1-YFP-H mice, in which axons in peripheral nerves are marked by yellow fluorescent protein (YFP), were transected and repaired using CF and TIB nerve grafts harvested from non-fluorescent donor mice. Silastic capsules filled with flutamide were implanted subcutaneously to release the drug continuously. Exercised mice were treadmill trained 5 days/week for 2 weeks, starting on the third day post-transection. For electrical stimulation, the sciatic nerve was stimulated continuously for 1 h prior to nerve transection. After 2 weeks, lengths of YFP+ profiles of regenerating axons were measured from harvested nerves. Both exercise and electrical stimulation enhanced axon regeneration, but this enhancement was blocked completely by flutamide treatments. Signaling through androgen receptors is necessary for the enhancing effects of treadmill exercise or electrical stimulation on axon regeneration in cut peripheral nerves. PMID:24293191

  2. Pudendal but not tibial nerve stimulation inhibits bladder contractions induced by stimulation of pontine micturition center in cats.

    PubMed

    Lyon, Timothy D; Ferroni, Matthew C; Kadow, Brian T; Slater, Richard C; Zhang, Zhaocun; Chang, Victor; Lamm, Vladimir; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-02-15

    This study examined the possibility that pudendal nerve stimulation (PNS) or tibial nerve stimulation (TNS) inhibits the excitatory pathway from the pontine micturition center (PMC) to the urinary bladder. In decerebrate cats under α-chloralose anesthesia, electrical stimulation of the PMC (40 Hz frequency, 0.2-ms pulse width, 10-25 s duration) using a microelectrode induced bladder contractions >20 cmH2O amplitude when the bladder was filled to 60-70% capacity. PNS or TNS (5 Hz, 0.2 ms) at two and four times the threshold (2T and 4T) to induce anal or toe twitch was applied to inhibit the PMC stimulation-induced bladder contractions. Propranolol, a nonselective β-adrenergic receptor antagonist, was administered intravenously (1 mg/kg i.v.) to determine the role of sympathetic pathways in PNS/TNS inhibition. PNS at both 2T and 4T significantly (P < 0.05) reduced the amplitude and area under the curve of the bladder contractions induced by PMC stimulation, while TNS at 4T facilitated the bladder contractions. Propranolol completely eliminated PNS inhibition and TNS facilitation. This study indicates that PNS, but not TNS, inhibits PMC stimulation-induced bladder contractions via a β-adrenergic mechanism that may occur in the detrusor muscle as a result of reflex activity in lumbar sympathetic nerves. Neither PNS nor TNS activated a central inhibitory pathway with synaptic connections to the sacral parasympathetic neurons that innervate the bladder. Understanding the site of action involved in bladder neuromodulation is important for developing new therapies for bladder disorders. PMID:26676253

  3. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    NASA Astrophysics Data System (ADS)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  4. Cortical plasticity induced by different degrees of peripheral nerve injuries: a rat functional magnetic resonance imaging study under 9.4 Tesla

    PubMed Central

    2013-01-01

    Background Major peripheral nerve injuries not only result in local deficits but may also cause distal atrophy of target muscles or permanent loss of sensation. Likewise, these injuries have been shown to instigate long-lasting central cortical reorganization. Methods Cortical plasticity changes induced after various types of major peripheral nerve injury using an electrical stimulation technique to the rat upper extremity and functional magnetic resonance imaging (fMRI) were examined. Studies were completed out immediately after injury (acute stage) and at two weeks (subacute stage) to evaluate time affect on plasticity. Results After right-side median nerve transection, cortical representation of activation of the right-side ulnar nerve expanded intra-hemispherically into the cortical region that had been occupied by the median nerve representation After unilateral transection of both median and ulnar nerves, cortical representation of activation of the radial nerve on the same side of the body also demonstrated intra-hemispheric expansion. However, simultaneous electrical stimulation of the contralateral uninjured median and ulnar nerves resulted in a representation that had expanded both intra- and inter-hemispherically into the cortical region previously occupied by the two transected nerve representations. Conclusions After major peripheral nerve injury, an adjacent nerve, with similar function to the injured nerve, may become significantly over-activated in the cortex when stimulated. This results in intra-hemispheric cortical expansion as the only component of cortical plasticity. When all nerves responsible for a certain function are injured, the same nerves on the contralateral side of the body are affected and become significantly over-activated during a task. Both intra- and inter-hemispheric cortical expansion exist, while the latter dominates cortical plasticity. PMID:23659705

  5. Selective control of physiological responses by temporally-patterned electrical stimulation of the canine vagus nerve.

    PubMed

    Yoo, Paul B; Hincapie, Juan G; Hamann, Jason J; Ruble, Stephen B; Wolf, Patrick D; Grill, Warren M

    2011-01-01

    Vagus nerve stimulation (VNS) is effective for treating epilepsy and depression, and has emerging indications for anxiety and heart failure. However, stimulation-evoked side effects remain a challenge for long-term compliance. We investigated the feasibility of reducing VNS side effects by using a temporally-modified stimulation pattern. In 4 anesthetized canines, we measured changes in both the heart rate and evoked laryngeal muscle activity. Compared to baseline, we found that a 5% duty cycle (measured by the number of pulses per second of stimulation) could still evoke a 21% reduction in heart rate; whereas compared to continuous stimulation (3 mA, 300 μs pulsewidth, 20 Hz) the same 5% duty cycle reduced the evoked laryngeal muscle activity by 90%. The results of this study indicate that temporally-patterned stimulation may provide an effective tool for optimizing VNS therapy. PMID:22254997

  6. Cervical Vagal Nerve Stimulation Activates the Stellate Ganglion in Ambulatory Dogs

    PubMed Central

    Rhee, Kyoung-Suk; Hsueh, Chia-Hsiang; Hellyer, Jessica A.; Park, Hyung Wook; Lee, Young Soo; Garlie, Jason; Onkka, Patrick; Doytchinova, Anisiia T.; Garner, John B.; Patel, Jheel; Chen, Lan S.; Fishbein, Michael C.; Everett, Thomas; Lin, Shien-Fong

    2015-01-01

    Background and Objectives Recent studies showed that, in addition to parasympathetic nerves, cervical vagal nerves contained significant sympathetic nerves. We hypothesized that cervical vagal nerve stimulation (VNS) may capture the sympathetic nerves within the vagal nerve and activate the stellate ganglion. Materials and Methods We recorded left stellate ganglion nerve activity (SGNA), left thoracic vagal nerve activity (VNA), and subcutaneous electrocardiogram in seven dogs during left cervical VNS with 30 seconds on-time and 30 seconds off time. We then compared the SGNA between VNS on and off times. Results Cervical VNS at moderate (0.75 mA) output induced large SGNA, elevated heart rate (HR), and reduced HR variability, suggesting sympathetic activation. Further increase of the VNS output to >1.5 mA increased SGNA but did not significantly increase the HR, suggesting simultaneous sympathetic and parasympathetic activation. The differences of integrated SGNA and integrated VNA between VNS on and off times (ΔSGNA) increased progressively from 5.2 mV-s {95% confidence interval (CI): 1.25-9.06, p=0.018, n=7} at 1.0 mA to 13.7 mV-s (CI: 5.97-21.43, p=0.005, n=7) at 1.5 mA. The difference in HR (ΔHR, bpm) between on and off times was 5.8 bpm (CI: 0.28-11.29, p=0.042, n=7) at 1.0 mA and 5.3 bpm (CI 1.92 to 12.61, p=0.122, n=7) at 1.5 mA. Conclusion Intermittent cervical VNS may selectively capture the sympathetic components of the vagal nerve and excite the stellate ganglion at moderate output. Increasing the output may result in simultaneously sympathetic and parasympathetic capture. PMID:25810737

  7. Effect of a high-intensity static magnetic field on sciatic nerve regeneration in the rat

    SciTech Connect

    Cordeiro, P.G.; Seckel, B.R.; Miller, C.D.; Gross, P.T.; Wise, R.E.

    1989-02-01

    The effect of a high-intensity static magnetic field on peripheral nerve regeneration is evaluated in rat sciatic nerve. Forty-four rats underwent sciatic nerve repair using polyethylene nerve guides. Postoperatively, the animals were exposed to a 1-tesla magnetic field for 12 hours per day for 4 weeks with appropriate controls. Our results demonstrate that a 1-tesla static magnetic field has no statistically significant effect on nerve regeneration as determined by myelinated axon counts and electrophysiologic studies. Also, the specific orientation of the sciatic nerve with respect to the magnetic field has no influence on axonal growth or nerve conduction. Periods of restraint of 12 hours per day for 4 weeks significantly inhibit weight gain but have no effect on peripheral nerve regeneration.

  8. Facilitation of magnetic motor evoked potentials during the mixed nerve silent period.

    PubMed

    Young, M S; Triggs, W J; Gerstle, G

    1995-11-01

    We studied motor neuron excitability during the mixed nerve silent period (MNSP) in a hand muscle using magnetic motor evoked potentials (MEPs) and F-waves. MEPs elicited between the V1 and V2 potentials of the MNSP were much larger than control MEPs elicited at rest, and were even comparable in size to control MEPs elicited during voluntary contraction. This facilitation of MEPs occurred without shortening of MEP latency, suggesting a supraspinal mechanism. MEPs were facilitated during the MNSP when elicited with a figure-8-shaped coil in a posterior-anterior orientation, but not when MEPs of the same size were elicited with the coil held in a lateral-medial orientation. F-waves elicited during the MNSP were variable between subjects, and not consistently different from control F-waves elicited at rest. Our findings may reflect increased cortical motor excitability during the MNSP, possibly related to activation of muscle afferents by mixed nerve stimulation. PMID:7565926

  9. Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation.

    PubMed

    Yan, Lu; Zhao, Bingxin; Liu, Xiaohong; Li, Xuan; Zeng, Chao; Shi, Haiyan; Xu, Xiaoxue; Lin, Tong; Dai, Liming; Liu, Yong

    2016-03-23

    The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes. PMID:26926578

  10. Continuous Electrical Stimulation as a Helpful Adjunct During Intraoperative Facial Nerve Monitoring

    PubMed Central

    Herbert, Silverstein; White, David W.

    1991-01-01

    Routine intraoperative monitoring of facial function has been used since 1985. An adaptor has been developed for continuous stimulation (SACS) to be used with the new WR-S8, Monitor/Stimulation The SACS allows the microsurgical instruments and air drills to be electrified and to function as probe tips during surgical dissection. The new WR-S8 Monitor/Stimulator has an ultrasensitive strain gauge that detects facial movement before it is palpable. The remote probe allows an assistant to adjust the current easily. The routine use of facial nerve monitoring with SACS has decreased surgical time, has helped prevent iatrogenic injuries, and has improved our ability to save the facial nerve during otologic and neuro-otologic surgery. ImagesFigure 1Figure 2 PMID:17170834

  11. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries

    PubMed Central

    Nausch, Lydia W. M.; Bonev, Adrian D.; Heppner, Thomas J.; Tallini, Yvonne; Kotlikoff, Michael I.

    2012-01-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signals (“pulsars”) in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca2+ pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca2+ pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca2+ signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca2+ channels, suggesting a role for IP3, rather than Ca2+, in VSM-to-endothelium communication. Block of intermediate-conductance Ca2+-sensitive K+ channels, which have been shown to colocalize with IP3 receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca2+ signals to oppose vasoconstriction. PMID:22140050

  12. Serratus muscle stimulation effectively treats notalgia paresthetica caused by long thoracic nerve dysfunction: a case series.

    PubMed

    Wang, Charlie K; Gowda, Alpana; Barad, Meredith; Mackey, Sean C; Carroll, Ian R

    2009-01-01

    Currently, notalgia paresthetica (NP) is a poorly-understood condition diagnosed on the basis of pruritus, pain, or both, in the area medial to the scapula and lateral to the thoracic spine. It has been proposed that NP is caused by degenerative changes to the T2-T6 vertebrae, genetic disposition, or nerve entrapment of the posterior rami of spinal nerves arising at T2-T6. Despite considerable research, the etiology of NP remains unclear, and a multitude of different treatment modalities have correspondingly met with varying degrees of success. Here we demonstrate that NP can be caused by long thoracic nerve injury leading to serratus anterior dysfunction, and that electrical muscle stimulation (EMS) of the serratus anterior can successfully and conservatively treat NP. In four cases of NP with known injury to the long thoracic nerve we performed transcutaneous EMS to the serratus anterior in an area far lateral to the site of pain and pruritus, resulting in significant and rapid pain relief. These findings are the first to identify long thoracic nerve injury as a cause for notalgia paresthetica and electrical muscle stimulation of the serratus anterior as a possible treatment, and we discuss the implications of these findings on better diagnosing and treating notalgia paresthetica. PMID:19772656

  13. Serratus muscle stimulation effectively treats notalgia paresthetica caused by long thoracic nerve dysfunction: a case series

    PubMed Central

    2009-01-01

    Currently, notalgia paresthetica (NP) is a poorly-understood condition diagnosed on the basis of pruritus, pain, or both, in the area medial to the scapula and lateral to the thoracic spine. It has been proposed that NP is caused by degenerative changes to the T2-T6 vertebrae, genetic disposition, or nerve entrapment of the posterior rami of spinal nerves arising at T2-T6. Despite considerable research, the etiology of NP remains unclear, and a multitude of different treatment modalities have correspondingly met with varying degrees of success. Here we demonstrate that NP can be caused by long thoracic nerve injury leading to serratus anterior dysfunction, and that electrical muscle stimulation (EMS) of the serratus anterior can successfully and conservatively treat NP. In four cases of NP with known injury to the long thoracic nerve we performed transcutaneous EMS to the serratus anterior in an area far lateral to the site of pain and pruritus, resulting in significant and rapid pain relief. These findings are the first to identify long thoracic nerve injury as a cause for notalgia paresthetica and electrical muscle stimulation of the serratus anterior as a possible treatment, and we discuss the implications of these findings on better diagnosing and treating notalgia paresthetica. PMID:19772656

  14. Vagus nerve stimulation for treatment of partial seizures: 2. Safety, side effects, and tolerability. First International Vagus Nerve Stimulation Study Group.

    PubMed

    Ramsay, R E; Uthman, B M; Augustinsson, L E; Upton, A R; Naritoku, D; Willis, J; Treig, T; Barolat, G; Wernicke, J F

    1994-01-01

    Vagus nerve stimulation (VNS) significantly reduces the frequency of partial seizures in refractory epilepsy patients. We examined the serious adverse events, side effects, and tolerability as they relate to the surgical implant procedure and the stimulating device. We also reviewed potential drug interactions, device output complications, and impact of the therapy on overall health status. We analyzed the first 67 patients to exist the acute phase of the EO3 VNS trial comparing high (therapeutic) VNS to low (less or noneffective) VNS. Data were collected from case report forms used at each of the four visits during the 12-week baseline and at each of the four visits during the 14-week randomized phase of the trial. No significant complications were reported as a result of the implant procedure. Serious adverse events included 1 patient who experienced direct current to the vagus nerve owing to generator malfunction resulting in left vocal cord paralysis and withdrawal of the patient from the study. No clinically significant effects on vital signs, cardiac function, or gastric function were detected. Side effects associated with VNS in the high group were hoarseness (35.5%), coughing (13.9%), and throat pain (12.9%). In the low group, only hoarseness (13.9%) and throat pain (13.9%) were associated with VNS. These effects generally wrre not considered clinically significant and occurred primarily during the stimulation pulses. No patients discontinued VNS therapy during the acute phase because of side effects associated with normal stimulation. Except for the one instance of a short circuit in the system resulting in a direct current, stimulating system complications were minor, limited to programming, unscheduled stimulation, and high lead impedance. Patients, investigators, and patient companions rated patients receiving high stimulation as more "improved" than those receiving low stimulation in regards to overall health status. Antiepileptic drug (AED) plasma

  15. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy.

    PubMed

    Horie, Hidenori; Kadoya, Toshihiko; Hikawa, Naoshi; Sango, Kazunori; Inoue, Hiroko; Takeshita, Kaori; Asawa, Reiko; Hiroi, Tomoko; Sato, Manami; Yoshioka, Tohru; Ishikawa, Yoshihiro

    2004-02-25

    Various neurotrophic factors that promote axonal regeneration have been investigated in vivo, but the signals that prompt neurons to send out processes in peripheral nerves after axotomy are not well understood. Previously, we have shown oxidized galectin-1 (GAL-1/Ox) promotes initial axonal growth after axotomy in peripheral nerves. However, the mechanism by which GAL-1/Ox promotes axonal regeneration remains unclear and is the subject of the present study. To identify possible target cells of GAL-1/Ox, a fluorescently labeled recombinant human GAL-1/Ox (rhGAL-1/Ox) was incubated with DRG neurons, Schwann cells, and intraperitoneal macrophages from adult rats. Only the cell surfaces of intraperitoneal macrophages bound the rhGAL-1/Ox, suggesting that these cells possess a receptor for GAL-1/Ox. Experiments examining tyrosine phosphorylation revealed that rhGAL-1/Ox stimulated changes in signal transduction pathways in these macrophages. These changes caused macrophages to secrete an axonal growth-promoting factor. This was demonstrated when conditioned media of macrophages stimulated with rhGAL-1/Ox in 48 hr culture strongly enhanced axonal regeneration from transected-nerve sites of DRG explants. Furthermore, activated macrophage-conditioned media also improved Schwann cell migration from the transected-nerve sites. From these results, we propose that axonal regeneration occurs in axotomized peripheral nerves as a result of cytosolic reduced galectin-1 being released from Schwann cells and injured axons, which then becomes oxidized in the extracellular space. Oxidized galectin-1 then stimulates macrophages to secrete a factor that promotes axonal growth and Schwann cell migration, thus enhancing peripheral nerve regeneration. PMID:14985427

  16. Multichannel magnetic stimulation system design considering mutual couplings among the stimulation coils.

    PubMed

    Han, Byung H; Chun, In K; Lee, Sang C; Lee, Soo Y

    2004-05-01

    We introduce some simulation and experiment results of the multichannel magnetic stimulator development that has been carried out as an initial attempt to realize a multichannel functional magnetic stimulator. For efficient functional magnetic stimulations, precise spatial localization of stimulation sites without any movements of the stimulation coils is very important. We have found that the mutual coupling effect among the adjacent stimulation coils in the coil array has to be considered in the determination of the charge voltages in some coil array configurations. Experimental results obtained with a 4-channel magnetic stimulator are presented. PMID:15132507

  17. Hypoglossal Nerve Stimulator Implantation in an Adolescent With Down Syndrome and Sleep Apnea.

    PubMed

    Diercks, Gillian R; Keamy, Donald; Kinane, Thomas Bernard; Skotko, Brian; Schwartz, Allison; Grealish, Ellen; Dobrowski, John; Soose, Ryan; Hartnick, Christopher J

    2016-05-01

    Obstructive sleep apnea (OSA) is more common in children with Down syndrome, affecting up to 60% of patients, and may persist in up to 50% of patients after adenotonsillectomy. These children with persistent moderate to severe OSA require continuous positive airway pressure, which is often poorly tolerated, or even tracheotomy for severe cases. The hypoglossal nerve stimulator is an implantable device that produces an electrical impulse to the anterior branches of the hypoglossal nerve, resulting in tongue protrusion in response to respiratory variation. It is an effective treatment of sleep apnea in select adult patients because it allows for alleviation of tongue base collapse, improving airway obstruction. Herein we describe the first pediatric hypoglossal nerve stimulator implantation, which was performed in an adolescent with Down syndrome and refractory severe OSA (apnea hypopnea index [AHI]: 48.5 events/hour). The patient would not tolerate continuous positive airway pressure and required a long-standing tracheotomy. Hypoglossal nerve stimulator therapy was well tolerated and effective, resulting in significant improvement in the patient's OSA (overall AHI: 3.4 events/hour; AHI: 2.5-9.7 events/hour at optimal voltage settings depending on sleep stage and body position). Five months after implantation, the patient's tracheotomy was successfully removed and he continues to do well with nightly therapy. PMID:27244805

  18. The Effects of Granulocyte-Colony Stimulating Factor on Regeneration in Nerve Crush Injuries in Rats.

    PubMed

    Song, Yi-Sun; Joe, Jun-Ho; Joo, Hyun-Woo; Park, In-Hwa; Shen, Guang-Yin; Kim, Ki-Jun; Lee, Yonggu; Shin, Jeong Hun; Kim, Hyuck; Kim, Kyung-Soo

    2016-07-01

    Granulocyte-colony stimulating factor (G-CSF) is widely known to have a neuroprotective effect, but its effects on function and morphology in mechanical nerve injury are not well understood. The aim of this study was to confirm the time course of the functional changes and morphological effects of G-CSF in a rat model of nerve crush injury. Twelve-eight rats were divided into three group: sham-operated control group, G-CSF-treated group, and saline treated group. 2 weeks after the nerve crush injury, G-CSF was injected for 5 days. After 4 weeks, functional tests such as motor nerve conduction velocity (MNCV), mechanical and cold allodynia tests, and morphological studies were performed. G-CSF-treated rats had significantly improved nerve function including MNCV and mechanical and cold allodynia. In addition, G-CSF-treated rats had significantly higher the density of myelinated fibers than saline-treated rats. In conclusion, we found that 100 μg/kg administration of G-CSF promoted long-term functional recovery in a rat model of nerve crush injury. PMID:26980007

  19. Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise.

    PubMed

    Gordon, Tessa; English, Arthur W

    2016-02-01

    Enhancing the regeneration of axons is often considered to be a therapeutic target for improving functional recovery after peripheral nerve injury. In this review, the evidence for the efficacy of electrical stimulation (ES), daily exercise and their combination in promoting nerve regeneration after peripheral nerve injuries in both animal models and in human patients is explored. The rationale, effectiveness and molecular basis of ES and exercise in accelerating axon outgrowth are reviewed. In comparing the effects of ES and exercise in enhancing axon regeneration, increased neural activity, neurotrophins and androgens are considered to be common requirements. Similarly, there are sex-specific requirements for exercise to enhance axon regeneration in the periphery and for sustaining synaptic inputs onto injured motoneurons. ES promotes nerve regeneration after delayed nerve repair in humans and rats. The effectiveness of exercise is less clear. Although ES, but not exercise, results in a significant misdirection of regenerating motor axons to reinnervate different muscle targets, the loss of neuromuscular specificity encountered has only a very small impact on resulting functional recovery. Both ES and exercise are promising experimental treatments for peripheral nerve injury that seem to be ready to be translated to clinical use. PMID:26121368

  20. Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism.

    PubMed Central

    Schelling, G.; Delius, M.; Gschwender, M.; Grafe, P.; Gambihler, S.

    1994-01-01

    Shock waves (SWs) are single pressure pulses with amplitudes up to over 100 MPa, a rise time of only a few nanoseconds, and a short duration of approximately 2 microseconds. Their clinical application for stone destruction causes pain, indicating nerve stimulation by SWs. To examine this phenomenon, sciatic nerves of frogs were exposed to SWs in an organ bath. The SWs were generated with an experimental Dornier lithotripter model XL1 at an operating voltage of 15 kV. The nerves were mounted in a chamber which allowed electrical nerve stimulation and the registration of electrically and SW-induced compound action potentials (SWCAPs). The chamber was filled with frog Ringer's solution. In a standardized protocol. The first experiment established that 95.0 +/- 4.7% of administered SWs induced action potentials which were lower in amplitude (1.45 +/- 1.14 versus 1.95 +/- 0.95 mV, p = 0.004) but similar in shape to electrically induced compound action potentials. In a second experiment, it was shown that the site of origin of the SWCAPs could be correctly determined by simultaneous recording of action potentials at both ends of the nerve. The mechanism of shock wave stimulation was examined by experiments 3 and 4. In experiment 3, in contrast to the previous experiments, SW exposure of the nerves was performed 6 cm outside the shock wave focus. This resulted in a mean probability of inducing a SWCAP of only 4%. After gas bubble administration, this probability increased to 86% for the first SW released immediately after bubble application and declined to 56% for the second, 21% for the third, to 0 for the 10th SW after fluid injection. This indicates that cavitation, the interaction between shock waves and gas bubbles in fluid or tissues, was involved in SWCAP generation. In experiment 4, nerves were again exposed in the focus, however, the Ringer's solution surrounding the nerve was replaced by polyvinyl alcohol (PVA). PVA is a solution with low cavitation activity

  1. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity

    PubMed Central

    Pardo, JV; Sheikh, SA; Kuskowski, MA; Surerus-Johnson, C; Hagen, MC; Lee, JT; Rittberg, BR; Adson, DE

    2008-01-01

    Fourteen patients were treated over 2 years with cervical vagus nerve stimulation (VNS) for adjunctive therapy of severe, treatment-resistant depression. Here, we report the serendipitous observation that this treatment was associated with highly significant, gradual weight loss despite the patients’ report of not dieting or exercising. The weight loss was proportional to the initial BMI, that is, the more severe the obesity, the greater the weight loss. Weight loss did not correlate with changes in mood symptoms. The vagus nerve carries visceral information to and from the brain; modulation of its activity may alter eating behavior. Chronic cervical VNS may merit controlled study for the treatment of severe obesity. PMID:17563762

  2. Transcutaneous Electrical Nerve Stimulation (TENS) A Possible Aid for Pain Relief in Developing Countries?

    PubMed Central

    Tashani, O; Johnson, MI

    2009-01-01

    Transcutaneous electrical nerve stimulation (TENS) refers to the delivery of electrical currents through the skin to activate peripheral nerves. The technique is widely used in developed countries to relieve a wide range of acute and chronic pain conditions, including pain resulting from cancer and its treatment. There are many systematic reviews on TENS although evidence is often inconclusive because of shortcomings in randomised control trials methodology. In this overview the basic science behind TENS will be discussed, the evidence of its effectiveness in specific clinical conditions analysed and a case for its use in pain management in developing countries will be made. PMID:21483510

  3. Movement-generated afference paired with transcranial magnetic stimulation: an associative stimulation paradigm

    PubMed Central

    2014-01-01

    Background A peripheral nerve stimulus can enhance or suppress the evoked response to transcranial magnetic stimulation (TMS) depending on the latency of the preceding peripheral nerve stimulation (PNS) pulse. Similarly, somatosensory afference from the passively moving limb can transiently alter corticomotor excitability, in a phase-dependent manner. The repeated association of PNS with TMS is known to modulate corticomotor excitability; however, it is unknown whether repeated passive-movement associative stimulation (MAS) has similar effects. Methods In a proof-of-principle study, using a cross-over design, seven healthy subjects received in separate sessions: (1) TMS (120% of the resting motor threshold-RMT, optimal site for Flexor Carpi Radialis) with muscle at rest; (2) TMS paired with cyclic passive movement during extension cyclic passive movement (400 pairs, 1 Hz), with the intervention order randomly assigned. Normality was tested using the Kolmogorov-Smirnov test, then compared to pre-intervention baseline using repeated measures ANOVA with a Dunnet multiple comparisons test. Results MAS led to a progressive and significant decrease in the motor evoked potential (MEP) amplitude over the intervention (R2 = 0.6665, P < 0.0001), which was not evident with TMS alone (R2 = 0.0068, P = 0.641). Post-intervention excitability reduction, only present with MAS intervention, remained for 20min (0-10min = 68.2 ± 4.9%, P < 0.05; 10-20min = 73.3 ± 9.7%, P < 0.05). Conclusion The association of somatosensory afference from the moving limb with TMS over primary motor cortex in healthy subjects can be used to modulate corticomotor excitability, and may have therapeutic implications. PMID:24597619

  4. Waveform efficiency analysis of auditory nerve fiber stimulation for cochlear implants.

    PubMed

    Lotfi Navaii, Mehdi; Sadjedi, Hamed; Jalali, Mohsen

    2013-09-01

    Evaluation of the electrical stimulation efficiency of various stimulating waveforms is an important issue for efficient neural stimulator design. Concerning the implantable micro devices design, it is also necessary to consider the feasibility of hardware implementation of the desired waveforms. In this paper, the charge, power and energy efficiency of four waveforms (i.e. square, rising ramp, triangular and rising ramp-decaying exponential) in various durations have been simulated and evaluated based on the computational model of the auditory nerve fibers. Moreover, for a fair comparison of their feasibility, a fully integrated current generator circuit has been developed so that the desired stimulating waveforms can be generated. The simulation results show that stimulation with the square waveforms is a proper choice in short and intermediate durations while the rising ramp-decaying exponential or triangular waveforms can be employed for long durations. PMID:23918258

  5. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Repetitive transcranial magnetic stimulation....5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external device that delivers transcranial repetitive pulsed...

  6. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Repetitive transcranial magnetic stimulation....5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external device that delivers transcranial repetitive pulsed...

  7. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Repetitive transcranial magnetic stimulation....5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external device that delivers transcranial repetitive pulsed...

  8. The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans.

    PubMed

    Burger, Andreas M; Verkuil, Bart; Van Diest, Ilse; Van der Does, Willem; Thayer, Julian F; Brosschot, Jos F

    2016-07-01

    A critical component of the treatment for anxiety disorders is the extinction of fear via repeated exposure to the feared stimulus. This process is strongly dependent on successful memory formation and consolidation. Stimulation of the vagus nerve enhances memory formation in both animals and humans. The objective of this study was to assess whether transcutaneous stimulation of the vagus nerve (tVNS) can accelerate extinction memory formation and retention in fear conditioned humans. To assess fear conditioning and subsequent fear extinction, we assessed US expectancy ratings, fear potentiated startle responses and phasic heart rate responses. We conducted a randomized controlled trial in thirty-one healthy participants. After fear conditioning participants were randomly assigned to receive tVNS or sham stimulation during the extinction phase. Retention of extinction memory was tested 24h later. tVNS accelerated explicit fear extinction learning (US expectancy ratings), but did not lead to better retention of extinction memory 24h later. We did not find a differential physiological conditioning response during the acquisition of fear and thus were unable to assess potential effects of tVNS on the extinction of physiological indices of fear. These findings complement recent studies that suggest vagus nerve stimulation could be a promising tool to improve memory consolidation and fear extinction. PMID:27222436

  9. Extracellular voltage profile for reversing the recruitment order of peripheral nerve stimulation: a simulation study.

    PubMed

    Lertmanorat, Zeng; Durand, Dominique M

    2004-12-01

    Electrical stimulation of peripheral nerve activates large-diameter fibers before small ones. A physiological recruitment order, from small to large-diameter axons, is desirable in many applications. Previous studies using computer simulations showed that selective activation of small fibers could be achieved by reshaping the extracellular voltage profile along the nerve using an array of nine electrodes. In this study, several electrode-array configurations were tested in order to minimize the number of contacts. Electrode arrays of 5, 7, 9, and 11 contacts with 0.75 mm contact separation were performed in computer simulations of dog sacral root (S2). Electrode arrays of 5 and 7 contacts recruited 40% of small axons (<10 microm) when recruiting only 10% of larger axons. Effectiveness of 9- and 11-contact arrays decreased with the presence of epineurium and perineurium. The effectiveness of electrode arrays was independent of stimulation pulsewidth. The biphasic-pulse stimulation with the amplitude of the second phase set as low as possible should be used to prevent the excitation of large axons during the second phase and to minimize the electrode corrosion. Arrays of 5 and 7 contacts also decreased the recruitment curve slope to 26% and 51% of the tripolar electrode, respectively. This modeling study predicts that reversing the recruitment order of peripheral nerve stimulation could be achieved by reshaping the extracellular voltage using electrode arrays of 5 or 7 contacts. PMID:15876640

  10. Successful Treatment of Occipital Neuralgia with Implantable Peripheral Nerve Stimulation in a Pacemaker-Dependent Patient

    PubMed Central

    Chaiban, Gassan; Tolba, Reda; Eissa, Hazem; Lirette, Lesley Smallwood; Almualim, Mohammed; Malaty, Adham; Atallah, Joseph

    2014-01-01

    Background Peripheral nerve stimulation has been used to treat patients with occipital nerve–related chronic headaches who have been unsuccessful with less invasive therapeutic approaches. Patients with pacemaker-dependent cardiac conduction abnormalities require unique consideration prior to the implantation of peripheral nerve stimulators because the placement of the devices may lead to failure of the systems secondary to electromagnetic interference or crosstalk between the devices. Case Report An 86-year-old female who suffered from chronic right-sided cervicogenic headaches and neck pain had received only temporary relief from previous treatments. Additional comorbidities included longstanding pacemaker-dependent atrioventricular node conduction disease. Because the extent to which nerve stimulators electrically interact with pacemakers is unclear, we tunneled the leads to the lumbar region of the back and placed the generator on the contralateral side to the pacemaker to minimize the chance that the 2 devices would interfere. The patient has remained pain free for 1 year since implantation. Conclusion Although no current published trials evaluate the degree of interference between medical devices, case reports increasingly suggest that simultaneous implantation of a spinal cord stimulator and pacemaker is safe as long as precautions are taken and the devices are checked periodically, particularly when the devices are adjusted. PMID:24688344

  11. A Simple Technique for Surgical Placement of Occipital Nerve Stimulators without Anchoring the Lead.

    PubMed

    Plazier, Mark; Camp, Tim Van; Mevnosky, Tomas; Ost, Jan; De Ridder, Dirk; Vanneste, Sven

    2016-09-01

    Introduction Greater occipital nerve stimulation is applied in the treatment of occipital neuralgia, headache, and fibromyalgia. Multiple techniques have been described along with their subsequent complications. The most frequent complications are related to lead migration, infection, and undesired stimulation effects. Revision surgery occurs in up to 60% of the cases. Patients and Methods A total of 92 implantations, 51 trials (6-10 weeks), and 41 permanent implantations (follow-up: 36-72 months) were performed in a single center using a simple technique without an anchoring device. The electrode is tunneled at a 45-degree angle to prevent migration. Complications and additional surgeries were recorded during the follow-up period. Results All patients had bilateral greater occipital nerve stimulation. A total of 16 complications (17.4%) occurred. Seven patients (7.6%) underwent additional surgery. The major complication was infection; lead migration made up only 3.3% of the complications. Conclusions We present a simple technique without the use of an anchoring device that is feasible in achieving bilateral occipital nerve stimulation and decreases the complications, especially lead migration. PMID:26444964

  12. A point process framework for modeling electrical stimulation of the auditory nerve.

    PubMed

    Goldwyn, Joshua H; Rubinstein, Jay T; Shea-Brown, Eric

    2012-09-01

    Model-based studies of responses of auditory nerve fibers to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for providing sound information to cochlear implant users. To accomplish this, models must accurately describe spiking activity while avoiding excessive complexity that would preclude large-scale simulations of populations of auditory nerve fibers and obscure insight into the mechanisms that influence neural encoding of sound information. In this spirit, we develop a point process model of individual auditory nerve fibers that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the proposed model consists of a cascade of linear and nonlinear stages. We show how each of these stages can be associated with biophysical mechanisms and related to models of neuronal dynamics. Moreover, we derive a semianalytical procedure that uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation. Throughout, we compare model predictions to published physiological data of response to high and low pulse rate stimulation. We find that the model, although constructed to fit data from single and paired pulse experiments, can accurately predict responses to unmodulated and modulated pulse train stimuli. We close by performing an ideal observer analysis of simulated spike trains in response to sinusoidally amplitude modulated stimuli and find that carrier pulse rate does not affect modulation detection thresholds. PMID:22673331

  13. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles

    NASA Astrophysics Data System (ADS)

    Badia, Jordi; Boretius, Tim; Andreu, David; Azevedo-Coste, Christine; Stieglitz, Thomas; Navarro, Xavier

    2011-06-01

    The selection of a suitable nerve electrode for neuroprosthetic applications implies a trade-off between invasiveness and selectivity, wherein the ultimate goal is achieving the highest selectivity for a high number of nerve fascicles by the least invasiveness and potential damage to the nerve. The transverse intrafascicular multichannel electrode (TIME) is intended to be transversally inserted into the peripheral nerve and to be useful to selectively activate subsets of axons in different fascicles within the same nerve. We present a comparative study of TIME, LIFE and multipolar cuff electrodes for the selective stimulation of small nerves. The electrodes were implanted on the rat sciatic nerve, and the activation of gastrocnemius, plantar and tibialis anterior muscles was recorded by EMG signals. Thus, the study allowed us to ascertain the selectivity of stimulation at the interfascicular and also at the intrafascicular level. The results of this study indicate that (1) intrafascicular electrodes (LIFE and TIME) provide excitation circumscribed to the implanted fascicle, whereas extraneural electrodes (cuffs) predominantly excite nerve fascicles located superficially; (2) the minimum threshold for muscle activation with TIME and LIFE was significantly lower than with cuff electrodes; (3) TIME allowed us to selectively activate the three tested muscles when stimulating through different active sites of one device, both at inter- and intrafascicular levels, whereas selective activation using multipolar cuff (with a longitudinal tripolar stimulation configuration) was only possible for two muscles, at the interfascicular level, and LIFE did not activate selectively more than one muscle in the implanted nerve fascicle.

  14. Comparison of skin sensory thresholds using pre-programmed or single-frequency transcutaneous electrical nerve stimulation

    PubMed Central

    Kang, Jong Ho

    2015-01-01

    [Purpose] The purpose of the present study was to compare the sensory thresholds of healthy subjects using pre-programmed or single-frequency transcutaneous electrical nerve stimulation. [Subjects] Ninety healthy adult subjects were randomly assigned to pre-programmed or single-frequency stimulation groups, each consisting of 45 participants. [Methods] Sensory thresholds were measured in the participants’ forearms using von Frey filaments before and after pre-programmed or single-frequency transcutaneous electrical nerve stimulation, and the result in values were analyzed. [Results] Significant increases in sensory threshold after stimulation were observed in both groups. However, there were no significant differences between the two groups in sensory thresholds after stimulation or in the magnitude of threshold increases following stimulation. [Conclusion] Our results show that there are no differences between sensory threshold increases induced by pre-programmed and single-frequency transcutaneous electrical nerve stimulation. PMID:26834358

  15. Prognostication of Bell's palsy using transcranial magnetic stimulation.

    PubMed

    Rimpiläinen, I; Eskola, H; Laippala, P; Laranne, J; Karma, P

    1997-01-01

    Transcranial magnetic stimulation (TMS) provides a method to noninvasive excitation of the facial nerve in its intracranial segment close to the internal acoustic meatus. Thus, the site of facial nerve activation with TMS is proximal to or within the site of the lesion in Bell's palsy. To evaluate the prognostic capability of TMS in unilateral Bell's palsy we examined 137 patients with this method, and compared the results with electroneuronography (ENoG). Within 0-4 days from the onset of palsy, the patients with elicitable TMS responses recovered better than those in whom TMS responses were not elicitable. If TMS was performed 5-9 days or 10-28 days after the onset of palsy, it did not provide any prognostic information. Based on amplitude side-to-side differences, ENoG did not contribute prognostic information during the first 9 days from the onset of palsy. Later on, 10-28 days after the onset of palsy, ENoG showed an increased capability to discriminate the patients with poor prognosis. Thus, elicitable facial motor response with TMS predicts good prognosis of Bell's palsy at an early stage whereas poor response with ENoG predicts less favorable prognosis at a later stage. PMID:9288286

  16. A good preoperative response to transcutaneous electrical nerve stimulation predicts a better therapeutic effect of implanted occipital nerve stimulation in pharmacologically intractable headaches.

    PubMed

    Nguyen, Jean-Paul; Nizard, Julien; Kuhn, Emmanuelle; Carduner, Florence; Penverne, Frédérique; Verleysen-Robin, Marie-Christine; Terreaux, Luc; de Gaalon, Solène; Raoul, Sylvie; Lefaucheur, Jean-Pascal

    2016-02-01

    Occipital nerve stimulation (ONS) is a surgical approach to treat patients with medically intractable chronic headache disorders. However, no preoperative test has been yet validated to allow candidates to be selected for implantation. In this study, the analgesic efficacy of transcutaneous electrical nerve stimulation (TENS) was tested for 1 to 3 months in 41 patients with pharmacologically intractable headache disorders of various origins, using a new technique of electrode placement over the occipital nerve. ONS electrodes were subsequently implanted in 33 patients (occipital neuralgia [n=15], cervicogenic headache [n=7], cluster headache [n=6], chronic migraine [n=5]) who had responded at least moderately to TENS. Assessment was performed up to five years after implantation (three years on average), based on the mean and maximum daily pain intensity scored on a 0-10 visual analogue scale and the number of headache days per month. Both TENS and chronic ONS therapy were found to be efficacious (57-76% improvement compared to baseline on the various clinical variables). The efficacy of ONS was better in cases of good or very good preoperative response to TENS than in cases of moderate response to TENS. Implanted ONS may be a valuable therapeutic option in the long term for patients with pharmacologically intractable chronic headache. Although we cannot conclude in patients with poor or no response to TENS, a good or very good response to TENS can support the indication of ONS therapy. This preoperative test could particularly be useful in patients with chronic migraine, in whom it may be difficult to indicate an invasive technique of cranial neurostimulation. PMID:26895733

  17. Dosimetry of typical transcranial magnetic stimulation devices

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2010-05-01

    The therapeutic staff using transcranial magnetic stimulation (TMS) devices could be exposed to magnetic pulses. In this paper, dependence of induced currents in real human man model on different coil shapes, distance between the coil and man model as well as the rotation of the coil in space have been investigated by employing impedance method. It was found that the figure-of-eight coil has less leakage magnetic field and low current density induced in the body compared with the round coil. The TMS power supply cables play an important role in the induced current density in human body. The induced current density in TMS operator decreased as the coil rotates from parallel position to perpendicular position. Our present study shows that TMS operator should stand at least 110 cm apart from the coil.

  18. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.

    PubMed

    Ramekers, Dyan; Versnel, Huib; Strahl, Stefan B; Klis, Sjaak F L; Grolman, Wilko

    2015-03-01

    Successful cochlear implant performance requires adequate responsiveness of the auditory nerve to prolonged pulsatile electrical stimulation. Degeneration of the auditory nerve as a result of severe hair cell loss could considerably compromise this ability. The main objective of this study was to characterize the recovery of the electrically stimulated auditory nerve, as well as to evaluate possible changes caused by deafness-induced degeneration. To this end we studied temporal responsiveness of the auditory nerve in a guinea pig model of sensorineural hearing loss. Using masker-probe and pulse train paradigms we compared electrically evoked compound action potentials (eCAPs) in normal-hearing animals with those in animals with moderate (two weeks after ototoxic treatment) and severe (six weeks after ototoxic treatment) loss of spiral ganglion cells (SGCs). Masker-probe interval and pulse train inter-pulse interval was varied from 0.3 to 16 ms. Whereas recovery assessed with masker-probe was roughly similar for normal-hearing and both groups of deafened animals, it was considerably faster for six weeks deaf animals (τ ≈ 1.2 ms) than for two weeks deaf or normal-hearing animals (τ ≈ 3-4 ms) when 100-ms pulse trains were applied. Latency increased with decreasing inter-pulse intervals, and this was more pronounced with pulse trains than with masker-probe stimulation. With high frequency pulse train stimulation eCAP amplitudes were modulated for deafened animals, meaning that amplitudes for odd pulse numbers were larger than for even pulses. The relative refractory period (τ) and the modulation depth of the eCAP amplitude for pulse trains, as well as the latency increase for both paradigms significantly correlated with quantified measures of auditory nerve degeneration (size and packing density of SGCs). In addition to these findings, separate masker-probe recovery functions for the eCAP N1 and N2 peaks displayed a robust non-monotonic or shoulder

  19. On the therapeutic viability of peripheral nerve stimulation for ilioinguinal neuralgia: putative mechanisms and possible utility.

    PubMed

    Rauchwerger, Jacob J; Giordano, James; Rozen, Dima; Kent, Joel L; Greenspan, Joshua; Closson, Carey-Walter F

    2008-01-01

    Injury to the ilioinguinal nerve commonly follows during lower abdominal and pelvic surgery, especially with inguinal hernia repair, appendectomy, and hysterectomy. Other potential causes include low abdominal blunt trauma, iliac crest bone graft, psoas abscess, Pott's disease, and prolonged wearing of abdominally constrictive clothing. The actual incidence of ilioinguinal neuralgia is uncertain, as reported percentage ranges between 12% and 62%. Prompt and accurate diagnosis is critical, and appropriate treatments range from conservative pharmacologic management with nonopioid (eg, gabapentin, topiramate) as well as opioid agents, to surgical neurectomy of the proximal portion of the ilioinguinal nerve. Pharmacological treatment is frequently unsuccessful (particularly if delayed) and while surgery is successful in approximately 73% of cases, it can result in problematic paresthesias, and pain may continue to persist in some patients. Thus, minimally invasive techniques, such as peripheral nerve stimulation, may be viable in those patients who are refractory to pharmacological management, as an option to surgery, and who have not gained satisfactory pain relief through surgical intervention. We present three cases of successful pain control of ilioinguinal neuralgia with peripheral nerve stimulation. These cases demonstrate the potential benefits of neurostimulation including durable effective pain relief and decreased use of medication. Putative mechanisms of effect(s) and caveats for continued research to inform prudent employment of this technique are presented. PMID:18208448

  20. Effect of low frequency transcutaneous magnetic stimulation on sensory and motor transmission.

    PubMed

    Leung, Albert; Shukla, Shivshil; Lee, Jacquelyn; Metzger-Smith, Valerie; He, Yifan; Chen, Jeffrey; Golshan, Shahrokh

    2015-09-01

    Peripheral nerve injury diminishes fast conducting large myelinated afferent fibers transmission but enhances smaller pain transmitting fibers firing. This aberrant afferent neuronal behavior contributes to development of chronic post-traumatic peripheral neuropathic pain (PTP-NP). Non-invasive dynamic magnetic flux stimulation has been implicated in treating PTP-NP, a condition currently not adequately addressed by other therapies including transcutaneous electrical nerve stimulation (TENS). The current study assessed the effect of low frequency transcutaneous magnetic stimulation (LFTMS) on peripheral sensory thresholds, nerve conduction properties, and TENS induced fast afferent slowing effect as measured by motor and sensory conduction studies in the ulnar nerve. Results indicated sham LFTMS with TENS (Sham + TENS) significantly (P = 0.02 and 0.007, respectively) reduces sensory conduction velocity (CV) and increases sensory onset latency (OL), and motor peak latency (PL) whereas, real LFTMS with TENS (Real + TENS) reverses effects of TENS on sensory CV and OL, and significantly (P = 0.036) increases the sensory PL. LFTMS alone significantly (P < 0.05) elevates sensory PL and onset-to-peak latency. LFTMS appears to reverse TENS slowing effect on fast conducting fibers and casts a selective peripheral modulatory effect on slow conducting pain afferent fibers. PMID:25989482

  1. Topography of Synchronization of Somatosensory Evoked Potentials Elicited by Stimulation of the Sciatic Nerve in Rat

    PubMed Central

    Qu, Xuefeng; Yan, Jiaqing; Li, Xiaoli; Zhang, Peixun; Liu, Xianzeng

    2016-01-01

    Purpose: Traditionally, the topography of somatosensory evoked potentials (SEPs) is generated based on amplitude and latency. However, this operation focuses on the physical morphology and field potential-power, so it suffers from difficulties in performing identification in an objective manner. In this study, measurement of the synchronization of SEPs is proposed as a method to explore brain functional networks as well as the plasticity after peripheral nerve injury. Method: SEPs elicited by unilateral sciatic nerve stimulation in twelve adult male Sprague-Dawley (SD) rats in the normal group were compared with SEPs evoked after unilateral sciatic nerve hemisection in four peripheral nerve injured SD rats. The characterization of synchronized networks from SEPs was conducted using equal-time correlation, correlation matrix analysis, and comparison to randomized surrogate data. Eigenvalues of the correlation matrix were used to identify the clusters of functionally synchronized neuronal activity, and the participation index (PI) was calculated to indicate the involvement of each channel in the cluster. The PI value at the knee point of the PI histogram was used as a threshold to demarcate the cortical boundary. Results: Ten out of the twelve normal rats showed only one synchronized brain network. The remaining two normal rats showed one strong and one weak network. In the peripheral nerve injured group, only one synchronized brain network was found in each rat. In the normal group, all network shapes appear regular and the network is largely contained in the posterior cortex. In the injured group, the network shapes appear irregular, the network extends anteriorly and posteriorly, and the network area is significantly larger. There are considerable individual variations in the shape and location of the network after peripheral nerve injury. Conclusion: The proposed method can detect functional brain networks. Compared to the results of the traditional SEP

  2. Theory of multichannel magnetic stimulation: toward functional neuromuscular rehabilitation.

    PubMed

    Ruohonen, J; Ravazzani, P; Grandori, F; Ilmoniemi, R J

    1999-06-01

    Human excitable cells can be stimulated noninvasively with externally applied time-varying electromagnetic fields. The stimulation can be achieved either by directly driving current into the tissue (electrical stimulation) or by means of electro-magnetic induction (magnetic stimulation). While the electrical stimulation of the peripheral neuromuscular system has many beneficial applications, peripheral magnetic stimulation has so far only a few. This paper analyzes theoretically the use of multiple magnetic stimulation coils to better control the excitation and also to eventually mimic electrical stimulation. Multiple coils allow electronic spatial adjustment of the shape and location of the stimulus without moving the coils. The new properties may enable unforeseen uses for peripheral magnetic stimulation, e.g., in rehabilitation of patients with neuromuscular impairment. PMID:10356871

  3. Two Cases of Transcutaneous Electrical Nerve Stimulation of the Common Peroneal Nerve Successfully Treating Refractory, Multifactorial Leg Edema

    PubMed Central

    Ingves, Matthew V.

    2014-01-01

    The treatment of leg edema often involves promoting venous blood flow but can be difficult in patients with comorbidities that prevent traditional management strategies such as limb elevation or mechanical compression devices. The geko device is a self-contained neuromuscular stimulation device that adheres to skin over the common peroneal nerve and delivers a low-voltage stimulus that activates the lower-leg musculature resulting in enhanced superficial femoral vein blood flow and velocity. Here we report 2 cases of multifactorial and refractory leg edema successfully treated with the geko device over a period of 4 to 16 weeks. The device also improved pain and chronic wound healing. Although the geko device is costly, it was well tolerated and may provide another treatment strategy for resistant leg swelling. PMID:26425629

  4. Creating a meaningful visual perception in blind volunteers by optic nerve stimulation

    NASA Astrophysics Data System (ADS)

    Brelén, M. E.; Duret, F.; Gérard, B.; Delbeke, J.; Veraart, C.

    2005-03-01

    A blind volunteer, suffering from retinitis pigmentosa, has been chronically implanted with an optic nerve visual prosthesis. Vision rehabilitation with this volunteer has concentrated on the development of a stimulation strategy according to which video camera images are converted into stimulation pulses. The aim is to convey as much information as possible about the visual scene within the limits of the device's capabilities. Pattern recognition tasks were used to assess the effectiveness of the stimulation strategy. The results demonstrate how even a relatively basic algorithm can efficiently convey useful information regarding the visual scene. By increasing the number of phosphenes used in the algorithm, better performance is observed but a longer training period is required. After a learning period, the volunteer achieved a pattern recognition score of 85% at 54 s on average per pattern. After nine evaluation sessions, when using a stimulation strategy exploiting all available phosphenes, no saturation effect has yet been observed.

  5. Creating a meaningful visual perception in blind volunteers by optic nerve stimulation.

    PubMed

    Brelén, M E; Duret, F; Gérard, B; Delbeke, J; Veraart, C

    2005-03-01

    A blind volunteer, suffering from retinitis pigmentosa, has been chronically implanted with an optic nerve visual prosthesis. Vision rehabilitation with this volunteer has concentrated on the development of a stimulation strategy according to which video camera images are converted into stimulation pulses. The aim is to convey as much information as possible about the visual scene within the limits of the device's capabilities. Pattern recognition tasks were used to assess the effectiveness of the stimulation strategy. The results demonstrate how even a relatively basic algorithm can efficiently convey useful information regarding the visual scene. By increasing the number of phosphenes used in the algorithm, better performance is observed but a longer training period is required. After a learning period, the volunteer achieved a pattern recognition score of 85% at 54 s on average per pattern. After nine evaluation sessions, when using a stimulation strategy exploiting all available phosphenes, no saturation effect has yet been observed. PMID:15876651

  6. Ex Vivo Assay of Electrical Stimulation to Rat Sciatic Nerves: Cell Behaviors and Growth Factor Expression.

    PubMed

    Du, Zhiyong; Bondarenko, Olexandr; Wang, Dingkun; Rouabhia, Mahmoud; Zhang, Ze

    2016-06-01

    Neurite outgrowth and axon regeneration are known to benefit from electrical stimulation. However, how neuritis and their surroundings react to electrical field is difficult to replicate by monolayer cell culture. In this work freshly harvested rat sciatic nerves were cultured and exposed to two types of electrical field, after which time the nerve tissues were immunohistologically stained and the expression of neurotrophic factors and cytokines were evaluated. ELISA assay was used to confirm the production of specific proteins. All cell populations survived the 48 h culture with little necrosis. Electrical stimulation was found to accelerate Wallerian degeneration and help Schwann cells to switch into migratory phenotype. Inductive electrical stimulation was shown to upregulate the secretion of multiple neurotrophic factors. Cellular distribution in nerve tissue was altered upon the application of an electrical field. This work thus presents an ex vivo model to study denervated axon in well controlled electrical field, bridging monolayer cell culture and animal experiment. It also demonstrated the critical role of electrical field distribution in regulating cellular activities. PMID:26516696

  7. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  8. Transcutaneous Auricular Vagus Nerve Stimulation Protects Endotoxemic Rat from Lipopolysaccharide-Induced Inflammation

    PubMed Central

    Zhao, Yu Xue; He, Wei; Jing, Xiang Hong; Liu, Jun Ling; Rong, Pei Jing; Ben, Hui; Liu, Kun; Zhu, Bing

    2012-01-01

    Background. Transcutaneous auricular vagus nerve stimulation (ta-VNS) could evoke parasympathetic activities via activating the brainstem autonomic nuclei, similar to the effects that are produced after vagus nerve stimulation (VNS). VNS modulates immune function through activating the cholinergic anti-inflammatory pathway. Methods. VNS, ta-VNS, or transcutaneous electrical acupoint stimulation (TEAS) on ST36 was performed to modulate the inflammatory response. The concentration of serum proinflammatory cytokines and tissue NF-kappa B p65 (NF-κB p65) were detected in endotoxaemia affected anesthetized rats. Results. Similar to the effect of VNS, ta-VNS suppressed the serum proinflammatory cytokines levels, such as tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as well as NF-kappa B p65 expressions of lung tissues. ST36 stimulation also decreases LPS-induced high TNF-α level and NF-κB signal, but it did not restrain proinflammatory cytokine IL-1β and IL-6. Neither ta-VNS nor ST36 stimulation could suppress LPS-induced TNF-α and NF-κB after vagotomy or with α7nAChR antagonist injection. Conclusions. The present paper demonstrated that ta-VNS could be utilized to suppress LPS-induced inflammatory responses via α7nAChR-mediated cholinergic anti-inflammatory pathway. PMID:23346208

  9. Effect of stimulation of afferent renal nerves on plasma levels of vasopressin

    SciTech Connect

    Caverson, M.M.; Ciriello, J.

    1987-04-01

    Experiments were done in ..cap alpha..-chloralose-anesthetized, paralyzed and artificially ventilated cats with vagus, cervical sympathetic, aortic depressor, and carotid sinus nerves cut bilaterally to investigate the effect of afferent renal nerve (ARN) stimulation on circulating levels of vasopressin (AVP). Electrical stimulation of ARN elicited a pressor response that had two components, a primary (1/sup 0/) component locked in time with the stimulus and a secondary (2/sup 0/) component that had a long onset latency and that outlasted the stimulation period. The 1/sup 0/ and 2/sup 0/ components of the pressor response were largest at stimulation frequencies of 30 and 40 Hz, respectively. Autonomic blockage with hexamethonium bromide and atropine methylbromide abolished the 1/sup 0/ component. Administration of the vasopressin V/sub 1/-vascular receptor antagonist d(CH/sub 2/)/sub 5/ VAVP during autonomic blockade abolished the 2/sup 0/C component. Plasma concentrations of AVP measured by radioimmunoassay increased from control levels of 5.2 +/- 0.9 to 53.6 +/- 18.6 pg/ml during a 5-min period of stimulation of ARN. Plasma AVP levels measured 20-40 min after simulation were not significantly different from control values. These data demonstrate that sensory information originating in the kidney alters the release of vasopressin from the neurohypophysis and suggest that ARN are an important component of the neural circuitry involved in homeostatic mechanisms controlling arterial pressure.

  10. Novel transcranial magnetic stimulation coil for mice

    NASA Astrophysics Data System (ADS)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  11. Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury

    PubMed Central

    Pei, Bao-an; Zi, Jin-hua; Wu, Li-sheng; Zhang, Cun-hua; Chen, Yun-zhen

    2015-01-01

    Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 mA and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers. PMID:26692864

  12. Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury.

    PubMed

    Pei, Bao-An; Zi, Jin-Hua; Wu, Li-Sheng; Zhang, Cun-Hua; Chen, Yun-Zhen

    2015-10-01

    Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 mA and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers. PMID:26692864

  13. Diffusion tensor magnetic resonance imaging of regeneration/degeneration after rat sciatic nerve injury

    NASA Astrophysics Data System (ADS)

    Sig Hwang, Min; Perrin, George; Muir, David; Mareci, Thomas

    2005-11-01

    Diffusion tensor imaging was performed to investigate myelination and demyelination spatiotemporally in cut or crushed excised rat sciatic nerves in a 17.6 T magnet with a solenoid RF coil. Orientation independent measures of water diffusion, fractional anisotropy (FA) and averaged diffusivity (), were examined as MR parameters for the quantification of the myelin within the major peripheral nerve. Crushed nerves initially demonstrated decreased FA, followed by increase to FA of normal nerve with time. At 14 days post injury, FA of the nerve is high, 0.85, at the site proximal to the injury then FA decreases in a proximodistal gradient because the nerve remains more demyelinated toward the distal area. Cut sciatic nerves displayed a prolonged decrease of FA with time after injury. Also FA correlates with in these nerves. Therefore FA or may be a good indicator of myelination and demyelination in rat sciatic nerves and FA appears to be a more sensitive indicator of myelin.

  14. Cavernosal nerve functionality evaluation after magnetic resonance imaging-guided transurethral ultrasound treatment of the prostate

    PubMed Central

    Sammet, Steffen; Partanen, Ari; Yousuf, Ambereen; Sammet, Christina L; Ward, Emily V; Wardrip, Craig; Niekrasz, Marek; Antic, Tatjana; Razmaria, Aria; Farahani, Keyvan; Sokka, Shunmugavelu; Karczmar, Gregory; Oto, Aytekin

    2015-01-01

    AIM: To evaluate the feasibility of using therapeutic ultrasound as an alternative treatment option for organ-confined prostate cancer. METHODS: In this study, a trans-urethral therapeutic ultrasound applicator in combination with 3T magnetic resonance imaging (MRI) guidance was used for real-time multi-planar MRI-based temperature monitoring and temperature feedback control of prostatic tissue thermal ablation in vivo. We evaluated the feasibility and safety of MRI-guided trans-urethral ultrasound to effectively and accurately ablate prostate tissue while minimizing the damage to surrounding tissues in eight canine prostates. MRI was used to plan sonications, monitor temperature changes during therapy, and to evaluate treatment outcome. Real-time temperature and thermal dose maps were calculated using the proton resonance frequency shift technique and were displayed as two-dimensional color-coded overlays on top of the anatomical images. After ultrasound treatment, an evaluation of the integrity of cavernosal nerves was performed during prostatectomy with a nerve stimulator that measured tumescence response quantitatively and indicated intact cavernous nerve functionality. Planned sonication volumes were visually correlated to MRI ablation volumes and corresponding histo-pathological sections after prostatectomy. RESULTS: A total of 16 sonications were performed in 8 canines. MR images acquired before ultrasound treatment were used to localize the prostate and to prescribe sonication targets in all canines. Temperature elevations corresponded within 1 degree of the targeted sonication angle, as well as with the width and length of the active transducer elements. The ultrasound treatment procedures were automatically interrupted when the temperature in the target zone reached 56 °C. In all canines erectile responses were evaluated with a cavernous nerve stimulator post-treatment and showed a tumescence response after stimulation with an electric current. These

  15. Nerve Stimulator Guided Axillary Block in Painless Reduction of Distal Radius Fractures; a Randomized Clinical Trial

    PubMed Central

    Alimohammadi, Hossein; Shojaee, Majid; Samiei, Mehdi; Abyari, Somayeh; Vafaee, Ali; Mirkheshti, Alireza

    2013-01-01

    Introduction: Given the high prevalence of upper extremity fractures and increasing need to perform painless reduction in the emergency departments, the use of analgesic methods with fewer complications and more satisfaction appears to be essential. The aim of this study is comparison the nerve stimulator guided axillary block (NSAB) with intravenous sedation in induction of analgesia for painless reduction of distal radius fractures. Methods: In the present randomized clinical trial, 60 patients (18-70 years of age) suffered from distal radius fractures, were divided into two equal groups. One group received axillary nerve block by nerve stimulator guidance and the other procedural sedation and analgesia (PSA) using midazolam/fentanyl. Onset of analgesia, duration of analgesic effect, total procedure time and pain scores were recorded using visual analogue scale (VAS) and the outcomes were compared. Chi-squared and student t test were performed to evaluate differences between two groups. Results: Sixty patients were randomly divided into two groups (83.3% male). The mean age of patients was 31 ±0.7 years. While the onset of analgesia was significantly longer in the NSAB group, the mean total time of procedure was shorter than PSA (p<0.001). The NSAB group needed a shorter post-operative observation time (P<0.001). Both groups experienced equal pain relief before, during and after procedure (p>0.05). Conclusion: It seems that shorter post-operative monitoring time and consequently lesser total time of procedure, make nerve stimulator guided axillary block as an appropriate alternative for procedural sedation and analgesia in painless reduction of distal radius fractures in emergency department. PMID:26495329

  16. Optimal Vagus Nerve Stimulation Frequency for Suppression of Spike-and-Wave Seizures in Rats.

    PubMed

    Jiao, Jianhang; Harreby, Kristian R; Sevcencu, Cristian; Jensen, Winnie

    2016-06-01

    Vagus nerve stimulation (VNS) is used as an adjunctive therapy for drug-resistant epilepsy and results in a 50% seizure reduction in up to 50% of treated patients. The VNS frequency used in the clinic today is in the range of 10-30 Hz. The evidence for choosing the stimulation frequency is limited, and little knowledge is available on the effect of other VNS frequencies. Deep brain, trigeminal nerve, or spinal cord stimulation studies have suggested the use of stimulation frequencies above 80 Hz for seizure control. Therefore, our objective for the present study was to investigate if VNS using frequencies higher than those currently used in the clinic could be more effective in attenuating seizures. Spike-and-wave (SW) discharges were induced in 11 rats, which then were subjected to VNS sessions applied at the frequencies of 10, 30, 80, 130, and 180 Hz combined with control intervals without stimulation. The anticonvulsive effect of VNS was evaluated by comparing the normalized mean power (nMP) and frequency (nMSF) of the SW discharges derived from intracortical recordings collected during the stimulation and control intervals. Compared with the control intervals, all the tested VNS frequencies significantly reduced the nMP (in the range of 9-21%). However, we found that 130 and 180 Hz VNS induced a 50% larger attenuation of seizures than that achieved by 30 Hz VNS. In addition, we found that 80, 130, and 180 Hz VNS induced a significant reduction of the nMSF, that is by 5, 7, and 8%, respectively. These results suggest that a VNS stimulation frequency in the range of 130-180 Hz may be more effective in inhibiting seizures than the 30 Hz VNS applied in the clinic today. PMID:26713661

  17. Short-term peripheral nerve stimulation ameliorates axonal dysfunction after spinal cord injury

    PubMed Central

    Kiernan, Matthew C.; Macefield, Vaughan G.; Lee, Bonne B.; Lin, Cindy S.-Y.

    2015-01-01

    There is accumulating evidence that peripheral motor axons deteriorate following spinal cord injury (SCI). Secondary axonal dysfunction can exacerbate muscle atrophy, contribute to peripheral neuropathies and neuropathic pain, and lead to further functional impairment. In an attempt to ameliorate the adverse downstream effects that developed following SCI, we investigated the effects of a short-term peripheral nerve stimulation (PNS) program on motor axonal excitability in 22 SCI patients. Axonal excitability studies were undertaken in the median and common peroneal nerves (CPN) bilaterally before and after a 6-wk unilateral PNS program. PNS was delivered percutaneously over the median nerve at the wrist and CPN around the fibular head, and the compound muscle action potential (CMAP) from the abductor pollicis brevis and tibialis anterior was recorded. Stimulus intensity was above motor threshold, and pulses (450 μs) were delivered at 100 Hz with a 2-s on/off cycle for 30 min 5 days/wk. SCI patients had consistently high thresholds with a reduced CMAP consistent with axonal loss; in some patients the peripheral nerves were completely inexcitable. Nerve excitability studies revealed profound changes in membrane potential, with a “fanned-in” appearance in threshold electrotonus, consistent with membrane depolarization, and significantly reduced superexcitability during the recovery cycle. These membrane dysfunctions were ameliorated after 6 wk of PNS, which produced a significant hyperpolarizing effect. The contralateral, nonstimulated nerves remained depolarized. Short-term PNS reversed axonal dysfunction following SCI, may provide an opportunity to prevent chronic changes in axonal and muscular function, and may improve rehabilitation outcomes. PMID:25787956

  18. Short-term peripheral nerve stimulation ameliorates axonal dysfunction after spinal cord injury.

    PubMed

    Lee, Michael; Kiernan, Matthew C; Macefield, Vaughan G; Lee, Bonne B; Lin, Cindy S-Y

    2015-05-01

    There is accumulating evidence that peripheral motor axons deteriorate following spinal cord injury (SCI). Secondary axonal dysfunction can exacerbate muscle atrophy, contribute to peripheral neuropathies and neuropathic pain, and lead to further functional impairment. In an attempt to ameliorate the adverse downstream effects that developed following SCI, we investigated the effects of a short-term peripheral nerve stimulation (PNS) program on motor axonal excitability in 22 SCI patients. Axonal excitability studies were undertaken in the median and common peroneal nerves (CPN) bilaterally before and after a 6-wk unilateral PNS program. PNS was delivered percutaneously over the median nerve at the wrist and CPN around the fibular head, and the compound muscle action potential (CMAP) from the abductor pollicis brevis and tibialis anterior was recorded. Stimulus intensity was above motor threshold, and pulses (450 μs) were delivered at 100 Hz with a 2-s on/off cycle for 30 min 5 days/wk. SCI patients had consistently high thresholds with a reduced CMAP consistent with axonal loss; in some patients the peripheral nerves were completely inexcitable. Nerve excitability studies revealed profound changes in membrane potential, with a "fanned-in" appearance in threshold electrotonus, consistent with membrane depolarization, and significantly reduced superexcitability during the recovery cycle. These membrane dysfunctions were ameliorated after 6 wk of PNS, which produced a significant hyperpolarizing effect. The contralateral, nonstimulated nerves remained depolarized. Short-term PNS reversed axonal dysfunction following SCI, may provide an opportunity to prevent chronic changes in axonal and muscular function, and may improve rehabilitation outcomes. PMID:25787956

  19. Influence of Asymmetric Recurrent Laryngeal Nerve Stimulation on Vibration, Acoustics, and Aerodynamics

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar

    2015-01-01

    Objectives/Hypothesis Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Study Design Basic science study using an in vivo canine model. Methods The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Results Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0, glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Conclusion Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. PMID:24913182

  20. Transcutaneous Vagus Nerve Stimulation (tVNS) does not increase prosocial behavior in Cyberball.

    PubMed

    Sellaro, Roberta; Steenbergen, Laura; Verkuil, Bart; van IJzendoorn, Marinus H; Colzato, Lorenza S

    2015-01-01

    Emerging research suggests that individuals experience vicarious social pain (i.e., ostracism). It has been proposed that observing ostracism increases activity in the insula and in the prefrontal cortex (PFC), two key brain regions activated by directly experiencing ostracism. Here, we assessed the causal role of the insula and PFC in modulating neural activity in these areas by applying transcutaneous Vagus Nerve Stimulation (tVNS), a new non-invasive and safe method to stimulate the vagus nerve that has been shown to activate the insula and PFC. A single-blind, sham-controlled, within-subjects design was used to assess the effect of on-line (i.e., stimulation overlapping with the critical task) tVNS in healthy young volunteers (n = 24) on the prosocial Cyberball game, a virtual ball-tossing game designed to measure prosocial compensation of ostracism. Active tVNS did not increase prosocial helping behavior toward an ostracized person, as compared to sham (placebo) stimulation. Corroborated by Bayesian inference, we conclude that tVNS does not modulate reactions to vicarious ostracism, as indexed by performance in a Cyberball game. PMID:25972825

  1. Adipose-Derived Stem Cells Stimulate Regeneration of Peripheral Nerves: BDNF Secreted by These Cells Promotes Nerve Healing and Axon Growth De Novo

    PubMed Central

    Lopatina, Tatiana; Kalinina, Natalia; Karagyaur, Maxim; Stambolsky, Dmitry; Rubina, Kseniya; Revischin, Alexander; Pavlova, Galina; Parfyonova, Yelena; Tkachuk, Vsevolod

    2011-01-01

    Transplantation of adipose-derived mesenchymal stem cells (ASCs) induces tissue regeneration by accelerating the growth of blood vessels and nerve. However, mechanisms by which they accelerate the growth of nerve fibers are only partially understood. We used transplantation of ASCs with subcutaneous matrigel implants (well-known in vivo model of angiogenesis) and model of mice limb reinnervation to check the influence of ASC on nerve growth. Here we show that ASCs stimulate the regeneration of nerves in innervated mice's limbs and induce axon growth in subcutaneous matrigel implants. To investigate the mechanism of this action we analyzed different properties of these cells and showed that they express numerous genes of neurotrophins and extracellular matrix proteins required for the nerve growth and myelination. Induction of neural differentiation of ASCs enhances production of brain-derived neurotrophic factor (BDNF) as well as ability of these cells to induce nerve fiber growth. BDNF neutralizing antibodies abrogated the stimulatory effects of ASCs on the growth of nerve sprouts. These data suggest that ASCs induce nerve repair and growth via BDNF production. This stimulatory effect can be further enhanced by culturing the cells in neural differentiation medium prior to transplantation. PMID:21423756

  2. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation

    PubMed Central

    Todd, Gabrielle; Taylor, Janet L; Gandevia, S C

    2003-01-01

    Recently, transcranial magnetic stimulation of the motor cortex (TMS) revealed impaired voluntary activation of muscles during maximal efforts. Hence, we evaluated its use as a measure of voluntary activation over a range of contraction strengths in both fresh and fatigued muscles, and compared it with standard twitch interpolation using nerve stimulation. Subjects contracted the elbow flexors isometrically while force and EMG from biceps and triceps were recorded. In one study, eight subjects made submaximal and maximal test contractions with rests to minimise fatigue. In the second study, eight subjects made sustained maximal contractions to reduce force to 60 % of the initial value, followed by brief test contractions. Force responses were recorded following TMS or electrical stimulation of the biceps motor nerve. In other contractions, EMG responses to TMS (motor evoked potentials, MEPs) or to stimulation at the brachial plexus (maximal M waves, Mmax) were recorded. During contractions of 50 % maximum, TMS elicited large MEPs in biceps (> 90 % Mmax) which decreased in size (to ≈70 % Mmax) with maximal efforts. This suggests that faster firing rates made some motor units effectively refractory. With fatigue, MEPs were also smaller but remained > 70 % Mmax for contractions of 50–100 % maximum. For fresh and fatigued muscle, the superimposed twitch evoked by motor nerve and motor cortex stimulation decreased with increasing contraction strength. For nerve stimulation the relation was curvilinear, and for TMS it was linear for contractions of 50–100 % maximum (r2 = 1.00). Voluntary activation was derived using the expression: (1 – superimposed twitch/resting twitch) × 100. The resting twitch was measured directly for nerve stimulation and for TMS, it was estimated by extrapolation of the linear regression between the twitch and voluntary force. For cortical stimulation, this resulted in a highly linear relation between voluntary activation and force

  3. High-power integrated stimulator output stages with floating discharge over a wide voltage range for nerve stimulation.

    PubMed

    Langlois, P J; Demosthenous, A; Pachnis, I; Donaldson, N

    2010-02-01

    Two integrated nerve stimulator circuits are described. Both generate passively charge-balanced biphasic stimulating pulses of 1 to 16 mA with 10-¿s to 1-ms widths from 6- to 24-V supplies for implanted book electrodes. In both circuits, the electrodes are floating during the passive discharge anywhere within the range of the power rails, which may be up to 24 V. The first circuit is used for stimulation only. It uses a floating depletion transistor to enable continuous discharge of the electrodes, except when stimulating, without using power. The second circuit also allows neural signals to be recorded from the same tripole. It uses a modified floating complementary metal-oxide semiconductor (CMOS) discharge switch capable of operating over a range beyond the gate-to-source voltage limits of its transistors. It remains off for long periods using no power while recording. A 0.6-¿m silicon-on-insulator CMOS technology has been used. The measured performance of the circuits has been verified using multiple tripoles in saline. PMID:23853308

  4. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis

    NASA Astrophysics Data System (ADS)

    Schiefer, Matthew; Tan, Daniel; Sidek, Steven M.; Tyler, Dustin J.

    2016-02-01

    Objective. Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Approach. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject’s sense of embodiment with a survey and his self-confidence. Main results. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Significance. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.

  5. Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study.

    PubMed

    Bonaz, B; Sinniger, V; Hoffmann, D; Clarençon, D; Mathieu, N; Dantzer, C; Vercueil, L; Picq, C; Trocmé, C; Faure, P; Cracowski, J-L; Pellissier, S

    2016-06-01

    The vagus nerve (VN) is a link between the brain and the gut. The VN is a mixed nerve with anti-inflammatory properties through the activation of the hypothalamic-pituitary-adrenal axis by its afferents and by activating the cholinergic anti-inflammatory pathway through its efferents. We have previously shown that VN stimulation (VNS) improves colitis in rats and that the vagal tone is blunted in Crohn's disease (CD) patients. We thus performed a pilot study of chronic VNS in patients with active CD. Seven patients under VNS were followed up for 6 months with a primary endpoint to induce clinical remission and a secondary endpoint to induce biological (CRP and/or fecal calprotectin) and endoscopic remission and to restore vagal tone (heart rate variability). Vagus nerve stimulation was feasible and well-tolerated in all patients. Among the seven patients, two were removed from the study at 3 months for clinical worsening and five evolved toward clinical, biological, and endoscopic remission with a restored vagal tone. These results provide the first evidence that VNS is feasible and appears as an effective tool in the treatment of active CD. PMID:26920654

  6. Electrical stimulation applied to bone and nerve injuries in the upper extremity.

    PubMed

    Osterman, A L; Bora, F W

    1986-07-01

    In conclusion, electrical stimulation of bone has advanced from the laboratory to clinical reality. Despite the lack of good double-blind clinical studies, it is impossible to ignore the excellent results reported from numerous multicenter trials. Doubts and controversies will and should continue. Electrical stimulation has a definite place in the treatment of scaphoid nonunion as well as other failures of osteogenic biology in the upper extremity. The future may realize the enormous potential of electrical stimulation in areas of nerve repair, wound healings, or osteoporosis. The hand surgeon may soon be operating in the age of biophysics where he or she can charge by the kilowatt hour. Yet one should not become a mere technician, but understand the basic science of what one is doing and, above all, maintain a balanced and critical approach. PMID:3526231

  7. Computational electromagnetic methods for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Gomez, Luis J.

    Transcranial magnetic stimulation (TMS) is a noninvasive technique used both as a research tool for cognitive neuroscience and as a FDA approved treatment for depression. During TMS, coils positioned near the scalp generate electric fields and activate targeted brain regions. In this thesis, several computational electromagnetics methods that improve the analysis, design, and uncertainty quantification of TMS systems were developed. Analysis: A new fast direct technique for solving the large and sparse linear system of equations (LSEs) arising from the finite difference (FD) discretization of Maxwell's quasi-static equations was developed. Following a factorization step, the solver permits computation of TMS fields inside realistic brain models in seconds, allowing for patient-specific real-time usage during TMS. The solver is an alternative to iterative methods for solving FD LSEs, often requiring run-times of minutes. A new integral equation (IE) method for analyzing TMS fields was developed. The human head is highly-heterogeneous and characterized by high-relative permittivities (107). IE techniques for analyzing electromagnetic interactions with such media suffer from high-contrast and low-frequency breakdowns. The novel high-permittivity and low-frequency stable internally combined volume-surface IE method developed. The method not only applies to the analysis of high-permittivity objects, but it is also the first IE tool that is stable when analyzing highly-inhomogeneous negative permittivity plasmas. Design: TMS applications call for electric fields to be sharply focused on regions that lie deep inside the brain. Unfortunately, fields generated by present-day Figure-8 coils stimulate relatively large regions near the brain surface. An optimization method for designing single feed TMS coil-arrays capable of producing more localized and deeper stimulation was developed. Results show that the coil-arrays stimulate 2.4 cm into the head while stimulating 3

  8. The use of brief post-surgical low frequency electrical stimulation to enhance nerve regeneration in clinical practice.

    PubMed

    Chan, K M; Curran, M W T; Gordon, T

    2016-07-01

    Despite efforts to enhance peripheral nerve regeneration, there has been little progress in improving clinical outcomes. Recently, a method of brief post-surgical low frequency electrical stimulation of surgically repaired nerves has been developed. It was shown to accelerate axon outgrowth across the repair site and it hastened target reinnervation. In this brief review, we describe the mechanistic insights and functional impacts of the post-surgical electrical stimulation that have been gained through animal studies. Brain-derived neurotrophic factor, cyclic AMP and regeneration-associated genes play a vital role in expediting the outgrowth of axons across the injury site. The method of stimulation has also been shown to be effective in patients with severe compressive neuropathy as well as those with digital nerve laceration. Its clinical feasibility and positive impact open the door of further clinical translation in other peripheral nerve injuries. PMID:26864594

  9. Gaussian versus flat-top spatial beam profiles for optical stimulation of the prostate nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-02-01

    The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the CN surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5-ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. The threshold for ONS was approximately 0.14 J/cm2, corresponding to a temperature increase of 6-8°C at the CN surface after a stimulation time of 15 s. With further development, ONS may be used as a diagnostic tool for identification of CN's during prostate

  10. Morphometric data of canine sacral nerve roots with reference to electrical sacral root stimulation.

    PubMed

    Rijkhoff, N J; Koldewijn, E L; d'Hollosy, W; Debruyne, F M; Wijkstra, H

    1996-01-01

    Experiments to investigate restoration of lower urinary tract control by electrical stimulation of the sacral nerve roots are mostly performed on dogs, yet little morphometric data (such as canine root and fiber diameter distributions) are available. The aim of this study was to acquire morphometric data of the intradural canine sacral dorsal and ventral roots (S1-S3). Cross-sections of sacral roots of two beagle dogs were analyzed using a light microscope and image processing software. The cross-sectional area of each root was measured. The diameters of the fibers and the axons in the cross-sections of the S2 and S3 roots were measured and used to construct nerve fiber diameter frequency distribution histograms. The results show a unimodal diameter distribution for the dorsal roots and a bimodal distribution for the ventral roots. In addition the average ratio g of the axon diameter to fiber diameter was calculated for each root. PMID:8732990

  11. ["Dual Guidance"? - parallel combination of ultrasound-guidance and nerve stimulation - Contra].

    PubMed

    Maecken, Tim

    2015-07-01

    Sonography is a highly user-dependent technology. It presupposes a considerable degree of sonoanatomic and sonographic knowledge and requires good practical skills of the examiner. Sonography allows the identification of the puncture target, observes the needle feed and assesses the spread pattern of the local anesthetic in real time. Peripheral electrical nerve stimulation (PNS) cannot offer these advantages to the same degree, but may allow nerve localization under difficult sonographic conditions. The combination of the two locating techniques is complex in its practical implementation. Partially, the use of one location technique is made even more difficult by the combination with the second. PNS in parallel to sonography serves primarily as a warning technology in the case of an invisible cannula tip. It should not be construed as a compensation technique for the lack of sonographic skills or knowledge. However, PNS may be helpful in the sense of a bridging technology as long as the user is aware of its limitations. PMID:26230889

  12. Jak/Stat Signaling Stimulates Zebrafish Optic Nerve Regeneration and Overcomes the Inhibitory Actions of Socs3 and Sfpq

    PubMed Central

    Elsaeidi, Fairouz; Bemben, Michael A.; Zhao, Xiao-Feng

    2014-01-01

    The regenerative failure of mammalian optic axons is partly mediated by Socs3-dependent inhibition of Jak/Stat signaling (Smith et al., 2009, 2011). Whether Jak/Stat signaling is part of the normal regenerative response observed in animals that exhibit an intrinsic capacity for optic nerve regeneration, such as zebrafish, remains unknown. Nor is it known whether the repression of regenerative inhibitors, such as Socs3, contributes to the robust regenerative response of zebrafish to optic nerve damage. Here we report that Jak/Stat signaling stimulates optic nerve regeneration in zebrafish. We found that IL-6 family cytokines, acting via Gp130-coupled receptors, stimulate Jak/Stat3 signaling in retinal ganglion cells after optic nerve injury. Among these cytokines, we found that CNTF, IL-11, and Clcf1/Crlf1a can stimulate optic axon regrowth. Surprisingly, optic nerve injury stimulated the expression of Socs3 and Sfpq (splicing factor, proline/glutamine rich) that attenuate optic nerve regeneration. These proteins were induced in a Jak/Stat-dependent manner, stimulated each other's expression and suppressed the expression of regeneration-associated genes. In vivo, the injury-dependent induction of Socs3 and Sfpq inhibits optic nerve regeneration but does not block it. We identified a robust induction of multiple cytokine genes in zebrafish retinal ganglion cells that may contribute to their ability to overcome these inhibitory factors. These studies not only identified mechanisms underlying optic nerve regeneration in fish but also suggest new molecular targets for enhancing optic nerve regeneration in mammals. PMID:24523552

  13. Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength

    PubMed Central

    Walsh, Joseph T.; Jansen, E. Duco; Bendett, Mark; Webb, Jim; Ralph, Heather; Richter, Claus-Peter

    2012-01-01

    Pulsed lasers can evoke neural activity from motor as well as sensory neurons in vivo. Lasers allow more selective spatial resolution of stimulation than the conventional electrical stimulation. To date, few studies have examined pulsed, mid-infrared laser stimulation of nerves and very little of the available optical parameter space has been studied. In this study, a pulsed diode laser, with wavelength between 1.844–1.873 μm, was used to elicit compound action potentials (CAPs) from the auditory system of the gerbil. We found that pulse durations as short as 35 μs elicit a CAP from the cochlea. In addition, repetition rates up to 13 Hz can continually stimulate cochlear spiral ganglion cells for extended periods of time. Varying the wavelength and, therefore, the optical penetration depth, allowed different populations of neurons to be stimulated. The technology of optical stimulation could significantly improve cochlear implants, which are hampered by a lack of spatial selectivity. PMID:17554829

  14. Origin of the facial long latency responses elicited by magnetic stimulation.

    PubMed

    Rimpiläinen, I

    1994-04-01

    With magnetic stimulation (MS) it is possible to elicit bilateral long latency facial motor responses (LLRs). Due to a relatively wide magnetic field, the site of neural activation may take place in many different structures. The purpose of this study was to determine the site of origin of facial LLRs. The motor long latency responses were recorded bilaterally on the naso-labial folds (NLFs) with reference electrodes on the nose, and on some subjects also with reference electrodes on the chin. The stimulating coil was placed in the right parietal area. LLRs obtained with MS were compared to LLRs elicited electrically at the right stylomastoid foramen, supraorbital foramen, as well as cutaneous sensory area V1 of the trigeminal nerve. In addition, right sided high intensity electrical stimuli, paired magnetic stimulation and electrical stimulation with interstimulus intervals ranging from 0 to 80 msec were also applied for comparison. LLRs recorded with reference to the nose were always elicitable with MS as well as with the other stimulation procedures. The responses elicited with MS did not differ from those elicited electrically at various extracranial stimulation sites. With paired stimuli the second LLRs were inhibited by the preceding stimulation, whether given magnetically or electrically. In subjects with elicitable LLRs with chin references, the responses were always bilateral. Based on the similar characteristics with extracranial electrical stimuli, bilateral distribution of the responses, and inhibition of the second response with paired stimuli, it is concluded that the neural origin of LLRs to MS is in the extracranial trigeminal or facial nerve branches. PMID:7512918

  15. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves.

    PubMed

    McLean, Nikki A; Popescu, Bogdan F; Gordon, Tessa; Zochodne, Douglas W; Verge, Valerie M K

    2014-01-01

    Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies. PMID:25310564

  16. Hybrid electro-optical stimulation of the rat sciatic nerve induces force generation in the plantarflexor muscles

    NASA Astrophysics Data System (ADS)

    Duke, Austin R.; Peterson, Erik; Mackanos, Mark A.; Atkinson, James; Tyler, Dustin; Jansen, E. Duco

    2012-12-01

    Objective. Optical methods of neural activation are becoming important tools for the study and treatment of neurological disorders. Infrared nerve stimulation (INS) is an optical technique exhibiting spatially precise activation in the native neural system. While this technique shows great promise, the risk of thermal damage may limit some applications. Combining INS with traditional electrical stimulation, a method known as hybrid electro-optical stimulation, reduces the laser power requirements and mitigates the risk of thermal damage while maintaining spatial selectivity. Here we investigate the capability of inducing force generation in the rat hind limb through hybrid stimulation of the sciatic nerve. Approach. Hybrid stimulation was achieved by combining an optically transparent nerve cuff for electrical stimulation and a diode laser coupled to an optical fiber for infrared stimulation. Force generation in the rat plantarflexor muscles was measured in response to hybrid stimulation with 1 s bursts of pulses at 15 and 20 Hz and with a burst frequency of 0.5 Hz. Main results. Forces were found to increase with successive stimulus trains, ultimately reaching a plateau by the 20th train. Hybrid evoked forces decayed at a rate similar to the rate of thermal diffusion in tissue. Preconditioning the nerve with an optical stimulus resulted in an increase in the force response to both electrical and hybrid stimulation. Histological evaluation showed no signs of thermally induced morphological changes following hybrid stimulation. Our results indicate that an increase in baseline temperature is a likely contributor to hybrid force generation. Significance. Extraneural INS of peripheral nerves at physiologically relevant repetition rates is possible using hybrid electro-optical stimulation.

  17. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold

    PubMed Central

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-01-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion. PMID:27190439

  18. Refining the Sensory and Motor Ratunculus of the Rat Upper Extremity Using fMRI and Direct Nerve Stimulation

    PubMed Central

    Cho, Younghoon R.; Pawela, Christopher P.; Li, Rupeng; Kao, Dennis; Schulte, Marie L.; Runquist, Matthew L.; Yan, Ji-Geng; Matloub, Hani S.; Jaradeh, Safwan S.; Hudetz, Anthony G.; Hyde, James S.

    2008-01-01

    It is well understood that the different regions of the body have cortical representations in proportion to the degree of innervation. Our current understanding of the rat upper extremity has been enhanced using functional MRI (fMRI), but these studies are often limited to the rat forepaw. The purpose of this study is to describe a new technique that allows us to refine the sensory and motor representations in the cerebral cortex by surgically implanting electrodes on the major nerves of the rat upper extremity and providing direct electrical nerve stimulation while acquiring fMRI images. This technique was used to stimulate the ulnar, median, radial, and musculocutaneous nerves in the rat upper extremity using four different stimulation sequences that varied in frequency (5 Hz vs. 10 Hz) and current (0.5 mA vs. 1.0 mA). A distinct pattern of cortical activation was found for each nerve. The higher stimulation current resulted in a dramatic increase in the level of cortical activation. The higher stimulation frequency resulted in both increases and attenuation of cortical activation in different regions of the brain, depending on which nerve was stimulated. PMID:17969116

  19. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    PubMed

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion. PMID:27190439

  20. Transcutaneous Electrical Nerve Stimulation Improves Walking Performance in Patients With Intermittent Claudication.

    PubMed

    Seenan, Chris; McSwiggan, Steve; Roche, Patricia A; Tan, Chee-Wee; Mercer, Tom; Belch, Jill J F

    2016-01-01

    The purpose of this study was to investigate the effects of 2 types of transcutaneous electrical nerve stimulation (TENS) on walking distance and measures of pain in patients with peripheral arterial disease (PAD) and intermittent claudication (IC). In a phase 2a study, 40 participants with PAD and IC completed a graded treadmill test on 2 separate testing occasions. Active TENS was applied to the lower limb on the first occasion; and placebo TENS, on the second. The participants were divided into 2 experimental groups. One group received high-frequency TENS; and the other, low-frequency TENS. Measures taken were initial claudication distance, functional claudication distance, and absolute claudication distance. The McGill Pain Questionnaire (MPQ) vocabulary was completed at the end of the intervention, and the MPQ-Pain Rating Index score was calculated. Four participants were excluded from the final analysis because of noncompletion of the experimental procedure. Median walking distance increased with high-frequency TENS for all measures (P < .05, Wilcoxon signed rank test, all measures). Only absolute claudication distance increased significantly with low-frequency TENS compared with placebo (median, 179-228; Ws = 39; z = 2.025; P = .043; r = 0.48). No difference was observed between reported median MPQ-Pain Rating Index scores: 21.5 with placebo TENS and 21.5 with active TENS (P = .41). Transcutaneous electrical nerve stimulation applied to the lower limb of the patients with PAD and IC was associated with increased walking distance on a treadmill but not with any reduction in pain. Transcutaneous electrical nerve stimulation may be a useful adjunctive intervention to help increase walking performance in patients with IC. PMID:27299758

  1. Haemodynamic Responses to Selective Vagal Nerve Stimulation under Enalapril Medication in Rats

    PubMed Central

    Gierthmuehlen, Mortimer; Stieglitz, Thomas; Zentner, Josef; Plachta, Dennis T. T.

    2016-01-01

    Selective vagal nerve stimulation (sVNS) has been demonstrated to lower blood pressure (BP) in rats without causing major side effects. This method might be adapted for the treatment of therapy-resistant hypertension in patients. Converting enzyme inhibitors (CEIs) are among the first drugs that are administered for arterial hypertension and prominently reduce BP primarily by interacting with the renin-angiotensin system of the kidneys. Beyond the reduction of BP, CEI have a positive effect on the survival rate after myocardial infarction; they reduce the rates of stroke and improve the neurohormonal status in heart-failure patients. If sVNS might be introduced as a therapy against resistant hypertension, patients will at least partially stay on their CEI medication. It is therefore the aim of this study to investigate the influence of the CEI enalapril on the haemodynamic and respiratory effects of sVNS. In 10 male Wistar rats, a polyimide-based multichannel-cuff-electrode was placed around the vagal nerve bundle to selectively stimulate the aortic depressor nerve fibres. Stimulation parameters were adapted to the thresholds of the individual animals and included repetition frequencies between 30 and 50 Hz, amplitudes of 0.5 to 1.5 mA and pulse widths between 0.4 ms and 1.0 ms. BP responses were detected with a microtip transducer in the left carotid artery, and electrocardiography was recorded with subcutaneous electrodes. After intravenous administration of enalapril (2 mg/kg bodyweight), the animals’ mean arterial blood pressures (MAPs) decreased significantly, while the heart rates (HRs) were not significantly influenced. The effects of sVNS on BP and HR were attenuated by enalapril but were still present. We conclude that sVNS can lower the MAP during enalapril treatment without relevant side effects. PMID:26766419

  2. Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial

    PubMed Central

    Schittkowski, Michael P.; Antal, Andrea; Ambrus, Géza Gergely; Paulus, Walter; Dannhauer, Moritz; Michalik, Romualda; Mante, Alf; Bola, Michal; Lux, Anke; Kropf, Siegfried; Brandt, Stephan A.; Sabel, Bernhard A.

    2016-01-01

    Background Vision loss after optic neuropathy is considered irreversible. Here, repetitive transorbital alternating current stimulation (rtACS) was applied in partially blind patients with the goal of activating their residual vision. Methods We conducted a multicenter, prospective, randomized, double-blind, sham-controlled trial in an ambulatory setting with daily application of rtACS (n = 45) or sham-stimulation (n = 37) for 50 min for a duration of 10 week days. A volunteer sample of patients with optic nerve damage (mean age 59.1 yrs) was recruited. The primary outcome measure for efficacy was super-threshold visual fields with 48 hrs after the last treatment day and at 2-months follow-up. Secondary outcome measures were near-threshold visual fields, reaction time, visual acuity, and resting-state EEGs to assess changes in brain physiology. Results The rtACS-treated group had a mean improvement in visual field of 24.0% which was significantly greater than after sham-stimulation (2.5%). This improvement persisted for at least 2 months in terms of both within- and between-group comparisons. Secondary analyses revealed improvements of near-threshold visual fields in the central 5° and increased thresholds in static perimetry after rtACS and improved reaction times, but visual acuity did not change compared to shams. Visual field improvement induced by rtACS was associated with EEG power-spectra and coherence alterations in visual cortical networks which are interpreted as signs of neuromodulation. Current flow simulation indicates current in the frontal cortex, eye, and optic nerve and in the subcortical but not in the cortical regions. Conclusion rtACS treatment is a safe and effective means to partially restore vision after optic nerve damage probably by modulating brain plasticity. This class 1 evidence suggests that visual fields can be improved in a clinically meaningful way. Trial Registration ClinicalTrials.gov NCT01280877 PMID:27355577

  3. Haemodynamic Responses to Selective Vagal Nerve Stimulation under Enalapril Medication in Rats.

    PubMed

    Gierthmuehlen, Mortimer; Stieglitz, Thomas; Zentner, Josef; Plachta, Dennis T T

    2016-01-01

    Selective vagal nerve stimulation (sVNS) has been demonstrated to lower blood pressure (BP) in rats without causing major side effects. This method might be adapted for the treatment of therapy-resistant hypertension in patients. Converting enzyme inhibitors (CEIs) are among the first drugs that are administered for arterial hypertension and prominently reduce BP primarily by interacting with the renin-angiotensin system of the kidneys. Beyond the reduction of BP, CEI have a positive effect on the survival rate after myocardial infarction; they reduce the rates of stroke and improve the neurohormonal status in heart-failure patients. If sVNS might be introduced as a therapy against resistant hypertension, patients will at least partially stay on their CEI medication. It is therefore the aim of this study to investigate the influence of the CEI enalapril on the haemodynamic and respiratory effects of sVNS. In 10 male Wistar rats, a polyimide-based multichannel-cuff-electrode was placed around the vagal nerve bundle to selectively stimulate the aortic depressor nerve fibres. Stimulation parameters were adapted to the thresholds of the individual animals and included repetition frequencies between 30 and 50 Hz, amplitudes of 0.5 to 1.5 mA and pulse widths between 0.4 ms and 1.0 ms. BP responses were detected with a microtip transducer in the left carotid artery, and electrocardiography was recorded with subcutaneous electrodes. After intravenous administration of enalapril (2 mg/kg bodyweight), the animals' mean arterial blood pressures (MAPs) decreased significantly, while the heart rates (HRs) were not significantly influenced. The effects of sVNS on BP and HR were attenuated by enalapril but were still present. We conclude that sVNS can lower the MAP during enalapril treatment without relevant side effects. PMID:26766419

  4. Episodic phrenic-inhibitory vagus nerve stimulation paradoxically induces phrenic long-term facilitation in rats

    PubMed Central

    Zhang, Yi; McGuire, Michelle; White, David P; Ling, Liming

    2003-01-01

    All respiratory long-term facilitation (LTF) is induced by inspiratory-excitatory stimulation, suggesting that LTF needs inspiratory augmentation and is the result of a Hebbian mechanism (coincident pre- and post-synaptic activity strengthens synapses). The present study examined the long-term effects of episodic inspiratory-inhibitory vagus nerve stimulation (VNS) on phrenic nerve activity. We hypothesized that episodic VNS would induce phrenic long-term depression. The results are compared with those obtained following serotonin receptor antagonism or episodic carotid sinus nerve stimulation (CSNS). Integrated phrenic neurograms were measured before, during and after three episodes of 5 min VNS (50 Hz, 0.1 ms), each separated by a 5 min interval, at a low (˜50 μA), medium (˜200 μA) or high (˜500 μA) stimulus intensity in anaesthetized, vagotomized, neuromuscularly blocked and artificially ventilated rats. Medium- and high-intensity VNS eliminated rhythmic phrenic activity during VNS, while low-intensity VNS only reduced phrenic burst frequency. At 60 min post-VNS, phrenic amplitude was higher than baseline (35 ± 5 % above baseline, mean ± S.E.M., P < 0.05) in the high-intensity group but not in the low- (−4 ± 4 %) or medium-intensity groups (−10 ± 15 %), or in the high-intensity with methysergide group (4 mg kg−1, I.P.) (−11 ± 5 %). These data, which are inconsistent with our hypothesis, indicate that phrenic-inhibitory VNS induces a serotonin-dependent phrenic LTF similar to that induced by phrenic-excitatory CSNS (33 ± 7 %) and may require activation of high-threshold afferent fibres. These data also suggest that the synapses on phrenic motoneurons do not use the Hebbian mechanism in this LTF, as these motoneurons were suppressed during VNS. PMID:12872010

  5. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation

    NASA Astrophysics Data System (ADS)

    Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  6. Variations of blood flow at optic nerve head induced by sinusoidal flicker stimulation in cats.

    PubMed

    Vo Van Toi; Riva, C E

    1995-01-01

    1. The present investigation explored, in thirty-four anaesthetized cats, the blood flow changes at the optic nerve head elicited by sinusoidally modulated photic stimuli. 2. The stimuli were achromatic, diffuse and had 30 deg diameter field size; the stimulus frequency was varied from 0 to 100 Hz, modulation depth from 0 to 100% and mean retinal illuminance up to 50,000 trolands (td); the blood flow was measured with a near-infrared (810 nm) laser Doppler flowmeter. 3. At various frequencies, modulation depths and mean retinal illuminance, sinusoidal flicker stimulation always caused an increase in blood flow at the optic nerve head relative to steady stimulation. 4. The frequency response and temporal contrast sensitivity function of the blood flow changes had a bandpass shape; the high-frequency slope of the frequency response was 3 decades (dec) per decade and that of the temporal contrast sensitivity function was 1.7 dec per dec, close to the slope for cat 'on' ganglion cells (2.6 dec per dec). 5. In most cats, the magnitude of the increase in blood flow was a sigmoidal function of modulation depth; in the remainder, the relationship was close to linear. 6. The threshold of blood flow changes varied with respect to mean retinal illuminance similar to Ferry-Porter's law and the photopic linear slope was 50 Hz dec-1. 7. In comparison with reported psychophysical and electrophysiological responses elicited by similar stimulations, the results of the present study resemble more those obtained from ganglion cells than those from electroretinograms, visual-evoked potentials and psychophysics. It is suggested that the blood flow changes at the optic nerve head are induced by the activity of ganglion cells. PMID:7730982

  7. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    PubMed

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. PMID:26988796

  8. Effectiveness of Fulkerson Osteotomy with Femoral Nerve Stimulation for Patients with Severe Femoral Trochlear Dysplasia

    PubMed Central

    Crebs, D.T.; Anthony, C.A.; McCunniff, P.T.; Nieto, M.J.; Beckert, M.W.; Albright, J.P.

    2015-01-01

    Background Patients with femoral trochlear dysplasia are at risk for chronic recurrent patellofemoral dislocations, with extreme cases often requiring a surgical procedure. Anteromedialization of the tibial tubercle with intraoperative femoral nerve stimulation and concurrent medial patella-femoral ligament (MPFL) reconstruction is a previously reported method of maximizing patello-femoral congruency. We hypothesize the Fulkerson osteotomy with intraoperative femoral nerve stimulation and concurrent MPFL reconstruction in patients with severe trochlear dysplasia provides equivalent postoperative clinical outcomes to the same procedure in patients with low level trochlear dysplasia. Methods 48 knees underwent Fulkerson osteotomy with intraoperative femoral nerve stimulation and concurrent MPFL reconstruction for recurrent lateral patellar dislocations. MRI, surgeon intraoperative assessment, and X-ray were used to assess degrees of trochlear dysplasia; inter-observer and intra-observer error were measured. The knees positive for severe dysplasia on MRI, intraoperative assessment, and X-ray were considered as a comparison cohort to the rest of the study population. We considered postoperative dislocation events and patellar tracking kinematics as outcome measures. Independent student t tests and Fisher exact tests were used to evaluate differences between groups. Significance was set at P<0.05. Results 11 knees were positive for severe dysplasia (SD) by combined MRI, surgeon intraoperative assessment, and X-ray with the remaining 37 knees categorized as low dysplasia (LD). No patients in either group exhibited apprehension or required re-operation. Mean sulcus angle in the SD group was 175.8 +−2.45 degrees (95% CI 171.0–180.6); the LD group mean sulcus angle was 154.3 +− 0.98 degrees (95% CI 152.4–156.2) (P<.001). Postoperatively there was no significant difference in dislocation events between the SD group (0/11) and the LD group (2/37) (P>0.999). Patellar

  9. Epidermal laser stimulation of action potentials in the frog sciatic nerve

    NASA Astrophysics Data System (ADS)

    Jindra, Nichole M.; Goddard, Douglas; Imholte, Michelle; Thomas, Robert J.

    2010-01-01

    Measurements of laser-stimulated action potentials in the sciatic nerve of leopard frogs (Rana pipiens) are made using two infrared lasers. The dorsal sides of the frog's hind limbs are exposed to short-pulsed 1540- and 1064-nm wavelengths at three separate spot sizes: 2, 3, and 4 mm. Energy density thresholds are determined for eliciting an action potential at each experimental condition. Results from these exposures show similar evoked potential thresholds for both wavelengths. The 2-mm-diam spot sizes yield action potentials at radiant exposure levels almost double that seen with larger beam sizes.

  10. Vagus nerve stimulator in patients with epilepsy: indications and recommendations for use.

    PubMed

    Terra, Vera C; Amorim, Ricardo; Silvado, Carlos; Oliveira, Andrea Julião de; Jorge, Carmen Lisa; Faveret, Eduardo; Ragazzo, Paulo; De Paola, Luciano

    2013-11-01

    Epilepsy comprises a set of neurologic and systemic disorders characterized by recurrent spontaneous seizures, and is the most frequent chronic neurologic disorder. In patients with medically refractory epilepsy, therapeutic options are limited to ablative brain surgery, trials of experimental antiepileptic drugs, or palliative surgery. Vagal nerve stimulation is an available palliative procedure of which the mechanism of action is not understood, but with established efficacy for medically refractory epilepsy and low incidence of side-effects. In this paper we discuss the recommendations for VNS use as suggested by the Brazilian League of Epilepsy and the Scientific Department of Epilepsy of the Brazilian Academy of Neurology Committee of Neuromodulation. PMID:24394879

  11. Biclustering EEG data from epileptic patients treated with vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Busygin, Stanislav; Boyko, Nikita; Pardalos, Panos M.; Bewernitz, Michael; Ghacibeh, Georges

    2007-11-01

    We present a pilot study of an application of consistent biclustering to analyze scalp EEG data obtained from epileptic patients undergoing treatment with a vagus nerve stimulator (VNS). The ultimate goal of this study is to develop a physiologic marker for optimal VNS parameters (e.g. output current, signal frequency, etc.) using measures of scalp EEG signals. A time series of STLmax values was computed for each scalp EEG channel recorded from two epileptic patients and used as a feature of the two datasets. The averaged samples from stimulation periods were then separated from averaged samples from non-stimulation periods by feature selection performed within the consistent biclustering routine. The obtained biclustering results allow us to assume that signals from certain parts of the brain consistently change their characteristics when VNS is switched on and could provide a basis for desirable VNS stimulation parameters. A physiologic marker of optimal VNS effect could greatly reduce the cost, time, and risk of calibrating VNS stimulation parameters in newly implanted patients compared to the current method of clinical response.

  12. A System for Delivering Mechanical Stimulation and Robot-Assisted Therapy to the Rat Whisker Pad during Facial Nerve Regeneration

    PubMed Central

    Heaton, James T.; Knox, Christopher; Malo, Juan; Kobler, James B.; Hadlock, Tessa A.

    2013-01-01

    Functional recovery is typically poor after facial nerve transection and surgical repair. In rats, whisking amplitude remains greatly diminished after facial nerve regeneration, but can recover more completely if the whiskers are periodically mechanically stimulated during recovery. Here we present a robotic “whisk assist” system for mechanically driving whisker movement after facial nerve injury. Movement patterns were either pre-programmed to reflect natural amplitudes and frequencies, or movements of the contralateral (healthy) side of the face were detected and used to control real-time mirror-like motion on the denervated side. In a pilot study, twenty rats were divided into nine groups and administered one of eight different whisk assist driving patterns (or control) for 5–20 minutes, five days per week, across eight weeks of recovery after unilateral facial nerve cut and suture repair. All rats tolerated the mechanical stimulation well. Seven of the eight treatment groups recovered average whisking amplitudes that exceeded controls, although small group sizes precluded statistical confirmation of group differences. The potential to substantially improve facial nerve recovery through mechanical stimulation has important clinical implications, and we have developed a system to control the pattern and dose of stimulation in the rat facial nerve model. PMID:23475376

  13. Electrical Stimulation to Conductive Scaffold Promotes Axonal Regeneration and Remyelination in a Rat Model of Large Nerve Defect

    PubMed Central

    Zhang, Yongguang; Liang, Wei; Wu, Siyu; Luo, Zhuojing

    2012-01-01

    Background Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. Methodology/Findings In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. Conclusions/Significance Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect. PMID:22737243

  14. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    SciTech Connect

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-15

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  15. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    NASA Astrophysics Data System (ADS)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  16. Vagus Nerve Stimulation to Augment Recovery from Severe Traumatic Brain Injury Impeding Consciousness: A Prospective Pilot Clinical Trial

    PubMed Central

    Shi, Chen; Flanagan, Steven R.; Samadani, Uzma

    2015-01-01

    Objectives Traumatic brain injury has a high morbidity and mortality in both civilian and military populations. Blast and other mechanisms of traumatic brain injury damage the brain by causing neurons to disconnect and atrophy. Such traumatic axonal injury can lead to persistently vegetative and minimally conscious states, for which limited treatment options exist, including physical, occupational, speech and cognitive therapies. More than 60,000 patients have received vagus nerve stimulation for epilepsy and depression. In addition to decreased seizure frequency and severity, patients report enhanced mood, reduced daytime sleepiness independent of seizure control, increased slow wave sleep, and improved cognition, memory, and quality of life. Early stimulation of the vagus nerve accelerates the rate and extent of behavioral and cognitive recovery after fluid percussion brain injury in rats. Methods We recently obtained FDA approval for a pilot prospective randomized crossover trial to demonstrate objective improvement in clinical outcome by placement of a vagus nerve stimulator in patients who are recovering from severe traumatic brain injury. Our hypothesis is that stimulation of the vagus nerve results in increased cerebral blood flow and metabolism in the forebrain, thalamus and reticular formation, which promotes arousal and improved consciousness, thereby improving outcome after traumatic brain injury resulting in minimally conscious or persistent vegetative states. Discussion If this study demonstrates that vagus nerve stimulation can safely and positively impact outcome, then a larger randomized prospective crossover trial will be proposed. PMID:23485054

  17. Effects of pelvic, pudendal, or hypogastric nerve cuts on Fos induction in the rat brain following vaginocervical stimulation.

    PubMed

    Pfaus, James G; Manitt, Colleen; Coopersmith, Carol B

    2006-12-30

    In the female rat, genitosensory input is conveyed to the central nervous system predominantly through the pelvic, pudendal, and hypogastric nerves. The present study examined the relative contribution of those three nerves in the expression of Fos immunoreactivity within brain regions previously shown to be activated by vaginocervical stimulation (VCS). Bilateral transection of those nerves, or sham neurectomy, was conducted in separate groups of ovariectomized, sexually-experienced females. After recovery, females were primed with estrogen and progesterone and given either 50 manual VCSs with a lubricated glass rod over the course of 1 h. VCS increased the number of neurons expressing Fos immunoreactivity in the medial preoptic area, lateral septum, bed nucleus of the stria terminalis, ventromedial hypothalamus, and medial amygdala of sham neurectomized females. Transection of the pelvic nerve reduced Fos immunoreactivity in the medial preoptic area, bed nucleus of the stria terminalis, ventromedial hypothalamus, and medial amygdala, whereas transection of the pudendal nerve had no effect. In contrast, transection of the hypogastric nerve increased Fos immunoreactivity in the medial preoptic area and lateral septum, whereas transaction of the pelvic nerve increased Fos immunoreactivity in the lateral septum, following VCS. All females given VCS, except those with pelvic neurectomy, displayed a characteristic immobility during each application. These data confirm that the pelvic nerve is largely responsible for the neural and behavioral effects of VCS, and support a separate function for the hypogastric nerve. PMID:16959279

  18. Effect of Transcranial Magnetic Stimulation on Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Unsal, Ahmet; Hadimani, Ravi; Jiles, David

    2013-03-01

    The human brain contains around 100 billion nerve cells controlling our day to day activities. Consequently, brain disorders often result in impairments such as paralysis, loss of coordination and seizure. It has been said that 1 in 5 Americans suffer some diagnosable mental disorder. There is an urgent need to understand the disorders, prevent them and if possible, develop permanent cure for them. As a result, a significant amount of research activities is being directed towards brain research. Transcranial Magnetic Stimulation (TMS) is a promising tool for diagnosing and treating brain disorders. It is a non-invasive treatment method that produces a current flow in the brain which excites the neurons. Even though TMS has been verified to have advantageous effects on various brain related disorders, there have not been enough studies on the impact of TMS on cells. In this study, we are investigating the electrophysiological effects of TMS on one dimensional neuronal culture grown in a circular pathway. Electrical currents are produced on the neuronal networks depending on the directionality of the applied field. This aids in understanding how neuronal networks react under TMS treatment.

  19. Activation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves.

    PubMed

    Kopp, Ulla C; Cicha, Michael Z; Nakamura, Kazuhiro; Nüsing, Rolf M; Smith, Lori A; Hökfelt, Tomas

    2004-12-01

    Induction of cyclooxygenase-2 (COX-2) in the renal pelvic wall increases prostaglandin E(2) (PGE(2)) leading to stimulation of cAMP production, which results in substance P (SP) release and activation of renal mechanosensory nerves. The subtype of PGE receptors involved, EP2 and/or EP4, was studied by immunohistochemistry and renal pelvic administration of agonists and antagonists of EP2 and EP4 receptors. EP4 receptor-like immunoreactivity (LI) was colocalized with calcitonin gene-related peptide (CGRP)-LI in dorsal root ganglia (DRGs) at Th(9)-L(1) and in nerve terminals in the renal pelvic wall. Th(9)-L(1) DRG neurons also contained EP3 receptor-LI and COX-2-LI, each of which was colocalized with CGRP-LI in some neurons. No renal pelvic nerves contained EP3 receptor-LI and only very few nerves COX-2-LI. The EP1/EP2 receptor antagonist AH-6809 (20 microM) had no effect on SP release produced by PGE(2) (0.14 microM) from an isolated rat renal pelvic wall preparation. However, the EP4 receptor antagonist L-161,982 (10 microM) blocked the SP release produced by the EP2/EP4 receptor agonist butaprost (10 microM) 12 +/- 2 vs. 2 +/- 1 and PGE(2), 9 +/- 1 vs. 1 +/- 0 pg/min. The SP release by butaprost and PGE(2) was similarly blocked by the EP4 receptor antagonist AH-23848 (30 microM). In anesthetized rats, the afferent renal nerve activity (ARNA) responses to butaprost 700 +/- 100 and PGE(2).780 +/- 100%.s (area under the curve of ARNA vs. time) were unaffected by renal pelvic perfusion with AH-6809. However, 1 microM L-161,982 and 10 microM AH-23848 blocked the ARNA responses to butaprost by 94 +/- 5 and 78 +/- 10%, respectively, and to PGE(2) by 74 +/- 16 and 74 +/- 11%, respectively. L-161,982 also blocked the ARNA response to increasing renal pelvic pressure 10 mmHg, 85 +/- 5%. In conclusion, PGE(2) increases renal pelvic release of SP and ARNA by activating EP4 receptors on renal sensory nerve fibers. PMID:15292051

  20. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control

    NASA Astrophysics Data System (ADS)

    Lin, C.-C. K.; Liu, W.-C.; Chan, C.-C.; Ju, M.-S.

    2012-04-01

    The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal.

  1. Evaluation of Transcutaneous Electrical Nerve Stimulation as a Treatment of Neck Pain due to Musculoskeletal Disorders

    PubMed Central

    Maayah, Mikhled; Al-Jarrah, Mohammed

    2010-01-01

    Background This study was designed to evaluate transcutaneous electrical nerve stimulation (TENS) as a treatment for neck pain due to musculoskeletal disorders within the context of a physiotherapy treatment. Methods Thirty subjects with neck pain were randomly allocated to two groups, treated with either TENS (n = 15) or placebo (n = 15). Each subject received one session for one hour. All subjects were evaluated before, during treatment, after switch off and again a week after by using Myometer machine. All subjects completed the follow-up assessment. Subjects referred for out-subjects' physiotherapy department, fulfilling the inclusion and exclusion criteria, took part in the study. Results The assessments were compared and used to measure outcome treatment. Improvement in their condition was measured in terms of a reduction in the individual's level of pain during the week after the end of the first session. At the end of the first session, the study showed that 11 subjects (73%) in the treatment and 7 subjects (43%) in the control groups had gained marked improvement. These results are statistically highly significant, (P = 0.01) at the end of the follow-up assessment. Conclusions A conclusion could be drawn that a single intense TENS treatment is an effective treatment for neck pain due to musculoskeletal disorders. On the other hand, TENS showed an effective pain relief with subjects who have a mild neck pain rather than those with severe symptoms. Keywords Musculoskeletal disorders; Transcutaneous electrical nerve stimulation; Neck pain PMID:21629525

  2. The Role of Transcutaneous Electrical Nerve Stimulation in the Management of Temporomandibular Joint Disorder.

    PubMed

    Awan, Kamran Habib; Patil, Shankargouda

    2015-12-01

    Temporomandibular joint disorders (TMD) constitutes of a group of diseases that functionally affect the masticatory system, including the muscles of mastication and temporomandibular joint (TMJ). A number of etiologies with specific treatment have been identified, including the transcutaneous electrical nerve stimulation (TENS). The current paper presents a literature review on the use of TENS in the management of TMD patients. Temporomandibular joint disorder is very common disorder with approximately 75% of people showing some signs, while more than quarter (33%) having at least one symptom. An attempt to treat the pain should be made whenever possible. However, in cases with no defined etiology, starting with less intrusive and reversible techniques is prescribed. Transcutaneous electrical nerve stimulation is one such treatment modality, i.e. useful in the management of TMD. It comprises of controlled exposure of electrical current to the surface of skin, causing hyperactive muscles relaxation and decrease pain. Although the value of TENS to manage chronic pain in TMD patients is still controversial, its role in utilization for masticatory muscle pain is significant. However, an accurate diagnosis is essential to minimize its insufficient use. Well-controlled randomized trials are needed to determine the utilization of TENS in the management of TMD patients. PMID:27018034

  3. Chronic vagus nerve stimulation for treatment-resistant depression decreases resting ventromedial prefrontal glucose metabolism

    PubMed Central

    Pardo, José V.; Sheikh, Sohail A.; Schwindt, Graeme C.; Lee, Joel T.; Kuskowski, Michael A.; Surerus, Christa; Lewis, Scott M.; Abuzzahab, Farouk S.; Adson, David E.; Rittberg, Barry R.

    2008-01-01

    Vagus nerve stimulation (VNS) is used as an adjunctive therapy for treatment-resistant depression (TRD). Its mechanism of action is not fully understood. Longitudinal measurement of changes in brain metabolism associated with VNS can provide insights into this new treatment modality. Eight severely depressed outpatients who were highly treatment-resistant underwent electrical stimulation of the left vagus nerve for approximately one year. The main outcome measures were resting regional brain glucose uptake measured with positron emission tomography (PET) and the 24-item Hamilton Depression Scale. The most significant and extensive change over one year of chronic VNS localized to the ventromedial prefrontal cortex extending from the subgenual cingulate to the frontal pole. This region continued to decline in metabolism even toward the end of the study. Clinically, this cohort showed a trend for improvement. No correlations surfaced between change in glucose uptake and depression scores. However, the sample size was small; none remitted; and the range of depression scores was limited. Chronic VNS as adjunctive therapy in patients with severe TRD produces protracted and robust declines in resting brain activity within the ventromedial prefrontal cortex, a network with dense connectivity to the amygdala and structures monitoring the internal milieu. PMID:18595737

  4. Selective bilateral activation of leg muscles after cutaneous nerve stimulation during backward walking

    PubMed Central

    Massaad, Firas; Jansen, Karen; Bruijn, Sjoerd M.; Duysens, Jacques

    2012-01-01

    During human locomotion, cutaneous reflexes have been suggested to function to preserve balance. Specifically, cutaneous reflexes in the contralateral leg's muscles (with respect to the stimulus) were suggested to play an important role in maintaining stability during locomotor tasks where stability is threatened. We used backward walking (BW) as a paradigm to induce unstable gait and analyzed the cutaneous reflex activity in both ipsilateral and contralateral lower limb muscles after stimulation of the sural nerve at different phases of the gait cycle. In BW, the tibialis anterior (TA) reflex activity in the contralateral leg was markedly higher than TA background EMG activity during its stance phase. In addition, in BW a substantial reflex suppression was observed in the ipsilateral biceps femoris during the stance-swing transition in some participants, while for medial gastrocnemius the reflex activity was equal to background activity in both legs. To test whether the pronounced crossed responses in TA could be related to instability, the responses were correlated with measures of stability (short-term maximum Lyapunov exponents and step width). These measures were higher for BW compared with forward walking, indicating that BW is less stable. However, there was no significant correlation between these measures and the amplitude of the crossed TA responses in BW. It is therefore proposed that these crossed responses are related to an attempt to briefly slow down (TA decelerates the center of mass in the single-stance period) in the light of unexpected perturbations, such as provided by the sural nerve stimulation. PMID:22773779

  5. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control.

    PubMed

    Lin, C-C K; Liu, W-C; Chan, C-C; Ju, M-S

    2012-04-01

    The main goal of this study was to study the performance of fuzzy logic controllers combined with simplified hybrid amplitude/pulse-width (AM/PW) modulation to regulate muscle force via nerve electrical stimulation. The recruitment curves with AM/PW and AM modulations were constructed for the calf muscles of rabbits. Integrated with the modulation methods, a proportional-integral-derivative (PID) and three fuzzy logic controllers were designed and applied for the electrical stimulation of tibial nerves to control the ankle torque under isometric conditions. The performance of the two modulation methods combined with the four controllers was compared when the ankle was fixed at three positions for both in vivo experiments and model simulations using a nonlinear muscle model. For the animal experiments, AM/PW modulation performed better than AM modulation alone. The fuzzy PI controller performed marginally better and was resistant to external noises, though it tended to have a larger overshoot. The performance of the controllers had a similar trend in the three different joint positions, and the simulation results with the nonlinear model matched the experimental results well. In conclusion, AM/PW modulation improved controller performance, while the contribution of fuzzy logic was only marginal. PMID:22422279

  6. Tail arteries from chronically spinalized rats have potentiated responses to nerve stimulation in vitro

    PubMed Central

    Yeoh, Melanie; McLachlan, Elspeth M; Brock, James A

    2004-01-01

    Patients with severe spinal cord lesions that damage descending autonomic pathways generally have low resting arterial pressure but bladder or colon distension or unheeded injuries may elicit a life-threatening hypertensive episode. Such episodes (known as autonomic dysreflexia) are thought to result from the loss of descending baroreflex inhibition and/or plasticity within the spinal cord. However, it is not clear whether changes in the periphery contribute to the exaggerated reflex vasoconstriction. The effects of spinal transection at T7–8 on nerve- and agonist-evoked contractions of the rat tail artery were investigated in vitro. Isometric contractions of arterial segments were recorded and responses of arteries from spinalized animals (‘spinalized arteries’) and age-matched and sham-operated controls were compared. Two and eight weeks after transection, nerve stimulation at 0.1–10 Hz produced contractions of greater force and duration in spinalized arteries. At both stages, the α-adrenoceptor antagonists prazosin (10 nm) and idazoxan (0.1 μm) produced less blockade of nerve-evoked contraction in spinalized arteries. Two weeks after transection, spinalized arteries were supersensitive to the α1-adrenoceptor agonist phenylephrine, and the α2-adrenoceptor agonist, clonidine, but 8 weeks after transection, spinalized arteries were supersensitive only to clonidine. Contractions of spinalized arteries elicited by 60 mm K+ were larger and decayed more slowly at both stages. These findings demonstrate that spinal transection markedly increases nerve-evoked contractions and this can, in part, be accounted for by increased reactivity of the vascular smooth muscle to vasoconstrictor agents. This hyper-reactivity may contribute to the genesis of autonomic dysreflexia in patients. PMID:14766944

  7. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study.

    PubMed

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J M

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation. PMID:26300717

  8. Influence of genioglossus tonic activity on upper airway dynamics assessed by phrenic nerve stimulation.

    PubMed

    Sériès, F; Marc, I

    2002-01-01

    Upper airway (UA) dynamics can be evaluated during wakefulness by using electrical phrenic nerve stimulation (EPNS) applied at end-expiration during exclusive nasal breathing by dissociating twitch flow and phasic activation of UA muscles. This technique can be used to quantify the influence of nonphasic electromyographic (EMG) activity on UA dynamics. UA dynamics was characterized by using EPNS when increasing tonic EMG activity with CO(2) stimulation in six normal awake subjects. Instantaneous flow, esophageal and nasopharyngeal pressures, and genioglossal EMG activity were recorded during EPNS at baseline and during CO(2) ventilatory stimulation. The proportion of twitches presenting an inspiratory-flow limitation pattern decreased from 100% at baseline to 78.7 +/- 21.4% (P = 10(-4)) during CO(2) rebreathing. During CO(2) stimuli, maximal inspiratory twitch flow (VI(max)) of flow-limited twitches significantly rose, with the driving pressure at which flow limitation occurred being more negative. For the group as a whole, the increase in VI(max) and the decrease in pressure were significantly correlated with the rise in end-expiratory EMG activity. UA stability assessed by EPNS is dramatically modified during CO(2) ventilatory stimulation. Changes in tonic genioglossus EMG activity significantly contribute to the improvement in UA stability. PMID:11744686

  9. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study

    PubMed Central

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J. M.

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation. PMID:26300717

  10. Short-term vagal nerve stimulation improves left ventricular function following chronic heart failure in rats

    PubMed Central

    LI, YAN; XUAN, YAN-HUA; LIU, SHUANG-SHUANG; DONG, JING; LUO, JIA-YING; SUN, ZHI-JUN

    2015-01-01

    Increasing numbers of animal and clinical investigations have demonstrated the effectiveness of long-term electrical vagal nerve stimulation (VNS) on chronic heart failure (CHF). The present study investigated the effects of short-term VNS on the hemodynamics of cardiac remodeling and cardiac excitation-contraction coupling (ECP) in an animal model of CHF following a large myocardial infarction. At 3 weeks subsequent to ligation of the left coronary artery, the surviving rats were randomized into vagal and sham-stimulated groups. The right vagal nerve of the CHF rats was stimulated for 72 h. The vagal nerve was stimulated with rectangular pulses of 40 ms duration at 1 Hz, 5 V. The treated rats, compared with the untreated rats, had significantly higher left ventricular ejection fraction (54.86±9.73, vs. 45.60±5.51%; P=0.025) and left ventricular fractional shortening (25.31±6.30, vs. 15.42±8.49%; P=0.013), and lower levels of brain natriuretic peptide (10.07±2.63, vs. 19.95±5.22 ng/ml; P=0.001). The improvement in cardiac pumping function was accompanied by a decrease in left ventricular end diastolic volume (1.11±0.50, vs. 1.54±0.57 cm3; P=0.032) and left ventricular end systolic volume (0.50±0.28, vs. 0.87±0.36 cm3; P=0.007). Furthermore, the expression levels of ryanodine receptor type 2 (RyR2) and sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2) were significantly higher in the treated rats compared with the untreated rats (P=0.011 and P=0.001 for RyR2 and SERCA2, respectively). Therefore, VNS was beneficial to the CHF rats through the prevention of cardiac remodeling and improvement of cardiac ECP. PMID:25873055

  11. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    PubMed Central

    Feng, Zhen; Zhong, Ying-jun; Wang, Liang; Wei, Tian-qi

    2015-01-01

    In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation. PMID:26170820

  12. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats

    NASA Astrophysics Data System (ADS)

    Lu, Yiliang; Yan, Yan; Chai, Xinyu; Ren, Qiushi; Chen, Yao; Li, Liming

    2013-06-01

    Objective. A visual prosthesis based on penetrating electrode stimulation within the optic nerve (ON) is a potential way to restore partial functional vision for blind patients. We investigated the retinotopic organization of ON stimulation and its spatial resolution. Approach. A five-electrode array was inserted perpendicularly into the ON or a single electrode was advanced to different depths within the ON (˜1-2 mm behind the eyeball, 13 cats). A sparse noise method was used to map ON electrode position and the visual cortex. Cortical responses were recorded by a 5 × 6 array. The visuotopic correspondence between the retinotopic position of the ON electrode was compared with the visual evoked cortical map and the electrical evoked potentials elicited in response to ON stimulation. Main results. Electrical stimulation with penetrating ON electrodes elicited cortical responses in visuotopographically corresponding areas of the cortex. Stimulation of the temporal side of the ON elicited cortical responses corresponding to the central visual field. The visual field position shifted from the lower to central visual field as the electrode penetrated through the depth of the ON. A spatial resolution of ˜ 2° to 3° within a limited cortical visuotopic representation could be obtained by this approach. Significance. Visuotopic electrical stimulation with a relatively fine spatial resolution can be accomplished using penetrating electrodes implanted at multiple sites and at different depths within the ON just behind the globe. This study also provides useful experimental data for the design of electrode density and the distribution of penetrating ON electrodes for a visual prosthesis.

  13. Clinical applications of diffusion magnetic resonance imaging of the lumbar foraminal nerve root entrapment

    PubMed Central

    Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi; Takaso, Masashi; Aoki, Yasuchika; Toyone, Tomoaki; Suzuki, Takane; Takahashi, Kazuhisa

    2010-01-01

    Diffusion-weighted imaging (DWI) can provide valuable structural information about tissues that may be useful for clinical applications in evaluating lumbar foraminal nerve root entrapment. Our purpose was to visualize the lumbar nerve root and to analyze its morphology, and to measure its apparent diffusion coefficient (ADC) in healthy volunteers and patients with lumbar foraminal stenosis using 1.5-T magnetic resonance imaging. Fourteen patients with lumbar foraminal stenosis and 14 healthy volunteers were studied. Regions of interest were placed at the fourth and fifth lumbar root at dorsal root ganglia and distal spinal nerves (at L4 and L5) and the first sacral root and distal spinal nerve (S1) on DWI to quantify mean ADC values. The anatomic parameters of the spinal nerve roots can also be determined by neurography. In patients, mean ADC values were significantly higher in entrapped roots and distal spinal nerve than in intact ones. Neurography also showed abnormalities such as nerve indentation, swelling and running transversely in their course through the foramen. In all patients, leg pain was ameliorated after selective decompression (n = 9) or nerve block (n = 5). We demonstrated the first use of DWI and neurography of human lumbar nerves to visualize and quantitatively evaluate lumbar nerve entrapment with foraminal stenosis. We believe that DWI is a potential tool for diagnosis of lumbar nerve entrapment. PMID:20632042

  14. Fibrinolytic effects of peroneal nerve stimulation in patients with lower limb vascular disease.

    PubMed

    Barnes, Rachel; Madden, Leigh A; Chetter, Ian C

    2016-04-01

    Patients with lower limb vascular disease are at an increased risk of thrombotic events. Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1) are important components of the fibrinolytic system, responsible for clot lysis. This study aimed to establish whether peroneal nerve stimulation (PNS) could promote fibrinolysis within a cohort of vascular patients. Ethical approval was obtained for this prospective case-controlled study. Patients were randomly assigned to active stimulation or control groups. Arterial flow measurements and venous blood samples were taken bilaterally at baseline and following 45 min of PNS. ELISA analysis for plasma t-PA and PAI-1 was performed utilizing commercially available kits. Statistical analysis evaluated the changes in t-PA and PAI-1 levels from baseline for the active (device active), passive (contralateral limb) and control limbs (inactive device applied).Seventy-seven participants were recruited: 30 claudicants (25 active and five controls), 25 patients postoperative infra-inguinal bypass grafts (19 active and six controls) and 22 patients with varicose veins (17 active and five controls). t-PA levels reduced significantly in all groups; however, intergroup analysis demonstrated no statistically significant difference when comparing the active, passive and control limbs (P = 0.079). PAI-1 levels decreased by 16.2% (34.0 ng/ml, SD 52.2) in the active limbs but only 3.6% (11.4 ng/ml, SD 47.4) and 2.6% (2.7 ng/ml, SD 21.3) in the passive and control limbs, respectively (intergroup analysis P < 0.001). No relationship between changes in flow and plasma of t-PA and PAI-1 were demonstrated. Peroneal nerve stimulation may augment fibrinolysis by decreasing plasma levels of PAI-1 levels in patients with lower limb arterial and venous disease. PMID:26397885

  15. [Exploration Research of Treatment Effect Improvement of Transcutaneous Electrical Nerve Stimulation Using Parameter-changing Chaotic Signal].

    PubMed

    Zheng, Jincun; Zhang, Hui; Qin, Binyi; Wang, Hai; Nie, Guochao; Chen, Tiejun

    2015-10-01

    This article presents a transcutaneous electric stimulator that is based on chaotic signal. Firstly, we in the study used the MATLAB platform in the PC to generate chaotic signal through the chaos equation, and then we transferred the signal out by data acquisition equipment of USB-6251 manufactured by NI Company. In order to obtain high-power signal for transcutaneous electric stimulator, we used the chip of LM3886 to amplify the signal. Finally, we used the power-amplified chaotic signal to stimulate the internal nerve of human through the electrodes fixed on the skin. We obtained different stimulation effects of transcutaneous electric stimulator by changing the parameters of chaotic model. The preliminary test showed that the randomness of chaotic signals improved the applicability of electrical stimulation and the rules of chaos ensured that the stimulation was comfort. The method reported in this paper provides a new way for the design of transcutaneous electric stimulator. PMID:26964307

  16. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites

    PubMed Central

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-01-01

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca2+ activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca2+ activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively. DOI: http://dx.doi.org/10.7554/eLife.13598.001 PMID:26988796

  17. Transcranial Magnetic Stimulation for Status Epilepticus

    PubMed Central

    Zeiler, F. A.; Matuszczak, M.; Teitelbaum, J.; Gillman, L. M.; Kazina, C. J.

    2015-01-01

    Background. Our goal was to perform a systematic review on the use of repetitive transcranial magnetic stimulation (rTMS) in the treatment of status epilepticus (SE) and refractory status epilepticus (RSE). Methods. MEDLINE, BIOSIS, EMBASE, Global Health, Healthstar, Scopus, Cochrane Library, the International Clinical Trials Registry Platform, clinicaltrials.gov (inception to August 2015), and gray literature were searched. The strength of evidence was adjudicated using Oxford and GRADE methodology. Results. We identified 11 original articles. Twenty-one patients were described, with 13 adult and 8 pediatric. All studies were retrospective. Seizure reduction/control with rTMS occurred in 15 of the 21 patients (71.4%), with 5 (23.8%) and 10 (47.6%) displaying partial and complete responses, respectively. Seizures recurred after rTMS in 73.3% of the patients who had initially responded. All studies were an Oxford level 4, GRADE D level of evidence. Conclusions. Oxford level 4, GRADE D evidence exists to suggest a potential impact on seizure control with the use of rTMS for FSE and FRSE, though durability of the therapy is short-lived. Routine use of rTMS in this context cannot be recommended at this time. Further prospective study of this intervention is warranted. PMID:26682065

  18. High-resolution magnetic resonance imaging of the lower extremity nerves.

    PubMed

    Burge, Alissa J; Gold, Stephanie L; Kuong, Sharon; Potter, Hollis G

    2014-02-01

    Magnetic resonance (MR) imaging of the nerves, commonly known as MR neurography is increasingly being used as noninvasive means of diagnosing peripheral nerve disease. High-resolution imaging protocols aimed at imaging the nerves of the hip, thigh, knee, leg, ankle, and foot can demonstrate traumatic or iatrogenic injury, tumorlike lesions, or entrapment of the nerves, causing a potential loss of motor and sensory function in the affected area. A thorough understanding of normal MR imaging and gross anatomy, as well as MR findings in the presence of peripheral neuropathies will aid in accurate diagnosis and ultimately help guide clinical management. PMID:24210318

  19. The renal response to electrical stimulation of renal efferent sympathetic nerves in the anaesthetized greyhound.

    PubMed

    Poucher, S M; Karim, F

    1991-03-01

    1. The effect of direct electrical stimulation of the renal efferent nerves upon renal haemodynamics and function was studied in greyhounds anaesthetized with chloralose and artificially ventilated. The left kidney was neurally and vascularly isolated, and perfused with blood from one of the femoral arteries at a constant pressure of 99 +/- 1 mmHg. Renal blood flow was measured with a cannulating electromagnetic flow probe placed in the perfusion circuit, glomerular filtration rate by creatinine clearance, urinary sodium excretion by flame photometry and solute excretion by osmometry. Beta-Adrenergic receptor activation was blocked by the infusion of dl-propranolol (17 micrograms kg-1 min-1). The peripheral ends of the ligated renal nerves were stimulated at 0.5, 1.0, 1.5 and 2.0 Hz. 2. At 0.5 Hz frequency only osmolar excretion was significantly reduced (10.3 +/- 3.2%, P less than 0.05, n = 6). Reductions in sodium excretion (53.6 +/- 8.5%, P less than 0.01, n = 6) and water excretion (26.9 +/- 8.0%, P less than 0.05, n = 6) and further reductions of osmolar excretion (20.7 +/- 3.7%, P less than 0.01, n = 6) were observed at 1.0 Hz; however, these were observed in the absence of significant changes in renal blood flow and glomerular filtration rate. Significant reductions were observed in glomerular filtration rate at 1.5 Hz (16.3 +/- 4.1%, P less than 0.02, n = 5) and in renal blood flow at 2.0 Hz (13.1 +/- 4.0%, P less than 0.05, n = 5). Further reductions in urine flow and sodium excretion were also observed at these higher frequencies. 3. These results clearly show that significant changes in renal tubular function can occur in the absence of changes in renal blood flow and glomerular filtration rate when the renal nerves are stimulated electrically from a zero baseline activity up to a frequency of 1.5 Hz. Higher frequencies caused significant changes in both renal haemodynamics and function. PMID:2023113

  20. Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status.

    PubMed

    Shepherd, R K; Javel, E

    1997-06-01

    The purpose of the present study was to evaluate evoked potential and single fibre responses to biphasic current pulses in animals with varying degrees of cochlear pathology, and to correlate any differences in the physiological response with status of the auditory nerve. Six cats, whose cochleae ranged from normal to a severe neural loss (< 5% spiral ganglion survival), were used. Morphology of the electrically evoked auditory brainstem response (EABR) was similar across all animals, although electrophonic responses were only observed from the normal animal. In animals with extensive neural pathology, EABR thresholds were elevated and response amplitudes throughout the dynamic range were moderately reduced. Analysis of single VIIIth nerve fibre responses were based on 207 neurons. Spontaneous discharge rates among fibres depended on hearing status, with the majority of fibres recorded from deafened animals exhibiting little or no spontaneous activity. Electrical stimulation produced a monotonic increase in discharge rate, and a systematic reduction in response latency and temporal jitter as a function of stimulus intensity for all fibres examined. Short-duration current pulses elicited a highly synchronous response (latency < 0.7 ms), with a less well synchronized response sometimes present (0.7-1.1 ms). There were, however, a number of significant differences between responses from normal and deafened cochleae. Electrophonic activity was only present in recordings from the normal animal, while mean threshold, dynamic range and latency of the direct electrical response varied with cochlear pathology. Differences in the ability of fibres to follow high stimulation rates were also observed; while neurons from the normal cochlea were capable of 100% entrainment at high rates (600-800 pulses per second (pps)), fibres recorded from deafened animals were often not capable of such entrainment at rates above 400 pps. Finally, a number of fibres in deafened animals showed

  1. A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties

    PubMed Central

    Horne, Colin D. F.; Sumner, Christian J.; Seeber, Bernhard U.

    2016-01-01

    We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability) under both monophasic and cathodic-anodic biphasic stimulation, without changing the model's parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG) of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions. Our work extends the stochastic leaky integrate and fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model. PMID:26903850

  2. Intragastric monosodium L-glutamate stimulates motility of upper gut via vagus nerve in conscious dogs.

    PubMed

    Toyomasu, Yoshitaka; Mochiki, Erito; Yanai, Mitsuhiro; Ogata, Kyoichi; Tabe, Yuichi; Ando, Hiroyuki; Ohno, Tetsuro; Aihara, Ryuusuke; Zai, Hiroaki; Kuwano, Hiroyuki

    2010-04-01

    Monosodium l-glutamate (MSG) is a substance known to produce the umami taste. Recent studies indicate that MSG also stimulates a variety of activities in the gastrointestinal tract through its receptor in the gut, but no study has reported the activity in conscious large experimental animals. The aim of our study was to investigate whether direct intragastric MSG stimulates gut motility and to identify the mechanism in conscious dogs. Contractile response to intraluminal injection of MSG was studied in the fed and fasted states by means of chronically implanted force transducers. MSG (5, 15, 45, and 90 mM/kg) dissolved in water was injected into the stomach and duodenum in normal and vagotomized dogs. MSG solution was administered into the stomach before feeding, and gastric emptying was evaluated. Several inhibitors of gastrointestinal motility (atropine, hexamethonium, and granisetron) were injected intravenously before MSG administration to the stomach. The effect of MSG was investigated in Pavlov (vagally innervated corpus pouch), Heidenhain (vagally denervated corpus pouch), and antral pouch (vagally innervated) dogs. Upper gut motility was significantly increased by intragastric MSG but not significantly stimulated by intraduodenal MSG. Intragastric MSG (45 mM/kg) stimulated postprandial motility and accelerated gastric emptying. MSG-induced contractions were inhibited by truncal vagotomy, atropine, hexamethonium, and granisetron. Gut motility was increased by intrapouch injection of MSG in the Pavlov pouch, but it was not affected in the Heidenhain or antral pouch dogs. We conclude that intragastric MSG stimulates upper gut motility and accelerates gastric emptying. The sensory structure of MSG is present in the gastric corpus, and the signal is mediated by the vagus nerve. PMID:20071606

  3. Evaluation of the effect of transcutaneous electrical nerve stimulation (TENS) on whole salivary flow rate

    PubMed Central

    Pal-Singh, Mohit; Mathur, Hemant; Astekar, Sowmya; Gulati, Pranay; Lakhani, Shruta

    2015-01-01

    Background: Saliva plays a critical role in maintaining oral homeostasis; it modulates the ecosystem through lubrication of the alimentary bolus, protection against microorganisms, buffer and repair of the oral mucosa, and helps in dental re-mineralization. Various local and systemic factors such as medications, radiation therapy, systemic conditions, etc. can lead to reduction in salivary flow. A decrease in salivary function, known as Xerostomia, increases a patient’s risk for caries and other oral infections. Palliative management of Xerostomia includes wetting agents such as ice chips, drugs and saliva substitutes. Systemic agents stimulate salivary flow but often have unfavorable side effects. Newer modalities like transcutaneous electrical nerve stimulation (TENS), which has fewer side effects, have been used to stimulate salivary flow. The aim of the present study was to assess and evaluate the effect of TENS on whole salivary flow rates in healthy adult subjects. Study design: A total of 80 healthy adult subjects were enrolled in the study. Unstimulated and stimulated saliva (using TENS) was collected for 5 minutes and the mean salivary flow rates were calculated. Data obtained was analyzed using the SPSS (Statistical package for social sciences) version 15. Students ‘t’ test was employed for comparative analysis. Results: Sixty-five of the 80 subjects demonstrated an increase in the salivary flow rate on application of TENS. Twelve subjects demonstrated a mild reduction in the salivary flow rates. Seven subjects experienced transient mild twitching of facial musculature as side effects. Conclusion: Significant increase in salivary flow rates was observed on application of TENS with minimal or no side effects. Key words:Stimulated saliva, whole salivary flow, TENS. PMID:25810824

  4. Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study

    PubMed Central

    2011-01-01

    Background Occipital nerve stimulation (ONS) has raised new hope for drug-resistant chronic cluster headache (drCCH), a devastating condition. However its mode of action remains elusive. Since the long delay to meaningful effect suggests that ONS induces slow neuromodulation, we have searched for changes in central pain-control areas using metabolic neuroimaging. Methods Ten drCCH patients underwent an 18FDG-PET scan after ONS, at delays varying between 0 and 30 months. All were scanned with ongoing ONS (ON) and with the stimulator switched OFF. Results After 6-30 months of ONS, 3 patients were pain free and 4 had a ≥ 90% reduction of attack frequency (responders). In all patients compared to controls, several areas of the pain matrix showed hypermetabolism: ipsilateral hypothalamus, midbrain and ipsilateral lower pons. All normalized after ONS, except for the hypothalamus. Switching the stimulator ON or OFF had little influence on brain glucose metabolism. The perigenual anterior cingulate cortex (PACC) was hyperactive in ONS responders compared to non-responders. Conclusions Metabolic normalization in the pain neuromatrix and lack of short-term changes induced by the stimulation might support the hypothesis that ONS acts in drCCH through slow neuromodulatory processes. Selective activation in responders of PACC, a pivotal structure in the endogenous opioid system, suggests that ONS could restore balance within dysfunctioning pain control centres. That ONS is nothing but a symptomatic treatment might be illustrated by the persistent hypothalamic hypermetabolism, which could explain why autonomic attacks may persist despite pain relief and why cluster attacks recur shortly after stimulator arrest. PET studies on larger samples are warranted to confirm these first results. PMID:21349186

  5. Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains

    NASA Astrophysics Data System (ADS)

    Litvak, Leonid M.; Delgutte, Bertrand; Eddington, Donald K.

    2003-10-01

    Rubinstein et al. [Hearing Res. 127, 108-118 (1999)] suggested that the representation of electric stimulus waveforms in the temporal discharge patterns of auditory-nerve fiber (ANF) might be improved by introducing an ongoing, high-rate, desynchronizing pulse train (DPT). To test this hypothesis, activity of ANFs was studied in acutely deafened, anesthetized cats in response to 10-min-long, 5-kpps electric pulse trains that were sinusoidally modulated for 400 ms every second. Two classes of responses to sinusoidal modulations of the DPT were observed. Fibers that only responded transiently to the unmodulated DPT showed hyper synchronization and narrow dynamic ranges to sinusoidal modulators, much as responses to electric sinusoids presented without a DPT. In contrast, fibers that exhibited sustained responses to the DPT were sensitive to modulation depths as low as 0.25% for a modulation frequency of 417 Hz. Over a 20-dB range of modulation depths, responses of these fibers resembled responses to tones in a healthy ear in both discharge rate and synchronization index. This range is much wider than the dynamic range typically found with electrical stimulation without a DPT, and comparable to the dynamic range for acoustic stimulation. These results suggest that a stimulation strategy that uses small signals superimposed upon a large DPT to encode sounds may evoke temporal discharge patterns in some ANFs that resemble responses to sound in a healthy ear.

  6. Olfactory nerve stimulation-induced calcium signaling in the mitral cell distal dendritic tuft.

    PubMed

    Yuan, Q; Knöpfel, T

    2006-04-01

    Olfactory receptor neuron axons form the olfactory nerve (ON) and project to the glomerular layer of the olfactory bulb, where they form excitatory synapses with terminal arborizations of the mitral cell (MC) tufted primary dendrite. Clusters of MC dendritic tufts define olfactory glomeruli, where they involve in complex synaptic interactions. The computational function of these cellular interactions is not clear. We used patch-clamp electrophysiology combined with whole field or two-photon Ca2+ imaging to study ON stimulation-induced Ca2+ signaling at the level of individual terminal branches of the MC primary dendrite in mice. ON-evoked subthreshold excitatory postsnaptic potentials induced Ca2+ transients in the MC tuft dendrites that were spatially inhomogeneous, exhibiting discrete "hot spots." In contrast, Ca2+ transients induced by backpropagating action potentials occurred throughout the dendritic tuft, being larger in the thin terminal dendrites than in the base of the tuft. Single ON stimulation-induced Ca2+ transients were depressed by the NMDA receptor antagonist D-aminophosphonovaleric acid (D-APV), increased with increasing stimulation intensity, and typically showed a prolonged rising phase. The synaptically induced Ca2+ signals reflect, at least in part, dendrodendritic interactions that support intraglomerular coupling of MCs and generation of an output that is common to all MCs associated with one glomerulus. PMID:16319202

  7. Bilateral duplication of the abducens nerves: an incidental finding on magnetic resonance imaging.

    PubMed

    Yamashiro, Tsuneo; Yonahara, Michiko; Yonaha, Ayano; Kinoshita, Ryo; Tsubakimoto, Maho; Iraha, Rin; Murayama, Sadayuki

    2015-12-01

    Although anomaly of the abducens nerve, including duplication, has been reported in anatomical papers, no radiological report exists regarding a duplicated abducens nerve observed on magnetic resonance (MR) imaging. We encountered a case of bilateral duplication of the abducens nerves, which was found incidentally on MR scans from an 11-year-old boy. He did not have any symptoms of eye movement related to abducens nerve abnormality; thus, the duplication was considered to be a normal variant in this patient. Radiologists should be aware that duplication of the abducens nerve may occur and can be diagnosed on MR, particularly when diagnosing symptomatic patients or as a preoperative assessment for microsurgery of the nerve. PMID:26507983

  8. Diabetic neuropathy: structural analysis of nerve hydration by Magnetic Resonance Spectroscopy

    SciTech Connect

    Griffey, R.H.; Eaton, P.; Sibbitt, R.R.; Sibbitt, W.L. Jr.; Bicknell, J.M.

    1988-11-18

    The water content of the sural nerve of diabetic patients was quantitatively defined by magnetic resonance proton imaging as a putative reflection of activity of the aldose-reductase pathway. Thirty-nine patients were evaluated, comparing group A, symptomatic diabetic men with sensory neuropathy; group B, similarly symptomatic diabetic men treated aldose-reductase inhibition; group C, neurologically asymptomatic diabetic men; and group D, control nondiabetic men. Marked increase in hydration of the sural nerve was seen in more than half of the symptomatic diabetic patients. Two of 11 neurologically asymptomatic diabetics had increased nerve hydration, suggesting a presymptomatic alteration of the nerve. Symptomatic diabetics treated with aldose-reductase inhibitors had normal nerve water levels. Increased level of peripheral nerve water represents a new finding in diabetes mellitus. It seems to be related to aldose-reductase activity, involved in the development of neuropathy, and similar to events that occur in other target tissue in human diabetes.

  9. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats.

    PubMed

    Surowka, Artur Dawid; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Chrobak, Adrian Andrzej; Szczerbowska-Boruchowska, Magdalena

    2015-06-01

    Recent immunohistochemical studies point to the dorsal motor nucleus of the vagus nerve as the point of departure of initial changes which are related to the gradual pathological developments in the dopaminergic system. In the light of current investigations, it is likely that biochemical changes within the peripheral nervous system may influence the physiology of the dopaminergic system, suggesting a putative role for it in the development of neurodegenerative disorders. By using Fourier transform infrared microspectroscopy, coupled with statistical analysis, we examined the effect of chronic, unilateral electrical vagus nerve stimulation on changes in lipid composition and in protein secondary structure within dopamine-related brain structures in rats. It was found that the chronic vagal nerve stimulation strongly affects the chain length of fatty acids within the ventral tegmental area, nucleus accumbens, substantia nigra, striatum, dorsal motor nucleus of vagus and the motor cortex. In particular, the level of lipid unsaturation was found significantly increasing in the ventral tegmental area, substantia nigra and motor cortex as a result of vagal nerve stimulation. When it comes to changes in protein secondary structure, we could see that the mesolimbic, mesocortical and nigrostriatal dopaminergic pathways are particularly affected by vagus nerve stimulation. This is due to the co-occurrence of statistically significant changes in the content of non-ordered structure components, alpha helices, beta sheets, and the total area of Amide I. Macromolecular changes caused by peripheral vagus nerve stimulation may highlight a potential connection between the gastrointestinal system and the central nervous system in rat during the development of neurodegenerative disorders. PMID:25893743

  10. The effect of loco-regional anaesthesia on motor activity induced by direct stimulation of the sciatic nerve in dogs.

    PubMed

    Murdoch, A P; Michou, J N

    2016-03-01

    A prospective, randomised, blinded, case-controlled clinical study was designed using client-owned dogs undergoing unilateral pelvic limb orthopaedic surgery, to determine the effect on induced motor activity by electrical stimulation of the sciatic nerve distal to the site of local anaesthetic administration. Dogs were administered 0.5% bupivacaine either extradurally or via a femoral and transgluteal sciatic electrolocation-guided nerve block prior to pelvic limb surgery. Motor response to electrical stimulation of branches of the sciatic nerve was tested and the minimum current required to induce muscle twitch was recorded prior to bupivacaine administration. Provided sensory blockade had been deemed successful intraoperatively, testing was repeated postoperatively, with each dog acting as its own control. Paired t-tests were performed to compare pre- and postoperative minimum currents. Eleven dogs administered extradural and 11 dogs administered femoral and sciatic perineural bupivacaine were eligible for post-operative testing. All dogs displayed normal motor response to electrical stimulation of the sciatic nerve at both sites tested before and after bupivacaine administration. There was no significant difference in the minimum current required to induce muscle twitch between pre- and post-operative testing (P = 0.31 sciatic site, P = 0.36 peroneal site), nor between the two groups using different loco-regional anaesthetic techniques (minimum P = 0.13). This study shows that stimulation of the sciatic nerve distal to the site of bupivacaine administration induces motor activity, despite adequate sensory blockade. This is relevant in surgical cases where mechanical stimulation of the sciatic nerve might be expected and needs to be recognised to avoid postoperative neurapraxia. PMID:26831173

  11. Asymmetric wavefront aberrations and pupillary shapes induced by electrical stimulation of ciliary nerve in cats measured with compact wavefront aberrometer.

    PubMed

    Miyagawa, Suguru; Mihashi, Toshifumi; Kanda, Hiroyuki; Hirohara, Yoko; Endo, Takao; Morimoto, Takeshi; Miyoshi, Tomomitsu; Fujikado, Takashi

    2014-01-01

    To investigate the changes in the wavefront aberrations and pupillary shape in response to electrical stimulation of the branches of the ciliary nerves in cats. Seven eyes of seven cats were studied under general anesthesia. Trains of monophasic pulses (current, 0.1 to 1.0 mA; duration, 0.5 ms/phase; frequency, 5 to 40 Hz) were applied to the lateral or medial branch of the short ciliary nerve near the posterior pole of the eye. A pair of electrodes was hooked onto one or both branch of the short ciliary nerve. The electrodes were placed about 5 mm from the scleral surface. The wavefront aberrations were recorded continuously for 2 seconds before, 8 seconds during, and for 20 seconds after the electrical stimulation. The pupillary images were simultaneously recorded during the stimulation period. Both the wavefront aberrations and the pupillary images were obtained 10 times/sec with a custom-built wavefront aberrometer. The maximum accommodative amplitude was 1.19 diopters (D) produced by electrical stimulation of the short ciliary nerves. The latency of the accommodative changes was very short, and the accommodative level gradually increased up to 4 seconds and reached a plateau. When only one branch of the ciliary nerve was stimulated, the pupil dilated asymmetrically, and the oblique astigmatism and one of the asymmetrical wavefront terms was also altered. Our results showed that the wavefront aberrations and pupillary dilations can be measured simultaneously and serially with a compact wavefront aberrometer. The asymmetric pupil dilation and asymmetric changes of the wavefront aberrations suggest that each branch of the ciliary nerve innervates specific segments of the ciliary muscle and dilator muscle of the pupil. PMID:25144536

  12. Vagus Nerve Stimulation Increases Energy Expenditure: Relation to Brown Adipose Tissue Activity

    PubMed Central

    Vijgen, Guy H. E. J.; Bouvy, Nicole D.; Leenen, Loes; Rijkers, Kim; Cornips, Erwin; Majoie, Marian; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2013-01-01

    Background Human brown adipose tissue (BAT) activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS) is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT. Methods and Findings Fifteen patients with stable VNS therapy (age: 45±10yrs; body mass index; 25.2±3.5 kg/m2) were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR) was significantly higher when VNS was turned on (mean change; +2.2%). Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUVMean; 0.55±0.25 versus 0.67±0.46, P = 0.619). However, the change in energy expenditure upon VNS intervention (On-Off) was significantly correlated to the change in BAT activity (r = 0.935, P<0.001). Conclusions VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy. Trial Registration The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282. PMID:24194874

  13. Vagal nerve stimulation blocks peritoneal macrophage inflammatory responsiveness after severe burn injury.

    PubMed

    Lopez, Nicole E; Krzyzaniak, Michael; Costantini, Todd W; De Maio, Antonio; Baird, Andrew; Eliceiri, Brian P; Coimbra, Raul

    2012-08-01

    Large surface area burn injuries lead to activation of the innate immune system, which can be blocked by parasympathetic inputs mediated by the vagus nerve. We hypothesized that vagal nerve stimulation (VNS) would alter the inflammatory response of peritoneal macrophages after severe burn injury. Male BALB/c mice underwent right cervical VNS before 30% total body surface area steam burn and were compared with animals subjected to burn alone. Peritoneal macrophages were harvested at several time points following injury and exposed to lipopolysaccharide (LPS) in culture conditions. The inflammatory response of peritoneal macrophages was measured by analyzing changes in nuclear factor κB p65 phosphorylation using flow cytometry. We found that peritoneal macrophages isolated from mice subjected to burn injury were hyperresponsive to LPS challenge, suggesting burn-induced macrophage activation. We identified a protective role for VNS in blocking peritoneal macrophage activation. Analysis of the phosphorylation state of nuclear factor κB pathway mediator, p65 Rel A, revealed a VNS-mediated reduction in p65 phosphorylation levels after exposure to LPS compared with burn alone. In combination, these studies suggest VNS mediates the inflammatory response in peritoneal macrophages by affecting the set point of LPS responsiveness. PMID:22683732

  14. Fully Implantable Peripheral Nerve Stimulation for the Treatment of Hemiplegic Shoulder Pain: A Case Report

    PubMed Central

    Nguyen, Vu Q. C.; Bock, William C.; Groves, Christine C.; Whitney, Marybeth; Bennett, Maria E.; Lechman, Tina E.; Strother, Robert; Grill, Julie H.; Stager, Kathryn W.; Chae, John

    2014-01-01

    This case report describes the first participant treated with a fully-implantable, single-lead peripheral nerve stimulation (PNS) system for refractory hemiplegic shoulder pain (HSP). During the 6-wk trial-stage, a temporary lead was placed percutaneously near the terminal branches of the axillary nerve to the deltoid. The primary outcome measure was the Brief Pain Inventory-Short Form Question 3 (BPI-3), a 0–10 pain numeric rating scale. The participant experienced 75% pain reduction and proceeded to the implant-stage where he received a single-lead, implantable pulse generator. After 3-wks, the participant became pain-free. However, 7-wks after implantation, the system was turned off due to an unrelated acute medical illness. HSP reemerged with BPI-3 of 9. After 11-wks of recovery, PNS was reinitiated and the participant became pain-free through the 9-months follow-up. At 12-months, BPI-3 was a 1. This case report demonstrates the feasibility of a single-lead, fully-implantable PNS system for refractory HSP. PMID:25251248

  15. Prostaglandins and nitric oxide in regional kidney blood flow responses to renal nerve stimulation.

    PubMed

    Rajapakse, Niwanthi W; Flower, Rebecca L; Eppel, Gabriela A; Denton, Kate M; Malpas, Simon C; Evans, Roger G

    2004-11-01

    We examined the roles of cyclooxygenase products and of interactions between the cyclooxygenase and nitric oxide systems in the mechanisms underlying the relative insensitivity of medullary perfusion to renal nerve stimulation (RNS) in anaesthetized rabbits. To this end we examined the effects of ibuprofen and N(G)-nitro-L: -arginine (L-NNA), both alone and in combination, on the responses of regional kidney perfusion to RNS. Under control conditions, RNS produced frequency-dependent reductions in total renal blood flow (RBF; -82+/-3% at 6 Hz), cortical laser-Doppler flux (CLDF; -84+/-4% at 6 Hz) and, to a lesser extent, medullary laser-Doppler flux (MLDF; -46+/-7% at 6 Hz). Ibuprofen did not affect these responses significantly, suggesting that cyclooxygenase products have little net role in modulating renal vascular responses to RNS. L-NNA enhanced RBF (P=0.002), CLDF (P=0.03) and MLDF (P=0.03) responses to RNS. As we have shown previously, this effect of L-NNA was particularly prominent for MLDF at RNS frequencies < or = 1.5 Hz. Subsequent administration of ibuprofen, in L-NNA-pretreated rabbits, did not affect responses to RNS significantly. We conclude that counter-regulatory actions of NO, but not of prostaglandins, partly underlie the relative insensitivity of medullary perfusion to renal nerve activation. PMID:15290303

  16. Transcutaneous electrical nerve stimulation offers partial relief in notalgia paresthetica patients with a relevant spinal pathology.

    PubMed

    Savk, Ekin; Savk, Oner; Sendur, Faruk

    2007-05-01

    There is yet no established mode of curative treatment for notalgia paresthetica (NP). We had previously shown a correlation of NP localization with relevant spinal changes which led us to speculate on the possible role of spinal nerve impingement in the pathogenesis of this entity. Based on these findings we aimed to investigate the possible effect of physical therapy in selected cases of NP. Fifteen NP patients with a relevant spinal pathology (four men and 11 women) were included in the study. The mean age was 52.80 +/- 8.83 years (+/- SD; range, 39-73). NP duration was 8.9 +/- 8.13 years (range, 1.5-30). All patients received 10 conventional transcutaneous electrical nerve stimulation (TENS) sessions in the symptomatic area of 20 min duration and high frequency (50-100 Hz). From an initial pruritus score of 10, the mean score by the end of first week was 7.67 +/- 2.02 (range, 5-10) and by the end of second week it was 6.80 +/- 2.73 (range, 4-11). The differences between the pretreatment and post-treatment scores were statistically significant. There was no correlation of therapeutic benefit with age or disease duration. We believe that the partial therapeutic benefit of TENS in NP patients is of importance and further research on the effects of various physical therapeutic modalities would be worthwhile. PMID:17408440

  17. Vagus Nerve Stimulation in Ischemic Stroke: Old Wine in a New Bottle

    PubMed Central

    Cai, Peter Y.; Bodhit, Aakash; Derequito, Roselle; Ansari, Saeed; Abukhalil, Fawzi; Thenkabail, Spandana; Ganji, Sarah; Saravanapavan, Pradeepan; Shekar, Chandana C.; Bidari, Sharatchandra; Waters, Michael F.; Hedna, Vishnumurthy Shushrutha

    2014-01-01

    Vagus nerve stimulation (VNS) is currently Food and Drug Administration-approved for treatment of both medically refractory partial-onset seizures and severe, recurrent refractory depression, which has failed to respond to medical interventions. Because of its ability to regulate mechanisms well-studied in neuroscience, such as norepinephrine and serotonin release, the vagus nerve may play an important role in regulating cerebral blood flow, edema, inflammation, glutamate excitotoxicity, and neurotrophic processes. There is strong evidence that these same processes are important in stroke pathophysiology. We reviewed the literature for the role of VNS in improving ischemic stroke outcomes by performing a systematic search for publications in Medline (1966–2014) with keywords “VNS AND stroke” in subject headings and key words with no language restrictions. Of the 73 publications retrieved, we identified 7 studies from 3 different research groups that met our final inclusion criteria of research studies addressing the role of VNS in ischemic stroke. Results from these studies suggest that VNS has promising efficacy in reducing stroke volume and attenuating neurological deficits in ischemic stroke models. Given the lack of success in Phase III trials for stroke neuroprotection, it is important to develop new therapies targeting different neuroprotective pathways. Further studies of the possible role of VNS, through normally physiologically active mechanisms, in ischemic stroke therapeutics should be conducted in both animal models and clinical studies. In addition, recent advent of a non-invasive, transcutaneous VNS could provide the potential for easier clinical translation. PMID:25009531

  18. Vagus nerve stimulation therapy in depression and epilepsy: therapeutic parameter settings.

    PubMed

    Labiner, David M; Ahern, Geoffrey L

    2007-01-01

    Vagus nerve stimulation (VNS) therapy is an effective adjunctive treatment for chronic or recurrent treatment-resistant depression in adults, and for pharmacoresistant epilepsy in adults and adolescents. VNS therapy is administered through an implanted pulse generator that delivers programmed electrical pulses through an implanted lead to the left vagus nerve. Programmable pulse parameters include output current, frequency, pulse width, and ON/OFF times. Within a range of typical values, individual patients respond best to different combinations of parameter settings. The physician must identify the optimum settings for each patient while balancing the goals of maximizing efficacy, minimizing side effects, and preserving battery life. Output current is gradually increased from 0.25 mA to the maximum tolerable level (maximum, 3.5 mA); typical therapeutic settings range from 1.0 to 1.5 mA. Greater output current is associated with increased side effects, including voice alteration, cough, a feeling of throat tightening, and dyspnea. Frequency is typically programmed at 20 Hz in depression and 30 Hz in epilepsy. Pulse width is typically 250 or 500 micros. The recommended initial ON time is 30 s, followed by 5 min OFF; OFF time > ON time is recommended. As with pharmacotherapy, VNS therapy must be adjusted in a gradual, systematic fashion to individualize therapy for each patient. PMID:17156262

  19. Vagus nerve stimulation during rehabilitative training improves forelimb strength following ischemic stroke.

    PubMed

    Khodaparast, N; Hays, S A; Sloan, A M; Hulsey, D R; Ruiz, A; Pantoja, M; Rennaker, R L; Kilgard, M P

    2013-12-01

    Upper limb impairment is a common debilitating consequence of ischemic stroke. Physical rehabilitation after stroke enhances neuroplasticity and improves limb function, but does not typically restore normal movement. We have recently developed a novel method that uses vagus nerve stimulation (VNS) paired with forelimb movements to drive specific, long-lasting map plasticity in rat primary motor cortex. Here we report that VNS paired with rehabilitative training can enhance recovery of forelimb force generation following infarction of primary motor cortex in rats. Quantitative measures of forelimb function returned to pre-lesion levels when VNS was delivered during rehab training. Intensive rehab training without VNS failed to restore function back to pre-lesion levels. Animals that received VNS during rehab improved twice as much as rats that received the same rehabilitation without VNS. VNS delivered during physical rehabilitation represents a novel method that may provide long-lasting benefits towards stroke recovery. PMID:23954448

  20. Etofenamate and transcutaneous electrical nerve stimulation treatment of painful spinal syndromes.

    PubMed

    Coletta, R; Maggiolo, F; Di Tizio, S

    1988-01-01

    Thirty patients suffering from painful syndromes of the spine were admitted to a randomized controlled clinical trial. They were divided into two groups and treated either with transcutaneous electrical nerve stimulation (TENS), one application every other day, for 20 days or with TENS and an ointment containing etofenamate 10% gel, 3-5 cm daily on the day of TENS therapy, and the same dose twice daily on the other days. The associated therapy achieved, when compared with TENS alone, a statistically significant better outcome. Furthermore a marked improvement of symptoms was observed in a shorter period of time. Therapy was well tolerated and in only four cases mild, self-limiting, skin reactions were observed. On the basis of these results the use of etofenamate and TENS could represent a viable alternative to systemic nonsteroidal antiinflammatory drug therapy. PMID:2972631

  1. Current Approaches to Neuromodulation in Primary Headaches: Focus on Vagal Nerve and Sphenopalatine Ganglion Stimulation.

    PubMed

    Puledda, Francesca; Goadsby, Peter J

    2016-07-01

    Neuromodulation is a promising, novel approach for the treatment of primary headache disorders. Neuromodulation offers a new dimension in the treatment that is both easily reversible and tends to be very well tolerated. The autonomic nervous system is a logical target given the neurobiology of common primary headache disorders, such as migraine and the trigeminal autonomic cephalalgias (TACs). This article will review new encouraging results of studies from the most recent literature on neuromodulation as acute and preventive treatment in primary headache disorders, and cover some possible underlying mechanisms. We will especially focus on vagus nerve stimulation (VNS) and sphenopalatine ganglion (SPG) since they have targeted autonomic pathways that are cranial and can modulate relevant pathophysiological mechanisms. The initial data suggests these approaches will find an important role in headache disorder management going forward. PMID:27278441

  2. The therapeutic dilemma of vagus nerve stimulator-induced sleep disordered breathing

    PubMed Central

    Upadhyay, Hinesh; Bhat, Sushanth; Gupta, Divya; Mulvey, Martha; Ming, Sue

    2016-01-01

    Intermittent vagus nerve stimulation (VNS) can reduce the frequency of seizures in patients with refractory epilepsy, but can affect respiration in sleep. Untreated obstructive sleep apnea (OSA) can worsen seizure frequency. Unfortunately, OSA and VNS-induced sleep disordered breathing (SDB) may occur in the same patient, leading to a therapeutic dilemma. We report a pediatric patient in whom OSA improved after tonsillectomy, but coexistent VNS-induced SDB persisted. With decrease in VNS output current, patient's SDB improved, but seizure activity exacerbated, which required a return to the original settings. Continuous positive airway pressure titration was attempted, which showed only a partial improvement in apnea–hypopnea index. This case illustrates the need for clinicians to balance seizure control and SDB in patients with VNS. PMID:27168865

  3. The therapeutic dilemma of vagus nerve stimulator-induced sleep disordered breathing.

    PubMed

    Upadhyay, Hinesh; Bhat, Sushanth; Gupta, Divya; Mulvey, Martha; Ming, Sue

    2016-01-01

    Intermittent vagus nerve stimulation (VNS) can reduce the frequency of seizures in patients with refractory epilepsy, but can affect respiration in sleep. Untreated obstructive sleep apnea (OSA) can worsen seizure frequency. Unfortunately, OSA and VNS-induced sleep disordered breathing (SDB) may occur in the same patient, leading to a therapeutic dilemma. We report a pediatric patient in whom OSA improved after tonsillectomy, but coexistent VNS-induced SDB persisted. With decrease in VNS output current, patient's SDB improved, but seizure activity exacerbated, which required a return to the original settings. Continuous positive airway pressure titration was attempted, which showed only a partial improvement in apnea-hypopnea index. This case illustrates the need for clinicians to balance seizure control and SDB in patients with VNS. PMID:27168865

  4. New Therapeutic Option for Drop Foot with the ActiGait Peroneal Nerve Stimulator--a Technical Note.

    PubMed

    Martin, K Daniel; Polanski, Witold; Schackert, Gabriele; Sobottka, Stephan B

    2015-12-01

    A drop foot occurs in up to 20% of stroke patients and leads to an increased risk of falls. Until recently, only a foot orthosis or surface stimulation was able to improve the gait of these patients. Recent studies have shown that direct peroneal nerve stimulation with an implantable 4-channel peroneal nerve stimulator (ActiGait) allows independent electrode adjustment and leads to better functional results and an improved quality of life. The application of this therapeutic option is restricted to patients with a drop foot attributable to a lesion of the first motor neuron caused by stroke, multiple sclerosis, or tumors. In this paper, we present the first technical note with possible pitfalls of the surgical procedure and the perioperative care after implantation of ActiGait drop foot stimulators in 50 patients. PMID:26164191

  5. Multi-scale simulations predict responses to non-invasive nerve root stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Matsumoto, Hideyuki; Hirata, Akimasa; Terao, Yasuo; Hanajima, Ritsuko; Ugawa, Yoshikazu

    2014-10-01

    Objective. Established biophysical neurone models have achieved limited success in reproducing electrophysiological responses to non-invasive stimulation of the human nervous system. This is related to our insufficient knowledge of the induced electric currents inside the human body. Despite the numerous research and clinical applications of non-invasive stimulation, it is still unclear which internal sites are actually affected by it. Approach. We performed multi-scale computer simulations that, by making use of advances in computing power and numerical algorithms, combine a microscopic model of electrical excitation of neurones with a macroscopic electromagnetic model of the realistic whole-body anatomy. Main results. The simulations yield responses consistent with those experimentally recorded following magnetic and electrical motor root stimulation in human subjects, and reproduce the observed amplitudes and latencies for a wide variety of stimulation parameters. Significance. Our findings demonstrate that modern computational techniques can produce detailed predictions about which and where neurones are activated, leading to improved understanding of the physics and basic mechanisms of non-invasive stimulation and enabling potential new applications that make use of improved targeting of stimulation.

  6. Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair.

    PubMed

    Vivó, Meritxell; Puigdemasa, Antoni; Casals, Laura; Asensio, Elena; Udina, Esther; Navarro, Xavier

    2008-05-01

    We have studied whether electrical stimulation immediately after nerve injury may enhance axonal regeneration and modulate plastic changes at the spinal cord level underlying the appearance of hyperreflexia. Two groups of adult rats were subjected to sciatic nerve section followed by suture repair. One group (ES) received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h after injury. A second group served as control (C). Nerve conduction, H reflex, motor evoked potentials, and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. The electrophysiological results showed higher levels of reinnervation, and histological results a significantly higher number of regenerated myelinated fibers in the distal tibial nerve in group ES in comparison with group C. The monosynaptic H reflex was facilitated in the injured limb, to a higher degree in group C than in group ES. The amplitudes of motor evoked potentials were similar in both groups, although the MEP/M ratio was increased in group C compared to group ES, indicating mild central motor hyperexcitability. Immunohistochemical labeling of sensory afferents in the spinal cord dorsal horn showed prevention of the reduction in expression of substance P at one month postlesion in group ES. In conclusion, brief electrical stimulation applied after sciatic nerve injury promotes axonal regeneration over a long distance and reduces facilitation of spinal motor responses. PMID:18316076

  7. Occipital Nerve Stimulation for Chronic Migraine—A Systematic Review and Meta-Analysis

    PubMed Central

    Chen, Yen-Fu; Bramley, George; Unwin, Gemma; Hanu-Cernat, Dalvina; Dretzke, Janine; Moore, David; Bayliss, Sue; Cummins, Carole; Lilford, Richard

    2015-01-01

    Background Chronic migraine is a debilitating headache disorder that has significant impact on quality of life. Stimulation of peripheral nerves is increasingly being used to treat chronic refractory pain including headache disorders. This systematic review examines the effectiveness and adverse effects of occipital nerve stimulation (ONS) for chronic migraine. Methods Databases, including the Cochrane Library, MEDLINE, EMBASE, CINAHL and clinical trial registers were searched to September 2014. Randomized controlled trials (RCTs), other controlled and uncontrolled observational studies and case series (n≥ 10) were eligible. RCTs were assessed using the Cochrane risk of bias tool. Meta-analysis was carried out using a random-effects model. Findings are presented in summary tables and forest plots. Results Five RCTs (total n=402) and seven case series (total n=115) met the inclusion criteria. Pooled results from three multicenter RCTs show that ONS was associated with a mean reduction of 2.59 days (95% CI 0.91 to 4.27, I2=0%) of prolonged, moderate to severe headache per month at 3 months compared with a sham control. Results for other outcomes generally favour ONS over sham controls but quantitative analysis was hampered by incomplete publication and reporting of trial data. Lead migration and infections are common and often require revision surgery. Open-label follow-up of RCTs and case series suggest long-term effectiveness can be maintained in some patients but evidence is limited. Conclusions While the effectiveness of ONS compared to sham control has been shown in multiple RCTs, the average effect size is modest and may be exaggerated by bias as achieving effective blinding remains a methodological challenge. Further measures to reduce the risk of adverse events and revision surgery are needed. Systematic Review Registration this systematic review is an update and expanded work of part of a broader review registered with PROSPERO. Registration No. CRD

  8. Stimulation of peripheral cholinergic nerves by glutamate indicates a new peripheral glutamate receptor.

    PubMed

    Aas, P; Tansø, R; Fonnum, F

    1989-05-01

    The bronchial smooth muscle of the rat was examined for contractile responses to excitatory amino acids. The nerve-mediated contraction induced by electrical field stimulation was enhanced by exogenous L-glutamate (L-Glu). The apparent affinity (ED50) of L-Glu was 3.5 +/- 0.1 mM. Both tetrodotoxin and hemicholinium-3 completely abolished the electrical field-induced contraction and therefore the potentiation by L-Glu, which indicates that L-Glu has a prejunctional effect. Concentrations of L-Glu higher than 22 mM inhibited the electrical field-induced contractions and enhanced the tonus of the smooth muscle by postjunctional stimulation. The ED50 of exogenous ACh was not altered by L-Glu. High concentrations (62 mM) of L-Glu increased the intrinsic activity (alpha) of ACh, indicating a postjunctional potentiation of ACh-induced contractions. L-Glu did not inhibit the activity of acetylcholinesterase, therefore the postjunctional potentiation was not due to ACh accumulation. Inhibition of the electrical field-induced contraction was seen with high concentrations of D-Glu, L-aspartate (L-Asp), L-alpha-amino adipate and ibotenate. Neither glutamate diethyl ester nor 2-amino-5-phosphonovalerate had any inhibitory effects on the L-Glu- and L-Asp-induced alterations of the electrical field-stimulated contraction or on the L-Glu-enhanced tonus of the bronchial smooth muscle. Kainate, N-methyl-D-aspartate, quisqualate and N-acetyl-aspartyl-glutamate had only minor transient potentiating effects on the electrical field-induced contraction. The results provide evidence for a L-Glu receptor in rat bronchi that has a different specificity for glutamate agonists and antagonists than the L-Glu receptor described in the CNS. The receptor seems to be located prejunctionally and enhances nerve-mediated responses and thereby stimulates the bronchial smooth muscle to contract. The possible involvement of this type of receptor in the 'Chinese restaurant syndrome' is discussed. PMID

  9. ELECTRICAL STIMULATION OF THE VAGUS NERVE DERMATOME IN THE EXTERNAL EAR IS PROTECTIVE IN RAT CEREBRAL ISCHEMIA

    PubMed Central

    Ay, Ilknur; Napadow, Vitaly; Ay, Hakan

    2014-01-01

    Background Although cervical vagus nerve stimulation is effective for reducing infarct volume in rats, it is not feasible for acute human stroke as it requires surgical incision of the neck. We hypothesized that stimulation of the dermatome in the external ear innervated by the vagus nerve (auricular vagus nerve stimulation; aVNS) reduces infarct volume after transient focal ischemia in rats. Methods Animals were randomized to active aVNS or sham stimulation. For aVNS, electrical stimulation of the left cavum concha (1 hour duration) using percutaneous needles was initiated 30 min after induction of ischemia. Behavioral and tissue outcome were measured 24 hours after induction of ischemia. In a separate experimental dataset, c-Fos immunohistochemistry was performed to identify the brain regions activated after the stimulation. Results Stimulation of the left cavum concha resulted in bilateral c-Fos staining in the nuclei tractus solitarii and the loci coerulei in all animals. There was no c-Fos staining in any part of the brainstem in sham control animals. The mean infarct volume (SD) as calculated by indirect method was 44.20 ± 7.58% in controls and 31.65 ± 9.67% in treated animals (p<0.0001). The effect of aVNS on tissue outcome was associated with better neurological scores at 24 hours after ischemia (p<0.0001). Conclusions Electric stimulation of the vagus nerve dermatome in the external ear activates brainstem afferent vagal nuclei and reduces infarct volume in rats. This finding has potential to facilitate the development of treatments that leverage the brain’s endogenous neuroprotective pathways at the setting of acute ischemic stroke. PMID:25312600

  10. The effect of preganglionic nerve stimulation on the accumulation of certain analogues of choline by a sympathetic ganglion.

    PubMed Central

    Collier, B; Ilson, D

    1977-01-01

    1. Cat superior cervical ganglia were perfused with a Krebs solution containing 10(-6) M [3H]homocholine (2-hydroxypropyl-trimethylammonium) or 10(-5) M [14C]triethylcholine (2-hydroxyethyl-triethylammonium). Preganglionic nerve stimulation (20 Hz) increased the accumulation of homocholine (3-2-fold) and of triethylcholine (2-1-fold). This increased accumulation during stimulation was not the result of increased metabolism. 2. The increased accumulation of homocholine or triethylcholine induced by pregnaglionic nerve stimulation was not reduced by tubocurarine or by atropine, but it was blocked by choline and by hemicholinium. These results suggested that preganglionic nerve stimulation increased choline analogue accumulation into cholinergic nerve terminals. 3. The increased accumulation of homocholine or of triethylcholine induced by preganglionic nerve stimulation was reduced when the Ca2+ concentration was reduced and was abolished in the absence of Ca2+. However, changes in the Mg2+ concentration which depressed acetylcholine (ACh) release by amounts comparable to those induced by altered Ca2+ concentrations did not alter the uptake of homocholine or triethylcholine. It is concluded that the uptake of choline analogues is not regulated by transmitter release but that stimulation increases the uptake of the choline analogues by a Ca2+-dependent mechanism. 4. The accumulation of ACh by ganglia perfused with a Krebs solution containing choline and high MgSO4 (18 mM) was measured. The ACh content of these ganglia did not increase, although choline transport presumably exceeded that necessary for ACh synthesis to replace released ACh. It is concluded that choline transport does not limit ACh synthesis in ganglia. PMID:839464

  11. Effect of Transcutaneous Electrical Nerve Stimulation on Sensation Thresholds in Patients with Painful Diabetic Neuropathy: An Observational Study

    ERIC Educational Resources Information Center

    Moharic, Metka

    2010-01-01

    Transcutaneous electrical nerve stimulation (TENS) is one of the therapies for painful neuropathy. Its analgesic mechanisms probably involve the gate control theory, the physiological block and the endogenous pain inhibitory system. The aim of the study was to determine whether TENS improves small fibre function diminished because of painful…

  12. Incorporation of fiber optic beam shaping into a laparoscopic probe for laser stimulation of the cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Mayeh, Mona; Burnett, Arthur L.; Farahi, Faramarz; Fried, Nathaniel M.

    2010-02-01

    The cavernous nerves (CN) course along the prostate surface and are responsible for erectile function. Improved identification and preservation of the CN's is critical to maintaining sexual potency after prostate cancer surgery. Noncontact optical nerve stimulation (ONS) of the CN's was recently demonstrated in a rat model, in vivo, as a potential alternative to electrical nerve stimulation (ENS) for identification of the CN's during prostate surgery. However, the therapeutic window for ONS is narrow, so optimal design of the fiber optic delivery system is critical for safe, reproducible stimulation. This study describes modeling, assembly, and testing of an ONS probe for delivering a small, collimated, flat-top laser beam for uniform CN stimulation. A direct comparison of the magnitude and response time of the intracavernosal pressure (ICP) for both Gaussian and flat-top spatial beam profiles was performed. Thulium fiber laser radiation (λ=1870 nm) was delivered through a 200-μm fiber, with distal fiber tip chemically etched to convert a Gaussian to flat-top beam profile. The laser beam was collimated to a 1-mm-diameter spot using an aspheric lens. Computer simulations of light propagation were used to optimize the probe design. The 10-Fr (3.4-mm-OD) laparoscopic probe provided a constant radiant exposure at the nerve surface. The probe was tested in four rats, in vivo. ONS of the CN's was performed with a 1-mm-diameter spot, 5- ms pulse duration, and pulse rate of 20 Hz for a duration of 15-30 s. The flat-top laser beam profile consistently produced a faster and higher ICP response at a lower radiant exposure than the Gaussian beam profile due, in part, to easier alignment of the more uniform beam with nerve. With further development, ONS may be used as a diagnostic tool for identification of the CN's during laparoscopic and robotic nerve-sparing prostate cancer surgery.

  13. Mini-coil for magnetic stimulation in the behaving primate.

    PubMed

    Tischler, Hadass; Wolfus, Shuki; Friedman, Alexander; Perel, Eli; Pashut, Tamar; Lavidor, Michal; Korngreen, Alon; Yeshurun, Yosef; Bar-Gad, Izhar

    2011-01-15

    Transcranial magnetic stimulation (TMS) is rapidly becoming a leading method in both cognitive neuroscience and clinical neurology. However, the cellular and network level effects of stimulation are still unclear and their study relies heavily on indirect physiological measurements in humans. Direct electrophysiological studies of the effect of magnetic stimulation on neuronal activity in behaving animals are severely limited by both the size of the stimulating coils, which affect large regions of the animal brain, and the large artifacts generated on the recording electrodes. We present a novel mini-coil which is specifically aimed at studying the neurophysiological mechanism of magnetic stimulation in behaving primates. The mini-coil fits into a chronic recording chamber and provides focal activation of brain areas while enabling simultaneous extracellular multi-electrode recordings. We present a comparison of this coil to a commercial coil based on the theoretical and recorded magnetic fields and induced electric fields they generate. Subsequently, we present the signal recorded in the behaving primate during stimulation and demonstrate the ability to extract the spike trains of multiple single units from each of the electrodes with minimal periods affected by the stimulus artifact (median period <2.5 ms). The directly recorded effect of the magnetic stimulation on cortical neurons is in line with peripheral recordings obtained in humans. This novel mini-coil is a key part of the infrastructure for studying the neurophysiological basis of magnetic stimulation, thereby enabling the development and testing of better magnetic stimulation tools and protocols for both neuroscientists and clinicians. PMID:20974177

  14. Effects of sympathetic stimulation and applied catecholamines on mechanical and electrical responses to stimulation of the vagus nerve in guinea-pig isolated trachea.

    PubMed Central

    McCaig, D. J.

    1987-01-01

    Mechanical and electrical responses to stimulation of the vagus nerve were studied in the isolated, innervated trachea of the guinea-pig. In approximately half the preparations tested, the amplitudes of mechanical constrictor responses to stimulation of the vagus were reduced substantially during a period of sympathetic stimulation. Vagal responses were unaltered in the remainder. In single trachealis cells, stimulation of the vagus nerve or sympathetic stellate ganglion elicited depolarization and hyperpolarization, respectively. Vagally-mediated depolarization was decreased, unchanged or increased in amplitude after a period of sympathetic stimulation. Isoprenaline almost abolished mechanical responses induced by stimulation of the vagus, and this effect was blocked by propranolol. Noradrenaline attenuated markedly vagal mechanical responses also, and this effect was blocked by a combination of propranolol and phentolamine. Both noradrenaline and isoprenaline hyperpolarized single trachealis cells and greatly reduced the amplitude of vagally-mediated depolarization. Neither sympathetic stimulation nor applied catecholamines altered mechanical responses to applied acetylcholine, strongly suggesting that their effects on vagal responses are predominantly presynaptic. PMID:3607363

  15. Mechanisms of magnetic stimulation of central nervous system neurons.

    PubMed

    Pashut, Tamar; Wolfus, Shuki; Friedman, Alex; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2011-03-01

    Transcranial magnetic stimulation (TMS) is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS) is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS) with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS. PMID:21455288

  16. Developments in deep brain stimulation using time dependent magnetic fields

    SciTech Connect

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  17. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    PubMed

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. PMID:27353566

  18. Vagus Nerve Stimulation during Rehabilitative Training Improves Functional Recovery after Intracerebral Hemorrhage

    PubMed Central

    Hays, Seth A.; Khodaparast, Navid; Hulsey, Daniel R.; Ruiz, Andrea; Sloan, Andrew M.; Rennaker, Robert L.; Kilgard, Michael P.

    2014-01-01

    Background and Purpose Vagus nerve stimulation (VNS) delivered during rehabilitative training enhances neuroplasticity and improves recovery in models of cortical ischemic stroke. However, VNS therapy has not been applied in a model of subcortical intracerebral hemorrhage (ICH). We hypothesized that VNS paired with rehabilitative training after ICH would enhance recovery of forelimb motor function beyond rehabilitative training alone. Methods Rats were trained to perform an automated, quantitative measure of forelimb function. Once proficient, rats received an intrastriatal injection of bacterial collagenase to induce ICH. Rats then underwent VNS paired with rehabilitative training (VNS+Rehab; N = 14) or rehabilitative training without VNS (Rehab; N = 12). Rehabilitative training began at least 9 days after ICH and continued for 6 weeks. Results VNS paired with rehabilitative training significantly improved recovery of forelimb function compared to rehabilitative training without VNS. The VNS+Rehab group displayed a 77% recovery of function, while the Rehab group only exhibited 29% recovery. Recovery was sustained after cessation of stimulation. Both groups performed similar amounts of trials during rehabilitative and lesion size was not different between groups. Conclusions VNS paired with rehabilitative training confers significantly improved forelimb recovery following ICH compared to rehabilitative training without VNS. PMID:25147331

  19. Vagal Nerve Stimulation Evoked Heart Rate Changes and Protection from Cardiac Remodeling.

    PubMed

    Agarwal, Rahul; Mokelke, Eric; Ruble, Stephen B; Stolen, Craig M

    2016-02-01

    This study investigated whether vagal nerve stimulation (VNS) leads to improvements in ischemic heart failure via heart rate modulation. At 7 ± 1 days post left anterior descending artery (LAD) ligation, 63 rats with myocardial infarctions (MI) were implanted with ECG transmitters and VNS devices (MI + VNS, N = 44) or just ECG transmitters (MI, N = 17). VNS stimulation was active from 14 ± 1 days to 8 ± 1 weeks post MI. The average left ventricular (LV) end diastolic volumes at 8 ± 1 weeks were MI = 672.40 μl and MI + VNS = 519.35 μl, p = 0.03. The average heart weights, normalized to body weight (± std) at 14 ± 1 weeks were MI = 3.2 ± 0.6 g*kg(-1) and MI + VNS = 2.9 ± 0.3 g*kg(-1), p = 0.03. The degree of cardiac remodeling was correlated with the magnitude of acute VNS-evoked heart rate (HR) changes. Further research is required to determine if the acute heart rate response to VNS activation is useful as a heart failure biomarker or as a tool for VNS therapy characterization. PMID:26746408

  20. Hypothalamic Nesfatin-1 Stimulates Sympathetic Nerve Activity via Hypothalamic ERK Signaling.

    PubMed

    Tanida, Mamoru; Gotoh, Hitoshi; Yamamoto, Naoki; Wang, Mofei; Kuda, Yuhichi; Kurata, Yasutaka; Mori, Masatomo; Shibamoto, Toshishige

    2015-11-01

    Nesfatin-1 acts on the hypothalamus and regulates the autonomic nervous system. However, the hypothalamic mechanisms of nesfatin-1 on the autonomic nervous system are not well understood. In this study, we found that intracerebroventricular (ICV) administration of nesfatin-1 increased the extracellular signal-regulated kinase (ERK) activity in rats. Furthermore, the activity of sympathetic nerves, in the kidneys, liver, and white adipose tissue (WAT), and blood pressure was stimulated by the ICV injection of nesfatin-1, and these effects were abolished owing to pharmacological inhibition of ERK. Renal sympathoexcitatory and hypertensive effects were also observed with nesfatin-1 microinjection into the paraventricular hypothalamic nucleus (PVN). Moreover, nesfatin-1 increased the number of phospho (p)-ERK1/2-positive neurons in the PVN and coexpression of the protein in neurons expressing corticotropin-releasing hormone (CRH). Pharmacological blockade of CRH signaling inhibited renal sympathetic and hypertensive responses to nesfatin-1. Finally, sympathetic stimulation of WAT and increased p-ERK1/2 levels in response to nesfatin-1 were preserved in obese animals such as rats that were fed a high-fat diet and leptin receptor-deficient Zucker fatty rats. These findings indicate that nesfatin-1 regulates the autonomic nervous system through ERK signaling in PVN-CRH neurons to maintain cardiovascular function and that the antiobesity effect of nesfatin-1 is mediated by hypothalamic ERK-dependent sympathoexcitation in obese animals. PMID:26310564

  1. The effect of routine reversal of neuromuscular blockade on adequacy of recurrent laryngeal nerve stimulation during thyroid surgery.

    PubMed

    Marshall, S D; Boden, E; Serpell, J

    2015-07-01

    Testing of the integrity of the recurrent laryngeal nerve during thyroid surgery has become routine practice for many surgeons to aid dissection and minimise the chance of inadvertent nerve injury. We hypothesised that routine reversal of an intermediate-acting, non-depolarising neuromuscular blocking agent would improve conditions for stimulation of the recurrent laryngeal nerve. We conducted a single-centre, randomised, double-blind placebo-controlled trial of patients undergoing thyroid surgery by the same surgeon. After randomisation, the participants received either neostigmine 2.5 mg with glycopyrrolate 0.4 mg or placebo, at 30 minutes after induction of anaesthesia and administration of 0.4 mg/kg of atracurium. The primary outcome was the subjective assessment by the surgeon as to whether the neuromuscular function was adequate for stimulation of the recurrent laryngeal nerve using a neuromuscular integrity monitor (NIM). Time to NIM stimulation was 44.6 minutes in the placebo group and 41.4 minutes in the intervention group (P=0.268). Of the 21 patients who received the neuromuscular blockade reversal, 20 (95.2%) had adequate surgical conditions for NIM stimulation, compared to 9 out of 18 patients (50%) in the placebo group (P=0.002). Three of the ten patients (30%) with inadequate reversal showed no evidence of residual blockade assessed peripherally. The routine reversal of neuromuscular blockade at 30 minutes post induction appears to result in adequate surgical conditions for safe stimulation of the recurrent laryngeal nerve. Return of neuromuscular function at a peripheral site does not guarantee adequate laryngeal muscle function for use of the NIM. PMID:26099761

  2. Sacral Nerve Stimulation For Urinary Urge Incontinence, Urgency-Frequency, Urinary Retention, and Fecal Incontinence

    PubMed Central

    2005-01-01

    Executive Summary Objective The aim of this review was to assess the effectiveness, safety, and cost of sacral nerve stimulation (SNS) to treat urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence. Background: Condition and Target Population Urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence are prevalent, yet rarely discussed, conditions. They are rarely discussed because patients may be uncomfortable disclosing their symptoms to a health professional or may be unaware that there are treatment options for these conditions. Briefly, urge incontinence is an involuntary loss of urine upon a sudden urge. Urgency-frequency is an uncontrollable urge to void, which results in frequent, small-volume voids. People with urgency-frequency may or may not also experience chronic pelvic pain. Urinary retention refers to the inability to void despite having the urge to void. It can be caused by a hypocontractile detrusor (weak or no bladder muscle contraction) or obstruction due to urethral overactivity. Fecal incontinence is a loss of voluntary bowel control. The prevalence of urge incontinence, urgency-frequency, and urinary retention in the general population is 3.3% to 8.2%, and the prevalence of fecal incontinence is 1.4% to 1.9%. About three-quarters of these people will be successfully treated by behaviour and/or drug therapy. For those who do not respond to these therapies, the options for treatment are management with diapers or pads, or surgery. The surgical procedures are generally quite invasive, permanent, and are associated with complications. Pads and/or diapers are used throughout the course of treatment as different therapies are tried. Patients who respond successfully to treatment may still require pads or diapers, but to a lesser extent. The Technology Being Reviewed: Sacral Nerve Stimulation Sacral nerve stimulation is a procedure where a small device attached to an electrode is

  3. Localization of Interictal Epileptiform Activity Using Magnetoencephalography with Synthetic Aperture Magnetometry in Patients with a Vagus Nerve Stimulator

    PubMed Central

    Stapleton-Kotloski, Jennifer R.; Kotloski, Robert J.; Boggs, Jane A.; Popli, Gautam; O’Donovan, Cormac A.; Couture, Daniel E.; Cornell, Cassandra; Godwin, Dwayne W.

    2014-01-01

    Magnetoencephalography (MEG) provides useful and non-redundant information in the evaluation of patients with epilepsy, and in particular, during the pre-surgical evaluation of pharmaco-resistant epilepsy. Vagus nerve stimulation (VNS) is a common treatment for pharmaco-resistant epilepsy. However, interpretation of MEG recordings from patients with a VNS is challenging due to the severe magnetic artifacts produced by the VNS. We used synthetic aperture magnetometry (g2) [SAM(g2)], an adaptive beamformer that maps the excessive kurtosis, to map interictal spikes to the coregistered MRI image, despite the presence of contaminating VNS artifact. We present a series of eight patients with a VNS who underwent MEG recording. Localization of interictal epileptiform activity by SAM(g2) is compared to invasive electrophysiologic monitoring and other localizing approaches. While the raw MEG recordings were uninterpretable, analysis of the recordings with SAM(g2) identified foci of peak kurtosis and source signal activity that was unaffected by the VNS artifact. SAM(g2) analysis of MEG recordings in patients with a VNS produces interpretable results and expands the use of MEG for the pre-surgical evaluation of epilepsy. PMID:25505894

  4. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction.

    PubMed

    Beaumont, Eric; Southerland, Elizabeth M; Hardwick, Jean C; Wright, Gary L; Ryan, Shannon; Li, Ying; KenKnight, Bruce H; Armour, J Andrew; Ardell, Jeffrey L

    2015-10-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions. PMID:26276818

  5. Vagus nerve stimulator stability and interference on radiation oncology x-ray beams.

    PubMed

    Gossman, Michael S; Ketkar, Amruta; Liu, Arthur K; Olin, Bryan

    2012-10-21

    Five different models of Cyberonics, Inc. vagus nerve stimulation (VNS) therapy pulse generators were investigated for their stability under radiation and their ability to change the absorbed dose from incident radiation. X-ray beams of 6 MV and 18 MV were used to quantify these results up to clinical doses of 68-78 Gy delivered in a single fraction. In the first part, the effect on electronic stimulation signaling of each pulse generator was monitored during and immediately afterwards with computer interrogation. In the second part, the effects of having the pulse generators scatter or attenuate the x-ray beam was also characterized from dose calculations on a treatment planning system as well as from actual radiation measurements. Some device models were found to be susceptible to radiation interference when placed directly in the beam of high energy therapeutic x-ray radiation. While some models exhibited no effect at all, others showed an apparent loss of stimulation output immediately after radiation was experienced. Still, other models were observed to have a cumulative dose effect with a reduced output signal, followed by battery depletion above 49 Gy. Absorbed dose changes on computer underestimated attenuation by nearly half for both energies amongst all pulse generators, although the computer did depict the proper shape of the changed distribution of dose around the device. Measured attenuation ranged from 7.0% to 11.0% at 6 MV and 4.2% to 5.2% at 18 MV for x-rays. Processes of back-scatter and side-scatter were deemed negligible although recorded. Identical results from 6 MV and 18 MV x-ray beams conclude no neutron effect was induced for the 18 MV beam. As there were documented effects identified in this research regarding pulse generation, it emphasizes the importance of caution when considering radiation therapy on patients with implanted VNS devices with observed malfunctions consequential. PMID:23032351

  6. Vagus nerve stimulator stability and interference on radiation oncology x-ray beams

    NASA Astrophysics Data System (ADS)

    Gossman, Michael S.; Ketkar, Amruta; Liu, Arthur K.; Olin, Bryan

    2012-10-01

    Five different models of Cyberonics, Inc. vagus nerve stimulation (VNS) therapy pulse generators were investigated for their stability under radiation and their ability to change the absorbed dose from incident radiation. X-ray beams of 6 MV and 18 MV were used to quantify these results up to clinical doses of 68-78 Gy delivered in a single fraction. In the first part, the effect on electronic stimulation signaling of each pulse generator was monitored during and immediately afterwards with computer interrogation. In the second part, the effects of having the pulse generators scatter or attenuate the x-ray beam was also characterized from dose calculations on a treatment planning system as well as from actual radiation measurements. Some device models were found to be susceptible to radiation interference when placed directly in the beam of high energy therapeutic x-ray radiation. While some models exhibited no effect at all, others showed an apparent loss of stimulation output immediately after radiation was experienced. Still, other models were observed to have a cumulative dose effect with a reduced output signal, followed by battery depletion above 49 Gy. Absorbed dose changes on computer underestimated attenuation by nearly half for both energies amongst all pulse generators, although the computer did depict the proper shape of the changed distribution of dose around the device. Measured attenuation ranged from 7.0% to 11.0% at 6 MV and 4.2% to 5.2% at 18 MV for x-rays. Processes of back-scatter and side-scatter were deemed negligible although recorded. Identical results from 6 MV and 18 MV x-ray beams conclude no neutron effect was induced for the 18 MV beam. As there were documented effects identified in this research regarding pulse generation, it emphasizes the importance of caution when considering radiation therapy on patients with implanted VNS devices with observed malfunctions consequential.

  7. Enhancement of the antiemetic action of metoclopramide against cisplatin-induced emesis by transdermal electrical nerve stimulation.

    PubMed

    Saller, R; Hellenbrecht, D; Bühring, M; Hess, H

    1986-02-01

    In a double-blind sequential trial, the influence of transdermal electrical nerve stimulation (TENS) was studied in patients who were treated with total infusions of metoclopramide 3.5 mg/kg to counter the emetic action of cisplatin 60-90 mg/m2. Transdermal electrical nerve stimulation further reduced the emetic episodes in ten of 11 treatment pairs (2 alpha = .10). This effect was blocked by naloxone. More surprisingly, TENS reduced the incidence of extrapyramidal effects of metoclopramide (i.e., akathisia and dystonia). These effects may be explained by the involvement of central nervous and peripheral TENS-induced production of opioid neuromodulators. An alternate hypothesis is the stimulation of serotonergic mechanisms via neuromodulation by opioid peptides, or by involvement of both systems. PMID:3512620

  8. Preventing Phrenic Nerve Stimulation by a Patch Insulation in an Intact Swine Heart Model

    PubMed Central

    Hung, Yi-Wen; Hsieh, Yu-Cheng; Cheng, Chien-Ming; Wang, Kuo-Yang

    2014-01-01

    Introduction Phrenic nerve stimulation (PNS) could be prevented by a silastic patch over the epicardial lead. We studied the effects in preventing PNS by placing a silastic patch directly over an epicardial lead or placing a graft around the phrenic nerve (PN). Methods and Results Fourteen Lanyu swine were enrolled. A bipolar lead was placed epicardially on the left ventricle (LV) inferior to the PN. An implantable cardioverter-defibrillator (ICD) lead was placed into the right ventricle (RV). The maximal influential distance (MID) was measured under 3 pacing configurations to express the influential electrical field on the PN. The threshold of the LV and PN were evaluated epicardially. Then, PTFE patches of different sizes (10×10 mm, 20×20 mm and 30×30 mm) were placed between the LV lead and PN to study the rise in PN threshold in 7 swine. On the other hand, the PN were surrounded by a PTFE graft of different lengths (10 mm, 20 mm, and 30 mm) in the remaining 7 swine. LV-bipolar pacing showed the shortest MID when compared to the other 2 unipolar pacing configurations at pacing voltage of 10 V. The patch was most effective in preventing PNS during LV-bipolar pacing. PNS was prevented under all circumstances with a larger PTFE patch (30×30 mm) or long graft (30 mm). Conclusions PNS was avoided by placing a PTFE patch over the LV lead or a graft around the PN despite pacing configurations. Hence if PNS persisted during CRT implantation, a PTFE patch on the LV lead or a graft around the PN could be considered. PMID:25033271

  9. Trigeminal nerve stimulation modulates brainstem more than cortical excitability in healthy humans.

    PubMed

    Mercante, B; Pilurzi, G; Ginatempo, F; Manca, A; Follesa, P; Tolu, E; Deriu, F

    2015-11-01

    Multiple sites in the central nervous system (CNS) have been hypothesized to explain the beneficial effects of transcutaneous trigeminal nerve stimulation (TNS) on several disorders. This work investigated the acute effects of TNS on the excitability of brainstem and intracortical circuits, as well as on sensorimotor integration processes at cortical level in physiological conditions. Brainstem excitability was evaluated in seventeen healthy subjects measuring the R1 and R2 areas of the blink reflex (BR) and its recovery cycle, with cortical excitability and sensorimotor integration assessed by probing short-interval (SICI) and long-interval (LICI) intracortical inhibition, with short-interval (SICF), intracortical facilitation (ICF), short-latency (SAI) and long-latency (LAI) inhibition measuring motor potentials evoked in the first dorsal interosseous muscle by TMS of the contralateral motor cortex. Neurophysiological parameters were assessed, in seventeen healthy subjects, before and after cyclic 20-min TNS delivered bilaterally to the infraorbital nerve. After TNS, the area of the R2 was significantly reduced (p = 0.018). By contrast, R1 area and R2 recovery cycle were unaffected. Similarly, SICI, ICF, LICI, SICF, SAI and LAI appeared unaltered after TNS. These data suggest that, in normal subjects, TNS mainly acts on brainstem polysynaptic circuits mediating the R2 component of the BR and plays a minor role in modifying the activity of higher-level structures involved in the R2 recovery cycle and in modulation of cortical excitability. A further investigation of a chronic TNS-induced effect may disclose a higher potential for TNS in producing measurable after effects on its CNS targets. PMID:26259748

  10. Transcutaneous electrical nerve stimulation for phantom pain and stump pain in adult amputees.

    PubMed

    Mulvey, Matthew R; Radford, Helen E; Fawkner, Helen J; Hirst, Lynn; Neumann, Vera; Johnson, Mark I

    2013-04-01

    Following amputation, 50% to 90% of individuals experience phantom and/or stump pain. Transcutaneous electrical nerve stimulation (TENS) may prove to be a useful adjunct analgesic intervention, although a recent systematic review was unable to judge effectiveness owing to lack of quality evidence. The aim of this pilot study was to gather data on the effect of TENS on phantom pain and stump pain at rest and on movement. Ten individuals with a transtibial amputation and persistent moderate-to-severe phantom and/or stump pain were recruited. Inclusion criteria was a baseline pain score of ≥3 using 0 to 10 numerical rating scale (NRS). TENS was applied for 60 minutes to generate a strong but comfortable TENS sensation at the site of stump pain or projected into the site of phantom pain. Outcomes at rest and on movement before and during TENS at 30 minutes and 60 minutes were changes in the intensities of pain, nonpainful phantom sensation, and prosthesis embodiment. Mean (SD) pain intensity scores were reduced by 1.8 (1.6) at rest (P < 0.05) and 3.9 (1.9) on movement (P < 0.05) after 60 minutes of TENS. For five participants, it was possible to project TENS sensation into the phantom limb by placing the electrodes over transected afferent nerves. Nonpainful phantom sensations and prosthesis embodiment remained unchanged. This study has demonstrated that TENS has potential for reducing phantom pain and stump pain at rest and on movement. Projecting TENS sensation into the phantom limb might facilitate perceptual embodiment of prosthetic limbs. The findings support the delivery of a feasibility trial. PMID:22935086

  11. 3T magnetic resonance neurography of pudendal nerve with cadaveric dissection correlation

    PubMed Central

    Chhabra, Avneesh; McKenna, Courtney A; Wadhwa, Vibhor; Thawait, Gaurav K; Carrino, John A; Lees, Gary P; Dellon, A Lee

    2016-01-01

    AIM To evaluate the pudendal nerve segments that could be identified on magnetic resonance neurography (MRN) before and after surgical marking of different nerve segments. METHODS The hypothesis for this study was that pudendal nerve and its branches would be more easily seen after the surgical nerve marking. Institutional board approval was obtained. One male and one female cadaver pelvis were obtained from the anatomy board and were scanned using 3 Tesla MRI scanner using MR neurography sequences. All possible pudendal nerve branches were identified. The cadavers were then sent to the autopsy lab and were surgically dissected by a peripheral nerve surgeon and an anatomist to identify the pudendal nerve branches. Radiological markers were placed along the course of the pudendal nerve and its branches. The cadavers were then closed and rescanned using the same MRN protocol as the pre-marking scan. The remaining pudendal nerve branches were attempted to be identified using the radiological markers. All scans were read by an experienced musculoskeletal radiologist. RESULTS The pre-marking MR Neurography scans clearly showed the pudendal nerve at its exit from the lumbosacral plexus in the sciatic notch, at the level of the ischial spine and in the Alcock’s Canal in both cadavers. Additionally, the right hemorrhoidal branch could be identified in the male pelvis cadaver. The perineal and distal genital branches could not be identified. On post-marking scans, the markers were used as identifiable structures. The location of the perineal branch, the hemorroidal branch and the dorsal nerve to penis (in male cadaver)/clitoris (in female cadaver) could be seen. However, the visualization of these branches was suboptimal. The contralateral corresponding nerves were poorly seen despite marking on the surgical side. The nerve was best seen on axial T1W and T2W SPAIR images. The proximal segment could be seen well on 3D DW PSIF sequence. T2W SPACE was not very useful in

  12. Vagus nerve electrical stimulation inhibits serum levels of S100A8 protein in septic shock rats.

    PubMed

    Lei, Ming; Liu, Xin-Xin

    2016-05-01

    The vagus nerve and the released acetylcholine exert anti-inflammatory effects and inhibit septic shock. However, their detailed mechanisms remain to be elucidated. The present study aimed to investigate the effects of vagus nerve electrical stimulation on serum S100A8 levels in septic shock rats. A total of 36 male Sprague-Dawley rats were randomly divided into six equal groups: i) Sham group, receiving sham operation; ii) CLP group, subjected to cecal ligation and puncture (CLP) to establish a model of polymicrobial sepsis; iii) VGX group, subjected to CLP and bilateral cervical vagotomy; iv) STM group, subjected to CLP, bilateral cervical vagotomy and electrical stimulation on the left vagus nerve trunk; v) α‑bungarotoxin (BGT) group was administered α‑BGT prior to electrical stimulation; vi) Anti‑receptor for advanced glycation end products (RAGE) group, administered intraperitoneal injection of anti‑RAGE antibody prior to electrical stimulation. The right carotid artery was cannulated to monitor mean artery pressure (MAP). The serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured to assess the liver function. Serum S100A8 and advanced glycation end product (AGE) levels were measured using enzyme‑linked immunosorbent assays. The expression of hepatic RAGE was determined by western blotting. The present study revealed that Sprague‑Dawley rats exhibited progressive hypotension and significantly increased serum AST and ALT levels following CLP challenge compared with the sham group. The levels of S100A8 and AGEs, and the protein expression of hepatic RAGE were significantly increased following CLP compared with the sham group. Vagus nerve electrical stimulation significantly prevented the development of CLP‑induced hypotension, alleviated the hepatic damage, reduced serum S100A8 and AGEs production, and reduced the expression of hepatic RAGE. The inhibitory effect of vagus nerve electrical

  13. Early Systemic Granulocyte-Colony Stimulating Factor Treatment Attenuates Neuropathic Pain after Peripheral Nerve Injury

    PubMed Central

    Lee, Yun-Lin; Chen, Jin-Chung; Wang, Hung-Li; Yang, Yi-Ling; Cheng, Mei-Yun; Liao, Ming-Feng; Ro, Long-Sun

    2012-01-01

    Recent studies have shown that opioid treatment can reduce pro-inflammatory cytokine production and counteract various neuropathic pain syndromes. Granulocyte colony-stimulating factor (G-CSF) can promote immune cell differentiation by increasing leukocytes (mainly opioid-containing polymorphonuclear (PMN) cells), suggesting a potential beneficial role in treating chronic pain. This study shows the effectiveness of exogenous G-CSF treatment (200 µg/kg) for alleviating thermal hyperalgesia and mechanical allodynia in rats with chronic constriction injury (CCI), during post-operative days 1–25, compared to that of vehicle treatment. G-CSF also increases the recruitment of opioid-containing PMN cells into the injured nerve. After CCI, single administration of G-CSF on days 0, 1, and 2, but not on day 3, relieved thermal hyperalgesia, which indicated that its effect on neuropathic pain had a therapeutic window of 0–48 h after nerve injury. CCI led to an increase in the levels of interleukin-6 (IL-6) mRNA and tumor necrosis factor-α (TNF-α) protein in the dorsal root ganglia (DRG). These high levels of IL-6 mRNA and TNF-α were suppressed by a single administration of G-CSF 48–144 h and 72–144 h after CCI, respectively. Furthermore, G-CSF administered 72–144 h after CCI suppressed the CCI-induced upregulation of microglial activation in the ipsilateral spinal dorsal horn, which is essential for sensing neuropathic pain. Moreover, the opioid receptor antagonist naloxone methiodide (NLXM) reversed G-CSF-induced antinociception 3 days after CCI, suggesting that G-CSF alleviates hyperalgesia via opioid/opioid receptor interactions. These results suggest that an early single systemic injection of G-CSF alleviates neuropathic pain via activation of PMN cell-derived endogenous opioid secretion to activate opioid receptors in the injured nerve, downregulate IL-6 and TNF-α inflammatory cytokines, and attenuate microglial activation in the spinal dorsal horn. This

  14. Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial

    PubMed Central

    2012-01-01

    Background Depressive disorders are the most common form of mental disorders in community and health care settings. Unfortunately, the treatment of Major Depressive Disorder (MDD) is far from satisfactory. Vagus nerve stimulation (VNS) is a relatively new and promising physical treatment for depressive disorders. One particularly appealing element of VNS is the long-term benefit in mood regulation. However, because this intervention involves surgery, perioperative risks, and potentially significant side effects, this treatment has been limited to those patients with treatment-resistant depression who have failed medication trials and exhausted established somatic treatments for major depression, due to intolerance or lack of response. This double-blinded randomized clinical trial aims to overcome these limitations by introducing a novel method of stimulating superficial branches of the vagus nerve on the ear to treat MDD. The rationale is that direct stimulation of the afferent nerve fibers on the ear area with afferent vagus nerve distribution should produce a similar effect as classic VNS in reducing depressive symptoms without the burden of surgical intervention. Design One hundred twenty cases (60 males) of volunteer patients with mild and moderate depression will be randomly divided into transcutaneous vagus nerve stimulation group (tVNS) and sham tVNS group. The treatment period lasts 4 months and all clinical and physiological measurements are acquired at the beginning and the end of the treatment period. Discussion This study has the potential to significantly extend the application of VNS treatment for MDD and other disorders (including epilepsy, bipolar disorder, and morbid obesity), resulting in direct benefit to the patients suffering from these highly prevalent disorders. In addition, the results of this double-blinded clinical trial will shed new light on our understanding of acupuncture point specificity, and development of methodologies in clinical

  15. Perinatal taurine exposure programs patterns of autonomic nerve activity responses to tooth pulp stimulation in adult male rats

    PubMed Central

    Khimsuksri, Sawita; Wyss, J. Michael; Thaeomor, Atcharaporn; Paphangkorakit, Jarin; Jirakulsomchok, Dusit; Roysommuti, Sanya

    2016-01-01

    Perinatal taurine excess or deficit influences adult health and disease, especially relative to the autonomic nervous system. This study tests the hypothesis that perinatal taurine exposure influences adult autonomic nervous system control of arterial pressure in response to acute electrical tooth pulp stimulation. Female Sprague-Dawley rats were fed normal rat chow with 3% β-alanine (taurine depletion, TD), 3% taurine (taurine supplementation, TS) or water alone (control, C) from conception to weaning. Their male offspring were fed normal rat chow and tap water throughout the experiment. At 8–10 weeks of age, blood chemistry, arterial pressure, heart rate and renal sympathetic nerve activity were measured in anesthetized rats. Age, body weight, mean arterial pressure, heart rate, plasma electrolytes, blood urea nitrogen, plasma creatinine and plasma cortisol were not significantly different among the three groups. Before tooth pulp stimulation, low (0.3–0.5 Hz) and high frequency (0.5–4.0 Hz) power spectral densities of arterial pressure were not significantly different among groups, while the power spectral densities of renal sympathetic nerve activity were significantly decreased in TD compared to control rats. Tooth pulp stimulation did not change arterial pressure, heart rate, renal sympathetic nerve and arterial pressure power spectral densities in the 0.3–4.0 Hz spectrum or renal sympathetic nerve firing rate in any group. In contrast, perinatal taurine imbalance disturbed very low frequency power spectral densities of both arterial pressure and renal sympathetic nerve activity (below 0.1 Hz), both before and after the tooth pulp stimulation. The power densities of TS were most sensitive to ganglionic blockade and central adrenergic inhibition, while those of TD were sensitive to both central and peripheral adrenergic inhibition. The present data indicate that perinatal taurine imbalance can lead to aberrant autonomic nervous system responses in

  16. Transcranial Magnetic Stimulation and Volitional Quadriceps Activation

    PubMed Central

    Gibbons, Christopher E.; Pietrosimone, Brian G.; Hart, Joseph M.; Saliba, Susan A.; Ingersoll, Christopher D.

    2010-01-01

    Abstract Context: Quadriceps-activation deficits have been reported after meniscectomy. Transcranial magnetic stimulation (TMS) in conjunction with maximal contractions affects quadriceps activation in patients after meniscectomy. Objective: To determine the effect of single-pulsed TMS on quadriceps central activation ratio (CAR) in patients after meniscectomy. Design: Randomized controlled clinical trial. Setting: University laboratory. Patients or Other Participants: Twenty participants who had partial meniscectomy and who had a CAR less than 85% were assigned randomly to the TMS group (7 men, 4 women; age  =  38.1 ± 16.2 years, height  =  176.8 ± 11.5 cm, mass  =  91.8 ± 27.5 kg, postoperative time  =  36.7 ± 34.9 weeks) or the control group (7 men, 2 women; age  =  38.2 ± 17.5 years, height  =  176.5 ± 7.9 cm, mass  =  86.2 ± 15.3 kg, postoperative time  =  36.6 ± 37.4 weeks). Intervention(s): Participants in the experimental group received TMS over the motor cortex that was contralateral to the involved leg and performed 3 maximal quadriceps contractions with the involved leg. The control group performed 3 maximal quadriceps contractions without the TMS. Main Outcome Measure(s): Quadriceps activation was assessed using the CAR, which was measured in 70° of knee flexion at baseline and at 0, 10, 30, and 60 minutes posttest. The CAR was expressed as a percentage of full activation. Results: Differences in CAR were detected over time (F4,72  =  3.025, P  = .02). No interaction (F4,72  =  1.457, P  =  .22) or between-groups differences (F1,18  =  0.096, P  =  .76) were found for CAR. Moderate CAR effect sizes were found at 10 (Cohen d  =  0.54, 95% confidence interval [CI]  =  −0.33, 1.37) and 60 (Cohen d  =  0.50, 95% CI  =  −0.37, 1.33) minutes in the TMS group compared with CAR at baseline. Strong effect sizes were found for CAR at 10 (Cohen d  =  0.82, 95% CI

  17. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study

    PubMed Central

    2014-01-01

    Background Impaired glucose tolerance (IGT) is a pre-diabetic state of hyperglycemia that is associated with insulin resistance, increased risk of type II diabetes, and cardiovascular pathology. Recently, investigators hypothesized that decreased vagus nerve activity may be the underlying mechanism of metabolic syndrome including obesity, elevated glucose levels, and high blood pressure. Methods In this pilot randomized clinical trial, we compared the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) and sham taVNS on patients with IGT. 72 participants with IGT were single-blinded and were randomly allocated by computer-generated envelope to either taVNS or sham taVNS treatment groups. In addition, 30 IGT adults were recruited as a control population and not assigned treatment so as to monitor the natural fluctuation of glucose tolerance in IGT patients. All treatments were self-administered by the patients at home after training at the hospital. Patients were instructed to fill in a patient diary booklet each day to describe any side effects after each treatment. The treatment period was 12 weeks in duration. Baseline comparison between treatment and control group showed no difference in weight, BMI, or measures of systolic blood pressure, diastolic blood pressure, fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), or glycosylated hemoglobin (HbAlc). Results 100 participants completed the study and were included in data analysis. Two female patients (one in the taVNS group, one in the sham taVNS group) dropped out of the study due to stimulation-evoked dizziness. The symptoms were relieved after stopping treatment. Compared with sham taVNS, taVNS significantly reduced the two-hour glucose tolerance (F(2) = 5.79, p = 0.004). In addition, we found that taVNS significantly decreased (F(1) = 4.21, p = 0.044) systolic blood pressure over time compared with sham taVNS. Compared with the no-treatment control group, patients

  18. Stimulated Brillouin scatter in a magnetized ionospheric plasma.

    PubMed

    Bernhardt, P A; Selcher, C A; Lehmberg, R H; Rodriguez, S P; Thomason, J F; Groves, K M; McCarrick, M J; Frazer, G J

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f(CI)) or an electrostatic ion cyclotron (EIC) wave just above f(CI) can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency. PMID:20482059

  19. Stimulated Brillouin Scatter in a Magnetized Ionospheric Plasma

    SciTech Connect

    Bernhardt, P. A.; Selcher, C. A.; Lehmberg, R. H.; Rodriguez, S. P.; Thomason, J. F.; Groves, K. M.; McCarrick, M. J.; Frazer, G. J.

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f{sub CI}) or an electrostatic ion cyclotron (EIC) wave just above f{sub CI} can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.

  20. Nicotine Stimulates Nerve Growth Factor in Lung Fibroblasts through an NFκB-Dependent Mechanism

    PubMed Central

    Wongtrakool, Cherry; Grooms, Kora; Bijli, Kaiser M.; Crothers, Kristina; Fitzpatrick, Anne M.; Hart, C. Michael

    2014-01-01

    Rationale Airway hyperresponsiveness (AHR) is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM) cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF) secretion into the environment. Methods Primary lung fibroblasts isolated from wild type and α7 nicotinic acetylcholine receptor (α7 nAChR) deficient mice were treated with nicotine (50 µg/ml) in vitro for 72 hours. NGF levels were measured in culture media and in bronchoalveolar lavage (BAL) fluid from asthmatic, smoking and non-smoking subjects by ELISA. The role of the NFκB pathway in nicotine-induced NGF expression was investigated by measuring NFκB nuclear translocation, transcriptional activity, chromatin immunoprecipitation assays, and si-p65 NFκB knockdown. The ability of nicotine to stimulate a fibroblast-mediated, contractile ASM cell phenotype was confirmed by examining expression of contractile proteins in ASM cells cultured with fibroblast-conditioned media or BAL fluid. Results NGF levels were elevated in the bronchoalveolar lavage fluid of nicotine-exposed mice, current smokers, and asthmatic children. Nicotine increased NGF secretion in lung fibroblasts in vitro in a dose-dependent manner and stimulated NFκB nuclear translocation, p65 binding to the NGF promoter, and NFκB transcriptional activity. These responses were attenuated in α7 nAChR deficient fibroblasts and in wild type fibroblasts following NFκB inhibition. Nicotine-treated, fibroblast-conditioned media increased expression of contractile proteins in ASM cells. Conclusion Nicotine stimulates NGF release by lung fibroblasts through α7 nAChR and NFκB dependent pathways

  1. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee

    PubMed Central

    Groppa, S.; Oliviero, A.; Eisen, A.; Quartarone, A.; Cohen, L.G.; Mall, V.; Kaelin-Lang, A.; Mima, T.; Rossi, S.; Thickbroom, G.W.; Rossini, P.M.; Ziemann, U.; Valls-Solé, J.; Siebner, H.R.

    2016-01-01

    Transcranial magnetic stimulation (TMS) is an established neurophysiological tool to examine the integrity of the fast-conducting corticomotor pathways in a wide range of diseases associated with motor dysfunction. This includes but is not limited to patients with multiple sclerosis, amyotrophic lateral sclerosis, stroke, movement disorders, disorders affecting the spinal cord, facial and other cranial nerves. These guidelines cover practical aspects of TMS in a clinical setting. We first discuss the technical and physiological aspects of TMS that are relevant for the diagnostic use of TMS. We then lay out the general principles that apply to a standardized clinical examination of the fast-conducting corticomotor pathways with single-pulse TMS. This is followed by a detailed description of how to examine corticomotor conduction to the hand, leg, trunk and facial muscles in patients. Additional sections cover safety issues, the triple stimulation technique, and neuropediatric aspects of TMS. PMID:22349304

  2. Evoked Pain Analgesia in Chronic Pelvic Pain Patients using Respiratory-gated Auricular Vagal Afferent Nerve Stimulation

    PubMed Central

    Napadow, Vitaly; Edwards, Robert R; Cahalan, Christine M; Mensing, George; Greenbaum, Seth; Valovska, Assia; Li, Ang; Kim, Jieun; Maeda, Yumi; Park, Kyungmo; Wasan, Ajay D.

    2012-01-01

    Objective Previous Vagus Nerve Stimulation (VNS) studies have demonstrated anti-nociceptive effects, and recent non-invasive approaches; termed transcutaneous-VNS, or t-VNS, have utilized stimulation of the auricular branch of the vagus nerve in the ear. The dorsal medullary vagal system operates in tune with respiration, and we propose that supplying vagal afferent stimulation gated to the exhalation phase of respiration can optimize t-VNS. Design counterbalanced, crossover study. Patients patients with chronic pelvic pain (CPP) due to endometriosis in a specialty pain clinic. Interventions/Outcomes We evaluated evoked pain analgesia for Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) compared with Non-Vagal Auricular Stimulation (NVAS). RAVANS and NVAS were evaluated in separate sessions spaced at least one week apart. Outcome measures included deep tissue pain intensity, temporal summation of pain, and anxiety ratings, which were assessed at baseline, during active stimulation, immediately following stimulation, and 15 minutes after stimulus cessation. Results RAVANS demonstrated a trend for reduced evoked pain intensity and temporal summation of mechanical pain, and significantly reduced anxiety in N=15 CPP patients, compared to NVAS, with moderate to large effect sizes (eta2>0.2). Conclusion Chronic pain disorders such as CPP are in great need of effective, non-pharmacological options for treatment. RAVANS produced promising anti-nociceptive effects for QST outcomes reflective of the noted hyperalgesia and central sensitization in this patient population. Future studies should evaluate longer-term application of RAVANS to examine its effects on both QST outcomes and clinical pain. PMID:22568773

  3. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    PubMed Central

    Pashut, Tamar; Magidov, Dafna; Ben-Porat, Hana; Wolfus, Shuki; Friedman, Alex; Perel, Eli; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2014-01-01

    Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies. PMID:24917788

  4. Complications and safety of vagus nerve stimulation: 25 years of experience at a single center.

    PubMed

    Révész, David; Rydenhag, Bertil; Ben-Menachem, Elinor

    2016-07-01

    OBJECTIVE The goal of this paper was to investigate surgical and hardware complications in a longitudinal retrospective study. METHODS The authors of this registry study analyzed the surgical and hardware complications in 247 patients who underwent the implantation of a vagus nerve stimulation (VNS) device between 1990 and 2014. The mean follow-up time was 12 years. RESULTS In total, 497 procedures were performed for 247 primary VNS implantations. Complications related to surgery occurred in 8.6% of all implantation procedures that were performed. The respective rate for hardware complications was 3.7%. Surgical complications included postoperative hematoma in 1.9%, infection in 2.6%, vocal cord palsy in 1.4%, lower facial weakness in 0.2%, pain and sensory-related complications in 1.4%, aseptic reaction in 0.2%, cable discomfort in 0.2%, surgical cable break in 0.2%, oversized stimulator pocket in 0.2%, and battery displacement in 0.2% of patients. Hardware-related complications included lead fracture/malfunction in 3.0%, spontaneous VNS turn-on in 0.2%, and lead disconnection in 0.2% of patients. CONCLUSIONS VNS implantation is a relatively safe procedure, but it still involves certain risks. The most common complications are postoperative hematoma, infection, and vocal cord palsy. Although their occurrence rates are rather low at about 2%, these complications may cause major suffering and even be life threatening. To reduce complications, it is important to have a long-term perspective. The 25 years of follow-up of this study is of great strength considering that VNS can be a life-long treatment for many patients. Thus, it is important to include repeated surgeries such as battery and lead replacements, given that complications also may occur with these surgeries. PMID:27015521

  5. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  6. Schwann Cells Overexpressing FGF-2 Alone or Combined with Manual Stimulation Do Not Promote Functional Recovery after Facial Nerve Injury

    PubMed Central

    Haastert, Kirsten; Grosheva, Maria; Angelova, Srebrina K.; Guntinas-Lichius, Orlando; Skouras, Emmanouil; Michael, Joern; Grothe, Claudia; Dunlop, Sarah A.; Angelov, Doychin N.

    2009-01-01

    Purpose. To determine whether transplantation of Schwann cells (SCs) overexpressing different isoforms of fibroblast growth factor 2 (FGF-2) combined with manual stimulation (MS) of vibrissal muscles improves recovery after facial nerve transection in adult rat. Procedures. Transected facial nerves were entubulated with collagen alone or collagen plus naïve SCs or transfected SCs. Half of the rats received daily MS. Collateral branching was quantified from motoneuron counts after retrograde labeling from 3 facial nerve branches. Quality assessment of endplate reinnervation was combined with video-based vibrissal function analysis. Results. There was no difference in the extent of collateral axonal branching. The proportion of polyinnervated motor endplates for either naïve SCs or FGF-2 over-expressing SCs was identical. Postoperative MS also failed to improve recovery. Conclusions. Neither FGF-2 isoform changed the extent of collateral branching or polyinnervation of motor endplates; furthermore, this motoneuron response could not be overridden by MS. PMID:19830246

  7. The sweet taste in the calf. I. Chorda tympani proper nerve responses to taste stimulation of the tongue.

    PubMed

    Segerstad, C H; Hellekant, G

    1989-03-01

    Electrophysiological recordings were obtained from the chorda tympani nerve in calves during stimulation with NaCl, quinine hydrochloride, citric acid, acesulfan-K, aspartame, fructose, galactose, glucose, glycine, lactose, maltose, monellin, Na-saccharin, sucrose, thaumatin, and xylitol. In cattle the chorda tympani innervates the posterior third of the tongue as well as the anterior part. It was found that the posterior receptive field generally responded better to sweet substances than the anterior. Glycine and Na-saccharin followed by xylitol were the most effective sweet stimuli. The monosaccharides elicited larger responses than the disaccharides. Aspartame gave a weak nerve response in 5 of 13 calves. Monellin and thaumatin elicited no change in chorda tympani nerve activity and did not crossadapt with any sweetener. No effects on citric acid responses were observed after application of miraculin. PMID:2756056

  8. Effects of auricular transcutaneous electrical nerve stimulation on distal extremity pain: a pilot study.

    PubMed

    Longobardi, A G; Clelland, J A; Knowles, C J; Jackson, J R

    1989-01-01

    The purpose of this pilot study was to determine the effectiveness of auricular acupuncture-like transcutaneous electrical nerve stimulation on pain. Fifteen subjects (6 men, 9 women) experiencing distal extremity pain received either one placebo pill or a 10-minute treatment of acupuncture-like TENS bilaterally to five acupuncture points on the auricle. Pain levels were measured before treatment and at 0, 10, and 30 minutes posttreatment using the visual analogue scale (VAS) and the pain rating index (PRI) of the McGill Pain Questionnaire. The VAS showed no statistically significant differences between Experimental Group (n = 8) and Control Group (n = 7) means at pretreatment or posttreatment; however, both groups showed a reduction in VAS means over time. The Experimental and Control Group means on the PRI were significantly different (p less than .05) at all three posttreatment measurements, but not at pretreatment baseline measurement. These results suggest that auricular acupuncture-like TENS could be an alternative for relief of distal extremity pain. Additional clinical studies are necessary to validate the results of this study. PMID:2783492

  9. [Variations in the configuration of somatosensory evoked potentials following stimulation of the median nerve].

    PubMed

    Strenge, H

    1989-09-01

    The variants of waveform patterns of cervical and cortical somatosensory evoked potentials to median nerve stimulation at the wrist were analysed in 86 normal subjects aged 15 to 71 years. In cervical SEP recordings the components N13, N14 and the trough-shaped variant of P17 showed the highest short-term stability. Immediate changes of the amplitude proportions of subcomponents within the potential, i.e. a lack of uniformity in waveforms, have to be considered normal. Significant associations were found between the occurrence of components N14 and an arm length of more than 68 cm and between the appearance of a plateau configuration of P17 and an age of at least 40 years. Considering definite criteria the latency of P17 can be used as an additional reliable parameter. In cortical SEP recordings the combination of an initial V-shaped pattern and a following bifid W-configuration appeared as the most frequent waveform profile. All parts of the potential but the positive waves of the primary complex revealed a high intraindividual stability. PMID:2507276

  10. Anti-Inflammatory Effects of Acupuncture Stimulation via the Vagus Nerve.

    PubMed

    Lim, Hee-Don; Kim, Min-Hee; Lee, Chan-Yong; Namgung, Uk

    2016-01-01

    Although acupuncture therapy is widely used in traditional Asian medicine for the treatment of diverse internal organ disorders, its underlying biological mechanisms are largely unknown. Here, we investigated the functional involvement of acupuncture stimulation (AS) in the regulation of inflammatory responses. TNF-α production in mouse serum, which was induced by lipopolysaccharide (LPS) administration, was decreased by manual acupuncture (MAC) at the zusanli acupoint (stomach36, ST36). In the spleen, TNF-α mRNA and protein levels were also downregulated by MAC and were recovered by using a splenic neurectomy and a vagotomy. c-Fos, which was induced in the nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus nerve (DMV) by LPS and electroacupuncture (EAC), was further increased by focal administration of the AMPA receptor blocker CNQX and the purinergic receptor antagonist PPADS. TNF-α levels in the spleen were decreased by CNQX and PPADS treatments, implying the involvement of inhibitory neuronal activity in the DVC. In unanesthetized animals, both MAC and EAC generated c-Fos induction in the DVC neurons. However, MAC, but not EAC, was effective in decreasing splenic TNF-α production. These results suggest that the therapeutic effects of acupuncture may be mediated through vagal modulation of inflammatory responses in internal organs. PMID:26991319

  11. Vagus Nerve Stimulation as a Tool to Induce Plasticity in Pathways Relevant for Extinction Learning

    PubMed Central

    Childs, Jessica E.; Alvarez-Dieppa, Amanda C.; McIntyre, Christa K.; Kroener, Sven

    2015-01-01

    Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory. PMID:26325100

  12. Corpus callosotomy versus vagus nerve stimulation for atonic seizures and drop attacks: A systematic review.

    PubMed

    Rolston, John D; Englot, Dario J; Wang, Doris D; Garcia, Paul A; Chang, Edward F

    2015-10-01

    Atonic seizures are debilitating and poorly controlled with antiepileptic medications. Two surgical options are primarily used to treat medically refractory atonic seizures: corpus callosotomy (CC) and vagus nerve stimulation (VNS). However, given the uncertainty regarding relative efficacy and surgical complications, the best approach for affected patients is unclear. The PubMed database was queried for all articles describing the treatment of atonic seizures and drop attacks with either corpus callosotomy or VNS. Rates of seizure freedom, >50% reduction in seizure frequency, and complications were compared across the two patient groups. Patients were significantly more likely to achieve a >50% reduction in seizure frequency with CC versus VNS (85.6% versus 57.6%; RR: 1.5; 95% CI: 1.1-2.1). Adverse events were more common with VNS, though typically mild (e.g., 22% hoarseness and voice changes), compared with CC, where the most common complication was the disconnection syndrome (13.2%). Both CC and VNS are well tolerated for the treatment of refractory atonic seizures. Existing studies suggest that CC is potentially more effective than VNS in reducing seizure frequency, though a direct study comparing these techniques is required before a definitive conclusion can be reached. PMID:26247311

  13. Vagus Nerve Stimulation as a Tool to Induce Plasticity in Pathways Relevant for Extinction Learning.

    PubMed

    Childs, Jessica E; Alvarez-Dieppa, Amanda C; McIntyre, Christa K; Kroener, Sven

    2015-01-01

    Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory. PMID:26325100

  14. Vagus Nerve Stimulation Improves Cardiac Function by Preventing Mitochondrial Dysfunction in Obese-Insulin Resistant Rats

    PubMed Central

    Samniang, Bencharunan; Shinlapawittayatorn, Krekwit; Chunchai, Titikorn; Pongkan, Wanpitak; Kumfu, Sirinart; Chattipakorn, Siriporn C.; KenKnight, Bruce H.; Chattipakorn, Nipon

    2016-01-01

    Long-term high-fat diet (HFD) consumption leads to not only obese-insulin resistance, but also impaired left ventricular (LV) function. Vagus nerve stimulation (VNS) has been shown to exert cardioprotection. However, its effects on the heart and metabolic parameters under obese-insulin resistant condition is not known. We determined the effects of VNS on metabolic parameters, heart rate variability (HRV) and LV function in obese-insulin resistant rats. Male Wistar rats were fed with HFD for 12 weeks, and were randomly divided into sham and VNS groups. VNS was applied for the next 12 weeks. Echocardiography, blood pressure and HRV were examined. Blood samples were collected for metabolic parameters. At the end, the heart was removed for determination of apoptosis, inflammation, oxidative stress, and cardiac mitochondrial function. VNS for 12 weeks significantly decreased plasma insulin, HOMA index, total cholesterol, triglyceride, LDL and visceral fat. Serum adiponectin was significantly increased in the VNS group. VNS also significantly decreased blood pressure, improved HRV and LV function, decreased cardiac MDA, TNF-α and Bax levels, and improved cardiac mitochondrial function. VNS improves metabolic and hemodynamic parameters, and the LV function via its ability against apoptosis, inflammation and oxidative stress, and preserved cardiac mitochondrial function in obese-insulin resistant rats. PMID:26830020

  15. Effects of transcutaneous electrical nerve stimulation on quadriceps function in individuals with experimental knee pain.

    PubMed

    Son, S J; Kim, H; Seeley, M K; Feland, J B; Hopkins, J T

    2016-09-01

    Knee joint pain (KJP) is a cardinal symptom in knee pathologies, and quadriceps inhibition is commonly observed among KJP patients. Previously, KJP independently reduced quadriceps strength and activation. However, it remains unknown how disinhibitory transcutaneous electrical nerve stimulation (TENS) will affect inhibited quadriceps motor function. This study aimed at examining changes in quadriceps maximum voluntary contraction (MVC) and central activation ratio (CAR) before and after sensory TENS following experimental knee pain. Thirty healthy participants were assigned to either the TENS or placebo groups. All participants underwent three separate data collection sessions consisting of two saline infusions and one no infusion control in a crossover design. TENS or placebo treatment was administered to each group for 20 min. Quadriceps MVC and CAR were measured at baseline, infusion, treatment, and post-treatment. Perceived knee pain intensity was measured on a 100-mm visual analogue scale. Post-hoc analysis revealed that hypertonic saline infusion significantly reduced the quadriceps MVC and CAR compared with control sessions (P < 0.05). Sensory TENS, however, significantly restored inhibited quadriceps motor function compared with placebo treatment (P < 0.05). There was a negative correlation between changes in MVC and knee pain (r = 0.33, P < 0.001), and CAR and knee pain (r = 0.62, P < 0.001), respectively. PMID:26346597

  16. Vagus nerve stimulation in treating depression: A tale of two stories.

    PubMed

    Yuan, T-F; Li, A; Sun, X; Arias-Carrión, O; Machado, S

    2016-01-01

    Vagus nerve stimulation (VNS) has been widely used to treat different neurological disorders, especially epilepsy. Accumulating evidence also suggests its potential application in antidepressive therapy, given that VNS has been confirmed by several clinical trials to exert long-term effects on mitigating depression and reducing the risk of relapse in depressed patients. Likewise, VNS has also proven to ameliorate the behavioral deficits in a rat model of depression. While the influences of VNS on monoamine metabolism and mood improvement are well-recognized, the underlying mechanisms mediating its antidepressive action remain poorly understood. Recent findings suggest that VNS-enhanced proliferation of hippocampal neural progenitor cells (NPCs) and synaptic transmission might serve as a monoamine-independent pathway contributive to the beneficial effects of VNS on depression. Here we briefly reviewed the recent progress in this field, based on which we propose that there might be, at least, two little-overlapped, and yet interactive pathways mediating the antidepressive action of VNS. PMID:26695696

  17. Low Intensity Laser Therapy (LILT) Versus Transcutaneous Electrical Nerve Stimulation On Microcirculation In Diabetic Neuropathy

    NASA Astrophysics Data System (ADS)

    Battecha, Kadria H.; Atya, Azza M.

    2011-09-01

    Reduced microcirculation is a morbid element of neuropathy and one of the most common complications of uncontrolled diabetes. Many physical modalities have gained a considerable attention for enhancing cutaneous microcirculation in diabetic patients and prevent its serious complications. Accordingly, the present study was conducted to compare between the effect of low intensity laser therapy (LILT) and transcutaneous electrical nerve stimulation (TENS) on microcirculation in diabetic neuropathy. Thirty diabetic polyneuropathic patients ranged in age from 45-60 years participated in this study. They were randomly divided into two groups of equal number; patients in group (A) received LILT on plantar surface of foot with a dose of 3 J/cm2 and wavelength (904 nm), while those in group (B) received TENS on lower leg for 30 minutes with frequency (2 HZ). Treatment was conducted 3 times/week for 6 weeks. The cutaneous microcirculation was evaluated by Laser Doppler flowmetry at the baseline and at the end of treatment. Results revealed that group (A) showed statistically significant increase in the cutaneous microcirculation compared with group (B). So, it was concluded that LILT has to be more efficient than TENS in increasing cutaneous microcirculation in patients with diabetic neuropathy.

  18. Comparison of Transcutaneous Electrical Nerve Stimulation and Parasternal Block for Postoperative Pain Management after Cardiac Surgery

    PubMed Central

    Ozturk, Nilgun Kavrut; Baki, Elif Dogan; Kavakli, Ali Sait; Sahin, Ayca Sultan; Ayoglu, Raif Umut; Karaveli, Arzu; Emmiler, Mustafa; Inanoglu, Kerem; Karsli, Bilge

    2016-01-01

    Background. Parasternal block and transcutaneous electrical nerve stimulation (TENS) have been demonstrated to produce effective analgesia and reduce postoperative opioid requirements in patients undergoing cardiac surgery. Objectives. To compare the effectiveness of TENS and parasternal block on early postoperative pain after cardiac surgery. Methods. One hundred twenty patients undergoing cardiac surgery were enrolled in the present randomized, controlled prospective study. Patients were assigned to three treatment groups: parasternal block, intermittent TENS application, or a control group. Results. Pain scores recorded 4 h, 5 h, 6 h, 7 h, and 8 h postoperatively were lower in the parasternal block group than in the TENS and control groups. Total morphine consumption was also lower in the parasternal block group than in the TENS and control groups. It was also significantly lower in the TENS group than in the control group. There were no statistical differences among the groups regarding the extubation time, rescue analgesic medication, length of intensive care unit stay, or length of hospital stay. Conclusions. Parasternal block was more effective than TENS in the management of early postoperative pain and the reduction of opioid requirements in patients who underwent cardiac surgery through median sternotomy. This trial is registered with Clinicaltrials.gov number NCT02725229. PMID:27445610

  19. Anti-Inflammatory Effects of Acupuncture Stimulation via the Vagus Nerve

    PubMed Central

    Lim, Hee-Don; Kim, Min-Hee; Lee, Chan-Yong; Namgung, Uk

    2016-01-01

    Although acupuncture therapy is widely used in traditional Asian medicine for the treatment of diverse internal organ disorders, its underlying biological mechanisms are largely unknown. Here, we investigated the functional involvement of acupuncture stimulation (AS) in the regulation of inflammatory responses. TNF-α production in mouse serum, which was induced by lipopolysaccharide (LPS) administration, was decreased by manual acupuncture (MAC) at the zusanli acupoint (stomach36, ST36). In the spleen, TNF-α mRNA and protein levels were also downregulated by MAC and were recovered by using a splenic neurectomy and a vagotomy. c-Fos, which was induced in the nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus nerve (DMV) by LPS and electroacupuncture (EAC), was further increased by focal administration of the AMPA receptor blocker CNQX and the purinergic receptor antagonist PPADS. TNF-α levels in the spleen were decreased by CNQX and PPADS treatments, implying the involvement of inhibitory neuronal activity in the DVC. In unanesthetized animals, both MAC and EAC generated c-Fos induction in the DVC neurons. However, MAC, but not EAC, was effective in decreasing splenic TNF-α production. These results suggest that the therapeutic effects of acupuncture may be mediated through vagal modulation of inflammatory responses in internal organs. PMID:26991319

  20. Transcutaneous Electrical Nerve Stimulation for Management of Limb Spasticity: A Systematic Review.

    PubMed

    Mills, Patricia Branco; Dossa, Farhana

    2016-04-01

    The purpose of this systematic review was to summarize the effect of transcutaneous electrical nerve stimulation (TENS) for management of limb spasticity. Randomized controlled trials were searched using electronic databases through July 2015. Fourteen randomized controlled trials were included, involving 544 participants. Intervention protocols fit within three categories: 1) TENS vs. no TENS or placebo TENS (n = 7), 2) TENS vs. another TENS protocol or another intervention for spasticity management (n = 7), and 3) TENS as an adjunct to another intervention for spasticity management (n = 4). There was level 1 and 2 evidence for TENS improving spasticity-related outcome measures within the International Classification of Functioning, Disability, and Health domains of body structure and function (e.g., Modified Ashworth Scale) as well as activity (e.g., gait). Better responses in outcome measures in the International Classification of Functioning, Disability, and Health activity domain were seen when TENS was used in combination with active therapy (e.g., exercise and task-related training) vs. as a single therapeutic modality. PMID:26829077

  1. Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat

    PubMed Central

    Ollivier-Lanvin, Karen; Krupka, Alexander J.; AuYong, Nicholas; Miller, Kassi; Prilutsky, Boris I.

    2011-01-01

    Sensory feedback plays a crucial role in the control of locomotion and in the recovery of function after spinal cord injury. Investigations in reduced preparations have shown that the locomotor cycle can be modified through the activation of afferent feedback at various phases of the gait cycle. We investigated the effect of phase-dependent electrical stimulation of a cutaneous afferent nerve on the locomotor pattern of trained spinal cord-injured cats. Animals were first implanted with chronic nerve cuffs on the sural and sciatic nerves and electromyographic electrodes in different hindlimb muscles. Cats were then transected at T12 and trained daily to locomote on a treadmill. We found that electrical stimulation of the sural nerve can enhance the ongoing flexion phase, producing higher (+129%) and longer (+17.4%) swing phases of gait even at very low threshold of stimulation. Sural nerve stimulation can also terminate an ongoing extension and initiate a flexion phase. A higher prevalence of early switching to the flexion phase was observed at higher stimulation levels and if stimulation was applied in the late stance phase. All flexor muscles were activated by the stimulation. These results suggest that electrical stimulation of the sural nerve may be used to increase the magnitude of the swing phase and control the timing of its onset after spinal cord injury and locomotor training. PMID:21389308

  2. Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat.

    PubMed

    Ollivier-Lanvin, Karen; Krupka, Alexander J; AuYong, Nicholas; Miller, Kassi; Prilutsky, Boris I; Lemay, Michel A

    2011-05-01

    Sensory feedback plays a crucial role in the control of locomotion and in the recovery of function after spinal cord injury. Investigations in reduced preparations have shown that the locomotor cycle can be modified through the activation of afferent feedback at various phases of the gait cycle. We investigated the effect of phase-dependent electrical stimulation of a cutaneous afferent nerve on the locomotor pattern of trained spinal cord-injured cats. Animals were first implanted with chronic nerve cuffs on the sural and sciatic nerves and electromyographic electrodes in different hindlimb muscles. Cats were then transected at T12 and trained daily to locomote on a treadmill. We found that electrical stimulation of the sural nerve can enhance the ongoing flexion phase, producing higher (+129%) and longer (+17.4%) swing phases of gait even at very low threshold of stimulation. Sural nerve stimulation can also terminate an ongoing extension and initiate a flexion phase. A higher prevalence of early switching to the flexion phase was observed at higher stimulation levels and if stimulation was applied in the late stance phase. All flexor muscles were activated by the stimulation. These results suggest that electrical stimulation of the sural nerve may be used to increase the magnitude of the swing phase and control the timing of its onset after spinal cord injury and locomotor training. PMID:21389308

  3. Electrical Stimulation of the Vagus Nerve Enhances Cognitive and Motor Recovery following Moderate Fluid Percussion Injury in the Rat

    PubMed Central

    SMITH, DOUGLAS C.; MODGLIN, ARLENE A.; ROOSEVELT, RODNEY W.; NEESE, STEVEN L.; JENSEN, ROBERT A.; BROWNING, RONALD A.; CLOUGH, RICHARD W.

    2006-01-01

    Intermittent, chronically delivered electrical stimulation of the vagus nerve (VNS) is an FDA-approved procedure for the treatment of refractory complex/partial epilepsy in humans. Stimulation of the vagus has also been shown to enhance memory storage processes in laboratory rats and human subjects. Recent evidence suggests that some of these effects of VNS may be due to the activation of neurons in the nucleus locus coeruleus resulting in the release of norepinephrine (NE) throughout the neuraxis. Because antagonism of NE systems has been shown to delay recovery of function following brain damage, it is possible that enhanced release of NE in the CNS may facilitate recovery of function. To evaluate this hypothesis the lateral fluid percussion injury (LFP) model of traumatic brain injury was used and a variety of motor and cognitive behavioral tests were employed to assess recovery in pre-trained stimulated, control, and sham-injured laboratory rats. Two hours following moderate LFP, vagus nerve stimulation (30.0-sec trains of 0.5 mA, 20.0 Hz, biphasic pulses) was initiated. Stimulation continued in each animal’s home cage at 30-min intervals for a period of 14 days, with the exception of brief periods when the animals were disconnected for behavioral assessments. Motor behaviors were evaluated every other day following LFP and tests included beam walk, locomotor placing, and skilled forelimb reaching. In each measure an enhanced rate of recovery and/or level of final performance was observed in the VNS-LFP animals compared to non-stimulated LFP controls. Behavior in the Morris water maze was assessed on days 11–14 following injury. Stimulated LFP animals showed significantly shorter latencies to find the hidden platform than did controls. Despite these behavioral effects, neurohistological examination did not reveal significant differences in lesion extent, density of fluorojade positive neurons, reactive astrocytes or numbers of spared neurons in the CA3

  4. Optimal Coil Orientation for Transcranial Magnetic Stimulation

    PubMed Central

    Richter, Lars; Neumann, Gunnar; Oung, Stephen; Schweikard, Achim; Trillenberg, Peter

    2013-01-01

    We study the impact of coil orientation on the motor threshold (MT) and present an optimal coil orientation for stimulation of the foot. The result can be compared to results of models that predict this orientation from electrodynamic properties of the media in the skull and from orientations of cells, respectively. We used a robotized TMS system for precise coil placement and recorded motor-evoked potentials with surface electrodes on the abductor hallucis muscle of the right foot in 8 healthy control subjects. First, we performed a hot-spot search in standard (lateral) orientation and then rotated the coil in steps of 10° or 20°. At each step we estimated the MT. For navigated stimulation and for correlation with the underlying anatomy a structural MRI scan was obtained. Optimal coil orientation was 33.1±18.3° anteriorly in relation to the standard lateral orientation. In this orientation the threshold was 54±18% in units of maximum stimulator output. There was a significant difference of 8.0±5.9% between the MTs at optimal and at standard orientation. The optimal coil orientations were significantly correlated with the direction perpendicular to the postcentral gyrus (). Robotized TMS facilitates sufficiently precise coil positioning and orientation to study even small variations of the MT with coil orientation. The deviations from standard orientation are more closely matched by models based on field propagation in media than by models based on orientations of pyramidal cells. PMID:23593200

  5. An analysis of the anatomical basis for the mechanical response to motor nerve stimulation of the rat vas deferens

    PubMed Central

    Anton, Patricia G.; Duncan, Morag E.; McGrath, J. C.

    1977-01-01

    1. An anatomical basis was sought for the biphasic motor nerve response of the rat vas deferens. The motor nerve pathway to the tissue was stimulated at different points between the vertebral outflow and the intramural fibres, in the pithed rat and in isolated tissues, to examine the possibility of two anatomically separate groups of neurones. Different preparations of the isolated tissue were devised to detect whether different groups of smooth muscle fibres contributed to the two phases. 2. The fibres mediating both phases of the response arose from the upper lumbar vertebral outflows. Both phases were elicited by pre- or post-ganglionic stimulation and could be depressed by hexamethonium. In the pithed rat or with hypogastric nerve stimulation in the isolated tissue, however, the initial `twitch' phase was relatively resistant to such blockade. 3. When the rat vas deferens was perfused through the lumen in situ or in vitro, the perfusion pressure response to motor nerve stimulation exhibited two phases similar to those of the longitudinal contractile response. 4. Isolated rat vasa were bisected into portions, each of which was stimulated and longitudinal tension was recorded. The proportions of the two phases of the response varied along the length of the tissue. At the prostatic end the total response was relatively weak with a dominant `twitch' and at the epididymal end the two phases were comparable in magnitude. The distribution of adrenergic nerve terminals within the muscle layers also varied along the length of the rat vas deferens. 5. The effects of drugs were investigated on the motor responses of the above preparations. The `twitch' phase was relatively susceptible to blockade by reserpine and lysergic acid diethylamide and the `secondary' phase to phentolamine with both equally sensitive to guanethidine. Each phase had similar susceptibilities to blockade irrespective of which part of the tissue was involved. 6. It was concluded that two types of

  6. Responses of bone and joint blood vessels in cats and rabbits to electrical stimulation of nerves supplying the knee.

    PubMed Central

    Ferrell, W R; Khoshbaten, A; Angerson, W J

    1990-01-01

    1. Experiments were performed to assess the extent to which knee joint blood flow in cats and rabbits is affected by electrical stimulation of the nerve supply to the knee. 2. Absolute changes in blood flow were measured using the radiolabelled microsphere (approximately 15 microns) technique whilst relative changes in blood flow were assessed using laser Doppler flowmetry. 3. Despite deep general anaesthesia, sympathetic nerve fibres innervating cat knee joint blood vessels showed marked 'tone'. 4. Blood flow to the joint capsule (synovium and overlying fibrous and areolar tissues) was substantially reduced (by approximately 90% in the cat and approximately 45% in the rabbit) during electrical stimulation of the articular nerve supply. 5. The percentage change in the laser Doppler flowmeter signal did not differ significantly from the percentage change in blood flow measured by microsphere technique. 6. Blood vessels in the cancellous bone of the distal femur (condyles) and proximal tibia (plateau) appear to be innervated by vasoconstrictor fibres which reach their effectors via the articular nerves. However, the cortical bone and red marrow of the diaphysis of the femur do not receive such innervation. 7. The potency of the vasoconstrictor influences acting on joint blood vessels could be of relevance in the pathogenesis of inflammatory joint diseases. PMID:2100317

  7. Nerve Conduction Block Using Combined Thermoelectric Cooling and High Frequency Electrical Stimulation

    PubMed Central

    Ackermann, D. Michael; Foldes, Emily L.; Bhadra, Niloy; Kilgore, Kevin L.

    2010-01-01

    Conduction block of peripheral nerves is an important technique for many basic and applied neurophysiology studies. To date, there has not been a technique which provides a quickly initiated and reversible “on-demand” conduction block which is both sustainable for long periods of time and does not generate activity in the nerve at the onset of the conduction block. In this study we evaluated the feasibility of a combined method of nerve block which utilizes two well established nerve blocking techniques in a rat and cat model: nerve cooling and electrical block using high frequency alternating currents (HFAC). This combined method effectively makes use of the contrasting features of both nerve cooling and electrical block using HFAC. The conduction block was initiated using nerve cooling, a technique which does not produce nerve “onset response” firing, a prohibitive drawback of HFAC electrical block. The conduction block was then readily transitioned into an electrical block. A long-term electrical block is likely preferential to a long-term nerve cooling block because nerve cooling block generates large amounts of exhaust heat, does not allow for fiber diameter selectivity and is known to be unsafe for prolonged delivery. PMID:20705099

  8. Task-dependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseous muscle.

    PubMed Central

    Datta, A K; Harrison, L M; Stephens, J A

    1989-01-01

    1. Electromyographic responses have been recorded from human first dorsal interosseous muscle (FDI) in response to magnetic and transcutaneous electrical stimulation of the brain. 2. Following magnetic but not electrical stimulation of the brain, the recorded EMG response was larger when FDI was active during voluntary isometric index finger abduction than during a power grip. 3. In the same experiment, cutaneous reflex responses have been recorded from FDI following electrical stimulation of the digital nerves. The long-latency excitatory component at about 60 ms (E2) was larger when recorded during voluntary finger abduction than during a power grip. This difference in size of E2 with task bore no simple relationship to the difference in size with task of the motor response to magnetic brain stimulation. 4. The results are discussed in relation to the presumed site of action of magnetic and electrical brain stimulation. It is concluded that the results may best be interpreted by assuming a higher level of cortical activity during a voluntary index finger abduction than during a grip and that this could in part explain the task-dependent changes in the long-latency response to cutaneous stimulation. PMID:2621614

  9. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    PubMed

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  10. A compact, inexpensive infrared laser system for continuous-wave optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2014-03-01

    Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.

  11. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes

    PubMed Central

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-sang J.; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Guyenet, Patrice G.

    2016-01-01

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes. PMID:27088805

  12. Influence of different frequencies of transcutaneous electrical nerve stimulation on the threshold and pain intensity in young subjects

    PubMed Central

    Gomes, Adriana de Oliveira; Silvestre, Ana Caroline; da Silva, Cristina Ferreira; Gomes, Mariany Ribeiro; Bonfleur, Maria Lúcia; Bertolini, Gladson Ricardo Flor

    2014-01-01

    Objective To investigate the effects of different transcutaneous electrical nerve stimulation frequencies in nociception front of a pressure pain threshold and cold in healthy individuals. Methods Twenty healthy subjects were divided into four groups, all of which have gone through all forms of electrical stimulation at different weeks. Assessments were pre and post-therapy, 20 and 60 minutes after stimulation. To evaluate the pressure pain threshold, an algometer was used with one tapered tip, pressing the hypothenar region until voluntary report the word “pain”. Cold pain intensity was assessed by immersion in water at 5°C for 30 seconds; at the end, the subject was asked to quantify the pain intensity on a Visual Analog Scale for Pain. For electrical stimulation, two electrodes were used near the elbow, for 20 minutes, with an intensity strong, but not painful. The frequency was in accordance with the group: 0Hz (placebo); 7Hz; 100Hz; and 255Hz. Results Both for the assessment of pressure pain threshold as the cold pain intensity, there was no significant difference (p>0.05). Conclusion We conclude that the use of transcutaneous electrical nerve stimulation on dermatomes C6 to C8 produced no significant change in pressure pain threshold or cold discomfort. PMID:25295453

  13. Focusing and targeting of magnetic brain stimulation using multiple coils.

    PubMed

    Ruohonen, J; Ilmoniemi, R J

    1998-05-01

    Neurones can be excited by an externally applied time-varying electromagnetic field. Focused magnetic brain stimulation is attained using multiple small coils instead of one large coil, the resultant induced electric field being a superposition of the fields from each coil. In multichannel magnetic brain stimulation, partial cancellation of fields from individual coils provides a significant improvement in the focusing of the stimulating field, and independent coil channels allow targeting of the stimuli on a given spot without moving the coils. The problem of shaping the stimulating field in multichannel stimulation is analysed, and a method is derived that yields the driving currents required to induce a field with a user-defined shape. The formulation makes use of lead fields and minimum-norm estimation from magneto-encephalography. Using these methods, some properties of multichannel coil arrays are examined. Computer-assisted multichannel stimulation of the cortex will enable several new studies, including quick determination of the cortical regions, the stimulation of which disrupts cortical processing required by a task. PMID:9747568

  14. Brain activation during vaginocervical self-stimulation and orgasm in women with complete spinal cord injury: fMRI evidence of mediation by the vagus nerves.

    PubMed

    Komisaruk, Barry R; Whipple, Beverly; Crawford, Audrita; Liu, Wen-Ching; Kalnin, Andrew; Mosier, Kristine

    2004-10-22

    Women diagnosed with complete spinal cord injury (SCI) at T10 or above report vaginal-cervical perceptual awareness. To test whether the Vagus nerves, which bypass the spinal cord, provide the afferent pathway for this response, we hypothesized that the Nucleus Tractus Solitarii (NTS) region of the medulla oblongata, to which the Vagus nerves project, is activated by vaginal-cervical self-stimulation (CSS) in such women, as visualized by functional magnetic resonance imaging (fMRI). Regional blood oxygen level-dependent (BOLD) signal intensity was imaged during CSS and other motor and sensory procedures, using statistical parametric mapping (SPM) analysis with head motion artifact correction. Physiatric examination and MRI established the location and extent of spinal cord injury. In order to demarcate the NTS, a gustatory stimulus and hand movement were used to activate the superior region of the NTS and the Nucleus Cuneatus adjacent to the inferior region of the NTS, respectively. Each of four women with interruption, or "complete" injury, of the spinal cord (ASIA criteria), and one woman with significant, but "incomplete" SCI, all at or above T10, showed activation of the inferior region of the NTS during CSS. Each woman showed analgesia, measured at the fingers, during CSS, confirming previous findings. Three women experienced orgasm during the CSS. The brain regions that showed activation during the orgasms included hypothalamic paraventricular nucleus, medial amygdala, anterior cingulate, frontal, parietal, and insular cortices, and cerebellum. We conclude that the Vagus nerves provide a spinal cord-bypass pathway for vaginal-cervical sensibility in women with complete spinal cord injury above the level of entry into spinal cord of the known genitospinal nerves. PMID:15451368

  15. Effect of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication.

    PubMed

    Gierthmuehlen, Mortimer; Plachta, Dennis T T

    2016-02-01

    Selective vagal nerve stimulation (sVNS) has been shown to reduce blood pressure without major side effects in rats. This technology might be the key to non-medical antihypertensive treatment in patients with therapy-resistant hypertension. β-blockers are the first-line therapy of hypertension and have in general a bradycardic effect. As VNS itself can also promote bradycardia, it was the aim of this study to investigate the influence of the β1-selective blocker Metoprolol on the effect of sVNS especially with respect to the heart rate. In 10 male Wistar rats, a polyimide multichannel-cuff electrode was placed around the vagal nerve bundle to selectively stimulate the aortic depressor nerve fibers. The stimulation parameters were adapted to the thresholds of individual animals and were in the following ranges: frequency 30-50 Hz, amplitude 0.3-1.8 mA and pulse width 0.3-1.3 ms. Blood pressure responses were detected with a microtip transducer in the carotid artery, and electrocardiography was recorded with s.c. chest electrodes. After IV administration of Metoprolol (2 mg kg(-1) body weight), the animals' mean arterial blood pressure (MAP) and heart rate (HR) decreased significantly. Although the selective electrical stimulation of the baroreceptive fibers reduced MAP and HR, both effects were significantly alleviated by Metoprolol. As a side effect, the rate of stimulation-induced apnea significantly increased after Metoprolol administration. sVNS can lower the MAP under Metoprolol without causing severe bradycardia. PMID:26581776

  16. ANALYSIS OF THE STRUCTURE OF MAGNETIC FIELDS THAT INDUCED INHIBITION OF STIMULATED NEURITE OUTGROWTH

    EPA Science Inventory

    The important experiments showing nonlinear amplitude dependences of the neurite outgrowth in pheochromocytoma nerve cells due to ELF magnetic field exposure had been carried out in a nonuniform ac magnetic field. The nonuniformity entailed larger than expected variances in magne...

  17. Renal Nerve Stimulation-Induced Blood Pressure Changes Predict Ambulatory Blood Pressure Response After Renal Denervation.

    PubMed

    de Jong, Mark R; Adiyaman, Ahmet; Gal, Pim; Smit, Jaap Jan J; Delnoy, Peter Paul H M; Heeg, Jan-Evert; van Hasselt, Boudewijn A A M; Lau, Elizabeth O Y; Persu, Alexandre; Staessen, Jan A; Ramdat Misier, Anand R; Steinberg, Jonathan S; Elvan, Arif

    2016-09-01

    Blood pressure (BP) response to renal denervation (RDN) is highly variable and its effectiveness debated. A procedural end point for RDN may improve consistency of response. The objective of the current analysis was to look for the association between renal nerve stimulation (RNS)-induced BP increase before and after RDN and changes in ambulatory BP monitoring (ABPM) after RDN. Fourteen patients with drug-resistant hypertension referred for RDN were included. RNS was performed under general anesthesia at 4 sites in the right and left renal arteries, both before and immediately after RDN. RNS-induced BP changes were monitored and correlated to changes in ambulatory BP at a follow-up of 3 to 6 months after RDN. RNS resulted in a systolic BP increase of 50±27 mm Hg before RDN and systolic BP increase of 13±16 mm Hg after RDN (P<0.001). Average systolic ABPM was 153±11 mm Hg before RDN and decreased to 137±10 mm Hg at 3- to 6-month follow-up (P=0.003). Changes in RNS-induced BP increase before versus immediately after RDN and changes in ABPM before versus 3 to 6 months after RDN were correlated, both for systolic BP (R=0.77, P=0.001) and diastolic BP (R=0.79, P=0.001). RNS-induced maximum BP increase before RDN had a correlation of R=0.61 (P=0.020) for systolic and R=0.71 (P=0.004) for diastolic ABPM changes. RNS-induced BP changes before versus after RDN were correlated with changes in 24-hour ABPM 3 to 6 months after RDN. RNS should be tested as an acute end point to assess the efficacy of RDN and predict BP response to RDN. PMID:27432864

  18. Incidence of hemidiaphragmatic paresis after peripheral nerve stimulator versus ultrasound guided interscalene brachial plexus block

    PubMed Central

    Ghodki, Poonam Sachin; Singh, Noopur Dasmit

    2016-01-01

    Background and Aims: We compared interscalene brachial plexus block (ISBPB) using peripheral nerve stimulation (PNS) and ultrasound (US) techniques. The primary outcomes were the incidence of hemidiaphragmatic paresis (HDP) and the duration of the block. Secondary outcomes were the block success rate, time to conduct the block, onset of sensory block, and dermatomal spread, postoperative pain by Numeric Rating Scale (NRS), duration of postoperative analgesia and incidence of complications. Material and Methods: We conducted a prospective, randomized, and observer-blinded study in 60 patients undergoing shoulder arthroscopy under block plus general anesthesia. ISBPB was performed with 10 ml of 0.5% bupivacaine using either PNS (Group PNS, n = 30) or US (Group US, n = 30). Hemidiaphragmatic function, the primary outcome, was assessed by ultrasonographic evaluation of diaphragmatic movement and pulmonary function tests using a bedside spirometer (forced vital capacity, forced expiratory volume in 1 s and peak expiratory flow rate). General anesthesia was administered to all the patients for surgery. P < 0.05 test was considered to be statistically significant. Results: Twelve patients in Group PNS had HDP and none in Group US (P < 0.0001). PFTs were also significantly reduced in Group PNS (P < 0.0001). The time to conduct the block and sensory onset time both were less in Group US (P < 0.05). The groups did not differ in block success rate, duration of analgesia, and NRS. Other complications like incidence of Horner's syndrome and vascular puncture were comparable in both the groups. Conclusions: PNS guided ISBPB with 10 ml of 0.5% bupivacaine is associated with a higher incidence of HDP as compared to US guided ISBPB. There is no significant difference in quality or duration of analgesia in the two groups.

  19. Surface Peroneal Nerve Stimulation in Lower Limb Hemiparesis: Effect on Quantitative Gait Parameters

    PubMed Central

    Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas D.; Buurke, Jaap H.; IJzerman, Maarten J.; Chae, John

    2015-01-01

    Objective To evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation (PNS) versus usual care (UC) via quantitative gait analysis. Design Randomized controlled clinical trial. Setting Teaching hospital of academic medical center. Participants 110 chronic stroke survivors (> 12-wks post-stroke) with unilateral hemiparesis. Interventions Subjects were randomized to a surface PNS device or UC intervention. Subjects were treated for 12-wks and followed for 6-months post-treatment. Main Outcome Measures Spatiotemporal, kinematic, and kinetic parameters of gait. Results Cadence (F3,153=5.81, p=.012), stride length (F3,179=20.01, p<.001), walking speed (F3,167=18.2, p<.001), anterior posterior ground reaction force (F3,164=6.61, p=.004), peak hip power in pre-swing (F3,156=8.76, p<.001), and peak ankle power at push-off (F3,149=6.38, p=.005) all improved with respect to time. However, peak ankle DF in swing (F3,184=4.99, p=.031) worsened. In general, the greatest change for all parameters occurred during the treatment period. There was no significant treatment group by time interaction effects for any of the spatiotemporal, kinematic, or kinetic parameters. Conclusions Gait training with PNS and usual care was associated with improvements in peak hip power in pre-swing and peak ankle power at push-off, which may have resulted in improved cadence, stride length, and walking speed; however, there were no differences between treatment groups. Both treatment groups also experienced a decrease in peak ankle DF in swing, though the clinical implications of this finding are unclear. PMID:25802966

  20. Do the Effects of Transcutaneous Electrical Nerve Stimulation on Knee Osteoarthritis Pain and Function Last?

    PubMed

    Cherian, Jeffrey Jai; Harrison, Paige E; Benjamin, Samantha A; Bhave, Anil; Harwin, Steven F; Mont, Michael A

    2016-08-01

    Transcutaneous electrical nerve stimulation (TENS) has been shown to decrease pain associated with knee osteoarthritis, which potentially leads to better function, improved quality of life, and postpones the need for surgical intervention. The purpose of this study was to perform a 1-year follow-up of a previous prospective group of patients with knee osteoarthritis, randomized to TENS or standard of care, who were asked to rate their changes in: (1) patient pain perception; (2) subjective medication use; (3) subjective functional abilities; (4) quality of life; (5) device use; and (6) conversion to TKA. A population of 70 patients were randomized to receive either a TENS device or a standard conservative therapy regimen. Patients were evaluated based on various subjective outcomes at minimum 1-year (mean, 19 months) follow-up. The TENS cohort had lower visual analog pain scores compared with the matching cohort. Subjective functional outcomes, as well as functional and activity scores, were also greater in the TENS cohort. Patients in TENS cohort showed significant improvements in their subjective and functional outcomes as compared with their initial status, while the control group did not show significant change. A majority of the TENS patients were able to reduce the amount of pain medications. Additionally, a large portion of the patients assigned to the TENS group continue to use the device, after completion of the trial. This study demonstrated the benefit of TENS for improving subjective outcomes in patients with pain due to knee osteoarthritis, compared with standard conservative treatments. The results of the study suggest that TENS is a safe and effective adjunct as part of the spectrum of current nonoperative treatment methods for knee osteoarthritis. PMID:26540652