Sample records for nervous systems somatic

  1. General pharmacological profile of the novel muscarinic receptor agonist SNI-2011, a drug for xerostomia in Sjögren's syndrome. 2nd communication: effects on somatic nervous system and on autonomic nervous system and smooth muscle.

    PubMed

    Arisawa, Hirohiko; Fukui, Kenji; Fujise, Nobuaki; Masunaga, Hiroaki

    2002-01-01

    A novel muscarinic receptor agonist SNI-2011 ((+/-)-cis-2-methylspirol[1,3-oxathiolane-5,3'-quinuclidine] monohydrochloride hemihydrate, cevimeline, CAS 153504-70-2), is a candidate therapeutic drug for xerostomia in Sjögren's syndrome. The general pharmacological properties of this drug on the somatic nervous system and on the autonomic nervous system and smooth muscle were investigated in mice, rats, guinea pigs, rabbits and cats. 1. Somatic nervous system: SNI-2011 had no effect on the neuromuscular junction in rats and no muscle relaxant effect in mice. No surface anesthetic effect was observed in guinea pigs, but infiltration anesthetic effect was found after intracutaneous injection of solution (1% or higher). 2. Autonomic nervous system and smooth muscle: SNI-2011 tended to cause mydriasis at 3 mg/kg i.v. or higher in rabbits and dose-dependently caused mydriasis at 10 mg/kg p.o. or higher in rats. Mydriasis in rats was also observed by ophthalmic instillation, caused via the peripheral muscarinic acetylcholine receptors. SNI-2011 elevated the base line tension of nictitating membrane in cats when it was injected intravenously at 3 mg/kg or higher. In the smooth muscle, SNI-2011 increased the spontaneous movement of isolated rabbit ileum (1 x 10(-6) mol/l or higher), contractions of isolated guinea pig ileum (1 x 10(-6) mol/l or higher) and isolated guinea pig trachea (3 x 10(-6) mol/l or higher). SNI-2011 relaxed the histamine- and noradrenaline-induced contractions of isolated guinea pig aorta and augmented noradrenaline- and phenylephrine-induced contractions of isolated rat vas deferens. These effects were induced by relatively higher concentrations only i.e. 1 x 10(-5) mol/l or higher. From these results, SNI-2011 has muscarinic side effects on the somatic nervous system and on the autonomic nervous system and smooth muscle, however, in the case of oral administration, that is clinical administration route, SNI-2011 caused no muscarinic side effect at

  2. Etiologic theories of idiopathic scoliosis. Somatic nervous system and the NOTOM escalator concept as one component in the pathogenesis of adolescent idiopathic scoliosis.

    PubMed

    Burwell, R G; Dangerfield, P H; Freeman, B J C

    2008-01-01

    There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). In recent years encouraging advances thought to be related to the pathogenesis of AIS have been made in several fields. After reviewing concepts of AIS pathogenesis we formulated a collective model of pathogenesis. The central concept of this collective model is a normal neuro-osseous timing of maturation (NOTOM) system operating in a child's internal world during growth and maturation; this provides a dynamic physiological balance of postural equilibrium continuously renewed between two synchronous, polarized processes (NOTOM escalator) linked through sensory input and motor output, namely: 1) osseous escalator-increasing skeletal size and relative segmental mass, and 2) neural escalator - including the CNS body schema. The latter is recalibrated continuously as the body adjusts to biomechanical and kinematic changes resulting from skeletal enlargement, enabling it to coordinate motor actions. We suggest that AIS progression results from abnormality of the neural and/or osseous components of these normal escalator in time and/or space - as asynchrony and/or asymmetries - which cause a failure of neural systems to control asymmetric growth of a rapidly enlarging and moving adolescent spine. This putative initiating asymmetric growth in the spine is explained in separate papers as resulting from dysfunction of the hypothalamus expressed through the sympathetic nervous system (leptin-sympathetic nervous system concept for AIS pathogenesis). In girls, the expression of AIS may result from disharmony between the somatic and autonomic nervous systems - relative postural maturational delay in the somatic nervous system and hypothalamic dysfunction in the autonomic nervous system, with the conflict being fought out in the spine and trunk of the girl and compounded by biomechanical spinal growth modulation.

  3. Research on Somatization and Somatic Symptom Disorders: Ars longa, vita brevis.

    PubMed

    Dimsdale, Joel E

    The new Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition defines somatic symptom and related disorders as long-standing somatic symptoms that are associated with disproportionate thoughts, feelings, and behaviors, irrespective of whether or not a medical cause for these symptoms can be determined. In this Special Section of Psychosomatic Medicine, several articles address diagnostic issues and the central nervous system correlates of somatic symptom and related disorder and document new developments in its treatment.

  4. Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    PubMed Central

    2009-01-01

    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic

  5. The dynamic genome: transposons and environmental adaptation in the nervous system.

    PubMed

    Lapp, Hannah E; Hunter, Richard G

    2016-02-01

    Classically thought as genomic clutter, the functional significance of transposable elements (TEs) has only recently become a focus of attention in neuroscience. Increasingly, studies have demonstrated that the brain seems to have more retrotransposition and TE transcription relative to other somatic tissues, suggesting a unique role for TEs in the central nervous system. TE expression and transposition also appear to vary by brain region and change in response to environmental stimuli such as stress. TEs appear to serve a number of adaptive roles in the nervous system. The regulation of TE expression by steroid, epigenetic and other mechanisms in interplay with the environment represents a significant and novel avenue to understanding both normal brain function and disease.

  6. The modulation of visceral functions by somatic afferent activity.

    PubMed

    Sato, A; Schmidt, R F

    1987-01-01

    We began by briefly reviewing the historical background of neurophysiological studies of the somato-autonomic reflexes and then discussed recent studies on somatic-visceral reflexes in combination with autonomic efferent nerve activity and effector organ responses. Most of the studies that have advanced our knowledge in this area have been carried out on anesthetized animals, thus eliminating emotional factors. We would like to emphasize again that the functions of many, or perhaps all visceral organs can be modulated by somato-sympathetic or somato-parasympathetic reflex activity induced by a appropriate somatic afferent stimulation in anesthetized animals. As mentioned previously, some autonomic nervous outflow, e.g. the adrenal sympathetic nerve activity, is involved in the control of hormonal secretion. John F. Fulton wrote in his famous textbook "Physiology of the Nervous System" (1949) that the posterior pituitary neurosecretion system (i.e. for oxytocin and vasopressin) could be considered a part of the parasympathetic nervous system. In the study of body homeostasis and environmental adaptation it would seem very important to further analyze the contribution of somatic afferent input to the autonomic nervous and hormonal regulation of visceral organ activity. Also, some immunological functions have been found to be influenced by autonomic nerves or hormones (e.g. adrenal cortical hormone and catecholamines). Finally, we must take into account, as we have briefly discussed, that visceral functions can be modulated by somatic afferent input via various degrees of integration of autonomic nerves, hormones, and immunological processes. We trust that such research will be expanded to higher species of mammals, and that ultimately this knowledge of somato-visceral reflexes obtained in the physiological laboratory will become clinically useful in influencing visceral functions.

  7. Central Nervous System Vasculitis

    MedlinePlus

    ... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...

  8. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  9. Central nervous system

    MedlinePlus

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  10. Overview of the Autonomic Nervous System

    MedlinePlus

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  11. Review of somatic symptoms in post-traumatic stress disorder.

    PubMed

    Gupta, Madhulika A

    2013-02-01

    Post-traumatic stress disorder (PTSD) is associated with both (1) 'ill-defined' or 'medically unexplained' somatic syndromes, e.g. unexplained dizziness, tinnitus and blurry vision, and syndromes that can be classified as somatoform disorders (DSM-IV-TR); and (2) a range of medical conditions, with a preponderance of cardiovascular, respiratory, musculoskeletal, neurological, and gastrointestinal disorders, diabetes, chronic pain, sleep disorders and other immune-mediated disorders in various studies. Frequently reported medical co-morbidities with PTSD across various studies include cardiovascular disease, especially hypertension, and immune-mediated disorders. PTSD is associated with limbic instability and alterations in both the hypothalamic- pituitary-adrenal and sympatho-adrenal medullary axes, which affect neuroendocrine and immune functions, have central nervous system effects resulting in pseudo-neurological symptoms and disorders of sleep-wake regulation, and result in autonomic nervous system dysregulation. Hypervigilance, a central feature of PTSD, can lead to 'local sleep' or regional arousal states, when the patient is partially asleep and partially awake, and manifests as complex motor and/or verbal behaviours in a partially conscious state. The few studies of the effects of standard PTSD treatments (medications, CBT) on PTSD-associated somatic syndromes report a reduction in the severity of ill-defined and autonomically mediated somatic symptoms, self-reported physical health problems, and some chronic pain syndromes.

  12. The visceromotor and somatic afferent nerves of the penis.

    PubMed

    Diallo, Djibril; Zaitouna, Mazen; Alsaid, Bayan; Quillard, Jeanine; Ba, Nathalie; Allodji, Rodrigue Sètchéou; Benoit, Gérard; Bedretdinova, Dina; Bessede, Thomas

    2015-05-01

    Innervation of the penis supports erectile and sensory functions. This article aims to study the efferent autonomic (visceromotor) and afferent somatic (sensory) nervous systems of the penis and to investigate how these systems relate to vascular pathways. Penises obtained from five adult cadavers were studied via computer-assisted anatomic dissection (CAAD). The number of autonomic and somatic nerve fibers was compared using the Kruskal-Wallis test. Proximally, penile innervation was mainly somatic in the extra-albugineal sector and mainly autonomic in the intracavernosal sector. Distally, both sectors were almost exclusively supplied by somatic nerve fibers, except the intrapenile vascular anastomoses that accompanied both somatic and autonomic (nitrergic) fibers. From this point, the neural immunolabeling within perivascular nerve fibers was mixed (somatic labeling and autonomic labeling). Accessory afferent, extra-albugineal pathways supplied the outer layers of the penis. There is a major change in the functional type of innervation between the proximal and distal parts of the intracavernosal sector of the penis. In addition to the pelvis and the hilum of the penis, the intrapenile neurovascular routes are the third level where the efferent autonomic (visceromotor) and the afferent somatic (sensory) penile nerve fibers are close. Intrapenile neurovascular pathways define a proximal penile segment, which guarantees erectile rigidity, and a sensory distal segment. © 2015 International Society for Sexual Medicine.

  13. Cystic Fibrosis and the Nervous System.

    PubMed

    Reznikov, Leah R

    2017-05-01

    Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  14. The Nervous System and Gastrointestinal Function

    ERIC Educational Resources Information Center

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  15. Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system.

    PubMed

    Trueta, Citlali; De-Miguel, Francisco F

    2012-01-01

    We review the evidence of exocytosis from extrasynaptic sites in the soma, dendrites, and axonal varicosities of central and peripheral neurons of vertebrates and invertebrates, with emphasis on somatic exocytosis, and how it contributes to signaling in the nervous system. The finding of secretory vesicles in extrasynaptic sites of neurons, the presence of signaling molecules (namely transmitters or peptides) in the extracellular space outside synaptic clefts, and the mismatch between exocytosis sites and the location of receptors for these molecules in neurons and glial cells, have long suggested that in addition to synaptic communication, transmitters are released, and act extrasynaptically. The catalog of these molecules includes low molecular weight transmitters such as monoamines, acetylcholine, glutamate, gama-aminobutiric acid (GABA), adenosine-5-triphosphate (ATP), and a list of peptides including substance P, brain-derived neurotrophic factor (BDNF), and oxytocin. By comparing the mechanisms of extrasynaptic exocytosis of different signaling molecules by various neuron types we show that it is a widespread mechanism for communication in the nervous system that uses certain common mechanisms, which are different from those of synaptic exocytosis but similar to those of exocytosis from excitable endocrine cells. Somatic exocytosis has been measured directly in different neuron types. It starts after high-frequency electrical activity or long experimental depolarizations and may continue for several minutes after the end of stimulation. Activation of L-type calcium channels, calcium release from intracellular stores and vesicle transport towards the plasma membrane couple excitation and exocytosis from small clear or large dense core vesicles in release sites lacking postsynaptic counterparts. The presence of synaptic and extrasynaptic exocytosis endows individual neurons with a wide variety of time- and space-dependent communication possibilities

  16. [Structure of childhood and adolescent invalidity in persons with chronic somatic diseases].

    PubMed

    Korenev, N M; Bogmat, L F; Tolmacheva, S R; Timofeeva, O N

    2002-01-01

    Based on the analysis of statistical data, prevalence is estimated of disorders with invalidism patterns outlined among those children and young adults under 40 years of age presenting with chronic somatic disorders in Kharkov. Both in children (52.4%) and in young adults (43.9%) diseases of the nervous system held the prominent place. Invalidity due to formed somatic disorders was identified in 10.9% of children and 24.3% of those persons less than 40 years old. There prevailed diseases of the circulation organs. The necessity is substantiated for the rehabilitation to be carried out of children with somatic disorders to prevent their disability.

  17. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  18. Algorithmic and heuristic processing of information by the nervous system.

    PubMed

    Restian, A

    1980-01-01

    Starting from the fact that the nervous system must discover the information it needs, the author describes the way it decodes the received message. The logical circuits of the nervous system, submitting the received signals to a process by means of which information brought is discovered step by step, participates in decoding the message. The received signals, as information, can be algorithmically or heuristically processed. Algorithmic processing is done according to precise rules, which must be fulfilled step by step. By algorithmic processing, one develops somatic and vegetative reflexes as blood pressure, heart frequency or water metabolism control. When it does not dispose of precise rules of information processing or when algorithmic processing needs a very long time, the nervous system must use heuristic processing. This is the feature that differentiates the human brain from the electronic computer that can work only according to some extremely precise rules. The human brain can work according to less precise rules because it can resort to trial and error operations, and because it works according to a form of logic. Working with superior order signals which represent the class of all inferior type signals from which they begin, the human brain need not perform all the operations that it would have to perform by superior type of signals. Therefore the brain tries to submit the received signals to intensive as possible superization. All informational processing, and especially heuristical processing, is accompanied by a certain affective color and the brain cannot operate without it. Emotions, passions and sentiments usually complete the lack of precision of the heuristical programmes. Finally, the author shows that informational and especially heuristical processes study can contribute to a better understanding of the transition from neurological to psychological activity.

  19. [Functional somatization: a conceptual review].

    PubMed

    Fabião, Cristina; Fleming, Manuela; Barbosa, António

    2011-01-01

    The authors have brought together and analised texts about the history of the concept of hysteria. In these texts hysteria is fundamentally considered a disease of organic origin (of the womb), and, in the Middle Age, evidence of demonic possession. From the XVII century onwards, apart from the etiopathogenic concepts, also taken into consideration are aspects connected to the differential diagnosis with other similar entities and the therapy used each period. Even, in subsequent centuries, authors such as Syndenham, who consider hysteria to be a multidimensional entity, are rare. Empiricism has contributed to discoveries in biology and physiology, both general and of the nervous system itself, and given birth to the formulation of the Spinal Irritation Theory and Reflex Theory. These theories have led to strictly organic treatment of hysteria, in the same way that hysterectomies were performed to alleviate somatic symptoms connected to this disease. The introduction of hypnosis in medical practice, with Charcot in X1X century, allowed for the element of suggestion to be observed ( a non organic element) which accompanies the symptoms of hysteria. Two of his disciples, Janet and Freud, would define and isolate psychic mechanisms in the symptoms of hysteria: Dissociation of the consciousness (Janet) and Conversion (Freud). The last one developed a therapeutic method of a psychological nature for hysteria. The therapeutic implications and the pertinence of the distinction between unspecific somatization or functional (of somatic origin) somatization and somatization linked to disassociation mechanisms and conversion (psychic origin) are discussed as well as the evolution of international classification systems of somatization and the questions posed by the algorithms chosen for the cataloguing of symptoms. A revision of the relevant empirical studies about the association of somatization with depressive and anxiety disorders, within the general population, is made

  20. Nervous System Complexity Baffles Scientists.

    ERIC Educational Resources Information Center

    Fox, Jeffrey L.

    1982-01-01

    New research findings about how nerve cells transmit signals are forcing researchers to overhaul their simplistic ideas about the nervous system. Topics highlighted include the multiple role of peptides in the nervous system, receptor molecules, and molecules that form ion channels within membranes. (Author/JN)

  1. Degenerative disease affecting the nervous system.

    PubMed

    Eadie, M J

    1974-03-01

    The term "degenerative disease" is one which is rather widely used in relation to the nervous system and yet one which is rarely formally and carefully defined. The term appears to be applied to disorders of the nervous system which often occur in later life and which are of uncertain cause. In the Shorter Oxford Dictionary the word degeneration is defined as "a change of structure by which an organism, or an organ, assumes the form of a lower type". However this is not quite the sense in which the word is applied in human neuropathology, where it is conventional to restrict the use of the word to those organic disorders which are of uncertain or poorly understood cause and in which there is a deterioration or regression in the level of functioning of the nervous system. The concept of degenerative disorder is applied to other organs as well as to the brain, and as disease elsewhere in the body may affect the nervous system, it seems reasonable to include within the topic of degenerative disorder affecting the nervous system those conditions in which the nervous system is involved as a result of primary degenerations in other parts of the body. Copyright © 1974 Australian Physiotherapy Association. Published by . All rights reserved.

  2. Radiation injury to the nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system.

  3. Central nervous system magnesium deficiency.

    PubMed

    Langley, W F; Mann, D

    1991-03-01

    The central nervous system concentration of magnesium (Mg++) appears to have a critical level below which neurologic dysfunction occurs. Observations presented suggest that the interchange of the Mg++ ion between the cerebrospinal fluid, extracellular fluid, and bone is more rapid and dynamic than is usually believed. This is especially so when the hypertrophied parathyroid gland is associated with significant skeletal depletion of Mg++ as judged by history rather than serum level. Magnesium, much like calcium, has a large presence in bone and has a negative feedback relationship with the parathyroid gland. A decline in central nervous system Mg++ may occur when the skeletal buffer system orchestrated largely by the parathyroid glands is activated by an increase in serum calcium. Observations in veterinary medicine and obstetrics suggest that the transfer of Mg++ from the extracellular fluid into bone during mineralization processes may be extensive. If the inhibition of the hypertrophied parathyroid gland is prolonged and the skeletal depletion of Mg++ extreme, serious neurologic symptoms, including seizures, coma, and death, may occur. Noise, excitement, and bodily contact appear to precipitate neurologic symptoms in Mg+(+)-deficient human subjects as it has been documented to occur in Mg+(+)-deficient experimental animals. The similarity of the acute central nervous system demyelinating syndromes with reactive central nervous system Mg++ deficiency is reviewed.

  4. The Human Sympathetic Nervous System Response to Spaceflight

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David

    2003-01-01

    The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.

  5. Nervous system examination on YouTube.

    PubMed

    Azer, Samy A; Aleshaiwi, Sarah M; Algrain, Hala A; Alkhelaif, Rana A

    2012-12-22

    Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words "nervous system examination", "nervous system clinical examination", "cranial nerves examination", "CNS examination", "examination of cerebellum", "balance and coordination examination". Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Currently, YouTube provides an adequate resource for learning nervous system examination, which can be used by medical students

  6. Nervous system examination on YouTube

    PubMed Central

    2012-01-01

    Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Conclusions Currently, YouTube provides an adequate resource for learning

  7. Evolution of eumetazoan nervous systems: insights from cnidarians.

    PubMed

    Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich

    2015-12-19

    Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system-in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. © 2015 The Authors.

  8. Autonomic nervous system correlates in movement observation and motor imagery

    PubMed Central

    Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A.

    2013-01-01

    The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes. PMID:23908623

  9. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    PubMed

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  10. Myocardial ischaemia and the cardiac nervous system.

    PubMed

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some

  11. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    NASA Astrophysics Data System (ADS)

    Shumilov, V. N.; Syryamkin, V. I.; Syryamkin, M. V.

    2015-11-01

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervous systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes of

  12. Immunostaining to visualize murine enteric nervous system development.

    PubMed

    Barlow-Anacker, Amanda J; Erickson, Christopher S; Epstein, Miles L; Gosain, Ankush

    2015-04-29

    The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.

  13. Complex Homology and the Evolution of Nervous Systems

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.

    2016-01-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806

  14. Decreased Plasma BDNF Levels of Patients with Somatization Disorder

    PubMed Central

    Kang, Nam-In; Park, Jong-Il

    2016-01-01

    Objective Brain-derived neurotrophic factor (BDNF), one of the most abundant and important neurotrophins, is known to be involved in the development, survival, maintenance, and plasticity of neurons in the nervous system. Some studies have suggested that BDNF may play a role in the pathophysiology of several psychiatric illnesses such as depression and schizophrenia. Similarly, it is likely that the alteration of BDNF may be associated with the neuro-modulation that contributes to the development of somatization disorder. Methods The purpose of this study was to determine whether there is an abnormality of plasma BDNF levels in patients with somatization disorder, and to analyze the nature of the alteration after pharmacotherapy using an enzyme-linked immunosorbent assay (ELISA). Results The plasma BDNF levels of the patients with a somatization disorder were significantly lower compared with those of the control volunteers (83.61±89.97 pg/mL vs. 771.36±562.14 pg/mL); moreover, the plasma BDNF levels of those patients who received an antidepressant were significantly increased after the treatment (118.13±91.45 pg/mL vs. 72.92±88.21 pg/mL). Conclusion These results suggest that BDNF may play a role in the pathophysiology of somatization disorder. PMID:27757131

  15. The glia of the adult Drosophila nervous system

    PubMed Central

    Kremer, Malte C.; Jung, Christophe; Batelli, Sara; Rubin, Gerald M.

    2017-01-01

    Glia play crucial roles in the development and homeostasis of the nervous system. While the GLIA in the Drosophila embryo have been well characterized, their study in the adult nervous system has been limited. Here, we present a detailed description of the glia in the adult nervous system, based on the analysis of some 500 glial drivers we identified within a collection of synthetic GAL4 lines. We find that glia make up ∼10% of the cells in the nervous system and envelop all compartments of neurons (soma, dendrites, axons) as well as the nervous system as a whole. Our morphological analysis suggests a set of simple rules governing the morphogenesis of glia and their interactions with other cells. All glial subtypes minimize contact with their glial neighbors but maximize their contact with neurons and adapt their macromorphology and micromorphology to the neuronal entities they envelop. Finally, glial cells show no obvious spatial organization or registration with neuronal entities. Our detailed description of all glial subtypes and their regional specializations, together with the powerful genetic toolkit we provide, will facilitate the functional analysis of glia in the mature nervous system. GLIA 2017 GLIA 2017;65:606–638 PMID:28133822

  16. Complex Homology and the Evolution of Nervous Systems.

    PubMed

    Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H; Hofmann, Hans A

    2016-02-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. Copyright © 2015. Published by Elsevier Ltd.

  17. 3D printed nervous system on a chip.

    PubMed

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  18. Modelling of pathologies of the nervous system by the example of computational and electronic models of elementary nervous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumilov, V. N., E-mail: vnshumilov@rambler.ru; Syryamkin, V. I., E-mail: maximus70sir@gmail.com; Syryamkin, M. V., E-mail: maximus70sir@gmail.com

    The paper puts forward principles of action of devices operating similarly to the nervous system and the brain of biological systems. We propose an alternative method of studying diseases of the nervous system, which may significantly influence prevention, medical treatment, or at least retardation of development of these diseases. This alternative is to use computational and electronic models of the nervous system. Within this approach, we represent the brain in the form of a huge electrical circuit composed of active units, namely, neuron-like units and connections between them. As a result, we created computational and electronic models of elementary nervousmore » systems, which are based on the principles of functioning of biological nervous systems that we have put forward. Our models demonstrate reactions to external stimuli and their change similarly to the behavior of simplest biological organisms. The models possess the ability of self-training and retraining in real time without human intervention and switching operation/training modes. In our models, training and memorization take place constantly under the influence of stimuli on the organism. Training is without any interruption and switching operation modes. Training and formation of new reflexes occur by means of formation of new connections between excited neurons, between which formation of connections is physically possible. Connections are formed without external influence. They are formed under the influence of local causes. Connections are formed between outputs and inputs of two neurons, when the difference between output and input potentials of excited neurons exceeds a value sufficient to form a new connection. On these grounds, we suggest that the proposed principles truly reflect mechanisms of functioning of biological nervous systems and the brain. In order to confirm the correspondence of the proposed principles to biological nature, we carry out experiments for the study of processes

  19. Brain and Nervous System

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Brain and Nervous System KidsHealth / For Parents / Brain and ... healthy, and remove waste products. All About the Brain The brain is made up of three main ...

  20. Nervous system disorders in dialysis patients.

    PubMed

    Bansal, Vinod K; Bansal, Seema

    2014-01-01

    Neurologic complications are frequently encountered in dialysis patients. These may be due to the uremic state or to dialysis therapy, and require careful assessment. With longer survival of dialysis patients, these neurologic complications may significantly affect morbidity, mortality, and patients' well-being. Central nervous system involvement includes uremic encephalopathy as well as dialysis disequilibrium disorder. Both are rarely seen because of current improved understanding of their pathogenesis and treatment. Manifestations of atherosclerosis, stroke, and other neuropathies are present in this population and are not significantly altered by dialysis therapy. In recent years, increasing numbers of sleep disorders are being recognized. Peripheral nervous system involvement is also noted, including myopathy and related categories. In this chapter, we address clinical and pathophysiologic aspects of nervous system disorders in dialysis patients while discussing available therapeutic options to address the neurologic involvement. © 2014 Elsevier B.V. All rights reserved.

  1. What Health-Related Functions Are Regulated by the Nervous System?

    MedlinePlus

    ... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...

  2. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Vázquez-Figueroa, Lionel D.; Díaz-Balzac, Roberto J.; García-Arrarás, José E.

    2016-01-01

    The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components. PMID:26987052

  3. Central nervous system complications after liver transplantation.

    PubMed

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  5. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  6. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  7. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  8. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  9. Somatic syndromes, insomnia, anxiety, and stress among sleep disordered breathing patients.

    PubMed

    Amdo, Tshering; Hasaneen, Nadia; Gold, Morris S; Gold, Avram R

    2016-05-01

    We tested the hypothesis that the prevalence of somatic syndromes, anxiety, and insomnia among sleep disordered breathing (SDB) patients is correlated with their levels of somatic arousal, the symptoms of increased sympathetic nervous system tone under conditions of stress. We administered the Body Sensation Questionnaire (BSQ; a 17-item questionnaire with increasing levels of somatic arousal scored 17-85) to 152 consecutive upper airway resistance syndrome (UARS) patients and 150 consecutive obstructive sleep apnea/hypopnea (OSA/H) patients. From medical records, we characterized each patient in terms of the presence of syndromes and symptoms into three categories: somatic syndromes (six syndromes), anxiety (anxiety disorders, nightmares, use of benzodiazepines), and insomnia (sleep onset, sleep maintenance, and use of hypnotics). For the pooled sample of SDB patients, we modeled the correlation of the BSQ score with the presence of each syndrome/symptom parameter within each of the three categories, with adjustment for male vs. female. Mean BSQ scores in females were significantly higher than those in males (32.5 ± 11.1 vs. 26.9 ± 8.2; mean ± SD). Increasing BSQ scores significantly correlated with increasing prevalence rates of somatic syndromes (p < 0.0001), of anxiety (p < 0.0001), and of insomnia (p ≤ 0.0001). In general, females had higher prevalence rates of somatic syndromes and symptoms of anxiety than males at any BSQ score while rates of insomnia were similar. In patients with SDB, there is a strong association between the level of somatic arousal and the presence of stress-related disorders like somatic syndromes, anxiety, and insomnia.

  10. Rare Primary Central Nervous System Tumors

    PubMed Central

    Kubicky, Charlotte Dai; Sahgal, Arjun; Chang, Eric L.; Lo, Simon S.

    2014-01-01

    There are close to 70,000 new cases of primary central nervous system tumors diagnosed annually in the United States. Meningiomas, gliomas, nerve sheath tumors and pituitary tumors account for 85% of them. There is abundant literature on these commonly occurring tumors but data from the literature on infrequently encountered tumors such as atypical teratoid/rhabdoid tumor, choroid plexus carcinoma, ganglioglioma, hemangiopericytoma, and pleomorphic xanthoastrocytoma are limited. This review provides an overview of the clinicopathologic and therapeutic aspects of these rare primary central nervous system tumors. PMID:25276324

  11. Extraversion, Neuroticism and Strength of the Nervous System

    ERIC Educational Resources Information Center

    Frigon, Jean-Yves

    1976-01-01

    The hypothesized identity of the dimensions of extraversion-introversion and strength of the nervous system was tested on four groups of nine subjects (neurotic extraverts, stable extraverts, neurotic introverts, stable introverts). Strength of the subjects' nervous system was estimated using the electroencephalographic (EEG) variant of extinction…

  12. Nutritional and metabolic diseases involving the nervous system.

    PubMed

    Kopcha, M

    1987-03-01

    This article will discuss eight diseases that alter normal nervous system function: hypovitaminosis A, water deprivation/salt toxicity, ammonia toxicosis, hypomagnesemia, hypocalcemia, nervous ketosis, hepatoencephalopathy, and rumen metabolic acidosis.

  13. Source characterization of nervous system active pharmaceutical ingredients in healthcare wastewaters

    EPA Science Inventory

    Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metaboli...

  14. [Thyroid hormones and the development of the nervous system].

    PubMed

    Mussa, G C; Zaffaroni, M; Mussa, F

    1990-09-01

    The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  16. Brain and nervous system (image)

    MedlinePlus

    The nervous system controls the many complicated and interconnected functions of the body and mind. Motor, sensory cognitive and autonomic function are all coordinated and driven by the brain and nerves. As people age, ...

  17. Nodal signalling and asymmetry of the nervous system

    PubMed Central

    Signore, Iskra A.; Palma, Karina

    2016-01-01

    The role of Nodal signalling in nervous system asymmetry is still poorly understood. Here, we review and discuss how asymmetric Nodal signalling controls the ontogeny of nervous system asymmetry using a comparative developmental perspective. A detailed analysis of asymmetry in ascidians and fishes reveals a critical context-dependency of Nodal function and emphasizes that bilaterally paired and midline-unpaired structures/organs behave as different entities. We propose a conceptual framework to dissect the developmental function of Nodal as asymmetry inducer and laterality modulator in the nervous system, which can be used to study other types of body and visceral organ asymmetries. Using insights from developmental biology, we also present novel evolutionary hypotheses on how Nodal led the evolution of directional asymmetry in the brain, with a particular focus on the epithalamus. We intend this paper to provide a synthesis on how Nodal signalling controls left–right asymmetry of the nervous system. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821531

  18. THE SYMPATHETIC NERVOUS SYSTEM ALTERATIONS IN HUMAN HYPERTENSION

    PubMed Central

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-01-01

    A number of articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as “promoters” and “amplifiers” of human hypertension. We expand on the role of the sympathetic nervous system in two increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves. PMID:25767284

  19. Central and peripheral nervous systems: master controllers in cancer metastasis.

    PubMed

    Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning

    2013-12-01

    Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.

  20. [Systemic paracoccidioidomycosis with central nervous system involvement].

    PubMed

    Duarte, A L; Baruffa, G; Terra, H B; Renck, D V; de Moura, D; Petrucci, C

    1999-01-01

    A clinical case of a patient bearing systemic paracoccidioidomycosis with regional ganglionic and oral exposure and later pulmonary involvement is presented. The patient was treated with specific drugs (amphotericin B, itraconazole, sulfamethoxazole-trimethoprim) and followed throughout a 6-year period and eventually died showing an extensive involvement of the central nervous system.

  1. The complex simplicity of the brittle star nervous system.

    PubMed

    Zueva, Olga; Khoury, Maleana; Heinzeller, Thomas; Mashanova, Daria; Mashanov, Vladimir

    2018-01-01

    Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 - a marker of neuronal progenitors - is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features.

  2. Classical Neurotransmitters and their Significance within the Nervous System.

    ERIC Educational Resources Information Center

    Veca, A.; Dreisbach, J. H.

    1988-01-01

    Describes some of the chemical compounds involved in the nervous system and their roles in transmitting nerve signals. Discusses acetylcholine, dopamine, norepinephrine, serotonin, histamine, glycine, glutemate, and gamma-aminobutyric acid and their effects within the nervous system. (CW)

  3. Autonomic nervous system involvement in pulmonary arterial hypertension.

    PubMed

    Vaillancourt, Mylène; Chia, Pamela; Sarji, Shervin; Nguyen, Jason; Hoftman, Nir; Ruffenach, Gregoire; Eghbali, Mansoureh; Mahajan, Aman; Umar, Soban

    2017-12-04

    Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Autonomic nervous system involvement in the pathogenesis of PAH has been demonstrated several years ago, however the extent of this involvement is not fully understood. PAH is associated with increased sympathetic nervous system (SNS) activation, decreased heart rate variability, and presence of cardiac arrhythmias. There is also evidence for increased renin-angiotensin-aldosterone system (RAAS) activation in PAH patients associated with clinical worsening. Reduction of neurohormonal activation could be an effective therapeutic strategy for PAH. Although therapies targeting adrenergic receptors or RAAS signaling pathways have been shown to reverse cardiac remodeling and improve outcomes in experimental pulmonary hypertension (PH)-models, the effectiveness and safety of such treatments in clinical settings have been uncertain. Recently, novel direct methods such as cervical ganglion block, pulmonary artery denervation (PADN), and renal denervation have been employed to attenuate SNS activation in PAH. In this review, we intend to summarize the multiple aspects of autonomic nervous system involvement in PAH and overview the different pharmacological and invasive strategies used to target autonomic nervous system for the treatment of PAH.

  4. Improving and Accelerating Drug Development for Nervous System Disorders

    PubMed Central

    Pankevich, Diana E.; Altevogt, Bruce M.; Dunlop, John; Gage, Fred H.; Hyman, Steve E.

    2014-01-01

    Advances in the neurosciences have placed the field in the position where it is poised to significantly reduce the burden of nervous system disorders. However, drug discovery, development and translation for nervous system disorders still pose many unique challenges. The key scientific challenges can be summarized as follows: mechanisms of disease, target identification and validation, predictive models, biomarkers for patient stratification and as endpoints for clinical trials, clear regulatory pathways, reliability and reproducibility of published data, and data sharing and collaboration. To accelerate nervous system drug development the Institute of Medicine’s Forum on Neuroscience and Nervous System Disorders has hosted a series of public workshops that brought together representatives of industry, government (including both research funding and regulatory agencies), academia, and patient groups to discuss these challenges and offer potential strategies to improve the translational neuroscience. PMID:25442933

  5. Central Nervous System Infections in Denmark

    ClinicalTrials.gov

    2018-02-04

    Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis

  6. The Nervous System Game

    ERIC Educational Resources Information Center

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  7. Influence of thyroid in nervous system growth.

    PubMed

    Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L

    2001-08-01

    Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or

  8. Which somatic symptoms are associated with an unfavorable course in Chinese patients with major depressive disorder?

    PubMed

    Novick, Diego; Montgomery, William S; Aguado, Jaume; Peng, Xiaomei; Brugnoli, Roberto; Haro, Josep Maria

    2015-12-01

    This was an analysis of the impact of somatic symptoms on the severity and course of depression in Chinese patients treated for an acute episode of major depressive disorder (MDD). Data were extracted from a 3-month prospective observational study which enrolled 909 patients with MDD in psychiatric care settings; this analysis focused on the Chinese patients (n=300). Depression severity was assessed using the Clinical Global Impression of Severity (CGI-S) and 17-item Hamilton Depression Rating Scale (HAMD-17); somatic symptoms were assessed using the patient-rated 28-item Somatic Symptom Inventory (SSI). Cluster analysis using baseline SSI scores grouped patients into three clusters with no/mild, moderate, or severe somatic symptoms. Four SSI factors (pain, autonomic symptoms, energy, and central nervous system) were defined, and regression analyses identified which factors were associated with remission at 3 months. More than 70% of the patients had moderate or severe somatic symptoms. Baseline depression severity (HAMD-17 and CGI-S scores) was associated with more severe somatic symptoms. Remission rates differed between clusters of patients: 84.1%, 72.0%, and 55.3% for no/mild, moderate, and severe somatic symptoms, respectively (P=0.0034). Pain symptoms were the somatic symptoms more strongly associated with lower remission rates at 3 months. Somatic symptoms are associated with greater clinical severity and lower remission rates. Among somatic symptoms, pain symptoms have the greatest prognostic value and should be taken into account when treating patients with depression. © 2015 Wiley Publishing Asia Pty Ltd.

  9. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL INVESTIGATOR...Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 14-1-0586 5c. PROGRAM ELEMENT...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also

  10. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue

  11. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  12. Strategies for Enhanced Drug Delivery to the Central Nervous System

    PubMed Central

    Dwibhashyam, V. S. N. M.; Nagappa, A. N.

    2008-01-01

    Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703

  13. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    PubMed Central

    Schor, Nina F.

    2009-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301

  14. Functional Somatic Symptoms Across Cultures: Perceptual and Health Care Issues.

    PubMed

    Löwe, Bernd; Gerloff, Christian

    2018-06-01

    Functional neurological disorders are conceptualized as patterns of neurological symptoms that cannot be attributed to a clear organic etiology. The study by Wilkins et al. in this issue of Psychosomatic Medicine reveals that 8.2% of patients who were initially presented with suspected stroke were later diagnosed with functional disorders, i.e., "functional stroke mimics." However, the percentage of functional stroke mimics varied substantially with patients' nationality, age, and sex. In this editorial comment, we discuss potential reasons for the intercultural variation of the frequency of functional stroke mimics.The current models of symptom perception, in which symptom perception is guided by top-down processes of the central nervous system, are helpful in explaining the intercultural variation of functional symptoms. According to these models, cultural beliefs, previous illnesses, and stressful life situations influence patients' expectations, sensory input, and finally the perception of somatic symptoms. In addition, differences in insurance status, health literacy, and health care experiences are strong predictors of health care use in patients who experience somatic symptoms.This article provides a conceptual model that integrates sociocultural factors with symptom perception and health care use relevant to the different rates of functional somatic symptoms in emergency departments across nationalities. Considering these factors, future attempts to improve care for patients with functional disorders should enhance access to effective treatment for all patient groups, empower patients through education and early participation in the treatment process, and foster interdisciplinary collaboration among specialists from somatic and mental health disciplines.

  15. Peptide-gated ion channels and the simple nervous system of Hydra.

    PubMed

    Gründer, Stefan; Assmann, Marc

    2015-02-15

    Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.

  16. The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites.

    PubMed

    Maurer, Laura L; Philbert, Martin A

    2015-01-01

    The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems. © 2015 Elsevier B.V. All rights reserved.

  17. Vitamin D and the central nervous system.

    PubMed

    Wrzosek, Małgorzata; Łukaszkiewicz, Jacek; Wrzosek, Michał; Jakubczyk, Andrzej; Matsumoto, Halina; Piątkiewicz, Paweł; Radziwoń-Zaleska, Maria; Wojnar, Marcin; Nowicka, Grażyna

    2013-01-01

    Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The so-called classical effect of this vitamin involves the regulation of calcium homeostasis and bone metabolism. Apart from this, non-classical effects of vitamin D have recently gained renewed attention. One important yet little known of the numerous functions of vitamin D is the regulation of nervous system development and function. The neuroprotective effect of vitamin D is associated with its influence on neurotrophin production and release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue. Clinical studies suggest that vitamin D deficiency may lead to an increased risk of disease of the central nervous system (CNS), particularly schizophrenia and multiple sclerosis. Adequate intake of vitamin D during pregnancy and the neonatal period seems to be crucial in terms of prevention of these diseases.

  18. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Is There Anything "Autonomous" in the Nervous System?

    ERIC Educational Resources Information Center

    Rasia-Filho, Alberto A.

    2006-01-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate…

  20. Designing and implementing nervous system simulations on LEGO robots.

    PubMed

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  1. Designing and Implementing Nervous System Simulations on LEGO Robots

    PubMed Central

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-01-01

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum. PMID:23728477

  2. Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy.

    PubMed

    Hoffmann, Christine; Ziegler, Ute; Buschmann, Anne; Weber, Artur; Kupfer, Leila; Oelschlegel, Anja; Hammerschmidt, Baerbel; Groschup, Martin H

    2007-03-01

    To elucidate the still-unknown pathogenesis of bovine spongiform encephalopathy (BSE), an oral BSE challenge and sequential kill study was carried out on 56 calves. Relevant tissues belonging to the peripheral and central nervous system, as well as to the lymphoreticular tract, from necropsied animals were analysed by highly sensitive immunohistochemistry and immunoblotting techniques to reveal the presence of BSE-associated pathological prion protein (PrPSc) depositions. Our results demonstrate two routes involving the autonomic nervous system through which BSE prions spread by anterograde pathways from the gastrointestinal tract (GIT) to the central nervous system (CNS): (i) via the coeliac and mesenteric ganglion complex, splanchnic nerves and the lumbal/caudal thoracic spinal cord (representing the sympathetic GIT innervation); and (ii) via the Nervus vagus (parasympathetic GIT innervation). The dorsal root ganglia seem to be subsequently affected, so it is likely that BSE prion invasion of the non-autonomic peripheral nervous system (e.g. sciatic nerve) is a secondary retrograde event following prion replication in the CNS. Moreover, BSE-associated PrPSc was already detected in the brainstem of an animal 24 months post-infection, which is 8 months earlier than reported previously. These findings are important for the understanding of BSE pathogenesis and for the development of new diagnostic strategies for this infectious disease.

  3. Central Nervous System Cancers, Version 2.2014

    PubMed Central

    Nabors, Louis Burt; Portnow, Jana; Ammirati, Mario; Brem, Henry; Brown, Paul; Butowski, Nicholas; Chamberlain, Marc C.; DeAngelis, Lisa M.; Fenstermaker, Robert A.; Friedman, Allan; Gilbert, Mark R.; Hattangadi-Gluth, Jona; Hesser, Deneen; Holdhoff, Matthias; Junck, Larry; Lawson, Ronald; Loeffler, Jay S.; Moots, Paul L.; Mrugala, Maciej M.; Newton, Herbert B.; Raizer, Jeffrey J.; Recht, Lawrence; Shonka, Nicole; Shrieve, Dennis C.; Sills, Allen K.; Swinnen, Lode J.; Tran, David; Tran, Nam; Vrionis, Frank D.; Wen, Patrick Yung; McMillian, Nicole R.; Ho, Maria

    2015-01-01

    The NCCN Guidelines for Central Nervous System Cancers provide multidisciplinary recommendations for the clinical management of patients with cancers of the central nervous system. These NCCN Guidelines Insights highlight recent updates regarding the management of metastatic brain tumors using radiation therapy. Use of stereotactic radiosurgery (SRS) is no longer limited to patients with 3 or fewer lesions, because data suggest that total disease burden, rather than number of lesions, is predictive of survival benefits associated with the technique. SRS is increasingly becoming an integral part of management of patients with controlled, low-volume brain metastases. PMID:25361798

  4. Evolution of the Human Nervous System Function, Structure, and Development.

    PubMed

    Sousa, André M M; Meyer, Kyle A; Santpere, Gabriel; Gulden, Forrest O; Sestan, Nenad

    2017-07-13

    The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Brain-computer interface after nervous system injury.

    PubMed

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  6. Microbiota-gut-brain axis and the central nervous system.

    PubMed

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  7. Epilepsy as a systemic condition: Link with somatic comorbidities.

    PubMed

    Novy, J; Bell, G S; Peacock, J L; Sisodiya, S M; Sander, J W

    2017-10-01

    People with epilepsy have more concomitant medical conditions than the general population; these comorbidities play an important role in premature mortality. We sought to generate explanatory hypotheses about the co-occurrence of somatic comorbidities and epilepsy, avoiding causal and treatment-resultant biases. We collected clinical, demographic and somatic comorbidity data for 2016 consecutive adults with epilepsy undergoing assessment at a tertiary centre and in 1278 people with epilepsy in the community. Underlying causes of epilepsy were not classed as comorbidities. Somatic comorbidities were more frequent in the referral centre (49%) where people more frequently had active epilepsy than in the community (36%). Consistent risk factors for comorbidities were found in both cohorts. Using multivariable ordinal regression adjusted for age, longer epilepsy duration and an underlying brain lesion were independently associated with a smaller burden of somatic conditions. The treatment burden, measured by the number of drugs to which people were exposed, was not an independent predictor. Shorter epilepsy duration was a predictor for conditions that conceivably harbour significant mortality risks. Somatic comorbidities do not occur randomly in relation to epilepsy; having more severe epilepsy seems to be a risk factor. Independently from age, the early period after epilepsy onset appears to be at particular risk, although it is not clear whether this relates to an early mortality or to a later decrease in the burden of comorbidities. These results suggest that, for some people, epilepsy should be considered a systemic condition not limited to the CNS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. [Involvement of the peripheral nervous system in systemic connective tissue diseases: report on clinical cases].

    PubMed

    Kujawska-Danecka, Hanna; Masiak, Anna; Smoleńska, Zaneta; Zdrojewski, Zbigniew

    2011-01-01

    The peripheral nervous system is usually involved in the majority of systemic connective tissue diseases, particularly in systemic lupus erythematosus, Sjögren's syndrome, vasculitis and systemic sclerosis. The pathogenesis of lesions in the peripheral nervous system associated with the autoimmune process is complex and it appears that two mechanisms, immunological and ischemic, are of greatest importance. Structures of the nervous system may be damaged by several autoantibodies (e.g. antineuronal, anti-nerve growth factor, anti-neurotrophins), by cytotoxic effects ofproinflammatory cytokines and by activated cells of the immune system. Local ischemia and hypoxia of neurons caused by inflammation of vasa nervosum represents the second significant mechanism leading to damage of nerve fibres in the peripheral nervous system. We present 3 cases with involvement of the peripheral nervous system as a dominant feature in the clinical picture of systemic connective tissue diseases. Clinical conditions in which the peripheral nervous system is involved include peripheral sensory and sensorimotor polyneuropathy, mononeuropathies, cranial neuropathies, acute inflammatory demyelinating polyneuropathy (Guillian-Barré syndrome), chronic inflammatory demyelinating polyneuropathy, plexopathy, myasthenia gravis, and dysfunctions of the autonomic nervous system. The diagnosis is based on clinical symptoms reported by the patient and disclosed during neurologic examination. The importance of electrophysiologic tests is advocated. Selection of treatment depends on the patient's clinical condition, as well as on the clinical form and type of disease. Treatment relies principally on glucocorticosteroids, intravenous immunoglobulins, cyclophosphamide, and other immunosuppressive drugs. Plasmapheresis and rituximab are administered in severe cases. Rehabilitation of the patient appears to be an important element of therapy. Cases with neurologic symptoms as the first and often the sole

  9. The crosstalk between autonomic nervous system and blood vessels

    PubMed Central

    Sheng, Yulan; Zhu, Li

    2018-01-01

    The autonomic nervous system (ANS), comprised of two primary branches, sympathetic and parasympathetic nervous system, plays an essential role in the regulation of vascular wall contractility and tension. The sympathetic and parasympathetic nerves work together to balance the functions of autonomic effector organs. The neurotransmitters released from the varicosities in the ANS can regulate the vascular tone. Norepinephrine (NE), adenosine triphosphate (ATP) and Neuropeptide Y (NPY) function as vasoconstrictors, whereas acetylcholine (Ach) and calcitonin gene-related peptide (CGRP) can mediate vasodilation. On the other hand, vascular factors, such as endothelium-derived relaxing factor nitric oxide (NO), and constriction factor endothelin, play an important role in the autonomic nervous system in physiologic conditions. Endothelial dysfunction and inflammation are associated with the sympathetic nerve activity in the pathological conditions, such as hypertension, heart failure, and diabetes mellitus. The dysfunction of the autonomic nervous system could be a risk factor for vascular diseases and the overactive sympathetic nerve is detrimental to the blood vessel. In this review, we summarize findings concerning the crosstalk between ANS and blood vessels in both physiological and pathological conditions and hope to provide insight into the development of therapeutic interventions of vascular diseases. PMID:29593847

  10. Somatic embryogenesis in ferns: a new experimental system.

    PubMed

    Mikuła, Anna; Pożoga, Mariusz; Tomiczak, Karolina; Rybczyński, Jan J

    2015-05-01

    Somatic embryogenesis has never been reported in ferns. The study showed that it is much easier to evoke the acquisition and expression of embryogenic competence in ferns than in spermatophytes. We discovered that the tree fern Cyathea delgadii offers an effective model for the reproducible and rapid formation of somatic embryos on hormone-free medium. Our study provides cyto-morphological evidence for the single cell origin and development of somatic embryos. Somatic embryogenesis (SE) in both primary and secondary explants was induced on half-strength micro- and macro-nutrients Murashige and Skoog medium without the application of exogenous plant growth regulators, in darkness. The early stage of SE was characterized by sequential perpendicular cell divisions of an individual epidermal cell of etiolated stipe explant. These resulted in the formation of a linear pro-embryo. Later their development resembled that of the zygotic embryo. We defined three morphogenetic stages of fern somatic embryo development: linear, early and late embryonic leaf stage. The transition from somatic embryo to juvenile sporophyte was quick and proceeded without interruption caused by dormancy. Following 9 weeks of culture the efficiency of somatic embryogenesis reached 12-13 embryos per responding explant. Spontaneous formation of somatic embryos and callus production, which improved the effectiveness of the process sevenfold in 10-month-long culture, occurred without subculturing. The tendency for C. delgadii to propagate by SE in vitro makes this species an excellent model for studies relating to asexual embryogenesis and the endogenous hormonal regulation of that process and opens new avenues of experimentation.

  11. Pazopanib efficacy in recurrent central nervous system hemangiopericytomas.

    PubMed

    Apra, Caroline; Alentorn, Agusti; Mokhtari, Karima; Kalamarides, Michel; Sanson, Marc

    2018-04-26

    There is currently no treatment for solitary fibrous tumors/hemangiopericytomas (SFT/H) of the central nervous system recurring after multiple surgeries and radiotherapies. The NAB2-STAT6 gene fusion is the hallmark of these tumors, and upregulates Early Growth Factor, activating several growth pathways. We treated two patients presenting pluri-recurrent meningeal SFT/H with Pazopanib, a broad-spectrum tyrosine kinase inhibitor. We analyzed the exome and RNA sequencing data of one of them and, in addition to another meningeal SFT/H, compared it to the transcriptomic profiling of 5 systemic SFT/H. A dramatic clinical and radiological response was observed in both cases, respectively 84 and 43% decrease after 3 months. As a comparison, Pazopanib has only a stabilizing effect in systemic SFT/H. Indeed, central nervous system SFT/H show overexpression of different tyrosine kinases targeted by Pazopanib. Two consecutive patients with untreatable central nervous system SFT/H showed a spectacular partial response to Pazopanib, an unprecedented result in SFT/H. This result could be explained by differences in expression profiles and calls for a confirmation in a larger cohort of patients.

  12. Imaging the fetal central nervous system

    PubMed Central

    De Keersmaecker, B.; Claus, F.; De Catte, L.

    2011-01-01

    The low prevalence of fetal central nervous system anomalies results in a restricted level of exposure and limited experience for most of the obstetricians involved in prenatal ultrasound. Sonographic guidelines for screening the fetal brain in a systematic way will probably increase the detection rate and enhance a correct referral to a tertiary care center, offering the patient a multidisciplinary approach of the condition. This paper aims to elaborate on prenatal sonographic and magnetic resonance imaging (MRI) diagnosis and outcome of various central nervous system malformations. Detailed neurosonographic investigation has become available through high resolution vaginal ultrasound probes and the development of a variety of 3D ultrasound modalities e.g. ultrasound tomographic imaging. In addition, fetal MRI is particularly helpful in the detection of gyration and neurulation anomalies and disorders of the gray and white matter. PMID:24753859

  13. Cross-cultural differences in somatic presentation in patients with generalized anxiety disorder.

    PubMed

    Hoge, Elizabeth A; Tamrakar, Sharad M; Christian, Kelly M; Mahara, Namrata; Nepal, Mahendra K; Pollack, Mark H; Simon, Naomi M

    2006-12-01

    Little is known about cultural differences in the expression of distress in anxiety disorders. Previous cross-cultural studies of depression have found a greater somatic focus in Asian populations. We examined anxiety symptoms in patients with generalized anxiety disorder (GAD) in urban mental health settings in Nepal (N = 30) and in the United States (N = 23). Participants completed the Beck Anxiety Inventory (BAI). The overall BAI score and somatic and psychological subscales were compared. While there was no difference in total BAI scores, the Nepali group scored higher on the somatic subscale (i.e. "dizziness" and "indigestion," t[df] = -2.63[50], p < 0.05), while the American group scored higher on the psychological subscale (i.e. "scared" and "nervous," t[df] = 3.27[50], p < 0.01). Nepali patients with GAD had higher levels of somatic symptoms and lower levels of psychological symptoms than American patients with GAD. Possible explanations include differences in cultural traditions of describing distress and the mind-body dichotomy.

  14. Electrophysiological studies of the nervous system

    NASA Technical Reports Server (NTRS)

    Galambos, R.

    1972-01-01

    The electrophysiology of the nervous system is studied using cats and human subjects. Data cover effects of chlorolose on evoked potential, the evoked resistance shift that accompanies evoked potentials, and the relationship of eye movements to potentials aroused by visual stimulation.

  15. STP Position Paper: Recommended ("Best") Practices for Sampling, Processing, and Analysis of the Peripheral Nervous System (Nerves and Somatic and Autonomic Ganglia) during Nonclinical Toxicity Studies.

    PubMed

    Bolon, Brad; Krinke, Georg; Butt, Mark T; Rao, Deepa B; Pardo, Ingrid D; Jortner, Bernard S; Garman, Robert H; Jensen, Karl; Andrews-Jones, Lydia; Morrison, James P; Sharma, Alok K; Thibodeau, Michael S

    2018-01-01

    Peripheral nervous system (PNS) toxicity is surveyed inconsistently in nonclinical general toxicity studies. These Society of Toxicologic Pathology "best practice" recommendations are designed to ensure consistent, efficient, and effective sampling, processing, and evaluation of PNS tissues for four different situations encountered during nonclinical general toxicity (screening) and dedicated neurotoxicity studies. For toxicity studies where neurotoxicity is unknown or not anticipated (situation 1), PNS evaluation may be limited to one sensorimotor spinal nerve. If somatic PNS neurotoxicity is suspected (situation 2), analysis minimally should include three spinal nerves, multiple dorsal root ganglia, and a trigeminal ganglion. If autonomic PNS neuropathy is suspected (situation 3), parasympathetic and sympathetic ganglia should be assessed. For dedicated neurotoxicity studies where a neurotoxic effect is expected (situation 4), PNS sampling follows the strategy for situations 2 and/or 3, as dictated by functional or other compound/target-specific data. For all situations, bilateral sampling with unilateral processing is acceptable. For situations 1-3, PNS is processed conventionally (immersion in buffered formalin, paraffin embedding, and hematoxylin and eosin staining). For situation 4 (and situations 2 and 3 if resources and timing permit), perfusion fixation with methanol-free fixative is recommended. Where PNS neurotoxicity is suspected or likely, at least one (situations 2 and 3) or two (situation 4) nerve cross sections should be postfixed with glutaraldehyde and osmium before hard plastic resin embedding; soft plastic embedding is not a suitable substitute for hard plastic. Special methods may be used if warranted to further characterize PNS findings. Initial PNS analysis should be informed, not masked ("blinded"). Institutions may adapt these recommendations to fit their specific programmatic requirements but may need to explain in project documentation

  16. Targetable genetic features of primary testicular and primary central nervous system lymphomas

    PubMed Central

    Chapuy, Bjoern; Roemer, Margaretha G. M.; Stewart, Chip; Tan, Yuxiang; Abo, Ryan P.; Zhang, Liye; Dunford, Andrew J.; Meredith, David M.; Thorner, Aaron R.; Jordanova, Ekaterina S.; Liu, Gang; Feuerhake, Friedrich; Ducar, Matthew D.; Illerhaus, Gerald; Gusenleitner, Daniel; Linden, Erica A.; Sun, Heather H.; Homer, Heather; Aono, Miyuki; Pinkus, Geraldine S.; Ligon, Azra H.; Ligon, Keith L.; Ferry, Judith A.; Freeman, Gordon J.; van Hummelen, Paul; Golub, Todd R.; Getz, Gad; Rodig, Scott J.; de Jong, Daphne; Monti, Stefano

    2016-01-01

    Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) are extranodal large B-cell lymphomas (LBCLs) with inferior responses to current empiric treatment regimens. To identify targetable genetic features of PCNSL and PTL, we characterized their recurrent somatic mutations, chromosomal rearrangements, copy number alterations (CNAs), and associated driver genes, and compared these comprehensive genetic signatures to those of diffuse LBCL and primary mediastinal large B-cell lymphoma (PMBL). These studies identify unique combinations of genetic alterations in discrete LBCL subtypes and subtype-selective bases for targeted therapy. PCNSLs and PTLs frequently exhibit genomic instability, and near-uniform, often biallelic, CDKN2A loss with rare TP53 mutations. PCNSLs and PTLs also use multiple genetic mechanisms to target key genes and pathways and exhibit near-uniform oncogenic Toll-like receptor signaling as a result of MYD88 mutation and/or NFKBIZ amplification, frequent concurrent B-cell receptor pathway activation, and deregulation of BCL6. Of great interest, PCNSLs and PTLs also have frequent 9p24.1/PD-L1/PD-L2 CNAs and additional translocations of these loci, structural bases of immune evasion that are shared with PMBL. PMID:26702065

  17. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  18. A continuous culture system of direct somatic embryogenesis in microspore-derived embryos of Brassica juncea.

    PubMed

    Prabhudesai, V; Bhaskaran, S

    1993-03-01

    An efficient culture system has been developed for repeated cycles of somatic embryogenesis in microspore-derived embryos of Brassica juncea without a callus phase. Haploid embryos produced through anther culture showed a high propensity for direct production of somatic embryos in response to 2 mgL(-1) BA and 0.1 mgL(-1) NAA. The embryogenic cultures which comprised the elongated embryonal axis of microspore-derived embryos when explanted and grown on the medium of same composition produced a large number of secondary embryos. These somatic embryos in turn underwent axis elongation and produced more somatic embryos when explanted and cultured. This cycle of repetitive somatic embryogenesis continued with undiminished vigour passage after passage and was monitored for more than a year. Somatic embryos from any passage when isolated at cotyledonary stage and grown on auxin-free medium for 5 days and then on a medium containing NAA (0.1 mgL(-1)), developed into complete plants with a profuse root system and were easily established in the soil. The cytology of the root tips of these plants confirmed their haploid nature. The total absence of callus phase makes the system ideal for continuous cloning of androgenic lines, Agrobacterium-mediated transformation and mutation induction studies.

  19. Mitochondria in the nervous system: From health to disease, part II.

    PubMed

    Carrì, Maria Teresa; Polster, Brian M; Beart, Philip M

    2018-04-10

    In Part II of this Special Issue on "Mitochondria in the Nervous System: From Health to Disease", the editors bring together more reviews and original articles from researchers in the field of mitochondrial metabolism in the healthy and diseased nervous system. Subjects span from basic mitochondrial physiology to papers on mitochondrial dynamics and to those altered states of the nervous system that can be considered "mitopathologies". Finally, a few papers approach aspects of mitochondrial biology linked to the feasibility and validity of a mitochondrial therapy. Copyright © 2018. Published by Elsevier Ltd.

  20. Diagnosis abnormalities of limb movement in disorders of the nervous system

    NASA Astrophysics Data System (ADS)

    Tymchik, Gregory S.; Skytsiouk, Volodymyr I.; Klotchko, Tatiana R.; Bezsmertna, Halyna; Wójcik, Waldemar; Luganskaya, Saule; Orazbekov, Zhassulan; Iskakova, Aigul

    2017-08-01

    The paper deals with important issues of diagnosis early signs of diseases of the nervous system, including Parkinson's disease and other specific diseases. Small quantities of violation trajectory of spatial movement of the extremities of human disease at the primary level as the most appropriate features are studied. In modern medical practice is very actual the control the emergence of diseases of the nervous system, including Parkinson's disease. In work a model limbs with six rotational kinematic pairs for diagnosis of early signs of diseases of the nervous system is considered. subject.

  1. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system

    NASA Technical Reports Server (NTRS)

    Lowe, Christopher J.; Wu, Mike; Salic, Adrian; Evans, Louise; Lander, Eric; Stange-Thomann, Nicole; Gruber, Christian E.; Gerhart, John; Kirschner, Marc

    2003-01-01

    The chordate central nervous system has been hypothesized to originate from either a dorsal centralized, or a ventral centralized, or a noncentralized nervous system of a deuterostome ancestor. In an effort to resolve these issues, we examined the hemichordate Saccoglossus kowalevskii and studied the expression of orthologs of genes that are involved in patterning the chordate central nervous system. All 22 orthologs studied are expressed in the ectoderm in an anteroposterior arrangement nearly identical to that found in chordates. Domain topography is conserved between hemichordates and chordates despite the fact that hemichordates have a diffuse nerve net, whereas chordates have a centralized system. We propose that the deuterostome ancestor may have had a diffuse nervous system, which was later centralized during the evolution of the chordate lineage.

  2. The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa).

    PubMed

    Martín-Durán, José M; Wolff, Gabriella H; Strausfeld, Nicholas J; Hejnol, Andreas

    2016-01-05

    The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. © 2015 The Authors.

  3. The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa)

    PubMed Central

    2016-01-01

    The origin and extreme diversification of the animal nervous system is a central question in biology. While most of the attention has traditionally been paid to those lineages with highly elaborated nervous systems (e.g. arthropods, vertebrates, annelids), only the study of the vast animal diversity can deliver a comprehensive view of the evolutionary history of this organ system. In this regard, the phylogenetic position and apparently conservative molecular, morphological and embryological features of priapulid worms (Priapulida) place this animal lineage as a key to understanding the evolution of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we characterize the nervous system of the hatching larva and first lorica larva of the priapulid worm Priapulus caudatus by immunolabelling against acetylated and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results show that a circumoral brain and an unpaired ventral nerve with a caudal ganglion characterize the central nervous system of hatching embryos. After the first moult, the larva attains some adult features: a neck ganglion, an introvert plexus, and conspicuous secondary longitudinal neurites. Our study delivers a neuroanatomical framework for future embryological studies in priapulid worms, and helps illuminate the course of nervous system evolution in the Ecdysozoa. PMID:26598729

  4. Is there anything "autonomous" in the nervous system?

    PubMed

    Rasia-Filho, Alberto A

    2006-03-01

    The terms "autonomous" or "vegetative" are currently used to identify one part of the nervous system composed of sympathetic, parasympathetic, and gastrointestinal divisions. However, the concepts that are under the literal meaning of these words can lead to misconceptions about the actual nervous organization. Some clear-cut examples indicate that no element shows "autonomy" in an integrated body. Nor are they solely "passive" or generated "without mental elaboration." In addition, to be "not consciously controlled" is not a unique attribute of these components. Another term that could be proposed is "homeostatic nervous system" for providing conditions to the execution of behaviors and maintenance of the internal milieu within normal ranges. But, not all homeostatic conditions are under the direct influence of these groups of neurons, and some situations clearly impose different ranges for some variables that are adaptative (or hazardous) in the tentative of successfully coping with challenging situations. Finally, the name "nervous system for visceral control" emerges as another possibility. Unfortunately, it is not only "viscera" that represent end targets for this specific innervation. Therefore, it is commented that no quite adequate term for the sympathetic, parasympathetic, and gastrointestinal divisions has already been coined. The basic condition for a new term is that it should clearly imply the whole integrated and collaborative functions that the components have in an indivisible organism, including the neuroendocrine, immunological, and respiratory systems. Until that, we can call these parts simply by their own names and avoid terms that are more "convenient" than appropriate.

  5. STP Position Paper: Recommended Best Practices for Sampling, Processing and Analysis of the Peripheral Nervous System (Nerves and Somatic and Autonomic Ganglia) during Nonclinical Toxicity Studies

    EPA Science Inventory

    These Society of Toxicologic Pathology “best” practice recommendations should ensure consistent sampling, processing, and evaluation of the peripheral nervous system (PNS). For toxicity studies where neurotoxicity is not anticipated (Situation 1), PNS evaluation may be limited...

  6. Introduction to 'Homology and convergence in nervous system evolution'.

    PubMed

    Strausfeld, Nicholas J; Hirth, Frank

    2016-01-05

    The origin of brains and central nervous systems (CNSs) is thought to have occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evidence, there has been continued debate whether today's brains and nervous systems derive from one ancestral origin or whether similarities among them are due to convergent evolution. With the advent of molecular developmental genetics and genomics, it has become clear that homology is a concept that applies not only to morphologies, but also to genes, developmental processes, as well as to behaviours. Comparative studies in phyla ranging from annelids and arthropods to mammals are providing evidence that corresponding developmental genetic mechanisms act not only in dorso-ventral and anterior-posterior axis specification but also in segmentation, neurogenesis, axogenesis and eye/photoreceptor cell formation that appear to be conserved throughout the animal kingdom. These data are supported by recent studies which identified Mid-Cambrian fossils with preserved soft body parts that present segmental arrangements in brains typical of modern arthropods, and similarly organized brain centres and circuits across phyla that may reflect genealogical correspondence and control similar behavioural manifestations. Moreover, congruence between genetic and geological fossil records support the notion that by the 'Cambrian explosion' arthropods and chordates shared similarities in brain and nervous system organization. However, these similarities are strikingly absent in several sister- and outgroups of arthropods and chordates which raises several questions, foremost among them: what kind of natural laws and mechanisms underlie the convergent evolution of such similarities? And, vice versa: what are the selection pressures and genetic mechanisms underlying the possible loss or reduction of brains and CNSs in multiple lineages during the course of evolution? These questions were addressed at a Royal Society meeting to discuss

  7. Effects of Brazilian scorpion venoms on the central nervous system.

    PubMed

    Nencioni, Ana Leonor Abrahão; Neto, Emidio Beraldo; de Freitas, Lucas Alves; Dorce, Valquiria Abrão Coronado

    2018-01-01

    In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus , T. bahiensis , T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus , T. silvestres, T. brazilae , T. confluens , T. costatus , T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis . Little information is available regarding the other Brazilian Tityus species.

  8. Somatic genital reflexes in rats with a nod to humans: anatomy, physiology, and the role of the social neuropeptides

    PubMed Central

    Normandin, Joseph J.; Murphy, Anne Z.

    2011-01-01

    Somatic genital reflexes such as ejaculation and vaginocervical contractions are produced through the striated muscles associated with the genitalia. The coordination of these reflexes is surprisingly complex and involves a number of lumbosacral spinal and supraspinal systems. The rat model has proved to be an excellent source of information regarding these mechanisms, and many parallels to research in humans can be drawn. An understanding of the spinal systems involving the lumbosacral spinal cord, both efferent and afferent, has been generated through decades of research. Spinal and supraspinal mechanisms of descending excitation, through a spinal ejaculation generator in the lumbar spinal cord and thalamus, and descending inhibition, through the ventrolateral medulla, have been identified and characterized both anatomically and physiologically. In addition, delineation of the neural circuits whereby ascending genitosensory information regarding the regulation of somatic genital reflexes is relayed supraspinally has also been the topic of recent investigation. Lastly, the importance of the “social neuropeptides” oxytocin and vasopressin in the regulation of somatic genital reflexes, and associated sociosexual behaviors, is emerging. This work not only has implications for understanding how nervous systems generate sexual behavior, but also provides treatment targets for sexual dysfunction in people. PMID:21338605

  9. Moderate pressure massage elicits a parasympathetic nervous system response.

    PubMed

    Diego, Miguel A; Field, Tiffany

    2009-01-01

    Twenty healthy adults were randomly assigned to a moderate pressure or a light pressure massage therapy group, and EKGs were recorded during a 3-min baseline, during the 15-min massage period and during a 3-min postmassage period. EKG data were then used to derive the high frequency (HF), low frequency (LF) components of heart rate variability and the low to high frequency ratio (LF/HF) as noninvasive markers of autonomic nervous system activity. The participants who received the moderate pressure massage exhibited a parasympathetic nervous system response characterized by an increase in HF, suggesting increased vagal efferent activity and a decrease in the LF/HF ratio, suggesting a shift from sympathetic to parasympathetic activity that peaked during the first half of the massage period. On the other hand, those who received the light pressure massage exhibited a sympathetic nervous system response characterized by decreased HF and increased LF/HF.

  10. Reactions of the nervous system to magnetic fields

    NASA Technical Reports Server (NTRS)

    Kholodov, Y. A.

    1974-01-01

    This magnetobiological survey considers sensory, nervous, stress and genetic effects of magnetic fields on man and animals. It is shown that the nervous system plays an important role in the reactions of the organism to magnetic fields; the final biological effect is a function of the strength of the magnetic fields, the gradient, direction of the lines of force, duration and location of the action, and the functional status of the organism.

  11. Central nervous system histoplasmosis

    PubMed Central

    Wheat, Joseph; Myint, Thein; Guo, Ying; Kemmer, Phebe; Hage, Chadi; Terry, Colin; Azar, Marwan M.; Riddell, James; Ender, Peter; Chen, Sharon; Shehab, Kareem; Cleveland, Kerry; Esguerra, Eden; Johnson, James; Wright, Patty; Douglas, Vanja; Vergidis, Pascalis; Ooi, Winnie; Baddley, John; Bamberger, David; Khairy, Raed; Vikram, Holenarasipur; Jenny-Avital, Elizabeth; Sivasubramanian, Geetha; Bowlware, Karen; Pahud, Barbara; Sarria, Juan; Tsai, Townson; Assi, Maha; Mocherla, Satish; Prakash, Vidhya; Allen, David; Passaretti, Catherine; Huprikar, Shirish; Anderson, Albert

    2018-01-01

    Abstract Central nervous system (CNS) involvement occurs in 5 to 10% of individuals with disseminated histoplasmosis. Most experience has been derived from small single center case series, or case report literature reviews. Therefore, a larger study of central nervous system (CNS) histoplasmosis is needed in order to guide the approach to diagnosis, and treatment. A convenience sample of 77 patients with histoplasmosis infection of the CNS was evaluated. Data was collected that focused on recognition of infection, diagnostic techniques, and outcomes of treatment. Twenty nine percent of patients were not immunosuppressed. Histoplasma antigen, or anti-Histoplasma antibodies were detected in the cerebrospinal fluid (CSF) in 75% of patients. One year survival was 75% among patients treated initially with amphotericin B, and was highest with liposomal, or deoxycholate formulations. Mortality was higher in immunocompromised patients, and patients 54 years of age, or older. Six percent of patients relapsed, all of whom had the acquired immunodeficiency syndrome (AIDS), and were poorly adherent with treatment. While CNS histoplasmosis occurred most often in immunocompromised individuals, a significant proportion of patients were previously, healthy. The diagnosis can be established by antigen, and antibody testing of the CSF, and serum, and antigen testing of the urine in most patients. Treatment with liposomal amphotericin B (AMB-L) for at least 1 month; followed by itraconazole for at least 1 year, results in survival among the majority of individuals. Patients should be followed for relapse for at least 1 year, after stopping therapy. PMID:29595679

  12. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System.

    PubMed

    Wehrwein, Erica A; Orer, Hakan S; Barman, Susan M

    2016-06-13

    Comprised of the sympathetic nervous system, parasympathetic nervous system, and enteric nervous system, the autonomic nervous system (ANS) provides the neural control of all parts of the body except for skeletal muscles. The ANS has the major responsibility to ensure that the physiological integrity of cells, tissues, and organs throughout the entire body is maintained (homeostasis) in the face of perturbations exerted by both the external and internal environments. Many commonly prescribed drugs, over-the-counter drugs, toxins, and toxicants function by altering transmission within the ANS. Autonomic dysfunction is a signature of many neurological diseases or disorders. Despite the physiological relevance of the ANS, most neuroscience textbooks offer very limited coverage of this portion of the nervous system. This review article provides both historical and current information about the anatomy, physiology, and pharmacology of the sympathetic and parasympathetic divisions of the ANS. The ultimate aim is for this article to be a valuable resource for those interested in learning the basics of these two components of the ANS and to appreciate its importance in both health and disease. Other resources should be consulted for a thorough understanding of the third division of the ANS, the enteric nervous system. © 2016 American Physiological Society. Compr Physiol 6:1239-1278, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  13. Centralization of the deuterostome nervous system predates chordates.

    PubMed

    Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François

    2009-08-11

    The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.

  14. Enteric nervous system: sensory physiology, diarrhea and constipation.

    PubMed

    Wood, Jackie D

    2010-03-01

    The enteric nervous system integrates secretion and motility into homeostatic patterns of behavior susceptible to disorder. Progress in understanding mechanosensory detection in these processes, disordered enteric nervous system integration in diarrhea and constipation and pharmacotherapy is summarized. Most neurons in the enteric nervous system discharge in response to distortion. Drugs acting directly to open chloride conductance channels in the mucosal epithelium are therapeutic options for constipation. Mechanoreception is required for negative feedback control. At issue is identification of the neurons that fulfil the requirement for mechanoreception. Understanding secretomotor neurons is basic to understanding neurogenic secretory diarrhea and constipation and therapeutic strategies. A strategy for treatment of chronic constipation is development of agents that act directly to open Cl channels, which thereby increases the liquidity of the luminal contents. Lubiprostone, a recently Food and Drug Administration-approved drug, increases intraluminal liquidity by opening Cl channels. The future for the drug is clouded by controversy over whether its action is directly at one or the other of chloride channel type 2 (ClC-2) or cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels or both and whether action reflects involvement of G protein-coupled prostaglandin receptors expressed by mucosal epithelial cells.

  15. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia.

    PubMed

    Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D

    2016-04-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic

  16. Central nervous system manifestations of Angiostrongylus cantonensis infection.

    PubMed

    Martins, Yuri C; Tanowitz, Herbert B; Kazacos, Kevin R

    2015-01-01

    Over 20 species of Angiostrongylus have been described from around the world, but only Angiostrongylus cantonensis has been confirmed to cause central nervous system disease in humans. A neurotropic parasite that matures in the pulmonary arteries of rats, A. cantonensis is the most common cause of eosinophilic meningitis in southern Asia and the Pacific and Caribbean islands. The parasite can also cause encephalitis/encephalomyelitis and rarely ocular angiostrongyliasis. The present paper reviews the life cycle, epidemiology, pathogenesis, clinical features, diagnosis, treatment, prevention and prognosis of A. cantonesis infection. Emphasis is given on the spectrum of central nervous system manifestations and disease pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. CENTRAL NERVOUS SYSTEM INFECTION DURING IMMUNOSUPPRESSION

    PubMed Central

    Zunt, Joseph R.

    2009-01-01

    The central nervous system (CNS) is susceptible to bacterial, viral, and fungal infections. Suppression of the immune system by human immunodeficiency virus (HIV) infection or immunosuppressive therapy after transplantation increases susceptibility to CNS infection and modifies the presentation, diagnosis, and recommended treatment of various CNS infections. This chapter discusses how suppression of the host immune status modifies the presentation, diagnosis, and treatment of selected CNS infections. PMID:11754299

  18. Role of Neuroactive Steroids in the Peripheral Nervous System

    PubMed Central

    Melcangi, Roberto Cosimo; Giatti, Silvia; Pesaresi, Marzia; Calabrese, Donato; Mitro, Nico; Caruso, Donatella; Garcia-Segura, Luis Miguel

    2011-01-01

    Several reviews have so far pointed out on the relevant physiological and pharmacological role exerted by neuroactive steroids in the central nervous system. In the present review we summarize observations indicating that synthesis and metabolism of neuroactive steroids also occur in the peripheral nerves. Interestingly, peripheral nervous system is also a target of their action. Indeed, as here reported neuroactive steroids are physiological regulators of peripheral nerve functions and they may also represent interesting therapeutic tools for different types of peripheral neuropathy. PMID:22654839

  19. Interfacing with the nervous system: a review of current bioelectric technologies.

    PubMed

    Sahyouni, Ronald; Mahmoodi, Amin; Chen, Jefferson W; Chang, David T; Moshtaghi, Omid; Djalilian, Hamid R; Lin, Harrison W

    2017-10-23

    The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.

  20. The eye and visual nervous system: anatomy, physiology and toxicology.

    PubMed Central

    McCaa, C S

    1982-01-01

    The eyes are at risk to environmental injury by direct exposure to airborne pollutants, to splash injury from chemicals and to exposure via the circulatory system to numerous drugs and bloodborne toxins. In addition, drugs or toxins can destroy vision by damaging the visual nervous system. This review describes the anatomy and physiology of the eye and visual nervous system and includes a discussion of some of the more common toxins affecting vision in man. Images FIGURE 1. FIGURE 2. PMID:7084144

  1. Role of endothelial-to-mesenchymal transition in the pathogenesis of central nervous system hemangioblastomas.

    PubMed

    Takada, Shigeki; Hojo, Masato; Takebe, Noriyoshi; Tanigaki, Kenji; Miyamoto, Susumu

    2018-06-07

    Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs. Ten central nervous system HBs were immunohistochemically investigated. CD31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of microvessels in all cases. These findings suggest that endothelial cells (ECs) of microvessels in central nervous system HBs have acquired mesenchymal and stem-cell-like characteristics and undergone EndMT. In all cases, both ephrin-B2 and EphB4, which are not detected in adult normal brain vessels, were expressed in the endothelial layer of microvessels. These data suggest that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. This is the first report showing the possibility that EndMT contributes to the pathogenesis of central nervous system HBs. It is likely that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. EndMT is expected to be a new therapeutic target in central nervous system HBs. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Peripheral nervous control of cold-induced reduction in the respiratory quotient of the rat

    NASA Astrophysics Data System (ADS)

    Refinetti, Roberto

    1990-03-01

    Cold-exposed rats show a reduction in the respiratory quotient which is indicative of a relative shift from carbohydrates to lipids as substrates for oxidative metabolism. In the present study, the effects of food deprivation and cold exposure on the respiratory quotient were observed. In addition, the involvement of the three main branches of the peripheral nervous system (sympathetic, parasympathetic, and somatic) was investigated by means of synaptic blockade with propranolol, atropine, and quinine, respectively. Both propranolol and quinine blocked the cold-induced decrease in respiratory quotient and increase in heat production, whereas atropine had only minor and very brief effects. It is concluded that both the sympathetic and somatic branches are involved in the metabolic changes associated with cold-induced thermogenesis and that the increase in metabolic heat production involves a shift from carbohydrate to lipid utilization irrespective of which of the two branches is activated.

  3. A rare adverse effect of metronidazole: nervous system symptoms.

    PubMed

    Kafadar, Ihsan; Moustafa, Fatma; Yalçın, Koray; Klç, Betül Aydn

    2013-06-01

    Metronidazole, as a 5-nitroimidazole compound, is effective on anaerobic bacteria and protozoon diseases. Mostly, metronidazole is a tolerable drug but rarely presents serious adverse effects on the nervous system. In case of these adverse effects, treatment must be stopped.In this report, a 3-year-old child hospitalized because of diarrhea is presented. During the metronidazole treatment, loss of sight, vertigo, ataxia, and headache occurred as the adverse effects. By this report, we want to express the rare adverse effects of drugs in the differential diagnoses of nervous system diseases.

  4. Nervous systems and scenarios for the invertebrate-to-vertebrate transition

    PubMed Central

    Holland, Nicholas D.

    2016-01-01

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. PMID:26598728

  5. Bacterial Signaling to the Nervous System through Toxins and Metabolites.

    PubMed

    Yang, Nicole J; Chiu, Isaac M

    2017-03-10

    Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nervous systems and scenarios for the invertebrate-to-vertebrate transition.

    PubMed

    Holland, Nicholas D

    2016-01-05

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. © 2015 The Author(s).

  7. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    PubMed Central

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  8. [Molecular genetics of familial tumour syndromes of the central nervous system].

    PubMed

    Murnyák, Balázs; Szepesi, Rita; Hortobágyi, Tibor

    2015-02-01

    Although most of the central nervous system tumours are sporadic, rarely they are associated with familial tumour syndromes. These disorders usually present with an autosomal dominant inheritance and neoplasia develops at younger age than in sporadic cases. Most of these tumours are bilateral, multiplex or multifocal. The causative mutations occur in genes involved in cell cycle regulation, cell growth, differentiation and DNA repair. Studying these hereditary cancer predisposition syndromes associated with nervous system tumours can facilitate the deeper understanding of the molecular background of sporadic tumours and the development of novel therapeutic agents. This review is an update on hereditary tumour syndromes with nervous system involvement with emphasis on molecular genetic characteristics and their clinical implications.

  9. Central Nervous System Oxygen Toxicity in Closed-Circuit Scuba Divers

    DTIC Science & Technology

    1986-03-01

    CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA DIVERS III By F. K. Butler, Jr., LCDR, MC, USN NAVY EXPERIMENTAL DIVING UNIT DTIC...PANAMA CITY. FLORIDA 321407 IN. aLV OMW Vol NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 5-86 CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA...BUTLER, Jr. J . .d.M. HAMILTON LCDR, MC, USK CDR, MC, USK CDR, USKN Medical Research Officer Senior Medical Officer Comanding Officer UNCLASSIFIED 4

  10. Primary central nervous system B-cell lymphoma in a young dog

    PubMed Central

    Kim, Na-Hyun; Ciesielski, Thomas; Kim, Jung H.; Yhee, Ji-Young; Im, Keum-Soon; Nam, Hae-Mi; Kim, Il-Hwan; Kim, Jong-Hyuk; Sur, Jung-Hyang

    2012-01-01

    This report describes a primary central nervous system B-cell lymphoma in a 3-year-old intact female Maltese dog. Canine primary central nervous system lymphomas constitute about 4% of all intracranial primary neoplasms, but comprehensive histopathologic classifications have rarely been carried out. This is the first report of this disease in a young adult dog. PMID:23115372

  11. The role of oxidative stress in nervous system aging.

    PubMed

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  12. Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.

    PubMed

    Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma

    2014-01-01

    Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs. © 2014 American College of Veterinary Radiology.

  13. Diagnostics and Discovery in Viral Central Nervous System Infections.

    PubMed

    Lipkin, Walter Ian; Hornig, Mady

    2015-09-01

    The range of viruses implicated in central nervous system disease continues to grow with globalization of travel and trade, emergence and reemergence of zoonoses and investments in discovery science. Diagnosis of viral central nervous system infections is challenging in that brain tissue, where the pathogen concentration is likely to be highest, is not readily obtained and sensitive methods for molecular and serological detection of infection are not available in most clinical microbiology laboratories. Here we review these challenges and discuss how they may be addressed using advances in molecular, proteomic and immunological methods. © 2015 International Society of Neuropathology.

  14. Herpes virus infection of the peripheral nervous system.

    PubMed

    Steiner, Israel

    2013-01-01

    Among the human herpes viruses, three are neurotropic and capable of producing severe neurological abnormalities: herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus (VZV). Both the acute, primary infection and the reactivation from the site of latent infection, the dorsal sensory ganglia, are associated with severe human morbidity and mortality. The peripheral nervous system is one of the major loci affected by these viruses. The present review details the virology and molecular biology underlying the human infection. This is followed by detailed description of the symtomatology, clinical presentation, diagnosis, course, therapy, and prognosis of disorders of the peripheral nervous system caused by these viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A Role of the Parasympathetic Nervous System in Cognitive Training.

    PubMed

    Lin, Feng; Heffner, Kathi L; Ren, Ping; Tadin, Duje

    2017-01-01

    Vision-based speed of processing (VSOP) training can result in broad cognitive improvements in older adults with amnestic mild cognitive impairment (aMCI). What remains unknown, however, is what neurophysiological mechanisms account for the observed training effect. Much of the work in this area has focused on the central nervous system, neglecting the fact that the peripheral system can contributes to changes of the central nervous system and vice versa. We examined the prospective relationship between an adaptive parasympathetic nervous system response to cognitive stimuli and VSOP training-induced plasticity. Twenty-one participants with aMCI (10 for VSOP training, and 11 for mental leisure activities (MLA) control) were enrolled. We assessed high-frequency heart rate variability (HF-HRV) during training sessions, and striatum-related neural networks and cognition at baseline and post-training. Compared to MLA, the VSOP group showed a significant U-shaped pattern of HF-HRV response during training, as well as decreases in connectivity strength between bilateral striatal and prefrontal regions. These two effects were associated with training-induced improvements in both the trained (attention and processing speed) and transferred (working memory) cognitive domains. This work provides novel support for interactions between the central and the peripheral nervous systems in relation to cognitive training, and motivates further studies to elucidate the causality of the observed link. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. [Effects of inflammation and stimulant diets on functions of autonomic nervous system (author's transl)].

    PubMed

    Akaeda, H; Nagai, K; Okuda, Y; Shinoto, M; Okuda, H

    1981-06-01

    In usual medical consultation, we have been met a lot of female patients suffering from disturbances of autonomic nervous system such as headache, shoulder-ache and so on. Experiments were designed to elucidate whether or not these disturbances of autonomic nervous system were induced by inflammation and accelerated by stimulant diets. Functions of autonomic nervous system were examined by lipolysis in rat epididymal adipose tissue which was partly controlled by sympathetic nervous system. It was found that free fatty acid release from the epididymal adipose tissue was considerably elevated by inflammation which was formed in abdominal wall or in abdominal cavity or oral administration of stimulant diets such as red pepper and white pepper, and that such elevation of lipolysis was significantly reduced by resection of the autonomic nerve. These results indicated that the inflammation and the stimulant diets induced excitement of sympathetic nerve which controlled the epididymal adipose tissue. Experiments were now in progress to clarify relationship between such excitement of sympathetic nervous system induced by the inflammation or by the stimulant diet and irregular complaints due to disturbances of autonomic nervous system.

  17. Autonomous requirements of the Menkes disease protein in the nervous system.

    PubMed

    Hodgkinson, Victoria L; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A; Lee, Jaekwon; Gitlin, Jonathan D; Petris, Michael J

    2015-11-15

    Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7a(Nes) mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7a(Nes) mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7a(Nes) mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients. Copyright © 2015 the American Physiological Society.

  18. Evaluating Cancer of the Central Nervous System Through Next-Generation Sequencing of Cerebrospinal Fluid

    PubMed Central

    Pentsova, Elena I.; Shah, Ronak H.; Tang, Jiabin; Boire, Adrienne; You, Daoqi; Briggs, Samuel; Omuro, Antonio; Lin, Xuling; Fleisher, Martin; Grommes, Christian; Panageas, Katherine S.; Meng, Fanli; Selcuklu, S. Duygu; Ogilvie, Shahiba; Distefano, Natalie; Shagabayeva, Larisa; Rosenblum, Marc; DeAngelis, Lisa M.; Viale, Agnes; Berger, Michael F.

    2016-01-01

    Purpose Cancer spread to the central nervous system (CNS) often is diagnosed late and is unresponsive to therapy. Mechanisms of tumor dissemination and evolution within the CNS are largely unknown because of limited access to tumor tissue. Materials and Methods We sequenced 341 cancer-associated genes in cell-free DNA from cerebrospinal fluid (CSF) obtained through routine lumbar puncture in 53 patients with suspected or known CNS involvement by cancer. Results We detected high-confidence somatic alterations in 63% (20 of 32) of patients with CNS metastases of solid tumors, 50% (six of 12) of patients with primary brain tumors, and 0% (zero of nine) of patients without CNS involvement by cancer. Several patients with tumor progression in the CNS during therapy with inhibitors of oncogenic kinases harbored mutations in the kinase target or kinase bypass pathways. In patients with glioma, the most common malignant primary brain tumor in adults, examination of cell-free DNA uncovered patterns of tumor evolution, including temozolomide-associated mutations. Conclusion The study shows that CSF harbors clinically relevant genomic alterations in patients with CNS cancers and should be considered for liquid biopsies to monitor tumor evolution in the CNS. PMID:27161972

  19. Gangliosides in the Nervous System: Biosynthesis and Degradation

    NASA Astrophysics Data System (ADS)

    Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao

    Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.

  20. Sjögren's syndrome. Cutaneous, immunologic, and nervous system manifestations.

    PubMed

    Provost, T T; Vasily, D; Alexander, E

    1987-08-01

    The studies recounted in this review have demonstrated that cutaneous vasculitis is a frequent extraglandular manifestation of primary Sjögren's syndrome. Two histopathologic types of vasculitis have been detected. One type, a leukocytoclastic angiitis, is found in association with high-titer anti-Ro(SS-A) antibodies, rheumatoid factor, hypergammaglobulinemia, and hypocomplementemia. The second type, a mononuclear inflammatory vasculopathy, in sharp contrast, is found in association with low-titer Ro(SS-A) antibodies, normocomplementemia, and absence of hypergammaglobulinemia and rheumatoid factor. Both types of vasculitis are found in association with peripheral nervous system and CNS disease. The peripheral nervous system and CNS disease involves the entire neuroaxis and preliminary data indicate that a vasculopathy is the cause of the peripheral nervous system and CNS disease. Evoked sensory response testing, CSF analysis, and MRI have proved to be very valuable techniques in investigating these patients with Sjögren's syndrome. Preliminary data suggest that high doses of prednisone or immunosuppressive agents are effective in treating these patients.

  1. Music and Autonomic Nervous System (Dys)function

    PubMed Central

    Ellis, Robert J.; Thayer, Julian F.

    2010-01-01

    Despite a wealth of evidence for the involvement of the autonomic nervous system (ANS) in health and disease and the ability of music to affect ANS activity, few studies have systematically explored the therapeutic effects of music on ANS dysfunction. Furthermore, when ANS activity is quantified and analyzed, it is usually from a point of convenience rather than from an understanding of its physiological basis. After a review of the experimental and therapeutic literatures exploring music and the ANS, a “Neurovisceral Integration” perspective on the interplay between the central and autonomic nervous systems is introduced, and the associated implications for physiological, emotional, and cognitive health are explored. The construct of heart rate variability is discussed both as an example of this complex interplay and as a useful metric for exploring the sometimes subtle effect of music on autonomic response. Suggestions for future investigations using musical interventions are offered based on this integrative account. PMID:21197136

  2. Autoimmune Channelopathies of the Nervous System

    PubMed Central

    Kleopa, Kleopas A

    2011-01-01

    Ion channels are complex transmembrane proteins that orchestrate the electrical signals necessary for normal function of excitable tissues, including the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the functional assessment of expressed proteins at the level of single channel molecules possible. The role of ion channel defects in the pathogenesis of numerous disorders has become increasingly apparent over the last two decades. Neurological channelopathies are frequently genetically determined but may also be acquired through autoimmune mechanisms. All of these autoimmune conditions can arise as paraneoplastic syndromes or independent from malignancies. The pathogenicity of autoantibodies to ion channels has been demonstrated in most of these conditions, and patients may respond well to immunotherapies that reduce the levels of the pathogenic autoantibodies. Autoimmune channelopathies may have a good prognosis, especially if diagnosed and treated early, and if they are non-paraneoplastic. This review focuses on clinical, pathophysiologic and therapeutic aspects of autoimmune ion channel disorders of the nervous system. PMID:22379460

  3. The Role of Oxidative Stress in Nervous System Aging

    PubMed Central

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  4. Quest for the basic plan of nervous system circuitry

    PubMed Central

    Swanson, Larry W.

    2007-01-01

    The basic plan of nervous system organization has been investigated since classical antiquity. The first model centered on pneumas pumped from sensory nerves through the ventricular system and out motor nerves to muscles. It was popular well into the seventeenth century and diverted attention from the organization of brain parenchyma itself. Willis focused on gray matter production and white matter conduction of pneumas in 1664, and by the late nineteenth century a clear cellular model of nervous system organization based on sensory, motor, and association neuron classes transmitting nerve impulses was elaborated by Cajal and his contemporaries. Today, revolutionary advances in experimental pathway tracing methods, molecular genetics, and computer science inspire systems neuroscience. Seven minimal requirements are outlined for knowledge management systems capable of describing, analyzing, and modeling the basic plan of nervous system circuitry in general, and the plan evolved for vertebrates, for mammals, and ultimately for humans in particular. The goal remains a relatively simple, easy to understand model analogous to the one Harvey elaborated in 1628 for circulation in the cardiovascular system. As Cajal wrote in 1909, “To extend our understanding of neural function to the most complex human physiological and psychological activities, it is essential that we first generate a clear and accurate view of the structure of the relevant centers, and of the human brain itself, so that the basic plan—the overview—can be grasped in the blink of an eye.” PMID:17267046

  5. Recent Understanding on Diagnosis and Management of Central Nervous System Vasculitis in Children

    PubMed Central

    Iannetti, Ludovico; Zito, Roberta; Bruschi, Simone; Papetti, Laura; Ulgiati, Fiorenza; Nicita, Francesco; Del Balzo, Francesca; Spalice, Alberto

    2012-01-01

    Central nervous system vasculitides in children may develop as a primary condition or secondary to an underlying systemic disease. Many vasculitides affect both adults and children, while some others occur almost exclusively in childhood. Patients usually present with systemic symptoms with single or multiorgan dysfunction. The involvement of central nervous system in childhood is not frequent and it occurs more often as a feature of subtypes like childhood polyarteritis nodosa, Kawasaki disease, Henoch Schönlein purpura, and Bechet disease. Primary angiitis of the central nervous system of childhood is a reversible cause of severe neurological impairment, including acute ischemic stroke, intractable seizures, and cognitive decline. The first line therapy of CNS vasculitides is mainly based on corticosteroids and immunosuppressor drugs. Other strategies include plasmapheresis, immunoglobulins, and biologic drugs. This paper discusses on current understanding of most frequent primary and secondary central nervous system vasculitides in children including a tailored-diagnostic approach and new evidence regarding treatment. PMID:23008735

  6. What Are the Parts of the Nervous System?

    MedlinePlus

    ... Research Information Find a Study Resources and Publications Neuroscience Condition Information NICHD Research Information Find a Study ... functions does the nervous system control? Why study neuroscience? What are the areas of neuroscience? NICHD Research ...

  7. Enteric nervous system abnormalities are present in human necrotizing enterocolitis: potential neurotransplantation therapy

    PubMed Central

    2013-01-01

    Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased

  8. Nervous system development in lecithotrophic larval and juvenile stages of the annelid Capitella teleta.

    PubMed

    Meyer, Néva P; Carrillo-Baltodano, Allan; Moore, Richard E; Seaver, Elaine C

    2015-01-01

    Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25-53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95-8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Most of the nervous system that forms during

  9. Neurotropic Enterovirus Infections in the Central Nervous System.

    PubMed

    Huang, Hsing-I; Shih, Shin-Ru

    2015-11-24

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  10. Neurotropic Enterovirus Infections in the Central Nervous System

    PubMed Central

    Huang, Hsing-I; Shih, Shin-Ru

    2015-01-01

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells. PMID:26610549

  11. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System.

    PubMed

    Tseng, Ting-Chen; Tao, Lei; Hsieh, Fu-Yu; Wei, Yen; Chiu, Ing-Ming; Hsu, Shan-hui

    2015-06-17

    An injectable, self-healing hydrogel (≈1.5 kPa) is developed for healing nerve-system deficits. Neurosphere-like progenitors proliferate in the hydrogel and differentiate into neuron-like cells. In the zebrafish injury model, the central nervous system function is partially rescued by injection of the hydrogel and significantly rescued by injection of the neurosphere-laden hydrogel. The self-healing hydrogel may thus potentially repair the central nervous system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Teleost fish as a model system to study successful regeneration of the central nervous system.

    PubMed

    Zupanc, Günther K H; Sîrbulescu, Ruxandra F

    2013-01-01

    Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.

  13. Somatic embryogenesis in Hedychium bousigonianum

    USDA-ARS?s Scientific Manuscript database

    An efficient primary somatic embryo (SE) and secondary somatic embryo (SSE) production system was developed for the ornamental ginger Hedychium bousigonianum Pierre ex Gagnepain. Addition of two ethylene inhibitors, salicylic acid (SA) and silver nitrate (AgNO3), to the culture media improved the sy...

  14. Melanoma central nervous system metastases: current approaches, challenges, and opportunities

    PubMed Central

    Cohen, Justine V.; Tawbi, Hussain; Margolin, Kim A.; Amravadi, Ravi; Bosenberg, Marcus; Brastianos, Priscilla K.; Chiang, Veronica L.; de Groot, John; Glitza, Isabella C.; Herlyn, Meenhard; Holmen, Sheri L.; Jilaveanu, Lucia B.; Lassman, Andrew; Moschos, Stergios; Postow, Michael A.; Thomas, Reena; Tsiouris, John A.; Wen, Patrick; White, Richard M.; Turnham, Timothy; Davies, Michael A.; Kluger, Harriet M.

    2017-01-01

    Summary Melanoma central nervous system metastases are increasing, and the challenges presented by this patient population remain complex. In December 2015, the Melanoma Research Foundation and the Wistar Institute hosted the First Summit on Melanoma Central Nervous System (CNS) Metastases in Philadelphia, Pennsylvania. Here, we provide a review of the current status of the field of melanoma brain metastasis research; identify key challenges and opportunities for improving the outcomes in patients with melanoma brain metastases; and set a framework to optimize future research in this critical area. PMID:27615400

  15. The Central Nervous System Sites Mediating the Orexigenic Actions of Ghrelin

    PubMed Central

    Mason, B.L.; Wang, Q.; Zigman, J.M.

    2014-01-01

    The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight. PMID:24111557

  16. A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis

    PubMed Central

    Steinmacher, D. A.; Guerra, M. P.; Saare-Surminski, K.; Lieberei, R.

    2011-01-01

    Background and Aims Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented. Methods Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture. Key Results The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts

  17. A history of the autonomic nervous system: part II: from Reil to the modern era.

    PubMed

    Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane

    2016-12-01

    The history of the study of the autonomic nervous system is rich. At the beginning of the nineteenth century, scientists were beginning to more firmly grasp the reality of this part of the human nervous system. The evolution of our understanding of the autonomic nervous system has a rich history. Our current understanding is based on centuries of research and trial and error.

  18. Association between number of siblings and nervous system tumors suggests an infectious etiology.

    PubMed

    Altieri, Andrea; Castro, Felipe; Bermejo, Justo Lorenzo; Hemminki, Kari

    2006-12-12

    To estimate the effect of the number of siblings on the risk of histopathologic subtypes of tumors of the nervous system using large population-based data. The Swedish Family-Cancer Database comprises 13,613 diagnoses of nervous system tumors with histopathologic information. We analyzed the data using Poisson regression models taking into account potential confounding effects of age, birth cohort, socioeconomic status, and family history of cancer. The rate ratios (RR) for having four or more siblings vs none were significantly increased for hemangioblastoma (RR = 1.68), childhood neuroblastoma (RR = 2.01), and ependymoma (RR = 1.83, p trend < 0.01). For age at diagnosis < or =15 years, the RRs for individuals with three or more younger siblings compared to none were 1.34 for astrocytoma, 2.30 for medulloblastoma, 2.61 for ependymoma, 3.71 for meningioma, and 2.13 for neuroblastoma, with significant trends in risk. Non-significant decreased risks were found between the number of older siblings and nervous system tumors. We provide the first reliable quantification of the effects of number of siblings on the risk of nervous system tumors. Sibship size and number of younger siblings correlate with the incidence of childhood nervous system tumors, suggesting a role of infectious agents in the etiology of the disease.

  19. Gravitational Study of the Central Nervous System

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1983-01-01

    A series of experiments conducted at 1G are discussed with reference to the role of calcium ions in information processing by the central nervous system. A technique is described which allows thin sections of a mammalian hippocampus to be isolated while maintaining neural activity. Two experiments carried out in hypergravic fields are also addressed; one investigating altered stimulation in the auditory system, the other determining temperature regulation responses in hypergravic fields.

  20. Gross anatomy and development of the peripheral nervous system.

    PubMed

    Catala, Martin; Kubis, Nathalie

    2013-01-01

    The nervous system is divided into the central nervous system (CNS) composed of the brain, the brainstem, the cerebellum, and the spinal cord and the peripheral nervous system (PNS) made up of the different nerves arising from the CNS. The PNS is divided into the cranial nerves III to XII supplying the head and the spinal nerves that supply the upper and lower limbs. The general anatomy of the PNS is organized according to the arrangement of the fibers along the rostro-caudal axis. The control of the development of the PNS has been unravelled during the last 30 years. Motor nerves arise from the ventral neural tube. This ventralization is induced by morphogenetic molecules such as sonic hedgehog. In contrast, the sensory elements of the PNS arise from a specific population of cells originating from the roof of the neural tube, namely the neural crest. These cells give rise to the neurons of the dorsal root ganglia, the autonomic ganglia and the paraganglia including the adrenergic neurons of the adrenals. Furthermore, the supportive glial Schwann cells of the PNS originate from the neural crest cells. Growth factors as well as myelinating proteins are involved in the development of the PNS. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Radon exposure and tumors of the central nervous system.

    PubMed

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. [The Role of Imaging in Central Nervous System Infections].

    PubMed

    Yokota, Hajime; Tazoe, Jun; Yamada, Kei

    2015-07-01

    Many infections invade the central nervous system. Magnetic resonance imaging (MRI) is the main tool that is used to evaluate infectious lesions of the central nervous system. The useful sequences on MRI are dependent on the locations, such as intra-axial, extra-axial, and spinal cord. For intra-axial lesions, besides the fundamental sequences, including T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images, advanced sequences, such as diffusion-weighted imaging, diffusion tensor imaging, susceptibility-weighted imaging, and MR spectroscopy, can be applied. They are occasionally used as determinants for quick and correct diagnosis. For extra-axial lesions, understanding the differences among 2D-conventional T1-weighted images, 2D-fat-saturated T1-weighted images, 3D-Spin echo sequences, and 3D-Gradient echo sequence after the administration of gadolinium is required to avoid wrong interpretations. FLAIR plus gadolinium is a useful tool for revealing abnormal enhancement on the brain surface. For the spinal cord, the sequences are limited. Evaluating the distribution and time course of the spinal cord are essential for correct diagnoses. We summarize the role of imaging in central nervous system infections and show the pitfalls, key points, and latest information in them on clinical practices.

  3. Hemoglobin promotes somatic embryogenesis in peanut cultures.

    PubMed

    Jayabalan, N; Anthony, P; Davey, M R; Power, J B; Lowe, K C

    2004-02-01

    Critical parameters influencing somatic embryogenesis include growth regulators and oxygen supply. Consequently, the present investigation has focused on optimization of a somatic embryogenic system for peanut (Arachis hypogaea L.) through media supplementation with the auxin, picloram. The latter at 30 mg L(-1) was optimal for inducing regeneration of somatic embryos from cultured explants of zygotic embryos. In contrast, somatic embryogenesis did not occur in the absence of this growth regulator. An assessment has also been made of the beneficial effect on somatic embryogenesis and plant regeneration of the commercial hemoglobin (Hb) solution, Erythrogen. Hemoglobin at 1:50 and 1:100 (v:v) stimulated increases in mean fresh weight (up to a maximum of 57% over control), mean number of explants producing somatic embryos (15%) and mean number of somatic embryos per explant (29%).

  4. A pediatric renal lymphoma case presenting with central nervous system findings.

    PubMed

    Baran, Ahmet; Küpeli, Serhan; Doğru, Omer

    2013-06-01

    In pediatric patients renal lymphoma frequently presents in the form of multiple, bilateral mass lesions, infrequently as a single or retroperitoneal mass, and rarely as diffuse infiltrative lesions. In patients with apparent central nervous system involvement close attention to other physical and laboratory findings are essential for preventing a delay in the final diagnosis. Herein we present a pediatric patient with renal lymphoma that presented with central nervous system findings that caused a delay in diagnosis. None declared.

  5. Diagnostic Challenges of Central Nervous System Tuberculosis

    PubMed Central

    Loeffler, Ann M.; Honarmand, Somayeh; Flood, Jennifer M.; Baxter, Roger; Jacobson, Susan; Alexander, Rick; Glaser, Carol A.

    2008-01-01

    Central nervous system tuberculosis (TB) was identified in 20 cases of unexplained encephalitis referred to the California Encephalitis Project. Atypical features (encephalitic symptoms, rapid onset, age) and diagnostic challenges (insensitive cerebrospinal fluid [CSF] TB PCR result, elevated CSF glucose levels in patients with diabetes, negative result for tuberculin skin test) complicated diagnosis. PMID:18760024

  6. [Primary malignant melanoma of the central nervous system: A diagnostic challenge].

    PubMed

    Quillo-Olvera, Javier; Uribe-Olalde, Juan Salvador; Alcántara-Gómez, Leopoldo Alberto; Rejón-Pérez, Jorge Dax; Palomera-Gómez, Héctor Guillermo

    2015-01-01

    The rare incidence of primary malignant melanoma of the central nervous system and its ability to mimic other melanocytic tumors on images makes it a diagnostic challenge for the neurosurgeon. A 51-year-old patient, with a tumor located in the right forniceal callosum area. Total surgical excision was performed. Histopathological result was consistent with the diagnosis of primary malignant melanoma of the central nervous system, after ruling out extra cranial and extra spinal melanocytic lesions. The primary malignant melanoma of the central nervous system is extremely rare. There are features in magnetic resonance imaging that increase the diagnostic suspicion; nevertheless there are other tumors with more prevalence that share some of these features through image. Since there is not an established therapeutic standard its prognosis is discouraging. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  7. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia.

    PubMed

    Baytan, Birol; Evim, Melike Sezgin; Güler, Salih; Güneş, Adalet Meral; Okan, Mehmet

    2015-10-01

    The outcome of childhood acute lymphoblastic leukemia has improved because of intensive chemotherapy and supportive care. The frequency of adverse events has also increased, but the data related to acute central nervous system complications during acute lymphoblastic leukemia treatment are sparse. The purpose of this study is to evaluate these complications and to determine their long term outcome. We retrospectively analyzed the hospital reports of 323 children with de novo acute lymphoblastic leukemia from a 13-year period for acute neurological complications. The central nervous system complications of leukemic involvement, peripheral neuropathy, and post-treatment late-onset encephalopathy, and neurocognitive defects were excluded. Twenty-three of 323 children (7.1%) suffered from central nervous system complications during acute lymphoblastic leukemia treatment. The majority of these complications (n = 13/23; 56.5%) developed during the induction period. The complications included posterior reversible encephalopathy (n = 6), fungal abscess (n = 5), cerebrovascular lesions (n = 5), syndrome of inappropriate secretion of antidiuretic hormone (n = 4), and methotrexate encephalopathy (n = 3). Three of these 23 children (13%) died of central nervous system complications, one from an intracranial fungal abscess and the others from intracranial thrombosis. Seven of the survivors (n = 7/20; 35%) became epileptic and three of them had also developed mental and motor retardation. Acute central neurological complications are varied and require an urgent approach for proper diagnosis and treatment. Collaboration among the hematologist, radiologist, neurologist, microbiologist, and neurosurgeon is essential to prevent fatal outcome and serious morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Balance of autonomic nervous system in children having signs of endothelial dysfunction, that were born and are domiciled in contaminated territories.

    PubMed

    Kondrashova, V G; Kolpakov, I E; Vdovenko, V Yu; Leonovych, O S; Lytvynets, O M; Stepanova, E I

    2014-09-01

    somatic diseases requiring the development of prevention measures in children permanently residing in contaminated areas. autonomous nervous system balance, endothelial dysfunction, children, Chornobyl accident. V. G. Kondrashova, I. E. Kolpakov, V. Yu. Vdovenko, O. S. Leonovych, O. M. Lytvynets, E. I. Stepanova.

  9. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians

    PubMed Central

    Saberi, Amir; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A.

    2016-01-01

    Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development. PMID:27163480

  10. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians.

    PubMed

    Saberi, Amir; Jamal, Ayana; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A

    2016-05-01

    Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development.

  11. A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system

    PubMed Central

    Bateman, Randall J.; Siemers, Eric R.; Mawuenyega, Kwasi G.; Wen, Guolin; Browning, Karen R.; Sigurdson, Wendy C.; Yarasheski, Kevin E.; Friedrich, Stuart W.; DeMattos, Ronald B.; May, Patrick C.; Paul, Steven M.; Holtzman, David M.

    2009-01-01

    Objective Accumulation of amyloid-β (Aβ) by over-production or under-clearance in the central nervous system is hypothesized to be a necessary event in the pathogenesis of Alzheimer Disease. However, previously there has not been a method to determine drug effects on Aβ production or clearance in the human central nervous system. The objective of this study was to determine the effects of a gamma-secretase inhibitor on the production of Aβ in the human CNS. Methods We utilized a recently developed method of stable-isotope labeling combined with cerebrospinal fluid sampling to directly measure Aβ production during treatment of a gamma-secretase inhibitor, LY450139. We assessed whether this drug could decrease central nervous system Aβ production in healthy men (age 21–50) at single oral doses of 100mg, 140mg, or 280mg (N=5 per group). Results LY450139 significantly decreased the production of central nervous system Aβ in a dose-dependent fashion, with inhibition of Aβ generation of 47%, 52%, and 84% over a 12 hour period with doses of 100 mg, 140, and 280 mg respectively. There was no difference in Aβ clearance. Interpretation Stable isotope labeling of central nervous system proteins can be utilized to assess the effects of drugs on the production and clearance rates of proteins targeted as potential disease modifying treatments for Alzheimer Disease and other central nervous system disorders. Results from this approach can assist in making decisions about drug dosing and frequency in the design of larger and longer clinical trials for diseases such as Alzheimer Disease, and may accelerate effective drug validation. PMID:19360898

  12. The Nervous System, Science (Experimental): 5363.02.

    ERIC Educational Resources Information Center

    Weiss, Alan; And Others

    This unit of instruction was designed as an intensive in-depth study of the nervous impulse, neurons, brain, spinal cord, and sensory organs. Also included is a study of the endocrine system in its role of maintaining homeostasis. The booklet lists the relevant state-adopted texts and states the performance objectives for the unit. It provides an…

  13. Altered autonomic nervous system activity in women with unexplained recurrent pregnancy loss.

    PubMed

    Kataoka, Kumie; Tomiya, Yumi; Sakamoto, Ai; Kamada, Yasuhiko; Hiramatsu, Yuji; Nakatsuka, Mikiya

    2015-06-01

    Autonomic nervous system activity was studied to evaluate the physical and mental state of women with unexplained recurrent pregnancy loss (RPL). Heart rate variability (HRV) is a measure of beat-to-beat temporal changes in heart rate and provides indirect insight into autonomic nervous system tone and can be used to assess sympathetic and parasympathetic tone. We studied autonomic nervous system activity by measuring HRV in 100 women with unexplained RPL and 61 healthy female volunteers as controls. The degree of mental distress was assessed using the Kessler 6 (K6) scale. The K6 score in women with unexplained RPL was significantly higher than in control women. HRV evaluated on standard deviation of the normal-to-normal interval (SDNN) and total power was significantly lower in women with unexplained RPL compared with control women. These indices were further lower in women with unexplained RPL ≥4. On spectral analysis, high-frequency (HF) power, an index of parasympathetic nervous system activity, was significantly lower in women with unexplained RPL compared with control women, but there was no significant difference in the ratio of low-frequency (LF) power to HF power (LF/HF), an index of sympathetic nervous system activity, between the groups. The physical and mental state of women with unexplained RPL should be evaluated using HRV to offer mental support. Furthermore, study of HRV may elucidate the risk of cardiovascular diseases and the mechanisms underlying unexplained RPL. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  14. [Late sequelae of central nervous system prophylaxis in children with acute lymphoblastic leukemia: high doses of intravenous methotrexate versus radiotherapy of the central nervous system--review of literature].

    PubMed

    Zając-Spychała, Olga; Wachowiak, Jacek

    2012-01-01

    Acute lymphoblastic leukemia is the most common malignancy in children. All current therapy regimens used in the treatment of childhood acute lymphoblastic leukemia include prophylaxis of the central nervous system. Initially it was thought that the best way of central nervous system prophylaxis is radiotherapy. But despite its effectiveness this method, may cause late sequelae and complications. In the programme currently used in Poland to treat acute lymphoblastic leukemia, prophylactic radiotherapy has been reduced by 50% (12 Gy) and is used only in patients stratified into the high risk group and in patients diagnosed as T-cell ALL (T-ALL). Complementary to radiotherapy, intrathecal methotrexate is given alone or in combination with cytarabine and hydrocortisone is given, as well as systemic chemotherapy with intravenous methotrexate is administered in high or medium doses (depending on risk groups and leukemia immunophenotype). Recent studies have shown that high dose irradiation of the central nervous system impairs cognitive development causing memory loss, visuomotor coordination impairment, attention disorders and reduction in the intelligence quotient. It has been proved that the degree of cognitive impairment depends on the radiation dose directed to the medial temporal lobe structures, particularly in the hippocampus and the surrounding cortex. Also, methotrexate used intravenously in high doses, interferes with the metabolism of folic acid which is necessary for normal development and the optimal functioning of neurons in the central nervous system. It has been proved that patients who have been treated with high doses of methotrexate are characterized by reduced memory skills and a lower intelligence quotient. The literature data concerning long term neuroanatomical abnormalities and neuropsychological deficits are ambiguous, and there is still no data concerning current methods of central nervous system prophylaxis with low doses of irradiation in

  15. Predicting Adaptive Behavior in the Environment from Central Nervous System Dynamics

    PubMed Central

    Proekt, Alex; Wong, Jane; Zhurov, Yuriy; Kozlova, Nataliya; Weiss, Klaudiusz R.; Brezina, Vladimir

    2008-01-01

    To generate adaptive behavior, the nervous system is coupled to the environment. The coupling constrains the dynamical properties that the nervous system and the environment must have relative to each other if adaptive behavior is to be produced. In previous computational studies, such constraints have been used to evolve controllers or artificial agents to perform a behavioral task in a given environment. Often, however, we already know the controller, the real nervous system, and its dynamics. Here we propose that the constraints can also be used to solve the inverse problem—to predict from the dynamics of the nervous system the environment to which they are adapted, and so reconstruct the production of the adaptive behavior by the entire coupled system. We illustrate how this can be done in the feeding system of the sea slug Aplysia. At the core of this system is a central pattern generator (CPG) that, with dynamics on both fast and slow time scales, integrates incoming sensory stimuli to produce ingestive and egestive motor programs. We run models embodying these CPG dynamics—in effect, autonomous Aplysia agents—in various feeding environments and analyze the performance of the entire system in a realistic feeding task. We find that the dynamics of the system are tuned for optimal performance in a narrow range of environments that correspond well to those that Aplysia encounter in the wild. In these environments, the slow CPG dynamics implement efficient ingestion of edible seaweed strips with minimal sensory information about them. The fast dynamics then implement a switch to a different behavioral mode in which the system ignores the sensory information completely and follows an internal “goal,” emergent from the dynamics, to egest again a strip that proves to be inedible. Key predictions of this reconstruction are confirmed in real feeding animals. PMID:18989362

  16. Differential expression of neuroligin genes in the nervous system of zebrafish.

    PubMed

    Davey, Crystal; Tallafuss, Alexandra; Washbourne, Philip

    2010-02-01

    The establishment and maturation of appropriate synaptic connections is crucial in the development of neuronal circuits. Cellular adhesion is believed to play a central role in this process. Neuroligins are neuronal cell adhesion molecules that are hypothesized to act in the initial formation and maturation of synaptic connections. In order to establish the zebrafish as a model to investigate the in vivo role of Neuroligin proteins in nervous system development, we identified the zebrafish orthologs of neuroligin family members and characterized their expression. Zebrafish possess seven neuroligin genes. Synteny analysis and sequence comparisons show that NLGN2, NLGN3, and NLGN4X are duplicated in zebrafish, but NLGN1 has a single zebrafish ortholog. All seven zebrafish neuroligins are expressed in complex patterns in the developing nervous system and in the adult brain. The spatial and temporal expression patterns of these genes suggest that they occupy a role in nervous system development and maintenance.

  17. A Functional Subnetwork Approach to Designing Synthetic Nervous Systems That Control Legged Robot Locomotion

    PubMed Central

    Szczecinski, Nicholas S.; Hunt, Alexander J.; Quinn, Roger D.

    2017-01-01

    A dynamical model of an animal’s nervous system, or synthetic nervous system (SNS), is a potentially transformational control method. Due to increasingly detailed data on the connectivity and dynamics of both mammalian and insect nervous systems, controlling a legged robot with an SNS is largely a problem of parameter tuning. Our approach to this problem is to design functional subnetworks that perform specific operations, and then assemble them into larger models of the nervous system. In this paper, we present networks that perform addition, subtraction, multiplication, division, differentiation, and integration of incoming signals. Parameters are set within each subnetwork to produce the desired output by utilizing the operating range of neural activity, R, the gain of the operation, k, and bounds based on biological values. The assembly of large networks from functional subnetworks underpins our recent results with MantisBot. PMID:28848419

  18. Lavender and the Nervous System

    PubMed Central

    Koulivand, Peir Hossein; Khaleghi Ghadiri, Maryam; Gorji, Ali

    2013-01-01

    Lavender is traditionally alleged to have a variety of therapeutic and curative properties, ranging from inducing relaxation to treating parasitic infections, burns, insect bites, and spasm. There is growing evidence suggesting that lavender oil may be an effective medicament in treatment of several neurological disorders. Several animal and human investigations suggest anxiolytic, mood stabilizer, sedative, analgesic, and anticonvulsive and neuroprotective properties for lavender. These studies raised the possibility of revival of lavender therapeutic efficacy in neurological disorders. In this paper, a survey on current experimental and clinical state of knowledge about the effect of lavender on the nervous system is given. PMID:23573142

  19. Bioterrorism and the nervous system.

    PubMed

    Han, M H; Zunt, J R

    2003-11-01

    Recent events of war, terrorist attacks, and mail-borne anthrax exposure have produced increasing awareness of potential bioterrorism attacks in the United States and other parts of the world. Physicians and healthcare personnel play a key role in identifying potential bioterrorist attacks. Early recognition and preparedness for bioterrorism-associated illnesses is especially important for neurologists because most bioterrorism agents can directly or indirectly affect the nervous system. This article reviews the neurologic manifestations, diagnosis, and treatments of syndromes caused by potential bioterrorism agents, as well as the potential side effects of vaccines against some of these agents.

  20. Autoantibodies to nervous system-specific proteins are elevated in sera of flight crew members: biomarkers for nervous system injury.

    PubMed

    Abou-Donia, Mohamed B; Abou-Donia, Martha M; ElMasry, Eman M; Monro, Jean A; Mulder, Michel F A

    2013-01-01

    This descriptive study reports the results of assays performed to detect circulating autoantibodies in a panel of 7 proteins associated with the nervous system (NS) in sera of 12 healthy controls and a group of 34 flight crew members including both pilots and attendants who experienced adverse effects after exposure to air emissions sourced to the ventilation system in their aircrafts and subsequently sought medical attention. The proteins selected represent various types of proteins present in nerve cells that are affected by neuronal degeneration. In the sera samples from flight crew members and healthy controls, immunoglobin (IgG) was measured using Western blotting against neurofilament triplet proteins (NFP), tubulin, microtubule-associated tau proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and glial S100B protein. Significant elevation in levels of circulating IgG-class autoantibodies in flight crew members was found. A symptom-free pilot was sampled before symptoms and then again afterward. This pilot developed clinical problems after flying for 45 h in 10 d. Significant increases in autoantibodies were noted to most of the tested proteins in the serum of this pilot after exposure to air emissions. The levels of autoantibodies rose with worsening of his condition compared to the serum sample collected prior to exposure. After cessation of flying for a year, this pilot's clinical condition improved, and eventually he recovered and his serum autoantibodies against nervous system proteins decreased. The case study with this pilot demonstrates a temporal relationship between exposure to air emissions, clinical condition, and level of serum autoantibodies to nervous system-specific proteins. Overall, these results suggest the possible development of neuronal injury and gliosis in flight crew members anecdotally exposed to cabin air emissions containing organophosphates. Thus, increased

  1. Risk of central nervous system defects in offspring of women with and without mental illness.

    PubMed

    Ayoub, Aimina; Fraser, William D; Low, Nancy; Arbour, Laura; Healy-Profitós, Jessica; Auger, Nathalie

    2018-02-22

    We sought to determine the relationship between maternal mental illness and the risk of having an infant with a central nervous system defect. We analyzed a cohort of 654,882 women aged less than 20 years between 1989 and 2013 who later delivered a live born infant in any hospital in Quebec, Canada. The primary exposure was mental illness during pregnancy or hospitalization for mental illness before pregnancy. The outcomes were neural and non-neural tube defects of the central nervous system in any offspring. We computed risk ratios (RR) and 95% confidence intervals (CI) for the association between mental disorders and risk of central nervous system defects in log-binomial regression models adjusted for age at delivery, total parity, comorbidity, socioeconomic deprivation, place of residence, and time period. Maternal mental illness was associated with an increased risk of nervous system defects in offspring (RR 1.76, 95% CI 1.64-1.89). Hospitalization for any mental disorder was more strongly associated with non-neural tube (RR 1.84, 95% CI 1.71-1.99) than neural tube defects (RR 1.31, 95% CI 1.08-1.59). Women at greater risk of nervous system defects in offspring tended to be diagnosed with multiple mental disorders, have more than one hospitalization for mental disease, or be 17 or older at first hospitalization. A history of mental illness is associated with central nervous system defects in offspring. Women hospitalized for mental illness may merit counseling at first symptoms to prevent central nervous system defects at pregnancy.

  2. Autonomic Nervous System in Paralympic Athletes with Spinal Cord Injury.

    PubMed

    Walter, Matthias; Krassioukov, Andrei V

    2018-05-01

    Individuals sustaining a spinal cord injury (SCI) frequently suffer from sensorimotor and autonomic impairment. Damage to the autonomic nervous system results in cardiovascular, respiratory, bladder, bowel, and sexual dysfunctions, as well as temperature dysregulation. These complications not only impede quality of life, but also affect athletic performance of individuals with SCI. This article summarizes existing evidence on how damage to the spinal cord affects the autonomic nervous system and impacts the performance in athletes with SCI. Also discussed are frequently used performance-enhancing strategies, with a special focus on their legal aspect and implication on the athletes' health. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed Central

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  4. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  5. Alpha-7 Nicotinic Receptors in Nervous System Disorders: From Function to Therapeutic Perspectives.

    PubMed

    De Jaco, Antonella; Bernardini, Laura; Rosati, Jessica; Tata, Ada Maria

    2017-01-01

    The α7 nicotinic receptor consists of identical subunits and is one of the most abundant acetylcholine receptors in the mammalian central nervous system. However its expression is also found in the peripheral nervous system as well as in the immune system and various peripheral tissues. Nicotinic Receptors: They are involved in the regulation of several activities ranging from excitatory neurotransmission, the modulation of the release of several neurotransmitters, regulation of neurite outgrowth, and even neuronal survival/death. Its expression is found in brain areas that underlie learning and memory, suggesting their involvement in regulating cognitive functions. The α7-nicotinic receptor has a strategic role during development in regulating molecular pathways activated during neurogenesis. Because of its pleiotropic effects, receptor dysfunction or dysregulated expression is found in pathophysiological conditions of the nervous system including neurodegenerative diseases and neurodevelopmental disorders. Here we review the physiological and pathological roles of alpha-7 nicotinic receptor in different nervous system disorders and the current therapeutic strategies developed to target selectively this receptor for potentiating or reducing its functions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. [Process in menstrual blood-derived mesenchymal stem cells for treatment of central nervous system diseases].

    PubMed

    Liu, Mengmeng; Cheng, Xinran; Li, Kaikai; Xu, Mingrui; Wu, Yongji; Wang, Mengli; Zhang, Qianru; Yan, Wenyong; Luo, Chang; Zhao, Shanting

    2018-05-25

    Stem cell research has become a frontier in the field of life sciences, and provides an ideal model for exploring developmental biology problems such as embryogenesis, histiocytosis, and gene expression regulation, as well as opens up new doors for clinical tissue defective and inheritance diseases. Among them, menstrual blood-derived stem cells (MenSCs) are characterized by wide source, multi-directional differentiation potential, low immune rejection characteristics. Thus, MenSCs can achieve individual treatment and have the most advantage of the clinical application. The central nervous system, including brain and spinal cord, is susceptible to injury. And lethality and morbidity of them tops the list of all types of trauma. Compared to peripheral nervous system, recovery of central nervous system after damage remains extremely hard. However, the treatment of stem cells, especially MenSCs, is expected to solve this problem. Therefore, biological characteristics of MenSCs and their treatment in the respect of central nervous system diseases have been reviewed at home and abroad in recent years, so as to provide reference for the treatment of central nervous system diseases.

  7. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee...

  8. Somatic tinnitus prevalence and treatment with tinnitus retraining therapy.

    PubMed

    Ostermann, K; Lurquin, P; Horoi, M; Cotton, P; Hervé, V; Thill, M P

    2016-01-01

    Somatic tinnitus originates from increased activity of the dorsal cochlear nucleus, a cross-point between the somatic and auditory systems. Its activity can be modified by auditory stimulation or somatic system manipulation. Thus, sound enrichment and white noise stimulation might decrease tinnitus and associated somatic symptoms. The present uncontrolled study sought to determine somatic tinnitus prevalence among tinnitus sufferers, and to investigate whether sound therapy with counselling (tinnitus retraining therapy; TRT) may decrease tinnitus-associated somatic symptoms. To determine somatic tinnitus prevalence, 70 patients following the TRT protocol completed the Jastreboff Structured Interview (JSI) with additional questions regarding the presence and type of somatic symptoms. Among 21 somatic tinnitus patients, we further investigated the effects of TRT on tinnitus-associated facial dysesthesia. Before and after three months of TRT, tinnitus severity was evaluated using the Tinnitus Handicap Inventory (THI), and facial dysesthesia was assessed with an extended JSI-based questionnaire. Among the evaluated tinnitus patients, 56% presented somatic tinnitus-including 51% with facial dysesthesia, 36% who could modulate tinnitus by head and neck movements, and 13% with both conditions. Self-evaluation indicated that TRT significantly improved tinnitus and facial dysesthesia in 76% of patients. Three months of TRT led to a 50% decrease in mean THI and JSI scores regarding facial dysesthesia. Somatic tinnitus is a frequent and underestimated condition. We suggest an extension of the JSI, including specific questions regarding somatic tinnitus. TRT significantly improved tinnitus and accompanying facial dysesthesia, and could be a useful somatic tinnitus treatment.

  9. Enteric nervous system development: migration, differentiation, and disease

    PubMed Central

    Lake, Jonathan I.

    2013-01-01

    The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is the most neurochemically diverse branch of the peripheral nervous system, consisting of two layers of ganglia and fibers encircling the gastrointestinal tract. The ENS is vital for life and is capable of autonomous regulation of motility and secretion. Developmental studies in model organisms and genetic studies of the most common congenital disease of the ENS, Hirschsprung disease, have provided a detailed understanding of ENS development. The ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, proliferates, and migrates within the intestinal wall until the entire bowel is colonized with enteric neural crest-derived cells (ENCDCs). After initial migration, the ENS develops further by responding to guidance factors and morphogens that pattern the bowel concentrically, differentiating into glia and neuronal subtypes and wiring together to form a functional nervous system. Molecules controlling this process, including glial cell line-derived neurotrophic factor and its receptor RET, endothelin (ET)-3 and its receptor endothelin receptor type B, and transcription factors such as SOX10 and PHOX2B, are required for ENS development in humans. Important areas of active investigation include mechanisms that guide ENCDC migration, the role and signals downstream of endothelin receptor type B, and control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses on disease treatment by exploring the natural role of ENS stem cells and investigating potential therapeutic uses. Disease prevention may also be possible by modifying the fetal microenvironment to reduce the penetrance of Hirschsprung disease-causing mutations. PMID:23639815

  10. Cortisol and somatization.

    PubMed

    Rief, W; Auer, C

    2000-05-01

    Somatization symptoms are frequently associated with depression, anxiety, and feelings of distress. These features interact with the activity of the HPA-axis. Therefore we investigated relationships between somatization symptoms and cortisol. Seventy-seven participants were classified into three groups: somatization syndrome (at least eight physical symptoms from the DSM-IV somatization disorder list), somatization syndrome combined with major depression, and healthy controls. The following data were collected: salivary cortisol at three time points (morning, afternoon, evening), nighttime urinary cortisol, serum cortisol after the dexamethasone suppression test (DST), and psychological variables such as depression, anxiety, somatization, and hypochondriasis. Salivary cortisol showed typical diurnal variations. However, the groups did not differ on any of the cortisol variables. A possible explanation may be counteracting effects of somatization and depression. Exploratory correlational analyses revealed that associations between cortisol and psychopathological variables were time-dependent. DST results correlated with psychological aspects of somatization, but not with the number of somatoform symptoms per se.

  11. Neuron-Glia Interactions and Nervous System Homeostasis

    DTIC Science & Technology

    1988-06-01

    active neuron states, the mechanisms which glial cells and neurons use to modulate each others metabolic state and the chemical, electrical and... mechanisms by which axons/neurons and their glial cell investments communicate to actively regulate the ionic microenvironment of the nervous system and...of the glial cell in maintenance of the ionic homeostasis of the perineural environment during resting and active neuron states, the mechanisms which

  12. Somatic KRAS mutation in an infant with linear nevus sebaceous syndrome associated with lymphatic malformations: A case report and literature review.

    PubMed

    Lihua, Jiang; Feng, Gao; Shanshan, Mao; Jialu, Xu; Kewen, Jiang

    2017-11-01

    Linear nevus sebaceous syndrome (LNSS) is a rare neurocutaneous syndrome, characterized by nevus sebaceous,central nervous system (CNS), ocular and skeletal abnormalities. The present study describes KRAS somatic mosaic mutation in a case of LNSS with lymphatic malformations (LMs). A 4-month-old female with a clinical diagnosis of LNSS presented with infantile spasms, mental retardation, skull dysplasia, ocular abnormalities, congenital atrial septal defect, and LMs. Cervical ultrasonography revealed a 4.6 × 4.6 × 2.2cm no echo packet with clear boundary in the subcutaneous tissues of the right neck. The neck MRI indicated a cyst in the subcutaneous tissues of the right neck. Whole-exome sequencing revealed a low-level heterozygous mutation of the KRAS gene (c.35C > T; p.G12D, 19%) in the skin lesion sample. This mutation was not present in the blood samples of the patient and her parents. The patient received sclerotherapy with paicibanil (OK-432) injection for the cyst. Following 1 year of treatment, the patient exhibited fewer seizures. The mental and motor development was significantly improved. The patient can currently walk with assistance and speak simple words. LNSS is a rare, congenital neurocutaneous syndrome consisting of a spectrum of abnormalities involving the skin, central nervous system, eyes, LMs and other systems. LNSS can be caused by postzygotic somatic mutation in the RAS family of genes. Multidisciplinary evaluation and treatment is needed. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  13. Statin Therapy Inhibits Remyelination in the Central Nervous System

    PubMed Central

    Miron, Veronique E.; Zehntner, Simone P.; Kuhlmann, Tanja; Ludwin, Samuel K.; Owens, Trevor; Kennedy, Timothy E.; Bedell, Barry J.; Antel, Jack P.

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood-brain barrier-permeable statin in multiple sclerosis clinical trials, has been shown to impact the in vitro processes that have been implicated in remyelination. Animals were fed a cuprizone-supplemented diet for 6 weeks to induce localized demyelination in the corpus callosum; subsequent return to normal diet for 3 weeks stimulated remyelination. Simvastatin was injected intraperitoneally during the period of coincident demyelination and OPC maturation (weeks 4 to 6), throughout the entire period of OPC responses (weeks 4 to 9), or during the remyelination-only phase (weeks 7 to 9). Simvastatin treatment (weeks 4 to 6) caused a decrease in myelin load and both Olig2strong and Nkx2.2strong OPC numbers. Simvastatin treatment (weeks 4 to 9 and 7 to 9) caused a decrease in myelin load, which was correlated with a reduction in Nkx2.2strong OPCs and an increase in Olig2strong cells, suggesting that OPCs were maintained in an immature state (Olig2strong/Nkx2.2weak). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes. PMID:19349355

  14. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  15. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  16. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  17. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  18. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  19. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  20. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  1. Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects

    PubMed Central

    Darwazeh, Rami; Yan, Yi

    2013-01-01

    Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study. PMID:25206579

  2. Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects.

    PubMed

    Darwazeh, Rami; Yan, Yi

    2013-10-05

    Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.

  3. A history of the autonomic nervous system: part I: from Galen to Bichat.

    PubMed

    Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane

    2016-12-01

    The development of our current understanding of the autonomic nervous system has a rich history with many international contributors. Although our thoughts of an autonomic nervous system arose with the Greeks, the evolution and final understanding of this neural network would not be fully realized until centuries later. Therefore, our current knowledge of this system is based on hundreds of years of hypotheses and testing and was contributed to by many historic figures.

  4. [Central nervous system dysgerminoma: a clinicopathological study of 3 cases].

    PubMed

    Bellil, Selma; Braham, Emna; Limaiem, Faten; Bellil, Khadija; Chelly, Ines; Mekni, Amina; Haouet, Slim; Zitouna, Moncef; Jemel, Hafedh; Khaldi, Moncef; Kchir, Nidhameddine

    2009-03-01

    Intracranial germ cell tumors are rarely seen and typically localize in the pineal or suprasellar region. The largest category of germ cell tumors is dysgerminoma. to describe clinicopathological features and immunohistochemical profile of dysgerminomas. We report three cases of central nervous system dysgerminomas. There were two young women and a man who were 6, 11 and 23-year-old. They presented with symptoms of insipidus diabetes (n=3) with association to visual field defects in the third case. Radiological findings showed a supra seller lesion in two cases. Double localization in the pineal and suprasellar regions was seen in the third case. Histologic examination and immunohistochemical study of surgical specimen were consistent with primary central nervous system dysgerminoma.

  5. [The role of metalloprotease in pathogenesis of nervous system diseases].

    PubMed

    Mirowska, D; Członkowska, A

    2001-01-01

    Matrix Metalloproteases (MMPs) comprise a big family of proteolytic enzymes secreted into extracellular matrix and involved in remodelling of many tissues. The MMPs' activity is regulated on many levels. It is also determined by specific inhibitors known as tissue inhibitors of metalloproteases (TIMPs). Several studies revealed that MMPs have a role not only in physiological processes but also in pathophysiology of nervous system diseases, such as multiplex sclerosis, Guillan-Barré syndrome and strokes. Concerning demyelination MMPs are responsible for degradation of myelin components and facilitation of immune cells migration into inflammatory sites by degrading vascular basement membrane. We still investigate substances with positive clinical effect on the nervous system diseases due to MMPs inactivation.

  6. [Comorbide somatic pathology in servicemen with neurotic disorders].

    PubMed

    Kurasov, E S; Marchenko, A A; Krasnov, A A; Golovach, I G; Kozlova, S N

    2012-04-01

    Prevalence and structure of comorbidity a somatic pathology in military men with neurotic disorders was studied. It was established that 40,4% of surveyed noted concomitant somatic pathology, the structure of which was dominated by gastro-intestinal tract (26,8%), and pathology of the cardiovascular system (21,6%). It is shown that concomitant somatic pathology provided aggravating effect on clinic neurotic disorders in serviceman, making it difficult to diagnose mental disorders. The greatest risk concomitant a somatic pathology was marked in patients with depressive and somatoform disorders. Indicates the need for specialized standards of care for persons with comorbid mental and somatic disorders.

  7. Neurognathostomiasis, a neglected parasitosis of the central nervous system.

    PubMed

    Katchanov, Juri; Sawanyawisuth, Kittisak; Chotmongkoi, Verajit; Nawa, Yukifumi

    2011-07-01

    Gnathostomiasis is a foodborne zoonotic helminthic infection caused by the third-stage larvae of Gnathostoma spp. nematodes. The most severe manifestation involves infection of the central nervous system, neurognathostomiasis. Although gnathostomiasis is endemic to Asia and Latin America, almost all neurognathostomiasis cases are reported from Thailand. Despite high rates of illness and death, neurognathostomiasis has received less attention than the more common cutaneous form of gnathostomiasis, possibly because of the apparent geographic confinement of the neurologic infection to 1 country. Recently, however, the disease has been reported in returned travelers in Europe. We reviewed the English-language literature on neurognathostomiasis and analyzed epidemiology and geographic distribution, mode of central nervous system invasion, pathophysiology, clinical features, neuroimaging data, and treatment options. On the basis of epidemiologic data, clinical signs, neuroimaging, and laboratory findings, we propose diagnostic criteria for neurognathostomiasis.

  8. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise.

    PubMed

    Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.

  9. A host defense role for a natural antiviral substance in the nervous system.

    PubMed

    Baron, S; Chopra, A K; Coppenhaver, D H; Gelman, B B; Poast, J; Singh, I P

    1998-05-15

    The pathogenesis of virus infections of the nervous system (NS) is regulated by host defenses. The defensive role of a major constitutive antiviral substance was studied by determining its distribution in the human nervous system, its concentration and the ability of this viral inhibitor to protect mice against viral infection. The 4000 kDa inhibitor complex in the human nervous system was detected in brain gray and white matter, spinal cord, and sciatic nerve but not in human cerebrospinal fluid. The inhibitor was found in the extracellular medium incubated with minced murine brain. The inhibitory titer ranged from approximately 50 to 200 antiviral units per gram against polio 1, Semliki Forest, Banzi, mengo, Newcastle disease and herpes simplex 1 viruses. The inhibitor is composed of lipid and essential protein and carbohydrate moieties as determined by enzymatic inactivation. Protection of inhibitor-treated mice was demonstrated against both an alphavirus and a picornavirus. Thus a natural defensive role for the broadly antiviral inhibitor is suggested by its constitutively high concentration, wide distribution in nervous system tissues, presence in extracellular fluid and its ability to provide protection in infected mice.

  10. Tachykinin-1 in the central nervous system regulates adiposity in rodents.

    PubMed

    Trivedi, Chitrang; Shan, Xiaoye; Tung, Yi-Chun Loraine; Kabra, Dhiraj; Holland, Jenna; Amburgy, Sarah; Heppner, Kristy; Kirchner, Henriette; Yeo, Giles S H; Perez-Tilve, Diego

    2015-05-01

    Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection of several nuclei of the central nervous system expressing the ghrelin receptor (GH secretagoge receptor) with microarray gene expression analysis to identify additional neuronal systems involved in the control of central nervous system-ghrelin action. We identified tachykinin-1 (Tac1) as a gene negatively regulated by ghrelin in the hypothalamus. Furthermore, we identified neuropeptide k as the TAC1-derived peptide with more prominent activity, inducing negative energy balance when delivered directly into the brain. Conversely, loss of Tac1 expression enhances the effectiveness of ghrelin promoting fat mass gain both in male and in female mice and increases the susceptibility to diet-induced obesity in ovariectomized mice. Taken together, our data demonstrate a role TAC1 in the control energy balance by regulating the levels of adiposity in response to ghrelin administration and to changes in the status of the gonadal function.

  11. [Central nervous system control of energy homeostasis].

    PubMed

    Machleidt, F; Lehnert, H

    2011-03-01

    The brain is continuously supplied with information about the distribution and amount of energy stores from the body periphery. Endocrine, autonomic and cognitive-hedonic signals are centrally integrated and exert effects on the whole organism via anabolic and catabolic pathways. The adiposity signals insulin and leptin reflect the amount of body fat and are part of a negative feedback mechanism between the periphery and the central nervous system. The hypothalamic arcuate nucleus is the most important central nervous structure, which integrates this information. Furthermore, the CNS is able to directly measure and to respond to changes in the concentration of certain nutrients. In order to develop effective therapies for the treatment of disorders of energy balance the further elucidation of these neuro-biological processes is of crucial importance. This article provides an overview of the CNS regulation of metabolism and its underlying molecular mechanisms. © Georg Thieme Verlag KG Stuttgart · New York.

  12. The BIRN Project: Imaging the Nervous System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellisman, Mark

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences andmore » protein products. The general premise of the neuroscience goal is simple; namely that with "complete" knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.« less

  13. The BIRN Project: Imaging the Nervous System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellisman, Mark

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences andmore » protein products. The general premise of the neuroscience goal is simple; namely that with 'complete' knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their cell and tissue contexts.« less

  14. The evolution of nervous system patterning: insights from sea urchin development

    PubMed Central

    Angerer, Lynne M.; Yaguchi, Shunsuke; Angerer, Robert C.; Burke, Robert D.

    2011-01-01

    Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields – the anterior neuroectoderm and the more posterior ciliary band neuroectoderm – during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution. PMID:21828090

  15. Role of Somatic Testicular Cells during Mouse Spermatogenesis in Three-Dimensional Collagen Gel Culture System

    PubMed Central

    Khajavi, Noushafarin; Akbari, Mohammad; Abolhassani, Farid; Dehpour, Ahmad Reza; Koruji, Morteza; Habibi Roudkenar, Mehryar

    2014-01-01

    Objective Spermatogonial stem cells (SSCs) are the only cell type that can restore fertility to an infertile recipient following transplantation. Much effort has been made to develop a protocol for differentiating isolated SSCs in vitro. Recently, three-dimensional (3D) culture system has been introduced as an appropriate microenvironment for clonal expansion and differentiation of SSCs. This system provides structural support and multiple options for several manipulation such as addition of different cells. Somatic cells have a critical role in stimulating spermatogenesis. They provide complex cell to cell interaction, transport proteins and produce enzymes and regulatory factors. This study aimed to optimize the culture condition by adding somatic testicular cells to the collagen gel culture system in order to induce spermatogenesis progression. Materials and Methods In this experimental study, the disassociation of SSCs was performed by using a two-step enzymatic digestion of type I collagenase, hyaluronidase and DNase. Somatic testicular cells including Sertoli cells and peritubular cells were obtained after the second digestion. SSCs were isolated by Magnetic Activated Cell Sorting (MACS) using GDNF family receptor alpha-1 (Gfrα-1) antibody. Two experimental designs were investigated. 1. Gfrα-1 positive SSCs were cultured in a collagen solution. 2. Somatic testicular cells were added to the Gfrα-1 positive SSCs in a collagen solution. Spermatogenesis progression was determined after three weeks by staining of synaptonemal complex protein 3 (SCP3)-positive cells. Semi-quantitative Reverse Transcription PCR was undertaken for SCP3 as a meiotic marker and, Crem and Thyroid transcription factor-1 (TTF1) as post meiotic markers. For statistical analysis student t test was performed. Results Testicular supporter cells increased the expression of meiotic and post meiotic markers and had a positive effect on extensive colony formation. Conclusion Collagen gel

  16. A microdroplet cell culture based high frequency somatic embryogenesis system for pigeonpea, Cajanus cajan (L.) Millsp.

    PubMed

    Kumar, Nagan Udhaya; Gnanaraj, Muniraj; Sindhujaa, Vajravel; Viji, Maluventhen; Manoharan, Kumariah

    2015-09-01

    A protocol for high frequency production of somatic embryos was worked out in pigeonpea, Cajanus cajan (L.) Millsp. The protocol involved sequential employment of embryogenic callus cultures, low density cell suspension cultures and a novel microdroplet cell culture system. The microdroplet cell cultures involved culture of a single cell in 10 μI of Murashige and Skoog's medium supplemented with phytohormones, growth factors and phospholipid precursors. By employing the microdroplet cell cultures, single cells in isolation were grown into cell clones which developed somatic embryos. Further, 2,4-dichlorophenoxyacetic acid, kinetin, polyethylene glycol, putrescine, spermine, spermidine, choline chloride, ethanolamine and LiCl were supplemented to the low density cell suspension cultures and microdroplet cell cultures to screen for their cell division and somatic embryogenesis activity. Incubation of callus or the inoculum employed for low density cell suspension cultures and microdroplet cell cultures with polyethylene glycol was found critical for induction of somatic embryogenesis. Somatic embryogenesis at a frequency of 1.19, 3.16 and 6.51 per 10(6) cells was achieved in the callus, low density cell suspension cultures and microdroplet cell cultures, respectively. Advantages of employing microdroplet cell cultures for high frequency production of somatic embryos and its application in genetic transformation protocols are discussed.

  17. Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity.

    PubMed

    Afshar, Maryam; Birnbaum, Daniel; Golden, Carla

    2014-06-01

    The pathogenesis of methotrexate central nervous system toxicity is multifactorial, but it is likely related to central nervous system folate homeostasis. The use of folinate rescue has been described to decrease toxicity in patients who had received intrathecal methotrexate. It has also been described in previous studies that there is an elevated level of homocysteine in plasma and cerebrospinal fluid of patients who had received intrathecal methotrexate. Homocysteine is an N-methyl-D-aspartate receptor agonist. The use of dextromethorphan, noncompetitive N-methyl-D-aspartate receptor receptor antagonist, has been used in the treatment of sudden onset of neurological dysfunction associated with methotrexate toxicity. It remains unclear whether the dextromethorphan impacted the speed of recovery, and its use remains controversial. This study reviews the use of dextromethorphan in the setting of subacute methotrexate central nervous system toxicity. Charts of 18 patients who had sudden onset of neurological impairments after receiving methotrexate and were treated with dextromethorphan were reviewed. The use of dextromethorphan in most of our patients resulted in symptomatic improvement. In this patient population, earlier administration of dextromethorphan resulted in faster improvement of impairments and led to prevention of recurrence of seizure activity induced by methotrexate central nervous system toxicity. Our study provides support for the use of dextromethorphan in patients with subacute methotrexate central nervous system toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment

    MedlinePlus

    ... information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Reviewers and ...

  19. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    ERIC Educational Resources Information Center

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  20. MMPI screening scales for somatization disorder.

    PubMed

    Wetzel, R D; Brim, J; Guze, S B; Cloninger, C R; Martin, R L; Clayton, P J

    1999-08-01

    44 items on the MMPI were identified which appear to correspond to some of the symptoms in nine of the 10 groups on the Perley-Guze checklist for somatization disorder (hysteria). This list was organized into two scales, one reflecting the total number of symptoms endorsed and the other the number of organ systems with at least one endorsed symptom. Full MMPIs were then obtained from 29 women with primary affective disorder and 37 women with somatization disorder as part of a follow-up study of a consecutive series of 500 psychiatric clinic patients seen at Washington University. Women with the diagnosis of somatization disorder scored significantly higher on the somatization disorder scales created from the 44 items than did women with only major depression. These new scales appeared to be slightly more effective in identifying somatization disorder than the use of the standard MMPI scales for hypochondriasis and hysteria. Further development is needed.

  1. CERTAIN SPECIFIC FEATURES OF THE HIGHER NERVOUS ACTIVITY OF FULLY GROWN ANIMALS IRRADIATED ANTENATALLY WITH IONIZING RADIATION. I. THE INFLUENCE OF IONIZING RADIATION ON THE OFFSPRING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piontkovskii, I.A.

    1958-09-01

    Irradiation of pregnant female aniamals and women with ionizing radiation may cause the appearance of a variety of congenital deformities in the offspring and may interfere with their postnatal development. L. Hicks points out the particular sensitivity of the nervous system of the embryo to ionizing radiation. Thus irradiation of rats on the 9th, 11th, 12th, and 13th days of prenatal development may cause, in addition to somatic deformities, anencephaly (on the 9th day), hydrocephaly (on the 11th day), microcephaly (on the 12th13th day), failure of development of the subcortical structures, the corpora callosa and so on. The influence ofmore » ionizing radiation on the nervous system during antenatal irradiation has been studied mainly morphologically. There are no indications in the literature of the state of the higher nervous activity of fully grown animals exposed at various periods of their antenatal development to the action of ionizing radiation. The effect of ionizing radiation, applied in various doses and at different stages of embryonic development, on the state of the higher nervous activity of animals was studied. (auth)« less

  2. Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans.

    PubMed

    Chatterjee, Nivedita; Sinha, Sitabhra

    2008-01-01

    The nervous system of the nematode C. elegans provides a unique opportunity to understand how behavior ('mind') emerges from activity in the nervous system ('brain') of an organism. The hermaphrodite worm has only 302 neurons, all of whose connections (synaptic and gap junctional) are known. Recently, many of the functional circuits that make up its behavioral repertoire have begun to be identified. In this paper, we investigate the hierarchical structure of the nervous system through k-core decomposition and find it to be intimately related to the set of all known functional circuits. Our analysis also suggests a vital role for the lateral ganglion in processing information, providing an essential connection between the sensory and motor components of the C. elegans nervous system.

  3. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    PubMed

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central

  4. ROLE OF SYMPATHETIC NERVOUS SYSTEM IN OBESITY RELATED HYPERTENSION

    PubMed Central

    da Silva, Alexandre; doCarmo, Jussara; Dubinion, John; Hall, John E.

    2010-01-01

    Obesity is recognized as a major, worldwide, health problem. Excess weight is a major cause of increased blood pressure in most patients with essential hypertension, and greatly increases the risk for diabetes, cardiovascular diseases, and end stage renal disease. Although the mechanisms by which obesity raises blood pressure are not completely understood, increased renal sodium reabsorption, impaired pressure natriuresis, and volume expansion appear to play important roles. Several potential mechanisms have been suggested to contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system (SNS) and the renin-angiotensin-aldosterone system (RAAS), and physical compression of the kidneys, especially when visceral obesity is present. Activation of the SNS in obesity may be due, in part, to hyperleptinemia and other factors secreted by adipocytes and the gastrointestinal tract, activation of the central nervous melanocortin pathway, and baroreceptor dysfunction. PMID:19442330

  5. Aberrant nerve fibres within the central nervous system.

    PubMed

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  6. Neuroscience. Stout guards of the central nervous system.

    PubMed

    Mechoulam, R; Lichtman, A H

    2003-10-03

    Endocannabinoids have paradoxical effects on the mammalian nervous system: Sometimes they block neuronal excitability and other times they augment it. In their Perspective, Mechoulam and Lichtman discuss new work (Marsicano et al.) showing that activation of the cannabinoid receptor CB1 by the endocannabinoid anandamide protects against excitotoxic damage in a mouse model of kainic acid-induced epilepsy.

  7. Screening for somatic mutations of the neurofibromatosis genes in nervous system and other solid tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangaratnam, S.; Narod, S.; Ruttledge, M.

    Von Recklinghausen neurofibromatosis (NF1) and neurofibromatosis type 2 (NF2) are autosomal dominant inherited disorders which predispose carriers to various benign and malignant tumors. Both genes are thought to act as tumor suppressors with inactivation of both alleles resulting in abnormal cell growth. By inference from other hereditary cancer syndromes, it has been hypothesized that somatic mutation at the NF1 and NF2 loci is involved in the development of sporadic tumors of the types found with increased prevalence in these disorders. In addition to other malignancies, individuals with NF1 are at increased risk to develop astrocytomas and rhabdomyosarcomas. We have thereforemore » screened 40 astrocytomas for LOH using three NF1-derived cDNA probes, and have found no abnormalities. Single-strand conformation polymorphism (SSCP) analysis of exons of the NF1 GAP-related domain has also failed to show any variants in a total of 70 astrocytomas and 14 rhabdomyosarcomas (7 each of embryonal and alveolar types). LOH of chromosome 22 markers is known to occur in meningioma, malignant melanoma, breast cancer, and ependymoma. SSCP of all 17 exons of the NF2 gene in 27 melanoma cell lines, 42 breast cancers, and 27 pendymomas revealed no alterations. In a screen of 151 menigiomas, 26 new variants have been found, bringing our total to 50 variants in this sample. These represent inactivating mutations (frameshift, splice-site, and nonsense), determined by direct sequencing. Since the majority of these changes occur in tumors previously shown to have LOH at chromosome 22 markers flanking NF2, our results support a tumor sequence role for this gene in meningiomas. In addition, given that 40% of our tumors do not show LOH over this region, we propose that other genes are involved in the development of this latter subset of meningiomas.« less

  8. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. © 2015 The Author(s).

  9. Conduction block in the peripheral nervous system in experimental allergic encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Pender, M. P.; Sears, T. A.

    1982-04-01

    Experimental allergic encephalomyelitis (EAE) has been widely studied as a model of multiple sclerosis, a central nervous system (CNS) disease of unknown aetiology. The clinical features of both EAE and multiple sclerosis provide the only guide to the progress and severity of these diseases, and are used to assess the response to treatment. In such comparisons the clinical features of EAE are assumed to be due to lesions in the CNS, but in this disease there is also histological evidence of damage to the peripheral nervous system1-8. However, the functional consequences of such peripheral lesions have been entirely ignored. To examine this we have studied nerve conduction in rabbits with EAE. We report here that most of the large diameter afferent fibres are blocked in the region of the dorsal root ganglion and at the dorsal root entry zone, thus accounting for the loss of tendon jerks and also, through the severe loss of proprioceptive information, the ataxia of these animals. We conclude that whenever clinical comparisons are made between EAE and multiple sclerosis, the pathophysiology associated with the histological damage of the peripheral nervous system must be taken into account.

  10. Marital Conflict and Growth in Children's Internalizing Symptoms: The Role of Autonomic Nervous System Activity

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin

    2013-01-01

    We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…

  11. Monoclonal Antibodies against the Drosophila Nervous System

    NASA Astrophysics Data System (ADS)

    Fujita, Shinobu C.; Zipursky, Stephen L.; Benzer, Seymour; Ferrus, Alberto; Shotwell, Sandra L.

    1982-12-01

    A panel of 148 monoclonal antibodies directed against Drosophila neural antigens has been prepared by using mice immunized with homogenates of Drosophila tissue. Antibodies were screened immunohistochemically on cryostat sections of fly heads. A large diversity of staining patterns was observed. Some antigens were broadly distributed among tissues; others were highly specific to nerve fibers, neuropil, muscle, the tracheal system, cell nuclei, photoreceptors, or other structures. The antigens for many of the antibodies have been identified on immunoblots. Monoclonal antibodies that identify specific molecules within the nervous system should prove useful in the study of the molecular genetics of neural development.

  12. The Soriano Award Lecture. Emerging infections of the nervous system.

    PubMed

    Johnson, R T

    1994-06-01

    The epidemic of acquired immunodeficiency disease [AIDS] has focused interest on the origins of "new" infectious agents. Great plagues are well known from the distant past, but a number of novel diseases affecting the nervous system infections have emerged in recent years. The causes of such new disorders are diverse: whereas rapid mutations of microbes allow the evolution of truly novel agents, the appearance of new diseases is more often due to changes in human or vector populations or changes in societal mores that result in dissemination of preexistent microbes. Examples of recently emerging infections that involve the nervous system include the enterovirus 70 epidemics with poliomyelitis-like disease, the appearance of California virus encephalitis in the midwestern United States, the rapid spread of Lyme disease with its many neurological complications in the eastern United States, and the outbreak of bovine spongiform encephalopathy in the United Kingdom, in addition to the devastating epidemic of human immunodeficiency virus (HIV), which will cause nervous system disease in over half of those infected. As the world population increases and modern transportation brings us closer into a "global village" more new agents will emerge and more will be sustained. Knowledge of the molecular biology and ecology of the agents and awareness of how our actions can alter their behavior are our best defense.

  13. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system

    PubMed Central

    Desplan, Claude

    2016-01-01

    Nervous system development is a process that integrates cell proliferation, differentiation and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerge while integrating this information. PMID:27404003

  14. Central- and autonomic nervous system coupling in schizophrenia

    PubMed Central

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen

    2016-01-01

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback–feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central–autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age–gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS–ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity. PMID:27044986

  15. Gut commensalism, cytokines, and central nervous system demyelination.

    PubMed

    Telesford, Kiel; Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-08-01

    There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination.

  16. High-fat diet feeding differentially affects the development of inflammation in the central nervous system.

    PubMed

    Guillemot-Legris, Owein; Masquelier, Julien; Everard, Amandine; Cani, Patrice D; Alhouayek, Mireille; Muccioli, Giulio G

    2016-08-26

    Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids-phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines-as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize

  17. DNA methylation-based classification of central nervous system tumours.

    PubMed

    Capper, David; Jones, David T W; Sill, Martin; Hovestadt, Volker; Schrimpf, Daniel; Sturm, Dominik; Koelsche, Christian; Sahm, Felix; Chavez, Lukas; Reuss, David E; Kratz, Annekathrin; Wefers, Annika K; Huang, Kristin; Pajtler, Kristian W; Schweizer, Leonille; Stichel, Damian; Olar, Adriana; Engel, Nils W; Lindenberg, Kerstin; Harter, Patrick N; Braczynski, Anne K; Plate, Karl H; Dohmen, Hildegard; Garvalov, Boyan K; Coras, Roland; Hölsken, Annett; Hewer, Ekkehard; Bewerunge-Hudler, Melanie; Schick, Matthias; Fischer, Roger; Beschorner, Rudi; Schittenhelm, Jens; Staszewski, Ori; Wani, Khalida; Varlet, Pascale; Pages, Melanie; Temming, Petra; Lohmann, Dietmar; Selt, Florian; Witt, Hendrik; Milde, Till; Witt, Olaf; Aronica, Eleonora; Giangaspero, Felice; Rushing, Elisabeth; Scheurlen, Wolfram; Geisenberger, Christoph; Rodriguez, Fausto J; Becker, Albert; Preusser, Matthias; Haberler, Christine; Bjerkvig, Rolf; Cryan, Jane; Farrell, Michael; Deckert, Martina; Hench, Jürgen; Frank, Stephan; Serrano, Jonathan; Kannan, Kasthuri; Tsirigos, Aristotelis; Brück, Wolfgang; Hofer, Silvia; Brehmer, Stefanie; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Hans, Volkmar; Rozsnoki, Stephanie; Hansford, Jordan R; Kohlhof, Patricia; Kristensen, Bjarne W; Lechner, Matt; Lopes, Beatriz; Mawrin, Christian; Ketter, Ralf; Kulozik, Andreas; Khatib, Ziad; Heppner, Frank; Koch, Arend; Jouvet, Anne; Keohane, Catherine; Mühleisen, Helmut; Mueller, Wolf; Pohl, Ute; Prinz, Marco; Benner, Axel; Zapatka, Marc; Gottardo, Nicholas G; Driever, Pablo Hernáiz; Kramm, Christof M; Müller, Hermann L; Rutkowski, Stefan; von Hoff, Katja; Frühwald, Michael C; Gnekow, Astrid; Fleischhack, Gudrun; Tippelt, Stephan; Calaminus, Gabriele; Monoranu, Camelia-Maria; Perry, Arie; Jones, Chris; Jacques, Thomas S; Radlwimmer, Bernhard; Gessi, Marco; Pietsch, Torsten; Schramm, Johannes; Schackert, Gabriele; Westphal, Manfred; Reifenberger, Guido; Wesseling, Pieter; Weller, Michael; Collins, Vincent Peter; Blümcke, Ingmar; Bendszus, Martin; Debus, Jürgen; Huang, Annie; Jabado, Nada; Northcott, Paul A; Paulus, Werner; Gajjar, Amar; Robinson, Giles W; Taylor, Michael D; Jaunmuktane, Zane; Ryzhova, Marina; Platten, Michael; Unterberg, Andreas; Wick, Wolfgang; Karajannis, Matthias A; Mittelbronn, Michel; Acker, Till; Hartmann, Christian; Aldape, Kenneth; Schüller, Ulrich; Buslei, Rolf; Lichter, Peter; Kool, Marcel; Herold-Mende, Christel; Ellison, David W; Hasselblatt, Martin; Snuderl, Matija; Brandner, Sebastian; Korshunov, Andrey; von Deimling, Andreas; Pfister, Stefan M

    2018-03-22

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.

  18. A cellular and regulatory map of the cholinergic nervous system of C. elegans

    PubMed Central

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-01-01

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001 PMID:26705699

  19. Fanconi anemia: correlating central nervous system malformations and genetic complementation groups.

    PubMed

    Johnson-Tesch, Benjamin A; Gawande, Rakhee S; Zhang, Lei; MacMillan, Margaret L; Nascene, David R

    2017-06-01

    Congenital central nervous system abnormalities in children with Fanconi anemia are poorly characterized, especially with regard to specific genetic complementation groups. To characterize the impact of genetic complementation groups on central nervous system anatomy. Through chart review we identified 36 patients with Fanconi anemia with available brain MRIs at the University of Minnesota (average age, 11.3 years; range, 1-43 years; M:F=19:17), which we reviewed and compared to 19 age- and sex-matched controls (average age, 7.9 years; range, 2-18 years; M:F=9:10). Genotypic information was available for 27 patients (15 FA-A, 2 FA-C, 3 FA-G, and 7 FA-D1 [biallelic mutations in BRCA2 gene]). Of the 36 patients, 61% had at least one congenital central nervous system or skull base abnormality. These included hypoplastic clivus (n=12), hypoplastic adenohypophysis (n=11), platybasia (n=8), pontocerebellar hypoplasia (n=7), isolated pontine hypoplasia (n=4), isolated vermis hypoplasia (n=3), and ectopic neurohypophysis (n=6). Average pituitary volume was significantly less in patients with Fanconi anemia (P<0.0001) than in controls. Basal angle was significantly greater in Fanconi anemia patients (P=0.006), but the basal angle of those with FA-D1 was not significantly different from controls (P=0.239). Clivus length was less in the Fanconi anemia group (P=0.002), but significance was only observed in the FA-D1 subgroup (P<0.0001). Of the seven patients meeting criteria for pontocerebellar hypoplasia, six belonged to the FA-D1 group. Patients with Fanconi anemia have higher incidences of ectopic neurohypophysis, adenohypophysis hypoplasia, platybasia and other midline central nervous system skull base posterior fossa abnormalities than age- and sex-matched controls. Patients with posterior fossa abnormalities, including pontocerebellar hypoplasia, are more likely to have biallelic BRCA2 mutations.

  20. Adult Central Nervous System Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Adult central nervous system tumor treatment may include surgery, radiosurgery, radiation therapy, chemotherapy, surveillance, and targeted therapy. Treatment depends on the tumor type. Learn more about brain and spinal tumor treatment in this expert-reviewed summary.

  1. The Role of Central Nervous System Plasticity in Tinnitus

    ERIC Educational Resources Information Center

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  2. The Multifactorial role of Peripheral Nervous System in Bone Growth

    NASA Astrophysics Data System (ADS)

    Gkiatas, Ioannis; Papadopoulos, Dimitrios; Pakos, Emilios E.; Kostas-Agnantis, Ioannis; Gelalis, Ioannis; Vekris, Marios; Korompilias, Anastasios

    2017-09-01

    Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerve fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Since 1916 several investigators tried to analyze the effect of peripheral nervous system in bone growth and most of them advocated for the positive effect of innervation in the bones of growing organisms. Moreover, neuronal tissue controls bone formation and remodeling. The purpose of this mini-review is to present the most recent data concerning the influence of innervation on bone growth, the current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism as well as the implication of denervation in human skeletal biology in the developing organism since the peripheral neural trauma as well as peripheral neuropathies are common and they have impact on the growing skeleton.

  3. Saliva amylase as a measure of sympathetic change elicited by autogenic training in patients with functional somatic syndromes.

    PubMed

    Kiba, Tadashi; Kanbara, Kenji; Ban, Ikumi; Kato, Fumie; Kawashima, Sadanobu; Saka, Yukie; Yamamoto, Kazumi; Nishiyama, Junji; Mizuno, Yasuyuki; Abe, Tetsuya; Fukunaga, Mikihiko

    2015-12-01

    The aim of this study was to discuss the effect of autogenic training (AT) on patients with functional somatic syndrome (FSS) using salivary amylase, the skin temperature of the finger, subjective severity of symptoms, and psychological characteristics as measures. We assessed 20 patients with FSS and 23 healthy controls before and after AT. Baseline levels of salivary amylase prior to an AT session were significantly higher in the FSS group than in the control group. However, this difference was not significant after AT. The skin temperature of the finger increased after AT in both the FSS and control groups. AT contributed to the improvement of somatic symptoms in patients with FSS. Our results regarding psychological characteristics suggest that mood disturbances are deeply involved in the pathology of FSS. Individuals with FSS exhibited elevated levels of sympathetic activity compared with healthy controls. Our data indicates that AT eased dysregulation of the autonomic nervous system in patients with FSS. Thus, salivary amylase may be a useful index of change induced by AT in patients with FSS.

  4. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.

    PubMed

    Toth, Marton Lorant; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A; Bhanot, Gyan; Rongo, Chris; Hall, David H; Driscoll, Monica

    2012-06-27

    Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.

  5. Neurite Sprouting and Synapse Deterioration in the Aging C. elegans Nervous System

    PubMed Central

    Toth, Marton; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A.; Bhanot, Gyan; Rongo, Chris; Hall, David H

    2012-01-01

    C. elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: 1) accumulation of novel outgrowths from specific neurons, and 2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a dimunition of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies. PMID:22745480

  6. Studies on Somatic Embryogenesis in Sweetpotato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweetpotato Ipomoea batatas L.(Lam)l. Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 Explants isolated from those plants developed through somatic embryo-genesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants. They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  7. [Tumors of the central nervous system].

    PubMed

    Alegría-Loyola, Marco Antonio; Galnares-Olalde, Javier Andrés; Mercado, Moisés

    2017-01-01

    Central nervous system (CNS) tumors constitute a heterogeneous group of neoplasms that share a considerable morbidity and mortality rate. Recent advances in the underlying oncogenic mechanisms of these tumors have led to new classification systems, which, in turn, allow for a better diagnostic approach and therapeutic planning. Most of these neoplasms occur sporadically and several risk factors have been found to be associated with their development, such as exposure to ionizing radiation or electromagnetic fields and the concomitant presence of conditions like diabetes, hypertension and Parkinson's disease. A relatively minor proportion of primary CNS tumors occur in the context of hereditary syndromes. The purpose of this review is to analyze the etiopathogenesis, clinical presentation, diagnosis and therapy of CNS tumors with particular emphasis in the putative risk factors mentioned above.

  8. Mechlorethamine-based drug structures for intervention of central nervous system tumors.

    PubMed

    Bartzatt, Ronald

    2013-06-01

    Tumors of the central nervous system are the third most common type of childhood cancers. Brain tumors occur in children and adults; however pediatric patients require a different treatment process. Thirteen drugs similar to mechlorethamine are analyzed in this study. These drugs possess molecular properties enabling substantial and successful access to tumors of the central nervous system. All drugs exhibit zero violations of the Rule of 5, which indicate favorable bioavailability. Ranges in Log P, formula weight, and polar surface area for these drugs are: 1.554 to 3.52, 156.06 to 460.45, and 3.238 Angstroms(2) to 45.471 Angstroms(2), respectively. Hierarchical cluster analysis determined that agents 7 and 12 are most similar to the parent compound mechlorethamine. The mean values of Log P, formula weight, polar surface area, and molecular volume are 2.25, 268.51, 16.57 Angstroms(2), and 227.01 Angstroms(3), respectively. Principal component analysis indicates that agents 7 and 12 are most similar to mechlorethamine and multiple regression analysis of molecular properties produced a model to enable the design of similar alkylating agents. Values of Log (Cbrain/Cblood) indicate these agents will have very high permeation into the central nervous system.

  9. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  10. The enteric nervous system modulates mammalian duodenal mucosal bicarbonate secretion.

    PubMed

    Hogan, D L; Yao, B; Steinbach, J H; Isenberg, J I

    1993-08-01

    Interaction of the enteric nerves in regulating mammalian duodenal mucosal bicarbonate secretion is not well understood. The purpose of the present experiments was to evaluate the role of the enteric nervous system on bicarbonate secretion from rabbit duodenal mucosa in vitro. Proximal duodenum from male New Zealand White rabbits was stripped of seromuscular layers, mounted in Ussing chambers, and studied under short-circuited conditions. Effects of electrical field stimulation, vasoactive intestinal polypeptide (VIP), carbachol, prostaglandin E2 (PGE2), dibutyryl-cyclic adenosine monophosphate (db-cAMP), and the neurotoxin tetrodotoxin (TTX) and muscarinic blockade by atropine were studied. Electrical field stimulation significantly (P < 0.01) stimulated bicarbonate secretion, short-circuit current (Isc), and electrical potential difference (PD) that was sensitive to both TTX and atropine. VIP-stimulated bicarbonate secretion was significantly inhibited by TTX (-73%), yet Isc and PD remained unchanged. Atropine decreased VIP-induced bicarbonate secretion (-69%) and Isc (-43%). Carbachol-stimulated bicarbonate secretion, Isc, and PD were abolished by atropine, whereas TTX was without affect. Neither TTX nor atropine had a significant effect on PGE2 or db-cAMP-stimulated bicarbonate secretion. These results suggest that (1) enteric nerve stimulation activates an acetylcholine receptor that in turn stimulates duodenal epithelial bicarbonate secretion; (2) VIP stimulates bicarbonate secretion, in large part, via the enteric nervous system; and (3) PGE2 and cAMP stimulate bicarbonate secretion independent of the enteric nervous system.

  11. Getting to the guts of enteric nervous system development.

    PubMed

    Heuckeroth, Robert O; Pachnis, Vassilis

    2006-06-01

    Scientists from around the world gathered in New York City recently to discuss the latest research on enteric nervous system development at a meeting organised by Alan Burns and Heather Young. The participants enjoyed 3 days of presentations that spurred active conversations and highlighted the rapidly advancing research in this field.

  12. Binding of epsilon-toxin from Clostridium perfringens in the nervous system.

    PubMed

    Dorca-Arévalo, Jonatan; Soler-Jover, Alex; Gibert, Maryse; Popoff, Michel R; Martín-Satué, Mireia; Blasi, Juan

    2008-09-18

    Epsilon-toxin (epsilon-toxin), produced by Clostridium perfringens type D, is the main agent responsible for enterotoxaemia in livestock. Neurological disorders are a characteristic of the onset of toxin poisoning. Epsilon-Toxin accumulates specifically in the central nervous system, where it produces a glutamatergic-mediated excitotoxic effect. However, no detailed study of putative binding structures in the nervous tissue has been carried out to date. Here we attempt to identify specific acceptor moieties and cell targets for epsilon-toxin, not only in the mouse nervous system but also in the brains of sheep and cattle. An epsilon-toxin-GFP fusion protein was produced and used to incubate brain sections, which were then analyzed by confocal microscopy. The results clearly show specific binding of epsilon-toxin to myelin structures. epsilon-Prototoxin-GFP and epsilon-toxin-GFP, the inactive and active forms of the toxin, respectively, showed identical results. By means of pronase E treatment, we found that the binding was mainly associated to a protein component of the myelin. Myelinated peripheral nerve fibres were also stained by epsilon-toxin. Moreover, the binding to myelin was not only restricted to rodents, but was also found in humans, sheep and cattle. Curiously, in the brains of both sheep and cattle, the toxin strongly stained the vascular endothelium, a result that may explain the differences in potency and effect between species. Although the binding of epsilon-toxin to myelin does not directly explain its neurotoxic effect, this feature opens up a new line of enquiry into its mechanism of toxicity and establishes the usefulness of this toxin for the study of the mammalian nervous system.

  13. Fiber optic in vivo imaging in the mammalian nervous system

    PubMed Central

    Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J

    2010-01-01

    The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896

  14. Roles of somatic A-type K(+) channels in the synaptic plasticity of hippocampal neurons.

    PubMed

    Yang, Yoon-Sil; Kim, Kyeong-Deok; Eun, Su-Yong; Jung, Sung-Cherl

    2014-06-01

    In the mammalian brain, information encoding and storage have been explained by revealing the cellular and molecular mechanisms of synaptic plasticity at various levels in the central nervous system, including the hippocampus and the cerebral cortices. The modulatory mechanisms of synaptic excitability that are correlated with neuronal tasks are fundamental factors for synaptic plasticity, and they are dependent on intracellular Ca(2+)-mediated signaling. In the present review, the A-type K(+) (IA) channel, one of the voltage-dependent cation channels, is considered as a key player in the modulation of Ca(2+) influx through synaptic NMDA receptors and their correlated signaling pathways. The cellular functions of IA channels indicate that they possibly play as integral parts of synaptic and somatic complexes, completing the initiation and stabilization of memory.

  15. [Pharmacological correction of central nervous system function in exposure to Coriolis acceleration].

    PubMed

    Karkishchenko, N N; Dimitriadi, N A; Molchanovskiĭ, V V

    1986-01-01

    Healthy volunteers with a low vestibular tolerance were exposed to Coriolis acceleration. Potassium orotate, pyracetame and riboxine were used as prophylactic measures against disorders in the function of the vestibular apparatus and higher compartments of the higher nervous system. The central nervous function was assessed with respect to the spectral power of electroencephalograms, short-term memory and mental performance. Potassium orotate given at a dose of 40 mg/kg body weight/day during 12-14 days as well as pyracetame given at a dose of 30 mg/kg body weight/day during 3 or 7 days increased significantly statokinetic tolerance and produced a protective effect on the central nervous function against Coriolis acceleration.

  16. A cellular and regulatory map of the GABAergic nervous system of C. elegans

    PubMed Central

    Gendrel, Marie; Atlas, Emily G; Hobert, Oliver

    2016-01-01

    Neurotransmitter maps are important complements to anatomical maps and represent an invaluable resource to understand nervous system function and development. We report here a comprehensive map of neurons in the C. elegans nervous system that contain the neurotransmitter GABA, revealing twice as many GABA-positive neuron classes as previously reported. We define previously unknown glia-like cells that take up GABA, as well as 'GABA uptake neurons' which do not synthesize GABA but take it up from the extracellular environment, and we map the expression of previously uncharacterized ionotropic GABA receptors. We use the map of GABA-positive neurons for a comprehensive analysis of transcriptional regulators that define the GABA phenotype. We synthesize our findings of specification of GABAergic neurons with previous reports on the specification of glutamatergic and cholinergic neurons into a nervous system-wide regulatory map which defines neurotransmitter specification mechanisms for more than half of all neuron classes in C. elegans. DOI: http://dx.doi.org/10.7554/eLife.17686.001 PMID:27740909

  17. Apoptotic cell death in the central nervous system of Bufo arenarum tadpoles induced by cypermethrin.

    PubMed

    Casco, V H; Izaguirre, M F; Marín, L; Vergara, M N; Lajmanovich, R C; Peltzer, P; Soler, A Peralta

    2006-05-01

    Tadpoles of the toad Bufo arenarum treated with cypermethrin (CY) at concentrations above 39 mug CY/L showed dose-dependent apoptotic cell death in immature cells of the central nervous system as demonstrated by morphometric analysis, the TUNEL method, and DNA fragmentation assay. Light-and electron-microscopic studies showed structural alterations in the intermediate and marginal layers of the brain. Immature cerebral tissue showed cellular shrinkage, nuclear fragmentation and increase of intercellular spaces. In this study we demonstrated high toxicity of CY to larval stages of Bufo arenarum. Our results show that doses lower than those used in routine insecticide applications can cause massive apoptosis in the immature cells of the central nervous system. These results coincide with our previous studies in Physalaemus biligonigerus, confirming the severe toxic effects of CY to the central nervous system of anuran species from Argentina. This may increase the mortality index in wild animals and contribute to the loss of biodiversity in our agroecosystems. We postulate that CY induces apoptosis in central nervous system cells of Bufo arenarum tadpoles by specific neurotoxic mechanisms.

  18. Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma

    ClinicalTrials.gov

    2013-07-01

    Childhood Burkitt Lymphoma; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Medulloepithelioma; Childhood Meningioma; Childhood Mixed Glioma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Oligodendroglioma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  19. Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 ...

    MedlinePlus

    ... Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 Increased between 2005 and 2011 Central nervous system (CNS) stimulants include prescription drugs, like those used ...

  20. Treatment of HIV in the Central Nervous System.

    PubMed

    Yilmaz, Aylin; Gisslén, Magnus

    2014-02-01

    Central nervous system (CNS) infection is an important part of systemic human immunodeficiency disease (HIV) infection. It is most often asymptomatic, but can sometimes lead to severe neurologic disease, particularly in advanced stages of immunosuppression. CNS HIV infection usually responds well to antiretroviral treatment, but there are concerns that treatment may not always be fully effective in treating or preventing milder CNS disease and that it, under certain circumstances, might be important to consider antiretroviral drug distribution and effects within the CNS. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture.

    PubMed

    Cebrià, Francesc; Newmark, Phillip A

    2005-08-01

    Conserved axon guidance mechanisms are essential for proper wiring of the nervous system during embryogenesis; however, the functions of these cues in adults and during regeneration remain poorly understood. Because freshwater planarians can regenerate a functional central nervous system (CNS) from almost any portion of their body, they are useful models in which to study the roles of guidance cues during neural regeneration. Here, we characterize two netrin homologs and one netrin receptor family member from Schmidtea mediterranea. RNAi analyses indicate that Smed-netR (netrin receptor) and Smed-netrin2 are required for proper CNS regeneration and that Smed-netR may mediate the response to Smed-netrin2. Remarkably, Smed-netR and Smed-netrin2 are also required in intact planarians to maintain the proper patterning of the CNS. These results suggest a crucial role for guidance cues, not only in CNS regeneration but also in maintenance of neural architecture.

  2. Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System

    PubMed Central

    Tan, Hong

    2018-01-01

    The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration. PMID:29805977

  3. Redox Signaling Mechanisms in Nervous System Development.

    PubMed

    Olguín-Albuerne, Mauricio; Morán, Julio

    2018-06-20

    Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance. The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes. The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.

  4. Intravascular lymphoma involving the central and peripheral nervous systems in a dog.

    PubMed

    Bush, William W; Throop, Juliene L; McManus, Patricia M; Kapatkin, Amy S; Vite, Charles H; Van Winkle, Tom J

    2003-01-01

    A 5-year-old, castrated male mixed-breed dog was presented for paraparesis, ataxia, hyperesthesia, and thrombocytopenia of 5 months' duration and recurrent seizures during the preceding 2 weeks. Multifocal neurological, ophthalmological, pulmonary, and cardiac diseases were identified. Magnetic resonance imaging and cerebrospinal fluid analysis supported a tentative diagnosis of neoplastic or inflammatory disease. A computed tomography-guided biopsy provided both cytopathological and histopathological evidence of intravascular lymphoma. The disease progressed despite chemotherapy with prednisone, L-asparginase, and vincristine. Postmortem histopathological examinations suggested intravascular lymphoma in the central and peripheral nervous systems as well as in multiple other organ systems. This is the first description of an antemortem diagnosis and treatment of intravascular lymphoma involving the central nervous system of a dog.

  5. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    NASA Astrophysics Data System (ADS)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  6. Somatic Embryogenesis in Lisianthus (Eustoma russellianum Griseb.).

    PubMed

    Ruffoni, Barbara; Bassolino, Laura

    2016-01-01

    Somatic embryogenesis is, for the main floricultural crops, a promising system for commercial scale-up, providing cloned material to be traded as seedlings. Somatic embryos, having the contemporary presence of root apical meristem and shoot apical meristem, can be readily acclimatized. For Lisianthus it is possible to induce embryogenic callus from leaf fragments of selected genotypes and to obtain embryos either in agarized substrate or in liquid suspension culture. The production of somatic embryos in liquid medium is high and can be modulated in order to synchronize the cycle and the size of the neoformed structures. The possibility to use the liquid substrate with high propagation rates reduces labor costs and could support the costs of eventual automation. In this paper we report a stepwise protocol for somatic embryogenesis in the species Eustoma russellianum.

  7. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers

    PubMed Central

    Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang

    2016-01-01

    Abstract The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited. Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results. The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found. The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin. PMID:27175645

  8. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers.

    PubMed

    Hsiao, Chih Yin; Tsai, Hsin Chun; Chi, Mei Hung; Chen, Kao Chin; Chen, Po See; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang

    2016-05-01

    The aim of this study was to investigate the influence of serotonin on anxiety and autonomic nervous system (ANS) function; the correlation between subjective anxiety rating and changes of ANS function following tryptophan depletion (TD) in healthy volunteers was examined. Twenty-eight healthy participants, consisting of 15 females and 13 males, with an average age of 33.3 years, were recruited.Baseline Chinese Symptom Checklist-90-Revised and ANS function measurements were taken. TD was carried out on the testing day, and participants provided blood samples right before and 5 hours after TD. ANS function, somatic symptoms, and Visual Analogue Scales (VASs) were determined after TD. Wilcoxon signed rank test and Spearman ρ correlation were adapted for analyses of the results.The TD procedure reduced total and free plasma tryptophan effectively. After TD, the sympathetic nervous activity increased and parasympathetic nervous activity decreased. Baseline anxiety ratings positively correlated with post-TD changes in sympathetic nervous activity, VAS ratings, and physical symptoms. However, a negative correlation with post-TD changes in parasympathetic nervous activity was found.The change in ANS function after TD was associated with the severity of anxiety in healthy volunteers. This supports the fact that the effect of anxiety on heart rate variability is related to serotonin vulnerability. Furthermore, it also shows that the subjective anxiety rating has a biological basis related to serotonin.

  9. Central nervous system tissue heterotopia of the nose: case report and review of the literature

    PubMed Central

    Altissimi, G; Ascani, S; Falcetti, S; Cazzato, C; Bravi, I

    2009-01-01

    Summary The Authors present a case of heterotopic central nervous system tissue observed in an 81-year-old male in the form of an ethmoidal polyp. A review of the literature indicates that this is a rare condition characterised by a connective tissue lesion with astrocytic and oligodendrocytic glial cells, which may be located outside the nasal pyramid in some cases and inside the nasal cavity in others. The most important diagnostic aspect involves differentiating these from meningoencephalocele, which maintains an anatomical connection with central nervous system tissue. Contrast-enhanced imaging is essential for diagnosis, as in cases of heterotopic central nervous system tissue, it will demonstrate that there are no connections with intra-cranial tissue. Endoscopic excision is the treatment of choice. PMID:20161881

  10. Incidence and risk factors for central nervous system relapse in children and adolescents with acute lymphoblastic leukemia

    PubMed Central

    Cancela, Camila Silva Peres; Murao, Mitiko; Viana, Marcos Borato; de Oliveira, Benigna Maria

    2012-01-01

    Background Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. Methods This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG) between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99) treatment protocol. Results The estimated probabilities of overall survival and event free survival at 5 years were 69.5% (± 3.6%) and 58.8% (± 4.0%), respectively. The cumulative incidence of central nervous system (isolated or combined) relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis ≥ 50 x 109/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count < 50 x 109/L (p-value = 0.0008). There was no difference in cumulative central nervous system relapse (isolated or combined) for the other analyzed variables: immunophenotype, traumatic lumbar puncture, interval between diagnosis and first lumbar puncture and place where the procedure was performed. Conclusions These results suggest that a leukocyte count > 50 x 109/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia. PMID:23323068

  11. The origin and evolution of chordate nervous systems

    PubMed Central

    Holland, Linda Z.

    2015-01-01

    In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum. PMID:26554041

  12. Engineering Biomaterial Properties for Central Nervous System Applications

    NASA Astrophysics Data System (ADS)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  13. Conventional external beam radiotherapy for central nervous system malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halperin, E.C.; Burger, P.C.

    1985-11-01

    Fractionated external beam photon radiotherapy is an important component of the clinical management of malignant disease of the central nervous system. The practicing neurologist or neurosurgeon frequently relies on the consultative and treatment skills of a radiotherapist. This article provides a review for the nonradiotherapist of the place of conventional external beam radiotherapy in neuro-oncology. 23 references.

  14. Functional structure and dynamics of the human nervous system

    NASA Technical Reports Server (NTRS)

    Lawrence, J. A.

    1981-01-01

    The status of an effort to define the directions needed to take in extending pilot models is reported. These models are needed to perform closed-loop (man-in-the-loop) feedback flight control system designs and to develop cockpit display requirements. The approach taken is to develop a hypothetical working model of the human nervous system by reviewing the current literature in neurology and psychology and to develop a computer model of this hypothetical working model.

  15. Childhood Central Nervous System Embryonal Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood central nervous system embryonal tumors and pineal tumors are treated with surgery, radiation therapy, chemotherapy, high-dose chemotherapy with stem cell rescue and targeted therapy. Learn more in this expert-reviewed summary.

  16. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  17. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases.

    PubMed

    De Luca, Ciro; Virtuoso, Assunta; Maggio, Nicola; Papa, Michele

    2017-10-12

    Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.

  18. [Depression and neuroplasticity. Interaction of nervous, endocrine and immune systems].

    PubMed

    Cassano, Paola; Argibay, Pablo

    2010-01-01

    Clinical depression is a physical and psychic disease that has neuropathological basis, although the clear understanding of its ethiopathology is still missing. There is evidence of a genetic component in depression, however, the participation of environment is crucial. Stress plays an essential role in the onset of depression. The interaction and the response of the endocrine system with the immune and nervous system are altered in depression. The observation of the effect of antidepressants on monoaminergic transmitters leads to the hypothesis of monoamines. However this hypothesis cannot explain many of the mechanisms involved in the action of antidepressants. The new hypothesis proposed to explain the action of antidepressant is the neuro-plasticity hypothesis. This hypothesis suggests that the effects of antidepressants on nervous, immune and endocrine systems are able to induce neuroadaptative changes in the brain. The neuroplasticity have been described as the ability of the brain to reorganize itself and form new neuronal connections throughout life. It is proposed that antidepressants influence neuroplasticity inducing improvements in the symptoms of this illness.

  19. Maximizing functional axon repair in the injured central nervous system: Lessons from neuronal development.

    PubMed

    Kaplan, Andrew; Bueno, Mardja; Hua, Luyang; Fournier, Alyson E

    2018-01-01

    The failure of damaged axons to regrow underlies disability in central nervous system injury and disease. Therapies that stimulate axon repair will be critical to restore function. Extensive axon regeneration can be induced by manipulation of oncogenes and tumor suppressors; however, it has been difficult to translate this into functional recovery in models of spinal cord injury. The current challenge is to maximize the functional integration of regenerating axons to recover motor and sensory behaviors. Insights into axonal growth and wiring during nervous system development are helping guide new approaches to boost regeneration and functional connectivity after injury in the mature nervous system. Here we discuss our current understanding of axonal behavior after injury and prospects for the development of drugs to optimize axon regeneration and functional recovery after CNS injury. Developmental Dynamics 247:18-23, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Cytoplasmic RNA Granules in Somatic Maintenance.

    PubMed

    Moujaber, Ossama; Stochaj, Ursula

    2018-05-30

    Cytoplasmic RNA granules represent subcellular compartments that are enriched in protein-bound RNA species. RNA granules are produced by evolutionary divergent eukaryotes, including yeast, mammals, and plants. The functions of cytoplasmic RNA granules differ widely. They are dictated by the cell type and physiological state, which in turn is determined by intrinsic cell properties and environmental factors. RNA granules provide diverse cellular functions. However, all of the granules contribute to aspects of RNA metabolism. This is exemplified by transcription, RNA storage, silencing, and degradation, as well as mRNP remodeling and regulated translation. Several forms of cytoplasmic mRNA granules are linked to normal physiological processes. For instance, they may coordinate protein synthesis and thereby serve as posttranscriptional "operons". RNA granules also participate in cytoplasmic mRNA trafficking, a process particularly well understood for neurons. Many forms of RNA granules support the preservation of somatic cell performance under normal and stress conditions. On the other hand, severe insults or disease can cause the formation and persistence of RNA granules that contribute to cellular dysfunction, especially in the nervous system. Neurodegeneration and many other diseases linked to RNA granules are associated with aging. Nevertheless, information related to the impact of aging on the various types of RNA granules is presently very limited. This review concentrates on cytoplasmic RNA granules and their role in somatic cell maintenance. We summarize the current knowledge on different types of RNA granules in the cytoplasm, their assembly and function under normal, stress, or disease conditions. Specifically, we discuss processing bodies, neuronal granules, stress granules, and other less characterized cytoplasmic RNA granules. Our focus is primarily on mammalian and yeast models, because they have been critical to unravel the physiological role of various

  1. Central nervous system considerations in the use of beta-blockers, angiotensin-converting enzyme inhibitors, and thiazide diuretics in managing essential hypertension.

    PubMed

    Gengo, F M; Gabos, C

    1988-07-01

    The most common mild side effects occurring with use of beta-blockers, thiazide diuretics, and angiotensin-converting enzyme inhibitors for blood pressure control are central nervous system symptoms, specifically lethargy, sedation, and fatigue. These symptoms affect 5% to 10% of patients taking these drugs. The mechanism by which beta-blockers may induce central nervous system effects is uncertain. Relative lipophilicity as a factor affecting penetrance of the blood-brain barrier has not proved to be a reliable predictor of whether the drug will cause such disturbances. Comparisons of atenolol (hydrophilic) and metoprolol (lipophilic) have shown no differences between these drugs with respect to side effects of the central nervous system. The incidence of central nervous system effects with angiotensin-converting enzyme inhibitors is similar to that for most beta-blockers. The precise role of the angiotensin-converting enzyme in the central nervous system is not well defined. Most thiazide diuretics are not associated with major complications of the central nervous system, although electrolyte imbalance may occasionally lead to complaints of neurologic symptoms. Because the incidence of central nervous system effects with these three classes of drugs is so low, concern for the side effects of the central nervous system is not a prime consideration in the choice of an initial antihypertensive agent.

  2. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    PubMed

    Weekamp, H H; Huygen, P L M; Merx, J L; Kremer, H P H; Cremers, Cor W R J; Longridge, Neil S

    2003-09-01

    To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chronic recurrent subarachnoidal hemorrhage with bleeding into the cerebrospinal fluid is the cause of deposition of hemosiderin in leptomeningeal and subpial tissue, cranial nerves, and spinal cord. Removing the cause of bleeding can prevent irreversible damage to these structures. Because this is the only effective treatment, an early diagnosis is crucial. Retrospective case review. Tertiary referral center. A 72-year-old woman with superficial hemosiderosis of the central nervous system that developed when she was age 39. Neurologic and imaging diagnostic examinations and longitudinal evaluation of cochleovestibular features were performed. Neurosurgery was not performed. Progressive bilateral sensorineural hearing loss and severe vestibular hyporeflexia developed within 15 years, which can be attributed to lesions in the cochleovestibular system. Additional pathology of the central nervous system developed later. The patient demonstrated cochlear and vestibular findings that are typical of this pathologic condition. It is the first documented case with extensive serial audiometry used to precisely outline the degree of hearing deterioration during the course of the disease.

  3. A systems approach defining constraints of the genome architecture on lineage selection and evolvability during somatic cancer evolution

    PubMed Central

    Rübben, Albert; Nordhoff, Ole

    2013-01-01

    Summary Most clinically distinguishable malignant tumors are characterized by specific mutations, specific patterns of chromosomal rearrangements and a predominant mechanism of genetic instability but it remains unsolved whether modifications of cancer genomes can be explained solely by mutations and selection through the cancer microenvironment. It has been suggested that internal dynamics of genomic modifications as opposed to the external evolutionary forces have a significant and complex impact on Darwinian species evolution. A similar situation can be expected for somatic cancer evolution as molecular key mechanisms encountered in species evolution also constitute prevalent mutation mechanisms in human cancers. This assumption is developed into a systems approach of carcinogenesis which focuses on possible inner constraints of the genome architecture on lineage selection during somatic cancer evolution. The proposed systems approach can be considered an analogy to the concept of evolvability in species evolution. The principal hypothesis is that permissive or restrictive effects of the genome architecture on lineage selection during somatic cancer evolution exist and have a measurable impact. The systems approach postulates three classes of lineage selection effects of the genome architecture on somatic cancer evolution: i) effects mediated by changes of fitness of cells of cancer lineage, ii) effects mediated by changes of mutation probabilities and iii) effects mediated by changes of gene designation and physical and functional genome redundancy. Physical genome redundancy is the copy number of identical genetic sequences. Functional genome redundancy of a gene or a regulatory element is defined as the number of different genetic elements, regardless of copy number, coding for the same specific biological function within a cancer cell. Complex interactions of the genome architecture on lineage selection may be expected when modifications of the genome

  4. Contraindications to Athletic Participation. Cardiac, Respiratory, and Central Nervous System Conditions.

    ERIC Educational Resources Information Center

    Moeller, James L.

    1996-01-01

    Discusses contraindications to athletic participation, examining the cardiac, respiratory, and central nervous system conditions that warrant activity disqualification. Provides guidelines about when it is safe for individuals to participate, and discusses the physician's responsibility. (SM)

  5. Biomedical Science, Unit IV: The Nervous System in Health and Medicine. The Nervous System; Disorders of the Brain and Nervous System; Application of Computer Science to Diagnosis; Drugs and Pharmacology; The Human Senses; Electricity. Laboratory Manual. Revised Version, 1976.

    ERIC Educational Resources Information Center

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    Designed to accompany the student text on the nervous system, this manual presents laboratory activities dealing with concepts presented in the text. Thirty-seven activities are described. Four supplementary activities dealing with concepts in electricity are also included. Laboratory activities are divided into several parts, each part covering a…

  6. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system.

    PubMed

    Rawji, Khalil S; Mishra, Manoj K; Michaels, Nathan J; Rivest, Serge; Stys, Peter K; Yong, V Wee

    2016-03-01

    Ageing of the central nervous system results in a loss of both grey and white matter, leading to cognitive decline. Additional injury to both the grey and white matter is documented in many neurological disorders with ageing, including Alzheimer's disease, traumatic brain and spinal cord injury, stroke, and multiple sclerosis. Accompanying neuronal and glial damage is an inflammatory response consisting of activated macrophages and microglia, innate immune cells demonstrated to be both beneficial and detrimental in neurological repair. This article will propose the following: (i) infiltrating macrophages age differently from central nervous system-intrinsic microglia; (ii) several mechanisms underlie the differential ageing process of these two distinct cell types; and (iii) therapeutic strategies that selectively target these diverse mechanisms may rejuvenate macrophages and microglia for repair in the ageing central nervous system. Most responses of macrophages are diminished with senescence, but activated microglia increase their expression of pro-inflammatory cytokines while diminishing chemotactic and phagocytic activities. The senescence of macrophages and microglia has a negative impact on several neurological diseases, and the mechanisms underlying their age-dependent phenotypic changes vary from extrinsic microenvironmental changes to intrinsic changes in genomic integrity. We discuss the negative effects of age on neurological diseases, examine the response of senescent macrophages and microglia in these conditions, and propose a theoretical framework of therapeutic strategies that target the different mechanisms contributing to the ageing phenotype in these two distinct cell types. Rejuvenation of ageing macrophage/microglia may preserve neurological integrity and promote regeneration in the ageing central nervous system. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions

  7. Regulation of autonomic nervous system in space and magnetic storms.

    PubMed

    Baevsky, R M; Petrov, V M; Chernikova, A G

    1998-01-01

    Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main "targets" for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88% precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space).

  8. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  9. The adverse effects of air pollution on the nervous system.

    PubMed

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.

  10. Hemophagocytic lymphohistiocytosis associated with Epstein-Barr virus in the central nervous system.

    PubMed

    Magaki, Shino; Ostrzega, Nora; Ho, Elliot; Yim, Catherine; Wu, Phillis; Vinters, Harry V

    2017-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare immune hyperactivation syndrome which may be primary (genetic) or secondary to various immune-related conditions including infection, immunodeficiency, and malignancies. Rapid diagnosis and treatment are essential because it can be associated with significant morbidity and mortality. Epstein-Barr virus (EBV) is a known infectious cause of acquired HLH, but EBV-associated HLH involving the central nervous system is rare and not well characterized neuropathologically. We report a case of fatal EBV-associated HLH with severe involvement of the central nervous system showing florid hemophagocytosis in the choroid plexus, with extensive neuron loss and gliosis in the cerebrum, cerebellum, and brainstem. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. [New concepts on the role of cytokines in the central nervous system].

    PubMed

    Jacque, C; Tchélingérian, J L

    1994-11-01

    Initially described as modulatory molecules in the peripheral immune system and during haematopoiesis, several cytokines also play a role in the brain. Their synthesis in the central nervous system (CNS) is not due solely to glial cell activation or invading immune cells. On the one hand, several functions of central neurons are modulated by cytokines such as IL-1, TNF alpha, IL-2 and IL-6. Thus, IL-1 and TNF alpha modulate the synthesis of several neuromediators and modify ion influxes. IL-2 regulates the effects of central dopaminergic neurons on cholinergic, noradrenergic, serotoninergic and glutamatergic functions. On the other hand, neurons have recently been shown to be able to synthesize some of these cytokines under specific traumatic conditions. For example, a lesion to the hippocampus induces neuronal synthesis of IL-1 alpha and TNF alpha. This induction through neuronal circuits may operate at a distance in contrast to the glial reaction operating only locally. The recent demonstration of the expression by central neurons of receptors specific for these cytokines support a potentially crucial role for these molecules in brain function. Some data emerge in the literature demonstrating a potent expression of cytokines in the central nervous system in numerous pathological situations. Then, it appears that, at the interface between nervous and immune systems, cytokines may bear a pivotal role in the development of specific symptoms in neuroimmune diseases.

  12. On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura)

    NASA Astrophysics Data System (ADS)

    Harzsch, S.; Dawirs, R. R.

    1993-02-01

    We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.

  13. Biomedical Science, Unit IV: The Nervous System in Health and Medicine. The Nervous System; Disorders of the Brain and Nervous System; Application of Computer Science to Diagnosis; Drugs and Pharmacology; The Human Senses; Electricity. Instructor's Manual. Revised Version, 1976.

    ERIC Educational Resources Information Center

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This volume contains the lesson plans and appropriate teacher background material for a 37-lesson sequence on the nervous system in health and medicine. Additional material is provided for supplementary lessons on concepts of electricity. Associated material, contained in separate volumes, include a student text and a student laboratory manual.…

  14. KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.

    PubMed

    Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud

    2016-09-01

    Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.

  15. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    PubMed

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  16. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  17. Autoimmune Neurology of the Central Nervous System.

    PubMed

    Tobin, W Oliver; Pittock, Sean J

    2017-06-01

    This article reviews the rapidly evolving spectrum of autoimmune neurologic disorders with a focus on those that involve the central nervous system, providing an understanding of how to approach the diagnostic workup of patients presenting with central nervous system symptoms or signs that could be immune mediated, either paraneoplastic or idiopathic, to guide therapeutic decision making. The past decade has seen a dramatic increase in the discovery of novel neural antibodies and their targets. Many commercial laboratories can now test for these antibodies, which serve as diagnostic markers of diverse neurologic disorders that occur on an autoimmune basis. Some are highly specific for certain cancer types, and the neural antibody profiles may help direct the physician's cancer search. The diagnosis of an autoimmune neurologic disorder is aided by the detection of an objective neurologic deficit (usually subacute in onset with a fluctuating course), the presence of a neural autoantibody, and improvement in the neurologic status after a course of immunotherapy. Neural autoantibodies should raise concern for a paraneoplastic etiology and may inform a targeted oncologic evaluation (eg, N-methyl-D-aspartate [NMDA] receptor antibodies are associated with teratoma, antineuronal nuclear antibody type 1 [ANNA-1, or anti-Hu] are associated with small cell lung cancer). MRI, EEG, functional imaging, videotaped evaluations, and neuropsychological evaluations provide objective evidence of neurologic dysfunction by which the success of immunotherapy may be measured. Most treatment information emanates from retrospective case series and expert opinion. Nonetheless, early intervention may allow reversal of deficits in many patients and prevention of future disability.

  18. Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study.

    PubMed

    Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2016-05-01

    Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Adult Central Nervous System Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Adult central nervous system tumor treatment options include surgery, radiosurgery, radiation therapy, chemotherapy, surveillance, and supportive care. Get detailed information about the types and treatment of newly diagnosed and recurrent brain and spinal tumors in this clinician summary.

  20. Biological restoration of central nervous system architecture and function: part 3-stem cell- and cell-based applications and realities in the biological management of central nervous system disorders: traumatic, vascular, and epilepsy disorders.

    PubMed

    Farin, Azadeh; Liu, Charles Y; Langmoen, Iver A; Apuzzo, Michael L J

    2009-11-01

    STEM CELL THERAPY has emerged as a promising novel therapeutic endeavor for traumatic brain injury, spinal cord injury, stroke, and epilepsy in experimental studies. A few preliminary clinical trials have further supported its safety and early efficacy after transplantation into humans. Although not yet clinically available for central nervous system disorders, stem cell technology is expected to evolve into one of the most powerful tools in the biological management of complex central nervous system disorders, many of which currently have limited treatment modalities. The identification of stem cells, discovery of neurogenesis, and application of stem cells to treat central nervous system disorders represent a dramatic evolution and expansion of the neurosurgeon's capabilities into the neurorestoration and neuroregeneration realms. In Part 3 of a 5-part series on stem cells, we discuss the theory, experimental evidence, and clinical data pertaining to the use of stem cells for the treatment of traumatic, vascular, and epileptic disorders.

  1. Mutations in spalt cause a severe but reversible neurodegenerative phenotype in the embryonic central nervous system of Drosophila melanogaster.

    PubMed

    Cantera, Rafael; Lüer, Karin; Rusten, Tor Erik; Barrio, Rosa; Kafatos, Fotis C; Technau, Gerhard M

    2002-12-01

    The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that the spalt mutant central nervous system has abnormal levels of particular cell adhesion and cytoskeletal proteins. Time-lapse analysis of neuronal differentiation in vitro, lineage analysis and transplantation experiments confirmed that the mutation causes cytoskeletal and adhesion defects. The data indicate that in the central nervous system, spalt operates within a regulatory pathway which influences the expression of the beta-catenin Armadillo, its ligand N-Cadherin, Notch, and the cell adhesion molecules Neuroglian, Fasciclin 2 and Fasciclin 3. Effects on the expression of these genes are persistent but many morphological aspects of the phenotype are transient, leading to the concept of sequential redundancy for stable organisation of the central nervous system.

  2. [The role of neurotrophic factors in regeneration of the nervous system].

    PubMed

    Machaliński, Bogusław; Lażewski-Banaszak, Piotr; Dąbkowska, Elżbieta; Paczkowska, Edyta; Gołąb-Janowska, Monika; Nowacki, Przemysław

    2012-01-01

    Neurotrophic factors regulate survival, development, and function of nervous tissue. They act via two different classes of receptors and activation of various signaling pathways in the target cells. Illumination of their physiological role in the maintenance of central nervous system homeostasis as well as regeneration of damaged tissue have ignited expectations to heal neurodegenerative diseases, including amyotrophic late-ral sclerosis and Parkinson disease. Advances in pharmaco-therapy, gene therapy, and stem cell biology have enabled development of novel therapies with application of regenerating cell transplantation. In the foreseeable future, it may lead to the establishment of safe and effective ways of treatment of these severe and currently incurable diseases.

  3. Circulatory response and autonomic nervous activity during gum chewing.

    PubMed

    Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu

    2009-08-01

    Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.

  4. Further evidence for a broader concept of somatization disorder using the somatic symptom index.

    PubMed

    Hiller, W; Rief, W; Fichter, M M

    1995-01-01

    Somatization syndromes were defined in a sample of 102 psychosomatic inpatients according to the restrictive criteria of DSM-III-R somatization disorder and the broader diagnostic concept of the Somatic Symptom Index (SSI). Both groups showed a qualitatively similar pattern of psychopathological comorbidity and had elevated scores on measures of depression, hypochondriasis, and anxiety. A good discrimination between mild and severe forms of somatization was found by using the SSI criterion. SSI use accounted for a substantial amount of comorbidity variance, with rates of 15%-20% for depression, 16% for hypochondriasis, and 13% for anxiety. The results provide further evidence for the validity of the SSI concept, which reflects the clinical relevance of somatization in addition to the narrow definition of somatization disorder.

  5. Biology of GDNF and its receptors - Relevance for disorders of the central nervous system.

    PubMed

    Ibáñez, Carlos F; Andressoo, Jaan-Olle

    2017-01-01

    A targeted effort to identify novel neurotrophic factors for midbrain dopaminergic neurons resulted in the isolation of GDNF (glial cell line-derived neurotrophic factor) from the supernatant of a rat glial cell line in 1993. Over two decades and 1200 papers later, the GDNF ligand family and their different receptor systems are now recognized as one of the major neurotrophic networks in the nervous system, important for the development, maintenance and function of a variety of neurons and glial cells. The many ways in which the four members of the GDNF ligand family can signal and function allow these factors to take part in the control of multiple types of processes, from neuronal survival to axon guidance and synapse formation in the developing nervous system, to synaptic function and regenerative responses in the adult. In this review, we will briefly summarize basic aspects of GDNF signaling mechanisms and receptor systems and then review our current knowledge of the physiology of GDNF activities in the central nervous system, with an eye to its relevance for neurodegenerative and neuropsychiatric diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    PubMed

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

  7. The Nervous System [and] Instructor's Guide: The Nervous System. Health Occupations Education Module: Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This module on the nervous system is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. It is part of an eight-unit miniseries on anatomy and physiology within the series of 17 modules. Following a preface which explains to the student how to use the…

  8. Coherent Somatic Mutation in Autoimmune Disease

    PubMed Central

    Ross, Kenneth Andrew

    2014-01-01

    Background Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. Results Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. Conclusions The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases. PMID:24988487

  9. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System

    PubMed Central

    Harrison-Brown, Meredith; Liu, Guo-Jun; Banati, Richard

    2016-01-01

    Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as “assistants” in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several ‘checkpoints’ from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets. PMID:27918464

  10. Distribution and function of voltage-gated sodium channels in the nervous system.

    PubMed

    Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie

    2017-11-02

    Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.

  11. Is somatic comorbidity associated with more somatic symptoms, mental distress, or unhealthy lifestyle in elderly cancer survivors?

    PubMed

    Grov, Ellen Karine; Fosså, Sophie D; Dahl, Alv A

    2009-06-01

    The associations of lifestyle factors, somatic symptoms, mental distress, and somatic comorbidity in elderly cancer survivors have not been well studied. This study examines these associations among elderly cancer survivors (age >or=65 years) in a population-based sample. A cross-sectional comparative study of Norwegian elderly cancer survivors. Combining information from The Norwegian Cancer Registry, and by self-reporting, 972 elderly cancer survivors were identified, of whom 632 (65%) had somatic comorbidity and 340 did not. Elderly cancer survivors with somatic comorbidity had significantly higher BMI, more performed minimal physical activity, had more somatic symptoms, used more medication, and had more frequently seen a medical doctor than survivors without somatic comorbidity. In multivariable analyses, unhealthy lifestyle and higher somatic symptoms scores were significantly associated with cancer cases with somatic comorbidity. In univariate analyses those with somatic comorbidity were significantly older, had lower levels of education, higher proportions of BMI >or= 30, less physical activity, poorer self-rated health, higher somatic symptoms score, more mental distress, had more frequently seen a medical doctor last year, and more frequently used daily medication. Our outcome measures of lifestyle, somatic symptoms and mental distress were all significantly associated with somatic comorbidity in elderly cancer survivors, however only lifestyle and somatic symptoms were significant in multivariable analyses. In elderly cancer survivors not only cancer, but also somatic comorbidity, deserve attention. Such comorbidity is associated with unhealthy lifestyles, more somatic symptoms and mental distress which should be evaluated and eventually treated.

  12. Space exploration, Mars, and the nervous system.

    PubMed

    Kalb, Robert; Solomon, David

    2007-04-01

    When human beings venture back to the moon and then on to Mars in the coming decade or so, we will be riding on the accumulated data and experience from approximately 50 years of manned space exploration. Virtually every organ system functions differently in the absence of gravity, and some of these changes are maladaptive. From a biologic perspective, long duration spaceflight beyond low Earth orbit presents many unique challenges. Astronauts traveling to Mars will live in the absence of gravity for more than 1 year en route and will have to transition between weightlessness and planetary gravitational forces at the beginning, middle, and end of the mission. We discuss some of what is known about the effects of spaceflight on nervous system function, with emphasis on the neuromuscular and vestibular systems because success of a Mars mission will depend on their proper functioning.

  13. Physical attraction to reliable, low variability nervous systems: Reaction time variability predicts attractiveness.

    PubMed

    Butler, Emily E; Saville, Christopher W N; Ward, Robert; Ramsey, Richard

    2017-01-01

    The human face cues a range of important fitness information, which guides mate selection towards desirable others. Given humans' high investment in the central nervous system (CNS), cues to CNS function should be especially important in social selection. We tested if facial attractiveness preferences are sensitive to the reliability of human nervous system function. Several decades of research suggest an operational measure for CNS reliability is reaction time variability, which is measured by standard deviation of reaction times across trials. Across two experiments, we show that low reaction time variability is associated with facial attractiveness. Moreover, variability in performance made a unique contribution to attractiveness judgements above and beyond both physical health and sex-typicality judgements, which have previously been associated with perceptions of attractiveness. In a third experiment, we empirically estimated the distribution of attractiveness preferences expected by chance and show that the size and direction of our results in Experiments 1 and 2 are statistically unlikely without reference to reaction time variability. We conclude that an operating characteristic of the human nervous system, reliability of information processing, is signalled to others through facial appearance. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Measures of Heart Rate Variability in Individuals With Somatic Symptom Disorder.

    PubMed

    Huang, Wei-Lieh; Liao, Shih-Cheng; Yang, Cheryl C H; Kuo, Terry B J; Chen, Tzu-Ting; Chen, I-Ming; Gau, Susan Shur-Fen

    2017-01-01

    Little is known about autonomic nervous system activity in individuals with somatic symptom disorder (SSD) as defined by DSM-V criteria. The aims of this study were to investigate whether individuals with SSD differ from healthy controls in heart rate variability (HRV) measures of autonomic nervous system activity and whether sex has a moderating effect on this association. We recruited 168 individuals with SSD (35.1% men) and 106 healthy controls (27.4% men). Demographics, HRV, and psychological factors were measured using the Patient Health Questionnaire-15, Health Anxiety Questionnaire, Beck Depression Inventory-II (BDI-II), and Beck Anxiety Inventory. Multiple regression analysis was used to examine the association of SSD with HRV, adjusting for demographic and psychological measures. Individuals with SSD had lower levels of total-power HRV and low-frequency HRV, but no differences in high-frequency (HF)-HRV were found. HRV differences between SSD and controls varied by sex and age (triple interaction TP-HRV β = -0.222, p < .001; low-frequency HRV β = -0.332, p < .001; and HF-HRV β = -0.167, p = .006). Whole-sample multiple regression analyses revealed significant sex differences in the magnitudes of the association between BDI-II with HF-HRV (β of sex*BDI-II: 0.761, p = .005) and analyses stratified by sex indicated that HF-HRV was significantly correlated with depression in men with SSD (r = -0.491, p < .001) but not in women with SSD (r = 0.057, p = .558). These results suggest that patients with SSD demonstrate different patterns of HRV and the patterns of association between HRV indices and psychological factors vary between men and women.

  15. Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract.

    PubMed

    Balu, Muthaiya; Sangeetha, Purushotham; Haripriya, Dayalan; Panneerselvam, Chinnakannu

    2005-08-05

    Oxidative stress is considered as a major risk factor that contributes to age-related increase in lipid peroxidation and declined antioxidants in the central nervous system during aging. Grape seed extract, one of the bioflavonoid, is widely used for its medicinal properties. In the present study, we evaluated the role of grape seed extract on lipid peroxidation and antioxidant status in discrete regions of the central nervous system of young and aged rats. Male albino rats of Wistar strain were divided into four groups: Group I-control young rats, Group II-young rats treated with grape seed extract (100 mg/kg body weight) for 30 days, Group III-aged control rats and Group IV-aged rats supplemented with grape seed extract (100 mg/kg body weight) for 30 days. Age-associated increase in lipid peroxidation was observed in the spinal cord, cerebral cortex, striatum and the hippocampus regions of aged rats (Group III). Activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and levels of non-enzymic antioxidants like reduced glutathione, Vitamin C and Vitamin E were found to be significantly decreased in all the brain regions studied in aged rats when compared to young rats. However, normalized lipid peroxidation and antioxidant defenses were reported in the grape seed extract-supplemented aged rats. These findings demonstrated that grape seed extract enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation in the central nervous system of aged rats.

  16. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke.

    PubMed

    Winek, Katarzyna; Dirnagl, Ulrich; Meisel, Andreas

    2016-10-01

    Research on commensal microbiota and its contribution to health and disease is a new and very dynamically developing field of biology and medicine. Recent experimental and clinical investigations underscore the importance of gut microbiota in the pathogenesis and course of stroke. Importantly, microbiota may influence the outcome of cerebral ischemia by modulating central nervous system antigen-specific immune responses. In this review we summarize studies linking gut microbiota with physiological function and disorders of the central nervous system. Based on these insights we speculate about targeting the gut microbiome in order to treat stroke.

  17. Central nervous system cancers, version 2.2014. Featured updates to the NCCN Guidelines.

    PubMed

    Nabors, Louis Burt; Portnow, Jana; Ammirati, Mario; Brem, Henry; Brown, Paul; Butowski, Nicholas; Chamberlain, Marc C; DeAngelis, Lisa M; Fenstermaker, Robert A; Friedman, Allan; Gilbert, Mark R; Hattangadi-Gluth, Jona; Hesser, Deneen; Holdhoff, Matthias; Junck, Larry; Lawson, Ronald; Loeffler, Jay S; Moots, Paul L; Mrugala, Maciej M; Newton, Herbert B; Raizer, Jeffrey J; Recht, Lawrence; Shonka, Nicole; Shrieve, Dennis C; Sills, Allen K; Swinnen, Lode J; Tran, David; Tran, Nam; Vrionis, Frank D; Wen, Patrick Yung; McMillian, Nicole R; Ho, Maria

    2014-11-01

    The NCCN Guidelines for Central Nervous System Cancers provide multidisciplinary recommendations for the clinical management of patients with cancers of the central nervous system. These NCCN Guidelines Insights highlight recent updates regarding the management of metastatic brain tumors using radiation therapy. Use of stereotactic radiosurgery (SRS) is no longer limited to patients with 3 or fewer lesions, because data suggest that total disease burden, rather than number of lesions, is predictive of survival benefits associated with the technique. SRS is increasingly becoming an integral part of management of patients with controlled, low-volume brain metastases. Copyright © 2014 by the National Comprehensive Cancer Network.

  18. Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System.

    PubMed

    Vallejos Baier, Raul; Picao-Osorio, Joao; Alonso, Claudio R

    2017-10-27

    Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Somatic late effects in 5-year survivors of neuroblastoma: A population-based cohort study within the Adult Life after Childhood Cancer in Scandinavia (ALiCCS) study.

    PubMed

    Norsker, Filippa Nyboe; Rechnitzer, Catherine; Cederkvist, Luise; Tryggvadottir, Laufey; Madanat-Harjuoja, Laura-Maria; Øra, Ingrid; Thorarinsdottir, Halldora K; Vettenranta, Kim; Bautz, Andrea; Schrøder, Henrik; Hasle, Henrik; Winther, Jeanette Falck

    2018-06-21

    Because of the rarity of neuroblastoma and poor survival until the 1990s, information on late effects in neuroblastoma survivors is sparse. We comprehensively reviewed the long-term risk for somatic disease in neuroblastoma survivors. We identified 721 5-year survivors of neuroblastoma in Nordic population-based cancer registries and identified late effects in national hospital registries covering the period 1977-2012. Detailed treatment information was available for 46% of the survivors. The disease-specific rates of hospitalization of survivors and of 152,231 randomly selected population comparisons were used to calculate standardized hospitalization rate ratios (SHRRs) and absolute excess risks (AERs). During 5,500 person-years of follow-up, 501 5-year survivors had a first hospital contact yielding a SHRR of 2.3 (95% CI 2.1-2.6) and a corresponding AER of 52 (95% CI 44-60) per 1,000 person-years. The highest relative risks were for diseases of blood and blood-forming organs (SHRR 3.8; 95% CI 2.7-5.4), endocrine diseases (3.6 [3.1-4.2]), circulatory system diseases (3.1 [2.5-3.8]), and diseases of the nervous system (3.0 [2.6-3.3]). Approximately 60% of the excess new hospitalizations of survivors were for diseases of the nervous system, urinary system, endocrine system, and bone and soft tissue. The relative risks and AERs were highest for the survivors most intensively treated. Survivors of neuroblastoma have a highly increased long-term risk for somatic late effects in all the main disease groups as compared with background levels. Our results are useful for counseling survivors and should contribute to improving health care planning in post-therapy clinics. This article is protected by copyright. All rights reserved. © 2018 UICC.

  20. Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning.

    PubMed

    Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A

    2017-06-01

    Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.

  1. Regeneration of the Rhopalium and the Rhopalial Nervous System in the Box Jellyfish Tripedalia cystophora.

    PubMed

    Stamatis, Sebastian-Alexander; Worsaae, Katrine; Garm, Anders

    2018-02-01

    Cubozoans have the most intricate visual apparatus within Cnidaria. It comprises four identical sensory structures, the rhopalia, each of which holds six eyes of four morphological types. Two of these eyes are camera-type eyes that are, in many ways, similar to the vertebrate eye. The visual input is used to control complex behaviors, such as navigation and obstacle avoidance, and is processed by an elaborate rhopalial nervous system. Several studies have examined the rhopalial nervous system, which, despite a radial symmetric body plan, is bilaterally symmetrical, connecting the two sides of the rhopalium through commissures in an extensive neuropil. The four rhopalia are interconnected by a nerve ring situated in the oral margin of the bell, and together these structures constitute the cubozoan central nervous system. Cnidarians have excellent regenerative capabilities, enabling most species to regenerate large body areas or body parts, and some species can regenerate completely from just a few hundred cells. Here we test whether cubozoans are capable of regenerating the rhopalia, despite the complexity of the visual system and the rhopalial nervous system. The results show that the rhopalia are readily regrown after amputation and have developed most, if not all, neural elements within two weeks. Using electrophysiology, we investigated the functionality of the regrown rhopalia and found that they generated pacemaker signals and that the lens eyes showed a normal response to light. Our findings substantiate the amazing regenerative ability in Cnidaria by showing here the complex sensory system of Cubozoa, a model system proving to be highly applicable in studies of neurogenesis.

  2. Studies for Somatic Embryogenesis in Sweet Potato

    NASA Technical Reports Server (NTRS)

    Bennett, J. Rasheed; Prakash, C. S.

    1997-01-01

    The purpose of this study was to improve the somatic embryo (SE) system for plant production of sweet potato (Ipomoea batatas L(Lam)). Explants isolated from SE-derived sweet potato plants were compared with control (non SE-derived) plants for their competency for SE production. Leaf explants were cultured on Murashige-Skoog (MS) medium with 2,4-dichlorophenoxy acetic acid (0.2 mg/L) and 6-benzylaminopurine (2.5 mg/L) for 2 weeks in darkness and transferred to MS medium with abscisic acid (2.5 mg/L). Explants isolated from those plants developed through somatic embryogenesis produced new somatic embryos rapidly and in higher frequency than those isolated from control plants They also appeared to grow faster in tissue culture than the control plants. Current studies in the laboratory are examining whether plants derived from a cyclical embryogenesis system (five cycles) would have any further positive impact on the rapidity and frequency of somatic embryo development. More detailed studies using electron microscopy are expected to show the point of origin of the embryos and to allow determination of their quality throughout the cyclical process. This study may facilitate improved plant micropropagation, gene transfer and germplasm conservation in sweet potato.

  3. A would-be nervous system made from a slime mold.

    PubMed

    Adamatzky, Andrew

    2015-01-01

    The slime mold Physarum polycephalum is a huge single cell that has proved to be a fruitful material for designing novel computing architectures. The slime mold is capable of sensing tactile, chemical, and optical stimuli and converting them to characteristic patterns of its electrical potential oscillations. The electrical responses to stimuli may propagate along protoplasmic tubes for distances exceeding tens of centimeters, as impulses in neural pathways do. A slime mold makes decisions about its propagation direction based on information fusion from thousands of spatially extended protoplasmic loci, similarly to a neuron collecting information from its dendritic tree. The analogy is distant yet inspiring. We speculate on whether alternative-would-be-nervous systems can be developed and practically implemented from the slime mold. We uncover analogies between the slime mold and neurons, and demonstrate that the slime mold can play the roles of primitive mechanoreceptors, photoreceptors, and chemoreceptors; we also show how the Physarum neural pathways develop. The results constituted the first step towards experimental laboratory studies of nervous system implementation in slime molds.

  4. The Human Nervous System: A Framework for Teaching and the Teaching Brain

    ERIC Educational Resources Information Center

    Rodriguez, Vanessa

    2013-01-01

    The teaching brain is a new concept that mirrors the complex, dynamic, and context-dependent nature of the learning brain. In this article, I use the structure of the human nervous system and its sensing, processing, and responding components as a framework for a re-conceptualized teaching system. This teaching system is capable of responses on an…

  5. [Relaxation treatments and biofeedback for anxiety and somatic stress-related disorders].

    PubMed

    Biondi, Massimo; Valentini, Martina

    2014-01-01

    Relaxation techniques (TR) and biofeedback (BFB) are widely used in psychiatric and psychological practice for the treatment for anxiety and stress-related disorders. An examination of studies focusing on the correlates of psychophysiology of relaxation and biofeedback has been done, in addiction to controlled therapeutic studies that describes clinical aspects, efficacy and limits. There are different TR and BFB procedures, but they have the same goal and same physiological modifications, resulting in stress and anxiety reduction. There is a proven action to musculoskeletal, neuroendocrine and autonomic nervous system, showing similar results. Very few data on immune changes are available. Meta-Analysis show superior efficacy to no treatment or placebo in anxiety disorders, tension headache, bruxism, temporomandibular pain syndrome, rehabilitation and prevention of ischemic heart disease. Moderate efficacy is shown for chronic low back pain, cancer-related pain, rheumatoid arthritis and gastrointestinal disorders; data for essential hypertension are controversial. Variability of techniques, procedures, sampling problems, non-systematic make definitive conclusions difficult. TR and BFB are often used in combination with cognitive-behavioral and educational techniques. The association of the active relaxation technique facilitates generalization and self-control during stress situation and outside the training session. TR and BFB are effective for anxiety and somatic stress-related disorders, associated with coping and quality of life improvement and affordable costs; they are minimally invasive but needing an active participation in the treatment process. Some limits are responders' prediction, continuity of practice and limited effectiveness for depression disorders. Finally, it is shown that they are real psychosomatic therapies that are able to produce somatic peripheral changes (neuroendocrine, neurovegetative and muscular systems) generated by the mind and

  6. Tumor-Like Presentation of Primary Angiitis of the Central Nervous System.

    PubMed

    de Boysson, Hubert; Boulouis, Grégoire; Dequatre, Nelly; Godard, Sophie; Néel, Antoine; Arquizan, Caroline; Detante, Olivier; Bloch-Queyrat, Coralie; Zuber, Mathieu; Touzé, Emmanuel; Bienvenu, Boris; Aouba, Achille; Guillevin, Loïc; Naggara, Olivier; Pagnoux, Christian

    2016-09-01

    We aimed to describe the clinical and imaging features of patients with tumor-like presentation of primary angiitis of the central nervous system. We retrospectively analyzed 10 patients enrolled in the French primary angiitis of the central nervous system cohort, who initially presented tumor-like brain lesions and compared them with other patients within the cohort. The 10 patients with tumor-like presentation in the cohort were younger and had more seizures at diagnosis than the other 75 patients (median of 37 [30-48] years versus 46 [18-79] years; P=0.008; 9 [90%] with seizures versus 22 [29%], P<0.001; respectively). All 10 patients had a biopsy (stereotactic procedure in 7 and open-wedge surgery in 3). Histological findings suggestive of vasculitis were observed in 9 patients in whom conventional cerebral angiography and magnetic resonance angiography were negative. In the remaining patient, vascular imaging demonstrated diffuse bilateral large- and medium-sized vessel involvement (biopsy did not reveal vasculitis). All patients with tumor-like presentation received glucocorticoids, combined with cyclophosphamide in 9 cases. With a median follow-up of 27 (12-130) months, 5 (50%) patients relapsed, but achieved remission again after treatment intensification. Patients with tumor-like presentation of primary angiitis of the central nervous system represent a subgroup characterized with mainly small-sized vessel disease that requires histological confirmation because vascular imaging is often normal. Although relapses are not uncommon, global outcomes are good under treatment with glucocorticoids and cyclophosphamide. © 2016 American Heart Association, Inc.

  7. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems

    PubMed Central

    Chan, Ken Y; Jang, Min J; Yoo, Bryan B; Greenbaum, Alon; Ravi, Namita; Wu, Wei-Li; Sánchez-Guardado, Luis; Lois, Carlos; Mazmanian, Sarkis K; Deverman, Benjamin E; Gradinaru, Viviana

    2017-01-01

    Adeno-associated viruses (AAVs) are commonly used for in vivo gene transfer. Nevertheless, AAVs that provide efficient transduction across specific organs or cell populations are needed. Here, we describe AAV-PHP.eB and AAV-PHP.S, capsids that efficiently transduce the central and peripheral nervous systems, respectively. In the adult mouse, intravenous administration of 1×1011 vector genomes (vg) of AAV-PHP.eB transduced 69% of cortical and 55% of striatal neurons, while 1×1012 vg AAV-PHP.S transduced 82% of dorsal root ganglion neurons, as well as cardiac and enteric neurons. The efficiency of these vectors facilitates robust co-transduction and stochastic, multicolor labeling for individual cell morphology studies. To support such efforts, we provide methods for labeling a tunable fraction of cells without compromising color diversity. Furthermore, when used with cell type-specific promoters, these AAVs provide targeted gene expression across the nervous system and enable efficient and versatile gene manipulation throughout the nervous system of transgenic and non-transgenic animals. PMID:28671695

  8. Somatic mosaicism in plants with special reference to somatic crossing over

    PubMed Central

    Vig, Baldev K.

    1978-01-01

    Plant systems in use for the detection of environmental mutagens appear capable of detecting all types of genetic effects which can be studied in animals. The study of somatic mosaicism, however, is better developed in plants than in higher animals. A case is presented here which shows the ability of plant systems in analyzing a host of genetic end points, including chromosome aberrations like deletions, somatic crossing over, numerical inequality, gene conversion, paramutations and point mutations. The systems in general use utilize certain varieties of Tradescantia, Glycine max, Nicotiana tabacum, Antirrhinum majus, Petunia hybrida, and Arabidopsis thaliana. Heterozygous plants or their homozygous counterparts with gene markers affecting chlorophyll development or anthocyanin in floral parts are exploited in these studies. Mutagens produce different frequencies of different types of spots typical of the mode of action of the agent. Analysis of these parameters may be used to predict, at least qualitatively, the kind of genetic damage that might be produced in man. Besides, one can test the validity of interpretation by traditional progeny tests of plants raised from tissue culture from sectors as in Nicotiana and/or by precursor analysis as done in Antirrhinum. The study of mosaicism in plants offers quite inexpensive, rapid, and reliable tests of mutagenicity at least as a preliminary eukaryotic test system. ImagesFIGURE 1.FIGURE 1.FIGURE 2.FIGURE 9. PMID:367771

  9. Effects of alpha-glucosylhesperidin on the peripheral body temperature and autonomic nervous system.

    PubMed

    Takumi, Hiroko; Fujishima, Noboru; Shiraishi, Koso; Mori, Yuka; Ariyama, Ai; Kometani, Takashi; Hashimoto, Shinichi; Nadamoto, Tomonori

    2010-01-01

    We studied the effects of alpha-glucosylhesperidin (G-Hsp) on the peripheral body temperature and autonomic nervous system in humans. We first conducted a survey of 97 female university students about excessive sensitivity to the cold; 74% of them replied that they were susceptible or somewhat susceptible to the cold. We subsequently conducted a three-step experiment. In the first experiment, G-Hsp (500 mg) was proven to prevent a decrease in the peripheral body temperature under an ambient temperature of 24 degrees C. In the second experiment, a warm beverage containing G-Hsp promoted blood circulation and kept the finger temperature higher for a longer time. We finally used a heart-rate variability analysis to study whether G-Hsp changed the autonomic nervous activity. The high-frequency (HF) component tended to be higher, while the ratio of the low-frequency (LF)/HF components tended to be lower after the G-Hsp administration. These results suggest that the mechanism for temperature control by G-Hsp might involve an effect on the autonomic nervous system.

  10. Tuberculous otitis media with mastoiditis and central nervous system involvement.

    PubMed

    Mongkolrattanothai, Kanokporn; Oram, Ronda; Redleaf, Miriam; Bova, Judy; Englund, Janet A

    2003-05-01

    Tuberculosis of the middle ear and mastoid is currently a rare disease in developed countries, but this disease still occurs and may cause serious consequences. We report a case of disseminated tuberculosis involving the middle ear, mastoid, lung and central nervous system. Tuberculosis should be considered in the differential diagnosis of chronic ear drainage, especially in young children.

  11. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system

    PubMed Central

    OBATA, Kunihiko

    2013-01-01

    Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented. PMID:23574805

  12. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  13. Convection-enhanced delivery to the central nervous system.

    PubMed

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  14. Extracellular vesicles and intercellular communication within the nervous system

    PubMed Central

    Fitzpatrick, Zachary; Maguire, Casey A.; Breakefield, Xandra O.

    2016-01-01

    Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a “kit” of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction. PMID:27035811

  15. [Effect of the Epstein-Barr virus on the nervous system].

    PubMed

    Kononenko, V V

    2001-01-01

    On the basis of a comprehensive examination of 12 patients with verified Epstein-Barr virus (EBV) infection it has been shown that this infection can be accompanied by acute and chronic affections of the central and peripheral nervous system. The pathogenesis of chronic EBV-infection involves autoimmune disorders, neurosensitization, a hazard of an injury to the muscular tissue. Chronic EBV-infection calls for differential diagnosis with other slow virus infections, systemic tumor afflictions, systemic diseases of the connective tissue. Acyclovir or valacyclovir can be recommended as treatment of acute and chronic EBV-infection.

  16. 75 FR 56548 - Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug Safety... and Central Nervous System Drugs Advisory Committee and the Drug Safety and Risk Management Advisory...

  17. Effects of Gentiana lutea ssp. symphyandra on the central nervous system in mice.

    PubMed

    Oztürk, Nilgün; Başer, K Hüsnü Can; Aydin, Süleyman; Oztürk, Yusuf; Caliş, Ihsan

    2002-11-01

    A methanolic extact of Gentiana lutea ssp. symphyandra roots has been investigated for its possible effects on the central nervous system of mice. At doses of 250 and 500 mg/kg (i.p.), the methanol extract of Gentiana roots caused a significant increase in the swimming endurance test and exhibited slight analgesic activity, but no lethality in mice suggesting some activity on the central nervous system. However, there was no indication of sedation or muscular fatigue at the doses employed. HPLC analysis showed that three secoiridoid compounds, gentiopicroside, swertiamarine and sweroside were present and may have been responsible for the CNS effects of the methanol extract of Gentiana lutea ssp. symphyandra roots. Copyright 2002 John Wiley & Sons, Ltd.

  18. The Beauty and the Beast: Aspects of the Autonomic Nervous System.

    PubMed

    Corti, Roberto; Binggeli, Christian; Sudano, Isabella; Spieker, Lukas E.; Wenzel, René R.; Lüscher, Thomas F.; Noll, Georg

    2000-06-01

    Sympathetic nerve activity is altered and is a prognostic factor for many cardiovascular diseases such as hypertension, coronary syndromes, and congestive heart failure. Therefore, the selection of vasoactive drugs for the treatment of these diseases should also take into consideration their effects on the sympathetic nervous system.

  19. Highly Expandable Human iPS Cell-Derived Neural Progenitor Cells (NPC) and Neurons for Central Nervous System Disease Modeling and High-Throughput Screening.

    PubMed

    Cheng, Chialin; Fass, Daniel M; Folz-Donahue, Kat; MacDonald, Marcy E; Haggarty, Stephen J

    2017-01-11

    Reprogramming of human somatic cells into induced pluripotent stem (iPS) cells has greatly expanded the set of research tools available to investigate the molecular and cellular mechanisms underlying central nervous system (CNS) disorders. Realizing the promise of iPS cell technology for the identification of novel therapeutic targets and for high-throughput drug screening requires implementation of methods for the large-scale production of defined CNS cell types. Here we describe a protocol for generating stable, highly expandable, iPS cell-derived CNS neural progenitor cells (NPC) using multi-dimensional fluorescence activated cell sorting (FACS) to purify NPC defined by cell surface markers. In addition, we describe a rapid, efficient, and reproducible method for generating excitatory cortical-like neurons from these NPC through inducible expression of the pro-neural transcription factor Neurogenin 2 (iNgn2-NPC). Finally, we describe methodology for the use of iNgn2-NPC for probing human neuroplasticity and mechanisms underlying CNS disorders using high-content, single-cell-level automated microscopy assays. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. The effect of space radiation of the nervous system

    NASA Astrophysics Data System (ADS)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  1. Influence of selected dietary components on the functioning of the human nervous system

    PubMed

    Wendołowicz, Agnieszka; Stefańska, Ewa; Ostrowska, Lucyna

    The diet is directly connected not only with the physical status but also with the functioning of the brain and the mental status. The potentially beneficial nutrients with a protective effect on the nervous system function include amino acids (tryptophan, phenylalanine, tyrosine, taurine), glucose and vitamins C, E, D and beta-carotene, B group vitamins (vitamin B12, vitamin B6, vitamin B4, vitamin B1) and minerals (selenium, zinc, magnesium, sodium, iron, copper, manganese, iodine). The presence of antioxidants in the diet protects against oxidative damage to nervous system cells. Biochemical data indicate that polyunsaturated fatty acids such as arachidonic acid (AA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) as structural components of the nervous system play a key role in its function. The nutrition of the entire body also influences the production of neurotransmitters in the brain. A diet without an appropriate supply of protein, mineral nutrients or vitamins may result in a failure to form appropriately balanced numbers of neurotransmitters, which, as a result, may lead to neurotransmission dysfunction. This is the reason why proper nutrition is based on vegetables, fruits, whole-grain cereal products supplemented with products providing full-value protein (dairy products, fish, lean meat) and high-quality fat products (vegetable oils, fish fats).

  2. Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos.

    PubMed

    Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E

    2009-09-01

    Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (P<0.05). The use of donor cells of any type in later passages decreased the rate of blastocyst formation. Treatment with trichostatin-A did not improve the rate of blastocyst formation from cleaved dewclaw cell-derived embryos but did so in the embryos derived from the tail-tip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.

  3. Cryopreservation of Arachis pintoi (leguminosae) somatic embryos.

    PubMed

    Rey, H Y; Faloci, M; Medina, R; Dolce, N; Engelmann, F; Mroginski, L

    2013-01-01

    In this study, we successfully cryopreserved cotyledonary somatic embryos of diploid and triploid Arachis pintoi cytotypes using the encapsulation-dehydration technique. The highest survival rates were obtained when somatic embryos were encapsulated in calcium alginate beads and precultured in agitated (80 rpm) liquid establishment medium (EM) with daily increasing sucrose concentration (0.50, 0.75, and 1.0 M). The encapsulated somatic embryos were then dehydrated with silica gel for 5 h to 20% moisture content (fresh weight basis) and cooled either rapidly (direct immersion in liquid nitrogen, LN) or slowly (1 degree C per min from 25 degree C to -30 degree C followed by immersion in LN). Beads were kept in LN for a minimum of 1 h and then were rapidly rewarmed in a 30 degree C water-bath for 2 min. Finally, encapsulated somatic embryos were post-cultured in agitated (80 rpm) liquid EM with daily decreasing sucrose concentration (0.75 and 0.5 M) and transferred to solidified EM. Using this protocol, we obtained 26% and 30% plant regeneration from cryopreserved somatic embryos of diploid and triploid cytotypes. No morphological abnormalities were observed in any of the plants regenerated from cryopreserved embryos and their genetic stability was confirmed with 10 isozyme systems and nine RAPD profiles.

  4. Is Empiricism Empirically False? Lessons from Early Nervous Systems.

    PubMed

    Miłkowski, Marcin

    2017-01-01

    Recent work on skin-brain thesis (de Wiljes et al. 2015; Keijzer 2015; Keijzer et al. 2013) suggests the possibility of empirical evidence that empiricism is false. It implies that early animals need no traditional sensory receptors to be engaged in cognitive activity. The neural structure required to coordinate extensive sheets of contractile tissue for motility provides the starting point for a new multicellular organized form of sensing. Moving a body by muscle contraction provides the basis for a multicellular organization that is sensitive to external surface structure at the scale of the animal body. In other words, the nervous system first evolved for action, not for receiving sensory input. Thus, sensory input is not required for minimal cognition; only action is. The whole body of an organism, in particular its highly specific animal sensorimotor organization, reflects the bodily and environmental spatiotemporal structure. The skin-brain thesis suggests that, in contrast to empiricist claims that cognition is constituted by sensory systems, cognition may be also constituted by action-oriented feedback mechanisms. Instead of positing the reflex arc as the elementary building block of nervous systems, it proposes that endogenous motor activity is crucial for cognitive processes. In the paper, I discuss the issue whether the skin-brain thesis and its supporting evidence can be really used to overthrow the main tenet of empiricism empirically, by pointing out to cognizing agents that fail to have any sensory apparatus.

  5. [The role of magnetic stimulation in diagnosis of the peripheral nervous system].

    PubMed

    Dressler, D; Benecke, R; Meyer, B U; Conrad, B

    1988-12-01

    Magnetic stimulation has recently been introduced as a new method for stimulation of neuronal tissues. Up to now most investigators were emphasized the advantages of this method for the investigation of the central nervous system. With this paper we want to show that magnetic stimulation may also be useful for the examination of the peripheral nervous system. Both, magnetic and electrical stimulation, seem to employ the same stimulation mechanisms in the nervous tissue. The results obtained with both methods should therefore be comparable. By measuring EMG-latencies after electrical and magnetic stimulation (Fig. 1) the exact site of magnetic stimulation can be determined. Magnetic stimulation offers major advantages over electrical stimulation: 1) Magnetic stimulation is a painless method even when high stimulus intensities are used. 2) Magnetic stimulation can reach deep neuronal structures that are not easily accessible using electrical stimulation (Fig. 2, Fig. 3). 3) Using a wide range of stimulus intensities (Fig. 4, Fig. 5) magnetic stimulation provides a much better descrimination of different components of the compound muscle action potential than electrical stimulation. Magnetic stimulation seems to be a promising new method for the electrodiagnostic examination of pain- sensitive patients, especially when deep-lying peripheral nerves have to be investigated.

  6. Cellular and Molecular Mechanisms of Sexual Differentiation in the Mammalian Nervous System

    PubMed Central

    Forger, Nancy G.; Strahan, J. Alex; Castillo-Ruiz, Alexandra

    2016-01-01

    Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to rethink often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970

  7. Echoes from the anatomical theater of Padua: Fabrici on the nervous system.

    PubMed

    Zanchin, Giorgio; Panetto, Monica; Dalla Francesca, Elisabetta Hellman

    2015-06-01

    Girolamo Fabrici d'Acquapendente, never published a systematic description nor an iconographic record of the nervous system except for the series of 21 pictures, entitled De Anatomia Capitis Cerebri Nervorum, stored in the Biblioteca Marciana of Venice.

  8. Child Abuse and Autonomic Nervous System Hyporesponsivity among Psychiatrically Impaired Children

    ERIC Educational Resources Information Center

    Ford, Julian D.; Fraleigh, Lisa A.; Albert, David B.; Connor, Daniel F.

    2010-01-01

    Objective: Sexually or physically abused children are at risk for neurobiological dysregulation as well as for internalizing and disruptive behavior disorders. Stress-related autonomic nervous system (ANS) down-regulation has been proposed as a sequela of abuse and was investigated in the present study. Methods: Child Protective Services…

  9. Mutations in the Drosophila neuroglian cell adhesion molecule affect motor neuron pathfinding and peripheral nervous system patterning.

    PubMed

    Hall, S G; Bieber, A J

    1997-03-01

    We have identified and characterized three embryonic lethal mutations that alter or abolish expression of Drosophila Neuroglian and have used these mutations to analyze Neuroglian function during development. Neuroglian is a member of the immunoglobulin superfamily. It is expressed by a variety of cell types during embryonic development, including expression on motoneurons and the muscle cells that they innervate. Examination of the nervous systems of neuroglian mutant embryos reveals that motoneurons have altered pathfinding trajectories. Additionally, the sensory cell bodies of the peripheral nervous system display altered morphology and patterning. Using a temperature-sensitive mutation, the phenocritical period for Neuroglian function was determined to occur during late embryogenesis, an interval which coincides with the period during which neuromuscular connections and the peripheral nervous system pattern are established.

  10. Cutaneous somatic and autonomic nerve TDP-43 deposition in amyotrophic lateral sclerosis.

    PubMed

    Ren, Yuting; Liu, Wenxiu; Li, Yifan; Sun, Bo; Li, Yanran; Yang, Fei; Wang, Hongfen; Li, Mao; Cui, Fang; Huang, Xusheng

    2018-05-26

    To evaluate the involvement of the sensory and autonomic nervous system in amyotrophic lateral sclerosis (ALS) and to determine whether TDP-43/pTDP-43 deposits in skin nerve fibers signify a valuable biomarker for ALS. Eighteen patients with ALS and 18 age- and sex-matched control subjects underwent physical examinations, in addition to donating skin biopsies from the distal leg. The density of epidermal, Meissner's corpuscle (MC), sudomotor, and pilomotor nerve fibers were measured. Confocal microscopy was used to determine the cutaneous somatic and autonomic nerve fiber density and TDP-43/pTDP-43 deposition. Intraepidermal nerve fiber density (IENFD) was reduced in individuals with ALS (P < 0.001). MC density (MCD) (P = 0.001), sweat gland nerve fiber density (SGNFD) (P < 0.001), and pilomotor nerve fiber density (PNFD) (P < 0.001) were all reduced in ALS patients. The SGNFD correlated with the small-fiber neuropathy Symptoms Inventory Questionnaire (SFN-SIQ), VAS and age. The SFN-SIQ was higher in ALS with sensory symptoms than without sensory symptoms (P = 0.000). Furthermore, the SFN-SIQ was higher in ALS with autonomic symptoms than without autonomic symptoms (P = 0.002). SFN-SIQ was higher in ALS patients that were pTDP-43 positive than pTDP-43 negative (P = 0.04), respectively. We established in the peripheral nervous system that higher SFN-SIQ and VAS was involved in ALS, indicating the loss of SGNF. The deposition of TDP-43/pTDP-43 in ALS nerve fibers may indicate an important role in the underlying pathogenesis of ALS. This observation might be used as a potential biomarker for diagnosing ALS.

  11. [ASSESSMENT OF PEFORMANCE IN STUDENTS WITH DIFFERENT TYPES OF THE NERVOUS SYSTEM WITH THE USE OF THE DEVELOPED SOFTWARE FOR PC "TAPPING-TEST"].

    PubMed

    Shumskikh, D S; Rakhmanov, R S; Orlov, A L

    2015-01-01

    There was developed the PC software, which demonstrates the type of nervous system, allows us to differentiate people according to the empirical coefficient within groups with the same type of nervous system, provides information on the severity of the asymmetry of the hemispheres of the brain and shows the results of performance of the work It does not require additional calculations. With its use there were examined 1 and 2 courses students of the institution. Ehpyky was performed the comparative analysis of the progress of students with different types of nervous system. The academic performance in the examinees with a strong type of nervous system was significantly higher than in those with a weak type. In order to improve professional training the assessment of the type of the nervous system can be used in the educational process for the identification and correction of students with a weak nervous system.

  12. Somatization symptoms in pediatric abdominal pain patients: relation to chronicity of abdominal pain and parent somatization.

    PubMed

    Walker, L S; Garber, J; Greene, J W

    1991-08-01

    Symptoms of somatization were investigated in pediatric patients with recurrent abdominal pain (RAP) and comparison groups of patients with organic etiology for abdominal pain and well patients. Somatization scores were higher in RAP patients than well patients at the clinic visit, and higher than in either well patients or organic patients at a 3-month followup. Higher somatization scores in mothers and fathers were associated with higher somatization scores in RAP patients, but not in organic or well patients. Contrary to the findings of Ernst, Routh, and Harper (1984), chronicity of abdominal pain in RAP patients was not significantly associated with their level of somatization symptoms. Psychometric information about the Children's Somatization Inventory is presented.

  13. Somatic Symptom and Related Disorders

    MedlinePlus

    ... caused by somatic symptom and related disorders are real, they are not imagined. Like many medical problems, somatic symptom and related disorders often run in families. They also tend to come and go over time. How is somatic symptom and related disorders diagnosed? ...

  14. Dependence of palmar sweating response and central nervous system activity on the frequency of whole-body vibration.

    PubMed

    Ando, Hideo; Noguchi, Ryo

    2003-06-01

    This study was carried out to determine the effects of the frequency of whole-body vibration on palmar sweating response and the activity of the central sympathetic nervous system. Palmar sweating volume was measured on the right palm of six healthy men before and during 3 minutes of exposure to sinusoidal whole-body vibration at three different frequencies (16, 31.5, and 63 Hz). The whole-body vibration had a frequency-weighted, root mean square (rms) acceleration magnitude of 2.0 m/s2. As the index of the activated central sympathetic nervous system, saliva level of 3-methoxy-4-hydroxyphenylglycol (MHPG) was analyzed before and immediately after each vibration exposure. Each vibration frequency induced a palmar sweating response, that of 31.5 Hz being the largest. However, no significant difference was found between the three vibration conditions. Saliva MHPG increased in all the vibration exposures, and the largest change was observed at 31.5 Hz, the difference being significant. Acute exposure to whole-body vibration induced a palmar sweating response and activated the central sympathetic nervous system. The effects on the central nervous system were found to be dependent on the frequency of the vibration.

  15. Exploring relationships for visceral and somatic pain with autonomic control and personality.

    PubMed

    Paine, Peter; Kishor, Jessin; Worthen, Sian F; Gregory, Lloyd J; Aziz, Qasim

    2009-08-01

    The autonomic nervous system (ANS) integrates afferent and motor activity for homeostatic processes including pain. The aim of the study was to compare hitherto poorly characterised relations between brainstem autonomic control and personality in response to visceral and somatic pain. Eighteen healthy subjects (16 females, mean age 34) had recordings during rest and pain of heart rate (HR), cardiac vagal tone (CVT), cardiac sensitivity to baroreflex (CSB), skin conductance level (SC), cardiac sympathetic index (CSI) and mean blood pressure (MBP). Visceral pain was induced by balloon distension in proximal (PB) and distal (DB) oesophagus and somatic pain by nail-bed pressure (NBP). Eight painful stimuli were delivered at each site and unpleasantness and intensity measured. Personality was profiled with the Big Five inventory. (1) Oesophageal intubation evoked "fight-flight" responses: HR and sympathetic (CSI, SC, MBP) elevation with parasympathetic (CVT) withdrawal (p<0.05). (2) Pain at all sites evoked novel parasympathetic/sympathetic co-activation with elevated HR but vasodepression (all p<0.05). (3) Personality traits correlated with slope of distal oesophageal pain-related CVT changes wherein more neurotic-introvert subjects had greater positive pain-related CVT slope change (neuroticism r 0.8, p<0.05; extroversion r -0.5, p<0.05). Pain-evoked heart rate increases were mediated by parasympathetic and sympathetic co-activation - a novel finding in humans but recently described in mammals too. Visceral pain-related parasympathetic change correlated with personality. ANS defence responses are nuanced and may relate to personality type for visceral pain. Clinical relevance of these findings warrants further exploration.

  16. Space, Time, and Dyslexia: Central Nervous System Factors in Reading Disability.

    ERIC Educational Resources Information Center

    Krippner, Stanley

    Developmental and post-traumatic dyslexia are discussed in terms of a dysfunction of the central nervous system resulting in reading disabilities. The relationship of reading to other language functions is considered, with emphasis on the temporal aspects of speech and reading. An interdisciplinary approach is held necessary for the diagnosis of…

  17. Role of the Enteric Nervous System in the Fluid and Electrolyte Secretion of Rotavirus Diarrhea

    NASA Astrophysics Data System (ADS)

    Lundgren, Ove; Peregrin, Attila Timar; Persson, Kjell; Kordasti, Shirin; Uhnoo, Ingrid; Svensson, Lennart

    2000-01-01

    The mechanism underlying the intestinal fluid loss in rotavirus diarrhea, which often afflicts children in developing countries, is not known. One hypothesis is that the rotavirus evokes intestinal fluid and electrolyte secretion by activation of the nervous system in the intestinal wall, the enteric nervous system (ENS). Four different drugs that inhibit ENS functions were used to obtain experimental evidence for this hypothesis in mice in vitro and in vivo. The involvement of the ENS in rotavirus diarrhea indicates potential sites of action for drugs in the treatment of the disease.

  18. HIV Immune Recovery Inflammatory Syndrome and Central Nervous System Paracoccidioidomycosis.

    PubMed

    de Almeida, Sérgio Monteiro; Roza, Thiago Henrique

    2017-04-01

    The immune reconstitution inflammatory syndrome (IRIS) is a deregulated inflammatory response to invading microorganisms. It is manifested when there is an abrupt change in host immunity from an anti-inflammatory and immunosuppressive state to a pro-inflammatory state as a result of rapid depletion or removal of factors that promote immune suppression or inhibition of inflammation. The aim of this paper is to discuss and re-interpret the possibility of association of paracoccidioidomycosis (PCM) with IRIS in the central nervous system (CNS) in a case from Brazil published by Silva-Vergara ML. et al. (Mycopathologia 177:137-141, 6). An AIDS patient who was not receiving medical care developed pulmonary PCM successfully treated with itraconazole. The patient developed central nervous system PCM (NPCM) after starting the ARV therapy with recovery of immunity and control of HIV viral load, although it was not interpreted as IRIS by the authors, it fulfills the criteria for CNS IRIS. This could be the first case of NPCM associated with IRIS described. Although not frequent, IRIS must be considered in PCM patients and HIV, from endemic areas or patients that traveled to endemic areas, receiving ARV treatment and with worsening symptoms.

  19. Spectral Mixing in Nervous Systems: Experimental Evidenceand Biologically Plausible Circuits

    NASA Astrophysics Data System (ADS)

    Kleinfeld, D.; Mehta, S. B.

    The ability to compute the difference frequency for two periodic signals depends on a nonlinear operation that mixes those signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the vertebrate nervous system as a means to compare rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. Electrophysiological data from electroreceptors in the immobilized electric fish and somatosensory cortex in the anesthetized rat yield direct evidence for such mixing, providing a neurological substrate for the modulation and demodulation of rhythmic neuronal signals. We consider an analytical model of spectral mixing that makes use of the threshold characteristics of neuronal firing and which has features consistent with the experimental observations. This model serves as a guide for constructing circuits that isolate given mixture components. In particular, such circuits can generate nearly pure difference tones from sinusoidal inputs without the use of band-pass filters, in analogy to an image-reject mixer in communications engineering. We speculate that such computations may play a role in coding of sensory input and feedback stabilization of motor output in nervous systems.

  20. A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system.

    PubMed

    Uribe, Rosa A; Gu, Tiffany; Bronner, Marianne E

    2016-03-01

    The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development. © 2016 Wiley Periodicals, Inc.

  1. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    PubMed

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  2. Cross-education of strength and skill: an old idea with applications in the aging nervous system.

    PubMed

    Barss, Trevor S; Pearcey, Gregory E P; Zehr, E Paul

    2016-03-01

    Edward Wheeler Scripture's 1894 work out of the Yale Psychological Laboratory has been influential in identifying the nervous system's contribution to the bilateral improvements that are seen with unilateral strength and skill training. Scripture coined the term "cross-education" to describe this improvement in the untrained contralateral limb. While physiological changes accompany aging that may negatively affect the performance of physical tasks, far too much credit has been given to the natural aging process rather than the effects of inactivity. Emerging evidence indicates strength or skill training interventions induce significant neuroplasticity in an aging population. The model of unilateral training provides a unique approach in which to elicit such plasticity. This brief review highlights the innate ability of the nervous system to adapt to unilateral strength and skill training interventions, regardless of age, and provides a novel perspective on the robust plastic ability of the aging nervous system.

  3. Pío del Río-Hortega: A Visionary in the Pathology of Central Nervous System Tumors

    PubMed Central

    Ramon y Cajal Agüeras, Santiago

    2016-01-01

    The last 140 years have seen considerable advances in knowledge of central nervous system tumors. However, the main tumor types had already been described during the early years of the twentieth century. The studies of Dr. Pío del Río Hortega have been ones of the most exhaustive histology and cytology-based studies of nervous system tumors. Río Hortega's work was performed using silver staining methods, which require a high level of practical skill and were therefore difficult to standardize. His technical aptitude and interest in nervous system tumors played a key role in the establishment of his classification, which was based on cell lineage and embryonic development. Río Hortega's approach was controversial when he proposed it. Current classifications are not only based on cell type and embryonic lineage, as well as on clinical characteristics, anatomical site, and age. PMID:26973470

  4. Sympathetic nervous system and the kidney in hypertension.

    PubMed

    DiBona, Gerald F

    2002-03-01

    Long-term control of arterial pressure has been attributed to the kidney by virtue of its ability to couple the regulation of blood volume to the maintenance of sodium and water balance by the mechanisms of pressure natriuresis and diuresis. In the presence of a defect in renal excretory function, hypertension arises as the consequence of the need for an increase in arterial pressure to offset the abnormal pressure natriuresis and diuresis mechanisms, and to maintain sodium and water balance. There is growing evidence that an important cause of the defect in renal excretory function in hypertension is an increase in renal sympathetic nerve activity (RSNA). First, increased RSNA is found in animal models of hypertension and hypertensive humans. Second, renal denervation prevents or alleviates hypertension in virtually all animal models of hypertension. Finally, increased RSNA results in reduced renal excretory function by virtue of effects on the renal vasculature, the tubules, and the juxtaglomerular granular cells. The increase in RSNA is of central nervous system origin, with one of the stimuli being the action of angiotensin II, probably of central origin. By acting on brain stem nuclei that are important in the control of peripheral sympathetic vasomotor tone (e.g. rostral ventrolateral medulla), angiotensin II increases the basal level of RSNA and impairs its arterial baroreflex regulation. Therefore, the renal sympathetic nerves may serve as the link between central sympathetic nervous system regulatory sites and the kidney in contributing to the renal excretory defect in the development of hypertension.

  5. [Analysis of changes in peripheral and central nervous system in irregularly treated adult patients with primary congenital hypothyroidism].

    PubMed

    Łacka, Katarzyna; Florczak, Jolanta; Gradecka-Kubik, Ilona; Rajewska, Justyna; Junik, Roman

    2010-03-01

    Lack of thyroid hormones in the womb and the first years of life causes changes in the nervous system and mental retardation. The aim of the study was to assess changes in peripheral and central nervous system in 29 adult patients with primary congenital hypothyroidism (PCH) depending on the cause of the disease and systematic treatment of L-thyroxine. The analysis was performed in 29 adult patients with PCH (16 women, 13 men) on the basis of the results of neurological examination, EEG, SPECT (Computer tomography single photon emission) of the brain. Changes in the nervous system were found in 72% of respondents. Patients who had implemented replacement therapy L-thyroxine after completing 12 months of age showed the most neurological disorders. There were variations in the cranial nerves III, IX, IV and VI. In 34% of respondents revealed paraneoplastic cerebellar symptoms, while the pyramid, and extrapyramidal symptoms in 10% and 3% of the people. EEG showed changes in brain bioelectrical activity in the entire study group. In the 83% found a significant asymmetry in regional cerebral blood flow (rCBF). Hypoperfusion outbreak occurred mainly in the stands and leading occipital. The relationship between time of initiation of treatment, and the presence of a systematic change in the nervous system was inversely proportional. In turn, analyzing the causes of most PCH deviations were found in the nervous system in patients with athyreosis. Brain SPECT study in these patients confirmed the organic changes in brain development. CONCLUSIONS. The presence and extent of changes in peripheral and central nervous system depends on the cause PCH, pending the implementation of L-thyroxine treatment and systematic. Studies of brain SPECT and EEG confirmed the existence of developmental changes of the brain in patients with PCH.

  6. Hypochondriasis and somatization.

    PubMed

    Kellner, R

    1987-11-20

    Between 60% and 80% of healthy individuals experience somatic symptoms in any one week. About 10% to 20% of a random sample of people worry intermittently about illness. A substantial proportion of patients present physicians with somatic complaints for which no organic cause can be found. Patients who are hypochondriacal do not understand the benign nature of functional somatic symptoms and interpret these as evidence of disease. Hypochondriacal concerns range from common short-lived worries to persistent and distressing fears or convictions of having a disease. Hypochondriasis can be secondary to other psychiatric disorders (eg, melancholia or panic disorder), and hypochondriacal attitudes remit when the primary disorder is successfully treated. Patients with primary hypochondriasis are also anxious or depressed, but the fear of disease, or the false belief of having a disease, persists and is the most important feature of their psychopathology. There are substantial differences among hypochondriacal patients in their personalities and psychopathologies. Psychotherapy as well as psychotropic drugs are effective in the treatment of functional somatic symptoms. There are no adequate controlled studies on the value of psychotherapy in hypochondriasis; the recommended guidelines are based on uncontrolled studies of hypochondriasis and on controlled studies of the psychotherapy in similar disorders. The prognosis of functional somatic symptoms as well as that of hypochondriasis is good in a substantial proportion of patients.

  7. Leptin and the central nervous system control of glucose metabolism.

    PubMed

    Morton, Gregory J; Schwartz, Michael W

    2011-04-01

    The regulation of body fat stores and blood glucose levels is critical for survival. This review highlights growing evidence that leptin action in the central nervous system plays a key role in both processes. Investigation into underlying mechanisms has begun to clarify the physiological role of leptin in the control of glucose metabolism and raises interesting new possibilities for the treatment of diabetes and related disorders.

  8. Effects of the fluoride on the central nervous system.

    PubMed

    Valdez-Jiménez, L; Soria Fregozo, C; Miranda Beltrán, M L; Gutiérrez Coronado, O; Pérez Vega, M I

    2011-06-01

    Fluoride (F) is a toxic and reactive element, and exposure to it passes almost unnoticed, with the consumption of tea, fish, meat, fruits, etcetera and articles of common use such as: toothpaste additives; dental gels, non-stick pans and razor blades as Teflon. It has also been used with the intention of reducing the dental cares. Fluoride can accumulate in the body, and it has been shown that continuous exposure to it causes damaging effects on body tissues, particularly the nervous system directly without any previous physical malformations. Several clinical and experimental studies have reported that the F induces changes in cerebral morphology and biochemistry that affect the neurological development of individuals as well as cognitive processes, such as learning and memory. F can be toxic by ingesting one part per million (ppm), and the effects they are not immediate, as they can take 20 years or more to become evident. The prolonged ingestion of F may cause significant damage to health and particularly to the nervous system. Therefore, it is important to be aware of this serious problem and avoid the use of toothpaste and items that contain F, particularly in children as they are more susceptible to the toxic effects of F. Copyright © 2010 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  9. Alexithymia and Somatization in Depressed Patients: The Role of the Type of Somatic Symptom Attribution

    PubMed Central

    TAYCAN, Okan; ÖZDEMİR, Armağan; ERDOĞAN TAYCAN, Serap

    2017-01-01

    Introduction This study aimed to establish the association between alexithymia and various factors, mainly somatization, and to determine the predictors of alexithymia in depressed patients. Methods A total of 90 patients with major depressive disorder who met The Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) diagnostic criteria were administered the Toronto Alexithymia Scale (TAS), Beck Depression Inventory, Symptom Checklist-90 (SCL-90), Somatosensory Amplification Scale, and Symptom Interpretation Questionnaire. The patients were classified into two groups as alexithymic and non-alexithymic with respect to the TAS cut-off points (≥59=alexithymic). Predictors of alexithymia were tested by multiple linear regression analysis. Results Of all patients, 36 (40%) were in the alexithymic group. The percentage of women, depression severity, level of general psychopathology and distress, and somatic symptom reporting (SCL-90), as well as the tendency to somatosensory amplification and three forms of somatic symptom attributions, were significantly higher in alexithymic patients than in non-alexithymic patients. Furthermore, age, depression severity, somatic symptom reporting, and the tendency to attribute physical symptoms to somatic causes were predictors of alexithymia. Conclusion The results indicated an intimate association between alexithymia and somatization in depressed patients. Therefore, when evaluating depressed patients with alexithymia, their tendency for somatization should be considered, and alexithymic individuals should be assessed with particular attention, considering that somatization can mask the underlying depressive condition. PMID:28680305

  10. Dysphoria and somatization in Iranian culture.

    PubMed Central

    Pliskin, K L

    1992-01-01

    Iranians express dysphoria through an undifferentiated term called narahati, meaning depressed, ill at ease, nervous, inconvenienced, or anxious. People try masking this emotion or express it in specific ways nonverbally, such as sulking or not eating. Two other dysphoric affects, sadness and anger, are not masked. Because of the social conception of persons being emotionally sensitive, the expression of narahati is guarded: expressing it not only could show that one is socially vulnerable, it could also make another sensitive empathic person narahat. The body is also sensitive, but to the physical world. Physical health is maintained by balancing a diet of "hot" and "cold" foods and avoiding exposure to cold and moisture. With the social and cultural problems brought on by revolution, war, immigration, and accommodation to a new society, Iranian refugees experience changes in family, role, status, finances, language, and other sociocultural ways of being that cause them to feel narahat and to express it verbally, nonverbally, or through somatization. Understanding Iranian conceptions of emotional and physical sensitivity will help clinicians in treating Iranian patients. PMID:1413773

  11. Primitive neuroectodermal tumors of the central nervous system.

    PubMed

    Becker, L E; Hinton, D

    1983-06-01

    Primitive neuroectodermal tumors are morphologically similar malignant tumors arising in intracranial and peripheral sites of the nervous system, showing varying degrees of cellular differentiation with a tendency to disseminate along cerebrospinal fluid pathways. They occur primarily in children and young adults. Under the designation primitive neuroectodermal tumors are included medulloblastomas and tumors that may differentiate in other directions, such as medulloepithelioma, neuroblastoma, polar spongioblastoma, pineoblastoma, ependymoblastoma, retinoblastoma, and olfactory neuroblastoma. From a practical, histologic point of view, these tumors are often indistinguishable from one another and are best thought of as primitive neuroectodermal tumors with or without differentiating features.

  12. The Central Nervous System and Bone Metabolism: An Evolving Story.

    PubMed

    Dimitri, Paul; Rosen, Cliff

    2017-05-01

    Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.

  13. Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface.

    PubMed

    Phan, Duc Tt; Bender, R Hugh F; Andrejecsk, Jillian W; Sobrino, Agua; Hachey, Stephanie J; George, Steven C; Hughes, Christopher Cw

    2017-11-01

    The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently

  14. Dynamic systems approaches and levels of analysis in the nervous system

    PubMed Central

    Parker, David; Srivastava, Vipin

    2013-01-01

    Various analyses are applied to physiological signals. While epistemological diversity is necessary to address effects at different levels, there is often a sense of competition between analyses rather than integration. This is evidenced by the differences in the criteria needed to claim understanding in different approaches. In the nervous system, neuronal analyses that attempt to explain network outputs in cellular and synaptic terms are rightly criticized as being insufficient to explain global effects, emergent or otherwise, while higher-level statistical and mathematical analyses can provide quantitative descriptions of outputs but can only hypothesize on their underlying mechanisms. The major gap in neuroscience is arguably our inability to translate what should be seen as complementary effects between levels. We thus ultimately need approaches that allow us to bridge between different spatial and temporal levels. Analytical approaches derived from critical phenomena in the physical sciences are increasingly being applied to physiological systems, including the nervous system, and claim to provide novel insight into physiological mechanisms and opportunities for their control. Analyses of criticality have suggested several important insights that should be considered in cellular analyses. However, there is a mismatch between lower-level neurophysiological approaches and statistical phenomenological analyses that assume that lower-level effects can be abstracted away, which means that these effects are unknown or inaccessible to experimentalists. As a result experimental designs often generate data that is insufficient for analyses of criticality. This review considers the relevance of insights from analyses of criticality to neuronal network analyses, and highlights that to move the analyses forward and close the gap between the theoretical and neurobiological levels, it is necessary to consider that effects at each level are complementary rather than in

  15. [The brothers of Jumiege--the peripheral nervous system in early French mythology].

    PubMed

    Brean, Are

    2002-03-20

    This article reviews the process of discovery of the nervous system from Pythagoras (570-500 BC) to Galen (130-201 AD). After Galen, no anatomical studies were performed before the renaissance. According to a legend, probably produced for political reasons, two brothers, sons of the French king Clovis II, revolted against their father and were sentenced to loose their physical powers by having the nerves of their arms and legs cut. They were then set adrift on the river Seine, stranding at the Jumiège monastery. The earliest written version of this legend stems from the fourteenth century; it was probably a part of the local French mythology. This indicates that the existence of the peripheral nervous system, and therefore also in part the knowledge contained in the early anatomical works, quite early may have been more or less known outside academic circles.

  16. Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation.

    PubMed

    Newgreen, Donald F; Dufour, Sylvie; Howard, Marthe J; Landman, Kerry A

    2013-10-01

    We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition

  17. Virus signaling and apoptosis in the central nervous system infection.

    PubMed

    Perkins, Dana

    2005-09-01

    Viruses target the central nervous system (CNS) incidentally, due to complications of systemic infection, or specifically, by ascending via the axons of peripheral and cranial nerves. In the CNS, viruses cause acute disease (viz. encephalitis), latent infections or neurodegenerative pathology. Causation of acute disease or immune-mediated pathology, and virus involvement in the etiology of chronic neurodegenerative diseases depends, at least in part, on the ability to commander signaling pathways. Better understanding of these virus-host cell interactions will help identify molecular targets for the development of improved therapeutic strategies.

  18. Role of the autonomic nervous system in tumorigenesis and metastasis

    PubMed Central

    Magnon, Claire

    2015-01-01

    Convergence of multiple stromal cell types is required to develop a tumorigenic niche that nurtures the initial development of cancer and its dissemination. Although the immune and vascular systems have been shown to have strong influences on cancer, a growing body of evidence points to a role of the nervous system in promoting cancer development. This review discusses past and current research that shows the intriguing role of autonomic nerves, aided by neurotrophic growth factors and axon cues, in creating a favorable environment for the promotion of tumor formation and metastasis. PMID:27308436

  19. Role of the autonomic nervous system in tumorigenesis and metastasis.

    PubMed

    Magnon, Claire

    2015-01-01

    Convergence of multiple stromal cell types is required to develop a tumorigenic niche that nurtures the initial development of cancer and its dissemination. Although the immune and vascular systems have been shown to have strong influences on cancer, a growing body of evidence points to a role of the nervous system in promoting cancer development. This review discusses past and current research that shows the intriguing role of autonomic nerves, aided by neurotrophic growth factors and axon cues, in creating a favorable environment for the promotion of tumor formation and metastasis.

  20. Kalrn plays key roles within and outside of the nervous system.

    PubMed

    Mandela, Prashant; Yankova, Maya; Conti, Lisa H; Ma, Xin-Ming; Grady, James; Eipper, Betty A; Mains, Richard E

    2012-11-01

    The human KALRN gene, which encodes a complex, multifunctional Rho GDP/GTP exchange factor, has been linked to cardiovascular disease, psychiatric disorders and neurodegeneration. Examination of existing Kalrn knockout mouse models has focused only on neuronal phenotypes. However, Kalirin was first identified through its interaction with an enzyme involved in the synthesis and secretion of multiple bioactive peptides, and studies in C.elegans revealed roles for its orthologue in neurosecretion. We used a broad array of tests to evaluate the effects of ablating a single exon in the spectrin repeat region of Kalrn (KalSR(KO/KO)); transcripts encoding Kalrn isoforms containing only the second GEF domain can still be produced from the single remaining functional Kalrn promoter. As expected, KalSR(KO/KO) mice showed a decrease in anxiety-like behavior and a passive avoidance deficit. No changes were observed in prepulse inhibition of acoustic startle or tests of depression-like behavior. Growth rate, parturition and pituitary secretion of growth hormone and prolactin were deficient in the KalSR(KO/KO) mice. Based on the fact that a subset of Kalrn isoforms is expressed in mouse skeletal muscle and the observation that muscle function in C.elegans requires its Kalrn orthologue, KalSR(KO/KO) mice were evaluated in the rotarod and wire hang tests. KalSR(KO/KO) mice showed a profound decrease in neuromuscular function, with deficits apparent in KalSR(+/KO) mice; these deficits were not as marked when loss of Kalrn expression was restricted to the nervous system. Pre- and postsynaptic deficits in the neuromuscular junction were observed, along with alterations in sarcomere length. Many of the widespread and diverse deficits observed both within and outside of the nervous system when expression of Kalrn is eliminated may reflect its role in secretory granule function and its expression outside of the nervous system.

  1. Kalrn plays key roles within and outside of the nervous system

    PubMed Central

    2012-01-01

    Background The human KALRN gene, which encodes a complex, multifunctional Rho GDP/GTP exchange factor, has been linked to cardiovascular disease, psychiatric disorders and neurodegeneration. Examination of existing Kalrn knockout mouse models has focused only on neuronal phenotypes. However, Kalirin was first identified through its interaction with an enzyme involved in the synthesis and secretion of multiple bioactive peptides, and studies in C.elegans revealed roles for its orthologue in neurosecretion. Results We used a broad array of tests to evaluate the effects of ablating a single exon in the spectrin repeat region of Kalrn (KalSRKO/KO); transcripts encoding Kalrn isoforms containing only the second GEF domain can still be produced from the single remaining functional Kalrn promoter. As expected, KalSRKO/KO mice showed a decrease in anxiety-like behavior and a passive avoidance deficit. No changes were observed in prepulse inhibition of acoustic startle or tests of depression-like behavior. Growth rate, parturition and pituitary secretion of growth hormone and prolactin were deficient in the KalSRKO/KO mice. Based on the fact that a subset of Kalrn isoforms is expressed in mouse skeletal muscle and the observation that muscle function in C.elegans requires its Kalrn orthologue, KalSRKO/KO mice were evaluated in the rotarod and wire hang tests. KalSRKO/KO mice showed a profound decrease in neuromuscular function, with deficits apparent in KalSR+/KO mice; these deficits were not as marked when loss of Kalrn expression was restricted to the nervous system. Pre- and postsynaptic deficits in the neuromuscular junction were observed, along with alterations in sarcomere length. Conclusions Many of the widespread and diverse deficits observed both within and outside of the nervous system when expression of Kalrn is eliminated may reflect its role in secretory granule function and its expression outside of the nervous system. PMID:23116210

  2. MORPHOLOGICAL PATTERN AND FREQUENCY OF CENTRAL NERVOUS SYSTEM TUMOURS IN CHILDREN.

    PubMed

    Bilqees, Fatima; Samina, Khaleeq; Mohammad, Tahir; Khaleeq-uz-Zamaan

    2016-01-01

    Recent studies, including a comprehensive study by National Cancer Institute, have shown that a significant increase in the incidence of childhood brain tumours makes them the most common paediatric tumour. The objectives of this study were to determine the frequency of central nervous system tumours in paediatric age group (0-12 years), and to segregate various morphologic types according to WHO classification. The study included consecutive cases of central nervous system tumours diagnosed in children in the histopathology department at Federal Government Polyclinic, PGMI, Islamabad, during a period of 4.8 years (Jan 2009-Aug 2013). The initial histopathological evaluation of these lesions was performed on H&E stained sections of paraffin embedded tissues. Special stains and immunohistochemistry were performed whenever indicated. Out of 75 cases, 34 (45.3%) were astrocytic tumours, including 16 (47.1%) Pilocytic astrocytomas (WHO Grade-I), 1 (2.9%) diffuse fibrillary astrocytoma (WHO Grade-II), 1 (2.9%) anaplastic astrocytoma (WHO Grade-III) and 16(47.1%) glioblastoma multiforme (WHO Grade-IV); 18 (24%) were embryonal tumours including 17 (94.4%) medulloblastoma (WHO Grade-IV) and 1 (5.6%) neuroblastoma (WHO Grade IV); 10 (13.3%) were craniopharyngiomas (WHO Grade-I) and 5 (6.7%) were ependymal tumours including 1 (20%) myxopapillary ependymoma (WHO Grade-I) and 4 (80%) ependymomas (WHO Grade-II). Miscellaneous entities included 3 (4%) choroid plexus tumours; 1 (2%) anaplastic oligodendroglioma (WHO Grade-III); 1 (2%) atypical meningioma (WHO Grade-II); 1 (2%) schwannoma (WHO Grade-I); 1 (2%) neurofibroma (WHO Grade-I) and 1 (2%) lipoma (WHO Grade-I). Astrocytic tumours are the most common central nervous system tumours in paediatric age group and high grade lesions (WHO Grade-IV) constitute the largest category (45.3%).

  3. [Genetic Syndromes Predisposing to Tumors of Central Nervous System in Children].

    PubMed

    Krutílková, V

    2016-01-01

    The overall incidence of childhood malignancies is rather low. Central nervous system tumours constitute the largest group of solid tumours among children. In contrast to adult population, a genetic predisposition is frequently associated with these malignancies (it is assumed to occur in approximately 15-25% of all childhood tumours) and there is also a number of monogenic hereditary syndromes known to be associated with brain tumours. The purpose of this article is to present an overview of genetic syndromes reported to increase the risk of childhood central nervous system tumours. The outlined tumour predispositions are divided into two groups. Firstly, syndromes with multisystem manifestation, where neoplasia is one of the components, whereas the distinguishing symptom is usually non-oncological. Secondly, there are syndromes that are diagnosed by the associated neoplasm withou any other noticeable phenotypic manifestation. A brief description of particular diseases is provided with a focus on associated central nervous system tumours. Detection of a tumour predisposition in a child is important not only for the child itself, but also for its family relatives. Often, a modification of treatment is necessary in regards to a genetic diagnosis. With the evolution of personalised medicine the possibility of "tailored" therapy will probably be a demanded solution. Last but not least, it is crucial to provide the child with a specialised preventive care owing to the risk of another potential malignancy. The diagnosis of hereditary cancer predisposition has also a big impact on the relatives of the patient. It enables to specify their oncological risk and arrange a specialised preventive care program, if needed. For high-risk parents planning another pregnancy there is a possibility to prevent the transfer of a certain disposition with the aid of preimplantation and prenatal genetic testing.

  4. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation

    PubMed Central

    Krucoff, Max O.; Rahimpour, Shervin; Slutzky, Marc W.; Edgerton, V. Reggie; Turner, Dennis A.

    2016-01-01

    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required—a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural

  5. Bone mineral density in subjects using central nervous system-active medications.

    PubMed

    Kinjo, Mitsuyo; Setoguchi, Soko; Schneeweiss, Sebastian; Solomon, Daniel H

    2005-12-01

    Decreased bone mineral density defines osteoporosis according to the World Health Organization and is an important predictor of future fractures. The use of several types of central nervous system-active drugs, including benzodiazepines, anticonvulsants, antidepressants, and opioids, have all been associated with increased risk of fracture. However, it is unclear whether such an increase in risk is related to an effect of bone mineral density or to other factors, such as increased risk of falls. We sought to examine the relationship between bone mineral density and the use of benzodiazepines, anticonvulsants, antidepressants, and opioids in a representative US population-based sample. We analyzed data on adults aged 17 years and older from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Total femoral bone mineral density of 7114 male and 7532 female participants was measured by dual-energy x-ray absorptiometry. Multivariable linear regression models were used to quantify the relation between central nervous system medication exposure and total femoral bone mineral density. Models controlled for relevant covariates, including age, sex, and body mass index. In linear regression models, significantly reduced bone mineral density was found in subjects taking anticonvulsants (0.92 g/cm2; 95% confidence interval [CI]: 0.89 to 0.94) and opioids (0.92 g/cm2; 95% CI: 0.88 to 0.95) compared with nonusers (0.95 g/cm2; 95% CI: 0.95 to 0.95) after adjusting for several potential confounders. The other central nervous system-active drugs--benzodiazepines or antidepressants--were not associated with significantly reduced bone mineral density. In cross-sectional analysis of NHANES III, anticonvulsants and opioids (but not benzodiazepines or antidepressants) were associated with significantly reduced bone mineral density. These findings have implications for fracture-prevention strategies.

  6. The role of MACF1 in nervous system development and maintenance.

    PubMed

    Moffat, Jeffrey J; Ka, Minhan; Jung, Eui-Man; Smith, Amanda L; Kim, Woo-Yang

    2017-09-01

    Microtubule-actin crosslinking factor 1 (MACF1), also known as actin crosslinking factor 7 (ACF7), is essential for proper modulation of actin and microtubule cytoskeletal networks. Most MACF1 isoforms are expressed broadly in the body, but some are exclusively found in the nervous system. Consequentially, MACF1 is integrally involved in multiple neural processes during development and in adulthood, including neurite outgrowth and neuronal migration. Furthermore, MACF1 participates in several signaling pathways, including the Wnt/β-catenin and GSK-3 signaling pathways, which regulate key cellular processes, such as proliferation and cell migration. Genetic mutation or dysregulation of the MACF1 gene has been associated with neurodevelopmental and neurodegenerative diseases, specifically schizophrenia and Parkinson's disease. MACF1 may also play a part in neuromuscular disorders and have a neuroprotective role in the optic nerve. In this review, the authors seek to synthesize recent findings relating to the roles of MACF1 within the nervous system and explore potential novel functions of MACF1 not yet examined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effects of heat and massage application on autonomic nervous system.

    PubMed

    Lee, Young-Hee; Park, Bit Na Ri; Kim, Sung Hoon

    2011-11-01

    The objective of this study is to evaluate the effects of heat and massage application on autonomic nervous system. One hundred thirty-nine subjects volunteered and completed this study. Heat and massage was daily applied for 40 minutes, 5 days a week for 2 weeks. Primary-dependent measures included heart rate variability, sympathetic skin response, and serum cortisol and norepinephrine levels. Serum cortisol levels were significantly decreased at 2 weeks compared to baseline (p=0.003). Plasma norepinephrine levels at 4 weeks were significantly decreased compared to baseline (p=0.010). Heart rate, using the power spectra, increased significantly after 2 weeks compared to baseline. Of autonomic nerve conduction measures, latency was significantly increased at 2 and 4 weeks compared to baseline (p=0.023, 0.012), and amplitude was significantly decreased at 4 weeks compared to baseline (p=0.008). There were no serious adverse events such as burns or other major complications. The results of this study suggest that heat and massage applications provide relaxation to the autonomic nervous system without serious adverse events.

  8. Somatization among older primary care attenders.

    PubMed

    Sheehan, B; Bass, C; Briggs, R; Jacoby, R

    2003-07-01

    The importance of somatization among older primary care attenders is unclear. We aimed to establish the prevalence, persistence and associations of somatization among older primary care attenders, and the associations of frequent attendance. One hundred and forty primary care attenders over 65 years were rated twice, 10 months apart, on measures of somatization, psychiatric status, physical health and attendance. The syndrome of GMS hypochondriacal neurosis had a prevalence of 5% but was transient. Somatized symptoms and attributions were persistent and associated with depression, physical illness and perceived poor social support. Frequent attenders (top third) had higher rates of depression, physical illness and somatic symptoms, and lower perceived support. Somatization is common among older primary care attenders and has similar correlates to younger primary care somatizers. Psychological distress among older primary care attenders is associated with frequent attendance. Improved recognition should result in benefits to patients and services.

  9. VIIP: Central Nervous System (CNS) Modeling

    NASA Technical Reports Server (NTRS)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  10. The p38α mitogen-activated protein kinase as a central nervous system drug discovery target

    PubMed Central

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-01-01

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38α mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38α MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38α MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38α MAPK in neurodegenerative disorders. PMID:19090985

  11. The p38alpha mitogen-activated protein kinase as a central nervous system drug discovery target.

    PubMed

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-12-03

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38alpha mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38alpha MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38alpha MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38alpha MAPK in neurodegenerative disorders.

  12. The characteristics of autonomic nervous system disorders in burning mouth syndrome and Parkinson disease.

    PubMed

    Koszewicz, Magdalena; Mendak, Magdalena; Konopka, Tomasz; Koziorowska-Gawron, Ewa; Budrewicz, Sławomir

    2012-01-01

    To conduct a clinical electrophysiologic evaluation of autonomic nervous system functions in patients with burning mouth syndrome and Parkinson disease and estimate the type and intensity of the autonomic dysfunction. The study involved 83 subjects-33 with burning mouth syndrome, 20 with Parkinson disease, and 30 controls. The BMS group included 27 women and 6 men (median age, 60.0 years), and the Parkinson disease group included 15 women and 5 men (median age, 66.5 years). In the control group, there were 20 women and 10 men (median age, 59.0 years). All patients were subjected to autonomic nervous system testing. In addition to the Low autonomic disorder questionnaire, heart rate variability (HRV), deep breathing (exhalation/inspiration [E/I] ratio), and sympathetic skin response (SSR) tests were performed in all cases. Parametric and nonparametric tests (ANOVA, Kruskal-Wallis, and Scheffe tests) were used in the statistical analysis. The mean values for HRV and E/I ratios were significantly lower in the burning mouth syndrome and Parkinson disease groups. Significant prolongation of SSR latency in the foot was revealed in both burning mouth syndrome and Parkinson disease patients, and lowering of the SSR amplitude occurred in only the Parkinson disease group. The autonomic questionnaire score was significantly higher in burning mouth syndrome and Parkinson disease patients than in the control subjects, with the Parkinson disease group having the highest scores. In patients with burning mouth syndrome, a significant impairment of both the sympathetic and parasympathetic nervous systems was found but sympathetic/parasympathetic balance was preserved. The incidence and intensity of autonomic nervous system dysfunction was similar in patients with burning mouth syndrome and Parkinson disease, which may suggest some similarity in their pathogeneses.

  13. Toxic plants affecting the nervous system of ruminants and horses in Brazil

    USDA-ARS?s Scientific Manuscript database

    This review updates information about neurotoxic plants affecting ruminants and equidae in Brazil. Currently in the country, there are at least 131 toxic plants belonging to 79 genera. Thirty one of these poisonous plants affect the nervous system. Swainsonine-containing plants (Ipomoea spp., Turbin...

  14. Central Nervous System Cancers, Version 1.2015.

    PubMed

    Nabors, Louis Burt; Portnow, Jana; Ammirati, Mario; Baehring, Joachim; Brem, Henry; Brown, Paul; Butowski, Nicholas; Chamberlain, Marc C; Fenstermaker, Robert A; Friedman, Allan; Gilbert, Mark R; Hattangadi-Gluth, Jona; Holdhoff, Matthias; Junck, Larry; Kaley, Thomas; Lawson, Ronald; Loeffler, Jay S; Lovely, Mary P; Moots, Paul L; Mrugala, Maciej M; Newton, Herbert B; Parney, Ian; Raizer, Jeffrey J; Recht, Lawrence; Shonka, Nicole; Shrieve, Dennis C; Sills, Allen K; Swinnen, Lode J; Tran, David; Tran, Nam; Vrionis, Frank D; Weiss, Stephanie; Wen, Patrick Yung; McMillian, Nicole; Engh, Anita M

    2015-10-01

    The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Central Nervous System (CNS) Cancers provide interdisciplinary recommendations for managing adult CNS cancers. Primary and metastatic brain tumors are a heterogeneous group of neoplasms with varied outcomes and management strategies. These NCCN Guidelines Insights summarize the NCCN CNS Cancers Panel's discussion and highlight notable changes in the 2015 update. This article outlines the data and provides insight into panel decisions regarding adjuvant radiation and chemotherapy treatment options for high-risk newly diagnosed low-grade gliomas and glioblastomas. Additionally, it describes the panel's assessment of new data and the ongoing debate regarding the use of alternating electric field therapy for high-grade gliomas. Copyright © 2015 by the National Comprehensive Cancer Network.

  15. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury.

    PubMed

    La Fountaine, Michael F

    2017-11-29

    Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework

  16. An overview of travel-associated central nervous system infectious diseases: risk assessment, general considerations and future directions.

    PubMed

    Izadi, Morteza; Is'haqi, Arman; Is'haqi, Mohammad Ali; Jonaidi Jafari, Nematollah; Rahamaty, Fatemeh; Banki, Abdolali

    2014-08-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors.

  17. Bilingual Skills Training Program. Barbering/Cosmetology. Module 5.0: Nervous System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the nervous system is the fifth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…

  18. [Somatization disorders of the urogenital tract].

    PubMed

    Günthert, E A

    2002-11-01

    Diffuse symptoms in the urogenital region can frequently be explained by somatization disorders. Since they cannot be proven either by laboratory tests or with common technical diagnostic methods, somatization disorders should always be taken into consideration. Somatization disorders are to be considered functional disorders. Since somatization disorders due to muscular tension prevail in the urogenital region, the functional disturbance can be explained by the muscular tension. Subsequently, muscular tension causes the pathophysiological development of symptoms. As a rule they appear as myofascial pain or disorder. Muscular tension can have a psychic origin. The absence of urological findings is typical. Males and females between the ages of 16 and 75 can be affected by somatization disorders in the urogenital region. Somatization disorders due to muscular tension belong to the large group of symptoms due to tension. Diagnostic and therapeutic procedures as well as the pathophysiology of somatization disorders due to muscular tension are illustrated by two detailed case-reports.

  19. Peripheral nervous system involvement in essential cryoglobulinemia and nephropathy.

    PubMed

    Valli, G; De Vecchi, A; Gaddi, L; Nobile-Orazio, E; Tarantino, A; Barbieri, S

    1989-01-01

    The clinical and neurophysiological features of 23 patients affected by essential cryoglobulinemia (EC) have been studied. It was possible to perform sural nerve biopsy in 3 cases. Six patients were found to be affected by a peripheral neuropathy, according to the WHO criteria, while in 8 other patients clinical and neurophysiological signs of a milder peripheral nervous system (PNS) involvement were evident. The incidence of PNS involvement seems to be high (60.9%). Neurophysiological and histological studies were indicative of a mainly axonal damage.

  20. [Quantitative determination of biogenic amine from Biomphalaria glabrata nervous system by UPLC MS/MS].

    PubMed

    Tao, Huang; Yun-Hai, Guo; He-Xiang, Liu; Yi, Zhang

    2018-04-19

    To establish a method for the quantitative determination of serotonin and dopamine in the nervous system of Biomphalaria glabrata by using ultra high performance liquid chromatography-tandem quadrupole mass spectrometry (UPLC MS/MS) . The B. glabrata nervous system was broken in the pure methanol solution after obtaining it by dissecting with microscope. Then, the supernatant containing the target substance after twice high speed centrifugation was got. The extraction was separated on an ACQUITY UPLC BEH Amide column with Waters TQ-XS series mass spectrometry detector, with ESI source and positive electrospray ionization mode when the machine testing. The detection limit of serotonin was 0.03 ng/ml and the limit of quantification was 0.1 ng/ml. The detection limit of dopamine was 0.05 ng/ml and the limit of quantification was 0.15 ng/ml. The recoveries of serotonin ranged from 90.68% to 94.72% over the range of 1 to 40 ng/ml. The recoveries of dopamine ranged from 91.68% to 96.12% over the range of 1.0 ng/ml to 40 ng/ml. The established UPLC MS/MS method is simple, stable and reproducible. It can be used for the quantitative analysis of serotonin and dopamine in the nervous system of B. glabrata snails.

  1. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    EPA Science Inventory

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  2. [Central nervous system involvement in systemic diseases: Spectrum of MRI findings].

    PubMed

    Drier, A; Bonneville, F; Haroche, J; Amoura, Z; Dormont, D; Chiras, J

    2010-12-01

    Central nervous system (CNS) involvement in systemic disease (SD) is unusual. MRI features of such lesions are unfamiliar to most radiologists. The diagnosis of SD is still based on clinical features and laboratory findings but some characteristic MRI findings exist for each SD: micronodular leptomeningeal enhancement in sarcoidosis, diffuse or focal pachymeningeal involvement in Wegener disease, dentate nuclei and brain stem lesions in Langerhans cell histiocytosis, meningeal masses, dentate nuclei lesions and periarterial infiltration in Erdheim-Chester disease, meningeal masses in Rosai-Dorfman disease, veinular pontic lesions and cerebral vein thrombosis in Behçet, supratentorial microvascular lesions in lupus and antiphospholipid and Gougerot-Sjögren syndrome. In this work, we explain, describe and illustrate the most characteristic MRI findings for each disease. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  3. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism.

    PubMed

    Yokel, Robert; Grulke, Eric; MacPhail, Robert

    2013-01-01

    This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern. Copyright © 2013 Wiley Periodicals, Inc.

  4. Strategies for drug delivery to the central nervous system by systemic route.

    PubMed

    Kasinathan, Narayanan; Jagani, Hitesh V; Alex, Angel Treasa; Volety, Subrahmanyam M; Rao, J Venkata

    2015-05-01

    Delivery of a drug into the central nervous system (CNS) is considered difficult. Most of the drugs discovered over the past decade are biological, which are high in molecular weight and polar in nature. The delivery of such drugs across the blood-brain barrier presents problems. This review discusses some of the options available to reach the CNS by systemic route. The focus is mainly on the recent developments in systemic delivery of a drug to the CNS. Databases such as Scopus, Google scholar, Science Direct, SciFinder and online journals were referred for preparing this article including 89 references. There are at least nine strategies that could be adopted to achieve the required drug concentration in the CNS. The recent developments in drug delivery are very promising to deliver biologicals into the CNS.

  5. Application of Somatic Embryogenesis in Woody Plants.

    PubMed Central

    Guan, Yuan; Li, Shui-Gen; Fan, Xiao-Fen; Su, Zhen-Hong

    2016-01-01

    Somatic embryogenesis is a developmental process where a plant somatic cell can dedifferentiate to a totipotent embryonic stem cell that has the ability to give rise to an embryo under appropriate conditions. This new embryo can further develop into a whole plant. In woody plants, somatic embryogenesis plays a critical role in clonal propagation and is a powerful tool for synthetic seed production, germplasm conservation, and cryopreservation. A key step in somatic embryogenesis is the transition of cell fate from a somatic cell to embryo cell. Although somatic embryogenesis has already been widely used in a number of woody species, propagating adult woody plants remains difficult. In this review, we focus on molecular mechanisms of somatic embryogenesis and its practical applications in economic woody plants. Furthermore, we propose a strategy to improve the process of somatic embryogenesis using molecular means. PMID:27446166

  6. Electricity in the treatment of nervous system disease.

    PubMed

    Fodstad, H; Hariz, M

    2007-01-01

    Electricity has been used in medicine for almost two millenniums beginning with electrical chocks from the torpedo fish and ending with the implantation of neuromodulators and neuroprostheses. These implantable stimulators aim to improve functional independence and quality of life in various groups of disabled people. New indications for neuromodulation are still evolving and the field is rapidly advancing. Thanks to modern science and computer technology, electrotherapy has reached a degree of sophistication where it can be applied relatively safely and effectively in a variety of nervous system diseases, including pain, movement disorders, epilepsy, Tourette syndrome, psychiatric disease, addiction, coma, urinary incontinence, impotence, infertility, respiratory paralysis, tinnitus and blindness.

  7. Neighborhood Stress and Autonomic Nervous System Activity during Sleep.

    PubMed

    Mellman, Thomas Alan; Bell, Kimberly Ann; Abu-Bader, Soleman Hassan; Kobayashi, Ihori

    2018-04-04

    Stressful neighborhood environments are known to adversely impact health and contribute to health disparities but underlying mechanisms are not well understood. Healthy sleep can provide a respite from sustained sympathetic nervous system (SNS) activity. Our objective was to evaluate relationships between neighborhood stress and nocturnal and daytime SNS and parasympathetic nervous system (PNS) activity. Eighty five urban-residing African Americans (56.5% female; mean age of 23.0) participated. Evaluation included surveys of neighborhood stress and sleep-related vigilance; and continuous ECG and actigraphic recording in participants' homes from which heart rate variability (HRV) analysis for low frequency/high frequency (LF/HF) ratio and normalized high frequency (nHF), as indicators of SNS and PNS activity, respectively, and total sleep time (TST), and wake after sleep onset were derived. All significant relationships with HRV measures were from the sleep period. Neighborhood disorder correlated negatively with nHF (r = -.24, p = .035). There were also significant correlations of HRV indices with sleep duration and sleep fears. Among females, LF/HF correlated with exposure to violence, r = .39, p = .008 and nHF with census tract rates for violent crime (r = -.35, p = .035). In a stepwise regression, TST accounted for the variance contributed by violent crime to nHF in the female participants. Further investigation of relationships between neighborhood environments and SNS/PNS balance during sleep and their consequences, and strategies for mitigating such effects would have implications for health disparities.

  8. In vitro somatic embryogenesis and plant regeneration of cassava.

    PubMed

    Szabados, L; Hoyos, R; Roca, W

    1987-06-01

    An efficient and reproducible plant regeneration system, initiated in somatic tissues, has been devised for cassava (Manihot esculenta Crantz). Somatic embryogenesis has been induced from shoot tips and immature leaves of in vitro shoot cultures of 15 cassava genotypes. Somatic embryos developed directly on the explants when cultured on a medium containing 4-16 mg/l 2,4-D. Differences were observed with respect to the embryogenic capacity of the explants of different varieties. Secondary embryogenesis has been induced by subculture on solid or liquid induction medium. Long term cultures were established and maintained for up to 18 months by repeated subculture of the proliferating somatic embryos. Plantlets developed from primary and secondary embryos in the presence of 0.1 mg/l BAP, 1mg/l GA3, and 0.01 mg/l 2,4-D. Regenerated plants were transferred to the field, and were grown to maturity.

  9. The Nervous System and Metabolic Dysregulation: Emerging Evidence Converges on Ketogenic Diet Therapy

    PubMed Central

    Ruskin, David N.; Masino, Susan A.

    2012-01-01

    A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, KD therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders – although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a KD and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a KD on cognition and recent data on the effects of a KD on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system. PMID:22470316

  10. Effects of Excitotoxic Lesion with Inhaled Anesthetics on Nervous System Cells of Rodents.

    PubMed

    Quiroz-Padilla, Maria Fernanda; Guillazo-Blanch, Gemma; Sanchez, Magdy Y; Dominguez-Sanchez, Maria Andrea; Gomez, Rosa Margarita

    2018-01-01

    Different anesthesia methods can variably influence excitotoxic lesion effects on the brain. The main purpose of this review is to identify potential differences in the toxicity to nervous system cells of two common inhalation anesthesia methods, isoflurane and sevoflurane, used in combination with an excitotoxic lesion procedure in rodents. The use of bioassays in animal models has provided the opportunity to examine the role of specific molecules and cellular interactions that underlie important aspects of neurotoxic effects relating to calcium homeostasis and apoptosis activation. Processes induced by NMDA antagonist drugs involve translocation of Bax protein to mitochondrial membranes, allowing extra-mitochondrial leakage of cytochrome C, followed by sequence of changes that ending in activation of CASP-3. The literature demonstrates that the use of these anesthetics in excitotoxic surgery increases neuroinflammation activity facilitating the effects of apoptosis and necrosis on nervous system cells, depending on the concentration and exposure duration of the anesthetic. High numbers of microglia and astrocytes and high levels of proinflammatory cytokines and caspase activation possibly mediate these inflammatory responses. However, it is necessary to continue studies in rodents to understand the effect of the use of inhaled anesthetics with excitotoxic lesions in different developmental stages, including newborns, juveniles and adults. Understanding the mechanisms of regulation of cell death during development can potentially provide tools to promote neuroprotection and eventually achieve the repair of the nervous system in pathological conditions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    PubMed

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  12. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    ERIC Educational Resources Information Center

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  13. Cortisol and Children's Adjustment: The Moderating Role of Sympathetic Nervous System Activity

    ERIC Educational Resources Information Center

    El-Sheikh, Mona; Erath, Stephen A.; Buckhalt, Joseph A.; Granger, Douglas A.; Mize, Jacquelyn

    2008-01-01

    We examined relations among cortisol, markers of sympathetic nervous system (SNS) activity (including salivary alpha-amylase and skin conductance level), and children's adjustment. We also tested the Bauer et al. ("Journal of Developmental and Behavioral Pediatrics," 23(2), 102-113, 2002) hypothesis that interactions between the SNS and cortisol…

  14. R1 autonomic nervous system in acute kidney injury.

    PubMed

    Hering, Dagmara; Winklewski, Pawel J

    2017-02-01

    Acute kidney injury (AKI) is a rapid loss of kidney function resulting in accumulation of end metabolic products and associated abnormalities in fluid, electrolyte and acid-base homeostasis. The pathophysiology of AKI is complex and multifactorial involving numerous vascular, tubular and inflammatory pathways. Neurohumoral activation with heightened activity of the sympathetic nervous system and renin-angiotensin-aldosterone system play a critical role in this scenario. Inflammation and/or local renal ischaemia are underlying mechanisms triggering renal tissue hypoxia and resultant renal microcirculation dysfunction; a common feature of AKI occurring in numerous clinical conditions leading to a high morbidity and mortality rate. The contribution of renal nerves to the pathogenesis of AKI has been extensively demonstrated in a series of experimental models over the past decades. While this has led to better knowledge of the pathogenesis of human AKI, therapeutic approaches to improve patient outcomes are scarce. Restoration of autonomic regulatory function with vagal nerve stimulation resulting in anti-inflammatory effects and modulation of centrally-mediated mechanisms could be of clinical relevance. Evidence from experimental studies suggests that a therapeutic splenic ultrasound approach may prevent AKI via activation of the cholinergic anti-inflammatory pathway. This review briefly summarizes renal nerve anatomy, basic insights into neural control of renal function in the physiological state and the involvement of the autonomic nervous system in the pathophysiology of AKI chiefly due to sepsis, cardiopulmonary bypass and ischaemia/reperfusion experimental model. Finally, potentially preventive experimental pre-clinical approaches for the treatment of AKI aimed at sympathetic inhibition and/or parasympathetic stimulation are presented. © 2016 John Wiley & Sons Australia, Ltd.

  15. Wnt and lithium: a common destiny in the therapy of nervous system pathologies?

    PubMed

    Meffre, Delphine; Grenier, Julien; Bernard, Sophie; Courtin, Françoise; Dudev, Todor; Shackleford, Ghjuvan'Ghjacumu; Jafarian-Tehrani, Mehrnaz; Massaad, Charbel

    2014-04-01

    Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.

  16. Neural Stem Cells: Implications for the Conventional Radiotherapy of Central Nervous System Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barani, Igor J.; Benedict, Stanley H.; Lin, Peck-Sun

    Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependentmore » and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy.« less

  17. Three-dimensional slice cultures from murine fetal gut for investigations of the enteric nervous system.

    PubMed

    Metzger, Marco; Bareiss, Petra M; Nikolov, Ivan; Skutella, Thomas; Just, Lothar

    2007-01-01

    Three-dimensional intestinal cultures offer new possibilities for the examination of growth potential, analysis of time specific gene expression, and spatial cellular arrangement of enteric nervous system in an organotypical environment. We present an easy to produce in vitro model of the enteric nervous system for analysis and manipulation of cellular differentiation processes. Slice cultures of murine fetal colon were cultured on membrane inserts for up to 2 weeks without loss of autonomous contractility. After slice preparation, cultured tissue reorganized within the first days in vitro. Afterward, the culture possessed more than 35 cell layers, including high prismatic epithelial cells, smooth muscle cells, glial cells, and neurons analyzed by immunohistochemistry. The contraction frequency of intestinal slice culture could be modulated by the neurotransmitter serotonin and the sodium channel blocker tetrodotoxin. Coculture experiments with cultured neurospheres isolated from enhanced green fluorescent protein (eGFP) transgenic mice demonstrated that differentiating eGFP-positive neurons were integrated into the intestinal tissue culture. This slice culture model of enteric nervous system proved to be useful for studying cell-cell interactions, cellular signaling, and cell differentiation processes in a three-dimensional cell arrangement.

  18. Somatization Increases Disability Independent of Comorbidity

    PubMed Central

    Orav, E. John; Bates, David W.; Barsky, Arthur J.

    2008-01-01

    Background Somatoform disorders are an important factor in functional disability and role impairment, though their independent contribution to disability has been unclear because of prevalent medical and psychiatric comorbidity. Objectives To assess the extent of the overlap of somatization with other psychiatric disorders and medical problems, to compare the functional disability and role impairment of somatizing and non-somatizing patients, and to determine the independent contribution of somatization to functional disability and role impairment. Design Patients were surveyed with self-report questionnaires assessing somatization, psychiatric disorder, and role impairment. Medical morbidity was indexed with a computerized medical record audit. Participants Consecutive adults making scheduled visits to their primary care physicians at two hospital-affiliated primary care practices on randomly chosen days. Measurements Intermediate activities of daily living, social activities, and occupational disability. Results Patients with somatization, as well as those with serious medical and psychiatric illnesses, had significantly more impairment of activities of daily life and social activities. When these predictors were considered simultaneously in a multivariable regression, the association with somatization remained highly significant and was comparable to or greater than many major medical conditions. Conclusions Patients with somatization had substantially greater functional disability and role impairment than non-somatizing patients. The degree of disability was equal to or greater than that associated with many major, chronic medical disorders. Adjusting the results for psychiatric and medical co-morbidity had little effect on these findings. PMID:19031038

  19. [Metastasis tumors of the central nervous system: molecular biology].

    PubMed

    Bello, M Josefa; González-Gómez, P; Rey, J A

    2004-12-01

    Metastases in the nervous system represent an important and growing problem in the clinical practice, being the cause of a great mortality in the developed countries. This article reviews the few data available on the molecular mechanisms involved in the pathogenesis of these tumours, leading to oncogene activation, inactivation of tumour suppressor genes, not only by the classical mechanisms, but also by the tumour cell epigenetic balance alteration. We conclude that all this knowledge will lead in the future to a better diagnosis, treatment and clinic evolution of these patients.

  20. Neuroactive steroids and the peripheral nervous system: An update.

    PubMed

    Giatti, Silvia; Romano, Simone; Pesaresi, Marzia; Cermenati, Gaia; Mitro, Nico; Caruso, Donatella; Tetel, Marc J; Garcia-Segura, Luis Miguel; Melcangi, Roberto C

    2015-11-01

    In the present review we summarize observations to date supporting the concept that neuroactive steroids are synthesized in the peripheral nervous system, regulate the physiology of peripheral nerves and exert notable neuroprotective actions. Indeed, neuroactive steroids have been recently proposed as therapies for different types of peripheral neuropathy, like for instance those occurring during aging, chemotherapy, physical injury and diabetes. Moreover, pharmacological tools able to increase the synthesis of neuroactive steroids might represent new interesting therapeutic strategy to be applied in case of peripheral neuropathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Treatment for children with central nervous system germ cell tumors (GCT) depend upon the specific tumor type. Options include radiation therapy, chemotherapy, surgery (in various combinations) and stem cell rescue. Get detailed information about GCTs in this clinician summary.

  2. [Role of the sympathetic nervous system in vasovagal syncope and rationale for beta-blockers and norepinephrine transporter inhibitors].

    PubMed

    Márquez, Manlio F; Gómez-Flores, Jorge Rafael; González-Hermosillo, Jesús A; Ruíz-Siller, Teresita de Jesús; Cárdenas, Manuel

    2016-12-29

    Vasovagal or neurocardiogenic syncope is a common clinical situation and, as with other entities associated with orthostatic intolerance, the underlying condition is a dysfunction of the autonomic nervous system. This article reviews various aspects of vasovagal syncope, including its relationship with orthostatic intolerance and the role of the autonomic nervous system in it. A brief history of the problem is given, as well as a description of how the names and associated concepts have evolved. The response of the sympathetic system to orthostatic stress, the physiology of the baroreflex system and the neurohumoral changes that occur with standing are analyzed. Evidence is presented of the involvement of the autonomic nervous system, including studies of heart rate variability, microneurography, cardiac innervation, and molecular genetic studies. Finally, we describe different studies on the use of beta-blockers and norepinephrine transporter inhibitors (sibutramine, reboxetine) and the rationality of their use to prevent this type of syncope. Creative Commons

  3. Predictors of a functional somatic syndrome diagnosis in patients with persistent functional somatic symptoms.

    PubMed

    Kingma, Eva M; de Jonge, Peter; Ormel, Johan; Rosmalen, Judith G M

    2013-06-01

    Functional somatic syndromes (FSS) are characterized by the existence of multiple persistent functional somatic symptoms. Not many patients fulfilling the criteria for an FSS, receive a formal diagnosis, and it is unknown which factors explain this discrepancy. Patients that tend to worry and patients that gather more health information may have an increased chance of an FSS diagnosis. We hypothesized that high intelligence and high neuroticism increase the probability of an FSS diagnosis in patients with persistent functional somatic symptoms. This study aims to investigate patient factors that might be important in the process of syndrome labeling. Our study was performed in a large, representative population cohort (n = 976) in Groningen, The Netherlands, and included two assessment waves. Intelligence was measured using the General Aptitude Test Battery version B 1002-B. Neuroticism was measured using the 12-item neuroticism scale of the Eysenck Personality Questionnaire-Revised. Functional somatic symptoms were measured with the somatization section of the Composite International Diagnostic Interview. Current FSS diagnosis was assessed with a questionnaire. We performed multivariable logistic regression analyses including sum scores of neuroticism, intelligence scores, sex, number of functional somatic symptoms, and age as potential predictors of having an FSS diagnosis. From the 976 participants that completed measurements at follow-up, 289 (26.4 %) participants reported at least one persistent functional somatic symptom, and these subjects were included in the main analyses (38.4 % males, mean age of 55.2 years (SD = 10.7), 36-82 years). High numbers of functional somatic symptoms ((OR) = 1.320; 95 % (CI) = 1.097-1.588), female sex (OR = 9.068; 95 % CI = 4.061-20.251), and high intelligence (OR = 1.402; 95 % CI = 1.001-1.963) were associated with an FSS diagnosis, while age (OR = 0.989; 95 % CI = 960-1.019) and

  4. Responses of sympathetic nervous system to cold exposure in vibration syndrome subjects and age-matched healthy controls.

    PubMed

    Nakamoto, M

    1990-01-01

    Plasma norepinephrine and epinephrine in vibration syndrome subjects and age-matched healthy controls were measured for the purpose of estimating the responsibility of the sympathetic nervous system to cold exposure. In preliminary experiment, it was confirmed that cold air exposure of the whole body was more suitable than one-hand immersion in cold water. In the main experiment, 195 subjects were examined. Sixty-five subjects had vibration syndrome with vibration-induced white finger (VWF + group) and 65 subjects had vibration syndrome without VWF (VWF- group) and 65 controls had no symptoms (control group). In the three groups, plasma norepinephrine levels increased during cold air exposure of whole body at 7 degrees +/- 1.5 degrees C. Blood pressure increased and skin temperature decreased during cold exposure. Percent increase of norepinephrine in the VWF+ group was the highest while that in VWF- group followed and that in the control group was the lowest. This whole-body response of the sympathetic nervous system to cold conditions reflected the VWF which are characteristic symptoms of vibration syndrome. Excluding the effects of shivering and a cold feeling under cold conditions, it was confirmed that the sympathetic nervous system in vibration syndrome is activated more than in the controls. These results suggest that vibration exposure to hand and arm affects the sympathetic nervous system.

  5. Central nervous system medication use in older adults with intellectual disability: Results from the successful ageing in intellectual disability study.

    PubMed

    Chitty, Kate M; Evans, Elizabeth; Torr, Jennifer J; Iacono, Teresa; Brodaty, Henry; Sachdev, Perminder; Trollor, Julian N

    2016-04-01

    Information on the rates and predictors of polypharmacy of central nervous system medication in older people with intellectual disability is limited, despite the increased life expectancy of this group. This study examined central nervous system medication use in an older sample of people with intellectual disability. Data regarding demographics, psychiatric diagnoses and current medications were collected as part of a larger survey completed by carers of people with intellectual disability over the age of 40 years. Recruitment occurred predominantly via disability services across different urban and rural locations in New South Wales and Victoria. Medications were coded according to the Monthly Index of Medical Specialties central nervous system medication categories, including sedatives/hypnotics, anti-anxiety agents, antipsychotics, antidepressants, central nervous system stimulants, movement disorder medications and anticonvulsants. The Developmental Behaviour Checklist for Adults was used to assess behaviour. Data were available for 114 people with intellectual disability. In all, 62.3% of the sample was prescribed a central nervous system medication, with 47.4% taking more than one. Of those who were medicated, 46.5% had a neurological diagnosis (a seizure disorder or Parkinson's disease) and 45.1% had a psychiatric diagnosis (an affective or psychotic disorder). Linear regression revealed that polypharmacy was predicted by the presence of neurological and psychiatric diagnosis, higher Developmental Behaviour Checklist for Adults scores and male gender. This study is the first to focus on central nervous system medication in an older sample with intellectual disability. The findings are in line with the wider literature in younger people, showing a high degree of prescription and polypharmacy. Within the sample, there seems to be adequate rationale for central nervous system medication prescription. Although these data do not indicate non-adherence to

  6. Cannabinoid/opioid crosstalk in the central nervous system.

    PubMed

    Corchero, Javier; Manzanares, Jorge; Fuentes, José A

    2004-01-01

    Promising therapeutic uses and a great variety of pharmacological effects are the leading forces that focus actual cannabinoid research. Cannabinoid and opioid systems share neuroanatomical, neurochemical, and paharmacological features. This fact supports the notion that actions induced by each one of these types of drugs involved an interaction between the endogenous opioid and endocannabinoid neuronal systems. Over the last decade our group and others have investigated cannabinoid/opioid crosstalk in the central nervous system by studying the mechanisms underlying pharmacological and biochemical interactions between the two systems in experimental paradigms of antinociception, drug reinforcement, and anxiety. The goal of this review is to revise the latest work done on this subject, with special emphasis on the research done with genetically modified animals. Whereas clinical progress is going ahead slowly, basic research in this area is progressing rapidly. Clinical applications derived from the cannabinoid/opioid crosstalk and based tightly on medical evidence are yet to come, but it is hoped that knowledge of this central messenger interaction will help to develop new alternatives for the treatment of some pathological states.

  7. Students' Illustrations of the Human Nervous System as a Formative Assessment Tool

    ERIC Educational Resources Information Center

    Ranaweera, Sisika Priyani Nelum; Montplaisir, Lisa Marie

    2010-01-01

    The purpose of this study was to explore students' knowledge and learning of the human nervous system (HNS) in an introductory undergraduate Human Anatomy and Physiology course. Classroom observations, demographic data, a preinstructional unit test with drawings, and a postinstructional unit test with drawings were used to identify students'…

  8. A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems.

    PubMed

    Xu, Jiaxi; Mukerjee, Snigdha; Silva-Alves, Cristiane R A; Carvalho-Galvão, Alynne; Cruz, Josiane C; Balarini, Camille M; Braga, Valdir A; Lazartigues, Eric; França-Silva, Maria S

    2016-01-01

    ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation.

  9. Positional and positioning down-beating nystagmus without central nervous system findings.

    PubMed

    Ogawa, Yasuo; Suzuki, Mamoru; Otsuka, Koji; Shimizu, Shigetaka; Inagaki, Taro; Hayashi, Mami; Hagiwara, Akira; Kitajima, Naoharu

    2009-12-01

    We report the clinical features of 4 cases with positional or positioning down-beating nystagmus in a head-hanging or supine position without any obvious central nervous system disorder. The 4 cases had some findings in common. There were no abnormal findings on neurological tests or brain MRI. They did not have gaze nystagmus. Their nystagmus was observed only in a supine or head-hanging position and it was never observed upon returning to a sitting position and never reversed. The nystagmus had no or little torsional component, had latency and tended to decrease with time. The positional DBN (p-DBN) is known to be indicative of a central nervous system disorder. Recently there were some reports that canalithiasis of the anterior semicircular canal (ASC) causes p-DBN and that patients who have p-DBN without obvious CNS dysfunction are dealt with anterior semicircular canal (ASC) benign paroxysmal positional vertigo (BPPV). There are some doubts as to the validity of making a diagnosis of ASC-BPPV in a case of p-DBN without CNS findings. It is hard to determine the cause of p-DBN in these cases.

  10. Rituximab treatment in primary angiitis of the central nervous system.

    PubMed

    Patel, Shreeya; Ross, Laura; Oon, Shereen; Nikpour, Mandana

    2018-06-01

    Primary angiitis of the central nervous system (PACNS) is a rare autoimmune vasculitis affecting the brain and spinal cord. Treatment with biological agents has revolutionised the treatment of many rheumatic conditions but there is scant literature regarding the use of biological agents in PACNS. We present three cases of PACNS treated with rituximab, including two cases of relapsed disease, and a literature review suggesting a role for rituximab in this condition. © 2018 Royal Australasian College of Physicians.

  11. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    PubMed Central

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  12. Hypothesis: the regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia.

    PubMed

    Devereux, Diana; Ikomi-Kumm, Julie

    2013-03-01

    The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The somatic symptom scale-8 (SSS-8): a brief measure of somatic symptom burden.

    PubMed

    Gierk, Benjamin; Kohlmann, Sebastian; Kroenke, Kurt; Spangenberg, Lena; Zenger, Markus; Brähler, Elmar; Löwe, Bernd

    2014-03-01

    Somatic symptoms are the core features of many medical diseases, and they are used to evaluate the severity and course of illness. The 8-item Somatic Symptom Scale (SSS-8) was recently developed as a brief, patient-reported outcome measure of somatic symptom burden, but its reliability, validity, and usefulness have not yet been tested. To investigate the reliability, validity, and severity categories as well as the reference scores of the SSS-8. A national, representative general-population survey was performed between June 15, 2012, and July 15, 2012, in Germany, including 2510 individuals older than 13 years. The SSS-8 mean (SD), item-total correlations, Cronbach α, factor structure, associations with measures of construct validity (Patient Health Questionnaire-2 depression scale, Generalized Anxiety Disorder-2 scale, visual analog scale for general health status, 12-month health care use), severity categories, and percentile rank reference scores. The SSS-8 had excellent item characteristics and good reliability (Cronbach α = 0.81). The factor structure reflects gastrointestinal, pain, fatigue, and cardiopulmonary aspects of the general somatic symptom burden. Somatic symptom burden as measured by the SSS-8 was significantly associated with depression (r = 0.57 [95% CI, 0.54 to 0.60]), anxiety (r = 0.55 [95% CI, 0.52 to 0.58]), general health status (r = -0.24 [95% CI, -0.28 to -0.20]), and health care use (incidence rate ratio, 1.12 [95% CI, 1.10 to 1.14]). The SSS-8 severity categories were calculated in accordance with percentile ranks: no to minimal (0-3 points), low (4-7 points), medium (8-11 points), high (12-15 points), and very high (16-32 points) somatic symptom burden. For every SSS-8 severity category increase, there was a 53% (95% CI, 44% to 63%) increase in health care visits. The SSS-8 is a reliable and valid self-report measure of somatic symptom burden. Cutoff scores identify individuals with low, medium, high, and very high somatic

  14. Nervous System Sensitization as a Predictor of Outcome in the Treatment of Peripheral Musculoskeletal Conditions: A Systematic Review.

    PubMed

    O'Leary, Helen; Smart, Keith M; Moloney, Niamh A; Doody, Catherine M

    2017-02-01

    Research suggests that peripheral and central nervous system sensitization can contribute to the overall pain experience in peripheral musculoskeletal (MSK) conditions. It is unclear, however, whether sensitization of the nervous system results in poorer outcomes following the treatment. This systematic review investigated whether nervous system sensitization in peripheral MSK conditions predicts poorer clinical outcomes in response to a surgical or conservative intervention. Four electronic databases were searched to identify the relevant studies. Eligible studies had a prospective design, with a follow-up assessing the outcome in terms of pain or disability. Studies that used baseline indices of nervous system sensitization were included, such as quantitative sensory testing (QST) or questionnaires that measured centrally mediated symptoms. Thirteen studies met the inclusion criteria, of which six were at a high risk of bias. The peripheral MSK conditions investigated were knee and hip osteoarthritis, shoulder pain, and elbow tendinopathy. QST parameters indicative of sensitization (lower electrical pain thresholds, cold hyperalgesia, enhanced temporal summation, lower punctate sharpness thresholds) were associated with negative outcome (more pain or disability) in 5 small exploratory studies. Larger studies that accounted for multiple confounders in design and analysis did not support a predictive relationship between QST parameters and outcome. Two studies used self-report measures to capture comorbid centrally mediated symptoms, and found higher questionnaire scores were independently predictive of more persistent pain following a total joint arthroplasty. This systematic review found insufficient evidence to support an independent predictive relationship between QST measures of nervous system sensitization and treatment outcome. Self-report measures demonstrated better predictive ability. Further high-quality prognostic research is warranted. © 2016 World

  15. Control of Prosthetic Hands via the Peripheral Nervous System

    PubMed Central

    Ciancio, Anna Lisa; Cordella, Francesca; Barone, Roberto; Romeo, Rocco Antonio; Bellingegni, Alberto Dellacasa; Sacchetti, Rinaldo; Davalli, Angelo; Di Pino, Giovanni; Ranieri, Federico; Di Lazzaro, Vincenzo; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control. PMID:27092041

  16. Synchronization of Human Autonomic Nervous System Rhythms with Geomagnetic Activity in Human Subjects

    PubMed Central

    McCraty, Rollin; Atkinson, Mike; Stolc, Viktor; Alabdulgader, Abdullah A.; Vainoras, Alfonsas

    2017-01-01

    A coupling between geomagnetic activity and the human nervous system’s function was identified by virtue of continuous monitoring of heart rate variability (HRV) and the time-varying geomagnetic field over a 31-day period in a group of 10 individuals who went about their normal day-to-day lives. A time series correlation analysis identified a response of the group’s autonomic nervous systems to various dynamic changes in the solar, cosmic ray, and ambient magnetic field. Correlation coefficients and p values were calculated between the HRV variables and environmental measures during three distinct time periods of environmental activity. There were significant correlations between the group’s HRV and solar wind speed, Kp, Ap, solar radio flux, cosmic ray counts, Schumann resonance power, and the total variations in the magnetic field. In addition, the time series data were time synchronized and normalized, after which all circadian rhythms were removed. It was found that the participants’ HRV rhythms synchronized across the 31-day period at a period of approximately 2.5 days, even though all participants were in separate locations. Overall, this suggests that daily autonomic nervous system activity not only responds to changes in solar and geomagnetic activity, but is synchronized with the time-varying magnetic fields associated with geomagnetic field-line resonances and Schumann resonances. PMID:28703754

  17. Autonomic Nervous System Responses to Hearing-Related Demand and Evaluative Threat.

    PubMed

    Mackersie, Carol L; Kearney, Lucia

    2017-10-12

    This paper consists of 2 parts. The purpose of Part 1 was to review the potential influence of internal (person-related) factors on listening effort. The purpose of Part 2 was to present, in support of Part 1, preliminary data illustrating the interactive effects of an external factor (task demand) and an internal factor (evaluative threat) on autonomic nervous system measures. For Part 1, we provided a brief narrative review of motivation and stress as modulators of listening effort. For Part 2, we described preliminary data from a study using a repeated-measures (2 × 2) design involving manipulations of task demand (high, low) and evaluative threat (high, low). The low-demand task consisted of repetition of sentences from a narrative. The high-demand task consisted of answering questions about the narrative, requiring both comprehension and recall. During the high evaluative threat condition, participants were filmed and told that their video recordings would be evaluated by a panel of experts. During the low evaluative threat condition, no filming occurred; participants were instructed to "do your best." Skin conductance (sympathetic nervous system activity) and heart rate variability (HRV, parasympathetic activity) were measured during the listening tasks. The HRV measure was the root mean square of successive differences of adjacent interbeat intervals. Twelve adults with hearing loss participated. Skin conductance increased and HRV decreased relative to baseline (no task) for all listening conditions. Skin conductance increased significantly with an increase in evaluative threat, but only for the more demanding task. There was no significant change in HRV in response to increasing evaluative threat or task demand. Listening effort may be influenced by factors other than task difficulty, as reviewed in Part 1. This idea is supported by the preliminary data indicating that the sympathetic nervous system response to task demand is modulated by social evaluative

  18. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    PubMed

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  19. Sequential involvement of the nervous system in subacute combined degeneration.

    PubMed

    Minn, Yang-Ki; Kim, Seung-Min; Kim, Se-Hoon; Kwon, Ki-Han; Sunwoo, Il-Nam

    2012-03-01

    Subacute combined degeneration (SCD) involves progressive degeneration of the spinal cord, optic nerve, and peripheral nerves. Vitamin B12 (VB12) is a co-factor in myelin synthesis. Because each cell that constitutes the myelin component in the central nervous system and peripheral nervous system is different, it is improbable that these cells undergo simultaneous degeneration. However, the sequence of degeneration in SCD has not been established. In this study, we analysed medical records and electrophysiological data of patients who showed neurological symptoms and whose serum VB12 levels were lower than 200 pg/mL. We enrolled 49 patients in this study. Their mean VB12 level was 68.3 pg/mL. Somatosensory evoked potential (SEP) study showed abnormal findings in 38 patients. Of the 40 patients who underwent visual evoked potential (VEP) study, 14 showed abnormal responses. Eighteen patients showed abnormal findings on a nerve conduction study (NCS). In this study, abnormal posterior tibial nerve SEPs only were seen in 16 patients, median nerve SEPs only were seen in 3 patients, abnormal VEPs only in two, and abnormal NCS responses in one patient. No patient complained of cognitive symptoms. In SCD, degeneration appears to progress in the following order: lower spinal cord, cervical spinal cord, peripheral nerve/optic nerve, and finally, the brain.

  20. Sequential Involvement of the Nervous System in Subacute Combined Degeneration

    PubMed Central

    Minn, Yang-Ki; Kim, Seung-Min; Kim, Se-Hoon; Kwon, Ki-Han

    2012-01-01

    Purpose Subacute combined degeneration (SCD) involves progressive degeneration of the spinal cord, optic nerve, and peripheral nerves. Vitamin B12 (VB12) is a co-factor in myelin synthesis. Because each cell that constitutes the myelin component in the central nervous system and peripheral nervous system is different, it is improbable that these cells undergo simultaneous degeneration. However, the sequence of degeneration in SCD has not been established. Materials and Methods In this study, we analysed medical records and electrophysiological data of patients who showed neurological symptoms and whose serum VB12 levels were lower than 200 pg/mL. Results We enrolled 49 patients in this study. Their mean VB12 level was 68.3 pg/mL. Somatosensory evoked potential (SEP) study showed abnormal findings in 38 patients. Of the 40 patients who underwent visual evoked potential (VEP) study, 14 showed abnormal responses. Eighteen patients showed abnormal findings on a nerve conduction study (NCS). In this study, abnormal posterior tibial nerve SEPs only were seen in 16 patients, median nerve SEPs only were seen in 3 patients, abnormal VEPs only in two, and abnormal NCS responses in one patient. No patient complained of cognitive symptoms. Conclusion In SCD, degeneration appears to progress in the following order: lower spinal cord, cervical spinal cord, peripheral nerve/optic nerve, and finally, the brain. PMID:22318813

  1. Central nervous system transplantation benefited by low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rochkind, S.; Lubart, Rachel; Wollman, Yoram; Simantov, Rabi; Nissan, Moshe; Barr-Nea, Lilian

    1990-06-01

    Effect of low-level laser irradiation on the central nervous system transplantation is reported. Ernbryonal brain allografts were transplanted into the brain of 20 adult rats and peripheral nerve graft transplanted into the severely injured spinal cord of 16 dogs. The operated wound of 10 rats and 8 dogs were exposed daily for 21 days to lowpower laser irradiation CW HeNe laser (35 mW, 632.8 run, energy density of 30 J/cm2 at each point for rats and 70 J/cm2 at each point for dogs). This study shows that (i) the low-level laser irradiation prevents extensive glial scar formation (a limiting factor in CNS regeneration) between embryonal transplants and host brain; (ii) Dogs made paraplegic by spinal cord injury were able to walk 3-6 months later. Recovery of these dogs was effected by the implantation of a fragment of autologous sciatic nerve at the site of injury and subsequently exposing the dogs to low-level laser irradiation. The effect of laser irradiation on the embryonal nerve cells grown in tissue culture was also observed. We found that low-level laser irradiation induced intensive migration of neurites outward of the aggregates 15-22 The results of the present study and our previous investigations suggest that low-level laser irradiation is a novel tool for treatment of peripheral and central nervous system injuries.

  2. Control of Bone Remodeling by the Peripheral Sympathetic Nervous System

    PubMed Central

    Campbell, Preston; Ma, Yun

    2013-01-01

    The skeleton is no longer seen as a static, isolated, and mostly structural organ. Over the last two decades, a more complete picture of the multiple functions of the skeleton has emerged, and its interactions with a growing number of apparently unrelated organs have become evident. The skeleton not only reacts to mechanical loading and inflammatory, hormonal, and mineral challenges, but also acts of its own accord by secreting factors controlling the function of other tissues, including the kidney and possibly the pancreas and gonads. It is thus becoming widely recognized that it is by nature an endocrine organ, in addition to a structural organ and site of mineral storage and hematopoiesis. Consequently and by definition, bone homeostasis must be tightly regulated and integrated with the biology of other organs to maintain whole body homeostasis, and data uncovering the involvement of the central nervous system (CNS) in the control of bone remodeling support this concept. The sympathetic nervous system (SNS) represents one of the main links between the CNS and the skeleton, based on a number of anatomic, pharmacologic, and genetic studies focused on β-adrenergic receptor (βAR) signaling in bone cells. The goal of this report was to review the data supporting the role of the SNS and βAR signaling in the regulation of skeletal homeostasis. PMID:23765388

  3. Order of exposure to pleasant and unpleasant odors affects autonomic nervous system response.

    PubMed

    Horii, Yuko; Nagai, Katsuya; Nakashima, Toshihiro

    2013-04-15

    When mammals are exposed to an odor, that odor is expected to elicit a physiological response in the autonomic nervous system. An unpleasant aversive odor causes non-invasive stress, while a pleasant odor promotes healing and relaxation in mammals. We hypothesized that pleasant odors might reduce a stress response previously induced by an aversive predator odor. Rats were thus exposed to pleasant and unpleasant odors in different orders to determine whether the order of odor exposure had an effect on the physiological response in the autonomic nervous system. The first trial examined autonomic nerve activity via sympathetic and parasympathetic nerve response while the second trial examined body temperature response. Initial exposure to a pleasant odor elicited a positive response and secondary exposure to an unpleasant odor elicited a negative response, as expected. However, we found that while initial exposure to an unpleasant odor elicited a negative stress response, subsequent secondary exposure to a pleasant odor not only did not alleviate that negative response, but actually amplified it. These findings were consistent for both the autonomic nerve activity response trial and the body temperature response trial. The trial results suggest that exposure to specific odors does not necessarily result in the expected physiological response and that the specific order of exposure plays an important role. Our study should provide new insights into our understanding of the physiological response in the autonomic nervous system related to odor memory and discrimination and point to areas that require further research. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila.

    PubMed

    Banerjee, Swati; Pillai, Anilkumar M; Paik, Raehum; Li, Jingjun; Bhat, Manzoor A

    2006-03-22

    Axonal insulation is critical for efficient action potential propagation and normal functioning of the nervous system. In Drosophila, the underlying basis of nerve ensheathment is the axonal insulation by glial cells and the establishment of septate junctions (SJs) between glial cell membranes. However, the details of the cellular and molecular mechanisms underlying axonal insulation and SJ formation are still obscure. Here, we report the characterization of axonal insulation in the Drosophila peripheral nervous system (PNS). Targeted expression of tau-green fluorescent protein in the glial cells and ultrastructural analysis of the peripheral nerves allowed us to visualize the glial ensheathment of axons. We show that individual or a group of axons are ensheathed by inner glial processes, which in turn are ensheathed by the outer perineurial glial cells. SJs are formed between the inner and outer glial membranes. We also show that Neurexin IV, Contactin, and Neuroglian are coexpressed in the peripheral glial membranes and that these proteins exist as a complex in the Drosophila nervous system. Mutations in neurexin IV, contactin, and neuroglian result in the disruption of blood-nerve barrier function in the PNS, and ultrastructural analyses of the mutant embryonic peripheral nerves show loss of glial SJs. Interestingly, the murine homologs of Neurexin IV, Contactin, and Neuroglian are expressed at the paranodal SJs and play a key role in axon-glial interactions of myelinated axons. Together, our data suggest that the molecular machinery underlying axonal insulation and axon-glial interactions may be conserved across species.

  5. A family of splice variants of CstF-64 expressed in vertebrate nervous systems

    PubMed Central

    Shankarling, Ganesh S; Coates, Penelope W; Dass, Brinda; MacDonald, Clinton C

    2009-01-01

    Background Alternative splicing and polyadenylation are important mechanisms for creating the proteomic diversity necessary for the nervous system to fulfill its specialized functions. The contribution of alternative splicing to proteomic diversity in the nervous system has been well documented, whereas the role of alternative polyadenylation in this process is less well understood. Since the CstF-64 polyadenylation protein is known to be an important regulator of tissue-specific polyadenylation, we examined its expression in brain and other organs. Results We discovered several closely related splice variants of CstF-64 – collectively called βCstF-64 – that could potentially contribute to proteomic diversity in the nervous system. The βCstF-64 splice variants are found predominantly in the brains of several vertebrate species including mice and humans. The major βCstF-64 variant mRNA is generated by inclusion of two alternate exons (that we call exons 8.1 and 8.2) found between exons 8 and 9 of the CstF-64 gene, and contains an additional 147 nucleotides, encoding 49 additional amino acids. Some variants of βCstF-64 contain only the first alternate exon (exon 8.1) while other variants contain both alternate exons (8.1 and 8.2). In mice, the predominant form of βCstF-64 also contains a deletion of 78 nucleotides from exon 9, although that variant is not seen in any other species examined, including rats. Immunoblot and 2D-PAGE analyses of mouse nuclear extracts indicate that a protein corresponding to βCstF-64 is expressed in brain at approximately equal levels to CstF-64. Since βCstF-64 splice variant family members were found in the brains of all vertebrate species examined (including turtles and fish), this suggests that βCstF-64 has an evolutionarily conserved function in these animals. βCstF-64 was present in both pre- and post-natal mice and in different regions of the nervous system, suggesting an important role for βCstF-64 in neural gene

  6. [Primary lymphoma of the central nervous system: 20 years' experience in a referral hospital].

    PubMed

    Calderón-Garcidueñas, A L; Pacheco-Calleros, J; Castelán-Maldonado, E; Nocedal-Rustrián, F C

    Primary central nervous system lymphomas (PCNSL) are rare neoplasms. AIM. To study the clinical aspects and the immuno-phenotype of all cases of PCNSL in a 20 years lapse in a referral hospital in Northeastern Mexico. From January 1986 to December 2005 all PCNSL histologically confirmed were studied. The primary lymphomas were 1% of malignant central nervous system neoplasms. 21 cases were studied (ages from 9-70 years) with male predominance (2:1). 24% patients had immuno-suppression. The more frequent clinical data were: papilledema (71%), headache (62%), paresis (48%) and seizures (33%). 33% of patients died during the first six months after diagnosis. The T lymphomas were 19% of cases and corresponded to small cell type. PCNSL are still a diagnostic challenge. Multicenter studies are required in order to determine the best treatment protocol.

  7. Cellular changes in the enteric nervous system during ageing.

    PubMed

    Saffrey, M Jill

    2013-10-01

    The intrinsic neurons of the gut, enteric neurons, have an essential role in gastrointestinal functions. The enteric nervous system is plastic and continues to undergo changes throughout life, as the gut grows and responds to dietary and other environmental changes. Detailed analysis of changes in the ENS during ageing suggests that enteric neurons are more vulnerable to age-related degeneration and cell death than neurons in other parts of the nervous system, although there is considerable variation in the extent and time course of age-related enteric neuronal loss reported in different studies. Specific neuronal subpopulations, particularly cholinergic myenteric neurons, may be more vulnerable than others to age-associated loss or damage. Enteric degeneration and other age-related neuronal changes may contribute to gastrointestinal dysfunction that is common in the elderly population. Evidence suggests that caloric restriction protects against age-associated loss of enteric neurons, but recent advances in the understanding of the effects of the microbiota and the complex interactions between enteric ganglion cells, mucosal immune system and intestinal epithelium indicate that other factors may well influence ageing of enteric neurons. Much remains to be understood about the mechanisms of neuronal loss and damage in the gut, although there is evidence that reactive oxygen species, neurotrophic factor dysregulation and/or activation of a senescence associated phenotype may be involved. To date, there is no evidence for ongoing neurogenesis that might replace dying neurons in the ageing gut, although small local sites of neurogenesis would be difficult to detect. Finally, despite the considerable evidence for enteric neurodegeneration during ageing, and evidence for some physiological changes in animal models, the ageing gut appears to maintain its function remarkably well in animals that exhibit major neuronal loss, indicating that the ENS has considerable

  8. Metal-based nanoparticle interactions with the nervous system: The challenge of brain entry and the risk of retention in the organism

    EPA Science Inventory

    This review of metal and metal-oxide based nanoparticles focuses on factors that influence their distribution into the nervous system, evidence that they enter brain parenchyma, and nervous system responses. Emphasis is placed on gold as a model metal-based nanoparticle and for r...

  9. Results from a Survey of Current Practices for Sampling of Nervous System in Rodents and Non-rodents in General Toxicity Studies

    EPA Science Inventory

    A survey of current practices for sampling and examination of the nervous system in rodents and non-rodents for general and neurotoxicity (NT) studies was conducted by the Nervous System Sampling Subcommittee of the STP. For general toxicity studies most of those surveyed (>63%) ...

  10. IκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system

    PubMed Central

    Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang

    2011-01-01

    The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728

  11. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  12. West Nile Virus Infection in the Central Nervous System

    PubMed Central

    Winkelmann, Evandro R.; Luo, Huanle; Wang, Tian

    2016-01-01

    West Nile virus (WNV), a neurotropic single-stranded flavivirus has been the leading cause of arboviral encephalitis worldwide.  Up to 50% of WNV convalescent patients in the United States were reported to have long-term neurological sequelae.  Neither antiviral drugs nor vaccines are available for humans.  Animal models have been used to investigate WNV pathogenesis and host immune response in humans.  In this review, we will discuss recent findings from studies in animal models of WNV infection, and provide new insights on WNV pathogenesis and WNV-induced host immunity in the central nervous system. PMID:26918172

  13. Insights from Proteomic Studies into Plant Somatic Embryogenesis.

    PubMed

    Heringer, Angelo Schuabb; Santa-Catarina, Claudete; Silveira, Vanildo

    2018-03-01

    Somatic embryogenesis is a biotechnological approach mainly used for the clonal propagation of different plants worldwide. In somatic embryogenesis, embryos arise from somatic cells under appropriate culture conditions. This plasticity in plants is a demonstration of true cellular totipotency and is the best approach among the genetic transformation protocols used for plant regeneration. Despite the importance of somatic embryogenesis, knowledge regarding the control of the somatic embryogenesis process is limited. Therefore, the elucidation of both the biochemical and molecular processes is important for understanding the mechanisms by which a single somatic cell becomes a whole plant. Modern proteomic techniques rely on an alternative method for the identification and quantification of proteins with different abundances in embryogenic cell cultures or somatic embryos and enable the identification of specific proteins related to somatic embryogenesis development. This review focuses on somatic embryogenesis studies that use gel-free shotgun proteomic analyses to categorize proteins that could enhance our understanding of particular aspects of the somatic embryogenesis process and identify possible targets for future studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structural characterization of a novel neuropeptide from the central nervous system of the leech Erpobdella octoculata. The leech osmoregulator factor.

    PubMed

    Salzet, M; Bulet, P; Weber, W M; Clauss, W; Verger-Bocquet, M; Malecha, J

    1996-03-22

    Purification of a material immunoreactive to an antiserum against the C-terminal part of the oxytocin (Pro-Leu-Gly-amide) and present in the central nervous system of the Pharyngobdellid leech Erpobdella octoculata was performed by reversed-phase high performance liquid chromatography combined with both enzyme-linked immunosorbent and dot immunobinding assays for oxytocin. The amino acid sequence of the purified peptide (Ile-Pro-Glu-Pro-Tyr-Val-Trp-Asp) was established by Edman degradation and confirmed by electrospray mass spectrometry measurement. When injected in leeches, purified or synthetic peptides exert an anti-diuretic effect, the most effective ranged between 10 pmol and 1 nmol. They provoked an uptake of water 1-2 h post-injection. Furthermore, electrophysiological experiments conducted in the leech Hirudo medicinalis revealed an inhibition of the potency of Na+ conductances of leech skin by this peptide. Immunocytochemical studies with an antiserum against synthetic oxytocin-like molecule provided the cytological basis for existence of a neuropeptide, since large amounts of immunoreactive neurons were detected in the central nervous systems of E. octoculata. The purified molecule is both different to peptides of the oxytocin/vasopressin family and is a novel neuropeptide in the animal kingdom. It was named the leech osmoregulator factor (LORF). An identification of the proteins immunoreactive to an antiserum against oxytocin performed at the level of both central nervous systems extracts and in vitro central nervous system-translated RNA products indicated that in the two cases, a single protein was detected. These proteins with a molecular masses of, respectively, approximately 34 kDa (homodimer of 17 kDa) for the central nervous systems extracts and approximately 19 kDa for in vitro central nervous system-translated RNA products were not recognized by the antiserum against MSEL- and VLDV-neurophysin (proteins associated to oxytocin and vasopressin

  15. Alexithymia, emotion, and somatic complaints.

    PubMed

    Lundh, L G; Simonsson-Sarnecki, M

    2001-06-01

    Alexithymia, by definition, involves difficulties in identifying and describing emotions and has been assumed to be associated with somatization (i.e., a tendency to express psychological distress in somatic rather than emotional form). Empirical research so far, however, has produced no convincing evidence that alexithymia is more associated with somatic complaints than with emotional complaints or that alexithymia correlates with somatic complaints when negative affect is controlled for. In the present study, alexithymia, as measured by the TAS-20, showed no association with somatic complaints in a community sample of 137 individuals when trait anxiety and depression were controlled. Alexithymia did correlate negatively with positive affect, and positively with negative affect. The former association, however, was much more robust, whereas the latter association was found mainly on subjective trait measures of negative affect (as distinct from state measures and more objective trait measures derived from daily recordings during an 8-week period). It is suggested that the association between alexithymia and lack of positive affect deserves more attention in future research.

  16. High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.).

    PubMed

    Nair, R Ramakrishnan; Dutta Gupta, S

    2006-01-01

    A high-frequency plantlet regeneration protocol was developed for black pepper (Piper nigrum L.) through cyclic secondary somatic embryogenesis. Secondary embryos formed from the radicular end of the primary somatic embryos which were originally derived from micropylar tissues of germinating seeds on growth regulator-free SH medium in the absence of light. The process of secondary embryogenesis continued in a cyclic manner from the root pole of newly formed embryos resulting in clumps of somatic embryos. Strength of the medium and sucrose concentration influenced the process of secondary embryogenesis and fresh weight of somatic embryo clumps. Full-strength SH medium supplemented with 1.5% sucrose produced significantly higher fresh weight and numbers of secondary somatic embryos while 3.0 and 4.5% sucrose in the medium favored further development of proliferated embryos into plantlets. Ontogeny of secondary embryos was established by histological analysis. Secondary embryogenic potential was influenced by the developmental stage of the explanted somatic embryo and stages up to "torpedo" were more suitable. A single-flask system was standardized for proliferation, maturation, germination and conversion of secondary somatic embryos in suspension cultures. The system of cyclic secondary somatic embryogenesis in black pepper described here represents a permanent source of embryogenic material that can be used for genetic manipulations of this crop species.

  17. Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System

    ERIC Educational Resources Information Center

    Watters, Christopher

    2006-01-01

    The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…

  18. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    PubMed Central

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637

  19. The ecology of human fear: survival optimization and the nervous system

    PubMed Central

    Mobbs, Dean; Hagan, Cindy C.; Dalgleish, Tim; Silston, Brian; Prévost, Charlotte

    2015-01-01

    We propose a Survival Optimization System (SOS) to account for the strategies that humans and other animals use to defend against recurring and novel threats. The SOS attempts to merge ecological models that define a repertoire of contextually relevant threat induced survival behaviors with contemporary approaches to human affective science. We first propose that the goal of the nervous system is to reduce surprise and optimize actions by (i) predicting the sensory landscape by simulating possible encounters with threat and selecting the appropriate pre-encounter action and (ii) prevention strategies in which the organism manufactures safe environments. When a potential threat is encountered the (iii) threat orienting system is engaged to determine whether the organism ignores the stimulus or switches into a process of (iv) threat assessment, where the organism monitors the stimulus, weighs the threat value, predicts the actions of the threat, searches for safety, and guides behavioral actions crucial to directed escape. When under imminent attack, (v) defensive systems evoke fast reflexive indirect escape behaviors (i.e., fight or flight). This cascade of responses to threat of increasing magnitude are underwritten by an interconnected neural architecture that extends from cortical and hippocampal circuits, to attention, action and threat systems including the amygdala, striatum, and hard-wired defensive systems in the midbrain. The SOS also includes a modulatory feature consisting of cognitive appraisal systems that flexibly guide perception, risk and action. Moreover, personal and vicarious threat encounters fine-tune avoidance behaviors via model-based learning, with higher organisms bridging data to reduce face-to-face encounters with predators. Our model attempts to unify the divergent field of human affective science, proposing a highly integrated nervous system that has evolved to increase the organism's chances of survival. PMID:25852451

  20. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood central nervous system (CNS) germ cell tumors form from germ cells (a type of cell that forms as a fetus develops and later becomes sperm in the testicles or eggs in the ovaries). Learn about the signs, tests to diagnose, and treatment of pediatric germ cell tumors in the brain in this expert-reviewed summary.

  1. [Inflammatory granulomas in the pathology of the nervous system. General remarks].

    PubMed

    Tommasi, M

    1976-01-01

    The "gliogenic" participation in the edification of granulomas may produce peculiar morphological features especially in the central nervous system, and perhaps more than elsewhere, pseudotumoral features. Moreover, the concept of "granuloma" is perhaps not as well defined as in the other tissues. There are also some still unsolved problems concerning the histogenesis of the cells of the "granuloma". Some examples taken among the different etiologies illustrate these notions.

  2. Chemical Compositions, Somatic Embryogenesis, and Somaclonal Variation in Cumin

    PubMed Central

    Tohidfar, Masoud; Sadat Noori, Seyed Ahmad; Izadi Darbandi, Ali; Rao, Rosa

    2017-01-01

    This is the first report evaluating the relationship between the chemical compositions of cumin seeds (based on the analysis of the content of catalase, ascorbate peroxidase, proline, protein, terpenic compounds, alcohol/phenols, aldehydes, and epoxides) and the induction efficiency of somatic embryogenesis in two Iranian superior cumin landraces (Golestan and North Khorasan). Cotyledons isolated from Golestan landrace seeds cultivated on MS medium supplemented with 0.1 mg/L kinetin proved to be the best primary explant for the induction of somatic embryogenesis as well as the regeneration of the whole plantlet. Results indicated that different developmental stages of somatic embryos were simultaneously observed on a callus with embryogenic potential. The high content of catalase, ascorbate peroxidase, proline, and terpenic hydrocarbons and low content of alcoholic and phenolic compositions had a stimulatory effect on somatic embryogenesis. Band patterns of RAPD markers in regenerated plants were different from those of the mother plants. This may be related to somaclonal variations or pollination system of cumin. Generally, measurement of chemical compositions can be used as a marker for evaluating the occurrence of somatic embryogenesis in cumin. Also, somaclonal variations of regenerated plants can be applied by the plant breeders in breeding programs. PMID:29234682

  3. Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture

    PubMed Central

    Swanson, Larry W.; Bota, Mihail

    2010-01-01

    The nervous system is a biological computer integrating the body's reflex and voluntary environmental interactions (behavior) with a relatively constant internal state (homeostasis)—promoting survival of the individual and species. The wiring diagram of the nervous system's structural connectivity provides an obligatory foundational model for understanding functional localization at molecular, cellular, systems, and behavioral organization levels. This paper provides a high-level, downwardly extendible, conceptual framework—like a compass and map—for describing and exploring in neuroinformatics systems (such as our Brain Architecture Knowledge Management System) the structural architecture of the nervous system's basic wiring diagram. For this, the Foundational Model of Connectivity's universe of discourse is the structural architecture of nervous system connectivity in all animals at all resolutions, and the model includes two key elements—a set of basic principles and an internally consistent set of concepts (defined vocabulary of standard terms)—arranged in an explicitly defined schema (set of relationships between concepts) allowing automatic inferences. In addition, rules and procedures for creating and modifying the foundational model are considered. Controlled vocabularies with broad community support typically are managed by standing committees of experts that create and refine boundary conditions, and a set of rules that are available on the Web. PMID:21078980

  4. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease.

    PubMed

    Hur, Eun-Mi; Lee, Byoung Dae

    2014-12-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases.

  5. Metabolism of acetylcholine in the nervous system of Aplysia californica. I. Source of choline and its uptake by intact nervous tissue

    PubMed Central

    1975-01-01

    Although acetylcholine is a major neurotransmitter in Aplysia, labeling studies with methionine and serine showed that little choline was synthesized by nervous tissue and indicated that the choline required for the synthesis of acetylcholine must be derived exogenously. Aanglia in the central nervous system (abdominal, cerebral, and pleuropedals) all took up about 0.5 nmol of choline per hour at 9 muM, the concentration of choline we found in hemolymph. This rate was more than two orders of magnitude greater than that of synthesis from the labeled precursors. Ganglia accumulated choline by a process which has two kinetic components, one with a Michaelis constant between 2-8 muM. The other component was not saturated at 420 muM. Presumably the process with the high affinity functions to supply choline for synthesis of transmitter, since the efficiency of conversion to acetylcholine was maximal in the range of external concentrations found in hemolymph. PMID:1117282

  6. Regulation of lipid metabolism by energy availability: a role for the central nervous system.

    PubMed

    Nogueiras, R; López, M; Diéguez, C

    2010-03-01

    The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.

  7. Cholinergic, serotoninergic and peptidergic components of the nervous system of Discocotyle sagittata (Monogenea:Polyopisthocotylea).

    PubMed

    Cable, J; Marks, N J; Halton, D W; Shaw, C; Johnston, C F; Tinsley, R C; Gannicott, A M

    1996-12-01

    Cholinergic, serotoninergic (5-HT) and peptidergic neuronal pathways have been demonstrated in both central and peripheral nervous systems of adult Discocotyle sagittata, using enzyme histochemistry and indirect immunocytochemistry in conjunction with confocal scanning laser microscopy. Antisera to 2 native flatworm neuropeptides, neuropeptide F and the FMRFamide-related peptide (FaRP), GNFFRFamide, were employed to detect peptide immunoreactivity. The CNS is composed of paired cerebral ganglia and connecting dorsal commissure, together with several paired longitudinal nerve cords. The main longitudinal nerve cords (lateral, ventral and dorsal) are interconnected at intervals by a series of annular cross-connectives, producing a ladder-like arrangement typical of the platyhelminth nervous system. At the level of the haptor, the ventral cords provide nerve roots which innervate each of the 9 clamps. Cholinergic and peptidergic neuronal organisation was similar, but distinct from that of the serotoninergic components. The PNS and reproductive system are predominantly innervated by peptidergic neurones.

  8. Regulation of transepithelial ion transport in the rat late distal colon by the sympathetic nervous system.

    PubMed

    Zhang, X; Li, Y; Zhang, X; Duan, Z; Zhu, J

    2015-01-01

    The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (I(sc)) recording; the expression of beta-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline I(sc) in the colorectum was increased significantly comparing to controls. NE evoked downward deltaI(sc) in colorectum of treated rats was 1.8-fold of controls. The expression of beta(2)-adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. However, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathetic neurotransmitters result in abnormal ion transport, beta-adrenoceptor and NET are involved in the process.

  9. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges.

    PubMed

    Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey

    2016-02-25

    The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence

  10. ELAV Links Paused Pol II to Alternative Polyadenylation in the Drosophila Nervous System

    PubMed Central

    Oktaba, Katarzyna; Zhang, Wei; Lotz, Thea Sabrina; Jun, David Jayhyun; Lemke, Sandra Beatrice; Ng, Samuel Pak; Esposito, Emilia; Levine, Michael; Hilgers, Valérie

    2014-01-01

    SUMMARY Alternative polyadenylation (APA) has been implicated in a variety of developmental and disease processes. A particularly dramatic form of APA occurs in the developing nervous system of flies and mammals, whereby various developmental genes undergo coordinate 3′ UTR extension. In Drosophila, the RNA-binding protein ELAV inhibits RNA processing at proximal polyadenylation sites, thereby fostering the formation of exceptionally long 3′ UTRs. Here, we present evidence that paused Pol II promotes recruitment of ELAV to extended genes. Replacing promoters of extended genes with heterologous promoters blocks normal 3′ extension in the nervous system, while extension-associated promoters can induce 3′ extension in ectopic tissues expressing ELAV. Computational analyses suggest that promoter regions of extended genes tend to contain paused Pol II and associated cis-regulatory elements such as GAGA. ChIP-Seq assays identify ELAV in the promoter regions of extended genes. Our study provides evidence for a regulatory link between promoter-proximal pausing and APA. PMID:25544561

  11. A mammalian nervous system-specific plasma membrane proteasome complex that modulates neuronal function

    PubMed Central

    Ramachandran, Kapil V.; Margolis, Seth S.

    2017-01-01

    In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It remains unclear how proteasomes can acutely regulate such processes, as this is inconsistent with their canonical role in proteostasis. Here, we made the discovery of a mammalian nervous system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is tightly associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of this membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked extracellular peptide production and attenuated neuronal activity-induced calcium signaling. Moreover, membrane proteasome-derived peptides are sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes primarily function to maintain proteostasis, and highlight a form of neuronal communication through a membrane proteasome complex. PMID:28287632

  12. Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large B-cell lymphoma: Results of a multicenter prospective cohort study.

    PubMed

    Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Lee, Soon Il; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon

    2016-11-01

    Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4-29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448.

  13. Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large B-cell lymphoma: Results of a multicenter prospective cohort study

    PubMed Central

    Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Il Lee, Soon; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon

    2016-01-01

    Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4–29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448. PMID:27713132

  14. Evolving Character of Chronic Central Nervous System HIV Infection

    PubMed Central

    Price, Richard W.; Spudich, Serena S.; Peterson, Julia; Joseph, Sarah; Fuchs, Dietmar; Zetterberg, Henrik; Gisslén, Magnus; Swanstrom, Ronald

    2014-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) begins early in systemic infection and continues throughout its untreated course. Despite a common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection and its neurologic severe consequence, HAD continues to afflict individuals presenting with advanced systemic infection in the developed world and a larger number in resource-poor settings where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader prevalence, including in those treated with ART. Here we review the history and evolving nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment. PMID:24715483

  15. Head capsule, chephalic central nervous system and head circulatory system of an aberrant orthopteran, Prosarthria teretrirostris (Caelifera, Hexapoda).

    PubMed

    Baum, Eileen; Hertel, Wieland; Beutel, Rolf Georg

    2007-01-01

    The head capsule, the circulatory system and the central nervous system of the head of Prosarthria teretrirostris (Proscopiidae) is described in detail, with special consideration of modifications resulting from the aberrant head shape. The transformations of the head are completely different from those found in phasmatodeans, which are also characterised by twig mimesis. The circulatory system is distinctly modified. A hitherto undescribed additional structure in the posterior head region very likely functions as a pulsatile organ. The cephalic central nervous system is strongly elongated, with changes in the position of the suboesophageal ganglion, the corpora cardiaca and the course of the nervus mandibularis. Three-dimensional reconstructions of these two organ systems in combination with the pharynx were made using Alias Maya 6.0 software. Comparisons with other representatives of Caelifera suggest a clade comprising Proscopiidae and Morabinae. The presence of a transverse muscle connecting the antennal ampullae in Prosarthria shows that this structure likely belongs to the groundplan of Orthoptera, even though it is missing in different representatives of this group. The transverse ampullary muscle is a potential synapomorphy of Orthoptera, Phasmatodea and Dictyoptera.

  16. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system.

    PubMed

    Metzger, Marco; Bareiss, Petra M; Danker, Timm; Wagner, Silvia; Hennenlotter, Joerg; Guenther, Elke; Obermayr, Florian; Stenzl, Arnulf; Koenigsrainer, Alfred; Skutella, Thomas; Just, Lothar

    2009-12-01

    Neural stem and progenitor cells from the enteric nervous system have been proposed for use in cell-based therapies against specific neurogastrointestinal disorders. Recently, enteric neural progenitors were generated from human neonatal and early postnatal (until 5 years after birth) gastrointestinal tract tissues. We investigated the proliferation and differentiation of enteric nervous system progenitors isolated from human adult gastrointestinal tract. Human enteric spheroids were generated from adult small and large intestine tissues and then expanded and differentiated, depending on the applied cell culture conditions. For implantation studies, spheres were grafted into fetal slice cultures and embryonic aganglionic hindgut explants from mice. Differentiating enteric neural progenitors were characterized by 5-bromo-2-deoxyuridine labeling, in situ hybridization, immunocytochemistry, quantitative real-time polymerase chain reaction, and electrophysiological studies. The yield of human neurosphere-like bodies was increased by culture in conditional medium derived from fetal mouse enteric progenitors. We were able to generate proliferating enterospheres from adult human small or large intestine tissues; these enterospheres could be subcultured and maintained for several weeks in vitro. Spheroid-derived cells could be differentiated into a variety of neuronal subtypes and glial cells with characteristics of the enteric nervous system. Experiments involving implantation into organotypic intestinal cultures showed the differentiation capacity of neural progenitors in a 3-dimensional environment. It is feasible to isolate and expand enteric progenitor cells from human adult tissue. These findings offer new strategies for enteric stem cell research and future cell-based therapies.

  17. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and Central Nervous System Homeostasis.

    PubMed

    Tran, Khiem A; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F; Göthert, Joachim R; Malik, Asrar B; Valyi-Nagy, Tibor; Zhao, You-Yang

    2016-01-12

    The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial β-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear β-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation. © 2015 American Heart Association, Inc.

  18. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    PubMed

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  19. [The correlations of somatic, dermatoglyphic and psychological characteristics in the structure of general human constitution from the standpoint of systemic approach].

    PubMed

    Negasheva, M A

    2008-01-01

    669 young men and women aged 16-23 years were examined using a program including the measurements of 40 body, head and face parameters, fingerprinting and determination of personal psychological characteristics. On the basis of the study of the correlations between the different groups of characteristics, the evidence was obtained that supports the concept of a relative autonomy of the morpho-functional systems as an essential condition for the integrity of the organism as a whole. The coefficients of canonical correlation were calculated between the somatic and dermatoglyphic features (R=0.3), somatic sizes and psychological personality characteristics (R=0.4), psychological characteristics and the dermatoglyphic indices (R=0.4). An original model is suggested that describes the correlations of somatic, dermatoglyphic and psychological features in the structure of general human constitution on the basis of statistically significant canonical correlations (revealed by the author) and that takes in consideration the degree of the influence of genetic and social-economic complex of factors (on the basis of the literature data) on the development and formation of the investigated systems of characteristics.

  20. Femoral-facial syndrome with malformations in the central nervous system.

    PubMed

    Leal, Evelia; Macías-Gómez, Nelly; Rodríguez, Lisa; Mercado, F Miguel; Barros-Núñez, Patricio

    2003-01-01

    The femoral hypoplasia-unusual facies syndrome (FFS) is a very rare association of femoral and facial abnormalities. Maternal diabetes mellitus has been mainly involved as the causal agent. We report the second case of FFS with anomalies in the central nervous system (CNS) including corticosubcortical atrophy, colpocephaly, partial agenesis of corpus callosum, hypoplasia of the falx cerebri and absent septum pellucidum. The psychomotor development has been normal. We propose that the CNS defects observed in these patients are part of the spectrum of abnormalities in the FFS.

  1. Renal sympathetic nervous system and the effects of denervation on renal arteries

    PubMed Central

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-01-01

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure. PMID:25228960

  2. Renal sympathetic nervous system and the effects of denervation on renal arteries.

    PubMed

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-08-26

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  3. Cnidarian Neurotoxic Peptides Affecting Central Nervous System Targets.

    PubMed

    Lazcano-Pérez, Fernando; Hernández-Guzmán, Ulises; Sánchez-Rodríguez, Judith; Arreguín-Espinosa, Roberto

    2016-01-01

    Natural products from animal venoms have been used widely in the discovery of novel molecules with particular biological activities that enable their use as potential drug candidates. The phylum Cnidaria (jellyfish, sea anemones, corals zoanthids, hydrozoans, etc.) is the most ancient venomous phylum on earth. Its venoms are composed of a complex mixture of peptidic compounds with neurotoxic and cytolitic properties that have shown activity on mammalian systems despite the fact that they are naturally targeted against fish and invertebrate preys, mainly crustaceans. For this reason, cnidarian venoms are an interesting and vast source of molecules with a remarkable activity on central nervous system, targeting mainly voltage-gated ion channels, ASIC channels, and TRPV1 receptors. In this brief review, we list the amino acid sequences of most cnidarian neurotoxic peptides reported to date. Additionally, we propose the inclusion of a new type of voltage-gated sea anemone sodium channel toxins based on the most recent reports.

  4. Immunotherapeutics in Pediatric Autoimmune Central Nervous System Disease: Agents and Mechanisms.

    PubMed

    Nosadini, Margherita; Sartori, Stefano; Sharma, Suvasini; Dale, Russell C

    2017-08-01

    Beyond the major advances produced by careful clinical-radiological phenotyping and biomarker development in autoimmune central nervous system disorders, a comprehensive knowledge of the range of available immune therapies and a deeper understanding of their action should benefit therapeutic decision-making. This review discusses the agents used in neuroimmunology and their mechanisms of action. First-line treatments typically include corticosteroids, intravenous immunoglobulin, and plasmapheresis, while for severe disease second-line "induction" agents such as rituximab or cyclophosphamide are used. Steroid-sparing agents such as mycophenolate, azathioprine, or methotrexate are often used in potentially relapsing or corticosteroid-dependent diseases. Lessons from adult neuroimmunology and rheumatology could be translated into pediatric autoimmune central nervous system disease in the future, including the potential utility of monoclonal antibodies targeting lymphocytes, adhesion molecules for lymphocytic migration, cytokines or their receptors, or complement. Finally, many agents used in other fields have multiple mechanisms of action, including immunomodulation, with potential usefulness in neuroimmunology, such as antibiotics, psychotropic drugs, probiotics, gut health, and ketogenic diet. All currently accepted and future potential agents have adverse effects, which can be severe; therefore, a "risk-versus-benefit" determination should guide therapeutic decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A SOMATIC-MARKER THEORY OF ADDICTION

    PubMed Central

    Verdejo-García, Antonio; Bechara, Antoine

    2009-01-01

    Similar to patients with ventromedial prefrontal cortex (VMPC) lesions, substance abusers show altered decision-making, characterized by a tendency to choose the immediate reward, at the expense of negative future consequences. The somatic-marker model proposes that decision-making depends on neural substrates that regulate homeostasis, emotion and feeling. According to this model, there should be a link between alterations in processing emotions in substance abusers, and their impairments in decision-making. A growing evidence from neuroscientific studies indicate that core aspects of addiction may be explained in terms of abnormal emotional/homeostatic guidance of decision-making. Behavioural studies have revealed emotional processing and decision-making deficits in substance abusers. Neuroimaging studies have shown that altered decision-making in addiction is associated with abnormal functioning of a distributed neural network critical for the processing of emotional information, and the experience of “craving”, including the VMPC, the amygdala, the striatum, the anterior cingulate cortex, and the insular/somato-sensory cortices, as well as non-specific neurotransmitter systems that modulate activities of neural processes involved in decision-making. The aim of this paper is to review this growing evidence, and to examine the extent of which these studies support a somatic-marker theory of addiction. We conclude that there are at least two underlying types of dysfunctions where emotional signals (somatic-markers) turns in favor of immediate outcomes in addiction: (1) a hyperactivity in the amygdala or impulsive system, which exaggerates the rewarding impact of available incentives, and (2) hypoactivity in the prefrontal cortex or reflective system, which forecasts the long-term consequences of a given action. PMID:18722390

  6. Innate immune responses in central nervous system inflammation.

    PubMed

    Finsen, Bente; Owens, Trevor

    2011-12-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Extending a structural model of somatization to South Koreans: Cultural values, somatization tendency, and the presentation of depressive symptoms.

    PubMed

    Zhou, Xiaolu; Min, Seongho; Sun, Jiahong; Kim, Se Joo; Ahn, Joung-Sook; Peng, Yunshi; Noh, Samuel; Ryder, Andrew G

    2015-05-01

    Somatization refers to the tendency to emphasize somatic symptoms when experiencing a psychiatric disturbance. This tendency has been widely reported in patients from East Asian cultural contexts suffering from depression. Recent research in two Chinese samples have demonstrated that the local cultural script for depression, involving two aspects-the experience and expression of distress (EED) and conceptualization and communication of distress (CCD)-can be evoked to help explain somatization. Given the beliefs and practices broadly shared across Chinese and South Korean cultural contexts, the current study seeks to replicate this explanatory model in South Koreans. Our sample included 209 psychiatric outpatients from Seoul and Wonju, South Korea. Self-report questionnaires were used to assess somatization tendency, adherence to traditional values, and psychological and somatic symptoms of depression. Results from SEM showed that the EED and CCD factors of somatization tendency were differently associated with cultural values and somatic symptoms, replicating our previous findings in Chinese outpatients. The reliance on a brief self-report measure of somatization tendency, not originally designed to assess separate EED and CCD factors, highlights the need for measurement tools for the assessment of cultural scripts in cross-cultural depression research. The replication of the Chinese structural model of somatization in South Korea lends empirical support to the view that somatization can be understood as the consequence of specific cultural scripts. These scripts involve the experience and expression of distress as well as culturally meaningful ways in which this distress is conceptualized and communicated to others. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Primary central nervous system lymphoma mimicking ventriculitis].

    PubMed

    Yamamoto, Shiro; Nagano, Seiji; Shibata, Sumiya; Kunieda, Takeharu; Imai, Yukihiro; Kohara, Nobuo

    2013-01-01

    A 66-year-old man presented with deteriorated bradykinesia, gait disturbance, disorientation, and urinary incontinence for three weeks. Magnetic resonance imaging (MRI) showed dilatation of the ventricles. Cerebrospinal fluid (CSF) examination demonstrated lymphocytic pleocytosis, elevation of protein levels, and decreased of glucose levels. A gadolinium-enhanced MRI revealed lesions in the ventricular wall and choroid plexus, mimicking ventriculitis. No evidence of bacterial, fungal, mycobacterial, or viral infections were observed in the CSF. Flow cytometry of CSF showed predominance of CD20+, λ+ cells. PCR examination of CSF revealed positive IgH gene rearrangement, suggesting B cell lymphoma. Endoscopic brain biopsy showed diffuse large B cell lymphoma. As the patient had no evidence of lymphoma in the other organs, we made a diagnosed of primary central nervous system lymphoma (PCNSL). A limited intraventricular spread of PCNSL is rare but important as one of differential diagnosis of ventriculitis.

  9. [Antibiotic diffusion to central nervous system].

    PubMed

    Cabrera-Maqueda, J M; Fuentes Rumí, L; Valero López, G; Baidez Guerrero, A E; García Molina, E; Díaz Pérez, J; García-Vázquez, E

    2018-02-01

    Central nervous system (CNS) infections caused by pathogens with a reduced sensitivity to drugs are a therapeutic challenge. Transport of fluid and solutes is tightly controlled within CNS, where vasculature exhibits a blood-brain barrier (BBB).The entry of drugs, including antibiotics, into the cerebro-spinal fluid (CSF) is governed by molecular size, lipophilicity, plasma protein binding and their affinity to transport systems at the BBB. The ratio of the AUCCSF (Area under the curve in CSF)/AUCS (Area under the curve in serum) is the most accurate parameter to characterize drug penetration into the CSF. Linezolid, some fluoroquinolones and metronidazole get high CSF concentrations and are useful for treating susceptible pathogens. Some highly active antibiotic compounds with low BBB permeability can be directly administered into the ventricles together with concomitant intravenous therapy. The ideal antibiotic to treat CNS infections should be that with a small moderately lipophilic molecule, low plasma protein binding and low affinity to efflux pumps at BBB. Knowledge of the pharmacokinetics and pharmacodynamics of antibiotics at the BBB will assist to optimize antibiotic treatment in CNS infections. This article reviews the physicochemical properties of the main groups of antibiotics to assess which compounds are most promising for the treatment of CNS infections and how to use them in the daily clinical practice. © The Author 2018. Published by Sociedad Española de Quimioterapia.

  10. Somatic twist: a model for the evolution of decussation.

    PubMed

    Kinsbourne, Marcel

    2013-09-01

    In the chordate and vertebrate central nervous system, sensory and motor nerve tracts cross from one side to the other as they connect the brain with sensory receptors and motor neurons. These "decussations," crossings in the form of an X, relate each side of the brain to the opposite side of the body. The protochordates derive from an invertebrate ancestor, but no such contralateral arrangement occurs in any invertebrate phylum. No adaptive benefit of decussation has been established. What might explain the evolution of decussation? A brief review of relevant features of comparative morphology of invertebrates, chordates and vertebrates leads to an explanatory model of decussation. A "somatic twist model" of invertebrate-vertebrate transition accounts for decussations as byproducts of a more momentous change; the relocation of the neuraxis from the ventral to the dorsal aspect of the body. Evidence is presented that this inversion proceeded by means of a twisting of the body 180 degrees on its axis just behind its anterior pole. This rotation aligned the neuraxis with the dorsal head ganglia and brain and by twisting the nerve tracts it brought decussation in its wake. Decussation evolved as a byproduct of a genetically determined partial inversion of the body plan, which resulted in a 180 degree rotation posterior to the brain and oropharynx.

  11. [Personality and somatic disorders].

    PubMed

    Darves-Bornoz, J-M

    2018-06-08

    In the title of this text, by somatic disorders we mean those physical illnesses clearly related to a non-psychiatric medical field, frequently termed psychosomatic illnesses and somatoform disorders. For forty years, a trend of thought has focused with pertinence on the psychological peculiarities in patients with severe somatic diseases. Moreover, causality was often supposed in the regularly mentioned association between personality features and somatoform disorders. However, the revival of the study of the earlier field of relationships between mind and body by Briquet, Charcot, Janet and Freud in his first period has led to the reassessment of the meaning of these observations. This reexamination is marked out by several assertions. Two of them work as preliminaries to argumentation: 1. existential wounds may produce long-lasting personality alterations; 2. existential wounds may produce somatoform disorders. These phenomena have been rediscovered over the last few years among assaulted subjects as well as war veterans in whom a frequent occurrence of somatizations has been, in addition, closely linked to the incidence of behavior or personality disorders. Two theses then emerge: 1. somatic diseases may produce long-lasting personality alterations; 2. until now no premorbid personality univocally predisposing to somatic diseases could be found. Indeed, during the 1980s a growing body of negative results coming from retrospective and prospective studies as well as anatomical comparisons have accumulated upon the potential role of certain personality factors in the incidence of somatic illnesses. This dialectic leads to the connection of two corollary assertions: 1. "pensée opératoire" and "alexithymia" in patients with somatic diseases may represent only an effect of the announcement or chronicity of the organic disease; 2. the old "dissociative hysteria" with somatic manifestations finds its substratum in existential wounds and not in pre-trauma personality

  12. Use of pupil size to determine the effect of electromagnetic acupuncture on activation level of the autonomic nervous system.

    PubMed

    Kim, Soo-Byeong; Choi, Woo-Hyuk; Liu, Wen-Xue; Lee, Na-Ra; Shin, Tae-Min; Lee, Yong-Heum

    2014-06-01

    Magnetic fields are widely considered as a method of treatment to increase the therapeutic effect when applied to acupoints. Hence, this study proposes a new method which creates significant stimulation of acupoints by using weak magnetic fields. We conducted this experiment in order to confirm the effect on the activation level of the autonomic nervous system by measuring pupil sizes in cases of stimulation by using manual acupuncture and electromagnetic acupuncture (EMA) at BL15. We selected 30 Hz of biphasic wave form with 570.1 Gauss. To confirm the biopotential by the magnetic flux density occurring in EMA that affected the activation of the autonomic nervous system, we observed the biopotential induced at the upper and the mid left and right trapezius. We observed a significant decrease in pupil size only in the EMA group (p < 0.05), thus confirming that EMA decreased the pupil size through activation of the parasympathetic nerve in the autonomic nervous system. Moreover, we confirmed that the amplitude of the biopotential which was caused by 570.1 Gauss was higher than ±20 μA. Thus, we can conclude that EMA treatment successfully activates the parasympathetic nerve in the autonomic nervous system by inducing a biotransformation by the induced biopotential. Copyright © 2014. Published by Elsevier B.V.

  13. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    PubMed

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  14. Connexin32 expression in central and peripheral nervous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H.

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show thatmore » Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.« less

  15. DEVELOPMENT AND MATURATION OF THE NERVOUS SYSTEM: NEUROBIOLOGICAL BASIS OF VULNERABILITY TO ENVIRONMENTAL CONTAMINANTS.

    EPA Science Inventory

    The susceptibility of the developing nervous system to damage following exposure to environmental contaminants is believed to be based upon the critical nature of the organizational events that occur in both a regionally- and temporally-dependent manner. The age-related susceptib...

  16. Central Nervous System Control of Voice and Swallowing

    PubMed Central

    Ludlow, Christy L.

    2015-01-01

    This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and more integrative. For voice production, a separation of the non-human vocalization system from the human learned voice production system has been posited based primarily on studies of non-human primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production has shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech, involve a common integrative system. On the other hand, recent studies of non-human primates have provided evidence of some cortical activity during vocalization and cortical changes with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and non-human primates. PMID:26241238

  17. Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.

    PubMed

    Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying

    2013-06-01

    The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.

  18. Axial mesendoderm refines rostrocaudal pattern in the chick nervous system.

    PubMed

    Rowan, A M; Stern, C D; Storey, K G

    1999-07-01

    There has long been controversy concerning the role of the axial mesoderm in the induction and rostrocaudal patterning of the vertebrate nervous system. Here we investigate the neural inducing and regionalising properties of defined rostrocaudal regions of head process/prospective notochord in the chick embryo by juxtaposing these tissues with extraembryonic epiblast or neural plate explants. We localise neural inducing signals to the emerging head process and using a large panel of region-specific neural markers, show that different rostrocaudal levels of the head process derived from headfold stage embryos can induce discrete regions of the central nervous system. However, we also find that rostral and caudal head process do not induce expression of any of these molecular markers in explants of the neural plate. During normal development the head process emerges beneath previously induced neural plate, which we show has already acquired some rostrocaudal character. Our findings therefore indicate that discrete regions of axial mesendoderm at headfold stages are not normally responsible for the establishment of rostrocaudal pattern in the neural plate. Strikingly however, we do find that caudal head process inhibits expression of rostral genes in neural plate explants. These findings indicate that despite the ability to induce specific rostrocaudal regions of the CNS de novo, signals provided by the discrete regions of axial mesendoderm do not appear to establish regional differences, but rather refine the rostrocaudal character of overlying neuroepithelium.

  19. [Components of plastic disrupt the function of the nervous system].

    PubMed

    Szychowski, Konrad Andrzej; Wójtowicz, Anna Katarzyna

    2013-05-27

    Development of the chemical industry leads to the development of new chemical compounds, which naturally do not exist in the environment. These chemicals are used to reduce flammability, increase plasticity, or improve solubility of other substances. Many of these compounds, which are components of plastic, the new generation of cosmetics, medical devices, food packaging and other everyday products, are easily released into the environment. Many studies have shown that a major lipophilicity characterizes substances such as phthalates, BPA, TBBPA and PCBs. This feature allows them to easily penetrate into living cells, accumulate in the tissues and the organs, and affect human and animal health. Due to the chemical structures, these compounds are able to mimic some endogenous hormones such as estradiol and to disrupt the hormone homeostasis. They can also easily pass the placental barrier and the blood-brain barrier. As numerous studies have shown, these chemicals disturb the proper functions of the nervous system from the earliest moments of life. It has been proven that these compounds affect neurogenesis as well as the synaptic transmission process. As a consequence, they interfere with the formation of the sex of the brain, as well as with the learning processes, memory and behavior. Additionally, the cytotoxic and pro-apoptotic effect may cause neurodegenerative diseases. This article presents the current state of knowledge about the effects of phthalates, BPA, TBBPA, and PCBs on the nervous system.

  20. [Management of somatization in depression].

    PubMed

    Azorin, J M

    1995-12-01

    Management of somatization in depression depends on understanding its mechanisms. This kind of somatization is the product of both specific and nonspecific factors which interact to create a chronic and hypocondriacal picture. Biological treatment looks like treatment of chronic depression. Antidepressants with anxiolytic properties have a place of choice. Psychotherapy is frequently used, particularly cognitive behavior therapy which allows the reattribution of somatic symptoms to psychological events. General practitioners need to be trained to these techniques as they are, more frequently than psychiatrists, involved in the management of these patients.