Science.gov

Sample records for nested-multiplex pcr detection

  1. A novel nested multiplex polymerase chain reaction (PCR) assay for differential detection of Entamoeba histolytica, E. moshkovskii and E. dispar DNA in stool samples

    PubMed Central

    Khairnar, Krishna; Parija, Subhash C

    2007-01-01

    Background E. histolytica, a pathogenic amoeba, is indistinguishable in its cyst and trophozoite stages from those of non-pathogenic E. moshkovskii and E. dispar by light microscopy. We have developed a nested multiplex PCR targeting a 16S-like rRNA gene for differential detection of all the three morphologically similar forms of E. histolytica, E. moshkovskii and E. dispar simultaneously in stool samples. Results The species specific product size for E. histolytica, E. moshkovskii and E. dispar was 439, 553 and 174 bp respectively, which was clearly different for all the three Entamoeba species. The nested multiplex PCR showed a sensitivity of 94% and specificity of 100% for the demonstration of E. histolytica, E. moshkovskii and E. dispar DNA in stool samples. The PCR was positive for E. histolytica, E. moshkovskii and E. dispar in a total of 190 out of 202 stool specimens (94% sensitive) that were positive for E. histolytica/E. dispar/E. moshkovskii by examination of stool by microscopy and/or culture. All the 35 negative control stool samples that were negative for E. histolytica/E. dispar/E. moshkovskii by microscopy and culture were also found negative by the nested multiplex PCR (100% specific). The result from the study shows that only 34.6% of the patient stool samples that were positive for E. histolytica/E. dispar/E. moshkovskii by examination of stool by microscopy and/or culture, were actually positive for pathogenic E. histolytica and the remaining majority of the stool samples were positive for non-pathogenic E. dispar or E. moshkovskii as demonstrated by the use of nested multiplex PCR. Conclusion The present study reports a new nested multiplex PCR strategy for species specific detection and differentiation of E. histolytica, E. dispar and E. moshkovskii DNA in stool specimens. The test is highly specific, sensitive and also rapid, providing the results within 12 hours of receiving stool specimens. PMID:17524135

  2. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India

    PubMed Central

    Dinoop, K.P.; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R.P.; Narayanan, P.

    2016-01-01

    Background & objectives: Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Methods: Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. Results: In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated (P<0.0001). The nested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Interpretation & conclusions: Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the

  3. Detection and Typing of Human Papilloma Viruses by Nested Multiplex Polymerase Chain Reaction Assay in Cervical Cancer

    PubMed Central

    Jalal Kiani, Seyed; Shatizadeh Malekshahi, Somayeh; Yousefi Ghalejoogh, Zohreh; Ghavvami, Nastaran; Shafiei Jandaghi, Nazanin Zahra; Shahsiah, Reza; Jahanzad, Isa; Yavarian, Jila

    2015-01-01

    Background: Cervical cancer is the leading cause of death from cancer in under-developed countries. Human papilloma virus (HPV) 16 and 18 are the most prevalent types associated with carcinogenesis in the cervix. Conventional Polymerase Chain Reaction (PCR), type-specific and consensus primer-based PCR followed by sequencing, Restriction Fragment Length Polymorphism (RFLP) or hybridization by specific probes are common methods for HPV detection and typing. In addition, some researchers have developed a multiplex PCR for simultaneous detection and typing of different HPVs. Objectives: The aim of the present study was to investigate the prevalence of HPV infection and its types in cervical Squamous Cell Carcinoma (SCC) using the Nested Multiplex PCR (NMPCR) assay. Patients and Methods: Sixty-six samples with histologically confirmed SCC were evaluated. Total DNA was isolated by phenol–chloroform extraction and ethanol precipitation. Nested multiplex PCR was performed with first-round PCR by GP-E6/E7 consensus primers for amplification of the genomic DNA of all known mucosal HPV genotypes and second-round PCR by type-specific multiplex PCR primer cocktails. Results: Human papilloma virus infection was detected in 78.8% of samples, with the highest prevalence of HPV 16 (60.6%) while concurrent infections with two types was detected in 10.6%. Conclusions: The NMPCR assay is more convenient and easy for analysis of results, which is important for fast diagnosis and patient management, in a type-specific manner. PMID:26865940

  4. Nested multiplex PCR--a feasible technique to study partial community of arbuscular mycorrhizal fungi in field-growing plant root.

    PubMed

    Dong, Xiuli; Zhao, Bin

    2006-08-01

    Plant can be infected by different arbuscular mycorrhizal fungi, but little is known about the interaction between them within root tissues mainly because different species cannot be distinguished on the basis of fungal structure. Accurate species identification of Arbuscular mycorrhizal fungi (AMF) colonized in plant roots is the cornerstone of mycorrhizal study, yet this fundamental step is impossible through its morphological character alone. For accurate, rapid and inexpensive detection of partial mycorrhizal fungal community in plant roots, a nested multiplex polymerase chain reaction (PCR) was developed in this study. Five discriminating primers designed based on the variable region of the 5' end of the large ribosomal subunit were used in the experiment for testing their specificity and the sensitivity in nested PCR by using spores from Glomus mosseae (BEG12), Glomus intraradices (BEG141), Scutellospora castaneae (BEG1) and two unidentified Glomus sp. HAUO3 and HAUO4. The feasibility assay of nested multiplex PCR was conducted by use of spore mixture, Astragalus sinicum roots co-inoculated with 4 species of arbuscular mycorrhizal fungi from pot cultures and 15 different field-growing plant roots respectively after analyses of the compatibility of primers. The result indicated that the sensitivity was in the same range as that of the corresponding single PCR reaction. Overall accuracy was 95%. The efficiency and sensitivity of this multiplex PCR procedure provided a rapid and easy way to simultaneously detect several of arbuscular mycorrhiza fungal species in a same plant root system. PMID:16989281

  5. Identification of root rot fungi in nursery seedlings by nested multiplex PCR.

    PubMed Central

    Hamelin, R C; Bérubé, P; Gignac, M; Bourassa, M

    1996-01-01

    The internal transcribed spacer (ITS) of the ribosomal DNA (rDNA) subunit repeat was sequenced in 12 isolates of Cylindrocladium floridanum and 11 isolates of Cylindrocarpon destructans. Sequences were aligned and compared with ITS sequences of other fungi in GenBank. Some intraspecific variability was present within our collections of C. destructans but not in C. floridanum. Three ITS variants were identified within C. destructans, but there was no apparent association between ITS variants and host or geographic origin. Two internal primers were synthesized for the specific amplification of portions of the ITS for C. floridanum, and two primers were designed to amplify all three variants of C. destructans. The species-specific primers amplified PCR products of the expected length when tested with cultures of C, destructans and C. floridanum from white spruce, black spruce, Norway spruce, red spruce, jack pine, red pine, and black walnut from eight nurseries and three plantations in Quebec. No amplification resulted from PCR reactions on fungal DNA from 26 common contaminants of conifer roots. For amplifications directly from infected tissues, a nested primer PCR using two rounds of amplification was combined with multiplex PCR approach resulting in the amplification of two different species-specific PCR fragments in the same reaction. First, the entire ITS was amplified with one universal primer and a second primer specific to fungi; a second round of amplification was carried out with species-specific primers that amplified a 400-bp PCR product from C. destructans and a 328-bp product from C. floridanum. The species-specific fragments were amplified directly from infected roots from which one or the two fungi had been isolated. PMID:8899993

  6. Digital PCR for detection of citrus pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...

  7. Transgene Detection by Digital Droplet PCR

    PubMed Central

    Moser, Dirk A.; Braga, Luca; Raso, Andrea; Zacchigna, Serena; Giacca, Mauro; Simon, Perikles

    2014-01-01

    Somatic gene therapy is a promising tool for the treatment of severe diseases. Because of its abuse potential for performance enhancement in sports, the World Anti-Doping Agency (WADA) included the term ‘gene doping’ in the official list of banned substances and methods in 2004. Several nested PCR or qPCR-based strategies have been proposed that aim at detecting long-term presence of transgene in blood, but these strategies are hampered by technical limitations. We developed a digital droplet PCR (ddPCR) protocol for Insulin-Like Growth Factor 1 (IGF1) detection and demonstrated its applicability monitoring 6 mice injected into skeletal muscle with AAV9-IGF1 elements and 2 controls over a 33-day period. A duplex ddPCR protocol for simultaneous detection of Insulin-Like Growth Factor 1 (IGF1) and Erythropoietin (EPO) transgenic elements was created. A new DNA extraction procedure with target-orientated usage of restriction enzymes including on-column DNA-digestion was established. In vivo data revealed that IGF1 transgenic elements could be reliably detected for a 33-day period in DNA extracted from whole blood. In vitro data indicated feasibility of IGF1 and EPO detection by duplex ddPCR with high reliability and sensitivity. On-column DNA-digestion allowed for significantly improved target detection in downstream PCR-based approaches. As ddPCR provides absolute quantification, it ensures excellent day-to-day reproducibility. Therefore, we expect this technique to be used in diagnosing and monitoring of viral and bacterial infection, in detecting mutated DNA sequences as well as profiling for the presence of foreign genetic material in elite athletes in the future. PMID:25375130

  8. Propidium monoazide reverse transcriptase PCR and RT-qPCR for detecting infectious enterovirus and norovirus.

    PubMed

    Karim, Mohammad R; Fout, G Shay; Johnson, Clifford H; White, Karen M; Parshionikar, Sandhya U

    2015-07-01

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the public health significance of positive findings are limited. In this study, PMA RT-PCR and RT-qPCR assays were evaluated for selective detection of infectious poliovirus, murine norovirus (MNV-1), and Norwalk virus. Viruses were inactivated using heat, chlorine, and ultraviolet light (UV). Infectious and non-infectious viruses were treated with PMA before RT-PCR and RT-qPCR. PMA RT-PCR was able to differentiate selectively between infectious and heat and chlorine inactivated poliovirus. PMA RT-PCR was able to differentiate selectively between infectious and noninfectious murine norovirus only when inactivated by chlorine. However, PMA RT-PCR could not differentiate infectious Norwalk virus from virus particles rendered non-infectious by any treatment. PMA RT-PCR assay was not able to differentiate between infectious and UV inactivated viruses suggesting that viral capsid damage may be necessary for PMA to enter and bind to the viral genome. PMA RT-PCR on naked MNV-1 and Norwalk virus RNA suggest that PMA RT-PCR can be used to detect intact, potentially infectious MNV-1 and Norwalk viruses and can be used to exclude the detection of free viral RNA by PCR assay. PMID:25796356

  9. First case of detection of Plasmodium knowlesi in Spain by Real Time PCR in a traveller from Southeast Asia.

    PubMed

    Ta, Tang Thuy-Huong; Salas, Ana; Ali-Tammam, Marwa; Martínez, María Del Carmen; Lanza, Marta; Arroyo, Eduardo; Rubio, Jose Miguel

    2010-01-01

    Previously, Plasmodium knowlesi was not considered as a species of Plasmodium that could cause malaria in human beings, as it is parasite of long-tailed (Macaca fascicularis) and pig-tailed (Macaca nemestrina) macaques found in Southeast Asia. A case of infection by P. knowlesi is described in a Spanish traveller, who came back to Spain with daily fever after his last overseas travel, which was a six-month holiday in forested areas of Southeast Asia between 2008 and 2009. His P. knowlesi infection was detected by multiplex Real time quantitative PCR and confirmed by sequencing the amplified fragment. Using nested multiplex malaria PCR (reference method in Spain) and a rapid diagnostic test, the P. knowlesi infection was negative. This patient was discharged and asymptomatic when the positive result to P. knowlesi was reported. Prior to this case, there have been two more reports of European travellers with malaria caused by P. knowlesi, a Finnish man who travelled to Peninsular Malaysia during four weeks in March 2007, and a Swedish man who did a short visit to Malaysian Borneo in October 2006. Taken together with this report of P. knowlesi infection in a Spanish traveller returning from Southeast Asia, this is the third case of P. knowlesi infection in Europe, indicating that this simian parasite can infect visitors to endemic areas in Southeast Asia. This last European case is quite surprising, given that it is an untreated-symptomatic P. knowlesi in human, in contrast to what is currently known about P. knowlesi infection. Most previous reports of human P. knowlesi malaria infections were in adults, often with symptoms and relatively high parasite densities, up to the recent report in Ninh Thuan province, located in the southern part of central Vietnam, inhabited mainly by the Ra-glai ethnic minority, in which all P. knowlesi infections were asymptomatic, co-infected with P. malariae, with low parasite densities and two of the three identified cases were very

  10. Propidium monoazide reverse transcription PCR and RT-qPCR for detecting infectious enterovirus and norovirus

    EPA Science Inventory

    Presently there is no established cell line or small animal model that allows for the detection of infectious human norovirus. Current methods based on RT-PCR and RT-qPCR detect both infectious and non-infectious virus and thus the conclusions that may be drawn regarding the publ...

  11. Detection of virulence genes of Clostridium difficile by multiplex PCR.

    PubMed

    Antikainen, Jenni; Pasanen, Tanja; Mero, Sointu; Tarkka, Eveliina; Kirveskari, Juha; Kotila, Saara; Mentula, Silja; Könönen, Eija; Virolainen-Julkunen, Anni-Riitta; Vaara, Martti; Tissari, Päivi

    2009-08-01

    Clostridium difficile strains belonging to the PCR ribotype 027, pulse-field gel electrophoresis (PFGE) type NAP1, toxinotype III and restriction endonuclease analysis group BI harbouring mutations in the tcdC gene and possessing binary toxin components A and B have been described to cause epidemics with increased morbidity and mortality. In the present study we developed a conventional multiplex PCR designed to detect selected virulence associated markers of the hypervirulent C. difficile PCR ribotype 027. The multiplex PCR assay detected the major toxins A and B, binary toxin components A and B as well as a possible deletion in the tcdC gene: a characteristic pattern of amplification products for the PCR ribotype 027 strains was detected. This rather simple method was specific for the screening of this hypervirulent C. difficile strain. The correlation between the multiplex PCR and PCR ribotyping methods was excellent. The sensitivity and specificity were 100% in our epidemiological situation. In conclusion, this multiplex PCR was found useful in the preliminary screening for the hypervirulent C. difficile PCR ribotype 027. PMID:19664132

  12. IDH1 mutation detection by droplet digital PCR in glioma.

    PubMed

    Wang, Jing; Zhao, Yi-ying; Li, Jian-feng; Guo, Cheng-cheng; Chen, Fu-rong; Su, Hong-kai; Zhao, Hua-fu; Long, Ya-kang; Shao, Jian-yong; To, Shing shun Tony; Chen, Zhong-ping

    2015-11-24

    Glioma is the most frequent central nervous system tumor in adults. The overall survival of glioma patients is disappointing, mostly due to the poor prognosis of glioblastoma (Grade IV glioma). Isocitrate dehydrogenase (IDH) is a key factor in metabolism and catalyzes the oxidative decarboxylation of isocitrate. Mutations in IDH genes are observed in over 70% of low-grade gliomas and some cases of glioblastoma. As the most frequent mutation, IDH1(R132H) has been served as a predictive marker of glioma patients. The recently developed droplet digital PCR (ddPCR) technique generates a large amount of nanoliter-sized droplets, each of which carries out a PCR reaction on one template. Therefore, ddPCR provides high precision and absolute quantification of the nucleic acid target, with wide applications for both research and clinical diagnosis. In the current study, we collected 62 glioma tissue samples (Grade II to IV) and detected IDH1 mutations by Sanger direct sequencing, ddPCR, and quantitative real-time PCR (qRT-PCR). With the results from Sanger direct sequencing as the standard, the characteristics of ddPCR were compared with qRT-PCR. The data indicated that ddPCR was much more sensitive and much easier to interpret than qRT-PCR. Thus, we demonstrated that ddPCR is a reliable and sensitive method for screening the IDH mutation. Therefore, ddPCR is able to applied clinically in predicting patient prognosis and selecting effective therapeutic strategies. Our data also supported that the prognosis of Grade II and III glioma was better in patients with an IDH mutation than in those without mutation. PMID:26485760

  13. IDH1 mutation detection by droplet digital PCR in glioma

    PubMed Central

    Wang, Jing; Zhao, Yi-ying; Li, Jian-feng; Guo, Cheng-cheng; Chen, Fu-rong; Su, Hong-kai; Zhao, Hua-fu; Long, Ya-kang; Shao, Jian-yong; Tony To, Shing-shun; Chen, Zhong-ping

    2015-01-01

    Glioma is the most frequent central nervous system tumor in adults. The overall survival of glioma patients is disappointing, mostly due to the poor prognosis of glioblastoma (Grade IV glioma). Isocitrate dehydrogenase (IDH) is a key factor in metabolism and catalyzes the oxidative decarboxylation of isocitrate. Mutations in IDH genes are observed in over 70% of low-grade gliomas and some cases of glioblastoma. As the most frequent mutation, IDH1(R132H) has been served as a predictive marker of glioma patients. The recently developed droplet digital PCR (ddPCR) technique generates a large amount of nanoliter-sized droplets, each of which carries out a PCR reaction on one template. Therefore, ddPCR provides high precision and absolute quantification of the nucleic acid target, with wide applications for both research and clinical diagnosis. In the current study, we collected 62 glioma tissue samples (Grade II to IV) and detected IDH1 mutations by Sanger direct sequencing, ddPCR, and quantitative real-time PCR (qRT-PCR). With the results from Sanger direct sequencing as the standard, the characteristics of ddPCR were compared with qRT-PCR. The data indicated that ddPCR was much more sensitive and much easier to interpret than qRT-PCR. Thus, we demonstrated that ddPCR is a reliable and sensitive method for screening the IDH mutation. Therefore, ddPCR is able to applied clinically in predicting patient prognosis and selecting effective therapeutic strategies. Our data also supported that the prognosis of Grade II and III glioma was better in patients with an IDH mutation than in those without mutation. PMID:26485760

  14. PCR assays for detection of Baylisascaris procyonis eggs and larvae.

    PubMed

    Dangoudoubiyam, Sriveny; Vemulapalli, Ramesh; Kazacos, Kevin R

    2009-06-01

    The objective of this study was to develop polymerase chain reaction (PCR) assays for detection of Baylisascaris procyonis eggs and larvae in fecal, environmental, and tissue samples. We have optimized conventional and real-time PCR assays for B. procyonis using the mitochondrial cytochrome oxidase 2 gene as the target for amplification. The lower limit of detection of the parasite genomic DNA was 10 pg in the conventional PCR and 100 fg in the real-time PCR. In both PCR assays, specific amplification of a 146 bp product was achieved with DNA extracted from a single in vitro hatched B. procyonis larva and also from canine fecal samples spiked with as few as 20 unembryonated B. procyonis eggs per gram of feces. The PCR assays were successfully used for detection of B. procyonis eggs and larvae in fecal, environmental, and tissue samples. No DNA amplification was seen when the genomic DNA of related ascarids (including B. transfuga) and a hookworm was used as template in the PCR; however, amplification was seen with the very closely related B. columnaris. PMID:19090651

  15. Simultaneous Detection of Ricin and Abrin DNA by Real-Time PCR (qPCR)

    PubMed Central

    Felder, Eva; Mossbrugger, Ilona; Lange, Mirko; Wölfel, Roman

    2012-01-01

    Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR) assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5′-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix. PMID:23105972

  16. Quantitative Detection of Spiroplasma Citri by Real Time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop an accurate and rapid method to detect Spiroplasma citri, the causal agent of citrus stubborn disease for use in epidemiology studies. Quantitative real-time PCR was developed for detection of S. citri. Two sets of primers based on sequences from the P58 putative adhesin ...

  17. UTILIZATION OF PCR TO DETECT SALMONELLA ON TURKEY CARCASSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The risk which is presented by food-borne pathogens to the consumer demonstrates the need to utilize rapid methods for the detection of these microbes. This study compared conventional microbiology with the application of PCR assays to detect Salmonella on turkey carcasses at a processing plant in ...

  18. Detection of Treponema pallidum in the vitreous by PCR

    PubMed Central

    Müller, M; Ewert, I; Hansmann, F; Tiemann, C; Hagedorn, H J; Solbach, W; Roider, J; Nölle, B; Laqua, H; Hoerauf, H

    2007-01-01

    Background Ocular involvement of syphilis still poses a clinical challenge due to the chameleonic behaviour of the disease. As the serodiagnosis has significant limitations, the direct detection of Treponema pallidum (TP) in the vitreous represents a desirable diagnostic tool. Methods Real‐time polymerase chain reaction (PCR) for the detection of TP was applied in diagnostic vitrectomies of two patients with acute chorioretinitis. Qualitative verification of TP by real‐time PCR and melting point analysis according to a modified protocol was ruled out. Patients underwent complete ophthalmological examination with fundus photographs, fluorescein angiography, serological examination, antibiotic treatment and follow‐up. Results In two cases of acute chorioretinitis of unknown origin, real‐time PCR of vitreous specimens of both patients provided evidence of TP and was 100% specific. Initial diagnosis of presumed viral retinitis was ruled out by PCR of vitreous specimen. Patients were treated with systemic antibiotics and showed prompt improvement in visual function and resolution of fundus lesions. Conclusions With real‐time PCR, detection of TP in the vitreous was possible and delivered a sensitive, quick and inexpensive answer to a disease rather difficult to assess. In cases of acute chorioretinitis, the use of PCR‐based assays of vitreous specimens in the diagnostic evaluation of patients is advisable. Although syphilitic chorioretinitis is a rare disease, PCR should include search for TP, as diagnostic dilemmas prolong definitive treatment in a sight‐threatening disease. PMID:17108014

  19. Sensitive detection of sample interference in environmental qPCR.

    PubMed

    Green, Hyatt C; Field, Katharine G

    2012-06-15

    Sample interference in environmental applications of quantitative PCR (qPCR) can prevent accurate estimations of molecular markers in the environment. We developed a spike-and-recovery approach using a mutant strain of Escherichia coli that contains a chromosomal insertion of a mutant GFP gene. The method was tested in water samples by separately reducing extraction efficiency or adding humic acids and ethanol, compounds that often contaminate environmental DNA extracts, and analyzing qPCR amplification of the spiked E. coli control and human fecal Bacteroides markers (HF183 and HF134). This approach, coupled with previously developed kinetic outlier detection (KOD) methods, allowed sensitive detection of PCR inhibition at much lower inhibitor concentrations than alternative approaches using Cq values or amplification efficiencies. Although HF183 was more sensitive to the effects of qPCR inhibitors than the E. coli control assay, KOD methods correctly identified inhibition of both control and HF183 assays in samples containing as little as 0.1 ng humic acids per reaction or 5% ethanol. Because sigmoidal modeling methods allow distinction of qPCR inhibition from poor DNA recovery, we were able to simultaneously identify qPCR-inhibited reactions and estimate recovery of nucleic acids in environmental samples using a single control assay. Since qPCR is currently used to estimate important water quality parameters that have serious economic and human health outcomes, these results are timely. While we demonstrate the methods in the context of water quality regulation, they will be useful in all areas of environmental research that use qPCR. PMID:22560896

  20. Detection of Treponema pallidum by a sensitive reverse transcriptase PCR.

    PubMed Central

    Centurion-Lara, A; Castro, C; Shaffer, J M; Van Voorhis, W C; Marra, C M; Lukehart, S A

    1997-01-01

    Syphilis is diagnosed by serologic testing or by identification of the causative agent, Treponema pallidum. The bacterium has historically been detected in clinical specimens by dark-field microscopy, immunostaining with polyclonal or monoclonal antibodies, or the rabbit inoculation test (RIT). RIT is considered to be very sensitive and specific, although it is available only in research settings and is not clinically useful due to the length of time required to obtain a result. In recent years, several PCR methods have been developed for the detection of T. pallidum, but none of these has shown a clear advantage in sensitivity over RIT. We have developed a specific and highly sensitive reverse transcriptase PCR (RT-PCR) that targets a 366 bp region of the 16S rRNA of T. pallidum. This RT-PCR can detect a single organism by Southern analysis when whole organisms are diluted and 10(-2) to 10(-3) T. pallidum organisms when RNA equivalents are used to make cDNA. The test was demonstrated to detect 10(-2) T. pallidum RNA equivalents in cerebrospinal fluid. Twenty different strains of T. pallidum, isolated from cerebrospinal fluids, aqueous humor, blood, and chancres, were shown to be detectable by this test. This efficient and sensitive technique could be more useful than existing methods for detecting very low numbers of organisms in clinical samples. PMID:9163442

  1. Ultrasensitive Antibody Detection by Agglutination-PCR (ADAP)

    PubMed Central

    2016-01-01

    Antibodies are widely used biomarkers for the diagnosis of many diseases. Assays based on solid-phase immobilization of antigens comprise the majority of clinical platforms for antibody detection, but can be undermined by antigen denaturation and epitope masking. These technological hurdles are especially troublesome in detecting antibodies that bind nonlinear or conformational epitopes, such as anti-insulin antibodies in type 1 diabetes patients and anti-thyroglobulin antibodies associated with thyroid cancers. Radioimmunoassay remains the gold standard for these challenging antibody biomarkers, but the limited multiplexability and reliance on hazardous radioactive reagents have prevented their use outside specialized testing facilities. Here we present an ultrasensitive solution-phase method for detecting antibodies, termed antibody detection by agglutination-PCR (ADAP). Antibodies bind to and agglutinate synthetic antigen–DNA conjugates, enabling ligation of the DNA strands and subsequent quantification by qPCR. ADAP detects zepto- to attomoles of antibodies in 2 μL of sample with a dynamic range spanning 5–6 orders of magnitude. Using ADAP, we detected anti-thyroglobulin autoantibodies from human patient plasma with a 1000-fold increased sensitivity over an FDA-approved radioimmunoassay. Finally, we demonstrate the multiplexability of ADAP by simultaneously detecting multiple antibodies in one experiment. ADAP’s combination of simplicity, sensitivity, broad dynamic range, multiplexability, and use of standard PCR protocols creates new opportunities for the discovery and detection of antibody biomarkers. PMID:27064772

  2. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri.

    PubMed

    Zhao, Yun; Xia, Qingyan; Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  3. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri

    PubMed Central

    Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  4. Simultaneous multiplex PCR detection of seven cucurbit-infecting viruses.

    PubMed

    Kwon, Ji Yeon; Hong, Jin Sung; Kim, Min Jea; Choi, Sun Hee; Min, Byeong Eun; Song, Eun Gyeong; Kim, Hyun Hee; Ryu, Ki Hyun

    2014-09-01

    Two multiplex polymerase chain reaction (PCR) systems using dual priming oligonucleotide (DPO) primers were developed for the simultaneous detection of seven cucurbit-infecting viruses. One system allows for the detection of papaya ringspot virus, watermelon mosaic virus, and zucchini yellow mosaic virus, whereas the other permits the detection of cucumber green mottle mosaic virus, cucumber fruit mottle mosaic virus, kyuri green mottle mosaic virus, and zucchini green mottle mosaic virus. Viral species-specific DPO primers developed in this study detected as little as 10 fg/μl of viral RNA under monoplex conditions and 10 pg/μl of viral RNA under multiplex conditions. Multiplex PCR using the DPO primer sets was capable of amplifying viral genes at annealing temperatures ranging from 53 °C to 63 °C. Whereas the use of conventional primers gave rise to non-specific bands, the DPO primers detected target viral genes in the absence of non-specific amplification. When these DPO multiplex primer sets were applied to virus-infected cucurbit samples obtained in the field, multiple infection as well as single infection was accurately identified. This novel approach could also detect multiple viruses in infected seeds. The reliability of multiplex PCR systems using DPO primers for plant virus detection is discussed. PMID:24937806

  5. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  6. PCR detection of Helicobacter pylori in clinical samples.

    PubMed

    Rimbara, Emiko; Sasatsu, Masanori; Graham, David Y

    2013-01-01

    Helicobacter pylori is an important pathogen whose primary niche is the human stomach. H. pylori is etiologically associated with gastric inflammation (gastritis), peptic ulcer disease, and gastric cancer. Both noninvasive (e.g., urea breath and stool antigen tests) and invasive (gastric biopsy for histology, culture, or PCR) tests are used for diagnosis. PCR detection of H. pylori has been reported using a variety of clinical samples including gastric biopsy, gastric juice, saliva, dental plaque, and stools as well as environmental samples. Whenever possibly, noninvasive tests are preferred over invasive tests. H. pylori are excreted in the stool. Culture from stool is variable whereas stool antigen testing is widely used. Stool consists of a complicated mixture of commensal bacteria and chemicals and often includes inhibitors of PCR. Nevertheless, simple extraction methods are available to efficiently extract DNA from human stools and nested-PCR targeting the 23S rRNA gene have proven to be highly sensitive for the detection of H. pylori. Detection of clarithromycin susceptibility/resistance is important clinically and the mutation of the 23S rRNA gene responsible for resistance can also be detected using stool. This described method can be modified for other clinical samples such as gastric juice or biopsy material. PMID:23104297

  7. Detection of carbapenemases in Enterobacteriaceae by a commercial multiplex PCR.

    PubMed

    Kaase, Martin; Szabados, Florian; Wassill, Lars; Gatermann, Sören G

    2012-09-01

    A commercial multiplex PCR (hyplex SuperBug ID) was tested with a collection of 132 clinical Enterobacteriaceae strains producing different carbapenemases. The sensitivity for the detection of KPC-, VIM-, NDM-, and OXA-48-encoding genes was 100%, whereas two IMP variants were missed. PMID:22785190

  8. Detection of viable Cryptosporidium parvum oocysts by PCR.

    PubMed Central

    Wagner-Wiening, C; Kimmig, P

    1995-01-01

    PCR was used to detect and specifically identify a gene fragment from Cryptosporidium parvum. An 873-bp region of a 2,359-bp DNA fragment encoding a repetitive oocyst protein of C. parvum was shown to be specifically amplified in C. parvum. An excystation protocol before DNA extraction allowed the differentiation between live and dead Cryptosporidium parvum oocysts. PMID:8534121

  9. Multiplex PCR Tests for Detection of Pathogens Associated with Gastroenteritis

    PubMed Central

    Zhang, Hongwei; Morrison, Scott; Tang, Yi-Wei

    2016-01-01

    Synopsis A wide range of enteric pathogens can cause infectious gastroenteritis. Conventional diagnostic algorithms including culture, biochemical identification, immunoassay and microscopic examination are time consuming and often lack sensitivity and specificity. Advances in molecular technology have as allowed its use as clinical diagnostic tools. Multiplex PCR based testing has made its way to gastroenterology diagnostic arena in recent years. In this article we present a review of recent laboratory developed multiplex PCR tests and current commercial multiplex gastrointestinal pathogen tests. We will focus on two FDA cleared commercial syndromic multiplex tests: Luminex xTAG GPP and Biofire FimArray GI test. These multiplex tests can detect and identify multiple enteric pathogens in one test and provide results within hours. Multiplex PCR tests have shown superior sensitivity to conventional methods for detection of most pathogens. The high negative predictive value of these multiplex tests has led to the suggestion that they be used as screening tools especially in outbreaks. Although the clinical utility and benefit of multiplex PCR test are to be further investigated, implementing these multiplex PCR tests in gastroenterology diagnostic algorithm has the potential to improve diagnosis of infectious gastroenteritis. PMID:26004652

  10. Electrochemiluminescence-PCR detection of genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Xing, Da; Shen, Xingyan; Zhu, Debin

    2005-01-01

    The detection methods for genetically modified (GM) components in foods have been developed recently. But many of them are complicated and time-consuming; some of them need to use the carcinogenic substance, and can"t avoid false-positive results. In this study, an electrochemiluminescence polymerase chain reaction (ECL-PCR) method for detection GM tobaccos is proposed. The Cauliflower mosaic virus 35S (CaMV35S) promoter was amplified by PCR, Then hybridized with a Ru(bpy)32+ (TBR)-labeled and a biotinylated probe. The hybridization products were captured onto streptavidin-coated paramagnetic beads, and detected by measuring the electrochemiluminescence (ECL) signal of the TBR label. Whether the tobaccos contain GM components was discriminated by detecting the ECL signal of CaMV35S promoter. The experiment results show that the detection limit for CaMV35S promoter is 100 fmol, and the GM components can be clearly identified in GM tobaccos. The ECL-PCR method provide a new means in GMOs detection due to its safety, simplicity and high efficiency.

  11. Development of a PCR Assay for Rapid Detection of Enterococci

    PubMed Central

    Ke, Danbing; Picard, François J.; Martineau, Francis; Ménard, Christian; Roy, Paul H.; Ouellette, Marc; Bergeron, Michel G.

    1999-01-01

    Enterococci are becoming major nosocomial pathogens, and increasing resistance to vancomycin has been well documented. Conventional identification methods, which are based on culturing, require 2 to 3 days to provide results. PCR has provided a means for the culture-independent detection of enterococci in a variety of clinical specimens and is capable of yielding results in just a few hours. However, all PCR-based assays developed so far are species specific only for clinically important enterococci. We have developed a PCR-based assay which allows the detection of enterococci at the genus level by targeting the tuf gene, which encodes elongation factor EF-Tu. Initially, we compared the nucleotide sequences of the tuf gene from several bacterial species (available in public databases) and designed degenerate PCR primers derived from conserved regions. These primers were used to amplify a target region of 803 bp from four enterococcal species (Enterococcus avium, E. faecalis, E. faecium, and E. gallinarum). Subsequently, the complete nucleotide sequences of these amplicons were determined. The analysis of a multiple alignment of these sequences revealed regions conserved among enterococci but distinct from those of other bacteria. PCR primers complementary to these regions allowed amplification of genomic DNAs from 14 of 15 species of enterococci tested (E. solitarius DNA could not be amplified). There was no amplification with a majority of 79 nonenterococcal bacterial species, except for 2 Abiotrophia species and several Listeria species. Furthermore, this assay efficiently amplified all 159 clinical isolates of enterococci tested (61 E. faecium, 77 E. faecalis, 9 E. gallinarum, and 12 E. casseliflavus isolates). Interestingly, the preliminary sequence comparison of the amplicons for four enterococcal species demonstrated that there were some sequence variations which may be used to generate species-specific internal probes. In conclusion, this rapid PCR

  12. FTA card utility for PCR detection of Mycobacterium leprae.

    PubMed

    Aye, Khin Saw; Matsuoka, Masanori; Kai, Masanori; Kyaw, Kyaw; Win, Aye Aye; Shwe, Mu Mu; Thein, Min; Htoo, Maung Maung; Htoon, Myo Thet

    2011-01-01

    The suitability of the FTA® elute card for the collection of slit skin smear (SSS) samples for PCR detection of Mycobacterium leprae was evaluated. A total of 192 SSS leprosy samples, of bacillary index (BI) 1 to 5, were collected from patients attending two skin clinics in Myanmar and preserved using both FTA® elute cards and 70% ethanol tubes. To compare the efficacy of PCR detection of DNA from each BI class, PCR was performed to amplify an M. leprae-specific repetitive element. Of the 192 samples, 116 FTA® elute card and 112 70% ethanol samples were PCR positive for M. leprae DNA. When correlated with BI, area under the curve (AUC) values of the respective receiver-operating characteristic curves were similar for the FTA® elute card and ethanol collection methods (AUC=0.6). Taken together, our results indicate that the FTA® elute card, which enables the collection, transport, and archiving of clinical samples, is an attractive alternative to ethanol preservation for the detection of M. leprae DNA. PMID:21617312

  13. PCR detection of bovine herpesviruses from nonbovine ruminants in Hungary.

    PubMed

    Kálmán, Dóra; Egyed, László

    2005-07-01

    Polymerase chain reaction (PCR) was used to test six different nonbovine ruminant species for five bovine herpesviruses including infectious bovine rhinotracheitis virus (BoHV-1), bovine herpes mammillitis virus (BoHV-2), Movar-type herpesvirus (BoHV-4), bovine herpesvirus type 5 (BoHV-5), and alcelaphine herpesvirus 1 (AlHV-1). Species tested included 56 roe deer (Capreolus capreolus), 66 red deer (Cervus elaphus), 20 fallow deer (Dama dama), 16 mouflon (Ovis musimon), 34 domestic sheep, and 44 domestic goats, which were sampled in Hungary in 2003. Tracheal and popliteal lymph nodes collected from these animals were tested for the presence of the five bovine herpesviruses using three nested (two of which were duplex) PCR assays. Three bovine herpesviruses (BoHV-1, -2, and -4) were detected, whereas no evidence of AlHV-1 or BoHV-5 was observed. Prevalence of BoHV-1 ranged from 12% to 47%, and PCR-positive results were observed in all species tested. BoHV-2 was detected from roe deer, red deer, fallow deer, mouflon, and domestic sheep, and the prevalence in these species ranged from 3% to 50%. BoHV-4 was detected in all species, with prevalence ranging from 12% to 69%. Sequenced PCR products were 99-100% identical to bovine herpesviral sequences deposited in the GenBank. PMID:16244057

  14. PCR and real-time PCR assays to detect fungi of Alternaria alternata species.

    PubMed

    Kordalewska, Milena; Brillowska-Dąbrowska, Anna; Jagielski, Tomasz; Dworecka-Kaszak, Bożena

    2015-01-01

    Fungi of the Alternaria genus are mostly associated with allergic diseases. However, with a growing number of immunocompromised patients, these fungi, with A. alternata being the most prevalent one, are increasingly recognized as etiological agents of infections (phaeohyphomycoses) in humans. Nowadays, identification of Alternaria spp. requires their pure culture and is solely based on morphological criteria. Clinically, Alternaria infections may be indistinguishable from other fungal diseases. Therefore, a diagnostic result is often delayed or even not achieved at all. In this paper we present easy to perform and interpret PCR and real-time PCR assays enabling detection of A. alternata species. On the basis of alignment of β-tubulin gene sequences, A. alternata-specific primers were designed. DNA from fungal isolates, extracted in a two-step procedure, were used in PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The assays specificity was confirmed, since positive results were obtained for all A. alternata isolates, and no positive results were obtained neither for other molds, dermatophytes, yeast-like fungi, nor human DNA. The assays developed here enable fast and unambiguous identification of A. alternata pathogens. PMID:26610309

  15. Novel real-time PCR detection assay for Brucella suis

    PubMed Central

    Hänsel, C.; Mertens, K.; Elschner, M. C.; Melzer, F.

    2015-01-01

    Introduction Brucella suis is the causative agent of brucellosis in suidae and is differentiated into five biovars (bv). Biovars 1 and 3 possess zoonotic potential and can infect humans, whereas biovar 2 represents the main source of brucellosis in feral and domestic pigs in Europe. Both aspects, the zoonotic threat and the economic loss, emphasize the necessity to monitor feral and domestic pig populations. Available serological or PCR based methods lack sensitivity and specificity. Results Here a bioinformatics approach was used to identify a B. suis specific 17 bp repeat on chromosome II (BS1330_II0657 locus). This repeat is common for B. suis bv 1 to 4 and was used to develop a TaqMan probe assay. The average PCR efficiency was determined as 95% and the limit of detection as 12,5 fg/µl of DNA, equally to 3.7 bacterial genomes. This assay has the highest sensitivity of all previously described B. suis specific PCR assays, making it possible to detect 3-4 bacterial genomes per 1 µl of sample. The assay was tested 100% specific for B. suis and negative for other Brucella spp. and closely related non-Brucella species. Conclusions This novel qPCR assay could become a rapid, inexpensive and reliable screening method for large sample pools of B. suis 1 to 4. This method will be applicable for field samples after validation. PMID:26392898

  16. Detection and counting of Nitrobacter populations in soil by PCR.

    PubMed Central

    Degrange, V; Bardin, R

    1995-01-01

    Although the biological conversion of nitrite to nitrate is a well-known process, studies of Nitrobacter populations are hindered by their physiological characteristics. This report describes a new method for detecting and counting Nitrobacter populations in situ with the PCR. Two primers from the 16S rRNA gene were used to generate a 397-bp fragment by amplification of Nitrobacter species DNA. No signal was detected from their phylogenetic neighbors or the common soil bacteria tested. Extraction and purification steps were optimized for minimal loss and maximal purity of soil DNA. The detection threshold and accuracy of the molecular method were determined from soil inoculated with 10, 10(2), or 10(3) Nitrobacter hamburgensis cells per g of soil. Counts were also done by the most-probable-number (MPN)-Griess and fluorescent antibody methods. PCR had a lower detection threshold (10(2) Nitrobacter cells per g of soil) than did the MPN-Griess or fluorescent antibody method. When PCR amplification was coupled with the MPN method, the counting rate reached 65 to 72% of inoculated Nitrobacter cells. Tested on nonsterile soil, this rapid procedure was proved efficient. PMID:7793930

  17. [Detection of fish DNA in ruminant feed by PCR amplification].

    PubMed

    Nomura, Tetsuya; Kusama, Toyoko; Kadowaki, Koh-ichi

    2006-10-01

    The Japanese Government has prohibited the use of seafood protein, as well as mammalian protein, in ruminant feed. There is an official method to detect meat and bone meal, but no method is yet available to detect fishmeal in ruminant feed. We tried to develop a suitable method to detect fishmeal in ruminant feed, similar to the official method "PCR detection of animal-derived DNA in feed". Our previously reported primers (fishcon5 and fishcon3-1) showed low sensitivity, so we designed new primers based on a DNA sequence from yellowfin tuna mitchondrial DNA. Among the primers, FM5 and FM3 specifically detected fish DNA (sardine, yellowfin tuna, skipjack tuna, chub mackerel, Pacific saury, salmon, rainbow trout, Japanese anchovy, codfish and Japanese horse mackerel) from fish meat, and did not amplify DNA from animals and plants. The sensitivity for detection of the presence of fishmeal in ruminant feed was 0.01-0.001%. PMID:17128872

  18. [PCR-based detection of pathogens in clinical rheumatology].

    PubMed

    Ehrenstein, B; Reischl, U

    2016-05-01

    In the differential diagnostics of autoimmune-mediated rheumatic diseases, rheumatologists often have to consider infections (e. g. Lyme arthritis) or reactive diseases (e. g. reactive arthritis after urogenital bacterial infections). Furthermore, infections with an atypical presentation or caused by atypical pathogens (opportunistic infections) can complicate the immunosuppressive therapy of autoimmune diseases. For this purpose not only conventional microbiological culture methods but also PCR-based methods are increasingly being applied for the direct detection of pathogens in clinical specimens. The aim of this overview is to present commonly used PCR methods in the clinical practice of rheumatology and to describe their benefits and limitations compared to culture-based detection methods. PMID:26892924

  19. Multiplex PCR for detection of acquired carbapenemase genes.

    PubMed

    Poirel, Laurent; Walsh, Timothy R; Cuvillier, Vincent; Nordmann, Patrice

    2011-05-01

    A rapid and reliable PCR-based technique was developed for detection of genes encoding carbapenemases belonging to different classes. Primers were designed to amplify the following 11 genes: bla(IMP), bla(VIM), bla(NDM), bla(SPM), bla(AIM), bla(DIM), bla(GIM), bla(SIM)bla(KPC), bla(BIC), and bla(OXA-48). Three different multiplex reaction mixtures were defined and evaluated for the detection of all these 11 genes. Using optimized conditions, each reaction mixture allowed to identify the respective genes, with PCR giving distinct amplicon sizes corresponding to the different genes for each mixture. We reported here a rapid and reliable technique for screening all clinically relevant carbapenemase genes. PMID:21398074

  20. Stabilized, Freeze-Dried PCR Mix for Detection of Mycobacteria

    PubMed Central

    Klatser, Paul R.; Kuijper, Sjoukje; van Ingen, Cor W.; Kolk, Arend H. J.

    1998-01-01

    We report here the development of a freeze-drying procedure allowing stabilization at ambient temperature of preoptimized, premixed, and predispensed PCR mixes aimed at the detection of mycobacteria in clinical materials. The freeze-dried mixes retained activity at 4°C and at 20°C for 1 year and for 3 months at 37°C, as judged by their performance with 50 and 500 fg of purified Mycobacterium bovis BCG target DNA. PMID:9620427

  1. PCR detection and characterization of type-2 porcine circovirus.

    PubMed Central

    Hamel, A L; Lin, L L; Sachvie, C; Grudeski, E; Nayar, G P

    2000-01-01

    A polymerase chain reaction (PCR) assay was developed for detecting porcine circovirus (PCV). The assay readily detected type-2 PCV (PCV-2) and type-1 PCV (PCV-1). The PCR primers were designed based on DNA sequences conserved in all reported PCV genomes. Type 1 PCV and type 2 PCV both produced 438 bp amplification products, which were easily identified and differentiated from one another by restriction fragment length polymorphism (RFLP) analysis. Porcine circovirus was detected in 55% (931/1693) of randomly tested pigs with various clinical signs and lesions, most of which were difficult to differentiate from those associated with porcine reproductive and respiratory syndrome (PRRS). The PCR products from all positive clinical samples were identified by RFLP to be only PCV-2; DNA tested by PCR was extracted directly from one or more of lung, mesenteric or mediastinal lymph nodes, and tonsil. Type 2 PCV was also detected in 6% (2/34) of DNA extracted directly from semen of randomly chosen healthy boars. Positive PCR reactions from 554 diseased pigs were characterized by RFLP and categorized into 5 different profiles (A-E), of which 82.8% were PCV-2A (456/554), 3.0% were PCV-2B (17/554), 9.9% were PCV-2C (55/554), 1.1% were PCV-2D (6/554), and 3.2% were PCV-2E (18/554). The complete genomic nucleotide sequences of PCV-2A, B, C, D, and E were determined and found to have at least 95% homology compared with one another and with all other PCV-2 found in the GenBank database. All PCV-2 had less than 76% homology with PCV-1. This PCR assay will hopefully be useful to veterinary diagnostic laboratories for routine testing and surveillance of infection with PCV-2. The RFLP profiling system might be useful for preliminary characterization and identification of PCV isolates and might also benefit studies on the molecular epidemiology of PCV. Images Figure 1. PMID:10680656

  2. [Detection of Staphylococcus aureus toxins using immuno-PCR].

    PubMed

    Maerle, A V; Riazantsev, D Iu; Dmitrenko, O A; Petrova, E Ia; Komaleva, R L; Sergeev, I V; Trofimov, D Iu; Zavriev, S K

    2014-01-01

    A highly sensitive test system, based on the method of immuno-PCR, was developed for the detection of two staphylococcal toxins: enterotoxin A (SEA) and toxic shock syndrome toxin (TSST). A key element of the developed systems was obtaining supramolecular complexes of bisbiotinylated oligodeoxynucleotides and streptavidin, which were used as DNA tags. Specificity studies showed no cross-reactivity when determining SEA and TSST. The sensitivity of detection of these toxins in the culture supernatants S. aureus was not less than 10 pg/mL. PMID:25895352

  3. Detection of major diarrheagenic bacterial pathogens by multiplex PCR panels.

    PubMed

    Sjöling, Åsa; Sadeghipoorjahromi, Leila; Novak, Daniel; Tobias, Joshua

    2015-03-01

    Diarrheal diseases remain a major threat to the youngest population in low- and middle-income countries. The main bacterial pathogens causing diarrhea are diarrheagenic Escherichia coli (DEC) that consists of enteroaggregative (EAEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), enterohemorrhagic EHEC and enteroinvasive E. coli (EIEC), Salmonella, Shigella spp. (S. dysenteria, S. sonnei, S. flexneri) Campylobacter (C. coli, C. jejuni), Vibrio (V. vulnificus, V. parahaemolyticusm, V. cholerae), Yersinia enterocolitica and Aeromonas hydrophila. The aim of this study was to set up rapid multiplex PCR (mPCR) panels to identify these diarrheagenic pathogens based on their specific virulence genes. Primers against specific target genes were combined into three mPCR panels: one for diarrheal E. coli, one for pathogens causing mainly bloody diarrhea, and the third for the remaining pathogens. The panels were tested against a set of stool samples from Swedish children with diarrhea and controls and the analysis identified bacterial pathogens in 14/54 (26%) of the samples. These results show that our three developed mPCR panels can detect main bacterial diarrheagenic pathogens in clinical samples. PMID:25542594

  4. TqPCR: A Touchdown qPCR Assay with Significantly Improved Detection Sensitivity and Amplification Efficiency of SYBR Green qPCR

    PubMed Central

    Zhang, Qian; Wang, Jing; Deng, Fang; Yan, Zhengjian; Xia, Yinglin; Wang, Zhongliang; Ye, Jixing; Deng, Youlin; Zhang, Zhonglin; Qiao, Min; Li, Ruifang; Denduluri, Sahitya K.; Wei, Qiang; Zhao, Lianggong; Lu, Shun; Wang, Xin; Tang, Shengli; Liu, Hao; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan; Jiang, Li

    2015-01-01

    The advent of fluorescence-based quantitative real-time PCR (qPCR) has revolutionized the quantification of gene expression analysis in many fields, including life sciences, agriculture, forensic science, molecular diagnostics, and medicine. While SYBR Green-based qPCR is the most commonly-used platform due to its inexpensive nature and robust chemistry, quantifying the expression of genes with low abundance or RNA samples extracted from highly restricted or limited sources can be challenging because the detection sensitivity of SYBR Green-based qPCR is limited. Here, we develop a novel and effective touchdown qPCR (TqPCR) protocol by incorporating a 4-cycle touchdown stage prior to the quantification amplification stage. Using the same cDNA templates, we find that TqPCR can reduce the average Cq values for Gapdh, Rps13, and Hprt1 reference genes by 4.45, 5.47, and 4.94 cycles, respectively, when compared with conventional qPCR; the overall average Cq value reduction for the three reference genes together is 4.95. We further find that TqPCR can improve PCR amplification efficiency and thus increase detection sensitivity. When the quantification of Wnt3A-induced target gene expression in mesenchymal stem cells is analyzed, we find that, while both conventional qPCR and TqPCR can detect the up-regulation of the relatively abundant target Axin2, only TqPCR can detect the up-regulation of the lowly-expressed targets Oct4 and Gbx2. Finally, we demonstrate that the MRQ2 and MRQ3 primer pairs derived from mouse reference gene Tbp can be used to validate the RNA/cDNA integrity of qPCR samples. Taken together, our results strongly suggest that TqPCR may increase detection sensitivity and PCR amplification efficiency. Overall, TqPCR should be advantageous over conventional qPCR in expression quantification, especially when the transcripts of interest are lowly expressed, and/or the availability of total RNA is highly restricted or limited. PMID:26172450

  5. Detection of beet yellows virus by RT-PCR and immunocapture RT-PCR in Tetragonia expansa and Beta vulgaris.

    PubMed

    Kundu, K; Rysánek, P

    2004-01-01

    Two sensitive methods, RT-PCR with phenol-extracted RNA or Triton X-100-released RNA and immunocapture RT-PCR (IR-RT-PCR) were used for the detection of Beet yellows virus (BYV) in young and old leaves of Tetragonia expansa and sugar beet (Beta vulgaris) and in sugar beet roots. Four oligonucleotide primer pairs proved suitable for the detection of BYV. The release of BYV RNA with Triton X-100 was shown to be a very effective and easy as compared to isolation of total RNA by phenol extraction with the same or higher sensitivity of subsequent PCR. Using the Triton X-100 release of RNA and IC-RT-PCR the sensitivity of detection was so high that pg amounts of BYV RNA occurring in dilutions up to 10(-6) of saps from young Tetragonia and sugar beet leaves could be detected. PMID:15595212

  6. Real-time PCR detection of ruminant DNA.

    PubMed

    Mendoza-Romero, Luis; Verkaar, Edward L C; Savelkoul, Paul H; Catsburg, Arnold; Aarts, Henk J M; Buntjer, Jaap B; Lenstra, Johannes A

    2004-03-01

    To control the spread of bovine spongiform encephalopathy, several DNA methods have been described for the detection of the species origin of meat and bone meal. Most of these methods are based on the amplification of a mitochondrial DNA segment. We have developed a semiquantitative method based on real-time PCR for detection of ruminant DNA, targeting an 88-bp segment of the ruminant short interspersed nuclear element Bov-A2. This method is specific for ruminants and is able to detect as little as 10 fg of bovine DNA. Autoclaving decreased the amount of detectable DNA, but positive signals were observed in feeding stuff containing 10% bovine material if this had not been rendered in accordance with the regulations, i.e., heated at 134 degrees C for 3 instead of 20 min. PMID:15035372

  7. Nested PCR for detection of HSV-1 in oral mucosa

    PubMed Central

    Jalouli, Miranda-Masoumeh; Jalouli, Jamshid; Hasséus, Bengt; Öhman, Jenny; Hirsch, Jan-Michaél

    2015-01-01

    Background It has been estimated that 15%-20% of human tumours are driven by infection and inflammation, and viral infections play an important role in malignant transformation. The evidence that herpes simplex virus type 1 (HSV-1) could be involved in the aetiology of oral cancer varies from weak to persuasive. This study aimed to investigate by nested PCR (NPCR) the prevalence of HSV-1 in samples from normal oral mucosa, oral leukoplakia, and oral squamous cell carcinoma (OSCC). Material and Methods We investigated the prevalence of HSV-1 in biopsies obtained from 26 fresh, normal oral mucosa from healthy volunteers as well as 53 oral leukoplakia and 27 OSCC paraffin-embedded samples. DNA was extracted from the specimens and investigated for the presence of HSV-1 by nested polymerase chain reaction (NPCR) and DNA sequencing. Results HSV-1 was detected in 14 (54%) of the healthy samples, in 19 (36%) of the oral leukoplakia samples, and in 14 (52%) of the OSCC samples. The differences were not statistically significant. Conclusions We observed a high incidence of HSV-1 in healthy oral mucosa, oral leukoplakia, and OSCC tissues. Thus, no connection between OSCC development and presence of HSV-1 was detected. Key words:HSV-1, nested PCR, PCR. PMID:26449432

  8. Usefulness of PCR method for detection of Leishmania in Poland.

    PubMed

    Myjak, Przemysław; Szulta, Joanna; de Almeida, Marcos E; da Silva, Alexandre J; Steurer, Francis; Lass, Anna; Pietkiewicz, Halina; Nahorski, Wacław L; Goljan, Jolanta; Knap, Józef; Szostakowska, Beata

    2009-01-01

    Leishmania parasites are the etiological agents of leishmaniosis, with severe course and often fatal prognosis, and the global number of cases has increased in recent decades. The gold standards for the diagnosis of leishmaniosis are microscopic examinations and culture in vitro of the different clinical specimens. The sensitivity of these methods is insufficient. Recent development in specific and sensitive molecular methods (PCR) allows for detection as well as identification of the parasite species (subspecies). The aim of the study was to estimate the usefulness of molecular methods (PCR) for detection of Leishmania species and consequently for the implementation of such methods in routine diagnostics of leishmaniosis in Polish patients returning from endemic areas of the disease. In our investigations we used 54 known Leishmania positive DNA templates (from culture and clinical specimens) received from the CDC (Atlanta, GA, USA). Moreover, 25 samples of bone marrow, blood or other tissues obtained from 18 Polish individuals suspected of leishmaniosis were also examined. In PCR we used two pairs of primers specific to the conserved region of Leishmania kinetoplast DNA (kDNA) minicircle (13A/13B and F/R). Using these primers we obtained amplicons in all DNA templates from the CDC and in three Polish patients suspected for Leishmania infection. In one sample from among these cases we also obtained positive results with DNA isolated from a blood specimen which was previously negative in microscopic examinations. PMID:19899614

  9. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system

    PubMed Central

    2012-01-01

    Background The accurate quantification of antigens at low concentrations over a wide dynamic range is needed for identifying biomarkers associated with disease and detecting protein interactions in high-throughput microarrays used in proteomics. Here we report the development of an ultrasensitive quantitative assay format called immunoliposome polymerase chain reaction (ILPCR) that fulfills these requirements. This method uses a liposome, with reporter DNA encapsulated inside and biotin-labeled polyethylene glycol (PEG) phospholipid conjugates incorporated into the outer surface of the liposome, as a detection reagent. The antigenic target is immobilized in the well of a microplate by a capture antibody and the liposome detection reagent is then coupled to a biotin-labeled second antibody through a NeutrAvidin bridge. The liposome is ruptured to release the reporter DNA, which serves as a surrogate to quantify the protein target using real-time PCR. Results A liposome detection reagent was prepared, which consisted of a population of liposomes ~120 nm in diameter with each liposome possessing ~800 accessible biotin receptors and ~220 encapsulated reporters. This liposome detection reagent was used in an assay to quantify the concentration of carcinoembryonic antigen (CEA) in human serum. This ILPCR assay exhibited a linear dose–response curve from 10-10 M to 10-16 M CEA. Within this range the assay coefficient of variance was <6 % for repeatability and <2 % for reproducibility. The assay detection limit was 13 fg/mL, which is 1,500-times more sensitive than current clinical assays for CEA. An ILPCR assay to quantify HIV-1 p24 core protein in buffer was also developed. Conclusions The ILPCR assay has several advantages over other immuno-PCR methods. The reporter DNA and biotin-labeled PEG phospholipids spontaneously incorporate into the liposomes as they form, simplifying preparation of the detection reagent. Encapsulation of the reporter inside the

  10. Simultaneous detection of bee viruses by multiplex PCR.

    PubMed

    Sguazza, Guillermo Hernán; Reynaldi, Francisco José; Galosi, Cecilia Mónica; Pecoraro, Marcelo Ricardo

    2013-12-01

    Honey bee mortality is a serious problem that beekeepers in Argentina have had to face during the last 3 years. It is known that the consequence of the complex interactions between environmental and beekeeping parameters added to the effect of different disease agents such as viruses, bacteria, fungi and parasitic mites may result in a sudden collapse of the colony. In addition, multiple viral infections are detected frequently concomitantly in bee colonies. The aim of this study was to establish a multiplex polymerase chain reaction method for rapid and simultaneous detection of the most prevalent bee viruses. This multiplex PCR assay will provide specific, rapid and reliable results and allow for the cost effective detection of a particular virus as well as multiple virus infections in a single reaction tube. This method could be a helpful tool in the surveillance of the most frequently found bee viruses and to study the dynamics and the interactions of the virus populations within colonies. PMID:23948157

  11. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-06-16

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27333265

  12. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  13. Fast detection of deletion breakpoints using quantitative PCR

    PubMed Central

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    Abstract The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  14. Rapid detection of Serpulina hyodysenteriae in diagnostic specimens by PCR.

    PubMed Central

    Elder, R O; Duhamel, G E; Schafer, R W; Mathiesen, M R; Ramanathan, M

    1994-01-01

    A PCR assay for the detection of Serpulina hyodysenteriae in diagnostic specimens was developed on the basis of sequence analysis of a recombinant clone designated pRED3C6. Clone pRED3C6, which contained a 2.3-kb DNA fragment unique to S. hyodysenteriae, was identified by screening a plasmid library of S. hyodysenteriae isolate B204 genomic DNA in Escherichia coli by colony immunoblot with the mouse monoclonal antibody 10G6/G10, which was produced against cell-free supernatant antigens from the same isolate. Southern blot analysis of HindIII-digested genomic DNA of S. hyodysenteriae serotypes 1 through 7 and of four weakly beta-hemolytic intestinal spirochetes, including Serpulina innocens, with the 2.3-kb DNA fragment of pRED3C6 indicated that the cloned sequence was present exclusively in the seven serotypes of S. hyodysenteriae. An oligonucleotide primer pair for PCR amplification of a 1.55-kb fragment and an internal oligonucleotide probe were designed and synthesized on the basis of sequence analysis of the 2.3-kb DNA fragment of pRED3C6. Purified genomic DNAs from reference isolates of S. hyodysenteriae serotypes 1 through 9, S. innocens, weakly beta-hemolytic intestinal spirochetes belonging to genotypic groups distinct from those of reference Serpulina spp., other cultivable reference isolates of the order Spirochaetales, and enteric bacteria including Escherichia coli, Salmonella spp., Campylobacter spp., and Bacteroides vulgatus were amplified with the oligonucleotide primer pair in a hot-start PCR. The 1.55-kb products were obtained only in the presence of genomic DNA from each of the nine serotypes of S. hyodysenteriae. The specificity of the 1.55-kb products for S. hyodysenteriae was confirmed on the basis of production of a restriction endonuclease pattern of the PCR products identical to the predicted restriction map analysis of pRED3C6 and positive hybridization signal with the S. hyodysenteriae-specific internal oligonucleotide probe. By using

  15. Multiplex PCR method for detection of three Aeromonas enterotoxin genes.

    PubMed

    Kingombe, Cesar I Bin; D'Aoust, Jean-Yves; Huys, Geert; Hofmann, Lisa; Rao, Mary; Kwan, Judy

    2010-01-01

    A novel multiplex PCR method using three sets of specific primers was developed for the detection of the cytotoxic (act), heat-labile (alt), and heat-stable (ast) enterotoxin genes in Aeromonas spp. This assay was used to characterize 35 reference strains as well as 537 food-borne isolates. A total of seven gene pattern combinations were encountered, including act, alt, act/alt, act/alt/ast, act/alt/148-bp amplicon, alt/ast, and alt/148-bp amplicon. The alt gene was detected with 34 reference strains (97%) and occurred singly in 14% of these strains. The frequency of occurrence of the act/alt, act/alt/ast, and alt/ast gene patterns in reference strains was 14 (40%), 2 (6%), and 2 (6%), respectively. An unpredicted amplicon was detected in 11 reference strains (31%). Characterization of this amplicon showed that its size was 148 bp, as generated by the AHLF and AHLR primers, and that it uniquely aligned with the Aeromonas salmonicida A449 genome sequence (GenBank accession number CP000644). This amplicon was named Aeromonas salmonicida subsp. salmonicida hypothetical protein amplicon (AssHPA). In the 537 food-borne isolates, the act and alt genes were most dominant and were detected in 349 (65%) and 452 (84%) isolates, respectively, either alone or in combinations. The act and alt genes occurred singly in 30 (6%) and 128 (24%) of these strains, respectively. The act/alt gene pattern occurred in 315 isolates (59%), whereas the ast gene was always linked to strains exhibiting the act/alt/ast and alt/ast gene combinations in 4 (0.7%) and 5 (0.9%) isolates, respectively. The uniplex amplification of three enterotoxin genes separately confirms the specificity of the unique selected primers. This multiplex PCR is rapid and simple and can detect the presence of three Aeromonas enterotoxin genes in a single assay. PMID:19933350

  16. Comparison of Conventional PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Arcobacter Species

    PubMed Central

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa

    2014-01-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species. PMID:24478488

  17. Detection of Bacteroides fragilis Enterotoxin Gene by PCR

    PubMed Central

    Shetab, Razeq; Cohen, Stuart H.; Prindiville, Thomas; Tang, Yajarayma J.; Cantrell, Mary; Rahmani, Darush; Silva, Joseph

    1998-01-01

    Bacteroides fragilis constitutes about 1% of the bacterial flora in intestines of normal humans. Enterotoxigenic strains of B. fragilis have been associated with diarrheal diseases in humans and animals. The enterotoxin produced by these isolates induces fluid changes in ligated intestinal loops and an in vitro cytotoxic response in HT-29 cells. We developed a nested PCR to detect the enterotoxin gene of B. fragilis in stool specimens. After DNA extraction, a 367-bp fragment was amplified with two outer primers. The amplicon from this reaction was subjected to a second round of amplification with a set of internal primers. With these inner primers, a 290-bp DNA fragment was obtained which was confirmed as part of the B. fragilis enterotoxin gene by Southern blotting with a nonradioactive internal probe and a chemiluminescence system. By this approach, B. fragilis enterotoxin gene sequences were detected in eight known enterotoxigenic human isolates and nine enterotoxigenic horse isolates. No amplification products were obtained from DNA extracted from 28 nonenterotoxigenic B. fragilis isolates or B. distasonis, B. thetaiotaomicron, B. uniformis, B. ovatus, Escherichia coli, or Clostridium difficile. The sensitivity of this assay allowed us to detect as little as 1 pg of enterotoxin DNA sequences or 100 to 1,000 cells of enterotoxigenic B. fragilis/g of stool. Enterotoxin production of all isolates was confirmed in vitro in HT-29 cells. A 100% correlation was obtained between enterotoxin detection by cytotoxin assay and the nested PCR assay. This rapid and sensitive assay can be used to identify enterotoxigenic B. fragilis and may be used clinically to determine the role of B. fragilis in diarrheal diseases. PMID:9620408

  18. PCR and Genotyping for HPV in Cervical Cancer Patients

    PubMed Central

    Prakash, Pradyot; Patne, Shashikant C U; Singh, Ashish Kumar; Kumar, Mohan; Mishra, Mukti Nath; Gulati, Anil Kumar

    2016-01-01

    Aims: To devise nested multiplex polymerase chain reaction (NMPCR) protocol for detection of mucosal human papilloma viruses (HPVs) and typing of HPV-16 and -18 in formalin-fixed, paraffin-embedded (FFPE) tissues of carcinoma cervix (CaCx). Settings and Design: Cross-sectional observational study. Materials and Methods: NMPCR was done for simultaneous detection of HPV, targeting 134 bp L1 capsid gene employing GP+/mGP+ primers and typing of genotypes-16 and -18, targeting E6/E7 gene from 34 FFPE tissue blocks of CaCx and cervical intraepithelial neoplasia (CIN). Detection of 142 bp consensus sequence of L1 capsid gene was performed by nested PCR employing MY/GP+ primers. Sequencing of selected PCR amplicons of the later protocol obtained from control cell line DNA and 5 select samples were done for validation of the NMPCR protocol. Statistical Analysis Used: Calculation of percentage from the Microsoft Excel Software. Results: Of 26 FFPE samples of CaCx, 17 (65.3%) samples were found positive for HPV by NMPCR. Amplicons of 142 bp L1 capsid gene employing MY/GP+ primers were observed in 11 (42.3%) samples of CaCx. Nearly 25% samples of CIN were positive for HPV. On sequence analysis, it was observed that the sample typed as HPV-16 by NMPCR was found to be the same on sequencing of amplicons obtained after MY/GP+ nested PCR. Conclusions: This study indicates the usefulness of our NMPCR protocol for detection of mucosal HPVs and typing of HPV-16 and -18 from FFPE tissue samples of CaCx. The NMPCR protocol may be used to detect HPV and type common genotypes-16 and -18 in fresh tissue of cervical biopsy or scrape samples for screening of CaCx. PMID:27621560

  19. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    DOEpatents

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  20. An improved, PCR-based strategy for the detection of Trypanosoma cruzi in human blood samples.

    PubMed

    Ribeiro-dos-Santos, G; Nishiya, A S; Sabino, E C; Chamone, D F; Saez-Alquézar, A

    1999-10-01

    Attempts were made to improve the PCR-based detection of Trypanosoma cruzi in blood samples, primarily for screening blood donors. Samples were obtained from candidate donors who were reactive in one or two of three serological tests for Chagas disease (and therefore considered 'indeterminate') or in all three tests (3+). Each sample was then examined using three different, PCR-based techniques: 'PCR-I' (in which the target DNA is a nuclear repetitive sequence); 'PCR-II' [amplifying a conserved region of the T. cruzi kinetoplast DNA (kDNA)]; and 'PCR-III' (a new strategy in which the target kDNA is amplified by 'nested' PCR). Among the samples from 3+ individuals, PCR-I, PCR-II and PCR-III amplified two (3.8%) out of 52, four (4.5%) out of 88, and 27 (25.7%) out of 105 samples tested, respectively. Seven, 69 and 70 samples from 'indeterminate' subjects were tested by PCR-I, PCR-II and PCR-III, respectively; there was not a single positive result by PCR-I or PCR-II, but three (4.3%) of the samples tested by PCR-III were positive. In a reconstruction experiment, in conditions in which PCR-I and PCR-II could not detect 10,000 parasites/ml, PCR-III was able to detect one parasite/ml. Although all three PCR-based strategies examined had rather poor sensitivities, PCR-III was far more sensitive than PCR-I or PCR-II. PMID:10715696

  1. Sensitive Simultaneous Detection of Seven Sexually Transmitted Agents in Semen by Multiplex-PCR and of HPV by Single PCR

    PubMed Central

    de Abreu, André Luelsdorf Pimenta; Irie, Mary Mayumi Taguti; Esquiçati, Isis Baroni; Malagutti, Natália; Vasconcellos, Vinícius Rodrigo Bulla; Discacciati, Michele Garcia; Bonini, Marcelo Gialluisi; Maria-Engler, Silvya Stuchi; Consolaro, Marcia Edilaine Lopes

    2014-01-01

    Sexually transmitted diseases (STDs) may impair sperm parameters and functions thereby promoting male infertility. To date limited molecular studies were conducted to evaluate the frequency and type of such infections in semen Thus, we aimed at conceiving and validating a multiplex PCR (M-PCR) assay for the simultaneous detection of the following STD pathogens in semen: Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Herpes virus simplex (HSV) −1 and −2, and Treponema pallidum; We also investigated the potential usefulness of this M-PCR assay in screening programs for semen pathogens. In addition, we aimed: to detect human Papillomavirus (HPV) and genotypes by single PCR (sPCR) in the same semen samples; to determine the prevalence of the seven STDs, HPV and co-infections; to assess the possibility that these infections affect semen parameters and thus fertility. The overall validation parameters of M-PCR were extremely high including agreement (99.2%), sensitivity (100.00%), specificity (99.70%), positive (96.40%) and negative predictive values (100.00%) and accuracy (99.80%). The prevalence of STDs was very high (55.3%). Furthermore, associations were observed between STDs and changes in semen parameters, highlighting the importance of STD detection in semen. Thus, this M-PCR assay has great potential for application in semen screening programs for pathogens in infertility and STD clinics and in sperm banks. PMID:24921247

  2. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species.

    PubMed

    Doi, Hideyuki; Takahara, Teruhiko; Minamoto, Toshifumi; Matsuhashi, Saeko; Uchii, Kimiko; Yamanaka, Hiroki

    2015-05-01

    Environmental DNA (eDNA) has been used to investigate species distributions in aquatic ecosystems. Most of these studies use real-time polymerase chain reaction (PCR) to detect eDNA in water; however, PCR amplification is often inhibited by the presence of organic and inorganic matter. In droplet digital PCR (ddPCR), the sample is partitioned into thousands of nanoliter droplets, and PCR inhibition may be reduced by the detection of the end-point of PCR amplification in each droplet, independent of the amplification efficiency. In addition, real-time PCR reagents can affect PCR amplification and consequently alter detection rates. We compared the effectiveness of ddPCR and real-time PCR using two different PCR reagents for the detection of the eDNA from invasive bluegill sunfish, Lepomis macrochirus, in ponds. We found that ddPCR had higher detection rates of bluegill eDNA in pond water than real-time PCR with either of the PCR reagents, especially at low DNA concentrations. Limits of DNA detection, which were tested by spiking the bluegill DNA to DNA extracts from the ponds containing natural inhibitors, found that ddPCR had higher detection rate than real-time PCR. Our results suggest that ddPCR is more resistant to the presence of PCR inhibitors in field samples than real-time PCR. Thus, ddPCR outperforms real-time PCR methods for detecting eDNA to document species distributions in natural habitats, especially in habitats with high concentrations of PCR inhibitors. PMID:25850372

  3. Detection of Legionella Contamination in Tabriz Hospitals by PCR Assay

    PubMed Central

    Ghotaslou, Reza; Yeganeh Sefidan, Fatemeh; Akhi, Mohammad Taghi; Soroush, Mohammad Hussein; Hejazi, Mohammad Saeid

    2013-01-01

    Purpose: The present study was designed to evaluate the occurrence of Legionella contamination in the tap water of Tabriz hospitals, Azerbaijan, Iran. Methods: One hundred and forty water samples from diverse water supply systems of 17 hospitals were collected and analyzed for the presence of Legionella spp. by PCR assay. Results: In this study, 10 of 140 (7.1%) samples were positive for Legionella which L. pneumophila was detected in 4 (2.85%) water samples. Conclusion: In conclusion, hospital potable systems are the primary reservoirs for Legionnaires’ disease. This study concludes that Legionella spp. are present in aquatic hospitals environment of Tabriz. Due to the serious risk of infections, it is better to make efforts to eliminate Legionella spp. in water supplies. PMID:24312825

  4. PCR detection of groundwater bacteria associated with colloidal transport

    SciTech Connect

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  5. Detection of DNA double-strand breaks and chromosome translocations using ligation-mediated PCR and inverse PCR.

    PubMed

    Villalobos, Michael J; Betti, Christopher J; Vaughan, Andrew T M

    2005-01-01

    Current techniques for examining the global creation and repair of DNA double-strand breaks are restricted in their sensitivity, and such techniques mask any site-dependent variations in breakage and repair rate or fidelity. We present here a system for analyzing the fate of documented DNA breaks, using the MLL gene as an example, through application of ligation-mediated PCR. Here, a simple asymmetric double-stranded DNA adapter molecule is ligated to experimentally induced DNA breaks and subjected to seminested PCR using adapter and gene-specific primers. The rate of appearance and loss of specific PCR products allows detection of both the break and its repair. Using the additional technique of inverse PCR, the presence of misrepaired products (translocations) can be detected at the same site, providing information on the fidelity of the ligation reaction in intact cells. Such techniques may be adapted for the analysis of DNA breaks introduced into any identifiable genomic location. PMID:15502230

  6. Comparing Rapid and Specific Detection of Brucella in Clinical Samples by PCR-ELISA and Multiplex-PCR Method

    PubMed Central

    Mohammad Hasani, Sharareh; Mirnejad, Reza; Amani, Jafar; Vafadar, Mohamad javad

    2016-01-01

    Background: Rapid diagnosis and differentiation of Brucella is of high importance due to the side effects of antibiotics for the treatment of brucellosis. This study aimed to identify and compare PCR-ELISA as a more accurate diagnositc test with other common molecular and serological tests. Methods: In this experimental and sectional study, during March 2014 to Sep 2015, 52 blood samples of suspected patients with clinical symptoms of brucellosis were evaluated in medical centers all over Iran with serum titers higher than 1:80. Using two pairs of specific primers of Brucella abortus, B. melitensis and DIG-dUTP, Fragment IS711 (The common gene fragment in B. melitensis and B. abortus) was amplified. DIG-ELISA was performed using specific probes of these 2 species of Brucella and patterns were subsequently analyzed, then positive responses were compared by detecting gel electrophoresis. Results: PCR-ELISA method detected all 28 samples from 52 positive samples. Its sensitivity was 6.0 pg concentration of genomic DNA of Brucella. In gel electrophoresis method, 22 samples of all positive samples were detected. PCR-ELISA was more efficient than PCR and bacterial culture method at P-value <0.05. Conclusion: PCR-ELISA molecular method is more sensitive than other molecular methods, lack of mutagenic color and also a semi-quantitative ability. This method is more effective and more accurate compared to PCR, serology and culture of bacteria. PCR-ELISA does not have false responses. The limitation of this method is detection of bacteria in the genus compared to Multiplex PCR and Gel Electrophoresis. PMID:27499776

  7. Detection of North American orthopoxviruses by real time-PCR

    PubMed Central

    2011-01-01

    The prevalence of North American orthopoxviruses in nature is unknown and may be more difficult to ascertain due to wide spread use of vaccinia virus recombinant vaccines in the wild. A real time PCR assay was developed to allow for highly sensitive and specific detection of North American orthopoxvirus DNA in animal tissues and bodily fluids. This method is based on the amplification of a 156 bp sequence within a myristylated protein, highly conserved within the North American orthopoxviruses but distinct from orthologous genes present in other orthopoxviruses. The analytical sensitivity was 1.1 fg for Volepox virus DNA, 1.99 fg for Skunkpox virus DNA, and 6.4 fg for Raccoonpox virus DNA with a 95% confidence interval. Our assay did not cross-react with other orthopoxviruses or ten diverse representatives of the Chordopoxvirinae subfamily. This new assay showed more sensitivity than tissue culture tests, and was capable of differentiating North American orthopoxviruses from other members of Orthopoxvirus. Thus, our assay is a promising tool for highly sensitive and specific detection of North American orthopoxviruses in the United States and abroad. PMID:21689420

  8. Detection and quantification of Bacillus cereus group in milk by droplet digital PCR.

    PubMed

    Porcellato, Davide; Narvhus, Judith; Skeie, Siv Borghild

    2016-08-01

    Droplet digital PCR (ddPCR) is one of the newest and most promising methods for the detection and quantification of molecular targets by PCR. Here, we optimized and used a new ddPCR assay for the detection and quantification of the Bacillus cereus group in milk. We also compared the ddPCR to a standard qPCR assay. The new ddPCR assay showed a similar coefficient of determination and a better limit of detection compared to the qPCR assay during quantification of the target molecules in the samples. However, the ddPCR assay has a limitation during quantification of a high number of target molecules. This new assay was then tested for the quantification of the B. cereus group in 90 milk samples obtained over three months from two different dairies and the milk was stored at different temperatures before sampling. The ddPCR assay showed good agreement with the qPCR assay for the quantification of the B. cereus group in milk, and due to its lower detection limit more samples were detected as positive. The new ddPCR assay is a promising method for the quantification of target bacteria in low concentration in milk. PMID:27211508

  9. Detection and quantification of chimerism by droplet digital PCR.

    PubMed

    George, David; Czech, Juliann; John, Bobby; Yu, Min; Jennings, Lawrence J

    2013-01-01

    Accurate quantification of chimerism and microchimerism is proving to be increasingly valuable for hematopoietic cell transplantation as well as non-transplant conditions. However, methods that are available to quantify low-level chimerism lack accuracy. Therefore, we developed and validated a method for quantifying chimerism based on digital PCR technology. We demonstrate accurate quantification that far exceeds what is possible with analog qPCR down to 0.01% with the potential to go even lower. Also, this method is inherently more informative than qPCR. We expect the advantages of digital PCR will make it the preferred method for chimerism analysis. PMID:23974275

  10. Detection of salmonella using a real-time PCR based on molecular beacons

    NASA Astrophysics Data System (ADS)

    Chen, Wilfred; Martinez, Grisselle; Mulchandani, Ashok

    2000-03-01

    Molecular beacons are oligonucleotide probes that become fluorescent upon hybridization. We developed a new approach to detect the presence of Salmonella species using these fluorogenic reporter molecules and demonstrated their ability to discriminate between similar E. coli species in real-time PCR assays. A detection limit of 1 CFU per PCR reaction was obtained. The assays were carried out entirely in sealed PCR tubes, enabling fast and direct detection in a semiautomated format.

  11. Detection and Quantification of Wallemia sebi in Aerosols by Real-Time PCR, Conventional PCR, and Cultivation

    PubMed Central

    Zeng, Qing-Yin; Westermark, Sven-Olof; Rasmuson-Lestander, Åsa; Wang, Xiao-Ru

    2004-01-01

    Wallemia sebi is a deuteromycete fungus commonly found in agricultural environments in many parts of the world and is suspected to be a causative agent of farmer's lung disease. The fungus grows slowly on commonly used culture media and is often obscured by the fast-growing fungi. Thus, its occurrence in different environments has often been underestimated. In this study, we developed two sets of PCR primers specific to W. sebi that can be applied in either conventional PCR or real-time PCR for rapid detection and quantification of the fungus in environmental samples. Both PCR systems proved to be highly specific and sensitive for W. sebi detection even in a high background of other fungal DNAs. These methods were employed to investigate the presence of W. sebi in the aerosols of a farm. The results revealed a high concentration of W. sebi spores, 107 m−3 by real-time PCR and 106 m−3 by cultivation, which indicates the prevalence of W. sebi in farms handling hay and grain and in cow barns. The methods developed in this study could serve as rapid, specific, and sensitive means of detecting W. sebi in aerosol and surface samples and could thus facilitate investigations of its distribution, ecology, clinical diagnosis, and exposure risk assessment. PMID:15574929

  12. Type-A influenza virus detection and quantitation by real-time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real-time RT-PCR (RRT-PCR) is a relatively new technology which has been used for AIV detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of RRT-PCR are: quantitative nature, scalability, cost, high sensitivity, high specificity, and ...

  13. DEVELOPMENT OF AN IMPROVED PCR-BASED TECHNIQUE FOR DETECTION OF PHYTOPHTHORA CACTORUM IN STRAWBERRY PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific and rapid plant pathogen detection methods can aid in strawberry disease management decisions. PCR-based diagnostics for Phytophthora cactorum and other strawberry pathogens are hindered by PCR inhibitors and lack of species-specific PCR primers. We developed a DNA extraction and purificati...

  14. Effects of prolonged chlorine exposures upon PCR detection of Helicobacter pylori DNA.

    EPA Science Inventory

    The effect of low doses of free chlorine on the detection by qPCR of Helicobacter pylori (H. pylori) cells by qPCR in tap water was monitored. H. pylori target sequences (within suspended, intact cells at densities of 102 to 103 cells /ml) were rendered undetectable by qPCR an...

  15. Optimized 5-hour multiplex PCR test for the detection of tinea unguium: performance in a routine PCR laboratory.

    PubMed

    Brillowska-Dabrowska, Anna; Nielsen, Sanne Søgaard; Nielsen, Henrik Vedel; Arendrup, Maiken Cavling

    2010-09-01

    We recently reported the development of a 5-hour multiplex PCR test for the detection of tinea unguium and the optimization of this test by the inclusion of an inhibition control. Here we report the performance of this procedure as used in a routine clinical laboratory as compared to conventional microscopy and culture-based techniques performed in a mycology reference laboratory. We found in processing 109 samples that 22 (20.2%) yielded fungi in culture while the suspected etiologic agents were noted microscopically in 15 (13.8%) that were negative in culture. Fungi were detected by PCR in 37 (33.9%) samples, of which only three were positive in culture. Since the majority of PCR positive but culture negative samples were positive in microscopic examinations, the increased sensitivity was not due to contamination. PCR inhibitors were present in 5% of the samples, but this was overcome by re-running the samples with a 50% reduction of sample DNA. In conclusion, the PCR test performance in the routine setting was excellent and provided a markedly reduced time to diagnosis with a higher sensitivity. PMID:20105101

  16. Comparative analysis of human papillomavirus detection by PCR and non-isotopic in situ hybridisation.

    PubMed Central

    Herrington, C S; Anderson, S M; Bauer, H M; Troncone, B; de Angelis, M L; Noell, H; Chimera, J A; Van Eyck, S L; McGee, J O

    1995-01-01

    AIMS--To assess the relative diagnostic performance of the polymerase chain reaction (PCR) and non-isotopic in situ hybridisation (NISH) and to correlate these data with cytopathological assessment. METHODS--Paired analysis of human papillomavirus (HPV) detection was performed by PCR and NISH on exfoliated cervical cells from 122 women attending a routine gynaecological examination. PCR amplification followed by generic and HPV type specific hybridisation was compared with NISH on a parallel cervical smear. RESULTS--Overall, 32 cases were positive by NISH and 61 positive by PCR. Of the 105 cases in which both PCR and NISH were interpretable, 76 (26%) were normal smears, 20 of which were HPV positive by NISH and 37 (49%) by PCR. Of 17 borderline smears, two were NISH positive and 12 PCR positive. Eight of nine smears containing koilocytes were positive by NISH and seven by PCR. Of three dyskaryotic smears, none were NISH and two were PCR positive. The concordance of NISH and PCR in these samples was 57%. To assess sampling error, NISH and PCR were performed on an additional 50 cases using aliquots from the same sample. This increased the concordance between assays to 74%. Filter hybridisation of PCR products with the cocktail of probes used in NISH (under low and high stringency conditions) demonstrated that several cases of NISH positivity could be accounted for by cross-hybridisation to HPV types identified by PCR but not present in the NISH probe cocktail. CONCLUSIONS--Sampling error and potential cross-hybridisation of probe and target should be considered in interpretation of these techniques. PCR is more sensitive because it provides for the amplification of target DNA sequences. In addition, the PCR assay utilised in this study detects a wider range of HPV types than are contained in the cocktails used for NISH. However, PCR assays detect viral DNA present both within cells and in cervical fluid whereas NISH permits morphological localisation. Images PMID

  17. Comparative analysis of human papillomavirus detection by PCR and non-isotopic in situ hybridisation.

    PubMed

    Herrington, C S; Anderson, S M; Bauer, H M; Troncone, B; de Angelis, M L; Noell, H; Chimera, J A; Van Eyck, S L; McGee, J O

    1995-05-01

    AIMS--To assess the relative diagnostic performance of the polymerase chain reaction (PCR) and non-isotopic in situ hybridisation (NISH) and to correlate these data with cytopathological assessment. METHODS--Paired analysis of human papillomavirus (HPV) detection was performed by PCR and NISH on exfoliated cervical cells from 122 women attending a routine gynaecological examination. PCR amplification followed by generic and HPV type specific hybridisation was compared with NISH on a parallel cervical smear. RESULTS--Overall, 32 cases were positive by NISH and 61 positive by PCR. Of the 105 cases in which both PCR and NISH were interpretable, 76 (26%) were normal smears, 20 of which were HPV positive by NISH and 37 (49%) by PCR. Of 17 borderline smears, two were NISH positive and 12 PCR positive. Eight of nine smears containing koilocytes were positive by NISH and seven by PCR. Of three dyskaryotic smears, none were NISH and two were PCR positive. The concordance of NISH and PCR in these samples was 57%. To assess sampling error, NISH and PCR were performed on an additional 50 cases using aliquots from the same sample. This increased the concordance between assays to 74%. Filter hybridisation of PCR products with the cocktail of probes used in NISH (under low and high stringency conditions) demonstrated that several cases of NISH positivity could be accounted for by cross-hybridisation to HPV types identified by PCR but not present in the NISH probe cocktail. CONCLUSIONS--Sampling error and potential cross-hybridisation of probe and target should be considered in interpretation of these techniques. PCR is more sensitive because it provides for the amplification of target DNA sequences. In addition, the PCR assay utilised in this study detects a wider range of HPV types than are contained in the cocktails used for NISH. However, PCR assays detect viral DNA present both within cells and in cervical fluid whereas NISH permits morphological localisation. PMID:7629286

  18. Development of nested PCR assays for detection of bovine respiratory syncytial virus in clinical samples.

    PubMed Central

    Vilcek, S; Elvander, M; Ballagi-Pordány, A; Belák, S

    1994-01-01

    Two nested PCR assays were developed for the detection of bovine respiratory syncytial virus (BRSV). Primers were selected from the gene encoding the F fusion protein (PCR-F) and the gene encoding the G attachment protein (PCR-G). Biotinylated oligonucleotide probes, termed F and G, were selected for the hybridization of the respective PCR products. The sensitivities of the PCR-F and PCR-G assays were similar, both detecting 0.1 tissue culture infective dose of the virus. The PCR-F assay amplified all bovine strains and one human strain (RS32) tested. No cross-reactions were observed with nine heterologous respiratory viruses. PCR-F products of bovine and human RSV strains were discriminated by using endonuclease restriction enzyme ScaI, which specifically cleaved, products of BRSV. Oligonucleotide probe F was also specific for products of BRSV. The PCR-G assay detected all bovine strains and none of the human strains tested. A faint electrophoretic band was also observed with products of Sendai virus. However, probe G did not hybridize with this product, only with products of BRSV. Nasal swabs collected from cattle with no symptoms and cattle in the acute stage of respiratory disease were analyzed for BRSV by the immunofluorescence (IF) method and by the PCR-F and PCR-G assays. The virus was detected by the PCR assays in 31 of 35 (89%) samples tested. Only 23 samples (66%) were positive by the IF method, and these samples were also positive by both the PCR-F and PCR-G assays. The 31 samples detected as positive by PCR originated from cattle presenting clinical signs of acute respiratory disease; the four PCR-negative samples originated from clinically asymptomatic neighboring cattle. All sampled animals subsequently seroconverted and became reactive to BRSV. Thus, the detection of BRSV by PCR correlated with clinical observations and was considerably more sensitive (66 versus 89%) than IF. These results indicate that both nested PCR assays provide rapid and

  19. Rapid and sensitive detection of Feline immunodeficiency virus using an insulated isothermal PCR-based assay with a point-of-need PCR detection platform.

    PubMed

    Wilkes, Rebecca Penrose; Kania, Stephen A; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chang, Hsiu-Hui; Ma, Li-Juan; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2015-07-01

    Feline immunodeficiency virus (FIV) is an important infectious agent of cats. Clinical syndromes resulting from FIV infection include immunodeficiency, opportunistic infections, and neoplasia. In our study, a 5' long terminal repeat/gag region-based reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) was developed to amplify all known FIV strains to facilitate point-of-need FIV diagnosis. The RT-iiPCR method was applied in a point-of-need PCR detection platform--a field-deployable device capable of generating automatically interpreted RT-iiPCR results from nucleic acids within 1 hr. Limit of detection 95% of FIV RT-iiPCR was calculated to be 95 copies standard in vitro transcription RNA per reaction. Endpoint dilution studies with serial dilutions of an ATCC FIV type strain showed that the sensitivity of lyophilized FIV RT-iiPCR reagent was comparable to that of a reference nested PCR. The established reaction did not amplify any nontargeted feline pathogens, including Felid herpesvirus 1, feline coronavirus, Feline calicivirus, Feline leukemia virus, Mycoplasma haemofelis, and Chlamydophila felis. Based on analysis of 76 clinical samples (including blood and bone marrow) with the FIV RT-iiPCR, test sensitivity was 97.78% (44/45), specificity was 100.00% (31/31), and agreement was 98.65% (75/76), determined against a reference nested-PCR assay. A kappa value of 0.97 indicated excellent correlation between these 2 methods. The lyophilized FIV RT-iiPCR reagent, deployed on a user-friendly portable device, has potential utility for rapid and easy point-of-need detection of FIV in cats. PMID:26185125

  20. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  1. Comprehensive GMO detection using real-time PCR array: single-laboratory validation.

    PubMed

    Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi

    2012-01-01

    We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports. PMID:22649939

  2. PCR-based Detection of Spiroplasma citri Associated with Citrus Stubborn Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PCR detection of Spiroplasma citri, the causal agent of citrus stubborn disease, was improved using primers based on sequences of the P89 adhesin gene and the P58 putative adhesin multigene of S. citri. PCR was compared with isolation by culturing for detection of S. citri in two 20 A citrus orchar...

  3. Detection of Toxoplasma gondii oocysts in water sample concentrates by real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PCR techniques in combination with conventional parasite concentration procedures have potential for sensitive and specific detection of Toxoplasma gondii oocysts in water. Three real-time PCR assays based on the B1 gene and a 529-bp repetitive element were compared for detection of T. gondii tachyz...

  4. PCR-based Detection of Spiroplasma Citri Associated with Citrus Stubborn Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvements in polymerase chain reaction (PCR) detection of Spiroplasma citri, the causal agent of citrus stubborn disease, made PCR more reliable than culturing for S. citri detection. Primer sequences from the P89 putative adhesin gene, which is present on a plasmid as well as in the S. citri gen...

  5. Molecular detection and identification of intimin alleles in pathogenic Escherichia coli by multiplex PCR.

    PubMed

    Reid, S D; Betting, D J; Whittam, T S

    1999-08-01

    A multiplex PCR was designed to detect the eae gene and simultaneously identify specific alleles in pathogenic Escherichia coli. The method was tested on 87 strains representing the diarrheagenic E. coli clones. The results show that the PCR assay accurately detects eae and resolves alleles encoding the alpha, beta, and gamma intimin variants. PMID:10405431

  6. Molecular Detection and Identification of Intimin Alleles in Pathogenic Escherichia coli by Multiplex PCR

    PubMed Central

    Reid, Sean D.; Betting, David J.; Whittam, Thomas S.

    1999-01-01

    A multiplex PCR was designed to detect the eae gene and simultaneously identify specific alleles in pathogenic Escherichia coli. The method was tested on 87 strains representing the diarrheagenic E. coli clones. The results show that the PCR assay accurately detects eae and resolves alleles encoding the α, β, and γ intimin variants. PMID:10405431

  7. Quantitative real-time PCR (qPCR)--based tool for detection and quantification of Cordyceps militaris in soil.

    PubMed

    Saragih, Syaiful Amri; Takemoto, S; Hisamoto, Y; Fujii, M; Sato, H; Kamata, N

    2015-01-01

    A quantitative real-time PCR using a primer pair CM2946F/CM3160R was developed for specific detection and quantification of Cordyceps militaris from soil. Standard curves were obtained for genomic DNA and DNA extracts from autoclaved soil with a certain dose of C. militaris suspension. C. militaris was detected from two forest soil samples out of ten that were collected when fruit bodies of C. militaris were found. This method seemed effective in detection of C. militaris in the soil and useful for rapid and reliable quantification of C. militaris in different ecosystems. PMID:25446034

  8. Analytical Sensitivity Comparison between Singleplex Real-Time PCR and a Multiplex PCR Platform for Detecting Respiratory Viruses.

    PubMed

    Parker, Jayme; Fowler, Nisha; Walmsley, Mary Louise; Schmidt, Terri; Scharrer, Jason; Kowaleski, James; Grimes, Teresa; Hoyos, Shanann; Chen, Jack

    2015-01-01

    Multiplex PCR methods are attractive to clinical laboratories wanting to broaden their detection of respiratory viral pathogens in clinical specimens. However, multiplexed assays must be well optimized to retain or improve upon the analytic sensitivity of their singleplex counterparts. In this experiment, the lower limit of detection (LOD) of singleplex real-time PCR assays targeting respiratory viruses is compared to an equivalent panel on a multiplex PCR platform, the GenMark eSensor RVP. LODs were measured for each singleplex real-time PCR assay and expressed as the lowest copy number detected 95-100% of the time, depending on the assay. The GenMark eSensor RVP LODs were obtained by converting the TCID50/mL concentrations reported in the package insert to copies/μL using qPCR. Analytical sensitivity between the two methods varied from 1.2-1280.8 copies/μL (0.08-3.11 log differences) for all 12 assays compared. Assays targeting influenza A/H3N2, influenza A/H1N1pdm09, influenza B, and human parainfluenza 1 and 2 were most comparable (1.2-8.4 copies/μL, <1 log difference). Largest differences in LOD were demonstrated for assays targeting adenovirus group E, respiratory syncytial virus subtype A, and a generic assay for all influenza A viruses regardless of subtype (319.4-1280.8 copies/μL, 2.50-3.11 log difference). The multiplex PCR platform, the GenMark eSensor RVP, demonstrated improved analytical sensitivity for detecting influenza A/H3 viruses, influenza B virus, human parainfluenza virus 2, and human rhinovirus (1.6-94.8 copies/μL, 0.20-1.98 logs). Broader detection of influenza A/H3 viruses was demonstrated by the GenMark eSensor RVP. The relationship between TCID50/mL concentrations and the corresponding copy number related to various ATCC cultures is also reported. PMID:26569120

  9. Analytical Sensitivity Comparison between Singleplex Real-Time PCR and a Multiplex PCR Platform for Detecting Respiratory Viruses

    PubMed Central

    Parker, Jayme; Fowler, Nisha; Walmsley, Mary Louise; Schmidt, Terri; Scharrer, Jason; Kowaleski, James; Grimes, Teresa; Hoyos, Shanann; Chen, Jack

    2015-01-01

    Multiplex PCR methods are attractive to clinical laboratories wanting to broaden their detection of respiratory viral pathogens in clinical specimens. However, multiplexed assays must be well optimized to retain or improve upon the analytic sensitivity of their singleplex counterparts. In this experiment, the lower limit of detection (LOD) of singleplex real-time PCR assays targeting respiratory viruses is compared to an equivalent panel on a multiplex PCR platform, the GenMark eSensor RVP. LODs were measured for each singleplex real-time PCR assay and expressed as the lowest copy number detected 95–100% of the time, depending on the assay. The GenMark eSensor RVP LODs were obtained by converting the TCID50/mL concentrations reported in the package insert to copies/μL using qPCR. Analytical sensitivity between the two methods varied from 1.2–1280.8 copies/μL (0.08–3.11 log differences) for all 12 assays compared. Assays targeting influenza A/H3N2, influenza A/H1N1pdm09, influenza B, and human parainfluenza 1 and 2 were most comparable (1.2–8.4 copies/μL, <1 log difference). Largest differences in LOD were demonstrated for assays targeting adenovirus group E, respiratory syncytial virus subtype A, and a generic assay for all influenza A viruses regardless of subtype (319.4–1280.8 copies/μL, 2.50–3.11 log difference). The multiplex PCR platform, the GenMark eSensor RVP, demonstrated improved analytical sensitivity for detecting influenza A/H3 viruses, influenza B virus, human parainfluenza virus 2, and human rhinovirus (1.6–94.8 copies/μL, 0.20–1.98 logs). Broader detection of influenza A/H3 viruses was demonstrated by the GenMark eSensor RVP. The relationship between TCID50/mL concentrations and the corresponding copy number related to various ATCC cultures is also reported. PMID:26569120

  10. Improved detection of episomal Banana streak viruses by multiplex immunocapture PCR.

    PubMed

    Le Provost, Grégoire; Iskra-Caruana, Marie-Line; Acina, Isabelle; Teycheney, Pierre-Yves

    2006-10-01

    Banana streak viruses (BSV) are currently the main viral constraint to Musa germplasm movement, genetic improvement and mass propagation. Therefore, it is necessary to develop and implement BSV detection strategies that are both reliable and sensitive, such as PCR-based techniques. Unfortunately, BSV endogenous pararetrovirus sequences (BSV EPRVs) are present in the genome of Musa balbisiana. They interfere with PCR-based detection of episomal BSV in infected banana and plantain, such as immunocapture PCR. Therefore, a multiplex, immunocapture PCR (M-IC-PCR) was developed for the detection of BSV. Musa sequence tagged microsatellite site (STMS) primers were selected and used in combination with BSV species-specific primers in order to monitor possible contamination by Musa genomic DNA, using multiplex PCR. Furthermore, immunocapture conditions were optimized in order to prevent Musa DNA from interfering with episomal BSV DNA during the PCR step. This improved detection method successfully allowed the accurate, specific and sensitive detection of episomal DNA only from distinct BSV species. Its implementation should benefit PCR-based detection of viruses for which homologous sequences are present in the genome of their hosts, including transgenic plants expressing viral sequences. PMID:16857272

  11. Identification, Detection, and Enumeration of Human Bifidobacterium Species by PCR Targeting the Transaldolase Gene

    PubMed Central

    Requena, Teresa; Burton, Jeremy; Matsuki, Takahiro; Munro, Karen; Simon, Mary Alice; Tanaka, Ryuichiro; Watanabe, Koichi; Tannock, Gerald W.

    2002-01-01

    Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations. PMID:11976117

  12. Detection of feline calicivirus, feline herpesvirus 1 and Chlamydia psittaci mucosal swabs by multiplex RT-PCR/PCR.

    PubMed

    Sykes, J E; Allen, J L; Studdert, V P; Browning, G F

    2001-07-26

    A single tube, multiplex reverse transcription (RT)-polymerase chain reaction (PCR)/PCR assay was developed for detection of feline herpesvirus 1 (FHV1), Chlamydia psittaci and feline calicivirus (FCV) in cats with upper respiratory tract disease (URTD), incorporating a simple, rapid extraction procedure capable of extracting both DNA and RNA. The assay was found to be as sensitive in vitro as simplex assays that have previously been shown to be as sensitive as, or more sensitive than, culture for each pathogen in experimentally infected cats. Conjunctival alone or both conjunctival and oropharyngeal swabs were collected from cats in 104 households with URTD. FHV1 was detected in 18 (17.3%) and C. psittaci was detected in 12 (11.5%) households. The prevalence of C. psittaci was not significantly different to that determined using a duplex PCR assay for C. psittaci and FHV1. The prevalence of FCV was affected by sample storage temperature. Of samples stored at -70 degrees C, 0/31 were positive for FCV but FCV was detected in 10/73 (13.7%) samples stored at 4 degrees C (P=0.006). Of the samples stored at 4 degrees C, 3/19 (15.8%) conjunctival swabs were positive for FCV and 6/32 (18.8%) oropharyngeal/conjunctival swabs were positive for FCV (P=0.79). The potential utility of restriction endonuclease analysis of RT-PCR products resulting from amplification of the hypervariable region of the capsid protein gene of FCV in field samples, without prior cultivation, was also examined. The assay may have considerable importance for diagnosis and epidemiological surveys of feline upper respiratory tract pathogens. PMID:11376956

  13. Use of multiplex PCR and PCR restriction enzyme analysis for detection and exploration of the variability in the free-living amoeba Naegleria in the environment.

    PubMed

    Pélandakis, Michel; Pernin, Pierre

    2002-04-01

    A multiplex PCR was developed to simultaneously detect Naegleria fowleri and other Naegleria species in the environment. Multiplex PCR was also capable of identifying N. fowleri isolates with internal transcribed spacers of different sizes. In addition, restriction fragment length polymorphism analysis of the PCR product distinguished the main thermophilic Naegleria species from the sampling sites. PMID:11916734

  14. Use of Multiplex PCR and PCR Restriction Enzyme Analysis for Detection and Exploration of the Variability in the Free-Living Amoeba Naegleria in the Environment

    PubMed Central

    Pélandakis, Michel; Pernin, Pierre

    2002-01-01

    A multiplex PCR was developed to simultaneously detect Naegleria fowleri and other Naegleria species in the environment. Multiplex PCR was also capable of identifying N. fowleri isolates with internal transcribed spacers of different sizes. In addition, restriction fragment length polymorphism analysis of the PCR product distinguished the main thermophilic Naegleria species from the sampling sites. PMID:11916734

  15. HIGH SENSITIVE PCR METHOD FOR DETECTION OF PATHOGENIC Leptospira spp. IN PARAFFIN-EMBEDDED TISSUES

    PubMed Central

    Noda, Angel Alberto; Rodríguez, Islay; Rodríguez, Yaindrys; Govín, Anamays; Fernández, Carmen; Obregón, Ana Margarita

    2014-01-01

    This study describes the development and application of a new PCR assay for the specific detection of pathogenic leptospires and its comparison with a previously reported PCR protocol. New primers were designed for PCR optimization and evaluation in artificially-infected paraffin-embedded tissues. PCR was then applied to post-mortem, paraffin-embedded samples, followed by amplicon sequencing. The PCR was more efficient than the reported protocol, allowing the amplification of expected DNA fragment from the artificially infected samples and from 44% of the post-mortem samples. The sequences of PCR amplicons from different patients showed >99% homology with pathogenic leptospires DNA sequences. The applicability of a highly sensitive and specific tool to screen histological specimens for the detection of pathogenic Leptospira spp. would facilitate a better assessment of the prevalence and epidemiology of leptospirosis, which constitutes a health problem in many countries. PMID:25229221

  16. Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp. sepedonicus.

    PubMed Central

    Lee, I M; Bartoszyk, I M; Gundersen, D E; Mogen, B; Davis, R E

    1997-01-01

    Oligonucleotide primers derived from sequences of the 16S rRNA gene (CMR16F1, CMR16R1, CMR16F2, and CMR16R2) and insertion element IS1121 of Clavibacter michiganensis subsp. sepedonicus (CMSIF1, CMSIR1, CMSIF2, and CMISR2) were used in nested PCR to detect the potato ring rot bacterium C. michiganensis subsp. sepedonicus. Nested PCR with primer pair CMSIF1-CMSIR1 followed by primer pair CMSIF2-CMSIR2 specifically detected C. michiganensis subsp. sepedonicus, while nested PCR with CMR16F1-CMR16R1 followed by CMR16F2-CMR16R2 detected C. michiganensis subsp. sepedonicus and the other C. michiganensis subspecies. In the latter case, C. michiganensis subsp. sepedonicus can be differentiated from the other subspecies by restriction fragment length polymorphism (RFLP) analyses of the nested PCR products (16S rDNA sequences). The nested PCR assays developed in this work allow ultrasensitive detection of very low titers of C. michiganensis subsp. sepedonicus which may be present in symptomiess potato plants or tubers and which cannot be readily detected by direct PCR (single PCR amplification). RFLP analysis of PCR products provides for an unambiguous confirmation of the identify of C. michiganensis subsp. sepedonicus. PMID:9212412

  17. A PCR-ELISA for detecting Shiga toxin-producing Escherichia coli.

    PubMed

    Ge, Beilei; Zhao, Shaohua; Hall, Robert; Meng, Jianghong

    2002-03-01

    A sensitive and specific PCR-ELISA was developed to detect Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) in food. The assay was based on the incorporation of digoxigenin-labeled dUTP and a biotin-labeled primer specific for Shiga toxin genes during PCR amplification. The labeled PCR products were bound to streptavidin-coated wells of a microtiter plate and detected by an ELISA. The specificity of the PCR was determined using 39 bacterial strains, including STEC, enteropathogenic E. coli, E. coli K12, and Salmonella. All of the STEC strains were positive, and non-STEC organisms were negative. The ELISA detecting system was able to increase the sensitivity of the PCR assay by up to 100-fold, compared with a conventional gel electrophoresis. The detection limit of the PCR-ELISA was 0.1-10 CFU dependent upon STEC serotypes, and genotypes of Shiga toxins. With the aid of a simple DNA extraction system, PrepMan, the PCR-ELISA was able to detect ca. 10(5) CFU of STEC per gram of ground beef without any culture enrichment. The entire procedure took about 6 h. Because of its microtiter plate format, PCR-ELISA is particularly suitable for large-scale screening and compatible with future automation. PMID:11909738

  18. Modified Real-Time PCR for Detecting, Differentiating, and Quantifying Ureaplasma urealyticum and Ureaplasma parvum

    PubMed Central

    Vancutsem, Ellen; Soetens, Oriane; Breugelmans, Maria; Foulon, Walter; Naessens, Anne

    2011-01-01

    We evaluated a previously described quantitative real-time PCR (qPCR) for quantifying and differentiating Ureaplasma parvum and U. urealyticum. Because of nonspecific reactions with Staphylococcus aureus DNA in the U. parvum PCR, we developed a modified qPCR and designed new primers. These oligonucleotides eradicated cross-reactions, indicating higher specificity. The detection limits of the qPCR were determined at 1 and 3 colony-forming units/ml for U. parvum and U. urealyticum, respectively. The quantification limits of the assay for both Ureaplasma species ranged from 2.106 to 2.101 copy numbers per PCR. A total of 300 patient samples obtained from the lower genital tract were tested with this newly designed qPCR assay and compared with culture results. Of the samples, 132 (44.0%) were culture positive, whereas 151 (50.3%) tested positive using qPCR. The U. parvum and U. urealyticum species were present in 79.5% and 12.6% of the qPCR-positive samples, respectively. Both species were found in 7.9% of those samples. Quantification of U. parvum and U. urealyticum in the samples ranged from less than 2.5 × 103 to 7.4 × 107 copies per specimen. In conclusion, the modified qPCR is a suitable method for rapid detection, differentiation, and quantification of U. parvum and U. urealyticum. PMID:21354056

  19. REAL-TIME PCR METHOD TO DETECT ENTEROCOCCUS FAECALIS IN WATER

    EPA Science Inventory

    A 16S rDNA real-time PCR method was developed to detect Enterococcus faecalis in water samples. The dynamic range for cell detection spanned five logs and the detection limit was determined to be 6 cfu/reaction. The assay was capable of detecting E. faecalis cells added to biof...

  20. A PCR procedure for the detection of Giardia intestinalis cysts and Escherichia coli in lettuce.

    PubMed

    Ramirez-Martinez, M L; Olmos-Ortiz, L M; Barajas-Mendiola, M A; Giono Cerezo, S; Avila, E E; Cuellar-Mata, P

    2015-06-01

    Giardia intestinalis is a pathogen associated with foodborne outbreaks and Escherichia coli is commonly used as a marker of faecal contamination. Implementation of routine identification methods of G. intestinalis is difficult for the analysis of vegetables and the microbiological detection of E. coli requires several days. This study proposes a PCR-based assay for the detection of E. coli and G. intestinalis cysts using crude DNA isolated from artificially contaminated lettuce. The G. intestinalis and E. coli PCR assays targeted the β-giardin and uidA genes, respectively, and were 100% specific. Forty lettuces from local markets were analysed by both PCR and light microscopy and no cysts were detected, the calculated detection limit was 20 cysts per gram of lettuce; however, by PCR, E. coli was detected in eight of ten randomly selected samples of lettuce. These data highlight the need to validate procedures for routine quality assurance. These PCR-based assays can be employed as alternative methods for the detection of G. intestinalis and E. coli and have the potential to allow for the automation and simultaneous detection of protozoa and bacterial pathogens in multiple samples. Significance and impact of the study: There are few studies for Giardia intestinalis detection in food because methods for its identification are difficult for routine implementation. Here, we developed a PCR-based method as an alternative to the direct observation of cysts in lettuce by light microscopy. Additionally, Escherichia coli was detected by PCR and the sanitary quality of lettuce was evaluated using molecular and standard microbiological methods. Using PCR, the detection probability of Giardia cysts inoculated onto samples of lettuce was improved compared to light microscopy, with the advantage of easy automation. These methods may be employed to perform timely and affordable detection of foodborne pathogens. PMID:25689035

  1. Acoustic detection of DNA conformation in genetic assays combined with PCR.

    PubMed

    Papadakis, G; Tsortos, A; Kordas, A; Tiniakou, I; Morou, E; Vontas, J; Kardassis, D; Gizeli, E

    2013-01-01

    Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost. PMID:23778520

  2. Acoustic detection of DNA conformation in genetic assays combined with PCR

    PubMed Central

    Papadakis, G.; Tsortos, A.; Kordas, A.; Tiniakou, I.; Morou, E.; Vontas, J.; Kardassis, D.; Gizeli, E.

    2013-01-01

    Application of PCR to multiplexing assays is not trivial; it requires multiple fluorescent labels for amplicon detection and sophisticated software for data interpretation. Alternative PCR-free methods exploiting new concepts in nanotechnology exhibit high sensitivities but require multiple labeling and/or amplification steps. Here, we propose to simplify the problem of simultaneous analysis of multiple targets in genetic assays by detecting directly the conformation, rather than mass, of target amplicons produced in the same PCR reaction. The new methodology exploits acoustic wave devices which are shown to be able to characterize in a fully quantitative manner multiple double stranded DNAs of various lengths. The generic nature of the combined acoustic/PCR platform is shown using real samples and, specifically, during the detection of SNP genotyping in Anopheles gambiae and gene expression quantification in treated mice. The method possesses significant advantages to TaqMan assay and real-time PCR regarding multiplexing capability, speed, simplicity and cost. PMID:23778520

  3. Detection of sulfonamide resistance genes via in situ PCR-FISH.

    PubMed

    Gnida, Anna; Kunda, Katarzyna; Ziembińska, Aleksandra; Luczkiewicz, Aneta; Felis, Ewa; Surmacz-Górska, Joanna

    2014-01-01

    Due to the rising use of antibiotics and as a consequence of their concentration in the environment an increasing number of antibiotic resistant bacteria is observed. The phenomenon has a hazardous impact on human and animal life. Sulfamethoxazole is one of the sulfonamides commonly detected in surface waters and soil. The aim of the study was to detect sulfamethoxazole resistance genes in activated sludge biocenosis by use of in situ PCR and/or hybridization. So far no FISH probes for the detection of SMX resistance genes have been described in the literature. We have tested common PCR primers used for SMX resistance genes detection as FISH probes as well as a combination of in situ PCR and FISH. Despite the presence of SMX resistance genes in activated sludge confirmed via traditional PCR, the detection of the genes via microscopic visualization failed. PMID:25115110

  4. Evaluation of PCR Approaches for Detection of Bartonella bacilliformis in Blood Samples

    PubMed Central

    Gomes, Cláudia; Martinez-Puchol, Sandra; Pons, Maria J.; Bazán, Jorge; Tinco, Carmen; del Valle, Juana; Ruiz, Joaquim

    2016-01-01

    Background The lack of an effective diagnostic tool for Carrion’s disease leads to misdiagnosis, wrong treatments and perpetuation of asymptomatic carriers living in endemic areas. Conventional PCR approaches have been reported as a diagnostic technique. However, the detection limit of these techniques is not clear as well as if its usefulness in low bacteriemia cases. The aim of this study was to evaluate the detection limit of 3 PCR approaches. Methodology/Principal Findings We determined the detection limit of 3 different PCR approaches: Bartonella-specific 16S rRNA, fla and its genes. We also evaluated the viability of dry blood spots to be used as a sample transport system. Our results show that 16S rRNA PCR is the approach with a lowest detection limit, 5 CFU/μL, and thus, the best diagnostic PCR tool studied. Dry blood spots diminish the sensitivity of the assay. Conclusions/Significance From the tested PCRs, the 16S rRNA PCR-approach is the best to be used in the direct blood detection of acute cases of Carrion’s disease. However its use in samples from dry blood spots results in easier management of transport samples in rural areas, a slight decrease in the sensitivity was observed. The usefulness to detect by PCR the presence of low-bacteriemic or asymptomatic carriers is doubtful, showing the need to search for new more sensible techniques. PMID:26959642

  5. Detection of Entamoeba histolytica DNA in the Saliva of Amoebic Liver Abscess Patients Who Received Prior Treatment with Metronidazole

    PubMed Central

    Khairnar, Krishna; Parija, Subhash Chandra

    2008-01-01

    Saliva is an easily-accessible and a non-invasive clinical specimen alternate to blood and liver pus. An attempt was made to detect Entamoeba histolytica DNA released in the saliva of amoebic liver abscess (ALA) patients by applying 16S-like rRNA gene-based nested multiplex polymerase chain reaction (NM-PCR). The NM-PCR detected E. histolytica DNA in the saliva of eight (28.6%) of 28 ALA patients. The NM-PCR result was negative for E. histolytica DNA in the saliva of all the eight ALA patients who were tested prior to treatment with metronidazole but was positive in the saliva of eight (40%) of 20 ALA patient who were tested after therapy with metronidazole. The NM-PCR detected E. histolytica DNA in liver abscess pus of all 28 (100%) patients with ALA. The TechLab E. histolytica II enzyme-linked immunosorbent assay was positive for E. histolytica Gal/GalNAc lectin antigen in the liver abscess pus of 13 (46.4%) of the 28 ALA patients. The indirect haemagglutination (IHA) test was positive for anti-amoebic antibodies in the serum of 22 (78.6%) of the 28 ALA patients and 2 (5.7%) of 35 healthy controls. The present study, for the first time, demonstrates the release of E. histolytica DNA in the saliva of ALA patients by applying NM-PCR. PMID:19069620

  6. Detection of Entamoeba histolytica DNA in the saliva of amoebic liver abscess patients who received prior treatment with metronidazole.

    PubMed

    Khairnar, Krishna; Parija, Subhash Chandra

    2008-12-01

    Saliva is an easily-accessible and a non-invasive clinical specimen alternate to blood and liver pus. An attempt was made to detect Entamoeba histolytica DNA released in the saliva of amoebic liver abscess (ALA) patients by applying 16S-like rRNA gene-based nested multiplex polymerase chain reaction (NM-PCR). The NM-PCR detected E. histolytica DNA in the saliva of eight (28.6%) of 28 ALA patients. The NM-PCR result was negative for E. histolytica DNA in the saliva of all the eight ALA patients who were tested prior to treatment with metronidazole but was positive in the saliva of eight (40%) of 20 ALA patient who were tested after therapy with metronidazole. The NM-PCR detected E. histolytica DNA in liver abscess pus of all 28 (100%) patients with ALA. The TechLab E. histolytica II enzyme-linked immunosorbent assay was positive for E. histolytica Gal/GalNAc lectin antigen in the liver abscess pus of 13 (46.4%) of the 28 ALA patients. The indirect haemagglutination (IHA) test was positive for anti-amoebic antibodies in the serum of 22 (78.6%) of the 28 ALA patients and 2 (5.7%) of 35 healthy controls. The present study, for the first time, demonstrates the release of E. histolytica DNA in the saliva of ALA patients by applying NM-PCR. PMID:19069620

  7. Development of a real-time PCR assay for detection and quantification of Anaplasma ovis infection.

    PubMed

    Chi, Q; Liu, Z; Li, Y; Yang, J; Chen, Z; Yue, C; Luo, J; Yin, H

    2013-11-01

    Anaplasma ovis is a tick-borne intra-erythrocytic rickettsial pathogen of small ruminants. Real-time PCR possesses merits of rapidity, accuracy, reliability, automation and ease of standardization, but has not been used for detection of A. ovis, to the best of our knowledge. In this study, a real-time PCR assay was developed for detection and quantification of A. ovis. Species-specific primers and TaqMan probe were designed based on the gltA gene. No cross-reactions were observed with Anaplasma marginale, Anaplasma bovis, Anaplasma phagocytophilum, Borrelia burgdorferi s. l., Chlamydia psittaci, Mycoplasma mycoides, Theileria luwenshuni and Babesia sp. Xinjiang isolate. Analytic sensitivity results revealed that real-time PCR could detect as few as 10 copies of the gltA gene. The performance of real-time PCR was assessed by testing 254 blood samples from goats and comparing with the results from conventional PCR. This demonstrated that the real-time PCR assay was significantly more sensitive than conventional PCR. Our results indicated that real-time PCR is a useful approach for detecting A. ovis infections and has potential as an alternative tool for ecological and epidemiological surveillance of ovine anaplasmosis. PMID:24589111

  8. Low-cost, real-time, continuous flow PCR system for pathogen detection.

    PubMed

    Fernández-Carballo, B Leticia; McGuiness, Ian; McBeth, Christine; Kalashnikov, Maxim; Borrós, Salvador; Sharon, Andre; Sauer-Budge, Alexis F

    2016-04-01

    In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device. PMID:26995085

  9. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples

    SciTech Connect

    Wang, Rong-Fu; Cao, Wei-Wen; Cerniglia, C.E.

    1996-04-01

    PCR procedures based on 16S rRNA genen sequence specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human feces and animal feces. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps.

  10. An integrated microfluidic system for bovine DNA purification and digital PCR detection.

    PubMed

    Tian, Qingchang; Mu, Ying; Xu, Yanan; Song, Qi; Yu, Bingwen; Ma, Congcong; Jin, Wei; Jin, Qinhan

    2015-12-15

    In this paper, we described an integrated modularized microfluidic system that contained two distinct functional modules, one for nucleic acids (NA) extraction and the other for digital PCR (dPCR), allowing for detecting the bovine DNA in ovine tissue. PMID:26364950

  11. Ten hour real-time PCR technique for detection of Salmonella in meats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the efficacy of real-time PCR assays to detect low levels of Salmonella in meats following 8 h of pre-enrichment. The sensitivity and accuracy of molecular beacon and TaqMan probe PCR assays were compared with the conventional USDA microbiological procedure using artificially contaminat...

  12. Comparative analysis of techniques for detection of quiescent Botrytis cinerea in grapes by quantitative PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative PCR (qPCR) can be used to detect and monitor pathogen colonization, but early attempts to apply the technology to quiescent Botrytis cinerea infections of grape berries identified some specific limitations. In this study, four DNA extraction methods, two tissue-grinding methods, two gra...

  13. Quantitative Detection of Listeria monocytogenes in Biofilms by Real-Time PCR

    PubMed Central

    Guilbaud, Morgan; de Coppet, Pierre; Bourion, Fabrice; Rachman, Cinta; Prévost, Hervé; Dousset, Xavier

    2005-01-01

    A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 × 102 CFU/cm2. PMID:15812058

  14. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  15. Type A influenza virus detection from horses by real-time RT-PCR and insulated isothermal RT-PCR.

    PubMed

    Balasuriya, Udeni B R

    2014-01-01

    Equine influenza (EI) is a highly contagious disease of horses caused by the equine influenza virus (EIV) H3N8 subtype. EI is the most important respiratory virus infection of horses and can disrupt major equestrian events and cause significant economic losses to the equine industry worldwide. Influenza H3N8 virus spreads rapidly in susceptible horses and can result in very high morbidity within 24-48 h after exposure to the virus. Therefore, rapid and accurate diagnosis of EI is critical for implementation of prevention and control measures to avoid the spread of EIV and to reduce the economic impact of the disease. The probe-based real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays targeting various EIV genes are reported to be highly sensitive and specific compared to the Directigen Flu A(®) test and virus isolation in embryonated hens' eggs. Recently, a TaqMan(®) probe-based insulated isothermal RT-PCR (iiRT-PCR) assay for the detection of EIV H3N8 subtype has been described. These molecular based diagnostic assays provide a fast and reliable means of EIV detection and disease surveillance. PMID:24899448

  16. A new nanoPCR molecular assay for detection of porcine bocavirus.

    PubMed

    Wang, Xiaoling; Bai, Aiquan; Zhang, Jing; Kong, Miaomiao; Cui, Yuchao; Ma, Xingjie; Ai, Xia; Tang, Qinghai; Cui, Shangjin

    2014-06-01

    Nanoparticle-assisted polymerase chain reaction (nanoPCR) is a novel method for the rapid amplification of DNA and has been used for the detection of virus. For detection of porcine bocavirus (PBoV), a sensitive and specific nanoPCR assay was developed with a pair of primers that were designed based on NS1 gene sequences available in GenBank. Under the optimized conditions of the PBoV nanoPCR assay, the nanoPCR assay was 100-fold more sensitive than a conventional PCR assay. The lower detection limit of the nanoPCR assay was about 6.70×10(1) copies. The nanoPCR assay amplified the specific 482-bp fragment of the PBoV NS1 recombinant plasmid but did not produce any product with genomic DNA or cDNA of porcine parvovirus, porcine circovirus type II, porcine reproductive and respiratory syndrome virus, pseudorabies virus, classic swine fever virus, Encephalomyocarditis virus, Porcine Teschovirus or African swine fever virus plasmid. Of 65 clinical samples collected from diseased pigs, 73.8% and 86.2% were determined to be PBoV positive by PBoV conventional PCR and PBoV nanoPCR assay, respectively. Of 36 clinical samples from healthy pigs, 27.8% and 44.4% were PBoV positive by PBoV conventional PCR and PBoV nanoPCR assay, respectively. The nanoPCR assay will be useful for diagnosing PBoV and for studying its epidemiology and pathology. PMID:24642242

  17. Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers.

    PubMed

    Winn-Deen

    1998-12-01

    Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe. PMID:10089280

  18. Nucleic acid extraction from polluted estuarine water for detection of viruses and bacteria by PCR and RT-PCR analysis.

    PubMed

    Petit, F; Craquelin, S; Guespin-Michel, J; Buffet-Janvresse, C

    1999-03-01

    We describe an extraction protocol for genomic DNA and RNA of both viruses and bacteria from polluted estuary water. This procedure was adapted to the molecular study of microflora of estuarine water where bacteria and viruses are found free, forming low-density biofilms, or intimately associated with organo-mineral particles. The sensitivity of the method was determined with seeded samples for RT-PCR and PCR analysis of viruses (10 virions/mL), and bacteria (1 colony-forming unit mL). We report an example of molecular detection of both poliovirus and Salmonella in the Seine estuary (France) and an approach to studying their association with organo-mineral particles. PMID:10209769

  19. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes

    PubMed Central

    Deepak, SA; Kottapalli, KR; Rakwal, R; Oros, G; Rangappa, KS; Iwahashi, H; Masuo, Y; Agrawal, GK

    2007-01-01

    Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. Real-time PCRdetection and expression analysis of gene(s) in real-time — has revolutionized the 21st century biological science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, including technological refinement and application in all scientific fields ranging from medical to environmental issues, and to plant. PMID:18645596

  20. Optimisation of DNA extraction and validation of PCR assays to detect Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Timms, Verlaine J; Mitchell, Hazel M; Neilan, Brett A

    2015-05-01

    The aim of this study was to investigate DNA extraction methods and PCR assays suitable for the detection of Mycobacterium paratuberculosis in bovine tissue. The majority of methods currently used to detect M. paratuberculosis have been developed using bovine samples, such as faeces, blood or tissue and, in many cases, have been based on detection from pooled samples from a herd. However most studies have not compared PCR results to culture results. In order to address this problem, four DNA extraction protocols and three PCR assays were employed to detect M. paratuberculosis in bovine tissue. Given that culture is reliable from cows, the results were then compared with the known M. paratuberculosis culture status. The following DNA extractions were included, two commercial kits, a boiling method, an in house extraction based on a published method and enrichment by sonication. The three PCR assays used included single round IS900 and f57 assays and a nested IS900 assay. In addition, another PCR assay was validated for the detection of any Mycobacterial species and a universal bacterial 16S rRNA gene assay was used to detect sample inhibition. The in-house DNA extraction was the most consistent in extracting good quality DNA compared to all other methods. The use of two PCR markers, IS900 and f57, and a universal PCR enabled the correct samples to be identified as M. paratuberculosis positive. In addition, when compared to the culture result, false-positives did not occur and PCR inhibition was readily identified. Using an in house DNA extraction coupled with the IS900 and f57 PCR markers, this study provides a reliable and simple method to detect M. paratuberculosis in both veterinary and spill over infections. PMID:25797305

  1. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    PubMed

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences. PMID:26525256

  2. Direct Detection of Erythromycin-Resistant Bordetella pertussis in Clinical Specimens by PCR.

    PubMed

    Wang, Zengguo; Han, Ruijun; Liu, Ying; Du, Quanli; Liu, Jifeng; Ma, Chaofeng; Li, Hengxin; He, Qiushui; Yan, Yongping

    2015-11-01

    Resistance of Bordetella pertussis to erythromycin has been increasingly reported. We developed an allele-specific PCR method for rapid detection of erythromycin-resistant B. pertussis directly from nasopharyngeal (NP) swab samples submitted for diagnostic PCR. Based on the proven association of erythromycin resistance with the A2047G mutation in the 23S rRNA of B. pertussis, four primers, two of which were designed to be specific for either the wild-type or the mutant allele, were used in two different versions of the allele-specific PCR assay. The methods were verified with results obtained by PCR-based sequencing of 16 recent B. pertussis isolates and 100 NP swab samples submitted for diagnostic PCR. The detection limits of the two PCR assays ranged from 10 to 100 fg per reaction for both erythromycin-susceptible and -resistant B. pertussis. Two amplified fragments of each PCR, of 286 and 112 bp, respectively, were obtained from a mutant allele of the isolates and/or NP swab samples containing B. pertussis DNAs. For the wild-type allele, only a 286-bp fragment was visible when the allele-specific PCR assay 1 was performed. No amplification was found when a number of non-Bordetella bacterial pathogens and NP swab samples that did not contain the DNAs of B. pertussis were examined. This assay can serve as an alternative for PCR-based sequencing, especially for local laboratories in resource-poor countries. PMID:26224847

  3. Integrated sorting, concentration and real time PCR based detection system for sensitive detection of microorganisms

    PubMed Central

    Nayak, Monalisha; Singh, Deepak; Singh, Himanshu; Kant, Rishi; Gupta, Ankur; Pandey, Shashank Shekhar; Mandal, Swarnasri; Ramanathan, Gurunath; Bhattacharya, Shantanu

    2013-01-01

    The extremely low limit of detection (LOD) posed by global food and water safety standards necessitates the need to perform a rapid process of integrated detection with high specificity, sensitivity and repeatability. The work reported in this article shows a microchip platform which carries out an ensemble of protocols which are otherwise carried in a molecular biology laboratory to achieve the global safety standards. The various steps in the microchip include pre-concentration of specific microorganisms from samples and a highly specific real time molecular identification utilizing a q-PCR process. The microchip process utilizes a high sensitivity antibody based recognition and an electric field mediated capture enabling an overall low LOD. The whole process of counting, sorting and molecular identification is performed in less than 4 hours for highly dilute samples. PMID:24253282

  4. Integrated sorting, concentration and real time PCR based detection system for sensitive detection of microorganisms

    NASA Astrophysics Data System (ADS)

    Nayak, Monalisha; Singh, Deepak; Singh, Himanshu; Kant, Rishi; Gupta, Ankur; Pandey, Shashank Shekhar; Mandal, Swarnasri; Ramanathan, Gurunath; Bhattacharya, Shantanu

    2013-11-01

    The extremely low limit of detection (LOD) posed by global food and water safety standards necessitates the need to perform a rapid process of integrated detection with high specificity, sensitivity and repeatability. The work reported in this article shows a microchip platform which carries out an ensemble of protocols which are otherwise carried in a molecular biology laboratory to achieve the global safety standards. The various steps in the microchip include pre-concentration of specific microorganisms from samples and a highly specific real time molecular identification utilizing a q-PCR process. The microchip process utilizes a high sensitivity antibody based recognition and an electric field mediated capture enabling an overall low LOD. The whole process of counting, sorting and molecular identification is performed in less than 4 hours for highly dilute samples.

  5. Development of multiplex PCR assay for simultaneous detection of five bacterial fish pathogens.

    PubMed

    Altinok, Ilhan; Capkin, Erol; Kayis, Sevki

    2008-10-15

    A multiplex polymerase chain reaction (PCR) method was designed for the simultaneous detection of the five major fish pathogens, Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Flavobacterium columnare, Renibacterium salmoninarum, and Yersinia ruckeri. Each of the five pairs of oligonucleotide primers exclusively amplified the targeted gene of the specific microorganism. The detection limits of the multiplex PCR was in the range of 2, 1, 1, 3, and 1CFU for A. hydrophila, A. salmonicida, F. columnare, R. salmoninarum, and Y. ruckeri, respectively. Multiplex PCR did not produce any nonspecific amplification products when tested against 23 related species of bacteria. The multiplex PCR assay was useful for the detection of the bacteria in naturally infected fish. This assay is a sensitive and specific and reproducible diagnostic tool for the simultaneous detection of five pathogenic bacteria that cause disease in fish. Therefore, it could be a useful alternative to the conventional culture based method. PMID:18499358

  6. Rapid detection and identification of Clostridium chauvoei by PCR based on flagellin gene sequence.

    PubMed

    Kojima, A; Uchida, I; Sekizaki, T; Sasaki, Y; Ogikubo, Y; Tamura, Y

    2001-02-26

    We developed a one-step polymerase chain reaction (PCR) system that specifically detects Clostridium chauvoei. Oligonucleotide primers were designed to amplify a 516-bp fragment of the structural flagellin gene. The specificity of the PCR was investigated by analyzing 59 strains of clostridia, and seven strain of other genera. A 516-bp fragment could be amplified from all the C. chauvoei strains tested, and no amplification was observed by using DNAs from the other strains tested, including Clostridium septicum. Similarly, this PCR-based method specifically detected C. chauvoei DNA sequences in samples of muscle and exudate of obtained from mice within 12h of inoculation. In tests using samples of muscle or liver, the limit of detection was about 200 organisms per reaction. These results suggest that the one-step PCR system may be useful for direct detection and identification of C. chauvoei in clinical specimens. PMID:11182502

  7. DETECTION AND IDENTIFICATION OF PATHOGENIC CANDIDA SPECIES IN WATER USING FLOW CYTOMETRY COUPLED WITH TAQMAN PCR

    EPA Science Inventory

    As the incidence of human fungal infection increases, the ability to detect and identify pathogenic fungi in potential environmental reservoirs becomes increasingly important for disease control. PCR based assays are widely used for diagnostic purposes, but may be inadequate for...

  8. Detection and identification of infectious bronchitis virus by RT-PCR in Iran.

    PubMed

    Homayounimehr, Alireza; Pakbin, Ahmad; Momayyez, Reza; Fatemi, Seyyedeh Mahsa Rastegar

    2016-06-01

    Infectious bronchitis virus (IBV) causes severe diseases in poultry with significant economic consequences to the poultry industry in Iran. The aim of this study was the detection and identification of IBV by reverse transcription(RT)-PCR in Iran. Ten IB virus strains were detected by testing trachea, cecal tonsil, and kidney tissues collected from broiler and layer farms in Iran. In order to detect infectious bronchitis virus, an optimized RT-PCR was used. Primers targeting the conserved region of known IBV serotypes were used in the RT-PCR assay. Primers selectively detecting Massachusetts and 793/B type IB viruses were designed to amplify the S1 gene of the virus and used in the nested PCR test. Our findings indicate the circulation of at least three genotypes of IB viruses (Massachusetts, 793/B, and variant 2) among poultry flocks. PMID:27010714

  9. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform.

    PubMed

    Tachibana, Hiroaki; Saito, Masato; Shibuya, Shogo; Tsuji, Koji; Miyagawa, Nobuyuki; Yamanaka, Keiichiro; Tamiya, Eiichi

    2015-12-15

    Polymerase chain reaction (PCR)-based genetic testing has become a routine part of clinical diagnoses and food testing. In these fields, rapid, easy-to-use, and cost-efficient PCR chips are expected to be appeared for providing such testing on-site. In this study, a new autonomous disposable plastic microfluidic PCR chip was created, and was utilized for quantitative detection of pathogenic microorganisms. To control the capillary flow of the following solution in the PCR microchannel, a driving microchannel was newly designed behind the PCR microchannel. This allowed the effective PCR by simply dropping the PCR solution onto the inlet without any external pumps. In order to achieve disposability, injection-molded cyclo-olefin polymer (COP) of a cost-competitive plastic was used for the PCR chip. We discovered that coating the microchannel walls with non-ionic surfactant produced a suitable hydrophilic surface for driving the capillary flow through the 1250-mm long microchannel. As a result, quantitative real-time PCR with the lowest initial concentration of human, Escherichia coli (E. coli), and pathogenic E. coli O157 genomic DNA of 4, 0.0019, 0.031 pg/μl, respectively, was successfully achieved in less than 18 min. Our results indicate that the platform presented in this study provided a rapid, easy-to-use, and low-cost real-time PCR system that could be potentially used for on-site gene testing. PMID:26210470

  10. Detection of Methicillin-Resistant Staphylococcus aureus by a Duplex Droplet Digital PCR Assay

    PubMed Central

    Kelley, KaShonda; Cosman, Angela; Belgrader, Phillip; Chapman, Brenda

    2013-01-01

    Health care-associated infections with methicillin-resistant Staphylococcus aureus (MRSA) contribute to significant hospitalization costs. We report here a droplet digital PCR (ddPCR) assay, which is a next-generation emulsion-based endpoint PCR assay for high-precision MRSA analysis. Reference cultures of MRSA, methicillin-susceptible S. aureus (MSSA), and confounders were included as controls. Copan swabs were used to sample cultures and collect specimens for analysis from patients at a large teaching hospital. Swab extraction and cell lysis were accomplished using magnetic-driven agitation of silica beads. Quantitative PCR (qPCR) (Roche Light Cycler 480) and ddPCR (Bio-Rad QX100 droplet digital PCR system) assays were used to detect genes for the staphylococcal protein SA0140 (SA) and the methicillin resistance (mecA) gene employing standard TaqMan chemistries. Both qPCR and ddPCR assays correctly identified culture controls for MRSA (76), MSSA (12), and confounder organisms (36) with 100% sensitivity and specificity. Analysis of the clinical samples (211 negative and 186 positive) collected during a study of MRSA nasal carriage allowed direct comparison of the qPCR and ddPCR assays to the Cepheid MRSA GeneXpert assay. A total of 397 clinical samples were examined in this study. Cepheid MRSA GeneXpert values were used to define negative and positive samples. Both the qPCR and ddPCR assays were in good agreement with the reference assay. The sensitivities for the qPCR and ddPCR assays were 96.8% (95% confidence interval [CI], 93.1 to 98.5%) and 96.8% (95% CI, 93.1 to 98.5%), respectively. Both the qPCR and ddPCR assays had specificities of 91.9% (95% CI, 87.5 to 94.9%) for qPCR and 91.0% (95% CI, 86.4 to 94.2%) for ddPCR technology. PMID:23596244

  11. One-PCR-tube approach for in situ DNA isolation and detection.

    PubMed

    Huang, Xin; Hou, Lihua; Xu, Xiaohe; Chen, Hongjun; Ji, Haifeng; Zhu, Shuifang

    2011-10-21

    Traditional real-time polymerase chain reaction (PCR) requires a purified DNA sample for PCR amplification and detection. This requires PCR tests be conducted in clean laboratories, and limits its applications for field tests. This work developed a method that can carry out DNA purification, amplification and detection in a single PCR tube. The polypropylene PCR tube was first treated with chromic acid and peptide nucleic acids (PNA) as DNA-capturer were immobilized on the internal surface of the tube. Cauliflower mosaic virus 35S (CaMV-35S) promoter in the crude extract was hybridized with the PNA on the tube surface, and the inhibitors, interfering agents and irrelevant DNA in the crude extract were effectively removed by rinsing with buffer solutions. The tube that has captured the target DNA can be used for the following real-time PCR (RT-PCR). By using this approach, the detection of less than 2500 copies of 35S plasmids in a complex sample could be completed within 3 hours. Chocolate samples were tested for real sample analysis, and 35S plasmids in genetically modified chocolate samples have been successfully identified with this method in situ. The novel One-PCR-tube method is competitive for commercial kits with the same time and simpler operation procedure. This method may be widely used for identifying food that contains modified DNA and specific pathogens in the field. PMID:21879029

  12. High throughput multiplex PCR and probe-based detection with Luminex beads for seven intestinal parasites.

    PubMed

    Taniuchi, Mami; Verweij, Jaco J; Noor, Zannatun; Sobuz, Shihab U; Lieshout, Lisette van; Petri, William A; Haque, Rashidul; Houpt, Eric R

    2011-02-01

    Polymerase chain reaction (PCR) assays for intestinal parasites are increasingly being used on fecal DNA samples for enhanced specificity and sensitivity of detection. Comparison of these tests against microscopy and copro-antigen detection has been favorable, and substitution of PCR-based assays for the ova and parasite stool examination is a foreseeable goal for the near future. One challenge is the diverse list of protozoan and helminth parasites. Several existing real-time PCR assays for the major intestinal parasites-Cryptosporidium spp., Giardia intestinalis, Entamoeba histolytica, Ancylostoma duodenale, Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis-were adapted into a high throughput protocol. The assay involves two multiplex PCR reactions, one with specific primers for the protozoa and one with specific primers for the helminths, after which PCR products are hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. When compared with the parent multiplex real-time PCR assays, this multiplex PCR-bead assay afforded between 83% and 100% sensitivity and specificity on a total of 319 clinical specimens. In conclusion, this multiplex PCR-bead protocol provides a sensitive diagnostic screen for a large panel of intestinal parasites. PMID:21292910

  13. Comparison of PCR and Plaque Assay for Detection and Enumeration of Coliphage in Polluted Marine Waters

    PubMed Central

    Rose, J. B.; Zhou, X.; Griffin, D. W.; Paul, J. H.

    1997-01-01

    A total of 68 marine samples from various sites impacted by sewage and storm waters were analyzed by both the plaque assay and a reverse transcriptase (RT) PCR technique for F(sup+)-specific coliphage. The coliphage levels detected by the plaque assay averaged 1.90 x 10(sup4) PFU/100.0 ml. Using a most probable number (MPN) PCR approach, the levels averaged 2.40 x 10(sup6) MPN-PCR units/100.0 ml. Two samples were positive by RT-PCR but negative by plaque assay, and 12 samples were positive by plaque assay but negative by RT-PCR (levels lower than 11.00 PFU/100.0 ml). The host system used for the plaque assay may detect somatic coliphage in addition to the F(sup+)-specific coliphage. When it is used as an indicator of pollution, contamination may be missed with more restrictive systems. The difference in results may be due to the sensitivity, specificity, or inhibition of RT-PCR in marine samples. This study provides information on quantifying PCR results by an MPN method and insights into interpretation of PCR data for detection of viruses in marine environments. PMID:16535737

  14. Detecting Newcastle disease virus in combination of RT-PCR with red blood cell absorption.

    PubMed

    Yi, Jianzhong; Liu, Chengqian

    2011-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) has limited sensitivity when treating complicated samples, such as feces, waste-water in farms, and nucleic acids, protein rich tissue samples, all the factors may interfere with the sensitivity of PCR test or generate false results. In this study, we developed a sensitive RT-PCR, combination of red blood cell adsorption, for detecting Newcastle disease virus (NDV). One pair of primers which was highly homologous to three NDV pathotypes was designed according to the consensus nucleocapsid protein (NP) gene sequence. To eliminate the interfere of microbes and toxic substances, we concentrated and purified NDV from varied samples utilizing the ability of NDV binding red blood cells (RBCs). The RT-PCR coupled with red blood cell adsorption was much more sensitive in comparison with regular RT-PCR. The approach could also be used to detect other viruses with the property of hemagglutination, such as influenza viruses. PMID:21535888

  15. A multiplex PCR for the simultaneous detection of Tenacibaculum maritimum and Edwardsiella tarda in aquaculture.

    PubMed

    Castro, Nuria; Toranzo, Alicia E; Magariños, Beatriz

    2014-06-01

    A specific and sensitive multiplex PCR (mPCR) method was developed as a useful tool for the simultaneous detection of two important flatfish pathogens in marine aquaculture, Tenacibaculum maritimum and Edwardsiella tarda. In fish tissues, the average detection limit for these mPCR-amplified organisms was 2 × 10 ⁵ ± 0.2 CFU/g and 4 × 10 ⁵ ± 0.3 CFU/g, respectively. These values are similar or even lower than those previously obtained using the corresponding single PCR. Moreover, mPCR did not produce any nonspecific amplification products when tested against 36 taxonomically related and unrelated strains belonging to 33 different bacterial species. Large amounts of DNA from one of the target bacterial species in the presence of low amounts from the other did not have a significant effect on the amplification sensitivity of the latter. PMID:26418855

  16. PCR for detection of Clostridium botulinum type C in avian and environmental samples.

    PubMed

    Franciosa, G; Fenicia, L; Caldiani, C; Aureli, P

    1996-04-01

    A PCR was developed and applied for the detection of Clostridium botulinum type C in 18 avian and environmental samples collected during an outbreak of avian botulism, and the results were compared with those obtained by conventional methodologies based on the mouse bioassay. PCR and mouse bioassay results compared well (100%) after the enrichment of samples, but PCR results directly indicated the presence of this microorganism in six samples, while only one of these contained the type C botulinal neurotoxin before enrichment. The PCR assay was sensitive (limit of detection between 15 and 15 x 10(3) spores per PCR), specific (no amplification products were obtained with other clostridia), and rapid, since sonicated and heated samples provided enough template for amplification without any DNA purification. Eleven isolates of C. botulinum type C were recovered from mallards (Anas platyrhynchos), grey herons (Ardea cinerea), and mud during investigation of this outbreak. PMID:8815101

  17. PCR for detection of Clostridium botulinum type C in avian and environmental samples.

    PubMed Central

    Franciosa, G; Fenicia, L; Caldiani, C; Aureli, P

    1996-01-01

    A PCR was developed and applied for the detection of Clostridium botulinum type C in 18 avian and environmental samples collected during an outbreak of avian botulism, and the results were compared with those obtained by conventional methodologies based on the mouse bioassay. PCR and mouse bioassay results compared well (100%) after the enrichment of samples, but PCR results directly indicated the presence of this microorganism in six samples, while only one of these contained the type C botulinal neurotoxin before enrichment. The PCR assay was sensitive (limit of detection between 15 and 15 x 10(3) spores per PCR), specific (no amplification products were obtained with other clostridia), and rapid, since sonicated and heated samples provided enough template for amplification without any DNA purification. Eleven isolates of C. botulinum type C were recovered from mallards (Anas platyrhynchos), grey herons (Ardea cinerea), and mud during investigation of this outbreak. PMID:8815101

  18. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections

    PubMed Central

    Chavada, Ruchir; Maley, Michael

    2015-01-01

    Introduction: Community and healthcare associated infections caused by multi-drug resistant gram negative organisms (MDR GN) represent a worldwide threat. Nucleic Acid Detection tests are becoming more common for their detection; however they can be expensive requiring specialised equipment and local expertise. This study was done to evaluate the utility of a commercial multiplex tandem (MT) PCR for detection of MDR GN. Methods: The study was done on stored laboratory MDR GN isolates from sterile and non-sterile specimens (n=126, out of stored 567 organisms). Laboratory validation of the MT PCR was done to evaluate sensitivity, specificity and agreement with the current phenotypic methods used in the laboratory. Amplicon sequencing was also done on selected isolates for assessing performance characteristics. Workflow and cost implications of the MT PCR were evaluated. Results: The sensitivity and specificity of the MT PCR were calculated to be 95% and 96.7% respectively. Agreement with the phenotypic methods was 80%. Major lack of agreement was seen in detection of AmpC beta lactamase in enterobacteriaceae and carbapenemase in non-fermenters. Agreement of the MT PCR with another multiplex PCR was found to be 87%. Amplicon sequencing confirmed the genotype detected by MT PCR in 94.2 % of cases tested. Time to result was faster for the MT PCR but cost per test was higher. Conclusion: This study shows that with carefully chosen targets for detection of resistance genes in MDR GN, rapid and efficient identification is possible. MT PCR was sensitive and specific and likely more accurate than phenotypic methods. PMID:26464612

  19. Detection of Leptospira DNA in Patients with Aseptic Meningitis by PCR

    PubMed Central

    Romero, Eliete C.; Billerbeck, Ana E. C.; Lando, Valéria S.; Camargo, Eide D.; Souza, Candida C.; Yasuda, Paulo H.

    1998-01-01

    Samples of cerebrospinal fluid from 103 patients with aseptic meningitis were tested by PCR for detection of leptospires, and the results were compared with those of the microscopic agglutination test (MAT) and an enzyme-linked immunosorbent assay for detection of immunoglobulin M (ELISA-IgM). Of these samples, 39.80% were positive by PCR and 8.74 and 3.88% were positive by MAT and ELISA-IgM, respectively. PMID:9574730

  20. Real-Time PCR Improves Helicobacter pylori Detection in Patients with Peptic Ulcer Bleeding

    PubMed Central

    Casalots, Alex; Sanfeliu, Esther; Boix, Loreto; García-Iglesias, Pilar; Sánchez-Delgado, Jordi; Montserrat, Antònia; Bella-Cueto, Maria Rosa; Gallach, Marta; Sanfeliu, Isabel; Segura, Ferran; Calvet, Xavier

    2011-01-01

    Background and Aims Histological and rapid urease tests to detect H. pylori in biopsy specimens obtained during peptic ulcer bleeding episodes (PUB) often produce false-negative results. We aimed to examine whether immunohistochemistry and real-time PCR can improve the sensitivity of these biopsies. Patients and Methods We selected 52 histology-negative formalin-fixed paraffin-embedded biopsy specimens obtained during PUB episodes. Additional tests showed 10 were true negatives and 42 were false negatives. We also selected 17 histology-positive biopsy specimens obtained during PUB to use as controls. We performed immunohistochemistry staining and real-time PCR for 16S rRNA, ureA, and 23S rRNA for H. pylori genes on all specimens. Results All controls were positive for H. pylori on all PCR assays and immunohistochemical staining. Regarding the 52 initially negative biopsies, all PCR tests were significantly more sensitive than immunohistochemical staining (p<0.01). Sensitivity and specificity were 55% and 80% for 16S rRNA PCR, 43% and 90% for ureA PCR, 41% and 80% for 23S rRNA PCR, and 7% and 100% for immunohistochemical staining, respectively. Combined analysis of PCR assays for two genes were significantly more sensitive than ureA or 23S rRNA PCR tests alone (p<0.05) and marginally better than 16S rRNA PCR alone. The best combination was 16S rRNA+ureA, with a sensitivity of 64% and a specificity of 80%. Conclusions Real-time PCR improves the detection of H. pylori infection in histology-negative formalin-fixed paraffin-embedded biopsy samples obtained during PUB episodes. The low reported prevalence of H. pylori in PUB may be due to the failure of conventional tests to detect infection. PMID:21625499

  1. [Selective detection of viable pathogenic bacteria in water using reverse transcription quantitative PCR].

    PubMed

    Lin, Yi-Wen; Li, Dan; Wu, Shu-Xu; He, Miao; Yang, Tian

    2012-11-01

    A reverse transcription q quantitative PCR (RT-qPCR) assay method was established, which can quantify the copy numbers of RNA in pathogenic bacteria of E. coli and Enterococcus faecium. The results showed that cDNA was generated with the RT-PCR reagents, target gene was quantified with the qPCR, the copy numbers of RNA were stable at about 1 copies x CFU(-1) for E. coli and 7.98 x 10(2) copies x CFU(-1) for Enterococcus faecium respectively during the stationary grow phase for the both indicator bacteria [E. coli (6-18 h) and Enterococcus faecium (10-38 h)]. The established RT-qPCR method can quantify the numbers of viable bacteria through detecting bacterial RNA targets. Through detecting the heat-treated E. coli and Enterococcus faecium by three methods (culture method, qPCR, RT-qPCR), we found that the qPCR and RT-qPCR can distinguish 1.43 lg copy non-viable E. coli and 2.5 lg copy non-viable Enterococcus faecium. These results indicated that the established methods could effectively distinguish viable bacteria from non-viable bacteria. Finally we used this method to evaluate the real effluents of the secondary sedimentation of wastewater treatment plant (WWTP), the results showed that the correlation coefficients (R2) between RT-qPCR and culture method were 0.930 (E. coli) and 0.948 (Enterococcus faecium), and this established RT-PCR method can rapidly detect viable pathogenic bacteria in genuine waters. PMID:23323443

  2. Real-Time PCR Method for Detection of Pathogenic Yersinia enterocolitica in Food▿

    PubMed Central

    Lambertz, S. Thisted; Nilsson, C.; Hallanvuo, S.; Lindblad, M.

    2008-01-01

    The current methods for the detection of pathogenic Yersinia enterocolitica bacteria in food are time consuming and inefficient. Therefore, we have developed and evaluated in-house a TaqMan probe-based real-time PCR method for the detection of this pathogen. The complete method comprises overnight enrichment, DNA extraction, and real-time PCR amplification. Also included in the method is an internal amplification control. The selected primer-probe set was designed to use a 163-bp amplicon from the chromosomally located gene ail (attachment and invasion locus). The selectivity of the PCR method was tested with a diverse range (n = 152) of related and unrelated strains, and no false-negative or false-positive PCR results were obtained. The sensitivity of the PCR amplification was 85 fg purified genomic DNA, equivalent to 10 cells per PCR tube. Following the enrichment of 10 g of various food samples (milk, minced beef, cold-smoked sausage, fish, and carrots), the sensitivity ranged from 0.5 to 55 CFU Y. enterocolitica. Good precision, robustness, and efficiency of the PCR amplification were also established. In addition, the method was tested on naturally contaminated food; in all, 18 out of 125 samples were positive for the ail gene. Since no conventional culture method could be used as a reference method, the PCR products amplified from these samples were positively verified by using conventional PCR and sequencing of the amplicons. A rapid and specific real-time PCR method for the detection of pathogenic Y. enterocolitica bacteria in food, as presented here, provides a superior alternative to the currently available detection methods and makes it possible to identify the foods at risk for Y. enterocolitica contamination. PMID:18708521

  3. Rapid detection of Salmonella in bovine lymph nodes using a commercial real-time PCR system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid Salmonella detection is needed to help prevent the distribution of contaminated food products. Using traditional culture methods, Salmonella detection can take up to 3-5 days. Using an improved protocol and a commercial real-time PCR system, we have shortened the detection time to under 24 h...

  4. Multiplex RT-PCR detection of H3N2 influenza A virus in dogs.

    PubMed

    Lee, EunJung; Kim, Eun-Ju; Kim, Bo-Hye; Song, Jae-Young; Cho, In-Soo; Shin, Yeun-Kyung

    2016-02-01

    A multiplex RT-PCR (mRT-PCR) assay to detect H3N2 CIV genomic segments was developed as a rapid and cost-effective method. Its performance was evaluated with forty-six influenza A viruses from different hosts using three primer sets which amplify four segments of H3N2 CIV simultaneously. The mRT-PCR has been successful in detecting the viral segments, indicating that it can improve the speed of diagnosis for H3N2 CIV and its reassortants. PMID:26738688

  5. Detection of Verotoxigenic Escherichia coli by Magnetic Capture-Hybridization PCR

    PubMed Central

    Chen, Jinru; Johnson, Roger; Griffiths, Mansel

    1998-01-01

    Magnetic capture-hybridization PCR (MCH-PCR) was used for the detection of 36 verotoxigenic (verotoxin [VT]-producing) Escherichia coli (VTEC), 5 VTEC reference, and 13 non-VTEC control cultures. The detection system employs biotin-labeled probes to capture the DNA segments that contain specific regions of the genes for VT1 and VT2 by DNA-DNA hybridization. The hybrids formed were isolated by streptavidin-coated magnetic beads which were collected by a magnetic particle separator and, subsequently, amplified directly by conventional PCR. The detection system was found to be specific for VTEC: no amplification was obtained from non-VTEC controls, whereas VTEC isolates tested positive for one or two specific PCR products. With 5, 7, or 10 h of enrichment, the limits of detection were 103, 102, and 100 CFU/ml, respectively, by agarose gel electrophoresis. Southern hybridization did not seem to improve the limit of the detection. When applied to food, MCH-PCR was capable of detecting 100 CFU of VTEC per g of ground beef with 15 h of nonselective enrichment. The results of MCH-PCR for pure cultures of VT1- and/or VT2-producing E. coli cells were in total agreement with toxin production as measured by a VT enzyme-linked immunosorbent assay. PMID:9435072

  6. New PCR diagnostic systems for the detection and quantification of porcine cytomegalovirus (PCMV).

    PubMed

    Morozov, Vladimir A; Morozov, Alexey V; Denner, Joachim

    2016-05-01

    Pigs are frequently infected with porcine cytomegalovirus (PCMV). Infected adult animals may not present with symptoms of disease, and the virus remains latent. However, the virus may be transmitted to human recipients receiving pig transplants. Recently, it was shown that pig-to-non-human-primate xenotransplantations showed 2 to 3 times lower transplant survival when the donor pig was infected with PCMV. Therefore, highly sensitive methods are required to select virus-free pigs and to examine xenotransplants. Seven previously established PCR detection systems targeting the DNA polymerase gene of PCMV were examined by comparison of thermodynamic parameters of oligonucleotides, and new diagnostic nested PCR and real-time PCR systems with improved parameters and high sensitivity were established. The detection limit of conventional PCR was estimated to be 15 copies, and that of the nested PCR was 5 copies. The sensitivity of the real-time PCR with a TaqMan probe was two copies. An equal efficiency of the newly established detection systems was shown by parallel testing of DNA from sera and blood of six pigs, identifying the same animals as PCMV infected. These new diagnostic PCR systems will improve the detection of PCMV and therefore increase the safety of porcine xenotransplants. PMID:26839086

  7. Heminested PCR assay for detection of six genotypes of rabies and rabies-related viruses.

    PubMed Central

    Heaton, P R; Johnstone, P; McElhinney, L M; Cowley, R; O'Sullivan, E; Whitby, J E

    1997-01-01

    A heminested reverse transcriptase PCR (hnRT-PCR) protocol which is rapid and sensitive for the detection of rabies virus and rabies-related viruses is described. Sixty isolates from six of the seven genotypes of rabies and rabies-related viruses were screened successfully by hnRT-PCR and Southern blot hybridization. Of the 60 isolates, 93% (56 of 60) were positive by external PCR, while all isolates were detected by heminested PCR and Southern blot hybridization. We also report on a comparison of the sensitivity of the standard fluorescent-antibody test (FAT) for rabies antigen and that of hnRT-PCR for rabies viral RNA with degraded tissue infected with a genotype 1 virus. Results indicated that FAT failed to detect viral antigen in brain tissue that was incubated at 37 degrees C for greater than 72 h, while hnRT-PCR detected viral RNA in brain tissue that was incubated at 37 degrees C for 360 h. PMID:9350729

  8. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay

    PubMed Central

    Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility. PMID:26544710

  9. DNA Sequence Signatures for Rapid Detection of Six Target Bacterial Pathogens Using PCR Assays.

    PubMed

    Nagamine, Kenjiro; Hung, Guo-Chiuan; Li, Bingjie; Lo, Shyh-Ching

    2015-01-01

    Using Streptococcus pyogenes as a model, we previously established a stepwise computational workflow to effectively identify species-specific DNA signatures that could be used as PCR primer sets to detect target bacteria with high specificity and sensitivity. In this study, we extended the workflow for the rapid development of PCR assays targeting Enterococcus faecalis, Enterococcus faecium, Clostridium perfringens, Clostridium difficile, Clostridium tetani, and Staphylococcus aureus, which are of safety concern for human tissue intended for transplantation. Twenty-one primer sets that had sensitivity of detecting 5-50 fg DNA from target bacteria with high specificity were selected. These selected primer sets can be used in a PCR array for detecting target bacteria with high sensitivity and specificity. The workflow could be widely applicable for the rapid development of PCR-based assays for a wide range of target bacteria, including those of biothreat agents. PMID:26279626

  10. DNA Sequence Signatures for Rapid Detection of Six Target Bacterial Pathogens Using PCR Assays

    PubMed Central

    Nagamine, Kenjiro; Hung, Guo-Chiuan; Li, Bingjie; Lo, Shyh-Ching

    2015-01-01

    Using Streptococcus pyogenes as a model, we previously established a stepwise computational workflow to effectively identify species-specific DNA signatures that could be used as PCR primer sets to detect target bacteria with high specificity and sensitivity. In this study, we extended the workflow for the rapid development of PCR assays targeting Enterococcus faecalis, Enterococcus faecium, Clostridium perfringens, Clostridium difficile, Clostridium tetani, and Staphylococcus aureus, which are of safety concern for human tissue intended for transplantation. Twenty-one primer sets that had sensitivity of detecting 5–50 fg DNA from target bacteria with high specificity were selected. These selected primer sets can be used in a PCR array for detecting target bacteria with high sensitivity and specificity. The workflow could be widely applicable for the rapid development of PCR-based assays for a wide range of target bacteria, including those of biothreat agents. PMID:26279626

  11. Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates

    SciTech Connect

    Sano, T.; Smith, C.L.; Cantor, C.R. )

    1992-10-02

    An antigen detection system, termed immuno-polymerase chain reaction (immuno-PCR), was developed in which a specific DNA molecule is used as the marker. A streptavidin-protein A chimera that possesses tight and specific binding affinity both for biotin and immunoglobulin G was used to attach a biotinylated DNA specifically to antigen-monoclonal antibody complexes that had been immobilized on microtiter plate wells. Then, a segment of the attached DNA was amplified by PCR. Analysis of the PCR products by agarose gel electrophoresis after staining with ethidium bromide allowed as few as 580 antigen molecules to be readily and reproducibly detected. Direct comparison with enzyme-linked immunosorbent assay with the use of a chimera-alkaline phosphatase conjugate demonstrates that enhancement in detection sensitivity was obtained with the use of immuno-PCR. Given the enormous amplification capability and specificity of PCR, this immuno-PCR technology has a sensitivity greater than any existing antigen detection system and, in principle, could be applied to the detection of single antigen molecules.

  12. Development of a nested-PCR assay for the detection of Cryptosporidium parvum in finished water.

    PubMed

    Monis, P T; Saint, C P

    2001-05-01

    A nested-PCR assay, incorporating an internal positive control, was developed for Cryptosporidium monitoring in finished water. This assay was capable of reproducibly detecting 8 oocysts in spiked-filtered water samples collected from 5 South Australian water treatment plants. The RT-PCR assay of Kaucner and Stinear (Appl. Environ. Microbiol. 64(5) (1998) 1743) was also evaluated for the detection of Cryptosporidium parvum. Initially, under our experimental conditions, a detection level of 27 oocysts was achieved for spiked reagent water samples. This level was improved to 5 oocysts by modification of the method. Untreated South Australian source waters concentrated by calcium carbonate flocculation were found to be highly inhibitory to the RT-PCR assay. Concentration of similar samples using Envirochek filters appeared to eliminate PCR inhibition. While both methods possessed similar sensitivities the nested-PCR assay was more reproducible, more cost effective, simpler to perform and could detect both viable and non-viable intact Cryptosporidium parvum oocysts, which is an important consideration for plant operators. These factors make the nested-PCR assay the method of choice for screening large numbers of potable water samples, where a reliable low level of detection is essential. PMID:11329665

  13. Accuracy of Reverse Dot-Blot PCR in Detection of Different β-Globin Gene Mutations.

    PubMed

    El-Fadaly, N; Abd-Elhameed, A; Abd-Elbar, E; El-Shanshory, M

    2016-06-01

    Prevention programs for β-thalassemia based on molecular diagnosis of heterozygous carriers and/or patients require the use of reliable mutation screening methods. The aim of this study was to compare between direct DNA sequencing, and reverse dot-blot PCR in detection of different β-globin gene mutations in Egyptian children with β-thalassemia. Forty children with β-thalassemia were subjected to mutation analysis, performed by both direct DNA sequencing and β-globin Strip Assay MED™ (based on reverse dot-blot PCR). The most frequent mutant alleles detected by reverse dot-blot PCR were; IVSI-110 G>A (31.25 %), IVS I-6 T > C (21.25 %), and IVS I-1 G>A (20 %). Relatively less frequent mutant alleles detected by reverse dot-blot PCR were "IVSII-1 G>A (5 %), IVSII-745 C>G (5 %), IVSII-848 C>A (2.5 %), IVSI-5 G>C (2.5 %), -87 C>G(2.5 %), and cd39 C>T (2.5 %)", While the genotypes of three patients (6 alleles 7.5 %) were not detected by reverse dot-blot PCR. Mutant alleles detected by direct DNA sequencing were the same as reverse dot-blot PCR method except it revealed the genotypes of 3 undetected patients (one patient was homozygous IVSI-110 G>A, and two patients were homozygous IVS I-1 G>A. Sensitivity of the reverse dot-blot PCR was 92.5 % when compared to direct DNA sequencing for detecting β-thalassemia mutations. Our results therefore suggest that, direct DNA sequencing may be preferred over reverse dot-blot PCR in critical diagnostic situations like genetic counseling for prenatal diagnosis. PMID:27065589

  14. Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR

    PubMed Central

    Araújo, Cristina P.; Osório, Ana Luiza A.R.; Jorge, Klaudia S.G.; Ramos, Carlos A.N.; Souza Filho, Antonio F.; Vidal, Carlos E.S.; Vargas, Agueda P.C.; Roxo, Eliana; Rocha, Adalgiza S.; Suffys, Philip N.; Fonseca, Antônio A.; Silva, Marcio R.; Barbosa Neto, José D.; Cerqueira, Valíria D.; Araújo, Flábio R.

    2014-01-01

    Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis. PMID:25242951

  15. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    PubMed

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples. PMID:25817816

  16. Duplex PCR for detection of Salmonella and Shigella spp in cockle samples.

    PubMed

    Senachai, Pachara; Chomvarin, Chariya; Wongboot, Warawan; Boonyanugomol, Wongwarut; Tangkanakul, Waraluk

    2013-09-01

    Salmonella and Shigella spp are important causative agents of foodborne diseases. A sensitive, specific and rapid method is essential for detection of these pathogens. In this study, a duplex PCR method was developed for simultaneous detection of Salmonella and Shigella spp in cockle samples and compared with the traditional culture method. Enrichment broths for Salmonella spp recovery were also compared. Sensitivity of the duplex PCR for simultaneous detection of Salmonella and Shigella spp from pure culture was 10(3) CFU/ml (40 CFU/PCR reaction), and that of sterile cockle samples spiked with these two pathogens was 1 CFU/10 g of cockle tissue after 9 hours enrichment [3 hours in buffered peptone water (BPW), followed by 6 hours in Rappaport Vasiliadis (RV) broth or tetrathionate (TT) broth for Salmonella spp and 6 hours enrichment in Shigella broth (SB) for Shigella spp]. There was no significant difference in detection sensitivity between enrichment in RV and TT broths. Salmonella spp detected in cockles in Khon Kaen, Thailand by duplex PCR and culture method was 17% and 13%, respectively but Shigella spp was not detected. The duplex PCR technique developed for simultaneous detection of Salmonella and Shigella spp in cockle samples was highly sensitive, specific and rapid and could serve as a suitable method for food safety assessment. PMID:24437322

  17. The development of a real-time PCR to detect pathogenic Leptospira species in kidney tissue.

    PubMed

    Fearnley, C; Wakeley, P R; Gallego-Beltran, J; Dalley, C; Williamson, S; Gaudie, C; Woodward, M J

    2008-08-01

    A LightCycler real-time PCR hybridization probe-based assay that detects a conserved region of the16S rRNA gene of pathogenic but not saprophytic Leptospira species was developed for the rapid detection of pathogenic leptospires directly from processed tissue samples. In addition, a differential PCR specific for saprophytic leptospires and a control PCR targeting the porcine beta-actin gene were developed. To assess the suitability of these PCR methods for diagnosis, a trial was performed on kidneys taken from adult pigs with evidence of leptospiral infection, primarily a history of reproductive disease and serological evidence of exposure to pathogenic leptospires (n=180) and aborted pig foetuses (n=24). Leptospire DNA was detected by the 'pathogenic' specific PCR in 25 tissues (14%) and the control beta-actin PCR was positive in all 204 samples confirming DNA was extracted from all samples. No leptospires were isolated from these samples by culture and no positives were detected with the 'saprophytic' PCR. In a subsidiary experiment, the 'pathogenic' PCR was used to analyse kidney samples from rodents (n=7) collected as part of vermin control in a zoo, with show animals with high microagglutination titres to Leptospira species, and five were positive. Fifteen PCR amplicons from 1 mouse, 2 rat and 14 pig kidney samples, were selected at random from positive PCRs (n=30) and sequenced. Sequence data indicated L. interrogans DNA in the pig and rat samples and L. inadai DNA, which is considered of intermediate pathogenicity, in the mouse sample. The only successful culture was from this mouse kidney and the isolate was confirmed to be L. inadai by classical serology. These data suggest this suite of PCRs is suitable for testing for the presence of pathogenic leptospires in pig herds where abortions and infertility occur and potentially in other animals such as rodents. PMID:17961617

  18. Panfungal PCR Assay for Detection of Fungal Infection in Human Blood Specimens

    PubMed Central

    Van Burik, Jo-Anne; Myerson, David; Schreckhise, Randall W.; Bowden, Raleigh A.

    1998-01-01

    A novel panfungal PCR assay which detects the small-subunit rRNA gene sequence of the two major fungal organism groups was used to test whole-blood specimens obtained from a series of blood or bone marrow transplant recipients. The 580-bp PCR product was identified after amplification by panfungal primers and hybridization to a 245-bp digoxigenin-labeled probe. The lower limit of detection of the assay was approximately four organisms per milliliter of blood. Multiple whole-blood specimens from five patients without fungal infection or colonization had negative PCR results. Specimens from 11 infected patients had positive PCR results. Blood from three patients with pulmonary aspergillosis had positive PCR results: one patient’s blood specimen obtained in the week prior to the diagnosis of infection by a positive bronchoalveolar lavage fluid culture result was positive by PCR, and blood specimens obtained from two patients 1 to 2 days after lung biopsy and which were sterile by culture were positive by PCR. The blood of four patients with candidemia, three patients with mixed fungal infections, and one patient with fusariosis also had positive PCR signals. The panfungal PCR assay can detect multiple fungal genera and may be used as an adjunct to conventional methods for the detection of fungal infection or for describing the natural history of fungal infection. Further studies are needed to define the sensitivity and specificity of this assay for the diagnosis of fungal infection prior to the existence of other clinical or laboratory indications of invasive fungal infection. PMID:9574670

  19. Duplex PCR Methods for the Molecular Detection of Escherichia fergusonii Isolates from Broiler Chickens

    PubMed Central

    Simmons, Karen; Rempel, Heidi; Block, Glenn; Forgetta, Vincenzo; Vaillancourt, Rolland; Malouin, François; Topp, Edward; Delaquis, Pascal

    2014-01-01

    Escherichia fergusonii is an emerging pathogen that has been isolated from a wide range of infections in animals and humans. Primers targeting specific genes, including yliE (encoding a conserved hypothetical protein of the cellulose synthase and regulator of cellulose synthase island), EFER_1569 (encoding a hypothetical protein, putative transcriptional activator for multiple antibiotic resistance), and EFER_3126 (encoding a putative triphosphoribosyl-dephospho-coenzyme A [CoA]), were designed for the detection of E. fergusonii by conventional and real-time PCR methods. Primers were screened by in silico PCR against 489 bacterial genomic sequences and by both PCR methods on 55 reference and field strains. Both methods were specific and sensitive for E. fergusonii, showing amplification only for this bacterium. Conventional PCR required a minimum bacterial concentration of approximately 102 CFU/ml, while real-time PCR required a minimum of 0.3 pg of DNA for consistent detection. Standard curves showed an efficiency of 98.5%, with an R2 value of 0.99 for the real-time PCR assay. Cecal and cloacal contents from 580 chickens were sampled from broiler farms located in the Fraser Valley (British Columbia, Canada). Presumptive E. fergusonii isolates were recovered by enrichment and plating on differential and selective media. Of 301 total presumptive isolates, 140 (46.5%) were identified as E. fergusonii by biochemical profiling with the API 20E system and 268 (89.0%) using PCR methods. E. fergusonii detection directly from cecal and cloacal samples without preenrichment was achieved with both PCR methods. Hence, the PCR methods developed in this work significantly improve the detection of E. fergusonii. PMID:24441160

  20. Dielectrophoresis chips improve PCR detection of the food-spoiling yeast Zygosaccharomyces rouxii in apple juice.

    PubMed

    del Carmen Jaramillo, Maria; Huttener, Mario; Alvarez, Juan Manuel; Homs-Corbera, Antoni; Samitier, Josep; Torrents, Eduard; Juárez, Antonio

    2015-07-01

    Dielectrophoretic (DEP) manipulation of cells present in real samples is challenging. We show in this work that an interdigitated DEP chip can be used to trap and wash a population of the food-spoiling yeast Zygosaccharomyces rouxii that contaminates a sample of apple juice. By previously calibrating the chip, the yeast population loaded is efficiently trapped, washed, and recovered in a small-volume fraction that, in turn, can be used for efficient PCR detection of this yeast. DEP washing of yeast cells gets rid of PCR inhibitors present in apple juice and facilitates PCR analysis. This and previous works on the use of DEP chips to improve PCR analysis show that a potential use of DEP is to be used as a treatment of real samples prior to PCR. PMID:25808673

  1. Coagulase gene polymorphisms detected by PCR in Staphylococcus aureus isolated from subclinical bovine mastitis in Turkey.

    PubMed

    Karahan, Murat; Cetinkaya, Burhan

    2007-09-01

    The genetic relatedness of coagulase (coa) positive Staphylococcus aureus isolated from cows with subclinical mastitis in Turkey was investigated by polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) analysis. Among 700 milk samples positive in the California Mastitis Test (CMT), species specific PCR identified 200 (28.6%) isolates as S. aureus and 161 (80.5%) of these isolates were positive for the 3' end of the coa gene by PCR. Most isolates (n=135, 83.9%) produced a single band on coa PCR, with molecular sizes ranging from 500 to 1400bp, whereas a small number of isolates (n=26, 16.1%) yielded two amplification products. Coa RFLP analysis using AluI and Hin6I revealed 23 and 22 band patterns, respectively. The detection of double bands by coa PCR, previously reported in human isolates, suggests that milking personnel can play a role in the transmission of S. aureus. PMID:16901735

  2. Development of a novel detection system for microbes from bovine diarrhea by real-time PCR

    PubMed Central

    TSUCHIAKA, Shinobu; MASUDA, Tsuneyuki; SUGIMURA, Satoshi; KOBAYASHI, Suguru; KOMATSU, Natsumi; NAGAI, Makoto; OMATSU, Tsutomu; FURUYA, Tetsuya; OBA, Mami; KATAYAMA, Yukie; KANDA, Shuhei; YOKOYAMA, Tadashi; MIZUTANI, Tetsuya

    2015-01-01

    Diarrhea in cattle is one of the most economically costly disorders, decreasing milk production and weight gain. In the present study, we established a novel simultaneous detection system using TaqMan real-time PCR designed as a system for detection of microbes from bovine diarrhea using real-time PCR (referred to as Dembo-PCR). Dembo-PCR simultaneously detects a total of 19 diarrhea-causing pathogens, including viruses, bacteria and protozoa. Specific primer–probe sets were newly designed for 7 pathogens and were synthesized on the basis of previous reports for 12 pathogens. Assays were optimized to react under the same reaction conditions. The PCR efficiency and correlation coefficient (R2) of standard curves for each assay were more than 80% and 0.9766, respectively. Furthermore, the sensitivity of Dembo-PCR in fecal sample analysis was measured with feces spiked with target pathogens or synthesized DNA that included specific nucleotide target regions. The resulting limits of detection (LOD) for virus-spiked samples, bacteria and DNA fragments were 0.16–1.6 TCID50 (PFU/reaction), 1.3–13 CFU/reaction and 10–100 copies/reaction, respectively. All reactions showed high sensitivity in pathogen detection. A total of 8 fecal samples, collected from 6 diarrheic cattle, 1 diarrheic calf and 1 healthy cow, were tested using Dembo-PCR to validate the assay’s clinical performance. The results revealed that bovine coronavirus had infected all diarrheic adult cattle and that bovine torovirus had infected the diarrheic calf. These results suggest that Dembo-PCR may be a powerful tool for diagnosing infectious agents in cattle diarrhea. PMID:26616156

  3. Development and evaluation of a rapid and simple procedure for detection of Pneumocystis carinii by PCR.

    PubMed Central

    Cartwright, C P; Nelson, N A; Gill, V J

    1994-01-01

    We report the development of a simplified PCR-based assay for the detection of Pneumocystis carinii DNA in clinical specimens. The adoption of a rapid DNA extraction procedure and the introduction of a type of enzyme-linked immunosorbent assay for PCR product detection enabled this procedure to be carried out in a single working day in a clinical microbiology laboratory. The PCR assay was prospectively compared with an immunofluorescent-antibody (FA) staining method for the detection of P. carinii in induced sputum and bronchoalveolar lavage (BAL) specimens. The results of the study showed that, for induced sputum specimens, FA staining had a sensitivity of 78% (32 of 41 specimens) and a specificity of 100% (166 of 166 specimens); PCR was 100% (41 of 41 specimens) sensitive and 98% (162 of 166 specimens) specific. For BAL specimens, FA staining was 100% sensitive (21 of 21 specimens) and 100% specific (133 of 133 specimens), and PCR had a sensitivity of 100% (21 of 21 specimens) and a specificity of 99% (132 of 133 specimens). These results strongly suggest that use of our PCR-based assay could effect clinically useful improvements in the sensitivity of induced sputum specimens for the detection of P. carinii. Images PMID:7929749

  4. Standardized positive controls for detection of norovirus by reverse transcription PCR

    PubMed Central

    2011-01-01

    Background Norovirus is one of the most common causes of nonbacterial gastroenteritis in humans. Rapid spread by contaminated food and person-to-person transmission through the fecal-oral route are characteristics of norovirus epidemiology and result in high morbidity in vulnerable patient populations. Therefore, detection of norovirus is a major public health concern. Currently, the most common method for detecting and differentiating among norovirus strains in clinical and environmental samples is reverse transcription PCR (RT-PCR). Standardized positive controls used in RT-PCR assays to detect norovirus are designed to overcome the problem of false-negative results due to PCR inhibitors and suboptimal reaction conditions. Results In the current study, four types of RNA transcripts were produced from plasmids: norovirus GI-5 and GII-4 capsid regions with human rotavirus (VP7 gene derived) fragment insertions, and norovirus GI-6 and GII-4 capsid regions with hepatitis A virus (VP1/P2A gene derived) fragment insertions. These size-distinguishable products were used as positive controls under the RT-PCR assay conditions used to detect NoV in stool and groundwater samples. Their reliability and reproducibility was confirmed by multiple sets of experiments. Conclusions These standardized products may contribute to the reliable and accurate diagnosis by RT-PCR of norovirus outbreaks, when conducted by laboratories located in different regions. PMID:21612660

  5. High sensitive method detection of plant RNA viruses by electrochemiluminescence reverse transcription PCR

    NASA Astrophysics Data System (ADS)

    Tang, Ya-bing; Xing, Da; Zhu, De-bin; Zhou, Xiao-ming

    2007-05-01

    It is well known that plant and animal viruses had widely spread the whole of world, and made a big loss in farming and husbandry. It is necessary that a highly efficient and accurate virus's detection method was developed. This research combines reverse transcription polymerase chain reaction (RT-PCR) technique with electrochemiluminescence method, to detect plant RNA viruses for the first time. Biotin-probe hybridizes with PCR product to specific select the target for detection, thus can avoid pseudo-positive result. TBR-probe hybridizes with PCR product to emit light for ECL detection. Specific nucleic acid sequences (20bp) were added to 5' terminal all of the primers, which can improve the chance of hybridization between TBR-probe and PCR product. At the same time, one of the PCR product chain can hybridize two Ru-probes, the ECL signal is intensified. The method was used to detect Odntoglossum ringspot virus ORSV, Sugarcane mosaic virus ScMV, Sorghum mosaic virus SrMV, and Maize dwarf mosaic virus MDMV, the experiment results show that this method could reliably identity virus infected plant samples. In a word, this method has higher sensitivity and lower cost than others. It can effectively detect the plant viruses with simplicity, stability, and high sensitivity.

  6. Development of Multiplex PCR for Simultaneous Detection of Three Pathogenic Shigella Species

    PubMed Central

    RANJBAR, Reza; AFSHAR, Davoud; MEHRABI TAVANA, Ali; NAJAFI, Ali; POURALI, Fatemeh; SAFIRI, Zahra; SOROURI ZANJANI, Rahim; JONAIDI JAFARI, Nematollah

    2014-01-01

    Background: Shigella species are among the common causes of bacterial diarrhoeal diseases. Traditional detection methods are time-consuming resulting in delay in treatment and control of Shigella infections thus there is a need to develop molecular methods for rapid and simultaneous detection of Shigella spp. In this study a rapid multiplex PCR were developed for simultaneous detection of three pathogenic Shigella species. Methods: For detection of Shigella spp., a pair of primers was used to replicate a chromosomal sequence. Three other sets of primers were also designed to amplify the target genes of three most common species of Shigella in Iran including S. sonnei, S. flexneri and S. boydii. The multiplex PCR assay was optimized for simultaneous detection and differentiation of three pathogenic Shigella species. The assay specificity was investigated by testing different strains of Shigella and other additional strains belonging to non Shigella species, but responsible for foodborne diseases. Results: The Shigella genus specific PCR yielded the expected DNA band of 159 bp in all tested strains belonging to four Shigella species. The standard and multiplex PCR assays also produced the expected fragments of 248 bp, 503 bp, and 314 bp, for S. boydii, S. sonnei and S. flexneri, respectively. Each species-specific primer pair did not show any cross-reactivity. Conclusion: Both standard and multiplex PCR protocols had a good specificity. They can provide a valuable tool for the rapid and simultaneous detection and differentiation of three most prevalent Shigella species in Iran. PMID:26171358

  7. PCR and non-isotopic labeling techniques for plant virus detection.

    PubMed

    Fenby, N S; Scott, N W; Slater, A; Elliott, M C

    1995-07-01

    PCR technology permits the detection of viruses at levels several orders of magnitude lower than is possible by other methods. This high sensitivity facilitates detection of virus sequences during the early stages of infection of plants and in soil and vector samples. Early detection of beet necrotic yellow vein virus (BNYVV) in Beta vulgaris is an important part of the strategy for prevention of the spread of rhizomania, a commercially significant disease of sugar beet. A diagnostic test for BNYVV has been developed. This test involves amplification of the viral genome by PCR coupled with non-isotopic labeling and detection of specific sequences. The PCR amplification of BNYVV sequences has been optimized with respect to primer design, sample preparation and reaction conditions. Several non-isotopic labeling strategies for signal amplification have been compared. Hybridization with digoxigenin-labelled cDNA permits the most sensitive detection of PCR products and is the most appropriate method for routine diagnosis. These observations are discussed in the context of the application of PCR for detecting a wide range of viruses. PMID:7580844

  8. Optimization of Quantitative PCR Methods for Enteropathogen Detection

    PubMed Central

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M.; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R.

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen’s extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  9. Development of a multiplex PCR assay to detect gastroenteric pathogens in the feces of Mexican children.

    PubMed

    Tolentino-Ruiz, R; Montoya-Varela, D; García-Espitia, M; Salas-Benito, M; Gutiérrez-Escolano, A; Gómez-García, C; Figueroa-Arredondo, P; Salas-Benito, J; De Nova-Ocampo, M

    2012-10-01

    Acute gastroenteritis (AGE) is a major cause of childhood morbidity and mortality worldwide; the etiology of AGE includes viruses, bacteria, and parasites. A multiplex PCR assay to simultaneously identify human Astrovirus (HAstV), Calicivirus (HuCVs), Entamoeba histolytica (E. histolytica), and enteroinvasive Escherichia coli (EIEC) in stool samples is described. A total of 103 samples were individually analyzed by ELISA (enzyme-linked immunosorbent assays) and RT-PCR/PCR. HAstV and HuCVs were detected in four out of 103 samples (3.8 %) by RT-PCR, but ELISAs found only one sample as positive for HuCVs (2.5 %). E. histolytica was identified in two out of 19 samples (10.5 %) and EIEC in 13 out of 20 samples (70 %) by PCR, and all PCR products were sequenced to verify their identities. Our multiplex PCR results demonstrate the simultaneous amplification of different pathogens such as HAstV, EIEC, and E. histolytica in the same reaction, though the HuCVs signal was weak in every replicate. Regardless, this multiplex PCR protocol represents a novel tool for the identification of distinct pathogens and may provide support for the diagnosis of AGE in children. PMID:22711331

  10. Targeted PCR for Detection of Vaginal Bacteria Associated with Bacterial Vaginosis▿

    PubMed Central

    Fredricks, David N.; Fiedler, Tina L.; Thomas, Katherine K.; Oakley, Brian B.; Marrazzo, Jeanne M.

    2007-01-01

    Several novel bacterial species have been detected in subjects with bacterial vaginosis (BV) by using broad-range PCR assays, but this approach is insensitive for detecting minority species. We developed a series of taxon-directed 16S rRNA gene PCR assays for more sensitive detection of key vaginal bacteria. We sought to determine the prevalence of each species in the vagina, its association with BV, and the utility of PCR for the microbiological diagnosis of BV. Targeted PCR assays were developed for 17 vaginal bacterial species and applied to 264 vaginal-fluid samples from 81 subjects with and 183 subjects without BV. The results were compared to those of two widely accepted methods for diagnosing BV, the use of clinical findings (Amsel criteria) and the interpretation of vaginal-fluid Gram stains (Nugent criteria). Leptotrichia/Sneathia, Atopobium vaginae, an Eggerthella-like bacterium, Megasphaera species, and three novel bacteria in the order Clostridiales are among the bacterial species significantly associated with BV. PCR detection of either a Megasphaera species or one of the Clostridiales bacteria yielded a sensitivity of 99% and a specificity of 89% for diagnosis of BV compared to the Amsel clinical criteria and a sensitivity of 95.9% and a specificity of 93.7% compared to the Nugent criteria (Gram stain). PCR detection of one or more fastidious bacterial species is a more reliable indicator of BV than detection of bacteria, such as Gardnerella vaginalis, previously linked to BV, highlighting the potential of PCR for the diagnosis of BV. PMID:17687006

  11. Signal Amplification by Glyco-qPCR for Ultrasensitive Detection of Carbohydrates: Applications in Glycobiology**

    PubMed Central

    Kwon, Seok Joon; Lee, Kyung Bok; Solakyildirim, Kemal; Masuko, Sayaka; Ly, Mellisa; Zhang, Fuming; Li, Lingyun; Dordick, Jonathan S.; Linhardt, Robert J.

    2012-01-01

    Tiny amounts of carbohydrates (ca. 1 zmol) can be detected quantitatively by a real-time method based on the conjugation of carbohydrates with DNA markers (see picture). The proposed method (glyco-qPCR) provides uniform, ultrasensitive detection of carbohydrates, which can be applied to glycobiology, as well as carbohydrate-based drug discovery. PMID:23073897

  12. Real-time RT-PCR assay for detection and differentiation of Citrus tristeza virus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For universal detection of Citrus tristeza virus (CTV) strains by real time RT-PCR, a protocol was developed based on a set of primers and a Cy5-labeled TaqMan probe. This test included primers and a TET-labeled TaqMan probe selected on the mitochondrial nad5 gene for the simultaneous detection of ...

  13. Real-time RT-PCR Assay for Detection and Differentiation of Citrus Tristeza Virus Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiplex one step real time RT-PCR assays using TaqMan probes were developed for detection and strain differentiation of Citrus tristeza virus (CTV). For broad spectrum CTV detection, a TaqMan primer and Cy5-labeled probe were designed using CP gene sequences. An internal control was developed us...

  14. Detection of infectious enteroviruses by an integrated cell culture-PCR procedure.

    PubMed Central

    Reynolds, K A; Gerba, C P; Pepper, I L

    1996-01-01

    Rapid detection of infectious enteroviruses in environmental samples was made possible by utilizing an integrated cell culture-reverse transcriptase PCR approach. By this method, the presence of infectious enterovirus was confirmed within 24 h, compared with > or = 3 days by cell culture alone. The combined methodology eliminated typical problems normally associated with direct reverse transcriptase PCR by increasing the equivalent volume of environmental sample examined and reducing the effects of inhibitory compounds. PMID:8919804

  15. Detection of infectious laryngotracheitis virus by real-time PCR in naturally and experimentally infected chickens.

    PubMed

    Zhao, Yan; Kong, Congcong; Cui, Xianlan; Cui, Hongyu; Shi, Xingming; Zhang, Xiaomin; Hu, Shunlei; Hao, Lianwei; Wang, Yunfeng

    2013-01-01

    Infectious laryngotracheitis (ILT) is an acute, highly contagious upper-respiratory infectious disease of chickens. In this study, a real-time PCR method was developed for fast and accurate detection and quantitation of ILTV DNA of chickens experimentally infected with ILTV strain LJS09 and naturally infected chickens. The detection lower limit of the assay was 10 copies of DNA. There were no cross reactions with the DNA and RNA of infectious bursal disease virus, chicken anemia virus, reticuloendotheliosis virus, avian reovirus, Newcastle disease virus, and Marek's disease virus. The real-time PCR was reproducible as the coefficients of variation of reproducibility of the intra-assay and the inter-assay were less than 2%. The real-time PCR was used to detect the levels of the ILTV DNA in the tissues of specific pathogen free (SPF) chickens infected with ILTV at different times post infection. ILTV DNA was detected by real-time PCR in the heart, liver, spleen, lung, kidney, larynx, tongue, thymus, glandular stomach, duodenum, pancreatic gland, small intestine, large intestine, cecum, cecal tonsil, bursa of Fabricius, and brain of chickens in the infection group and the contact-exposure group. The sensitivity, specificity, and reproducibility of the ILTV real-time PCR assay revealed its suitability for detection and quantitation of ILTV in the samples from clinically and experimentally ILTV infected chickens. PMID:23840745

  16. Detection of Infectious Laryngotracheitis Virus by Real-Time PCR in Naturally and Experimentally Infected Chickens

    PubMed Central

    Zhao, Yan; Kong, Congcong; Cui, Xianlan; Cui, Hongyu; Shi, Xingming; Zhang, Xiaomin; Hu, Shunlei; Hao, Lianwei; Wang, Yunfeng

    2013-01-01

    Infectious laryngotracheitis (ILT) is an acute, highly contagious upper-respiratory infectious disease of chickens. In this study, a real-time PCR method was developed for fast and accurate detection and quantitation of ILTV DNA of chickens experimentally infected with ILTV strain LJS09 and naturally infected chickens. The detection lower limit of the assay was 10 copies of DNA. There were no cross reactions with the DNA and RNA of infectious bursal disease virus, chicken anemia virus, reticuloendotheliosis virus, avian reovirus, Newcastle disease virus, and Marek's disease virus. The real-time PCR was reproducible as the coefficients of variation of reproducibility of the intra-assay and the inter-assay were less than 2%. The real-time PCR was used to detect the levels of the ILTV DNA in the tissues of specific pathogen free (SPF) chickens infected with ILTV at different times post infection. ILTV DNA was detected by real-time PCR in the heart, liver, spleen, lung, kidney, larynx, tongue, thymus, glandular stomach, duodenum, pancreatic gland, small intestine, large intestine, cecum, cecal tonsil, bursa of Fabricius, and brain of chickens in the infection group and the contact-exposure group. The sensitivity, specificity, and reproducibility of the ILTV real-time PCR assay revealed its suitability for detection and quantitation of ILTV in the samples from clinically and experimentally ILTV infected chickens. PMID:23840745

  17. Novel PCR Assays Complement Laser Biosensor-Based Method and Facilitate Listeria Species Detection from Food

    PubMed Central

    Kim, Kwang-Pyo; Singh, Atul K.; Bai, Xingjian; Leprun, Lena; Bhunia, Arun K.

    2015-01-01

    The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 104 CFU/mL. PMID:26371000

  18. Application of multiplex PCR for Rapid and sensitive detection of human papillomaviruses in cervical cancer

    PubMed Central

    Zandnia, Fateme; Doosti, Abbas; Mokhtari-Farsani, Abbas; Kardi, Mohammad Taghi; Movafagh, Abolfazl

    2016-01-01

    Objectives: Reffering to an increase in cervical cancer in the recent years, rapid, sensitive and economical detection of human papillomaviruses (HPVs) as causative agents of cervical cancer is important. The traditional methods for the detection of HPVs in cervical cancer, such as pap smear, suffer from limitation and PCR has a potential to overcome the limitaitons. The purpose of present research work was to identify the five important strains of HPV (16, 18, 31, 33 and 45) simultaneously by Multiplex PCR application. Methods: Study was done on 100 cervical lesions of women. DNA was extracted from specimens by a genomic DNA purification kit. A 5-plex PCR was developed for the simultaneous detection of major HPV. Five pair of new primers was designed for detection of HPV 16, 18, 31, 33 and 45 by Multiplex PCR. Results: Among the 100 evaluated samples, 82 were found positive to HPVs. In the meantime the highest rate of infection was for HPV 16. Also 30 of HPV positive samples had infections with two or more HPV types. Conclusion: Multiplex PCR assay used in present study can provide a rapid, sensitive and economical method for detection of viral infections and is applicable to small volumes of vaginal samples. PMID:27182258

  19. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  20. Organic Substances Interfere with Reverse Transcription-Quantitative PCR-Based Virus Detection in Water Samples

    PubMed Central

    Katayama, Hiroyuki; Furumai, Hiroaki

    2014-01-01

    Reverse transcription (RT)-PCR-based virus detection from water samples is occasionally hampered by organic substances that are coconcentrated during virus concentration procedures. To characterize these organic substances, samples containing commercially available humic acid, which is known to inhibit RT-PCR, and river water samples were subjected to adsorption-elution-based virus concentration using an electronegative membrane. In this study, the samples before, during, and after the concentration were analyzed in terms of organic properties and virus detection efficiencies. Two out of the three humic acid solutions resulted in RT-quantitative PCR (qPCR) inhibition that caused >3-log10-unit underestimation of spiked poliovirus. Over 60% of the organics contained in the two solutions were recovered in the concentrate, while over 60% of the organics in the uninhibited solution were lost during the concentration process. River water concentrates also caused inhibition of RT-qPCR. Organic concentrations in the river water samples increased by 2.3 to 3.9 times after the virus concentration procedure. The inhibitory samples contained organic fractions in the 10- to 100-kDa size range, which are suspected to be RT-PCR inhibitors. According to excitation-emission matrices, humic acid-like and protein-like fractions were also recovered from river water concentrates, but these fractions did not seem to affect virus detection. Our findings reveal that detailed organic analyses are effective in characterizing inhibitory substances. PMID:25527552

  1. Comparison of dermatophyte PCR kit with conventional methods for detection of dermatophytes in skin specimens.

    PubMed

    Kondori, Nahid; Tehrani, Parisa Afshari; Strömbeck, Louise; Faergemann, Jan

    2013-10-01

    The laboratory diagnosis of dermatophytosis is usually based on direct microscopic examination and culturing of clinical specimens. A commercial polymerase chain reaction kit (Dermatophyte PCR) has had favorable results when used for detection of dermatophytes and identification of Trichophyton rubrum in nail specimens. This study investigated the efficacy of the Dermatophyte PCR kit for detecting dermatophytosis in 191 hair or skin specimens from patients with suspected dermatophytosis. PCR was positive for 37 % of samples, whereas 31 and 39 % of the specimens were positive by culturing and direct microscopy, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value for PCR analysis were 83, 84, 71, and 91 %, respectively. The sensitivity of the PCR test was higher in specimens obtained from skin (88 %) than in those obtained from hair (58 %), while the specificity remained almost the same (84 and 86 % for skin and hair, respectively). Our results show that the Dermatophyte PCR kit is a promising diagnostic tool for detection of dermatophytosis in skin samples, providing clinicians with a rapid diagnosis. PMID:23948965

  2. Development of a nanoparticle-assisted PCR assay for detection of porcine epidemic diarrhea virus.

    PubMed

    Yuan, Wanzhe; Li, Yanan; Li, Peng; Song, Qinye; Li, Limin; Sun, Jiguo

    2015-08-01

    Porcine epidemic diarrhea virus (PEDV) is an important pig pathogen that can cause vomiting, diarrhea, and dehydration, leading to serious damage to the swine industry worldwide. In this study, a nanoparticle-assisted polymerase chain reaction (nanoPCR) assay targeting the N gene of PEDV was developed and the sensitivity and specificity were investigated. Under the optimized conditions for detection of PEDV RNA, the nanoPCR assay was 100-fold more sensitive than a conventional RT-PCR assay. The lower detection limit of the nanoPCR assay was 2.7 × 10(-6) ng/μL of PEDV RNA and no cross-reaction was observed with other viruses. This is the first report to demonstrate the application of a nanoPCR assay for the detection of PEDV. The sensitive and specific nanoPCR assay developed in this study can be applied widely in clinical diagnosis and field surveillance of PEDV-infection. PMID:25887451

  3. Evaluation of the Broad-Range PCR-Electrospray Ionization Mass Spectrometry (PCR/ESI-MS) System and Virus Microarrays for Virus Detection

    PubMed Central

    Taliaferro, Lanyn P.; Galvin, Teresa A.; Ma, Hailun; Shaheduzzaman, Syed; Williams, Dhanya K.; Glasner, Dustin R.; Khan, Arifa S.

    2014-01-01

    Advanced nucleic acid-based technologies are powerful research tools for novel virus discovery but need to be standardized for broader applications such as virus detection in biological products and clinical samples. We have used well-characterized retrovirus stocks to evaluate the limit of detection (LOD) for broad-range PCR with electrospray ionization mass spectrometry (PCR/ESI-MS or PLEX-ID), RT-PCR assays, and virus microarrays. The results indicated that in the absence of background cellular nucleic acids, PLEX-ID and RT-PCR had a similar LOD for xenotropic murine retrovirus-related virus (XMRV; 3.12 particles per µL) whereas sensitivity of virus detection was 10-fold greater using virus microarrays. When virus was spiked into a background of cellular nucleic acids, the LOD using PLEX-ID remained the same, whereas virus detection by RT-PCR was 10-fold less sensitive, and no virus could be detected by microarrays. Expected endogenous retrovirus (ERV) sequences were detected in cell lines tested and known species-specific viral sequences were detected in bovine serum and porcine trypsin. A follow-up strategy was developed using PCR amplification, nucleotide sequencing, and bioinformatics to demonstrate that an RD114-like retrovirus sequence that was detected by PLEX-ID in canine cell lines (Madin-Darby canine kidney (MDCK) and Cf2Th canine thymus) was due to defective, endogenous gammaretrovirus-related sequences. PMID:24777034

  4. Development of PCR and TaqMan PCR Assays to Detect Pseudomonas coronafaciens, a Causal Agent of Halo Blight of Oats

    PubMed Central

    An, Ji-Hye; Noh, Young-Hee; Kim, Yong-Eon; Lee, Hyok-In; Cha, Jae-Soon

    2015-01-01

    Pseudomonas coronafaciens causes halo blight on oats and is a plant quarantine bacterium in many countries, including the Republic of Korea. Using of the certificated seed is important for control of the disease. Since effective detection method of P. coronafaciens is not available yet, PCR and TaqMan PCR assays for specific detection of P. coronafaciens were developed in this study. PCR primers were designed from the draft genome sequence of P. coronafaciens LMG 5060 which was obtained by the next-generation sequencing in this study. The PCR primer set Pc-12-F/Pc-12-R specifically amplified 498 bp from the 13 strains of P. coronafaciens isolated in the seven different countries (Canada, Japan, United Kingdom, Zimbabwe, Kenya, Germany, and New Zealand) and the nested primer set Pc-12-ne-F/Pc-12-ne-R specifically amplified 298 bp from those strains. The target-size PCR product was not amplified from the non-target bacteria with the PCR and nested primer sets. TaqMan PCR with Pc-12-ne-F/Pc-12-ne-R and a TaqMan probe, Pc-taqman, which were designed inside of the nested PCR amplicon, generated Ct values which in a dose-dependent manner to the amount of the target DNA and the Ct values of all the P. coronafaciens strains were above the threshold Ct value for positive detection. The TaqMan PCR generated positive Ct values from the seed extracts of the artificially inoculated oat seeds above 10 cfu/ml inoculation level. PCR and TaqMan PCR assays developed in this study will be useful tools to detect and identify the plant quarantine pathogen, P. coronafaciens. PMID:25774107

  5. Mycobacterium paratuberculosis detection in cow's milk in Argentina by immunomagnetic separation-PCR.

    PubMed

    Gilardoni, Liliana Rosa; Fernández, Bárbara; Morsella, Claudia; Mendez, Laura; Jar, Ana María; Paolicchi, Fernando Alberto; Mundo, Silvia Leonor

    2016-01-01

    The aim of this study was to standardize a diagnosis procedure to detect Mycobacterium avium subsp. paratuberculosis (Map) DNA in raw cow milk samples under field conditions. A procedure that combines both immunomagnetic separation and IS900-PCR detection (IMS-IS1 PCR) was employed on milk samples from 265 lactating Holstein cows from Map infected and uninfected herds in Argentina. IMS-IS1 PCR results were analyzed and compared with those obtained from milk and fecal culture and serum ELISA. The extent of agreement between both tests was determined by the Kappa test. IMS-IS1 PCR showed a detection limit of 10(1) CFU of Map/mL of milk, when 50:50 mix of monoclonal and polyclonal antibodies were used to coat magnetic beads. All of the 118 samples from the Map uninfected herds were negative for the set of the tests. In Map infected herds, 80 out of 147 cows tested positive by milk IMS-IS1 PCR (55%), of which 2 (1.4%) were also positive by milk culture, 15 (10%) by fecal culture, and 20 (14%) by serum ELISA. Kappa statistics (95% CI) showed a slight agreement between the different tests (<0.20), and the proportions of agreement were ≤0.55. The IMS-IS1 PCR method detected Map in milk of the cows that were not positive in other techniques. This is the first report dealing with the application of IMS-IS1 PCR in the detection of Map in raw milk samples under field conditions in Argentina. PMID:26991290

  6. A new trilocus sequence-based multiplex-PCR to detect major Acinetobacter baumannii clones.

    PubMed

    Martins, Natacha; Picão, Renata Cristina; Cerqueira-Alves, Morgana; Uehara, Aline; Barbosa, Lívia Carvalho; Riley, Lee W; Moreira, Beatriz Meurer

    2016-08-01

    A collection of 163 Acinetobacter baumannii isolates detected in a large Brazilian hospital, was potentially related with the dissemination of four clonal complexes (CC): 113/79, 103/15, 109/1 and 110/25, defined by University of Oxford/Institut Pasteur multilocus sequence typing (MLST) schemes. The urge of a simple multiplex-PCR scheme to specify these clones has motivated the present study. The established trilocus sequence-based typing (3LST, for ompA, csuE and blaOXA-51-like genes) multiplex-PCR rapidly identifies international clones I (CC109/1), II (CC118/2) and III (CC187/3). Thus, the system detects only one (CC109/1) out of four main CC in Brazil. We aimed to develop an alternative multiplex-PCR scheme to detect these clones, known to be present additionally in Africa, Asia, Europe, USA and South America. MLST, performed in the present study to complement typing our whole collection of isolates, confirmed that all isolates belonged to the same four CC detected previously. When typed by 3LST-based multiplex-PCR, only 12% of the 163 isolates were classified into groups. By comparative sequence analysis of ompA, csuE and blaOXA-51-like genes, a set of eight primers was designed for an alternative multiplex-PCR to distinguish the five CC 113/79, 103/15, 109/1, 110/25 and 118/2. Study isolates and one CC118/2 isolate were blind-tested with the new alternative PCR scheme; all were correctly clustered in groups of the corresponding CC. The new multiplex-PCR, with the advantage of fitting in a single reaction, detects five leading A. baumannii clones and could help preventing the spread in healthcare settings. PMID:27125687

  7. Screening PCR Versus Sanger Sequencing: Detection of CALR Mutations in Patients With Thrombocytosis

    PubMed Central

    Jeong, Ji Hun; Lee, Hwan Tae; Seo, Ja Young; Seo, Yiel Hea; Kim, Kyung Hee; Kim, Moon Jin; Lee, Jae Hoon; Park, Jinny; Hong, Jun Shik

    2016-01-01

    Background Mutations in calreticulin (CALR) have been reported to be key markers in the molecular diagnosis of myeloid proliferative neoplasms. In most previous reports, CALR mutations were analyzed by using Sanger sequencing. Here, we report a new, rapid, and convenient system for screening CALR mutations without sequencing. Methods Eighty-three bone marrow samples were obtained from 81 patients with thrombocytosis. PCR primers were designed to detect wild-type CALR (product: 357 bp) and CALR with type 1 (product: 302 bp) and type 2 mutations (product: 272 bp) in one reaction. The results were confirmed by Sanger sequencing and compared with results from fragment analysis. Results The minimum detection limit of the screening PCR was 10 ng for type 1, 1 ng for type 2, and 0.1 ng for cases with both mutations. CALR type 1 and type 2 mutants were detected with screening PCR with a maximal analytical sensitivity of 3.2% and <0.8%, respectively. The screening PCR detected 94.1% (16/17) of mutation cases and showed concordant results with sequencing in the cases of type 1 and type 2 mutations. Sanger sequencing identified one novel mutation (c.1123_1132delinsTGC). Compared with sequencing, the screening PCR showed 94.1% sensitivity, 100.0% specificity, 100.0% positive predictive value, and 98.5% negative predictive value. Compared with fragment analysis, the screening PCR presented 88.9% sensitivity and 100.0% specificity. Conclusions This screening PCR is a rapid, sensitive, and cost-effective method for the detection of major CALR mutations. PMID:27139600

  8. PCR detection of bacterial genes provides evidence of death by drowning.

    PubMed

    Suto, Miwako; Kato, Naho; Abe, Sumiko; Nakamura, Masahide; Tsuchiya, Reo; Hiraiwa, Kouichi

    2009-04-01

    We have developed a sensitive and specific PCR method for detecting plankton DNA in cases of death by drowning. However, this PCR method could not be used for cases of drowning in water containing no plankton. Bacteria species are normally localized in the throat and trachea and they may invade into blood through the respiratory tract in people who have drowned as well as species localized in water. The aim of this study was to establish a novel and expedient PCR method for detecting bacterial genes in samples from drowning cases. We designed primer pairs for Streptococcus salivarius (SL1) and Streptococcus sanguinis (SN1), which are common species in the throat, and for Aeromonas hydrophila (AH1), which has been found in various water samples. With SL1, SN1, and AH1, we detected 10, 0.1, and 1 pg of target DNA, respectively. Among 19 drowned cases within 3 days postmortem, SL-DNA was detected in all of the blood samples from hearts with SL1 and AH-DNA was detected in several samples with AH1. In a case of drowning in a bathtub, use of the conventional acid digestion method for diatom analyses and the PCR method for identifying plankton DNA revealed no plankton, but our PCR method for detecting bacterial DNA showed a positive result for SL-DNA in a blood sample from the heart. In conclusion, our novel PCR method is highly specific and sensitive for detecting bacterial DNA and is useful for cases of death by drowning in water containing no plankton. PMID:19264526

  9. Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR.

    PubMed

    Henrich, Timothy J; Gallien, Sebastien; Li, Jonathan Z; Pereyra, Florencia; Kuritzkes, Daniel R

    2012-12-01

    Droplet digital PCR (ddPCR) is an emerging nucleic acid detection method that provides absolute quantitations of target sequences without relying on the use of standard curves. The ability of ddPCR to detect and quantitate total HIV-1 DNA and 2-LTR circles from a panel of patients on and off antiviral therapy was evaluated compared to established real-time (RT)-PCR methods. To calculate the dynamic range of ddPCR for HIV-1 DNA and 2-LTR circles, serial dilutions of DNA amplicons or episomes were determined by ddPCR as well as with RT-PCR. HIV-1 DNA from 3 viremic patients and 4 patients on suppressive antiretroviral therapy, and 2-LTR circles from 3 patients with low-level viremia were also quantitated. Copy numbers determined by ddPCR of serial dilutions of HIV-1 or human CCR5 DNA amplicon standards were comparable to nominal input copy number. The sensitivity of ddPCR to detect HIV-1 or CCR5 DNA was similar to that of RT-PCR. Low levels of 2-LTR circles were detected in samples from all 3 patients by both ddPCR and RT-PCR. ddPCR is a promising novel technology for the study of HIV-1 reservoirs and persistence, but further optimization of this novel technology would enhance the detection of very low-level viral genetic targets. PMID:22974526

  10. Low-Level Detection and Quantitation of Cellular HIV-1 DNA and 2-LTR Circles Using Droplet Digital PCR

    PubMed Central

    Henrich, Timothy J.; Gallien, Sebastien; Li, Jonathan Z.; Pereyra, Florencia; Kuritzkes, Daniel R.

    2012-01-01

    Droplet digital PCR (ddPCR) is an emerging nucleic acid detection method that provides absolute quantitations of target sequences without relying on the use of standard curves. The ability of ddPCR to detect and quantitate total HIV-1 DNA and 2-LTR circles from a panel of patients on and off antiviral therapy was evaluated compared to established real-time (RT)-PCR methods. To calculate the dynamic range of ddPCR for HIV-1 DNA and 2-LTR circles, serial dilutions of DNA amplicons or episomes were determined by ddPCR as well as with RT-PCR. HIV-1 DNA from 3 viremic patients and 4 patients on suppressive antiretroviral therapy, and 2-LTR circles from 3 patients with low-level viremia was also quantitated. Copy numbers determined by ddPCR of serial dilutions of HIV-1 or human CCR5 DNA amplicon standards were comparable to nominal input copy number. The sensitivity of ddPCR to detect HIV-1 or CCR5 DNA was similar to that of RT-PCR. Low levels of 2-LTR circles were detected in samples from all 3 patients by both ddPCR and RT-PCR. ddPCR is a promising novel technology for the study of HIV-1 reservoirs and persistence, but further optimization of this novel technology would enhance the detection of very low-level viral genetic targets. PMID:22974526

  11. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    PubMed

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. PMID:26705837

  12. Detection of acute toxoplasmosis in pigs using loop-mediated isothermal amplification and quantitative PCR.

    PubMed

    Wang, Yanhua; Wang, Guangxiang; Zhang, Delin; Yin, Hong; Wang, Meng

    2013-10-01

    A loop-mediated isothermal amplification (LAMP) assay allows rapid diagnosis of Toxoplasma gondii infection. In the present study, the LAMP assay was evaluated using blood from both naturally and experimentally infected pigs. The sensitivity of the LAMP assay was compared with that of Q-PCR. Both assays detected T. gondii in the blood of experimentally infected pigs, with 100% agreement. In infected blood samples, the parasite was detected as early as 2 days post-infection and reached a peak in 3-5 days. In 216 field serum samples, the detection rates of LAMP and Q-PCR assays were 6.9% and 7.8%, respectively. This result indicates that the sensitivity of the LAMP assay was slightly lower than that of the Q-PCR assay. However, the LAMP may be an attractive diagnostic method in conditions where sophisticated and expensive equipment is unavailable. This assay could be a powerful supplement to current diagnostic methods. PMID:24327785

  13. Multiplex PCR for the concurrent detection and differentiation of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium

    PubMed Central

    Pui, Chai Fung; Wong, Woan Chwen; Chai, Lay Ching; Lee, Hai Yen; Noorlis, Ahmad; Zainazor, Tuan Chilek Tuan; Tang, John Yew Huat; Ghazali, Farinazleen Mohamad; Cheah, Yoke Kqueen; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki; Radu, Son

    2011-01-01

    Salmonellosis outbreaks involving typhoid fever and human gastroenteritis are important diseases in tropical countries where hygienic conditions are often not maintained. A rapid and sensitive method to detect Salmonella spp., Salmonella Typhi and Salmonella Typhimurium is needed to improve control and surveillance of typhoid fever and Salmonella gastroenteritis. Our objective was the concurrent detection and differentiation of these food-borne pathogens using a multiplex PCR. We therefore designed and optimized a multiplex PCR using three specific PCR primer pairs for the simultaneous detection of these pathogens. The concentration of each of the primer pairs, magnesium chloride concentration, and primer annealing temperature were optimized before verification of the specificity of the primer pairs. The target genes produced amplicons at 429 bp, 300 bp and 620 bp which were shown to be 100% specific to each target bacterium, Salmonella spp., Salmonella Typhi and Salmonella Typhimurium, respectively. PMID:22028607

  14. NINA-LAMP compared to microscopy, RDT, and nested PCR for the detection of imported malaria.

    PubMed

    Mohon, Abu Naser; Lee, Lydia Da-Yeong; Bayih, Abebe Genetu; Folefoc, Asongna; Guelig, Dylan; Burton, Robert A; LaBarre, Paul; Chan, Wilson; Meatherall, Bonnie; Pillai, Dylan R

    2016-06-01

    Microscopy and field adaptable rapid diagnostic tests (RDTs) are not sensitive and specific in certain conditions such as poor training of microscopists, lack of electricity, or lower sensitivity in the detection of non-falciparum malaria. More sensitive point-of-care testing (POCT) would reduce delays in diagnosis and initiation of therapy. In the current study, we have evaluated the efficacy of noninstrumented nucleic acid amplification (NINA) coupled with loop-mediated isothermal amplification (LAMP) for detection of traveler's malaria (n=140) in comparison with microscopy, nested PCR, and the only Food and Drug Administration-approved rapid diagnostic test. NINA-LAMP was 100% sensitive and 98.6% specific when compared to nested PCR. For non-falciparum detection, NINA-LAMP sensitivity was 100% sensitive compared to nested PCR, whereas RDT sensitivity was 71%. LAMP is highly sensitive and specific for symptomatic malaria diagnosis regardless of species. PMID:27017271

  15. Validation of a quantitative PCR assay for detection and quantification of 'Candidatus Xenohaliotis californiensis'.

    PubMed

    Friedman, Carolyn S; Wight, Nate; Crosson, Lisa M; White, Samuel J; Strenge, Robyn M

    2014-04-01

    Withering syndrome (WS), a serious disease affecting abalone Haliotis spp., is caused by infection from an intracellular Rickettsia-like organism (WS-RLO). Diagnosis of the disease currently relies on a combination of histological examination and molecular methods (in situ hybridization, standard PCR, and sequence analysis). However, these techniques only provide a semi-quantitative assessment of bacterial load. We created a real-time quantitative PCR (qPCR) assay to specifically identify and enumerate bacterial loads of WS-RLO in abalone tissue, fecal, and seawater samples based on 16S rDNA gene copy numbers. The qPCR assay designed to detect DNA of the WS-RLO was validated according to standards set by the World Organisation for Animal Health. Standard curves derived from purified plasmid dilutions were linear across 7 logs of concentration, and efficiencies ranged from 90.2 to 97.4%. The limit of detection was 3 gene copies per reaction. Diagnostic sensitivity was 100% and specificity was 99.8%. The qPCR assay was robust, as evidenced by its high level of repeatability and reproducibility. This study has shown for the first time that WS-RLO DNA can be detected and quantified in abalone tissue, fecal, and seawater samples. The ability to detect and quantify RLO gene copies in a variety of materials will enable us to better understand transmission dynamics in both farmed and natural environments. PMID:24695238

  16. A point-of-care PCR test for HIV-1 detection in resource-limited settings.

    PubMed

    Jangam, Sujit R; Agarwal, Abhishek K; Sur, Kunal; Kelso, David M

    2013-04-15

    A low-cost, fully integrated sample-to-answer, quantitative PCR (qPCR) system that can be used for detection of HIV-1 proviral DNA in infants at the point-of-care in resource-limited settings has been developed and tested. The system is based on a novel DNA extraction method, which uses a glass fiber membrane, a disposable assay card that includes on-board reagent storage, provisions for thermal cycling and fluorescence detection, and a battery-operated portable analyzer. The system is capable of automated PCR mix assembly using a novel reagent delivery system and performing qPCR. HIV-1 and internal control targets are detected using two spectrally separated fluorophores, FAM and Quasar 670. In this report, a proof-of-concept of the platform is demonstrated. Initial results with whole blood demonstrate that the test is capable of detecting HIV-1 in blood samples containing greater than 5000 copies of HIV-1. In resource-limited settings, a point-of-care HIV-1 qPCR test would greatly increase the number of test results that reach the infants caregivers, allowing them to pursue anti-retroviral therapy. PMID:23202333

  17. Multiplex PCR for Detection of Botulinum Neurotoxin-Producing Clostridia in Clinical, Food, and Environmental Samples▿

    PubMed Central

    De Medici, Dario; Anniballi, Fabrizio; Wyatt, Gary M.; Lindström, Miia; Messelhäußer, Ute; Aldus, Clare F.; Delibato, Elisabetta; Korkeala, Hannu; Peck, Michael W.; Fenicia, Lucia

    2009-01-01

    Botulinum neurotoxin (BoNT), the most toxic substance known, is produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, also by some strains of Clostridium butyricum and Clostridium baratii. The standard procedure for definitive detection of BoNT-producing clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (SMB). The SMB is highly sensitive and specific, but it is expensive and time-consuming and there are ethical concerns due to use of laboratory animals. PCR provides a rapid alternative for initial screening for BoNT-producing clostridia. In this study, a previously described multiplex PCR assay was modified to detect all type A, B, E, and F neurotoxin genes in isolated strains and in clinical, food, environmental samples. This assay includes an internal amplification control. The effectiveness of the multiplex PCR method for detecting clostridia possessing type A, B, E, and F neurotoxin genes was evaluated by direct comparison with the SMB. This method showed 100% inclusivity and 100% exclusivity when 182 BoNT-producing clostridia and 21 other bacterial strains were used. The relative accuracy of the multiplex PCR and SMB was evaluated using 532 clinical, food, and environmental samples and was estimated to be 99.2%. The multiplex PCR was also used to investigate 110 freshly collected food and environmental samples, and 4 of the 110 samples (3.6%) were positive for BoNT-encoding genes. PMID:19684163

  18. Multiplex PCR for detection of botulinum neurotoxin-producing clostridia in clinical, food, and environmental samples.

    PubMed

    De Medici, Dario; Anniballi, Fabrizio; Wyatt, Gary M; Lindström, Miia; Messelhäusser, Ute; Aldus, Clare F; Delibato, Elisabetta; Korkeala, Hannu; Peck, Michael W; Fenicia, Lucia

    2009-10-01

    Botulinum neurotoxin (BoNT), the most toxic substance known, is produced by the spore-forming bacterium Clostridium botulinum and, in rare cases, also by some strains of Clostridium butyricum and Clostridium baratii. The standard procedure for definitive detection of BoNT-producing clostridia is a culture method combined with neurotoxin detection using a standard mouse bioassay (SMB). The SMB is highly sensitive and specific, but it is expensive and time-consuming and there are ethical concerns due to use of laboratory animals. PCR provides a rapid alternative for initial screening for BoNT-producing clostridia. In this study, a previously described multiplex PCR assay was modified to detect all type A, B, E, and F neurotoxin genes in isolated strains and in clinical, food, environmental samples. This assay includes an internal amplification control. The effectiveness of the multiplex PCR method for detecting clostridia possessing type A, B, E, and F neurotoxin genes was evaluated by direct comparison with the SMB. This method showed 100% inclusivity and 100% exclusivity when 182 BoNT-producing clostridia and 21 other bacterial strains were used. The relative accuracy of the multiplex PCR and SMB was evaluated using 532 clinical, food, and environmental samples and was estimated to be 99.2%. The multiplex PCR was also used to investigate 110 freshly collected food and environmental samples, and 4 of the 110 samples (3.6%) were positive for BoNT-encoding genes. PMID:19684163

  19. Evaluation of a PCR Test for Detection of Treponema pallidum in Swabs and Blood

    PubMed Central

    Grange, P. A.; Gressier, L.; Dion, P. L.; Farhi, D.; Benhaddou, N.; Gerhardt, P.; Morini, J. P.; Deleuze, J.; Pantoja, C.; Bianchi, A.; Lassau, F.; Avril, M. F.; Janier, M.

    2012-01-01

    Syphilis diagnosis is based on clinical observation, serological analysis, and dark-field microscopy (DFM) detection of Treponema pallidum subsp. pallidum, the etiological agent of syphilis, in skin ulcers. We performed a nested PCR (nPCR) assay specifically amplifying the tpp47 gene of T. pallidum from swab and blood specimens. We studied a cohort of 294 patients with suspected syphilis and 35 healthy volunteers. Eighty-seven of the 294 patients had primary syphilis, 103 had secondary syphilis, 40 had latent syphilis, and 64 were found not to have syphilis. The T. pallidum nPCR results for swab specimens were highly concordant with syphilis diagnosis, with a sensitivity of 82% and a specificity of 95%. Reasonable agreement was observed between the results obtained with the nPCR and DFM methods (kappa = 0.53). No agreement was found between the nPCR detection of T. pallidum in blood and the diagnosis of syphilis, with sensitivities of 29, 18, 14.7, and 24% and specificities of 96, 92, 93, and 97% for peripheral blood mononuclear cell (PBMC), plasma, serum, and whole-blood fractions, respectively. HIV status did not affect the frequency of T. pallidum detection in any of the specimens tested. Swab specimens from mucosal or skin lesions seemed to be more useful than blood for the efficient detection of the T. pallidum genome and, thus, for the diagnosis of syphilis. PMID:22219306

  20. Diagnosis of bacterial kidney disease by detection of Renibacterium salmoninarum by real-time PCR.

    PubMed

    Jansson, E; Lindberg, L; Säker, E; Aspán, A

    2008-10-01

    Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum (Rs), is a serious threat to salmon in aquaculture as well as to wild populations. We have developed a real-time polymerase chain reaction (PCR) for detection of Rs in kidney samples. The PCR is based on detection of unique parts of the 16S rRNA gene of Rs and DNA equivalent to 1-10 Rs genomes was detected per reaction. No cross-reactivity with other fish pathogenic or related bacteria could be demonstrated. Analysis of individual kidney samples collected from BKD classified populations identified 39.9% of the fish as positive by real-time PCR compared with 28.0% by polyclonal enzyme-linked immunosorbent assay (ELISA). The real-time PCR assay was found to be well suited for complementary use with ELISA for diagnosis of BKD, with the ability to detect clinical as well as covert Rs infections. The infection level determined by the polyclonal ELISA and by real-time PCR was significantly correlated. PMID:18681904

  1. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    PubMed Central

    2012-01-01

    Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR). Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically accessible desiccant will likely

  2. Rapid detection of Ophiostoma piceae and O. quercus in stained wood by PCR.

    PubMed

    Kim, S H; Uzunovic, A; Breuil, C

    1999-01-01

    A rapid, sensitive, and simple method was developed to detect the sapstain fungi Ophiostoma piceae and O. quercus in stained wood. By using microwave heating for DNA extraction and PCR with internal transcribed spacer-derived-specific primers, detection was feasible within 4 h, even with DNA obtained from a single synnema. This method can easily be extended for the detection of other wood-inhabiting fungi. PMID:9872792

  3. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught Mosquitoes

    PubMed Central

    2013-01-01

    Background Zika virus (ZIKV), a mosquito borne flavivirus is a pathogen affecting humans in Asia and Africa. ZIKV infection diagnosis relies on serology–which is challenging due to cross-reactions with other flaviviruses and/or absence or low titer of IgM and IgG antibodies at early phase of infection- virus isolation, which is labor intensive, time consuming and requires appropriate containment. Therefore, real-time RT-PCR (rRT-PCR) is an appealing option as a rapid, sensitive and specific method for detection of ZIKV in the early stage of infection. So far, only one rRT-PCR assay has been described in the context of the outbreak in Micronesia in 2007. In this study, we described a one step rRT-PCR for ZIKV which can detect a wider genetic diversity of ZIKV isolates from Asia and Africa. Results The NS5 protein coding regions of African ZIKV isolates were sequenced and aligned with representative flaviviruses sequences from GenBank to design primers and probe from conserved regions. The analytical sensitivity of the assay was evaluated to be 32 genome-equivalents and 0.05 plaque forming unit (pfu). The assay was shown to detect 37 ZIKV isolates covering a wide geographic in Africa and Asia over 36 years but none of the 31 other flaviviruses tested showing high analytical specificity. The rRT-PCR could be performed in less than 3 hours. This method was used successfully to detect ZIKV strains from field-caught mosquitoes. Conclusion We have developed a rapid, sensitive and specific rRT – PCR for detection of ZIKV. This assay is a useful tool for detection of ZIKV infection in regions where a number of other clinically indistinguishable arboviruses like dengue or chikungunya co-circulate. Further studies are needed to validate this assay in clinical positive samples collected during acute ZIKV infection. PMID:24148652

  4. Validation of nested PCR and a selective biochemical method as alternatives for mycoplasma detection.

    PubMed

    Cheong, Kyung Ah; Agrawal, Santosh Rani; Lee, Ai-Young

    2011-04-01

    Direct culture is the most common way to reliably detect mycoplasma, but it is not practical for the qualitative control of cell therapeutics because of the elaborate culture medium, the prolonged incubation time, and the large sample volumes. Here, we chose two alternative methods using commercial detection kits, the PCR mycoplasma detection kit with nested PCR and the selective biochemical method, MycoAlert(®), and validated them with the direct culture method as a reference. We tested eight mycoplasma species and five validation parameters: specificity, detection limit, robustness, repeatability, and ruggedness, based on the regulatory guidelines in the US Pharmacopoeia. All experiments were performed using fibroblasts spiked with mycoplasma. Specificity tests for both methods included all mycoplasma species, except Mycoplasma pneumonia and M. genitalium for the nested PCR and Ureaplasma urealyticum for the MycoAlert(®) assay. Regarding the detection limit, the nested PCR proved to be as sensitive as the direct culture method and more sensitive than the MycoAlert(®) assay. The predicted median for probit = 0.9 was 54 (44-76) CFU/ml for M. hyorhinis and 16 (13-23) CFU/ml for M. hominis by the nested PCR, but 431 (346-593) CFU/ml and 105 (87-142) CFU/ml, respectively, with MycoAlert(®). Changes in the concentration of reagents, reagent lot, or individual analysts did not influence the results of the examined methods. The results of this study support nested PCR as a valuable alternative for mycoplasma detection. PMID:20806253

  5. Sensitive detection of cancer cells using light-mediated apta-PCR.

    PubMed

    Civit, Laia; Pinto, Alessandro; Rodrigues-Correia, Alexandre; Heckel, Alexander; O'Sullivan, Ciara K; Mayer, Günter

    2016-03-15

    Apta-PCR is an ultrasensitive assay in which aptamers are exploited not only as biomolecular recognition elements, but also as reporter labels for amplification via real-time PCR. This methodology has been successfully applied to the detection of proteins, achieving limits of detection in the picomolar range. The introduction of caged aptamers that bear photo-labile groups, so called cages, at strategic positions so that their tertiary structure and thus their binding properties can be controlled by light, facilitates a more robust and attractive assay in terms of sample conservation and reusability. In this work, we report for the first time the use of caged aptamers for cell detection in an apta-PCR assay. Specifically, a sandwich format is used combining the capture of B-cells by an antibody with the specific detection of Burkitt's lymphoma cancer cells by a caged aptamer, acting as a reporter probe. Elution of the aptamer bound to the cancer cells is performed by light and the number of cells is then correlated with the amount of eluted caged aptamer using real-time PCR analysis. The reported technique shows an excellent sensitivity, achieving detection of as few as 77 cells, and due to the inherent robustness of the assay, this detection platform can be reused for further analyses, demonstrating potential applicability in proteomics and clinical diagnostics. PMID:26615953

  6. Rapid PCR Detection of Mycoplasma hominis, Ureaplasma urealyticum, and Ureaplasma parvum

    PubMed Central

    Cunningham, Scott A.; Mandrekar, Jayawant N.; Rosenblatt, Jon E.; Patel, Robin

    2013-01-01

    Objective. We compared laboratory developed real-time PCR assays for detection of Mycoplasma hominis and for detection and differentiation of Ureaplasma urealyticum and parvum to culture using genitourinary specimens submitted for M. hominis and Ureaplasma culture. Methods. 283 genitourinary specimens received in the clinical bacteriology laboratory for M. hominis and Ureaplasma species culture were evaluated. Nucleic acids were extracted using the Total Nucleic Acid Kit on the MagNA Pure 2.0. 5 μL of the extracts were combined with 15 μL of each of the two master mixes. Assays were performed on the LightCycler 480 II system. Culture was performed using routine methods. Results.  M. hominis PCR detected 38/42 M. hominis culture-positive specimens, as well as 2 that were culture negative (sensitivity, 90.5%; specificity, 99.2%). Ureaplasma PCR detected 139/144 Ureaplasma culture-positive specimens, as well as 9 that were culture negative (sensitivity, 96.5%; specificity, 93.6%). Of the specimens that tested positive for Ureaplasma species, U. urealyticum alone was detected in 33, U. parvum alone in 109, and both in 6. Conclusion. The described PCR assays are rapid alternatives to culture for detection of M. hominis and Ureaplasma species, and, unlike culture, the Ureaplasma assay easily distinguishes U. urealyticum from parvum. PMID:26904723

  7. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters.

    PubMed

    Burtscher, Carola; Wuertz, Stefan

    2003-08-01

    A PCR-based method and a reverse transcriptase PCR (RT-PCR)-based method were developed for the detection of pathogenic bacteria in organic waste, using Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and Staphylococcus aureus as model organisms. In seeded organic waste samples, detection limits of less than 10 cells per g of organic waste were achieved after one-step enrichment of bacteria, isolation, and purification of DNA or RNA before PCR or RT-PCR amplification. To test the reproducibility and reliability of the newly developed methods, 46 unseeded samples were collected from diverse aerobic (composting) facilities and anaerobic digestors and analyzed by both culture-based classical and newly developed PCR-based procedures. No false-positive but some false-negative results were generated by the PCR- or RT-PCR-based methods after one-step enrichment when compared to the classical detection methods. The results indicated that the level of activity of the tested bacteria in unseeded samples was very low compared to that of freshly inoculated cells, preventing samples from reaching the cell density required for PCR-based detection after one-step enrichment. However, for Salmonella spp., a distinct PCR product could be obtained for all 22 nonamended samples that tested positive for Salmonella spp. by the classical detection procedure when a selective two-step enrichment (20 h in peptone water at 37 degrees C and 24 h in Rappaport Vassiliadis medium at 43 degrees C) was performed prior to nucleic acid extraction and PCR. Hence, the classical procedure was shortened, since cell plating and further differentiation of isolated colonies can be omitted, substituted for by highly sensitive and reliable detection based on nucleic acid extraction and PCR. Similarly, 2 of the 22 samples in which Salmonella spp. were detected also tested positive for Listeria monocytogenes according to a two-step enrichment procedure followed by PCR, compared to 3 samples

  8. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  9. Optimization of PMA-PCR Protocol for Viability Detection of Pathogens

    NASA Technical Reports Server (NTRS)

    Mikkelson, Brian J.; Lee, Christine M.; Ponce, Adrian

    2011-01-01

    This presented study demonstrates the need that PMA-PCR can be used to capture the loss of viability of a sample that is much more specific and time-efficient than alternative methods. This protocol is particularly useful in scenarios in which sterilization treatments may inactivate organisms but not degrade their DNA. The use of a PCR-based method of pathogen detection without first inactivating the DNA of nonviable cells will potentially lead to false positives. The loss of culturability, by heat-killing, did not prevent amplified PCR products, which supports the use of PMA to prevent amplification and differentiate between viable and dead cells. PMA was shown to inhibit the amplification of DNA by PCR in vegetative cells that had been heat-killed.

  10. Goose Hemorrhagic polyomavirus detection in geese using real-time PCR assay.

    PubMed

    Leon, Olivier; Corrand, Léni; Bich, Tran Ngoc; Le Minor, Odile; Lemaire, Mylène; Guérin, Jean-Luc

    2013-12-01

    Goose hemorrhagic polyomavirus (GHPV) is the viral agent of hemorrhagic nephritis enteritis of geese (HNEG), a lethal disease of goslings. Although death is the most common outcome, geese that recover from HNEG are persistently infected. Here, we present the development of real-time SYBR Green real-time PCR targeted to GHPV and its use to assess the prevalence of GHPV infection in French geese flocks. When compared with classical end-point PCR, real-time PCR revealed a much better sensitivity and equivalent specificity. Real-time PCR could, therefore, be considered a gold standard for the detection of GHPV. Results of field investigations evidenced a very high prevalence of GHPV infections in French geese, largely associated with healthy carriage. PMID:24597124

  11. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR.

    PubMed

    Alaei, Hossein; Baeyen, Steve; Maes, Martine; Höfte, Monica; Heungens, Kurt

    2009-02-01

    Puccinia horiana Henn. is a quarantine organism and one of the most important fungal pathogens of Chrysanthemum x morifolium cultivars grown for cut flower or potted plant production (florist's chrysanthemum) in several regions of the world. Highly specific primer pairs were identified for conventional, nested, and real-time PCR detection of P. horiana based on the specific and sensitive PCR amplification of selected regions in the internal transcribed spacers (ITS1 and ITS2) of the nuclear ribosomal DNA (rDNA). Using these different PCR versions, 10 pg, 10 fg, and 5 fg genomic DNA could be detected, respectively. When using cloned target DNA as template, the detection limits were 5000, 50, and 5 target copies, respectively. These detection limits were not affected by a background of chrysanthemum plant DNA. The DNA extraction method was optimized to maximize the recoverability of the pathogen from infected plant tissue. A CTAB extraction protocol or a selection of commercial DNA extraction methods allowed the use of 10 ng total (plant+pathogen) DNA without interference of PCR inhibitors. Due to the specificity of the primers, SYBR Green I technology enabled reliable real time PCR signal detection. However, an efficient TaqMan probe is available. The lowest proportion of infected plant material that could still be detected when mixed with healthy plant material was 0.001%. The real-time PCR assay could detect as few as eight pure P. horiana basidiospores, demonstrating the potential of the technique for aerial detection of the pathogen. The amount of P. horiana DNA in plant tissue was determined at various time points after basidiospore inoculation. Using the real-time PCR protocol, it was possible to detect the pathogen immediately after the inoculation period, even though the accumulation of pathogen DNA was most pronounced near the end of the latent period. The detection system proved to be accurate and sensitive and could help not only in pathogen diagnosis but

  12. Development of droplet digital PCR for the detection of Babesia microti and Babesia duncani.

    PubMed

    Wilson, Melisa; Glaser, Kathleen C; Adams-Fish, Debra; Boley, Matthew; Mayda, Maria; Molestina, Robert E

    2015-02-01

    Babesia spp. are obligate protozoan parasites of red blood cells. Transmission to humans occurs through bites from infected ticks or blood transfusion. Infections with B. microti account for the majority of the reported cases of human babesiosis in the USA. A lower incidence is caused by the more recently described species B. duncani. The current gold standard for detection of Babesia is microscopic examination of blood smears. Recent PCR-based assays, including real-time PCR, have been developed for B. microti. On the other hand, molecular assays that detect and distinguish between B. microti and B. duncani infections are lacking. Closely related species of Babesia can be differentiated due to sequence variation within the internal transcribed spacer (ITS) regions of nuclear ribosomal RNAs. In the present study, we targeted the ITS regions of B. microti and B. duncani to develop sensitive and species-specific droplet digital PCR (ddPCR) assays. The assays were shown to discriminate B. microti from B. duncani and resulted in limits of detection of ~10 gene copies. Moreover, ddPCR for these species were useful in DNA extracted from blood of experimentally infected hamsters, detecting infections of low parasitemia that were negative by microscopic examination. In summary, we have developed sensitive and specific quantitative ddPCR assays for the detection of B. microti and B. duncani in blood. Our methods could be used as sensitive approaches to monitor the progression of parasitemia in rodent models of infection as well as serve as suitable molecular tests in blood screening. PMID:25500215

  13. Rapid-Viability PCR Method for Detection of Live, Virulent Bacillus anthracis in Environmental Samples ▿

    PubMed Central

    Létant, Sonia E.; Murphy, Gloria A.; Alfaro, Teneile M.; Avila, Julie R.; Kane, Staci R.; Raber, Ellen; Bunt, Thomas M.; Shah, Sanjiv R.

    2011-01-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples. PMID:21764960

  14. Development of droplet digital PCR for the detection of Babesia microti and Babesia duncani

    PubMed Central

    Wilson, Melisa; Glaser, Kathleen C.; Adams-Fish, Debra; Boley, Matthew; Mayda, Maria; Molestina, Robert E.

    2014-01-01

    Babesia spp. are obligate protozoan parasites of red blood cells. Transmission to humans occurs through bites from infected ticks or blood transfusion. Infections with B. microti account for the majority of the reported cases of human babesiosis in the USA. A lower incidence is caused by the more recently described species B. duncani. The current gold standard for detection of Babesia is microscopic examination of blood smears. Recent PCR-based assays, including real-time PCR, have been developed for B. microti. On the other hand, molecular assays that detect and distinguish between B. microti and B. duncani infections are lacking. Closely related species of Babesia can be differentiated due to sequence variation within the internal transcribed spacer (ITS) regions of nuclear ribosomal RNAs. In the present study, we targeted the ITS regions of B. microti and B. duncani to develop sensitive and species-specific droplet digital PCR (ddPCR) assays. The assays were shown to discriminate B. microti from B. duncani and resulted in limits of detection of ~10 gene copies. Moreover, ddPCR for these species were useful in DNA extracted from blood of experimentally infected hamsters, detecting infections of low parasitemia that were negative by microscopic examination. In summary, we have developed sensitive and specific quantitative ddPCR assays for the detection of B. microti and B. duncani in blood. Our methods could be used as sensitive approaches to monitor the progression of parasitemia in rodent models of infection as well as serve as suitable molecular tests in blood screening. PMID:25500215

  15. Detection of West Nile virus in mosquitoes by RT-PCR.

    PubMed

    Hadfield, T L; Turell, M; Dempsey, M P; David, J; Park, E J

    2001-06-01

    A reverse transcriptase-polymerase chain reaction (RT-PCR) assay employing detection technology was developed to identify West Nile virus in experimentally infected mosquitoes. The specificity of the assay was evaluated with the following viruses: eastern equine encephalitis, Ilheus, West Nile and yellow fever viruses. The limits of detection were determined using West Nile viral RNA extracted from serial dilutions of virus culture in infected mosquitoes. Limit of detection was 5 PFU from extracted mosquitoes. We were able to detect the presence of one infected mosquito in a pool of 50 repeatedly. When the RT-PCR was used with coded samples of intrathoracically-infected and uninfected mosquitoes, the assay detected the virus in all infected mosquitoes. Analytic sensitivity and specificity were 100%. This assay offers an efficient and rapid method of identifying West Nile virus in infected mosquitoes or cell culture. PMID:11352595

  16. An electrochemiluminescence non-PCR method for the detection of genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Xing, Da; Zhu, Debin

    2006-09-01

    An electrochemiluminescence non-PCR method has been developed for the detection of genetically modified organisms (GMOs) in crops. Genomic DNA of GMOs was digested with two restriction endonucleases (FOK I and BsrD I), and hybridized with three Ru(bpy) 3 2+ (TBR)-labeled and one biotinylated probes. The hybridization products were captured onto streptavidin-coated paramagnetic beads, and detected by measuring the electrochemiluminescence (ECL) signal of the TBR label. Whether the tobaccos contain GM components was discriminated by detecting the ECL signal of CaMV35S promoter. The experiment results show that the detection limit for CaMV35S promoter is 100 fmol, and the GM components can be clearly identified in GM tobaccos. The ECL non-PCR method will provide a new means in GMOs detection due to its safety, simplicity and high efficiency.

  17. Direct Detection of Cylindrocarpon destructans, Root Rot Pathogen of Ginseng by Nested PCR from Soil Samples.

    PubMed

    Jang, Chang Soon; Lim, Jin Ha; Seo, Mun Won; Song, Jeong Young; Kim, Hong Gi

    2010-03-01

    We have successfully applied the nested PCR to detect Cylindrocarpon destructans, a major pathogen causing root rot disease from ginseng seedlings in our former study. The PCR assay, in this study, was used to detect the pathogen from soils. The nested PCR using internal transcribed spacer (ITS) 1, 4 primer set and Dest 1, 4 primer set maintained the specificity in soils containing various microorganisms. For a soil DNA extraction method targeting chlamydospores, when several cell wall disrupting methods were tested, the combination of lyophilization and grinding with glass beads, which broke almost all the chlamydospores, was the strongest. The DNA extraction method which was completed based on the above was simple and time-saving because of exclusion of unnecessary stages, and efficient to apply in soils. As three ginseng fields whose histories were known were analyzed, the PCR assay resulted as our expectation derived from the field information. The direct PCR method will be utilized as a reliable and rapid tool for detecting and monitoring C. destructans in ginseng fields. PMID:23956622

  18. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief

    PubMed Central

    Harshman, Dustin K.; Rao, Brianna M.; McLain, Jean E.; Watts, George S.; Yoon, Jeong-Yeol

    2015-01-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  19. Rapid and sensitive detection of major uropathogens in a single-pot multiplex PCR assay.

    PubMed

    Padmavathy, B; Vinoth Kumar, R; Patel, Amee; Deepika Swarnam, S; Vaidehi, T; Jaffar Ali, B M

    2012-07-01

    Urinary tract infection (UTI) is among the most common bacterial infections and poses a significant healthcare burden. Escherichia coli is the most common cause of UTI accounting for up to 70 % and a variable contribution from Proteus mirabilis, Pseudomonas aeruginosa and Klebsiella pneumoniae. To establish a complete diagnostic system, we have developed a single-tube multiplex PCR assay (mPCR) for the detection of the above-mentioned four major uropathogens. The sensitivity of the assay was found to be as low as 10(2) cfu/ml of cells. The mPCR evaluated on 280 clinical isolates detected 100 % of E. coli, P. aeruginosa, P. mirabilis and 95 % of K. pneumonia. The assay was performed on 50 urine samples and found to be specific and sensitive for clinical diagnosis. In addition, the mPCR was also validated on spiked urine samples using 40 clinical isolates to demonstrate its application under different strain used in this assay. In total, mPCR reported here is a rapid and simple screening tool that can compete with conventional biochemical-based screening assays that may require 2-3 days for detection. PMID:22526571

  20. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief.

    PubMed

    Harshman, Dustin K; Rao, Brianna M; McLain, Jean E; Watts, George S; Yoon, Jeong-Yeol

    2015-09-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  1. Development and Application of Real-Time PCR for Detection of Subgroup J Avian Leukosis Virus

    PubMed Central

    Qin, Liting; Gao, Yulong; Ni, Wei; Sun, Meiyu; Wang, Yongqiang; Yin, Chunhong; Qi, Xiaole; Gao, Honglei

    2013-01-01

    Subgroup J avian leukosis virus (ALV-J) is an avian retrovirus that causes severe economic losses in the poultry industry. The early identification and removal of virus-shedding birds are important to reduce the spread of congenital and contact infections. In this study, a TaqMan-based real-time PCR method for the rapid detection and quantification of ALV-J with proviral DNA was developed. This method exhibited a high specificity for ALV-J. Moreover, the detection limit was as low as 10 viral DNA copies. The coefficients of variation (CVs) of both interassay and intra-assay reproducibility were less than 1%. The growth curves of ALV-J in DF-1 cells were measured by real-time PCR, yielding a trend line similar to those determined by 50% tissue culture infective dose (TCID50) and p27 antigen detection. Tissue samples suspected of ALV infection were evaluated using real-time PCR, virus isolation, and routine PCR, and the positivity rates were 60.1%, 41.6% and 44.5%, respectively. Our data indicated that the real-time PCR method provides a sensitive, specific, and reproducible diagnostic tool for the identification and quantification of ALV-J for clinical diagnosis and in laboratory research. PMID:23100340

  2. Development and evaluation of a new PCR assay for detection of Pseudomonas aeruginosa D genotype.

    PubMed

    Lødeng, A G G; Ahlén, C; Lysvand, H; Mandal, L H; Iversen, O J

    2006-08-01

    This report describes a new PCR-based assay for the detection of Pseudomonas aeruginosa genotype D in occupational saturation diving systems in the North Sea. This genotype has persisted in these systems for 11 years (1993-2003) and represents 18% of isolates from infections analysed during this period. The new PCR assay was based on sequences obtained after randomly amplified polymorphic DNA (RAPD)-PCR analysis of a group of isolates related to diving that had been identified previously by pulsed-field gel electrophoresis (PFGE). The primer set for the D genotype targets a gene that codes for a hypothetical class 4 protein in the P. aeruginosa PAO1 genome. A primer set able to detect P. aeruginosa at the species level was also designed, based on the 23S-5S rDNA spacer region. The two assays produced 382-bp and 192-bp amplicons, respectively. The PCR assay was evaluated by analysing 100 P. aeruginosa isolates related to diving, representing 28 PFGE genotypes, and 38 clinical and community P. aeruginosa isolates and strains from other species. The assay identified all of the genotype D isolates tested. Two additional diving-relevant genotypes (TP2 and TP27) were also identified, as well as three isolates of non-diving origin. It was concluded that the new PCR assay is a useful tool for early detection and prevention of infections with the D genotype. PMID:16842571

  3. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    PubMed

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained. PMID:24128588

  4. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    SciTech Connect

    Call, Douglas R.; Brockman, Fred J.; Chandler, Darrell P.

    2001-07-05

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification. The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFUs ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.

  5. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    PubMed

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores. PMID:20397018

  6. Detecting and Genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays

    SciTech Connect

    Call, Douglas R.; Brockman, Fred J. ); Chandler, Darrell P.

    2000-12-01

    Rapid detection and characterization of food borne pathogens such as Escherichia coli O157:H7 is crucial for epidemiological investigations and food safety surveillance. As an alternative to conventional technologies, we examined the sensitivity and specificity of nucleic acid microarrays for detecting and genotyping E. coli O157:H7. The array was composed of oligonucleotide probes (25-30 mer) complementary to four virulence loci (intimin, Shiga-like toxins I and II, and hemolysin A). Target DNA was amplified from whole cells or from purified DNA via single or multiplexed polymerase chain reaction (PCR), and PCR products were hybridized to the array without further modification or purification. The array was 32-fold more sensitive than gel electrophoresis and capable of detecting amplification products from < 1 cell equivalent of genomic DNA (1 fg). Immunomagnetic capture, PCR and a microarray were subsequently used to detect 55 CFU ml-1 (E. coli O157:H7) from chicken rinsate without the aid of pre-enrichment. Four isolates of E. coli O157:H7 and one isolate of O91:H2, for which genotypic data were available, were unambiguously genotyped with this array. Glass based microarrays are relatively simple to construct and provide a rapid and sensitive means to detect multiplexed PCR products and the system is amenable to automation.

  7. Electrochemical DNA sensor for anthrax toxin activator gene atxA-detection of PCR amplicons.

    PubMed

    Das, Ritu; Goel, Ajay K; Sharma, Mukesh K; Upadhyay, Sanjay

    2015-12-15

    We report the DNA probe functionalized electrochemical genosensor for the detection of Bacillus anthracis, specific towards the regulatory gene atxA. The DNA sensor is fabricated on electrochemically deposited gold nanoparticle on self assembled layer of (3-Mercaptopropyl) trimethoxysilane (MPTS) on GC electrode. DNA hybridization is monitored by differential pulse voltammogram (DPV). The modified GC electrode is characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) method. We also quantified the DNA probe density on electrode surface by the chronocoulometric method. The detection is specific and selective for atxA gene by DNA probe on the electrode surface. No report is available for the detection of B. anthracis by using atxA an anthrax toxin activator gene. In the light of real and complex sample, we have studied the PCR amplicons of 303, 361 and 568 base pairs by using symmetric and asymmetric PCR approaches. The DNA probe of atxA gene efficiently hybridizes with different base pairs of PCR amplicons. The detection limit is found to be 1.0 pM (S/N ratio=3). The results indicate that the DNA sensor is able to detect synthetic target as well as PCR amplicons of different base pairs. PMID:26257186

  8. Development of a PCR test system for specific detection of Salmonella Paratyphi B in foods.

    PubMed

    Zhai, Ligong; Yu, Qian; Bie, Xiaomei; Lu, Zhaoxin; Lv, Fengxia; Zhang, Chong; Kong, Xiaohan; Zhao, Haizhen

    2014-06-01

    Salmonella enterica serotype Paratyphi B is a globally distributed human-specific pathogen causing paratyphoid fever. The aim of this study was to develop a rapid and reliable polymerase chain reaction (PCR) assay for its detection in food. The SPAB_01124 gene was found to be unique to S. Paratyphi B using comparative genomics. Primers for fragments of the SPAB_01124 gene and the Salmonella-specific invA gene were used in combination to establish a multiplex PCR assay that showed 100% specificity across 45 Salmonella strains (representing 34 serotypes) and 18 non-Salmonella strains. The detection limit was 2.2 CFU mL(-1) of S. Paratyphi B after 12-h enrichment in pure culture. It was shown that co-culture with S. Typhimurium or Escherichia coli up to concentrations of 3.6 × 10(5)  CFU and 3.3 × 10(4)  CFU, respectively, did not interfere with PCR detection of S. Paratyphi B. In artificially contaminated milk, the assay could detect as few as 62 CFU mL(-1) after 8 h of enrichment. In conclusion, comparative genomics was found to be an efficient approach to the mining of pathogen-specific target genes, and the PCR assay that was developed from this provided a rapid, specific, and sensitive method for detection of S. Paratyphi B. PMID:24725227

  9. A novel method for the diagnosis of drowning by detection of Aeromonas sobria with PCR method.

    PubMed

    Aoyagi, Miwako; Iwadate, Kimiharu; Fukui, Kenji; Abe, Shuntaro; Sakai, Kentaro; Maebashi, Kyoko; Ochiai, Eriko; Nakamura, Mihoko

    2009-11-01

    The acid digestion method has been widely used for the diagnosis of death by drowning, but it is not always sensitive. However, there has been no definitive method to replace acid digestion until now. We speculate that bacteria are more useful markers than plankton for the diagnosis of death by drowning. In this study, from the preserved blood samples of 32 freshwater drowning cases, specific DNA fragments of Aeromonas sobria, one of the most common aquatic bacteria, were examined using PCR. The DNA fragments of the bacterium were detected from 27 of 32 cases with first round PCR or nested-PCR. The remaining 5 cases in which bacterial DNA was not detected had longer storage periods for the blood samples and shorter time intervals from drowning to death. These results indicate that the present method can be applied to the diagnosis of death by drowning. PMID:19766051

  10. Optimisation of one-tube PCR-ELISA to detect femtogram amounts of genomic DNA.

    PubMed

    Wilson, T; Carson, J; Bowman, J

    2002-10-01

    A simple, high-throughput, low-cost polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA) protocol that detects the presence of 4 fg of DNA from four bacterial fish pathogens Yersinia ruckeri, Tenacibaculum maritimum (formerly Flexibacter maritimus), Lactococcus garvieae and Aeromonas salmonicida was developed. DNA amplification was undertaken in a biphasic system with free and bound PCR that are achieved in the one NucleoLink tube. Solid-phase amplicons were detected using biotin labelled hybridization probes and visualised colourimetrically with streptavidin-alkaline phosphatase and p-nitrophenylphosphate as substrate. PCR and hybridization took less than 8 h to perform with maximum signal output for femtogram amounts of template DNA achieved within 24 h. Implementation and optimization of the protocol is discussed. PMID:12133608

  11. Multiplex PCR-based detection of Leptospira in environmental water samples obtained from a slum settlement.

    PubMed

    Vital-Brazil, Juliana Magalhães; Balassiano, Ilana Teruszkin; Oliveira, Fabiano Sutter de; Costa, Alberto Dias de Souza; Hillen, Leandro; Pereira, Martha Maria

    2010-05-01

    The aim of this study was to apply a molecular protocol to detect leptospiral DNA in environmental water samples. The study was carried out in a peri-urban settlement in Petrópolis, state of Rio de Janeiro. A multiplex PCR method employing the primers LipL32 and 16SrRNA was used. Three out of 100 analysed samples were positive in the multiplex PCR, two were considered to have saprophytic leptospires and one had pathogenic leptospires. The results obtained supported the idea that multiplex PCR can be used to detect Leptospira spp in water samples. This method was also able to differentiate between saprophytic and pathogenic leptospires and was able to do so much more easily than conventional methodologies. PMID:20512254

  12. Leishmania species: Detection and identification by nested PCR assay from skin samples of rodent reservoirs

    PubMed Central

    Akhavan, Amir Ahmad; Mirhendi, Hossein; Khamesipour, Ali; Alimohammadian, Mohammad Hossein; Rassi, Yavar; Bates, Paul; Kamhawi, Shaden; Valenzuela, Jesus G.; Arandian, Mohammad Hossein; Abdoli, Hamid; Jalali-zand, Niloufar; Jafari, Reza; Shareghi, Niloufar; Ghanei, Maryam; Yaghoobi-Ershadi, Mohammad Reza

    2010-01-01

    Many rodent species act as reservoir hosts of zoonotic cutaneous leishmaniasis in endemic areas. In the present study a simple and reliable assay based on nested PCR was developed for the detection and identification of Leishmania parasites from rodent skin samples. We designed Leishmania-specific primers that successfully amplified ITS regions of Leishmania major, Leishmania gerbilli and Leishmania turanica using nested PCR. Out of 95 field collected Rhombomys opimus, 21 were positive by microscopic examination and 48 by nested PCR. The percentage of gerbils infected with L. major, L. gerbilli and L. turanica was 3.2%, 1.1% and 27.4%, respectively. In 15.8% of the rodents, we found mixed natural infections by L. major and L. turanica, 1.1% by L. major and L. gerbilli, and 2.1% by the three species. We concluded that this method is simple and reliable for detecting and identifying Leishmania species circulating in rodent populations. PMID:20566364

  13. [RT-PCR detecting NUP98-HOX fusion gene in leukemia].

    PubMed

    Zhang, Yan; Li, Ling; Wen, Bing-Zhao; Lin, Ren-Yong; Cao, Xu; Wang, Ning; Ha Li Da, Ya Seng; Jiang, Ming; Wen, Hao; Lu, Xiao-Mei; Feng, Xiao-Hui; Wang, Xin

    2005-02-01

    To investigate whether there are NUP98-HOXA, NUP98-HOXB, NUP98-HOXC, NUP98-HOXD fusion genes in leukemia patients in Xinjiang, cellular total RNA was extracted from the bone marrow mononuclear cells, the formaldehyde-agarose gel electrophoresis was used to judge whether RNA was intact, the 17 RT-PCR primers were designed to amplify the predicted fusion junctions and 412 bp GAPDH was used as an internal control, NUP98-HOXA fusion genes were amplified by nested-PCR following reverse transcription. One-step PCR was performed to amplify the other predicted fusion genes. The results showed that RNA was proved to be intact and expression of GAPDH was found in every sample. However, no predicted fusion transcripts were detected in leukemia patients. In conclusion, no NUP98-HOX fusion genes were detected in the samples from Xinjiang. PMID:15748441

  14. Detecting Polychlorinated Biphenyls by Ah Receptor and Fluorescence Quantitative PCR with Exonuclease

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoxiang; Zhuang, Huisheng

    2010-11-01

    Tetrachlorobiphenyls as ligands were cultivated with goldfish, Ah receptors were extracted from the liver of goldfish and purified by hydroxyapatite. The complex of TCB ligands-receptors were analyzed by Surface Plasmon Resonance. DNA probes were amplified by PCR using Primers F1 and F2 with the DNA recognition site of responsive enhancer. DNA probes bound to the complex were not digested by exonuclease. The DNA that bound to the complex was quantified by real time PCR. A standard curve with TCB concentration to Ct values was obtained in the range of 10-12mol/L to 10-8 mol/L, according to TCB concentration in samples. The detection limit of the assay was below 10-12mol/L of TCB. Compared with HPLC, this assay is much more sensitive. These results suggest that fluorescence quantitative PCR with exonuclease by Ah receptors fits for detection of trace PCB.

  15. Comparison of a PNA clamp PCR and an ARMS/Scorpion PCR assay for the detection of K-ras mutations.

    PubMed

    Nordgård, Oddmund; Oltedal, Satu; Janssen, Emiel A M; Gilje, Bjørnar; Kørner, Hartwig; Tjensvoll, Kjersti; Smaaland, Rune

    2012-03-01

    Point mutations in the K-ras gene have been shown to confer resistance against epidermal growth factor receptor-directed therapy of metastatic colorectal cancer. Accordingly, K-ras mutation testing has become mandatory in hospitals offering such treatment. We compared the performance and reagent costs of 2 sensitive methods for detection of K-ras mutations: a peptide nucleic acid (PNA) clamp polymerase chain reaction (PCR) assay and a commercially available amplification refractory mutation system/Scorpion (ARMS/S) PCR assay. Both methods were applied in parallel to 101 formalin-fixed, paraffin-embedded tumor and metastasis samples from patients with colon cancer. The PNA clamp PCR assay detected K-ras mutations in 35% (35 of 101) of the samples, whereas the ARMS/S PCR assay detected mutations in 27% (27 of 101) of them. There was 92% (93 of 101) concordance between the 2 methods and the κ coefficient for the comparison was 0.82. The 8 discordant cases were exclusively positive by PNA clamp PCR. Finally, the reagent costs of the PNA clamp PCR assay were estimated to be at least 20 times lower than the ARMS/S assay. We concluded that the high performance and low costs associated with the PNA clamp PCR assay encourage its use in the administration of personalized epidermal growth factor receptor-directed therapy. PMID:22306670

  16. Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray.

    PubMed

    González, Santiago F; Krug, Melissa J; Nielsen, Michael E; Santos, Ysabel; Call, Douglas R

    2004-04-01

    We coupled multiplex PCR and a DNA microarray to construct an assay suitable for the simultaneous detection of five important marine fish pathogens (Vibrio vulnificus, Listonella anguillarum, Photobacterium damselae subsp. damselae, Aeromonas salmonicida subsp. salmonicida, and Vibrio parahaemolyticus). The array was composed of nine short oligonucleotide probes (25-mer) complementary to seven chromosomal loci (cyt, rpoN, gyrB, toxR, ureC, dly, and vapA) and two plasmid-borne loci (fatA and A.sal). Nine primer sets were designed to amplify short fragments of these loci (100 to 177 bp) in a multiplex PCR. PCR products were subsequently labeled by nick translation and hybridized to the microarray. All strains of the five target species (n = 1 to 21) hybridized to at least one species-specific probe. Assay sensitivities ranged from 100% for seven probes to 83 and 67% for the two remaining probes. Multiplex PCR did not produce any nonspecific amplification products when tested against 23 related species of bacteria (n = 40 strains; 100% specificity). Using purified genomic DNA, we were able to detect PCR products with < 20 fg of genomic DNA per reaction (equivalent to four or five cells), and the array was at least fourfold more sensitive than agarose gel electrophoresis for detecting PCR products. In addition, our method allowed the tentative identification of virulent strains of L. anguillarum serotype O1 based on the presence of the fatA gene (67% sensitivity and 100% specificity). This assay is a sensitive and specific tool for the simultaneous detection of multiple pathogenic bacteria that cause disease in fish and humans. PMID:15070982

  17. Simultaneous Detection of Marine Fish Pathogens by Using Multiplex PCR and a DNA Microarray

    PubMed Central

    González, Santiago F.; Krug, Melissa J.; Nielsen, Michael E.; Santos, Ysabel; Call, Douglas R.

    2004-01-01

    We coupled multiplex PCR and a DNA microarray to construct an assay suitable for the simultaneous detection of five important marine fish pathogens (Vibrio vulnificus, Listonella anguillarum, Photobacterium damselae subsp. damselae, Aeromonas salmonicida subsp. salmonicida, and Vibrio parahaemolyticus). The array was composed of nine short oligonucleotide probes (25-mer) complementary to seven chromosomal loci (cyt, rpoN, gyrB, toxR, ureC, dly, and vapA) and two plasmid-borne loci (fatA and A.sal). Nine primer sets were designed to amplify short fragments of these loci (100 to 177 bp) in a multiplex PCR. PCR products were subsequently labeled by nick translation and hybridized to the microarray. All strains of the five target species (n = 1 to 21) hybridized to at least one species-specific probe. Assay sensitivities ranged from 100% for seven probes to 83 and 67% for the two remaining probes. Multiplex PCR did not produce any nonspecific amplification products when tested against 23 related species of bacteria (n = 40 strains; 100% specificity). Using purified genomic DNA, we were able to detect PCR products with <20 fg of genomic DNA per reaction (equivalent to four or five cells), and the array was at least fourfold more sensitive than agarose gel electrophoresis for detecting PCR products. In addition, our method allowed the tentative identification of virulent strains of L. anguillarum serotype O1 based on the presence of the fatA gene (67% sensitivity and 100% specificity). This assay is a sensitive and specific tool for the simultaneous detection of multiple pathogenic bacteria that cause disease in fish and humans. PMID:15070982

  18. Evaluation and Field Validation of PCR Tests for Detection of Actinobacillus pleuropneumoniae in Subclinically Infected Pigs

    PubMed Central

    Fittipaldi, Nahuel; Broes, André; Harel, Josée; Kobisch, Marylène; Gottschalk, Marcelo

    2003-01-01

    Eight PCR tests were evaluated for their abilities to detect Actinobacillus pleuropneumoniae in swine tonsils. At first they were compared regarding their specificities by using A. pleuropneumoniae and related bacterial species and their analytical sensitivities by using tonsils experimentally infected in vitro. PCRs were carried out both directly with tonsil homogenates (direct PCR) and after culture of the sample (after-culture PCR). Most tests demonstrated good specificities; however, some tests gave false-positive results with some non-A. pleuropneumoniae species. High degrees of variation in the analytical sensitivities among the tests were observed for the direct PCRs (109 to 102 CFU/g of tonsil), whereas those of most of the after-culture PCRs were similar (102 CFU/g of tonsil). In a second phase, the effects of sample storage time and storage conditions were evaluated by using tonsils from experimentally infected animals. Storage at −20°C allowed the detection of the organism for at least 4 months. Finally, the omlA PCR test described by Savoye et al. (C. Savoye et al., Vet. Microbiol. 73:337-347, 2000) and the commercially available Adiavet App PCR test were further validated with field samples. Their effectiveness was compared to those of standard and immunomagnetic separation-based methods of bacterial isolation. In addition, a comparison of tonsil biopsy specimens (from living animals) and whole tonsils (collected at the slaughterhouse) was also conducted. A. pleuropneumoniae was neither isolated nor detected by PCR from a herd serologically negative for A. pleuropneumoniae. PCR was more sensitive than the standard isolation method with whole tonsils from three infected herds. After-culture PCR offered the highest degree of sensitivity (93 and 83% for the omlA and Adiavet App PCRs, respectively). The PCR detection rate was higher with whole tonsils than with tonsil biopsy specimens. Good agreement (κ = 0.65) was found between the presence of A

  19. Performance of PCR-based and Bioluminescent assays for mycoplasma detection.

    PubMed

    Falagan-Lotsch, Priscila; Lopes, Talíria Silva; Ferreira, Nívea; Balthazar, Nathália; Monteiro, Antônio M; Borojevic, Radovan; Granjeiro, José Mauro

    2015-11-01

    Contaminated eukaryotic cell cultures are frequently responsible for unreliable results. Regulatory entities request that cell cultures must be mycoplasma-free. Mycoplasma contamination remains a significant problem for cell cultures and may have an impact on biological analysis since they affect many cell parameters. The gold standard microbiological assay for mycoplasma detection involves laborious and time-consuming protocols. PCR-based and Bioluminescent assays have been considered for routine cell culture screening in research laboratories since they are fast, easy and sensitive. Thus, the aim of this work is to compare the performance of two popular commercial assays, PCR-based and Bioluminescent assays, by assessing the level of mycoplasma contamination in cell cultures from Rio de Janeiro Cell Bank (RJCB) and also from customers' laboratories. The results obtained by both performed assays were confirmed by scanning electron microscopy. In addition, we evaluated the limit of detection of the PCR kit under our laboratory conditions and the storage effects on mycoplasma detection in frozen cell culture supernatants. The performance of both assays for mycoplasma detection was not significantly different and they showed very good agreement. The Bioluminescent assay for mycoplasma detection was slightly more dependable than PCR-based due to the lack of inconclusive results produced by the first technique, especially considering the ability to detect mycoplasma contamination in frozen cell culture supernatants. However, cell lines should be precultured for four days or more without antibiotics to obtain safe results. On the other hand, a false negative result was obtained by using this biochemical approach. The implementation of fast and reliable mycoplasma testing methods is an important technical and regulatory issue and PCR-based and Bioluminescent assays may be good candidates. However, validation studies are needed. PMID:26296900

  20. From synthetic DNA to PCR product: detection of fungal infections using SERS.

    PubMed

    Mabbott, Samuel; Thompson, David; Sirimuthu, Narayana; McNay, Graeme; Faulds, Karen; Graham, Duncan

    2016-06-23

    We report the use of silver hydroxylamine nanoparticles functionalised with single stranded monothiolated DNA for the detection of fungal infections. The four different species of fungi that were targeted were Candida albicans, Candida glabrata, Candida krusei and Aspergillus fumigatus. Rational design of synthetic targets and probes was carried out by carefully analysing the 2-D folding of the DNA and then by global alignment of the sequences to ensure specificity. The effects of varying the concentrations of the DNA and dye surrounding the nanoparticles on the resultant surface enhanced Raman scattering (SERS) signal were also investigated to ensure compatibility of the probes in a multiplexed environment. Using principal components analysis (PCA) it was possible to detect the individual presence of each target and group them accordingly. The move to detect the C. krusei single stranded PCR product (ssPCR) was significant to demonstrate that the methodology could be employed for the detection and diagnosis of invasive fungal infections (IFDs) within a clinical setting. Initially the PCR product was subjected to an alkali shock method in order to separate the strands ready for detection using the nanoparticle probes system. This time 18 base probes were employed to enhance hybridisation efficiency and dextran sulfate was found to have a vital role in ensuring that detection of the C. krusei target was achieved. This demonstrated the use of DNA functionalised silver nanoparticle for the detection of clinically relevant DNA relating to a specific fungal infection and offers significant promise for future diagnostic applications. PMID:27034997

  1. Detection of bovine group a rotavirus using rapid antigen detection kits, rt-PCR and next-generation DNA sequencing.

    PubMed

    Minami-Fukuda, Fujiko; Nagai, Makoto; Takai, Hikaru; Murakami, Toshiaki; Ozawa, Tadashi; Tsuchiaka, Shinobu; Okazaki, Sachiko; Katayama, Yukie; Oba, Mami; Nishiura, Naomi; Sassa, Yukiko; Omatsu, Tsutomu; Furuya, Tetsuya; Koyama, Satoshi; Shirai, Junsuke; Tsunemitsu, Hiroshi; Fujii, Yoshiki; Katayama, Kazuhiko; Mizutani, Tetsuya

    2013-12-30

    We investigated the sensitivity of human rotavirus rapid antigen detection (RAD) kits, RT-PCR and next-generation DNA sequencing (NGS) for detection of bovine group A rotavirus (RVA). The Dipstick 'Eiken' Rota (Dipstick) showed the highest sensitivity out of the seven RAD kits against all selected strains in limited dilution analyses, which was consistent with the results for equine rotavirus previously reported. RT-PCR had 10⁰-10³-fold higher sensitivity than the Dipstick. NGS using thirteen RT-PCR-negative fecal samples revealed that all samples yielded RVA reads and especially that two of them covered all 11 genome segments. Moreover, mapping reads to reference sequences allowed genotyping. The NGS would be sensitive and useful for analysis of less dependent on specific primers and screening of genotypes. PMID:23912876

  2. Rapid detection method for fusaric acid-producing species of Fusarium by PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid is a mycotoxin produced by species of the fungus Fusarium and can act synergistically with other Fusarium toxins. In order to develop a specific detection method for fusaric acid-producing fungus, PCR prim¬ers were designed to amplify FUB10, a transcription factor gene in fusaric acid ...

  3. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

    PubMed Central

    Waggoner, Jesse J.; Gresh, Lionel; Mohamed-Hadley, Alisha; Ballesteros, Gabriela; Davila, Maria Jose Vargas; Tellez, Yolanda; Sahoo, Malaya K.; Balmaseda, Angel; Harris, Eva

    2016-01-01

    Clinical manifestations of Zika virus, chikungunya virus, and dengue virus infections can be similar. To improve virus detection, streamline molecular workflow, and decrease test costs, we developed and evaluated a multiplex real-time reverse transcription PCR for these viruses. PMID:27184629

  4. Preclinical Assessment of a Fully Automated Multiplex PCR Panel for Detection of Central Nervous System Pathogens.

    PubMed

    Hanson, K E; Slechta, E S; Killpack, J A; Heyrend, C; Lunt, T; Daly, J A; Hemmert, A C; Blaschke, A J

    2016-03-01

    We evaluated a multiplexed PCR panel for the detection of 16 bacterial, viral, and fungal pathogens in cerebrospinal fluid. Panel results were compared to routine testing, and discrepancies were resolved by additional nucleic acid amplification tests or sequencing. Overall, the positive and negative agreements across methods were 92.9% and 91.9%, respectively. PMID:26719436

  5. DETECTION OF PHAKOPSORA PACHYRHIZI SPORES IN RAIN USING REAL-TIME PCR ASSAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2005, rain samples were collected weekly at selected National Atmospheric Deposition Program (NADP) sites in the eastern and central US and screened for Phakopsora pachyrhizi (Asian soybean rust) spores. A nested real-time PCR assay was used to detect P. pachyrhizi DNA in the filter residue. A su...

  6. Single Laboratory Comparison of Host-Specific PCR Assays for the Detection of Bovine Fecal Pollution

    EPA Science Inventory

    There are numerous PCR-based methods available to detect bovine fecal pollution in ambient waters. Each method targets a different gene and microorganism leading to differences in method performance, making it difficult to determine which approach is most suitable for field appl...

  7. Towards Q-PCR of pathogenic bacteria with improved electrochemical double-tagged genosensing detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A very sensitive assay for the rapid detection of pathogenic bacteria based on electrochemical genosensing has been designed. The assay was performed by the PCR specific amplification of the eaeA gene, related with the pathogenic activity of Escherichia coli O157:H7. The efficiency and selectivity o...

  8. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using the Fluorescence Resonance Energy Transfer technology...

  9. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using Fluorescence Resonance Energy Transfer technology. D...

  10. Detecting the Presence of Nora Virus in "Drosophila" Utilizing Single Fly RT-PCR

    ERIC Educational Resources Information Center

    Munn, Bethany; Ericson, Brad; Carlson, Darby J.; Carlson, Kimberly A.

    2015-01-01

    A single fly RT-PCR protocol has recently been developed to detect the presence of the persistent, horizontally transmitted Nora virus in "Drosophila." Wild-caught flies from Ohio were tested for the presence of the virus, with nearly one-fifth testing positive. The investigation presented can serve as an ideal project for biology…