Science.gov

Sample records for netec cold crucible

  1. NETEC COLD CRUCIBLE INDUCTION MELTER DEMONSTRATION FOR SRNL WITH SIMULATED SLUDGE BATCH 4 DWPF WASTE

    SciTech Connect

    Smith, M; Allan Barnes, A; Alexander Choi, A; James Marra, J

    2008-07-28

    Cold Crucible Induction Melter (CCIM) Technology is being considered as a possible next generation melter for the Defense Waste Processing Facility (DWPF). Initial and baseline demonstrations that vitrified a Sludge Batch 4 (SB4) simulant at a waste loading of 50 weight percent (versus about 38 weight percent in the current DWPF Melter) were performed by the Nuclear Engineering and Technology Institute (NETEC) in South Korea via a subcontract from the Washington Savannah River Company (WSRC). This higher waste loading was achieved by using a CCIM which can run at higher glass processing temperatures (1250 C and higher) than the current DWPF Melter (1150 C). Higher waste loadings would result in less canisters being filled and faster waste throughput at the DWPF. The main demonstration objectives were to determine the maximum melt rate/waste throughput for the NETEC CCIM with a Sludge Batch 4 simulant as well as determine the viability of this technology for use in the DWPF.

  2. Vitrification of Simulated LILW Using Induction Cold Crucible Melter Technology

    SciTech Connect

    Kim, C.W.; Park, J.K.; Shin, S.W.; Hwang, T.W.; Ha, J.H.; Song, M.J.

    2006-07-01

    Vitrification destroys hazardous organics, and immobilizes heavy metals and radioactive elements to form a chemically durable and highly leach-resistant vitrified form. The vitrification process provides exceptional volume reduction and is attractive for minimizing disposal volume. A pilot plant test using an induction Cold Crucible Melter (CCM) fitted with an off-gas treatment system (OGTS) has been conducted to vitrify a simulated low-and intermediate-level radioactive waste (LILW) generated from Korean nuclear power plants. The CCM process is based on the use of a water-cooled metallic structure assembled in sectors which is transparent to the electromagnetic field supplied by a high-frequency generator. A solidified glass layer because of the water-cooled structure of the CCM protects the structure against corrosion. By creating the solidified glass auto-crucible on the inner surface of the wall, corrosion damage to the steel in contact with the molten glass is prevented. In order to start-up the CCM, the glass frits were loaded in the CCM. The glass melting was initiated by heating of a short-circuited titanium ring in an electromagnetic field followed by ring burnout and incorporation of the titania in the glass frits. The melter has one drain that exits through the bottom. It is a direct bottom drain from the floor of the melt tank. It is sealed by the solidified glass layer and can be activated by removing the water cooling system. This drain is used if it is desired to drain the melter. The melter employs oxygen bubbling to promote mixing and to increase the melting rate. The bubblers are desired to produce a curtain of bubbles rising from the melter floor. In addition to mixing, the bubbling of oxygen tends to keep the melt well oxidized. The top of the melter is equipped with a number of ports. These provide access for feed, viewing, off-gas discharge, etc. The normal method of feeding is dry feeding through a feed pipe mounted through the top of the

  3. Letter report: Cold crucible melter assessment

    SciTech Connect

    Elliott, M.L.

    1996-03-01

    One of the activities of the PNL Vitrification Technology Development (PVTD) Project is to assist the Tank Waste Remediation Systems (TWRS) Program in determining which melter systems should be performance tested for potential implementation in the high-level waste (HLW) vitrification plant. The Richland Operations Office (RL) has recommended that the Cold Crucible Melter (CCM) be evaluated as a candidate ``next generation`` melter. As a result, the CCM System Evaluation cost account was established under the PVTD Project so that the CCM could be initially assessed on a high-priority basis. This letter report summarizes a brief initial review and assessment of the CCM. Using the recommendations made in this document, Westinghouse Hanford Company (WHC) and RL will make a decision regarding the urgency of performance testing the CCM. If the decision is favorable, a subcontract will be negotiated for performance testing of a CCM using Hanford HLW simulants in a pilot-scale facility. Because of the aggressive nature of the schedule, the CCM evaluation was not rigorous. The evaluation consisted of a literature review and interviews with proponents of the technology during a recent trip to France. This letter report summarizes the evaluation and makes recommendations regarding further work in this area.

  4. Cold-Crucible Induction Melter Design and Development

    SciTech Connect

    Gombert, Dirk; Richardson, John R.

    2003-03-15

    The international process for immobilization of high-activity waste from aqueous fuel reprocessing is vitrification. In the United States joule-heated melter technology has been implemented at West Valley and the Savannah River Site, but improved melter concepts are sought to bring down the costs of processing. The cold-crucible induction melter (CCIM) design is being evaluated for many applications, including radioactive wastes because it eliminates many materials and operating constraints inherent in the baseline technology. The cold-crucible design is also smaller, less expensive, and generates much less waste for ultimate disposal. In addition, it should allow a much more flexible operating envelope, which will be crucial if the heterogeneous wastes at the U.S. Department of Energy (DOE) reprocessing sites are to be vitrified.A joule-heated melter operates by passing current between water-cooled electrodes through a molten pool in a refractory-lined chamber. This design is inherently limited by susceptibility of materials to corrosion and melting. In addition, redox conditions and free metal content have exacerbated materials problems or lead to electrical short-circuiting causing failures in developmental DOE melters. In contrast, the CCIM design is based on inductive coupling of a water-cooled high-frequency electrical coil with the glass, causing eddy currents that produce heat and mixing.While significant marketing claims have been made by technology suppliers and developers, little data is available for engineering and economic evaluation of the technology, and no facilities are available in the United States to support testing. In addition to verifying the capabilities of the technology, further development can exploit opportunities for optimization through better understanding of the electromagnetic thermal phenomena intrinsic to the cold-crucible melter. Induction frequency, applied power, and coil and crucible configuration are all related but

  5. Cold-Crucible Design Parameters for Next Generation HLW Melters

    SciTech Connect

    Gombert, D.; Richardson, J.; Aloy, A.; Day, D.

    2002-02-26

    The cold-crucible induction melter (CCIM) design eliminates many materials and operating constraints inherent in joule-heated melter (JHM) technology, which is the standard for vitrification of high-activity wastes worldwide. The cold-crucible design is smaller, less expensive, and generates much less waste for ultimate disposal. It should also allow a much more flexible operating envelope, which will be crucial if the heterogeneous wastes at the DOE reprocessing sites are to be vitrified. A joule-heated melter operates by passing current between water-cooled electrodes through a molten pool in a refractory-lined chamber. This design is inherently limited by susceptibility of materials to corrosion and melting. In addition, redox conditions and free metal content have exacerbated materials problems or lead to electrical short-circuiting causing failures in DOE melters. In contrast, the CCIM design is based on inductive coupling of a water-cooled high-frequency electrical coil with the glass, causing eddycurrents that produce heat and mixing. A critical difference is that inductance coupling transfers energy through a nonconductive solid layer of slag coating the metal container inside the coil, whereas the jouleheated design relies on passing current through conductive molten glass in direct contact with the metal electrodes and ceramic refractories. The frozen slag in the CCIM design protects the containment and eliminates the need for refractory, while the corrosive molten glass can be the limiting factor in the JH melter design. The CCIM design also eliminates the need for electrodes that typically limit operating temperature to below 1200 degrees C. While significant marketing claims have been made by French and Russian technology suppliers and developers, little data is available for engineering and economic evaluation of the technology, and no facilities are available in the US to support testing. A currently funded project at the Idaho National Engineering

  6. Glass Formulation for Next Generation Cold Crucible Induction Melter

    SciTech Connect

    Kim, Dong-Sang; Schweiger, Michael J.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.; Smith, Gary L.

    2011-12-21

    Transformational melter technologies are being considered to support mission acceleration within the U.S. Department of Energy (DOE) complex. New glass formulations are required to take full advantage of the next generation melters, for example, the cold crucible induction melter (CCIM). The key advantage of CCIM technology over current reference technologies is its capability to provide higher processing temperatures, which can lead to an increased waste throughput rate by achieving higher waste loadings and by increasing the feed processing rate. Various waste compositions within the DOE complex were evaluated to determine their potential for successfully demonstrating the unique advantages of the CCIM technology. Glass formulations that satisfy a set of constraints for product quality and assumed CCIM processing conditions were developed for two Hanford waste streams, AZ-101 high-level waste (HLW) and AN-105 low-activity waste (LAW). Three glasses selected for AZ-101 HLW have waste loadings of 40, 42.5, and 45 wt%. The 45-wt% waste loading corresponds to a 22% increase from 37 wt%, which is the maximum expected waste loading based on the current reference formulation. One glass selected for AN-105 LAW has a waste loading of 31.3 wt% at 24 wt% Na2O in glass, which is a 14% increase from the current reference formulation maximum of 21 wt% Na2O. These four glasses are planned for scaled melter tests for initial demonstration of the CCIM technologies for Hanford wastes.

  7. Cold Crucible Induction Melter Technology: Results of Laboratory Directed Research and Development

    SciTech Connect

    Gombert, Dirk; Richardson, John Grant

    2001-09-01

    This report provides a review of cold crucible induction melter (CCIM) technology and presents summaries of alternatives and design issues associated with major system components. The objective in this report is to provide background systems level information relating to development and application of cold crucible induction-heated melter technology for radiological waste processing. Included is a detailed description of the bench-top melter system at the V. G. Khlopin Radium Institute currently being used for characterization testing

  8. Modeling an RF Cold Crucible Induction Heated Melter with Subsidence

    SciTech Connect

    Grant L. Hawkes

    2004-07-01

    A method to reduce radioactive waste volume that includes melting glass in a cold crucible radio frequency induction heated melter has been investigated numerically. The purpose of the study is to correlate the numerical investigation with an experimental apparatus that in the above mentioned melter. Unique to this model is the subsidence of the glass as it changes from a powder to molten glass and drastically changes density. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melter process. This magnetic field is coupled to the mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities and magnetic vector potential. Coupled to all of this is a generator that will be used for this lab sized experiment. The coupling with the 60 kW generator occurs with the impedance of the melt as it progresses and changes with time. A power controller has been implemented that controls the primary coil current depending on the power that is induced into the molten glass region.

  9. Integrated Pilot Plant for a Large Cold Crucible Induction Melter

    SciTech Connect

    Do Quang, R.; Jensen, A.; Prod'homme, A.; Fatoux, R.; Lacombe, J.

    2002-02-26

    COGEMA has been vitrifying high-level liquid waste produced during nuclear fuel reprocessing on an industrial scale for over 20 years, with two main objectives: containment of the long lived fission products and reduction of the final volume of waste. Research performed by the French Atomic Energy Commission (CEA) in the 1950s led to the selection of borosilicate glass as the most suitable containment matrix for waste from spent nuclear fuel and to the development of the induction melter technology. This was followed by the commissioning of the Marcoule Vitrification Facility (AVM) in 1978. The process was implemented at a larger scale in the late 1980s in the R7 and T7 facilities of the La Hague reprocessing plant. COGEMA facilities have produced more than 11,000 high level glass canisters, representing more than 4,500 metric tons of glass and 4.5 billion curies. To further improve the performance of the vitrification lines in the R7 and T7 facilities, the CEA and COGEMA have been developing the Cold Crucible Melter (CCM) technology since the 1980s. This technology benefits from the 20 years of COGEMA HLW vitrification experience and ensures a virtually unlimited equipment service life and extensive flexibility in dealing with different types of waste. The high specific power directly transferred by induction to the melt allows high operating temperatures without any impact on the process equipment. In addition, the mechanical stirring of the melter significantly reduces operating constraints. COGEMA is already providing the CCM technology to international customers for nuclear and non-nuclear applications and plans to implement it in the La Hague vitrification plant for the vitrification of highly concentrated and corrosive solutions produced by uranium/molybdenum fuel reprocessing. The paper presents the CCM project that led to the building and start-up of this evolutionary and flexible pilot plant. It also describes the plant's technical characteristics and

  10. CHARACTERIZATION OF VITRIFIED SAVANNAH RIVER SITE SB4 WASTE SURROGATE PRODUCED IN COLD CRUCIBLE

    SciTech Connect

    Marra, J

    2008-08-05

    Savannah River Site (SRS) sludge batch 4 (SB4) waste surrogate with high aluminum and iron content was vitrified with commercially available Frit 503-R4 (8 wt.% Li{sub 2}O, 16 wt.% B2O3, 76 wt.% SiO{sub 2}) by cold crucible inductive melting using lab- (56 mm inner diameter), bench- (236 mm) and large-scale (418 mm) cold crucible. The waste loading ranged between 40 and 60 wt.%. The vitrified products obtained in the lab-scale cold crucible were nearly amorphous with traces of unreacted quartz in the product with 40 wt.% waste loading and traces of spinel phase in the product with 50 wt.% waste loading. The glassy products obtained in the bench-scale cold crucible are composed of major vitreous and minor iron-rich spinel phase whose content at {approx}60 wt.% waste loading may achieve {approx}10 vol.%. The vitrified waste obtained in the large-scale cold crucible was also composed of major vitreous and minor spinel structure phases. No nepheline phase has been found. Average degree of crystallinity was estimated to be {approx}12 vol.%. Anionic motif of the glass network is built from rather short metasilicate chains and boron-oxygen constituent based on boron-oxygen triangular units.

  11. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    SciTech Connect

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-02-25

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R&D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed

  12. Compilation of information on modeling of inductively heated cold crucible melters

    SciTech Connect

    Lessor, D.L.

    1996-03-01

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler`s discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE.

  13. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  14. Corrosion study of a highly durable electrolyzer based on cold crucible technique for pyrochemical reprocessing of spent nuclear oxide fuel

    NASA Astrophysics Data System (ADS)

    Takeuchi, M.; Arai, Y.; Kase, T.; Nakajima, Y.

    2013-01-01

    The application of the cold crucible technique to a pyrochemical electrolyzer used in the oxide-electrowinning method, which is a method for the pyrochemical reprocessing of spent nuclear oxide fuel, is proposed as a means for improving corrosion resistance. The electrolyzer suffers from a severe corrosion environment consisting of molten salt and corrosive gas. In this study, corrosion tests for several metals in molten 2CsCl-NaCl at 923 K with purging chlorine gas were conducted under controlled material temperature conditions. The results revealed that the corrosion rates of several materials were significantly decreased by the material cooling effect. In particular, Hastelloy C-22 showed excellent corrosion resistance with a corrosion rate of just under 0.01 mm/y in both molten salt and vapor phases by controlling the material surface at 473 K. Finally, an engineering-scale crucible composed of Hastelloy C-22 was manufactured to demonstrate the basic function of the cold crucible. The cold crucible induction melting system with the new concept Hastelloy crucible showed good compatibility with respect to its heating and cooling performances.

  15. Electromagnetic and Thermal-flow Modeling of a Cold-Wall Crucible Induction Melter

    SciTech Connect

    Fort, James A.; Garnich, Mark R.; Klymyshyn, Nicholas A.

    2005-02-01

    An approach for modeling cold-wall crucible induction melters is described. Materials in the melt and melter are non-ferromagnetic. In contrast to other modeling works reported in the literature, the numerical models utilize commercial codes. The ANSYS finite element code is employed for electromagnetic field simulations and the STAR-CD finite volume code for thermal-flow calculations. Results from the electromagnetic calculations in the form of local Joule heat and Lorentz force distributions are included as loads in the thermal-flow analysis. This loosely-coupled approach is made possible by the small variation in temperature and, consequently, small variation in electrical properties across the melt as well as the quasi-steady state nature of the thermal flow calculations. A three dimensional finite element grid for electromagnetic calculations is adapted to a similar axisymmetric finite volume grid for data transfer to the thermal-flow model. Results from the electromagnetic model compare well with operational data from a 175 mm diameter melter. Results from the thermal-flow simulation provide insight toward molten metal circulation patterns, temperature variations, and velocity magnitudes. Initial results are included for a model that simulates the formation of a solid (skull) layer on the crucible base and wall. Overall, the modeling approach is shown to produce useful results relating operational parameters to the physics of steady state melter operation.

  16. Analysis of grain orientation in cold crucible continuous casting of photovoltaic Si

    NASA Astrophysics Data System (ADS)

    Gallien, B.; Duffar, Th.; Lay, S.; Robaut, F.

    2011-03-01

    Grain orientation in multi-crystalline photovoltaic silicon is analyzed in the case of a square shaped ingot produced by cold crucible continuous casting (4C). This technique leads to a specific grain structure: horizontal on the wall where nucleation occurs and vertical at the center of the ingot. EBSD analysis along a solidification path shows that successive Σ3 twinning is the predominant source of variation in grain orientation. In fact, depending on the location along the solidification path, only 15-35% of grain boundaries are random boundaries without Σ3n twinning relationship (1≤n≤5) and 34-48% are Σ3 twins. The grain orientation distribution is similar at the beginning and end of solidification, and the number of low angle grain boundaries is negligible.

  17. Investigation of the cold crucible melting process: experimental and numerical study

    NASA Astrophysics Data System (ADS)

    Bojarevics, V.; Djambazov, G.; Harding, R. A.; Pericleous, K.; Wickins, M.

    2003-12-01

    The dynamic process of melting different materials in a cold crucible is being studied experimentally with parallel numerical modelling work. The numerical simulation uses a variety of complementing models: finite volume, integral equation and pseudo-spectral methods combined to achieve the accurate description of the dynamic melting process. Results show a gradual development and change of the melting front, fluid velocities, magnetically confined liquid metal free surface, and the tempera-ture history during the whole melting process. The computed results are compared to the experimental temperature measurements and the heat losses in the various parts of the equipment. The free surface visual observations are compared to the numerically predicted surface shapes. Tables 2, Figs 5, Refs 8.

  18. Volatilization of heavy metals and radionuclides from soil heated in an induction ``cold`` crucible melter

    SciTech Connect

    Aloy, A.S.; Belov, V.Z.; Trofimenko, A.S.; Dmitriev, S.A.; Stefanovsky, S.V.; Gombert, D.; Knecht, D.A.

    1997-12-31

    The behavior of heavy metals and radionuclides during high-temperature treatment is very important for the design and operational capabilities of the off-gas treatment system, as well as for a better understanding of the nature and forms of the secondary waste. In Russia, a process for high-temperature melting in an induction heated cold crucible system is being studied for vitrification of Low Level Waste (LLW) flyash and SYNROC production with simulated high level waste (HLW). This work was done as part of a Department of Energy (DOE) funded research project for thermal treatment of mixed low level waste (LLW). Soil spiked with heavy metals (Cd, Pb) and radionuclides (Cs-137, U-239, Pu-239) was used as a waste surrogate. The soil was melted in an experimental lab-scale system that consisted of a high-frequency generator (1.76 MHz, 60 kW), a cold crucible melter (300 mm high and 90 mm in diameter), a shield box, and an off-gas system. The process temperature was 1,350--1,400 C. Graphite and silicon carbide were used as sacrificial conductive materials to start heating and initial melting of the soil batch. The off-gas system was designed in such a manner that after each experiment, it can be disconnected to collect and analyze all deposits to determine the mass balance. The off-gases were also sampled during an experiment to analyze for hydrogen, NO{sub x}, carbon dioxide, carbon monoxide and chlorine formation. This paper describes distribution and mass balance of metals and radionuclides in various parts of the off-gas system. The leach rate of the solidified blocks identified by the PCT method is also reported.

  19. FULL-SCALE COLD CRUCIBLE TEST ON VITRIFICATION OF SAVANNAH RIVER SITE SB4 HLW SURROGATE

    SciTech Connect

    Marra, J

    2008-08-05

    The full-scale cold crucible test on vitrification of sludge batch 4 (SB4) Savannah River Site HLW surrogate using a 418 mm inner diameter stainless steel crucible was carried-out for 66 hrs. Commercially available Frit 503-R4 (8 wt.% Li{sub 2}O, 16 wt.% B{sub 2}O{sub 3}, 76 wt.% SiO{sub 2}) was used as a glass forming additive at a calcine to frit ratio of 1:1 (50 wt.% calcine, 50 wt.% frit). Two portions of slurry prepared from frit and mixture of chemicals simulating waste in amount of {approx}750 kg and from frit and waste surrogate prepared by the SRT-MST-2007-00070 procedure in amount of {approx}1,300 kg with water content of {approx}27 and {approx}50 wt.%, respectively, was processed and {approx}875 kg of the vitrified product in total ({approx}415 + 460 kg) was obtained. Average parameters were as follows: vibration power - 121.6 to 134.1 kW, feed rate (capacity) - 25.1 to 39.8 kg/hr, glass pour rate (productivity) - 14.0 kg/hr specific energy expenses for feed processing - 4.8 to 3.4 kW x hr/kg, specific energy expenses for glass production (melting ratio) - 8.7 to 9.6 kW x hr/kg, specific glass productivity - 2453 kg/(m{sup 2} x d). The product was composed of major vitreous and minor spinel structure phases. No nepheline phase was found. Average degree of crystallinity was estimated to be {approx}12 vol.%. Cesium was found to be the most volatile component (up to {approx}60 wt.% of total). Lithium, sodium and boron are less volatile. Other major feed constituents (Al, Si, Mg, Fe, Mn) were not volatile but their carry-over with gas-vapor flow occurred.

  20. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    SciTech Connect

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  1. Characterization of Ceramic Material Produced From a Cold Crucible Induction Melter Test

    SciTech Connect

    Amoroso, J.; Marra, J.

    2015-04-30

    This report summarizes the results from characterization of samples from a melt processed surrogate ceramic waste form. Completed in October of 2014, the first scaled proof of principle cold crucible induction melter (CCIM) test was conducted to process a Fe-hollandite-rich titanate ceramic for treatment of high level nuclear waste. X-ray diffraction, electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the CCIM material produced. Core samples at various radial locations from the center of the CCIM were taken. These samples were also sectioned and analyzed vertically. Together, the various samples were intended to provide an indication of the homogeneity throughout the CCIM with respect to phase assemblage, chemical composition, and chemical durability. Characterization analyses confirmed that a crystalline ceramic with desirable phase assemblage was produced from a melt using a CCIM. Hollandite and zirconolite were identified in addition to possible highly-substituted pyrochlore and perovskite. Minor phases rich in Fe, Al, or Cs were also identified. Remarkably only minor differences were observed vertically or radially in the CCIM material with respect to chemical composition, phase assemblage, and durability. This recent CCIM test and the resulting characterization in conjunction with demonstrated compositional improvements support continuation of CCIM testing with an improved feed composition and improved melter system.

  2. The production of advanced glass ceramic HLW forms using cold crucible induction melter

    SciTech Connect

    Rutledge, V.J.; Maio, V.

    2013-07-01

    Cold Crucible Induction Melters (CCIM) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in a near future. Unlike the existing Joule-Heated Melters (JHM) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIM offers unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. It is concluded that glass ceramic waste forms that are tailored to immobilize fission products of HLW can be can be made from the HLW processed with the CCIM. The advantageous higher temperatures reached with the CCIM and unachievable with JHM allows the lanthanides, alkali, alkaline earths, and molybdenum to dissolve into a molten glass. Upon controlled cooling they go into targeted crystalline phases to form a glass ceramic waste form with higher waste loadings than achievable with borosilicate glass waste forms. Natural cooling proves to be too fast for the formation of all targeted crystalline phases.

  3. THE RESULTS OF TESTING TO EVALUATE CRYSTAL FORMATION AND SETTLING IN THE COLD CRUCIBLE INDUCTION MELTER

    SciTech Connect

    Marra, J.

    2009-06-30

    The Cold Crucible Induction Melter (CCIM) technology offers the potential to increase waste loading for High Level Waste (HLW) glasses leading to significant improvements in waste throughput rates compared to the reference Joule Heated Melter (JHM). Prior to implementation of a CCIM in a production facility it is necessary to better understand processing constraints associated with the CCIM. The glass liquidus temperature requirement for processing in the CCIM is an open issue. Testing was conducted to evaluate crystal formation and crystal settling during processing in the CCIM to gain insight into the effects on processing. A high aluminum/high iron content glass composition with known crystal formation tendencies was selected for testing. A continuous melter test was conducted for approximately 51 hours. To evaluate crystal formation, glass samples were obtained from pours and from glass receipt canisters where the glass melt had varying residence time in the melter. Additionally, upon conclusion of the testing, glass samples from the bottom of the melter were obtained to assess the degree of crystal settling. Glass samples were characterized in an attempt to determine quantitative fractions of crystals in the glass matrix. Crystal identity and relative composition were determined using a combination of x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). Select samples were also analyzed by digesting the glass and determining the composition using inductively coupled atomic emission spectroscopy (ICP-AES). There was evidence of crystal formation (primarily spinels) in the melt and during cooling of the collected glass. There was evidence of crystal settling in the melt over the duration of the melter campaign.

  4. Advanced Modeling of Cold Crucible Induction Melting for Process Control and Optimization

    SciTech Connect

    J. A. Roach; D. B. Lopukh; A. P. Martynov; B. S. Polevodov; S. I. Chepluk

    2008-02-01

    The Idaho National Laboratory (INL) and the St. Petersburg Electrotechnical University “LETI” (ETU) have collaborated on development and validation of an advanced numerical model of the cold crucible induction melting (CCIM) process. This work was conducted in support of the Department of Energy (DOE) Office of Environmental Management Technology and Engineering (EM-20) International Program. The model predicts quasi-steady state temperature distributions, convection cell configurations, and flow field velocities for a fully established melt of low conductivity non-magnetic materials at high frequency operations. The INL/ETU ANSYS© finite element model is unique in that it has been developed specifically for processing borosilicate glass (BSG) and other glass melts. Specifically, it accounts for the temperature dependency of key material properties, some of which change by orders of magnitude within the temperature ranges experienced (temperature differences of 500oC are common) in CCIM processing of glass, including density, viscosity, thermal conductivity, specific heat, and electrical resistivity. These values, and their responses to temperature changes, are keys to understanding the melt characteristics. Because the model has been validated, it provides the capability to conduct parametric studies to understand operational sensitivities and geometry effects. Additionally, the model can be used to indirectly determine difficult to measure material properties at higher temperatures such as resistivity, thermal conductivity and emissivity. The model can also be used to optimize system design and to predict operational behavior for specific materials and system configurations, allowing automated feedback control. This becomes particularly important when designing melter systems for full-scale industrial applications.

  5. Cold Crucible Induction Melter Testing at The Idaho National Laboratory for the Advanced Remediation Technologies Program

    SciTech Connect

    Jay Roach; Nick Soelberg; Mike Ancho; Eric Tchemitcheff; John Richardson

    2009-03-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. This paper provides preliminary results of tests using the engineering-scale CCIM test system located at the INL. The CCIM test system was operated continuously over a time period of about 58 hours. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated semi-continuously because the glass drain rate was higher than the glass feedrate. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was

  6. Extended Development Work to Validate a HLW Calcine Waste Form via INL's Cold Crucible Induction Melter

    SciTech Connect

    James A. King; Vince Maio

    2011-09-01

    To accomplish calcine treatment objectives, the Idaho Clean-up Project contractor, CWI, has chosen to immobilize the calcine in a glass-ceramic via the use of a Hot-Isostatic-Press (HIP); a treatment selection formally documented in a 2010 Record of Decision (ROD). Even though the HIP process may prove suitable for the calcine as specified in the ROD and validated in a number of past value engineering sessions, DOE is evaluating back-up treatment methods for the calcine as a result of the technical, schedule, and cost risk associated with the HIPing process. Consequently DOE HQ has requested DOE ID to make INL's bench-scale cold-crucible induction melter (CCIM) available for investigating its viability as a process alternate to calcine treatment. The waste form is the key component of immobilization of radioactive waste. Providing a solid, stable, and durable material that can be easily be stored is the rationale for immobilization of radioactive waste material in glass, ceramic, or glass-ceramics. Ceramic waste forms offer an alternative to traditional borosilicate glass waste forms. Ceramics can usually accommodate higher waste loadings than borosilicate glass, leading to smaller intermediate and long-term storage facilities. Many ceramic phases are known to possess superior chemical durability as compared to borosilicate glass. However, ceramics are generally multiphase systems containing many minor phase that make characterization and prediction of performance within a repository challenging. Additionally, the technologies employed in ceramic manufacture are typically more complex and expensive. Thus, many have proposed using glass-ceramics as compromise between in the more inexpensive, easier to characterize glass waste forms and the more durable ceramic waste forms. Glass-ceramics have several advantages over traditional borosilicate glasses as a waste form. Borosilicate glasses can inadvertently devitrify, leading to a less durable product that could crack

  7. Electron irradiated solar cells: cold crucible (Ga), float zone (Ga,B) and Czochralski (Ga,B)

    SciTech Connect

    Minahan, J.A.; Trumble, T.M.

    1984-05-01

    Silicon materials grown by cold crucible, float zone or Czochralski methods, containing gallium or boron dopants, have undergone bulk and electrical analyses and have been fabricated into solar cells. Solar cell characteristics have been measured as a function of 1 MeV electron fluence to 10/sup 16/ e/cm/sup 2/. Comparisons of radiation effects on cell characteristics are made between the material groups in the study and with published results of other workers. Although some differences in performance with radiation exposure between the various groups were observed, only in the case of 0.1 ..cap omega..-cm gallium-doped multipass float zone and boron-doped multipass float zone were the differences found to be significant.

  8. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    SciTech Connect

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  9. GLASS FORMULATION DEVELOPMENT AND TESTING FOR COLD CRUCIBLE INDUCTION MELTER (CCIM) ADVANCED REMEDIATION TECHNOLOGIES DEMONSTRATION PROJECT - 9208

    SciTech Connect

    Marra, J; Amanda Billings, A; David Peeler, D; Michael Stone, M; Tommy Edwards, T

    2008-08-27

    Over the past few years, Cold Crucible Induction Melter (CCIM) demonstrations have been completed using SRS sludge batches 2, 3 and 4 (SB2, SB3 and SB4) simulant compositions. These campaigns demonstrated the ability of the CCIM to effectively produce quality glasses at high waste loadings. The current Advanced Remediation Technology (ART) Phase II-A Project is aimed at demonstrating the CCIM technology under representative DWPF flowsheet conditions and to demonstrate extended operations of the melter. A glass composition development effort was completed to identify and recommend a frit composition and sludge batch 4 (SB4) simulant waste loading target for subsequent ART-Phase II-A CCIM demonstration testing. Based on the results of the glass formulation testing, it was recommended that the Frit 503-R6 composition (B{sub 2}O{sub 3} = 14 wt %; Li{sub 2}O = 9 wt %; Na{sub 2}O = 3 wt %; and SiO{sub 2} = 74 wt %) be utilized for the demonstration. Furthermore, a waste loading of 46 wt % was recommended. The recommended frit and waste loading would produce a glass with acceptable durability with a liquidus temperature adequately below the 1250 C nominal CCIM operating temperature. This frit composition and waste loading was found to result in a glass that met CCIM processing requirements for viscosity, electrical conductivity and thermal conductivity. The recommended frit and waste loading level should also provide a buffer for sludge product compositional variation to support the Phase II-A CCIM demonstration.

  10. GLASS-CERAMICS IN A COLD-CRUCIBLE MELTER : THE OPTIMUM COMBINATION FOR GREATER WASTE PROCESSING EFFICIENCY

    SciTech Connect

    DAY, R.A.; FERENCZY, J.; DRABAREK, E.; ADVOCAT, T.; FILLET, C.; LACOMBE, J.; LADIRAT, C.; VEYER, C.; QUANG, R. DO; THOMASSON, J.

    2003-02-27

    Improving the efficiency of nuclear waste immobilization is constantly desired by all nuclear waste management programs world-wide. For high-level and other waste to be vitrified in traditional ceramic Joule-heated melters operated at temperatures up to 1150 C, process flexibilities including waste loadings are often restricted by this temperature limit as well as the need to consider wasteform corrosion of refractory linings and electrodes. New melter technologies, such as the cold-crucible melter (CCM), enable processing up to significantly higher temperatures free of many of the limitations of conventional melters. Higher processing temperatures open up the way for wider composition and processing envelopes to be considered for the vitrification process, including the possibility for higher waste loadings. In many instances the presence of crystals in the final cooled wasteform is not considered desirable within presently existing glass specifications. For some feed compositions in creased waste loadings can lead to the formation of large amounts of crystals, and thus to a significant departure from the ''glass'' state. Nevertheless it is recognized that, in general, increasing the acceptable volume fractions of crystals in the glass offers the best opportunity to increase waste loading, all other factors being equal. In addition, the deliberate promotion of specific crystalline phases by design may enhance the quality of the wasteform, for example by partitioning a long-lived radionuclide into a very stable crystalline phase, or by depleting the glass in detrimental elements. In order to explore the potential improvements by harnessing the higher achievable processing temperatures and immunity to refractory corrosion available with the cold-crucible melter, and after promising indications for synroc-based matrices, it was decided to investigate the feasibility of designing and producing via melting new high temperature ''glass-ceramic'' wasteforms for high

  11. Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters

    SciTech Connect

    Day, Delbert E.; Brow, R. K.; Ray, C. S.; Kim, Cheol-Woon; Reis, Signo T.; Vienna, John D.; Peeler, David K.; Johnson, Fabienne; Hansen, E. K.; Sevigny, Gary J.; Soelberg, Nicolas R.; Pegg, Ian L.; Gan, Hao

    2012-01-05

    An iron phosphate composition for vitrifying a high sulfate (~17 wt%) and high alkali (~80 wt%) low activity Hanford waste, known as AZ102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ102 which corresponded to a total alkali and sulfate (SO3) content of 21 and 4.2 wt%, respectively. A slurry (7M Na) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090°C for 10 days in a small JHM at PNNL and for 7 days in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their CCC-treated counterparts met the DOE LAW requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT). These glass waste forms retained up to 77 % of the SO3 (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium, surrogate for Tc-99, all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition (slurry feed) was melted continuously in the JHM and CCIM, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste.

  12. Synroc-D Type Ceramics Produced by Hot Isostatic Pressing and Cold Crucible Melting for Immobilisation of (Al, U) Rich Nuclear Waste

    SciTech Connect

    Vance, Eric R.; La Robina, Michael; Li, Huijun; Davis, Joel

    2007-07-01

    A synroc-D ceramic consisting mostly of spinel, hollandite, pyrochlore-structured CaUTi{sub 2}O{sub 7}, UO{sub 2}, and Ti-rich regions shows promise for immobilisation of a HLW containing mainly Al and U, together with fission products. Ceramics with virtually zero porosities and waste loadings of 50-60 wt% on an oxide basis were prepared by cold crucible melting (CCM) at {approx}1500 deg. C, and also by subsolidus hot isostatic pressing (HIP) at 1100 deg. C to prevent volatile losses. PCT leaching test values for Cs were < 13 g/L, with all other normalised elemental extractions being well below 1 g/L. (authors)

  13. Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters - 12240

    SciTech Connect

    Day, Delbert E.; Brow, Richard K.; Ray, Chandra S.; Reis, Signo T.; Kim, Cheol-Woon; Vienna, John D.; Sevigny, Gary; Peeler, David; Johnson, Fabienne C.; Hansen, Eric K.; Soelberg, Nick; Pegg, Ian L.; Gan, Hao

    2012-07-01

    An iron phosphate composition for vitrifying a high sulfate (∼17 wt%) and high alkali (∼80 wt%) Hanford low activity waste (LAW), known as AZ-102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ-102 which corresponded to a total alkali and sulfate (represented as SO{sub 3}) content of 21 and 4.4 wt%, respectively. A slurry (7 M Na{sup +}) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090 deg. C for 10 days in a small JHM at PNNL and for 70 hours in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their canister centerline cooled (CCC) counterparts met the requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT) responses in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract. These glass waste forms retained up to 77 % of the SO{sub 3} (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium (used as a surrogate for Tc) all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition was melted continuously in a slurry fed JHM and in the US, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste. The following conclusions are drawn from the results of the present work. (1) An iron phosphate composition, designated as MS26AZ102F-2, containing 26 wt% of the simulated high sulfate (17 wt%), high alkali (80 wt%) Hanford AZ-102 LAW meets all the criteria for processing in a JHM and CCIM. This

  14. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE 8118

    SciTech Connect

    Barnes, A; Dan Iverson, D; Brannen Adkins, B

    2008-02-06

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and

  15. Feasibility Evaluation and Retrofit Plan for Cold Crucible Induction Melter Deployment in the Defense Waste Processing Facility at Savannah River Site

    SciTech Connect

    Barnes, A.B.; Iverson, D.C.; Adkins, B.J.; Tchemitcheff, E.

    2008-07-01

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 kHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 deg. C to 200 deg. C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 deg. C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature

  16. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE - 8118

    SciTech Connect

    Barnes, A; Dan Iverson, D; Brannen Adkins, B

    2007-11-15

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined Joule heated melters. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured

  17. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory‘s Bench -Scale Cold Crucible Induction Melter

    SciTech Connect

    Vince Maio

    2011-08-01

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing

  18. Cold Crucible Induction Melter (CCIM) Demonstration Using a Representative Savannah River Site Sludge Simulant On the Large-Size Pilot Platform at the CEA-Marcoule

    SciTech Connect

    Girold, C.; Delaunay, M.; Dussossoy, J.L.; Lacombe, J.; Iverson, D.; Do Quang, R.; Tchemitcheff, E.; Veyer, C.

    2008-07-01

    The cold-crucible induction melter technology (CCIM) is considered worldwide for industrial implementation to overcome the current limits of high level waste vitrification technologies and to answer future challenges such as: new or difficult sludge compositions, need for improving waste loading, need for high temperatures, and corrosive effluents. More particularly, this technology is being considered for implementation at the US DOE Savannah River site to increase the rate of waste processing while reducing the number of HLW canisters to be produced through increased waste loading and improved waste throughput. A collaborative program involving AREVA, CEA (French Atomic Energy Commission), SRNL (Savannah River National Laboratory) and WSRC (Washington Savannah River Company) has thus been initiated in 2007 to demonstrate vitrification with waste loadings on the order of 50% (versus the current DWPF waste loading of about 35%) with a PUREX-type waste composition (high Fe{sub 2}O{sub 3} composition), and to perform two pilot-scale runs on the large size platform equipped with a 650 mm diameter CCIM at the CEA Marcoule. The objectives of the demonstrations were 1) to show the feasibility of processing a representative SRS sludge surrogate using continuous slurry feeding, 2) to produce a glass that would meet the acceptance specifications with an increased waste loading when compared to what is presently achieved at the DWPF, and 3) achieve improved waste throughputs. This presentation describes the platform and the very encouraging results obtained from the demonstration performed at temperatures, specific throughputs and waste loadings that overcome current DWPF limits. Results from the initial exploratory run and second demonstration run include 1) production of a glass product that achieved the targeted glass composition that was more durable than the standard Environmental Assessment (EA) glass, 2) successful slurry feeding of the CCIM, and 3) promising waste

  19. DATA PACKET FOR THE FRIT 202-A11 SB3 GLASS SYSTEM A CANDIDATE FOR THE COLD CRUCIBLE INDUCTION MELTER DEMONSTRATION

    SciTech Connect

    Peeler, D; Kevin Fox, K; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P

    2007-06-13

    A demonstration of the Cold Crucible Induction Melter (CCIM) technology is currently planned for the fall of 2007 to assess the potential for attaining higher waste throughputs as compared to joule heated melter technology. The CCIM demonstrations will be based on a Defense Waste Processing Facility (DWPF) waste slurry feed surrogate with a nominal operating temperature of approximately 1250 C (higher temperatures may be used). The waste slurry feed (nominally 45-50 weight percent solids) surrogate will be representative of Sludge Batch 3 (SB3) in order to allow a direct comparison to the DWPF joule heated melter performance during processing of this sludge waste. This pilot scale demonstration is being conducted to evaluate performance and to identify potential processing issues with the existing CCIM technology, and it will include characterization of the resultant glass product to ensure current product performance (durability) specifications are met. The information presented in this data packet provides a technical basis from which decisions regarding the melter demonstration can be made. More specifically, the results presented in this report provide technical data on the impact of waste loading (WL) on critical properties of interest--in particular, durability, liquidus temperature, and viscosity. All of the glasses of this study, regardless of heat treatment, were acceptable when their durabilities were compared to those of the Environmental Assessment (EA) glass. In general, as WL increases, the durabilities for the quenched versions of the glasses tend to decrease due to the changing composition of the glass. For the glasses subjected to the canister centerline cooling (ccc) regime, the durability response appears to be more non-linear as WL increases. At WLs less than 50%, X-ray diffraction (XRD) analysis indicates the potential for the presence of aegirine and/or nepheline crystalline phases, and when these phases are present, there is a decrease in the

  20. An Unbalanced Crucible

    ERIC Educational Resources Information Center

    Deneen, Patrick J.

    2012-01-01

    Long regarded by the vanguard of America's universities as antiquated and even dangerous, civic education is suddenly fashionable again. With the publication of "A Crucible Moment," a long battle in the culture wars appears to be winding down. It appears that everyone supports civic education today. For the past three decades, the ideal of civic…

  1. Crucibles of Leadership.

    ERIC Educational Resources Information Center

    Bennis, Warren G.; Thomas, Robert J.

    2002-01-01

    Often, a traumatic event that forces a profound redefinition of the self forges leadership. The stories of a diverse group of business leaders and the "crucible experiences" that shaped them reveal four essential skills: ability to engage others in shared meanings, compelling voice, integrity, and adaptive capacity (applied creativity). (SK)

  2. Quench Crucibles Reinforced with Metal

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Carrasquillo, Edgar; O'Dell, J. Scott; McKehnie, N.

    2008-01-01

    Improved crucibles consisting mainly of metal-reinforced ceramic ampules have been developed for use in experiments in which material specimens are heated in the crucibles to various high temperatures, then quenched by, for example, plunging the crucibles into water at room temperature. In a traditional quench crucible, the gap between the ampule and the metal cartridge impedes the transfer of heat to such a degree that the quench rate (the rate of cooling of the specimen) can be too low to produce the desired effect in the specimen. One can increase the quench rate by eliminating the metal cartridge to enable direct quenching of the ampule, but then the thermal shock of direct quenching causes cracking of the ampule. In a quench crucible of the present improved type, there is no gap and no metal cartridge in the traditional sense. Instead, there is an overlay of metal in direct contact with the ampule, as shown on the right side of the figure. Because there is no gap between the metal overlay and the ampule, the heat-transfer rate can be much greater than it is in a traditional quench crucible. The metal overlay also reinforces the ampule against cracking.

  3. Cermet crucible for metallurgical processing

    DOEpatents

    Boring, C.P.

    1995-02-14

    A cermet crucible is disclosed for metallurgically processing metals having high melting points comprising a body consisting essentially of a mixture of calcium oxide and erbium metal, the mixture comprising calcium oxide in a range between about 50 and 90% by weight and erbium metal in a range between about 10 and 50% by weight.

  4. Cermet crucible for metallurgical processing

    DOEpatents

    Boring, Christopher P.

    1995-01-01

    A cermet crucible for metallurgically processing metals having high melting points comprising a body consisting essentially of a mixture of calcium oxide and erbium metal, the mixture comprising calcium oxide in a range between about 50 and 90% by weight and erbium metal in a range between about 10 and 50% by weight.

  5. Directly susceptible, noncarbon metal ceramic composite crucible

    DOEpatents

    Holcombe, Jr., Cressie E.; Kiggans, Jr., James O.; Morrow, S. Marvin; Rexford, Donald

    1999-01-01

    A sintered metal ceramic crucible suitable for high temperature induction melting of reactive metals without appreciable carbon or silicon contamination of the melt. The crucible comprises a cast matrix of a thermally conductive ceramic material; a perforated metal sleeve, which serves as a susceptor for induction heating of the crucible, embedded within the ceramic cast matrix; and a thermal-shock-absorber barrier interposed between the metal sleeve and the ceramic cast matrix to allow for differential thermal expansions between the matrix and the metal sleeve and to act as a thermal-shock-absorber which moderates the effects of rapid changes of sleeve temperature on the matrix.

  6. Melt Stirring by Horizontal Crucible Vibration

    NASA Technical Reports Server (NTRS)

    Wolf, M. F.; Elwell, D.; Feigelson, R. S.

    1985-01-01

    Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.

  7. Covering a Crucible with Metal Containing Channels

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    In a procedure that partly resembles the lost-wax casting process, a crucible made of a brittle material (ceramic, quartz, or glass) is covered with a layer of metal containing channels. The metal cover and the channels can serve any or all of several purposes, depending upon the application: Typically, the metal would serve at least partly to reinforce the crucible. The channels could be used as passages for narrow objects that could include thermocouples and heat-transfer strips. Alternatively or in addition, channels could be used as flow paths for liquid or gaseous coolants and could be positioned and oriented for position- or direction-selective cooling. In some cases, the channels could be filled with known gases and sealed so that failure of the crucibles could be indicated by instruments that detect the gases. The process consists of three main steps. In the first step, a pattern defining the channels is formed by wrapping or depositing a material in the desired channel pattern on the outer surface of the crucible. The pattern material can be a plastic, wax, low-ash fibrous material, a soluble material, or other suitable material that can subsequently be removed easily. In a proof-of-concept demonstration (see figure), the crucible was an alumina cylinder and the mold material was plastic tie-down tape. In the second step, the patterned crucible is coated with metal. In one variation of the second step, a very thin layer containing or consisting of an electrically conductive material (e.g., gold, silver, or carbon) is painted or otherwise deposited on the mold-covered crucible, then the covering metal required for the specific application is electrodeposited on the very thin conducting layer. In another variation of the second step, the metal coat is formed by chemical vapor deposition. In the proof-of-concept demonstration, a layer of nickel 0.003 in. ( 0.08 mm) thick was electrodeposited. In the third step, the patterned material is removed. This is

  8. North and west facades of crucible steel building; looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North and west facades of crucible steel building; looking southeast - Bethlehem Steel Corporation, South Bethlehem Works, Crucible Steel Plant, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  9. Method of melting metals to reduce contamination from crucibles

    DOEpatents

    Banker, John G.; Wigginton, Hubert L.

    1977-01-01

    Contamination of metals from crucible materials during melting operations is reduced by coating the interior surface of the crucible with a ceramic non-reactive with the metallic charge and disposing a metal liner formed from a portion of the metallic charge within the coated crucible. The liner protects the ceramic coating during loading of the remainder of the charge and expands against the ceramic coating during heat-up to aid in sintering the coating.

  10. Geostrophic turbulence in CZ silicon crucible

    NASA Astrophysics Data System (ADS)

    Kishida, Yutaka; Okazawa, Kensuke

    1999-03-01

    In the CZ silicon process, silicon melt convection is affected by the Coriolis force as a rotating fluid system. As a result, a special fluid motion called baroclinic instability appears and disturbs the single crystal growth. Since the Coriolis force will increase the curvature of the fluid particle paths, when the curvature exceeds the crucible size, another unstable fluid motion, the so-called geostrophic turbulence, is expected to occur at higher Taylor numbers. This study investigates the geostrophic turbulence by numerical flow simulation and experimental observations in an actual CZ crucible. In the numerical flow simulation, we solved 3D differential equations on a cylindrical lattice of 80×60×65 points, where the Rayleigh number of the system was fixed to be 2.7×10 7. With the Taylor number higher than 1×10 11, the calculated fluid motion and temperature structure produce a polka-dot pattern, which continues from the melt surface to the bottom. When the Taylor number is increased, the vertical vorticity component increases extremely. In the actual CZ crucible, temperature profiles on the melt surface were recorded by video camera thermometer in the same conditions as in the numerical simulation. The thermal images of the melt surface also show a fluctuating polka-dot pattern consisting of high temperature areas as seen in the numerical simulation results. The size and amplitude of the high temperature areas decrease with increase of the Taylor number, thus thermal clusters will relax the radial gradient and fluctuations. The Fourier power spectrum of the time dependent fluctuations has an f-4 behavior, which statistically indicates 2D turbulence. These facts observed both in numerical simulations and the actual experiment are completely consistent with the characteristics of geostrophic turbulence.

  11. Making rhyolite in a basalt crucible

    NASA Astrophysics Data System (ADS)

    Eichelberger, John

    2016-04-01

    Iceland has long attracted the attention of those concerned with the origin of rhyolitic magmas and indeed of granitic continental crust, because it presents no alternative for such magmas other than deriving them from a basaltic source. Hydrothermally altered basalt has been identified as the progenitor. The fact that rhyolite erupts as pure liquid requires a process of melt-crustal separation that is highly efficient despite the high viscosity of rhyolite melt. Volcanoes in Iceland are foci of basaltic magma injection along the divergent plate boundary. Repeated injection produces remelting, digestion, and sometimes expulsion or lateral withdrawal of material resulting in a caldera, a "crucible" holding down-dropped and interlayered lava flows, tephras, and injected sills. Once melting of this charge begins, a great deal of heat is absorbed in the phase change. Just 1% change in crystallinity per degree gives a melt-present body an effective heat capacity >5 times the subsolidus case. Temperature is thus buffered at the solidus and melt composition at rhyolite. Basalt inputs are episodic ("fires") so likely the resulting generation of rhyolite by melting is too. If frequent enough to offset cooling between events, rhyolite melt extractions will accumulate as a rhyolite magma reservoir rather than as discrete crystallized sills. Evidently, such magma bodies can survive multiple firings without themselves erupting, as the 1875 eruption of Askja Caldera of 0.3 km3 of rhyolite equilibrated at 2-km depth without previous leakage over a ten-millennium period and the surprise discovery of rhyolite magma at 2-km depth in Krafla suggest. Water is required for melting; otherwise melting cannot begin at a temperature lower than that of the heat source. Because the solubility of water in melt is pressure-dependent and almost zero at surface pressure, there must be a minimum depth at which basalt-induced melting can occur and a rhyolite reservoir sustained. In practice, the

  12. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, C.E.; Pfeiler, W.A.

    1996-01-09

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation. 9 figs.

  13. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, Cressie E.; Pfeiler, William A.

    1996-01-01

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation.

  14. The Alexandrian Library: crucible of a renaissance.

    PubMed

    Chapman, P H

    2001-07-01

    At the end of the 4th century BC, the Macedonian-Greek armies of Alexander the Great swept across Asia from Egypt to the Indus River, redefining political boundaries within that vast territory at a time when important cultural changes were also taking place in the Greek world. New literary forms were beginning to emerge from the classical literature, which was then the subject of scholarly investigation. There was growing curiosity about the physical world and mathematics. Aristotle and his contemporaries were redefining scholarship at a time when Alexander was redefining the political sphere. These remarkable transformations converged in Alexandria, which became the center of a new intellectual universe. The first Ptolemaic rulers founded two unique institutions--the Alexandrian Library and the Mouseion--and the Library became the crucible within which the Hellenistic renaissance was forged. PMID:11440429

  15. Mutiple Czochralski growth of silicon crystals from a single crucible

    NASA Technical Reports Server (NTRS)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  16. 11. GASFIRED CRUCIBLE FURNACES WERE USED TO MELT SMALL, BATCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GAS-FIRED CRUCIBLE FURNACES WERE USED TO MELT SMALL, BATCH QUANTITIES OF BRONZE IN STOCKHAM'S BRASS FOUNDRY FOR THE PRODUCTION OF BRONZE VALVES, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  17. Fabrication method produces high-grade alumina crucibles

    NASA Technical Reports Server (NTRS)

    Palmour, H.

    1965-01-01

    Alumina-binder mixture, which has been dry pressed in a die using a mating punch, forms crucibles of various configurations and after firing results in a ceramic structure for use in diffusion experiments.

  18. METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM

    DOEpatents

    Feder, H.M.; Chellew, N.R.

    1960-08-16

    Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.

  19. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, C.E.; Pfeiler, W.A.

    1994-08-02

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. 6 figs.

  20. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, Cressie E.; Pfeiler, William A.

    1994-01-01

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material.

  1. Flux growth utilizing the reaction between flux and crucible

    NASA Astrophysics Data System (ADS)

    Yan, J.-Q.

    2015-04-01

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. The reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growth in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. For the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.

  2. Flux growth utilizing the reaction between flux and crucible

    DOE PAGESBeta

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growthmore » in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.« less

  3. Assessment of ceramic coatings for metal fuel melting crucible

    SciTech Connect

    Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock

    2013-07-01

    The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

  4. Reduction of beta activity from depleted derbies, ingots and crucibles

    SciTech Connect

    Briggs, G.G.; Schonegg, E.; Kato, T.R.

    1984-09-01

    The reduction of beta radiation on uranium ingot and crucible surfaces was demonstrated in the production casting operation by adding a mixture of slag liner material (MgF/sub 2/) and calcium fluoride to the remelt charge. The beta emitters (/sup 234/Th and /sup 234/Pa) are largely discharged with the fluorides into drums during a remote crucible burnout operation; thereby, reducing operator exposure to beta radiation. A production test showed that very low beta radiation from uranium flat castings can be achieved by using derbies recently prepared by reduction. Plant tests with fluoride addition indicate that pickling of derbies may not be necessary for casting uranium flats from a plasma sprayed (ZrO/sub 2/) crucible. Also, ingots produced with fluoride additions had less pipe as compared to standard production technique. 2 references, 5 tables.

  5. Flux growth utilizing the reaction between flux and crucible

    SciTech Connect

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growth in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.

  6. North façade of crucible steel building; looking southwest Bethlehem ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North façade of crucible steel building; looking southwest - Bethlehem Steel Corporation, South Bethlehem Works, Crucible Steel Plant, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  7. Better VPS Fabrication of Crucibles and Furnace Cartridges

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Zimmerman, Frank R.; O'Dell, J. Scott; McKechnie, Timothy N.

    2003-01-01

    An experimental investigation has shown that by (1) vacuum plasma spraying (VPS) of suitable refractory metal alloys on graphite mandrels, and then (2) heat-treating the VPS alloy deposits under suitable conditions, it is possible to fabricate improved crucibles and furnace cartridges that could be used at maximum temperatures between 1,400 and 1,600 C and that could withstand chemical attack by the materials to be heated in the crucibles and cartridges. Taken by itself, the basic concept of fabricating furnace cartridges by VPS of refractory materials onto graphite mandrels is not new; taken by itself, the basic concept of heat treatment of VPS deposits for use as other than furnace cartridges is also not new; however, prior to this investigation, experimental crucibles and furnace cartridges fabricated by VPS had not been heat treated and had been found to be relatively weak and brittle. Accordingly, the investigation was directed toward determining whether certain combinations of (1) refractory alloy compositions, (2) VPS parameters, and (3) heat-treatment parameters could result in VPS-fabricated components with increased ductility.

  8. Scandium separation from tungsten crucibles : preliminary investigation into the separation of scandium metal from tungsten metal crucibles using an acid soak process.

    SciTech Connect

    Boyle, Timothy J.; Hess, Ryan Falcone; Neville, Michael Luke; Howard, Panit Clifton

    2013-02-01

    The first step in an attempt to isolate Sco from a Wo crucible was explored by soaking the samples in a series of organic (HOAc) and inorganic (HCl, H2SO4, H3PO4, HNO3) acids. All samples, except the HOAc, yielded a powder. The weight loss suggests that HNO3 is the most efficient solvent; however, the powders were tentatively identified by PXRD and found to contain both W and Sc by-products. The higher weight loss may also indicate dissolution of the Wo crucible, which was further evidenced upon visual inspection of the crucible. The H3PO4 acid soak yielded the cleanest removal of Sc from the crucible. More work to understand the separation of the Sco from the Wo crucible is necessary but the acid routes appear to hold promise under not as of yet established criteria.

  9. Development of a Ceramic-Lined Crucible for the Separation of Salt from Uranium

    NASA Astrophysics Data System (ADS)

    Westphal, Brian R.; Marsden, K. C.; Price, J. C.

    2009-12-01

    As part of the spent fuel treatment program at the Idaho National Laboratory, alternate crucible materials are being developed for the processing of uranium and salt. The separation of salt (LiCl/KCl based) from uranium is performed in an inductively heated furnace capable of distillation under vacuum conditions. Historically, salt and uranium have been processed in graphite crucibles coated with a zirconia mold wash. Although the coated crucibles have performed adequately considering the reactive nature of salt and uranium at high temperature, the operations required for multiple use of the crucibles are quite labor intensive. Thus, an alternate ceramic-lined crucible has been developed to simplify remote operations. Two ceramic-lined crucibles have been tested using irradiated materials to verify their compatibility and determine an ultimate life cycle. Although minor process losses and crucible deterioration have occurred with the ceramic-lined crucibles, the overall performance of the crucibles has been adequate for the separation of salt during uranium processing.

  10. Induction furnace testing of the durability of prototype crucibles in a molten metal environment

    SciTech Connect

    Jablonski, Paul D.

    2005-09-01

    Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.

  11. Measurement of Moisture Content in Sand, Slag, and Crucible Materials

    SciTech Connect

    Gray, J.H.

    1999-09-20

    The deinventory process at Rocky Flats (RFETS) has included moisture content measurements of sand, slag, and crucible (SSC) materials by performing weight loss measurements at 210 degrees - 220 degrees Celsius on representative samples prior to packaging for shipment. Shipping requirements include knowledge of the moisture content. Work at the Savannah River Technology Center (SRTC) showed that the measurement at 210 degrees - 220 degrees Celsius did not account for all of the moisture. The objective of the work in this report was to determine if the measurement at 210 degrees - 220 degrees Celsius at RFETS could be used to set upper bounds on moisture content and therefore, eliminate the need for RFETS to unpack, reanalyze and repack the material.

  12. On crucible effects during the growth of cadmium zinc telluride in an electrodynamic gradient freeze furnace

    NASA Astrophysics Data System (ADS)

    Gasperino, David; Bliss, Mary; Jones, Kelly; Lynn, Kelvin; Derby, Jeffrey J.

    2009-04-01

    The CrysMAS code of the Crystal Growth Laboratory, Fraunhofer IISB, is applied to reveal conditions occurring in electrodynamic gradient freeze furnaces during the growth of cadmium zinc telluride crystals. Of particular interest are heat transfer and growth conditions associated with crucibles of different design, one constructed of graphite and the other of pyrolytic boron nitride (PBN). Under identical furnace set-point schedules, the two systems exhibit very different behaviors. Specifically, the temperature field through the cone region of the PBN crucible displays much steeper axial thermal profiles and promotes convex solid-liquid interface shapes (rather than the concave shapes computed for the graphite crucible). Both systems exhibit a concave interface during growth through the cylindrical part of the crucible. However, the axial thermal profile through the graphite-crucible charge is considerably more offset from the set-point profile of the furnace due to significant axial heat flows through the crucible walls. These factors argue in favor of the PBN crucible; however, comparatively larger radial gradients in the PBN system could lead to higher dislocation levels.

  13. Tolerance requirements to prevent fluid leakage in the crucible/plunger MEA experiment MPS 770030

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1982-01-01

    Molten Al-In leaked unexpectedly out of the crucible of a proposed MEA materials processing in space experiment. The molten metals use a spring loaded plunger to eliminate most free surfaces. The critical criteria necessary to initiate flow and the rate of fluid flow into the crucible/plunger annulus is calculated. Experimental in situ X-radiographs are interpreted according to the calculations. A note on possible effects of capillary flow if wetting occurs between crucible/plunger and liquids is included.

  14. A FIDAP and an empirical estimate of conjugate heat transfer of a graphite crucible

    SciTech Connect

    Bateman, K.J.; Clarksean, R.L.

    1995-05-01

    A set of thermal analyses has been conducted to conservatively predict the heat transfer of a graphite crucible. The study used conjugate heat transfer to determine the cooling characteristics of a graphite crucible. Natural convection and conduction through the casting charge and the graphite crucible are examined. All of the analyses were conducted in non-dimensional form up to a Rayleigh number of 1 x 10{sup 8}. The parametric study examined the effect of increasing the internal heat generation of the casting charge. Data derived from an empirical estimate are compared to the FIDAP simulations. The two models are found to have good correlation.

  15. Using an induction melter with a cold crucible for the immobilization of plutonium

    SciTech Connect

    Kushnikov, V.V.; Matiunin, Yu.I.; Smelova, T.V.

    1996-05-01

    This report evaluates the possibilities for immobilizing weapons-grade plutonium in glass-type materials that satisfy requirements for eventual burial in deep geologic repositories and correspond to the standards set for spent fuel.

  16. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    SciTech Connect

    Murray, A.M.

    1999-02-10

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

  17. Cold Sores

    MedlinePlus

    ... delivered directly to your desktop! more... What Are Cold Sores? Article Chapters What Are Cold Sores? Cold ... January 2012 Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores ...

  18. On crucible effects during the growth of cadmium zinc telluride in an electrodynamic gradient freeze furnace

    SciTech Connect

    Gasperino, David; Bliss, Mary; Jones, Kelly A.; Lynn, Kelvin G.; Derby, Jeffrey

    2009-01-04

    The CrysMAS code of the Crystal Growth Laboratory, Fraunhofer IISB, is applied to reveal conditions occurring in electrodynamic gradient freeze furnaces during the growth of cadmium zinc telluride crystals. Of particular interest are heat transfer and growth conditions associated with crucibles of different design, one constructed of graphite and the other of pyrolytic boron nitride (PBN). Under identical furnace set-point schedules, the PBN system exhibits very different heat transfer through the cone region of the crucible, resulting in steeper axial thermal profiles and convex solid-interface shapes (rather than the concave shapes computed for the graphite crucible). Both systems exhibit a concave interface during growth through the cylindrical part of the crucible; however, the axial thermal profile through the contents of the graphite crucible is considerably more offset from the set-point profile of the furnace due to the large axial flows of heat through the crucible walls. These conditions argue for advantage to the PBN system; however, comparatively larger radial gradients in the PBN system could lead to higher dislocation levels.

  19. CRUCIBLE TESTING OF TANK 48 RADIOACTIVE WASTE SAMPLE USING FBSR TECHNOLOGY FOR ORGANIC DESTRUCTION

    SciTech Connect

    Hammond, C; William Pepper, W

    2008-09-19

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  20. CRUCIBLE TESTING OF TANK 48H RADIOACTIVEWASTE SAMPLE USING FLUIDIZED BED STEAMREFORMING TECHNOLOGY FOR ORGANICDESTRUCTION

    SciTech Connect

    Crawford, C

    2008-07-31

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  1. Effect of Feeding Rate on the Cold Cap Configuration in a Laboratory-Scale Melter - 13362

    SciTech Connect

    Dixon, Derek R.; Schweiger, Michael J.; Hrma, Pavel

    2013-07-01

    High-level-waste melter feed is converted into glass in a joule-heated melter, where it forms a floating layer of reacting feed, called the cold cap. After the glass-forming phase becomes connected, evolving gases produce bubbles that form a foam layer under the feed. The bubbles coalesce into cavities, from which most of the gases are released around the edges of the cold cap while gases also escape through small shafts in the reacting feed. The foam layer insulates the cold cap from the heat transferred from the molten glass below. The cold cap behavior was investigated in a laboratory-scale assembly with a fused silica crucible. A high-alumina waste simulant was fed into the crucible and the feed charging rate was varied from 3 to 7 mL min{sup -1}. After a fixed amount of time (35 min), feed charging was stopped and the crucible was removed from the furnace and quenched on a copper block to preserve the structure of the cold cap during cooling. During the rapid quenching, thermal cracking of the glass and cold cap allowed it to be broken up into sections for analysis. The effect of the charging rate on the height, area and volume of the cold cap was determined. The size of the bubbles collected in the foam layer under the feed increased as the cold cap expanded and the relationship between these bubbles and temperature will be determined for input into a mathematical model. (authors)

  2. Growth of InP single crystals by liquid encapsulated Czochralski (LEC) using glassy-carbon crucibles

    SciTech Connect

    Oliveira, C.E.M. de; Miskys, C.R.; Carvalho, M.M.G. de

    1996-12-31

    Using a high pressure puller and Glassy-Carbon crucibles, undoped InP single crystals weighing 100g and with 25 mm diameter were grown in the <100> direction. The residual carrier concentration of samples, measure by the Van der Pauw method at 300K, was about 5 {times} 10{sup 15}cm{sup {minus}3}, result as good as those obtained with Quartz crucibles with the advantage that Glassy-Carbon crucibles are fully reusable.

  3. Si3N4/fused quartz composite crucible with enhanced thermal conductivity for multicrystalline silicon ingot growth

    NASA Astrophysics Data System (ADS)

    Zhao, Lili; Lv, Tiezheng; Zhu, Qingsong

    2015-04-01

    Two popular materials for multicrystalline Si ingot growth of the PV industry, Si3N4 and fused quartz, are working as composited material, tested and used to make industrial scale crucible. The main purpose of this composite material is to working as crucible for overcoming the low thermal conductivity of single fused quartz crucible during Si ingot process. Certain ceramic properties tests of the composite material, like porosity, density, are done with various percent of Si3N4/fused quartz, and thermal shock test did as well. These results prove that our composite material is feasible to make square crucible for Si ingot process. Thus we simulate multicrystalline Si ingot growth and experiments are done by industrial scale G5 crucible made by the composite material with optimal ratio of Si3N4/fused quartz. These results show that since composite crucible has higher thermal conductivity, the more heat flux could penetrate the bottom of crucible for Si directional solidification, correspondingly the temperature distribution, interface of solid-liquid Si, growth speed and grain structure, these kinds of key features of Si ingot process can be improved. The thermal profile analysis and photoluminescence picture show the improvement of Si ingot process using this composite crucible. Finally the considerations of industrial mass production using this kind of composite crucible are discussed.

  4. Influence of Crucible Materials on High-temperature Properties of Vacuum-melted Nickel-chromium-cobalt Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R F; Rowe, John P; Freeman, J W

    1957-01-01

    A study of the effect of induction-vacuum-melting procedure on the high-temperature properties of a titanium-and-aluminum-hardened nickel-base alloy revealed that a major variable was the type of ceramic used as a crucible. Reactions between the melt and magnesia or zirconia crucibles apparently increased high-temperature properties by introducing small amounts of boron or zirconium into the melts. Heats melted in alumina crucibles had relatively low rupture life and ductility at 1,600 F and cracked during hot-working as a result of deriving no boron or zirconium from the crucible.

  5. Effects of crucible wetting during solidification of immiscible Pb-Zn

    NASA Technical Reports Server (NTRS)

    Degroh, Henry C., III; Probst, Hubert B.

    1988-01-01

    Many industrial uses for liquid phase miscibility gap alloys are proposed. However, the commercial production of these alloys into useful ingots with a reasonable amount of homogeneity is arduous because of their immiscibility in the liquid state. In the low-g environment of space gravitational settling forces are abated, thus solidification of an immiscible alloys with a uniform distribution of phases becomes feasible. Elimination of gravitational settling and coalescence processes in low-g also makes possible the study of other separation and coarsening mechanisms. Even with gravitational separation forces reduced, many low-g experiments have resulted in severely segregated structures. The segregation in many cases was due to preferential wetting of the crucible by one of the immiscible liquids. The objective was to analyze the wetting behavior of Pb-Zn alloys on various crucible materials in an effort to identify a crucible in which the fluid flow induced by preferential wetting is minimized. It is proposed that by choosing the crucible for a particular alloy so that the difference in surface energy between the solid and two liqud phases is minimized, the effects of preferential wetting can be diminished and possibly avoided. Qualitative experiments were conducted and have shown the competitive wetting behavior of the immiscible Pb-Zn system and 13 different crucible materials.

  6. Cold Stress

    MedlinePlus

    ... be at risk of cold stress. Extreme cold weather is a dangerous situation that can bring on ... the country. In regions relatively unaccustomed to winter weather, near freezing temperatures are considered factors for cold ...

  7. Cold intolerance

    MedlinePlus

    ... intolerance is an abnormal sensitivity to a cold environment or cold temperatures. ... can be a symptom of a problem with metabolism. Some people (often very thin women) do not tolerate cold environments because they have very little body fat and ...

  8. Common cold

    MedlinePlus

    ... are the most common reason that children miss school and parents miss work. Parents often get colds ... other children. A cold can spread quickly through schools or daycares. Colds can occur at any time ...

  9. Common Cold

    MedlinePlus

    ... coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... people in the United States suffer 1 billion colds. You can get a cold by touching your ...

  10. Effect of Feeding Rate on the Cold Cap Configuration in a Laboratory-Scale Melter

    SciTech Connect

    Dixon, Derek R.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-02-25

    High level waste melter feed is converted into glass in a joule heated melter, where it forms a floating layer of reacting feed, called the cold cap. After the glass-forming phase becomes connected, evolving gases produce bubbles that form a foam layer under the cold cap. The bubbles coalesce into cavities that escape around the edges of the cold cap. The foam layer insulates the cold cap from the heat transferred from the molten glass below. More information is needed about the formation and behavior of the foam layer to control, limit and possibly avoid foaming, thus allowing for a higher rate of melting. The cold cap behavior was investigated in a laboratory scale assembly with a sealed silica-glass crucible. A high alumina waste simulant was fed into the crucible and the feed charging rate was varied from 3 to 7 mL min-1. After a fixed amount of time (35 min), feed charging was stopped and the crucible was removed from the furnace and quenched on a copper block to preserve the structure of the cold cap and foam during cooling. During the rapid quenching, thermal cracking of the glass and cold cap allowed it to be broken up into sections for analysis. The effect of the charging rate on the height, area and volume of the cold cap was determined. The size of the bubbles collected in the foam layer under the cold cap increased as the cold cap expanded. Under the cold cap, the bubbles coalesced into oblong cavities. These cavities allowed the evolved gases to escape around the edges of the cold cap through the molten glass into the melter plenum.

  11. Boron and Zirconium from Crucible Refractories in a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R F; Rowe, John P; Freeman, J W

    1958-01-01

    In a laboratory study of the factors involved in the influence of induction vacuum melting on 55ni-20cr-15co-4mo-3ti-3al heat resistant alloy, it was found that the major factor was the type of ceramic used as the crucible. The study concluded that trace amounts of boron or zirconium derived from reaction of the melt with the crucible refactories improved creep-rupture properties at 1,600 degrees F. Boron was most effective and, in addition, markedly improved hot-workability.

  12. Comparison of beryllium oxide and pyrolytic graphite crucibles for boron doped silicon epitaxy

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2012-11-15

    This article reports on the comparison of beryllium oxide and pyrolytic graphite as crucible liners in a high-temperature effusion cell used for boron doping in silicon grown by molecular beam epitaxy. Secondary ion mass spectroscopy analysis indicates decomposition of the beryllium oxide liner, leading to significant incorporation of beryllium and oxygen in the grown films. The resulting films are of poor crystal quality with rough surfaces and broad x-ray diffraction peaks. Alternatively, the use of pyrolytic graphite crucible liners results in higher quality films.

  13. Controlling the leakage of liquid bismuth cathode elements in ceramic crucibles used for the electrowinning process in pyroprocessing

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Young; Hwang, Il-Soon; Lee, Jong-Hyeon

    2016-09-01

    Pyroprocessing has shown promise as an alternative to wet processing for the recycling of transuranics with a high proliferation resistance. However, a critical issue for pyroprocessing is the ceramic crucibles used in the electrowinning process. These ceramic crucibles are frequently damaged by thermal stress, which results in significant volumes of crucible waste that must be properly disposed. Transuranic waste (TRU) elements intrude throughout the pores of a damaged crucible. The volume of generated radioactive waste is a concern when dealing with nuclear power plants and decontamination issues. In this study, laser treatment and sintering were performed on the crucibles to minimize the TRU elements trapped within. Secondary ion mass spectroscopy was used to measure the intrusion depth of Li in the surface-treated ceramics.

  14. Interim Report for Crucible-Scale Active Vitrification Testing Envelope B (AZ-102)

    SciTech Connect

    Crawford, C.L.

    2002-08-23

    The purposes of this work were to demonstrate the evaporation of AZ-102 supernate, demonstrate the vitrification of the evaporated concentrate in a crucible melt, and to demonstrate acceptance of the resulting glass by analysis (chemical and radionuclides) and durability testing.

  15. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    NASA Technical Reports Server (NTRS)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  16. Wootz: Erroneous Transliteration of Sanskrit " Utsa" used for Indian Crucible Steel

    NASA Astrophysics Data System (ADS)

    Dube, R. K.

    2014-11-01

    The terminology Wootz for the legendary Indian crucible steel was first introduced by Helenus Scott in his letter to Joseph Banks, the then President of the Royal Society, London, in 1794. He stated several salient features of this steel in his letter. During the period 1794-1796, Banks received approximately 200 lbs. of this steel from Scott. Banks assigned several professionals to carry out experimental work on Indian crucible steel. One such important person was the famous surgical instrument maker, cutler and metallurgist of his time, James Stodart. Stodart experimented extensively with the Indian crucible steel, and was its great admirer. It has been shown, along with corroborative documentary evidence, that the original word for this steel was Sanskrit word " utsa". This was erroneously transliterated in Roman script as Wootz by Scott in his letter to Banks. It was James Stodart, who preserved the Sanskrit word " utsa" written in Devanāgarī script on his trade card for future generation. The reason for using this word for the Indian crucible steel has also been discussed.

  17. Numerical study of liquid phase diffusion growth of SiGe subjected to accelerated crucible rotation

    NASA Astrophysics Data System (ADS)

    Sekhon, M.; Lent, B.; Dost, S.

    2016-03-01

    The effect of accelerated crucible rotation technique (ACRT) on liquid phase diffusion (LPD) growth of SixGe1-x crystal has been investigated numerically. Transient, axisymmetric simulations have been carried out for triangular and trapezoidal ACRT cycles. Natural convection driven flow in the early growth hours is found to be modified by the ACRT induced Ekman flow. Results also reveal that a substantial mixing in the solution can be induced by the application of ACRT in the later hours of growth which is otherwise a diffusion dominated growth period for LPD growth technique. A comparison is drawn to the cases of stationary crucible and crucible rotating at a constant speed examined previously for this growth system by Sekhon and Dost (J. Cryst. Growth 430 (2015) 63). It is found that a superior interface flattening effect and radial compositional uniformity along the growth interface can be accomplished by employing ACRT at 12 rpm than that which could be achieved by using steady crucible rotation at 25 rpm, owing to the higher time averaged growth velocity achieved in the former case. Furthermore, minor differences are also predicted in the results obtained for trapezoidal and triangular ACRT cycles.

  18. Beware the Loss of Conscience: "The Crucible" as Warning for Today.

    ERIC Educational Resources Information Center

    Cerjak, Judith A.

    1987-01-01

    Discusses the political relevance of Miller's play about Salem witch trials to (1) the McCarthy era hearings, and (2) current cases between religious fundamentalists and school curriculum boards. Summarizes the history of these events and relates them to an interpretation of "The Crucible." (JG)

  19. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  20. Experimental investigation on effects of crystal and crucible rotation on thermal convection in a model Czochralski configuration

    NASA Astrophysics Data System (ADS)

    Shen, Ting; Wu, Chun-Mei; Zhang, Li; Li, You-Rong

    2016-03-01

    A series of experiments are presented to understand the effects of crystal and crucible rotations on the thermal convection in a model Czochralski (Cz) configuration which consists of a crucible filled with the transparent 0.65 cSt silicone oil (Pr=6.7) and a model crystal. The thermal convection is induced by the temperature difference between the crucible sidewall and the crystal sidewall. The results show that the critical Rayleigh number for the onset of instability of thermal convection increases with the increase of the crystal rotation rate without the crucible rotation. When the crucible rotates, the critical Rayleigh number is higher than that with standing crucible at small crystal rotation rates. After the flow destabilizes, a three-dimensional oscillatory convection is characterized by traveling spoke patterns at small crystal rotation rates. With the increase of the crystal rotation rate, the azimuthal propagating velocity of the spoke pattern increases. Furthermore, the spoke pattern dims gradually and gives way to the wave pattern. The crystal rotation has a slight effect on the spoke number until the spoke pattern disappears. Compared with the shallow pool, the crystal rotation makes the flow more likely to be disturbed in the deeper pool. On the contrary, the crucible rotation is more conducive to suppressing the oscillatory flow in the deeper pool.

  1. Influence of reaction between silica crucible and graphite susceptor on impurities of multicrystalline silicon in a unidirectional solidification furnace

    NASA Astrophysics Data System (ADS)

    Gao, B.; Nakano, S.; Kakimoto, K.

    2011-01-01

    The influence of silica crucible reaction with graphite susceptor on carbon and oxygen impurities in multicrystalline silicon was studied by global numerical simulations. Results showed that the crucible reaction has a marked effect on carbon and oxygen impurities in the crystal. When the activity of carbon on the surface of the graphite susceptor increases, both oxygen and carbon impurities in the melt increase rapidly. Therefore, the production of high-purity multicrystalline silicon requires setting a free space between the silica crucible and the graphite susceptor or depositing a layer of SiC film on the surface of susceptor to prevent reaction between them.

  2. An historical mullite fiber-reinforced ceramic composite: Characterization of the wootz' crucible refractory

    SciTech Connect

    Lowe, T.L. ); Merk, N.; Thomas, G. )

    1990-10-01

    Since at least the sixteenth century, the wootz'' ultra-high carbon white cast-iron ingot was produced in India by melting or carburising iron in a crucible. This ingot was forced into sword blades of so-called Damascus steel. The charged crucible was fired in a long (24-hour) single cycle at high temperature (1150-1250{degree}C) in a strongly reducing atmosphere. Raw materials for the refractory vessel are clay and coked'' rice husks. At high temperatures, two phases reinforce the glassy matrix: cristobalite relics of rice husks and a network of mullite crystals. This paper characterizes the microstructure and chemistry of the mullite network in the glassy matrix by means of a combination of techniques: optical microscopy, XRD, SEM, TEM and EDS, and HREM. 13 refs., 11 figs.

  3. Experimental study of the hydrodynamics in a model crystal growth crucible

    SciTech Connect

    Ruiz, X.; Massons, J.; Aguilo, M.; Diaz, F. . Dept. of Tecnico Quimica)

    1989-05-01

    In this paper, image processing techniques are applied to the meridional visualizations of the bulk flow generated under different boundary conditions in a model crystal growth crucible. The steady forced convective patterns obtained by means of tracer particles are digitized and processed in order to characterize its hydrodynamic behaviour. This characterization is carried out based on the analysis of the resulting meridional velocity, streamfunction and vorticity distributions. Some comparisons between the present results and other available data are also made.

  4. Formation of Si2N2O Microcrystalline Precipitates near the Quartz Crucible Wall Coated with Silicon Nitride in Cast-Grown Silicon

    NASA Astrophysics Data System (ADS)

    Ono, Haruhiko; Motoizumi, Yu; Kusunoki, Hiroki; Sato, Kuniyuki; Tachibana, Tomihisa; Ogura, Atsushi

    2013-08-01

    The chemical reaction near the crucible wall during directional solidification of Si crystals for solar cells has been investigated. Fragments of the crucible that were used for the crystal growth of a Si ingot were examined. As results, we found that a chemical reaction took place at the coating/crucible interface and that silicon oxynitride particles precipitated near the crucible wall. The oxynitride precipitates were determined as stoichiometric Si2N2O and were revealed not to be amorphous but of orthorhombic crystal symmetry. We show crucial evidence of the formation of stoichiometric Si2N2O microcrystalline precipitates inside the Si crystal.

  5. Common cold

    MedlinePlus

    ... often causes a runny nose, nasal congestion, and sneezing. You may also have a sore throat, cough, ... symptoms are: Nasal congestion Runny nose Scratchy throat Sneezing Adults and older children with colds generally have ...

  6. Cold Intolerance

    MedlinePlus

    ... from the Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Cold Intolerance Many polio ... index of Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Back to top Contact ...

  7. Crucible surface, thermal refraction, boundaries, and interface shape in melt growth

    NASA Astrophysics Data System (ADS)

    Holland, Lawrence Rozier

    1989-07-01

    A heat conduction analog of Snell's law of refraction is described, which can be used to calculate the kinks in isotherms where they pass the boundaries between media of different thermal conductivity. An application in Bridgman crystal growth is discussed, and it is shown that the edge of a melt growth crystal face should meet the crucible wall at a smaller angle than is usually supposed. The angle approaches 180 deg for metals, and 0 deg for a large class of semiconductors, which may have a detrimental effect on the crystallinity of the latter. Some examples are cited.

  8. Life's crucible.

    PubMed

    Radetsky, P

    1998-02-01

    Research by German chemists Gunter Wachtershauser and Claudia Huber about the origins of life is reviewed. Other theories about the beginning of life on Earth are examined with comments by noted researchers. PMID:11541839

  9. Simple and quick enhancement of SiC bulk crystal growth using a newly developed crucible material

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke

    2016-05-01

    Newly developed highly reliable low-cost TaC-coated graphite materials prepared by a wet ceramic process were applied to SiC sublimation growth. We demonstrated an increased long-duration growth rate and a resultant increase in crystal size by a factor of ∼1.2 (experimental value) after 24 h of growth [and ∼1.5 (extrapolated value) after the optimum duration of 53.1 h] by simply and quickly replacing graphite crucibles with TaC-coated graphite crucibles. Growth with the TaC-coated graphite crucibles reduced source gas leakage and increased the material yield for single crystals because the TaC layers were gas-tight and had a low emissivity.

  10. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  11. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    SciTech Connect

    Ciszek, T.F.

    1987-03-17

    This patent describes an apparatus for crucible-free growth of a sheet crystal of silicon, the apparatus comprising; means for providing a substantially enclosed space having an inert atmosphere; heating means for sequentially forming molten silicon from a source of substantially pure silicon within the space; means for vertically feeding a silicon source toward the heating means to form a molten layer of silicon at a top of the source; means for drawing a continuous silicon sheet crystal from the molten silicon layer within the space; wherein a meniscus of molten silicon is created by the drawing means. The apparatus includes means to control the shape of the meniscus, and the controlling means includes a repulsive RF generator for repulsive support of the meniscus as a molten silicon sheet crystal is drawn from the molten silicon. A crucible-free, non-dendritic growth method is described for continuously forming a silicon crystal sheet from a rod of substantially pure silicon, the method comprising: employing an RF heating means having first and second portions to provide a molten layer at an end of the silicon rod in an inert atmosphere by actively heating a first region at the end of the silicon rod while preventing an active heating of a second region of the end of the silicon rod.

  12. Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers

    SciTech Connect

    Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

    1997-12-01

    An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

  13. Optimization of the design of a crucible for a SiC sublimation growth system using a global model

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Liu, L. J.; Tezuka, H.; Usuki, Y.; Kakimoto, K.

    2008-04-01

    Induction heating, temperature field and growth rate for a sublimation growth system of silicon carbide were calculated by using a global simulation model. The effects of shape of the crucible on temperature distribution and growth rate were investigated. It was found that thickness of the substrate holder, distance between the powder and substrate, and angle between the crucible wall and powder free surface are important for growth rate and crystal quality. Finally, a curved powder free surface was also studied. The results indicate that the use of a curved powder free surface is also an effective method for obtaining a higher growth rate.

  14. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  15. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  16. Cold Sores

    MedlinePlus

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area Some people have no symptoms from the ...

  17. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  18. Nondestructive method for chemically machining crucibles or molds from their enclosed ingots and castings

    DOEpatents

    Stout, Norman D.; Newkirk, Herbert W.

    1991-01-01

    An inventive method is described for chemically machining rhenium, rhenium and tungsten alloy, and group 5b and 6b crucibles or molds from included ingots and castings comprised of oxide crystals including YAG and YAG based crystals, garnets, corundum crystals, and ceramic oxides. A mixture of potassium hydroxide and 15 to 90 weight percent of potassium nitrate is prepared and maintained at a temperature above melting and below the lower of 500 degrees centigrade or the temperature of decomposition of the mixture. The enveloping metal container together with its included oxide crystal object is rotated within the heated KOH-KNO.sub.3 mixture, until the container is safely chemically machined away from the included oxide crystal object.

  19. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOEpatents

    Ciszek, T.F.

    1984-09-12

    Apparatus is provided for continuously forming a silicon crystal sheet from a silicon rod in a non-crucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed which can be used for micro-circuitry chips or solar cells.

  20. Frit screening for Rocky Flats ash and sand, slag, and crucible vitrification

    SciTech Connect

    Vienna, J.D.; Li, Hong; Darab, J.G.

    1997-06-01

    Pacific Northwest National Laboratory (PNNL) is developing vitrified waste forms for plutonium-bearing ash and plutonium-bearing sand, slag, and crucible (SS&C) materials from Rocky Flats. Waste forms are to meet product criteria (e.g., safeguard termination limits, storage criteria, and target plutonium loading) and processing constraints (e.g., upper temperature limits, processing time, and equipment compatibility). The target waste form for ash is an agglomerated product, while that for SS&C is a fully encapsulated product. Laboratory scoping studies were conducted on glass formulations from six different glass families: (1) antimony vanadium phosphate, (2) iron vanadium phosphate, (3) tin zinc phosphate, (4) soda-lime silicate, (5) alkali borosilicate, and (6) alkali borate. Glass families were selected due to viscosity behavior in the temperature range of interest (< 800C). Scoping study tests included gradient furnace tests to determine processing range and sintering temperature, thermogravimetric analysis to determine weight loss as a function of temperature, and crucible tests to determine frit compositions tolerance to variations in processing temperature, waste loading, and waste type. The primary screening criterion for the selection of frits for future studies was processing temperature below 400C to minimize the potential for foaming in ash caused by the release of gases (main source of gas is combustion of carbon species) and to minimize processing cycle times. Based on this criterion, glass formulations from the tin zinc phosphate and alkali borosilicate families were selected for future variability testing. Variability testing will include final product evaluation, glass system tolerance to waste loading and composition variation, and identification of parameters impacting time/temperature profiles. Variability testing results will give a final frit formulation for ash and SS&C, and identify key processing parameters. 12 refs., 13 figs., 9 tabs.

  1. Chilling Out with Colds

    MedlinePlus

    ... most common cold virus, but more than 200 viruses can cause colds. Because there are so many, ... to help you feel better. Take that, cold viruses! continue How Kids Catch Colds Mucus (say: MYOO- ...

  2. Coping with Cold Sores

    MedlinePlus

    ... Here's Help White House Lunch Recipes Coping With Cold Sores KidsHealth > For Kids > Coping With Cold Sores ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  3. PbO reduction and crucible reactions of 70 wt pct PbO-30 wt pct B2O3 glass

    NASA Technical Reports Server (NTRS)

    Schilling, Christopher H.; Lee, Mark C.

    1987-01-01

    NASA has conducted an investigation of PbO-B2O3 glass with a view to PbO reduction and subsequent crucible reactions as a function of temperature and oxygen partial pressure, in order to establish the optimum processing conditions for subcentimetric glass hollow spheres applicable to inertial confinement fusion targets. The results obtained support the selection of appropriate crucible materials and oxygen partial pressure-temperature combinations that avoid phase separation from PbO reduction and/or crucible reactions.

  4. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  5. Experimental Investigation and Mathematical Modeling of Cold Cap Behavior in High-Level-Waste Glass Melter

    SciTech Connect

    Hrma, Pavel R.

    2014-03-03

    The cold cap is a layer of reacting melter feed floating on the surface of molten glass in a glass-melting furnace. The cold cap consists of two distinct portions, of which the upper allows the reaction gases to escape through open pores, whereas the lower portion traps the gases within the continuous glass-forming melt, creating foam. The temperature span over the cold cap is ~1000 K. Data needed to simulate the cold cap mathematically include the kinetics of multiple reactions, reaction enthalpies, heat capacity, density, porosity, and heat conductivity as functions of both the temperature and the rate of heating. These data were produced via crucible experiments. The mathematical model has been completed. It relates the cold cap thickness, the rate of melting, the temperature field, and cold cap structure (foaming, dissolution of quartz particles, and formation and subsequent dissolution of crystalline phases, such as spinel) to the cold cap bottom temperature, the fraction of heat flow to the upper cold cap surface, the melt foaminess, and the chemical and physical nature of melter feed materials. To verify the model, cold caps were produced in a laboratory-scale melter and their structure is currently investigated.

  6. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples

    NASA Astrophysics Data System (ADS)

    Canfield, Paul C.; Kong, Tai; Kaluarachchi, Udhara S.; Jo, Na Hyun

    2016-01-01

    Solution growth of single crystals from high temperature solutions often involves the separation of residual solution from the grown crystals. For many growths of intermetallic compounds, this separation has historically been achieved with the use of plugs of silica wool. Whereas this is generally efficient in a mechanical sense, it leads to a significant contamination of the decanted liquid with silica fibres. In this paper, we present a simple design for frit-disc alumina crucible sets that has made their use in the growth single crystals from high temperature solutions both simple and affordable. An alumina frit-disc allows for the clean separation of the residual liquid from the solid phase. This allows for the reuse of the decanted liquid, either for further growth of the same phase, or for subsequent growth of other, related phases. In this paper, we provide examples of the growth of isotopically substituted TbCd? and icosahedral i-RCd quasicrystals, as well as the separation of (i) the closely related ? and ? phases and (ii) ? and ?.

  7. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples

    DOE PAGESBeta

    Canfield, Paul C.; Kong, Tai; Kaluarachchi, Udhara S.; Jo, Na Hyun

    2016-01-05

    Solution growth of single crystals from high temperature solutions often involves the separation of residual solution from the grown crystals. For many growths of intermetallic compounds, this separation has historically been achieved with the use of plugs of silica wool. Whereas this is generally efficient in a mechanical sense, it leads to a significant contamination of the decanted liquid with silica fibres. In this paper, we present a simple design for frit-disc alumina crucible sets that has made their use in the growth single crystals from high temperature solutions both simple and affordable. An alumina frit-disc allows for the cleanmore » separation of the residual liquid from the solid phase. This allows for the reuse of the decanted liquid, either for further growth of the same phase, or for subsequent growth of other, related phases. In this article, we provide examples of the growth of isotopically substituted TbCd6 and icosahedral i-RCd quasicrystals, as well as the separation of (i) the closely related Bi2Rh3S2 and Bi2Rh3.5S2 phases and (ii) and PrZn11 and PrZn17.« less

  8. Interaction Studies of Ceramic Vacuum Plasma Spraying for the Melting Crucible Materials

    SciTech Connect

    Jong Hwan Kim; Hyung Tae Kim; Yoon Myung Woo; Ki Hwan Kim; Chan Bock Lee; R. S. Fielding

    2013-10-01

    Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, ZrO2, and Y2O3, were plasmasprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and Y2O3 coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and ZrO2 coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and ZrO2 coating layers with niobium was relatively weak compared to the TaC and Y2O3 coatings. The TaC and Y2O3 coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and ZrO2 coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at 1600 degrees C for 15 min., but TaC, TiC, and Y2O3 coatings showed good compatibility with U-Zr melt.

  9. Cough & Cold Medicine Abuse

    MedlinePlus

    ... I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  10. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  11. Colds and flus - antibiotics

    MedlinePlus

    Antibiotics - colds and flu ... treat infections that are caused by a virus. Colds and flu are caused by viruses. If you ... Hamilton A. Treatments for symptoms of the common cold. Am Fam Physician. 2013;88(12):Online. PMID: ...

  12. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... belief that vitamin C can cure the common cold , research about this claim is conflicting. Large doses ... vitamin C may help reduce how long a cold lasts, but they do not appear to protect ...

  13. Cold Atoms

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    This chapter and the following one address collective effects of quantum particles, that is, the effects which are observed when we put together a large number of identical particles, for example, electrons, helium-4 or rubidium-85 atoms. We shall see that quantum particles can be classified into two categories, bosons and fermions, whose collective behavior is radically different. Bosons have a tendency to pile up in the same quantum state, while fermions have a tendency to avoid each other. We say that bosons and fermions obey two different quantum statistics, the Bose-Einstein and the Fermi-Dirac statistics, respectively. Temperature is a collective effect, and in Section 5.1 we shall explain the concept of absolute temperature and its relation to the average kinetic energy of molecules. We shall describe in Section 5.2 how we can cool atoms down thanks to the Doppler effect, and explain how cold atoms can be used to improve the accuracy of atomic clocks by a factor of about 100. The effects of quantum statistics are prominent at low temperatures, and atom cooling will be used to obtain Bose-Einstein condensates at low enough temperatures, when the atoms are bosons.

  14. Ductile Chromium in Heavily Cold-Drawn Cu75Cr25 Alloy

    NASA Astrophysics Data System (ADS)

    Chang, Yanli; Zhou, Zhiming; Guo, Ziqin; Wang, Yaping

    2016-01-01

    Microstructure evolution, gas content, and properties of the heavily cold-drawn Cu75Cr25 alloy were studied. Results showed that the oxygen and nitrogen contents of Cu75Cr25 alloy prepared by vacuum induction melting in calcia crucibles were low, about 320 and 20 ppm, respectively. The Cu75Cr25 material with low gas content can be cold drawn to lines with diameter less than 0.1 mm, in which Cr phase displays thin and curving morphology. The coherent interface, forming between Cu(111) and Cr(110) during the heavily cold-drawing process, constrained Cr phase and greatly improved its deformability as well as increased the strength of the Cu-Cr alloy. The breaking strength and electrical conductivity of the Cu75Cr25 alloy were about 577 MPa and 60 pct IACS, respectively.

  15. Cold energy

    SciTech Connect

    Wallace, John P.

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  16. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  17. A multistage crucible of revision and approval shapes IPCC policymaker summaries

    PubMed Central

    Mach, Katharine J.; Freeman, Patrick T.; Mastrandrea, Michael D.; Field, Christopher B.

    2016-01-01

    Intergovernmental Panel on Climate Change (IPCC) member governments approve each report’s summary for policymakers (SPM) by consensus, discussing and agreeing on each sentence in a plenary session with scientist authors. A defining feature of IPCC assessment, the governmental approval process builds joint ownership of current knowledge by scientists and governments. The resulting SPM revisions have been extensively discussed in anecdotes, interviews, and perspectives, but they have not been comprehensively analyzed. We provide an in-depth evaluation of IPCC SPM revisions, establishing an evidential basis for understanding their nature. Revisions associated with governmental review and approval generally expand SPMs, with SPM text growing by 17 to 53% across recent assessment reports. Cases of high political sensitivity and failure to reach consensus are notable exceptions, resulting in SPM contractions. In contrast to recent claims, we find that IPCC SPMs are as readable, for multiple metrics of reading ease, as other professionally edited assessment summaries. Across reading-ease metrics, some SPMs become more readable through governmental review and approval, whereas others do not. In an SPM examined through the entire revision process, most revisions associated with governmental review and approval occurred before the start of the government-approval plenary session. These author revisions emphasize clarity, scientific rigor, and explanation. In contrast, the subsequent plenary revisions place greater emphasis especially on policy relevance, comprehensiveness of examples, and nuances of expert judgment. Overall, the value added by the IPCC process emerges in a multistage crucible of revision and approval, as individuals together navigate complex science-policy terrain. PMID:27532046

  18. A multistage crucible of revision and approval shapes IPCC policymaker summaries.

    PubMed

    Mach, Katharine J; Freeman, Patrick T; Mastrandrea, Michael D; Field, Christopher B

    2016-08-01

    Intergovernmental Panel on Climate Change (IPCC) member governments approve each report's summary for policymakers (SPM) by consensus, discussing and agreeing on each sentence in a plenary session with scientist authors. A defining feature of IPCC assessment, the governmental approval process builds joint ownership of current knowledge by scientists and governments. The resulting SPM revisions have been extensively discussed in anecdotes, interviews, and perspectives, but they have not been comprehensively analyzed. We provide an in-depth evaluation of IPCC SPM revisions, establishing an evidential basis for understanding their nature. Revisions associated with governmental review and approval generally expand SPMs, with SPM text growing by 17 to 53% across recent assessment reports. Cases of high political sensitivity and failure to reach consensus are notable exceptions, resulting in SPM contractions. In contrast to recent claims, we find that IPCC SPMs are as readable, for multiple metrics of reading ease, as other professionally edited assessment summaries. Across reading-ease metrics, some SPMs become more readable through governmental review and approval, whereas others do not. In an SPM examined through the entire revision process, most revisions associated with governmental review and approval occurred before the start of the government-approval plenary session. These author revisions emphasize clarity, scientific rigor, and explanation. In contrast, the subsequent plenary revisions place greater emphasis especially on policy relevance, comprehensiveness of examples, and nuances of expert judgment. Overall, the value added by the IPCC process emerges in a multistage crucible of revision and approval, as individuals together navigate complex science-policy terrain. PMID:27532046

  19. Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles.

    PubMed

    Xia, Wenhao; Xu, Biyi; Duan, Huanan; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-03-01

    Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10(-4) S cm(-1)). The ionic conductivity maintains 3.6 × 10(-4) S cm(-1) after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10(-4) S cm(-1) and drops to 2.39 × 10(-5) S cm(-1) 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability. PMID:26859158

  20. Buoyancy and rotation in small-scale vertical Bridgman growth of cadmium zinc telluride using accelerated crucible rotation

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2001-12-01

    Theoretical simulations of vertical Bridgman growth of cadmium zinc telluride are performed to study the effects of the accelerated crucible rotation technique (ACRT). The results indicate that thermal buoyancy has a dramatic effect on the flow, even in a relatively small system at high rotation rate, contrary to assertions made in recent papers by Liu et al. (J. Crystal Growth 219 (2000) 22). We demonstrate their prior results greatly overstate the effectiveness of ACRT at promoting mixing. Contrary to conventional wisdom, the ACRT rotation cycle considered here for a small-scale growth system actually suppresses mixing in the melt near the ampoule wall, resulting in diffusion-limited mass transport there.

  1. Crystal growth of YBa2Cu3O(7-x) and reaction of gold crucible with Ba-Cu-rich flux

    NASA Technical Reports Server (NTRS)

    Tao, Y. K.; Chen, H. C.; Martini, L.; Bechtold, J.; Huang, Z. J.; Hor, P. H.

    1991-01-01

    YBa2Cu3O(7-x) crystals are grown in a gold crucible by a self-flux method. The flux moves along the gold surface due to surface wetting and leaves Y123 crystals behind. The obtained crystals are clean and have a size up to two millimeters and a Tc is greater than 90 K. In an effort to recycle the used crucibles, it is found that the used gold is contaminated by copper. A CuO thin film is easily formed on the surface of the crucible that is made of the used gold. This film provides good surface wetting and a buffer layer, which reduces the reaction between gold and the Y-Ba-Cu-oxide melt.

  2. Effect of Crucible Diameter Reduction on the Convection, Macrosegregation, and Dendritic Morphology during Directional Solidification of Pb-2.2 Wt Pct Sb Alloy

    NASA Technical Reports Server (NTRS)

    Chen, Jun; Tewari, S. N.; Magadi, G.; DeGroh, H. C., III

    2003-01-01

    The Pb-2.2 wt pct Sb alloy has been directionally solidified in 1-, 2-, 3-, and 7-mm-diameter crucibles with planar and dendritic liquid-solid interface orphology. For plane front solidification, the experimentally observed macrosegregation along the solidified length follows the relationship proposed by Favier. Application of a 0.4 T transverse magnetic field has no effect on the extent of convection. Reducing the ampoule diameter appears to decrease the extent of convection. However, extensive convection is still present even in the 1-mm-diameter crucible. An extrapolation of the observed behavior indicated that nearly diffusive transport conditions require ampoules that are about 40 microns in diameter. Reduction of the crucible diameter does not appear to have any significant effect on the primary dendrite spacing. However, it results in considerable distortion of the dendrite morphology and ordering. This is especially true for the 1-mm diameter samples.

  3. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  4. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  5. Cold knife cone biopsy

    MedlinePlus

    A cold knife cone biopsy (conization) is surgery to remove a sample of abnormal tissue from the cervix. The ... Cold knife cone biopsy is done to detect cervical cancer or early changes that lead to cancer. ...

  6. Cold wave lotion poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002693.htm Cold wave lotion poisoning To use the sharing features on this page, please enable JavaScript. Cold wave lotion is a hair care product used ...

  7. Cold knife cone biopsy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003910.htm Cold knife cone biopsy To use the sharing features on this page, please enable JavaScript. A cold knife cone biopsy (conization) is surgery to remove ...

  8. Cold Sores (Orofacial Herpes)

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Cold Sores (Orofacial Herpes) Information for adults A A ... face, known as orofacial herpes simplex, herpes labialis, cold sores, or fever blisters, is a common, recurrent ...

  9. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking plenty of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  10. Exercising in Cold Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  11. Cold Fronts in Cold Dark Matter Clusters

    NASA Astrophysics Data System (ADS)

    Nagai, Daisuke; Kravtsov, Andrey V.

    2003-04-01

    Recently, high-resolution Chandra observations revealed the existence of very sharp features in the X-ray surface brightness and temperature maps of several clusters. These features, called cold fronts, are characterized by an increase in surface brightness by a factor >~2 over 10-50 kpc accompanied by a drop in temperature of a similar magnitude. The existence of such sharp gradients can be used to put interesting constraints on the physics of the intracluster medium (ICM) if their mechanism and longevity are well understood. Here, we present results of a search for cold fronts in high-resolution simulations of galaxy clusters in cold dark matter models. We show that sharp gradients with properties similar to those of observed cold fronts naturally arise in cluster mergers when the shocks heat gas surrounding the merging subcluster, while its dense core remains relatively cold. The compression induced by supersonic motions and shock heating during the merger enhance the amplitude of gas density and temperature gradients across the front. Our results indicate that cold fronts are nonequilibrium transient phenomena and can be observed for a period of less than a billion years. We show that the velocity and density fields of gas surrounding the cold front can be very irregular, which would complicate analyses aiming to put constraints on the physical conditions of the ICM in the vicinity of the front.

  12. Experimental study of cold plume instability in large Prandtl number Czochralski melt: Parametric dependences and scaling laws

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, E.; Kit, E.; Gelfgat, A. Yu.

    2016-03-01

    A parametric experimental study of the cold plume instability that appears in the large-Prandtl-number Czochralski melt flows is reported. The critical temperature difference (the critical Grashof number) and the frequency of appearing oscillations were measured for varying Prandtl numbers, aspect ratios of the melt, and crystal/crucible radii ratio. The measurements were carried out by two independent and fully non-intrusive experimental techniques. The results are reported as dimensional and dimensionless parametric dependences, and then are joined into relatively simple empirical relations showing how the critical Grashof number and the frequency of emerging oscillations depend on other parameters.

  13. Cough and Cold Medicine Abuse

    MedlinePlus

    ... and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised May 2014 Some ... diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines are usually consumed ...

  14. Why Being Cold Might Foster a Cold

    MedlinePlus

    ... These cells produce essential immune system proteins called interferons that respond to a cold virus. The cells ... several degrees below core body temperature, virus-fighting interferons were less able to do their job. The ...

  15. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  16. A Study of Undercooling Behavior Of Immiscible Metal Alloys in the Absence of Crucible-Induced Nucleation

    NASA Technical Reports Server (NTRS)

    Robinson, Michael B.; Rathz, Thomas J.; Li, Delin; Workman, Gary

    1998-01-01

    The purpose of this study is to investigate the question: Would eliminating the crucible eliminate the wall-induced nucleation of one of the liquid phases in an immiscible alloy and result in undercooling of the liquid into the metastable region thereby producing significant differences in the separation process and the microstructure upon solidification. Another primary objective of this research is to study systems with a metastable miscibility gap and to directly determine the metastable liquid miscibility gap by undercooling experiments. Nucleation and growth of droplets in these undercooled metallic liquid-liquid mixtures is also being studied. Results of this investigation indicate that containerless processing of immiscibles may not promote the undercooling of the single-phase liquid into the metastable region. Although no recalescence event was observed for this liquid-liquid transition, undercooling did occur across the miscibility gap for the solidification of the Ti phase that eventually separated.

  17. Human responses to cold.

    PubMed

    Rintamäki, Hannu

    2007-01-01

    The thermoneutral ambient temperature for naked and resting humans is ca. 27 degrees C. Exposure to cold stimulates cold receptors of the skin which causes cold thermal sensations and stimulation of the sympathetic nervous system. Sympathetic stimulation causes vasoconstriction in skin, arms and legs. Diminished skin and extremity blood flow increases the thermal insulation of superficial tissues more than 300% corresponding to 0.9 clo (0.13 degrees C x m(-2) x W(-1)). With thermoregulatory vasoconstriction/ vasodilatation the body heat balance can be maintained within a range of ca. 4 degrees C, the middle of the range being at ca. 21 degrees C when light clothing is used. Below the thermoneutral zone metabolic heat production (shivering) is stimulated and above the zone starts heat loss by evaporation (sweating). Cold induced vasoconstriction increases blood pressure and viscosity and decreases plasma volume consequently increasing cardiac work. Cold induced hypertensive response can be counteracted by light exercise, while starting heavy work in cold markedly increases blood pressure. Under very cold conditions the sympathetic stimulation opens the anastomoses between arterioles and venules which increases skin temperatures markedly but temporarily, especially in finger tips. Adaptation to cold takes ca. 2 weeks, whereafter the physiological responses to cold are attenuated and cold exposure is subjectively considered less stressful. PMID:17929604

  18. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  19. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  20. Cold stress and the cold pressor test.

    PubMed

    Silverthorn, Dee U; Michael, Joel

    2013-03-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This activity is easily adapted to an inquiry format that asks students to go to the scientific literature to learn about the test and then design a protocol for carrying out the test in classmates. The data collected are ideal for teaching graphical presentation of data and statistical analysis. PMID:23471256

  1. Primary cold agglutinin disease.

    PubMed

    Mondal, Prabodh Chandra; Chakraborty, Partha Pratim; Bera, Mitali

    2011-07-01

    A 4-year-old girl presented with severe pallor and intermittent passage of cola-coloured urine. Routine investigations were suggestive of auto-immune haemolytic anaemia. Red cell agglutination was observed in peripheral smear and patient's serum was positive for cold agglutinins. Thorough work-up ruled out secondary cold agglutinin disease. Patient was treated successfully with corticosteroids. PMID:22315851

  2. Cold Sores (HSV-1)

    MedlinePlus

    ... Help a Friend Who Cuts? Cold Sores (HSV-1) KidsHealth > For Teens > Cold Sores (HSV-1) Print A A A Text Size What's in ... person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don't just show ...

  3. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  4. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  5. Hypothermia: A Cold Weather Hazard

    MedlinePlus

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  6. Continuous Czochralski growth. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.

  7. Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon: Assessing the role of impurities in silicon nitride crucible lining material

    NASA Astrophysics Data System (ADS)

    Buonassisi, T.; Istratov, A. A.; Pickett, M. D.; Rakotoniaina, J.-P.; Breitenstein, O.; Marcus, M. A.; Heald, S. M.; Weber, E. R.

    2006-01-01

    We assess the contamination potential of crucibles used during directionally solidified multicrystalline silicon (mc-Si) ingot casting for cost-effective solar cell wafer production. Highly sensitive, synchrotron-based analytical microprobe techniques were used to study the distributions, sizes, elemental natures and chemical states of impurity-rich particles in α-Si 3N 4 powder representative of what is used to coat the inside of mc-Si ingot-casting crucibles, as well as the as-grown cast mc-Si material. Correlations between the elemental species, chemical states, particle sizes, relative concentrations and locations of impurities (e.g. Fe, Ti, Ca, Zn, Ni, Cu, N, C) concomitant in α-Si 3N 4 and as-grown mc-Si lead us to conclude that α-Si 3N 4 could be a significant source of contaminants during the ingot-casting mc-Si growth process.

  8. Continuous Czochralski growth. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Astrophysics Data System (ADS)

    The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.

  9. Crucible melts and bench-scale ISV (in situ vitrification) tests on simulated wastes in INEL (Idaho National Engineering Laboratory) soils

    SciTech Connect

    Farnsworth, R.K.; Oma, K.H.; Reimus, M.A.H.

    1990-05-01

    This report summarizes the results of eight crucible melt tests and three bench-scale in situ vitrification (ISV) test that were performed on simulated metals/soils mixtures containing actual site soils from the Idaho National Engineering Laboratory (INEL). The crucible melt and bench-scale ISV tests are a part of efforts by the Pacific Northwest Laboratory (PNL) to assist the INEL in conducting a treatability study on ISV for application to the mixed waste buried at the INEL subsurface disposal area (SDA). The crucible melt tests were performed to evaluate the effect of various chemical additives and metal oxidation techniques on soil melting temperatures, melt viscosities, metals versus electrode oxidation potentials, and metals incorporation in the glass. The bench-scale ISV tests were performed to supplement the existing ISV data base with information on certain hazardous materials that have not been adequately evaluated in previous ISV tests. These materials included five EP toxicity metals, various volatile organic materials fixed in a cementitious matrix (including carbon tetrachloride (CCl{sub 4}), trichloroethylene (TCE), and tetrachloroethylene (PCE)), and asbestos. In addition, the bench-scale test were used to evaluated the effect of the proposed chemical additive on ISV processing performance and product quality. 8 refs., 24 figs., 19 tabs.

  10. Metallographic examination of the structure of the metal of cold arms of the nineteenth-early twentieth centuries made at the Zlatoust arms factory

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Rodionov, D. P.; Gerasimov, V. Yu.; Khlebnikova, Yu. V.

    2010-11-01

    Data are given concerning the structure and the chemical composition of carbon steel used for making cold arms, which was produced at the Zlatoust arms factory in the nineteenth and early twentieth centuries. The results of the analysis of the structure of metal demonstrates the general trend of the development of metallurgy both at the Ural plants and in the world: from the creation of the crucible methods of production of cast steel to the mass production of cast steel by the Bessemer and Martin methods.

  11. Measuring Inductive-Heating Coupling Coefficients and Thermal Loss Characteristics as a Function of Crucible Geometry and Material Selection

    NASA Astrophysics Data System (ADS)

    Gomes, Jay

    A power measurement system has been designed for an ultra-high temperature inductively heated molten oxide electrolysis (MOE) reactor. The work presented in this research contributes to three different aspects of the induction heated MOE reactor facility: mathematical modeling of coil-to-workpiece power transfer, numerical modeling of heat transfer within the reactor, and experiments to measure the total hemispherical emittance of potential crucible materials. Facility-specific coupling coefficients for various samples have been experimentally determined for the MOE reactor facility. An analytical model coupling the predicted power input with heat transfer software was developed using COMSOL Multiphysics, and validated with experimental measurements of the steady state temperature gradient inside the reactor. These models were used to support the design of an experiment to measure the total hemispherical emissivity (epsilon) of conductive samples using a transient calorimetric technique. Results of epsilon are presented over a wide range of temperatures for copper, nickel, graphite and molybdenum. Furthermore, an investigation into optimizing the reactor system for heating will be discussed.

  12. Assessment of Different Turbulence Models for the Motion of Non-metallic Inclusion in Induction Crucible Furnace

    NASA Astrophysics Data System (ADS)

    Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-07-01

    Turbulent fluid flow due to the electromagnetic forces in induction crucible furnace (ICF) is modeled using k-ɛ, k-ω SST and Large Eddy Simulation (LES) turbulence models. Fluid flow patterns calculated by different turbulence models and their effects on the motion of non-metallic inclusions (NMI) in the bulk melt have been investigated. Results show that the conventional k-ɛ model cannot solve the transient flow in ICF properly. With k-ω model transient flow and oscillation behavior of the flow pattern can be solved, and the motion of NMI can be tracked fairly well. LES model delivers the best modeling result on both details of the transient flow pattern and motion trajectories of NMI without the limitation of NMI size. The drawback of LES model is the long calculation time. Therefore, for general purpose to estimate the dynamic behavior of NMI in ICF both k-ω SST and LES are recommended. For the precise calculation of the motion of NMI smaller than 10 μm only LES model is appropriate.

  13. Detection of DNA damage induced in vivo by a cross-linking agent with a circular channel crucible oscillating viscometer.

    PubMed

    Balbi, C; Abelmoschi, M L; Roner, R; Giaretti, W; Parodi, S; Santi, L

    1985-11-01

    DNA damage induced in vivo by the cross-linking agent mitomycin C (MMC) was investigated with a new oscillating crucible viscometer. Viscosity was measured by lysing rat liver nuclei in an alkaline lysing solution (pH 12.5; 25 degrees C). In control samples the viscosity increased very slowly with time, reaching a plateau only after 10-12 h. The process was accelerated and the maximum viscosity was decreased by alkaline single-stranded breaks arising from methylation and subsequent depurination of DNA in vitro with dimethylsulphate (DMS). MMC, when given alone, had no evident effect on the time needed for reaching plateau viscosity but it induced a small increase in maximum viscosity. When MMC was given in association with DMS, the time of disentanglement remained unchanged (accelerated) but maximum viscosity was increased in a dose dependent way. We conclude that these data clearly confirm that the slow steady increase of the viscosity of control DNA with time reflects mainly the process of unwinding of the two strands. The speed of this process seems to depend only from the number of unwinding points in DNA (breaks). PMID:3935335

  14. Febrile/cold agglutinins

    MedlinePlus

    ... diagnose certain infections and find the cause of hemolytic anemia (a type of anemia that occurs when red ... or cold agglutinins can help explain why the hemolytic anemia is occurring and direct treatment.

  15. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  16. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  17. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, up–grading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  18. "Cold training" affects rat liver responses to continuous cold exposure.

    PubMed

    Venditti, Paola; Napolitano, Gaetana; Barone, Daniela; Di Meo, Sergio

    2016-04-01

    Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated. PMID:26808664

  19. Massive cold cloud clusters

    NASA Astrophysics Data System (ADS)

    Toth, L. Viktor; Marton, Gabor; Zahorecz, Sarolta

    2015-08-01

    The all-sky Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015) allows an almost unbiased study of the early phases of star-formation in our Galaxy. Several thousand of the clumps have also distance estimates allowing a mass, and density determination. The nature of Planck clumps varies from IRDCs to tiny nearby cold clouds with masses ranging from one to several tens of thousands solar masses. Some of the clumps are embedded in GMCs, others are isolated. Some are close or even very close to OB associations, while others lay far from any UV luminous objects.The small scale clustering of these objects was studied with the improved Minimum Spanning Tree method of Cartwright & Whitworth identifying groups in 3D space. As a result also massive cold cloud clusters were identified. We analyse the MST structures, and discuss their relation to ongoing and future massive star formation.

  20. Cold-responsive gene regulation during cold acclimation in plants.

    PubMed

    Lissarre, Mickael; Ohta, Masaru; Sato, Aiko; Miura, Kenji

    2010-08-01

    Regulation of the transcriptome is necessary for plants to acquire cold tolerance, and cold induces several genes via a cold signaling pathway. The transcription factors CBF/DREB1 (C-repeat binding factor/dehydration responsive element binding1) and ICE1 (inducer of CBF expression1) have important roles in the regulation of cold-responsive gene expression. ICE1 is post-translationally regulated by ubiquitylation-mediated proteolysis and sumoylation. This mini-review highlights some recent studies on plant cold signaling. The relationships among cold signaling, salicylic acid accumulation and stomatal development are also discussed. PMID:20699657

  1. Growth of Si Bulk Crystals with Large Diameter Ratio Using Small Crucibles by Creating a Large Low-Temperature Region Inside a Si Melt Contained in an NOC Furnace Developed Using Two Zone Heaters

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo; Ono, Satoshi; Murai, Ryota; Kaneko, Yuzuru

    2016-06-01

    Three zone heaters were generally used for a noncontact crucible (NOC) furnace. For practical reasons a simpler NOC furnace was developed with two zone heaters, which had a carbon heat holder to cover the three roles of each heater. Large low-temperature regions were obtained, and silicon ingots were grown in small crucibles with a large diameter and diameter ratio. Here, the diameter ratio is the ratio of the ingot diameter to the crucible diameter and can be as large as 0.90. The diameter ratio was controlled mainly by the temperature reduction of the first heater. Power changes of the second heater did not have a significant impact on the ingot diameter. Using this NOC furnace, maximum ingot diameters of 28.0, 33.5, and 45.0 cm were obtained using crucibles of 33, 40, and 50 cm in diameter, respectively. The oxygen concentration of the ingots did not strongly depend on the diameter ratio and were always low because convection in the Si melt was markedly suppressed by the carbon heat holder. Moreover, the oxygen concentration of the ingots has a tendency to become lower as the crucible diameter becomes larger.

  2. Heating up cold agglutinins.

    PubMed

    Stone, Marvin J

    2010-10-28

    In this issue of Blood, Berentsen and coworkers describe a high response rate which is durable in some patients who receive combination fludarabine and rituximab for chronic cold agglutinin disease (CAD). If confirmed, this is a significant advance in therapy for a frequently difficult clinical problem. PMID:21030565

  3. Cold agglutinin disease.

    PubMed

    Swiecicki, Paul L; Hegerova, Livia T; Gertz, Morie A

    2013-08-15

    Cold agglutinin disease is a rare and poorly understood disorder affecting 15% of patients with autoimmune hemolytic anemia. We reviewed the clinical and pathologic features, prognosis, and management in the literature and describe our institutional experience to improve strategies for accurate diagnosis and treatment. Retrospective analysis identified 89 patients from our institution with cold agglutinin disease from 1970 through 2012. Median age at symptom onset was 65 years (range, 41 to 83 years), whereas the median age at diagnosis was 72 years (range, 43 to 91 years). Median survival of all patients was 10.6 years, and 68 patients (76%) were alive 5 years after the diagnosis. The most common symptom was acrocyanosis (n = 39 [44%]), and many had symptoms triggered by cold (n = 35 [39%]) or other factors (n = 20 [22%]). An underlying hematologic disorder was detected in 69 patients (78%). Thirty-six patients (40%) received transfusions during their disease course, and 82% received drug therapy. Rituximab was associated with the longest response duration (median, 24 months) and the lowest proportion of patients needing further treatment (55%). Our institution's experience and review of the literature confirms that early diagnostic evaluation and treatment improves outcomes in cold agglutinin disease. PMID:23757733

  4. Out in the cold.

    PubMed

    Bates, Jane

    2016-05-01

    Every now and then, you say something to a patient and wonder whether you should have kept quiet. On this occasion, a female patient and I were indulging in a moment of shared empathy over an annoying symptom we both experience - permanently cold feet. PMID:27154099

  5. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  6. Cold Facts about Viruses.

    ERIC Educational Resources Information Center

    Pea, Celeste; Sterling, Donna R.

    2002-01-01

    Provides ways for students to demonstrate their understanding of scientific concepts and skills. Describes a mini-unit around the cold in which students can relate humans to viruses. Includes activities and a modified simulation that provides questions to guide students. Discusses ways that allows students to apply prior knowledge, take ownership…

  7. Breeding Cold Hardy Begonias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hardy begonia cultivars have potential as a new crop for Southern nurseries. Current begonia breeding efforts are focused on sections Begonia and Pritzelia. Diverse begonia germplasm has been collected to study fertility and hardiness.To date cold hardy germplasm which has produced viable seeds inc...

  8. Recent Cold War Studies

    ERIC Educational Resources Information Center

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  9. Teaching "In Cold Blood."

    ERIC Educational Resources Information Center

    Berbrich, Joan D.

    1967-01-01

    The Truman Capote nonfiction novel, "In Cold Blood," which reflects for adolescents the immediacy of the real world, illuminates (1) social issues--capital punishment, environmental influence, and the gap between the "haves" and "have-nots," (2) moral issues--the complexity of man's nature, the responsibility of one man for another, and the place…

  10. Titanium Cold Spray Coatings

    NASA Astrophysics Data System (ADS)

    Ajaja, Jihane; Goldbaum, Dina; Chromik, Richard; Yue, Stephen; Rezaeian, Ahmad; Wong, Wilson; Irissou, Eric; Legoux, Jean-Gabriel

    Titanium Cold Spray Coatings Cold Spray is an emerging technology used for the deposition of coatings for many industries including aerospace. This technique allows the deposition of metallic materials at low temper-atures below their melting point. The aim of this research was to develop a test technique that can measure the degree to which a cold spray coating achieves mechanical properties similar to a traditional bulk material. Vickers hardness testing and nanoindentation were used as micro-and nano-scale measurement techniques to characterize the mechanical properties of titanium coatings, deposited at different deposition conditions, and bulk Ti. The mechanical properties of bulk titanium and titanium coatings were measured over a range of length scales, with the indentation size effect examined with Meyer's law. Hardness measurements are shown to be affected by material porosity, microstructure and coating particle bonding mechanism. Hard-ness measurements showed that Ti coatings deposited at higher gas pressures and temperatures demonstrate an indentation load response similar to bulk Ti. Key words: titanium, cold spray, Vickers hardness, nanoindentation, indentation size effect, microstructure, mechanical properties

  11. Diffraction by cold atoms

    NASA Astrophysics Data System (ADS)

    Strauch, F.; Gomer, V.; Schadwinkel, H.; Ueberholz, B.; Haubrich, D.; Meschede, D.

    1998-01-01

    We have observed diffraction of a laser probe beam by a trapped sample of cold atoms. The effect is only visible in the vicinity of a resonance line. The observed diffraction pattern arises from interference of the incident and scattered light wave, allowing reconstruction of geometric properties of the trapped sample from the holographic record.

  12. Expert Cold Structure Development

    NASA Astrophysics Data System (ADS)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  13. Cold War Propaganda.

    ERIC Educational Resources Information Center

    Bennett, Paul W.

    1988-01-01

    Briefly discusses the development of Cold War propaganda in the United States, Canada, and the USSR after 1947. Presents two movie reviews and a Canadian magazine advertisement of the period which illustrate the harshness of propaganda used by both sides in the immediate postwar years. (GEA)

  14. Thermoregulatory modeling for cold stress.

    PubMed

    Xu, Xiaojiang; Tikuisis, Peter

    2014-07-01

    Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview. PMID:24944030

  15. Prescription Drugs and Cold Medicines

    MedlinePlus

    ... Abuse » Prescription Drugs & Cold Medicines Prescription Drugs & Cold Medicines Email Facebook Twitter What is Prescription Drug Abuse: ... treatment of addiction. Read more Safe Disposal of Medicines Disposal of Unused Medicines: What You Should Know ( ...

  16. Imaging with cold neutrons

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-09-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 Å). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects—choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  17. CRUCIBLE LINING METHOD

    DOEpatents

    Bone, W.H.; Schmidt, W.W.

    1958-11-01

    A method is presented for forming refractory liners in cylindrical reaction vessels used for the reductlon of uranium tetrafluoride to metallic uranium. A preliminary form, having positioning lugs attached thereto, is inserted into the reaction vessel and the refractory powder, usually CaO, is put in the annular space between the form and the inner wall of the reaction vessel. A jolting table is used to compact this charge of liner material ln place, and after thls has been done, the preliminary form is removed and the flnal form or plug is lnserted without disturbing the partially completed lining. The remainder of the lining charge is then introduced and compacted by jolting, after which the form is removed.

  18. Health problems in cold work.

    PubMed

    Mäkinen, Tiina M; Hassi, Juhani

    2009-07-01

    Cold in- and outdoor work can result in different adverse effects on human health. Health problems decrease performance and work productivity and increase the occurrence of accidents and injuries. Serious health problems can also result in absence from work due to sick leave or hospitalization. At its worst, work in cold conditions could be associated with deaths due to cold-related accidents or a sudden health event. Musculoskeletal complaints, like pain, aches etc. are common in indoor cold work. Breathing cold air while working may lead to respiratory symptoms, which can decrease performance in cold. The symptoms are usually worsened by exercise and ageing, being more common in persons having a respiratory disease. Cardiovascular complaints and related performance decrements could be especially pronounced during work in cold weather and involving physical exercise, especially among those with an underlying cardiovascular disease. The article also reviews the current information related to diabetes, skin disorders and diseases, as well as cold injuries and accidents occurring in cold work. Increasing awareness and identifying workplace- and individual-related cold risks is the first step in proper cold risk management. Following this, the susceptible population groups need customized advice on proper prevention and protection in cold work. PMID:19531906

  19. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  20. Remedies for Common Cold Symptoms

    PubMed Central

    Miller, Penny F.

    1991-01-01

    Individuals suffering from intolerable symptoms of the common cold can now be advised of safe and effective products for symptomatic relief. This article describes and discusses four categories of drugs used to treat the common cold. To simplify the product selection process for family physicians, suggestions are included for possible ingredients for treatments of specific cold symptoms. PMID:21234087

  1. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  2. When blood runs cold: cold agglutinins and cardiac surgery.

    PubMed

    Findlater, Rhonda R; Schnell-Hoehn, Karen N

    2011-01-01

    Cold agglutinins are particular cold-reactive antibodies that react with red blood cells when the blood temperature drops below normal body temperature causing increased blood viscosity and red blood cell clumping. Most individuals with cold agglutinins are not aware of their presence, as these antibodies have little effect on daily living, often necessitating no treatment. However, when those with cold agglutinins are exposed to hypothermic situations or undergo procedures such as cardiopulmonary bypass with hypothermia during cardiac surgery, lethal complications of hemolysis, microvascular occlusion and organ failure can occur. By identifying those suspected of possessing cold agglutinins through a comprehensive nursing assessment and patient history, cold agglutinin screening can be performed prior to surgery to determine a diagnosis of cold agglutinin disease. With a confirmed diagnosis of cold agglutinin disease, the plan of care can be focused on measures to maintain the patient's blood temperature above the thermal amplitude throughout their hospitalization including the use of normothermic cardiopulmonary bypass with warm myocardial preservation techniques to prevent these fatal complications. Using a case report approach, the authors review the mechanism, clinical manifestations, detection and nursing management of a patient with cold agglutinins undergoing scheduled cardiac surgery. Cold agglutinin disease is rare. However, the risk to patients warrants an increased awareness of cold agglutinins and screening for those who are suspected of carrying these antibodies. PMID:21630629

  3. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  4. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  5. Development of advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.

  6. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  7. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  8. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  9. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  10. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  11. Paroxysmal cold hemoglobinuria.

    PubMed

    Shanbhag, Satish; Spivak, Jerry

    2015-06-01

    Paroxysmal cold hemoglobinuria is a rare cause of autoimmune hemolytic anemia predominantly seen as an acute form in young children after viral illnesses and in a chronic form in some hematological malignancies and tertiary syphilis. It is a complement mediated intravascular hemolytic anemia associated with a biphasic antibody against the P antigen on red cells. The antibody attaches to red cells at colder temperatures and causes red cell lysis when blood recirculates to warmer parts of the body. Treatment is mainly supportive and with red cell transfusion, but immunosuppressive therapy may be effective in severe cases. PMID:26043386

  12. A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie

    2014-11-01

    In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

  13. Cold Atom Magnetometers

    NASA Astrophysics Data System (ADS)

    Eto, Yujiro; Sadrove, Mark; Hirano, Takuya

    Detection of weak magnetic fields with high spatial resolution is an important technology for various applications such as biological imaging, detection of MRI signals and fundamental physics. Cold atom magnetometry enables 10-11 T/ Hz sqrt{text{Hz}} sensitivities at the micron scale, that is, at the scale of a typical biological cell size. This magnetometry takes advantage of unique properties of atomic gaseous Bose-Einstein condensates with internal spin degrees of freedom. In this chapter, we first overview various state-of-the-art magnetometers, addressing their sensitivities and spatial resolutions. Then we describe properties of spinor condensates, ultracold atom magnetometers, and the latest research developments achieved in the FIRST project, especially for the detection of alternate current magnetic fields using a spin-echo-based magnetometer. We also discuss future prospects of the magnetometers.

  14. Cold isopressing method

    DOEpatents

    Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  15. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  16. Common cold - how to treat at home

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000466.htm Common cold - how to treat at home To use the ... green snot, and sneezing Sore throat Treating your Cold Treating your symptoms will not make your cold ...

  17. Cold-Weather Sports and Your Family

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  18. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  19. Cold plasma decontamination of foods.

    PubMed

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy. PMID:22149075

  20. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  1. Cold quark matter

    SciTech Connect

    Kurkela, Aleksi; Romatschke, Paul; Vuorinen, Aleksi

    2010-05-15

    We perform an O({alpha}{sub s}{sup 2}) perturbative calculation of the equation of state of cold but dense QCD matter with two massless and one massive quark flavor, finding that perturbation theory converges reasonably well for quark chemical potentials above 1 GeV. Using a running coupling constant and strange quark mass, and allowing for further nonperturbative effects, our results point to a narrow range where absolutely stable strange quark matter may exist. Absent stable strange quark matter, our findings suggest that quark matter in (slowly rotating) compact star cores becomes confined to hadrons only slightly above the density of atomic nuclei. Finally, we show that equations of state including quark matter lead to hybrid star masses up to M{approx}2M{sub {center_dot},} in agreement with current observations. For strange stars, we find maximal masses of M{approx}2.75M{sub {center_dot}}and conclude that confirmed observations of compact stars with M>2M{sub {center_dot}}would strongly favor the existence of stable strange quark matter.

  2. Plants in a cold climate.

    PubMed Central

    Smallwood, Maggie; Bowles, Dianna J

    2002-01-01

    Plants are able to survive prolonged exposure to sub-zero temperatures; this ability is enhanced by pre-exposure to low, but above-zero temperatures. This process, known as cold acclimation, is briefly reviewed from the perception of cold, through transduction of the low-temperature signal to functional analysis of cold-induced gene products. The stresses that freezing of apoplastic water imposes on plant cells is considered and what is understood about the mechanisms that plants use to combat those stresses discussed, with particular emphasis on the role of the extracellular matrix. PMID:12171647

  3. Versatile cold atom target apparatus

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Hofmann, Christoph S.; Litsch, Dominic; DePaola, Brett D.; Weidemueller, Matthias

    2012-07-15

    We report on a compact and transportable apparatus that consists of a cold atomic target at the center of a high resolution recoil ion momentum spectrometer. Cold rubidium atoms serve as a target which can be operated in three different modes: in continuous mode, consisting of a cold atom beam generated by a two-dimensional magneto-optical trap, in normal mode in which the atoms from the beam are trapped in a three-dimensional magneto-optical trap (3D MOT), and in high density mode in which the 3D MOT is operated in dark spontaneous optical trap configuration. The targets are characterized using photoionization.

  4. Nonfreezing cold-induced injuries.

    PubMed

    Imray, C H E; Richards, P; Greeves, J; Castellani, J W

    2011-03-01

    Non-freezing cold injury (NFCI) is the Cinderella of thermal injuries and is a clinical syndrome that occurs when tissues are exposed to cold temperatures close to freezing point for sustained periods. NFCI is insidious in onset, often difficult to recognize and problematic to treat, and yet the condition accounts for significant morbidity in both military and civilians who work in cold conditions. Consequently recognition of those at risk, limiting their exposure and the appropriate and timely use of suitable protective equipment are essential steps in trying to reduce the impact of the condition. This review addresses the issues surrounding NFCI. PMID:21465916

  5. Trapping cold molecular hydrogen.

    PubMed

    Seiler, Ch; Hogan, S D; Merkt, F

    2011-11-14

    Translationally cold H(2) molecules excited to non-penetrating |M(J)| = 3 Rydberg states of principal quantum number in the range 21-37 have been decelerated and trapped using time-dependent inhomogeneous electric fields. The |M(J)| = 3 Rydberg states were prepared from the X (1)Σ(+)(u)(v = 0, J = 0) ground state using a resonant three-photon excitation sequence via the B (1)Σ(+)(u)(v = 3, J = 1) and I (1)Π(g) (v = 0, J = 2) intermediate states and circularly polarized laser radiation. The circular polarization of the vacuum ultraviolet radiation used for the B ← X transition was generated by resonance-enhanced four-wave mixing in xenon and the degree of circular polarization was determined to be 96%. To analyse the deceleration and trapping experiments, the Stark effect in Rydberg states of molecular hydrogen was calculated using a matrix diagonalization procedure similar to that presented by Yamakita et al., J. Chem. Phys., 2004, 121, 1419. Particular attention was given to the prediction of zero-field positions of low-l states and of avoided crossings between Rydberg-Stark states with different values of |M(J)|. The calculated Stark maps and probabilities for diabatic traversal of the avoided crossings were used as input to Monte-Carlo particle-trajectory simulations. These simulations provide a quantitatively satisfactory description of the experimental data and demonstrate that particle loss caused by adiabatic traversals of avoided crossings between adjacent |M(J)| = 3 Stark states of H(2) is small at principal quantum numbers beyond n = 25. The main source of trap losses was found to be from collisional processes. Predissociation following the absorption of blackbody radiation is estimated to be the second most important trap-loss mechanism at room temperature, and trap loss by spontaneous emission is negligible under our experimental conditions. PMID:21818497

  6. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  7. Flu and Colds: In Depth

    MedlinePlus

    ... Allergy and Infectious Diseases Web site . What the Science Says About Complementary Health Approaches for the Flu ... tea Oscillococcinum Vitamin C Vitamin D What the Science Says About Complementary Health Approaches for Colds The ...

  8. Determination of the melt level from a real weight signal during computer-assisted crystal growth by the Stepanov (EFG) technique and the use of crucible motion as a control action

    NASA Astrophysics Data System (ADS)

    Rossolenko, S. N.; Stryukov, D. O.; Kurlov, V. N.

    2015-06-01

    The current melt level is determined from a real weight signal during computer-assisted crystal growth by the Stepanov technique. No knowledge of the real shape of growing crystals is necessary in this case. A numerical solution to the capillary Laplace equation is used to analyze the use of the motion of a crucible with a melt as a control action that affects the shapes of menisci and growing crystals.

  9. Garlic for the common cold.

    PubMed

    Lissiman, Elizabeth; Bhasale, Alice L; Cohen, Marc

    2014-01-01

    Background Garlic is alleged to have antimicrobial and antiviral properties that relieve the common cold, among other beneficial effects. There is widespread usage of garlic supplements. The common cold is associated with significant morbidity and economic consequences. On average, children have six to eight colds per year and adults have two to four.Objectives To determine whether garlic (Allium sativum) is effective for the prevention or treatment of the common cold, when compared to placebo, no treatment or other treatments.Search methods We searched CENTRAL (2014, Issue 7),OLDMEDLINE (1950 to 1965),MEDLINE (January 1966 to July week 5, 2014), EMBASE(1974 to August 2014) and AMED (1985 to August 2014).Selection criteria Randomised controlled trials of common cold prevention and treatment comparing garlic with placebo, no treatment or standard treatment.Data collection and analysis Two review authors independently reviewed and selected trials from searches, assessed and rated study quality and extracted relevant data.Main results In this updated review, we identified eight trials as potentially relevant from our searches. Again, only one trial met the inclusion criteria.This trial randomly assigned 146 participants to either a garlic supplement (with 180 mg of allicin content) or a placebo (once daily)for 12 weeks. The trial reported 24 occurrences of the common cold in the garlic intervention group compared with 65 in the placebo group (P value < 0.001), resulting in fewer days of illness in the garlic group compared with the placebo group (111 versus 366). The number of days to recovery from an occurrence of the common cold was similar in both groups (4.63 versus 5.63). Only one trial met the inclusion criteria, therefore limited conclusions can be drawn. The trial relied on self reported episodes of the common cold but was of reasonable quality in terms of randomisation and allocation concealment. Adverse effects included rash and odour. Authors' conclusions

  10. Spectroscopy with cold and ultra-cold neutrons

    NASA Astrophysics Data System (ADS)

    Abele, Hartmut; Jenke, Tobias; Konrad, Gertrud

    2015-05-01

    We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10-4 level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newton's gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  11. Caffeine and the common cold.

    PubMed

    Smith, A; Thomas, M; Perry, K; Whitney, H

    1997-01-01

    An experiment was carried out to determine whether caffeinated and decaffeinated coffee removed the malaise (reduced alertness, slower psychomotor performance) associated with having a common cold. One hundred volunteers were tested when healthy and 46 returned to the laboratory when they developed colds. Those subjects who remained healthy were then recalled as a control group. On the second visit subjects carried out two sessions, one pre-drink and another an hour after the drink. Subjects were randomly assigned to one of the following three conditions, caffeinated coffee (1.5 mg/kg caffeine/body weight), decaffeinated coffee or fruit juice. Subjects with colds reported decreased alertness and were slower at performing psychomotor tasks. Caffeine increased the alertness and performance of the colds subjects to the same level as the healthy group and decaffeinated coffee also led to an improvement. These results suggest that drugs which increase alertness can remove the malaise associated with the common cold, and that increased stimulation of the sensory afferent nerves may also be beneficial. PMID:9443519

  12. Mathematical modeling of cold cap

    SciTech Connect

    Pokorny, Richard; Hrma, Pavel R.

    2012-10-13

    The ultimate goal of studies of cold cap behavior in glass melters is to increase the rate of glass processing in an energy-efficient manner. Regrettably, mathematical models, which are ideal tools for assessing the responses of melters to process parameters, have not paid adequate attention to the cold cap. In this study, we consider a cold cap resting on a pool of molten glass from which it receives a steady heat flux while temperature, velocity, and extent of conversion are functions of the position along the vertical coordinate. A one-dimensional (1D) mathematical model simulates this process by solving the differential equations for mass and energy balances with appropriate boundary conditions and constitutive relationships for material properties. The sensitivity analyses on the effects of incoming heat fluxes to the cold cap through its lower and upper boundaries show that the cold cap thickness increases as the heat flux from above increases, and decreases as the total heat flux increases. We also discuss the effects of foam, originating from batch reactions and from redox reactions in molten glass and argue that models must represent the foam layer to achieve a reliable prediction of the melting rate as a function of feed properties and melter conditions.

  13. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  14. COLD-SAT dynamic model

    NASA Astrophysics Data System (ADS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-12-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  15. COLD-SAT dynamic model

    NASA Technical Reports Server (NTRS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  16. Antihydrogen Formation using Cold Plasmas

    SciTech Connect

    Madsen, N.; Bowe, P.D.; Hangst, J.S.; Amoretti, M.; Carraro, C.; Macri, M.; Testera, G.; Variola, A.; Amsler, C.; Johnson, I.; Pruys, H.; Regenfus, C.; Bonomi, G.; Bouchta, A.; Doser, M.; Kellerbauer, A.; Landua, R.; Cesar, C.L.; Charlton, M.; Joergensen, L.V.

    2004-10-20

    Antihydrogen, the antimatter counterpart of the hydrogen atom, can be formed by mixing cold samples of antiprotons and positrons. In 2002 the ATHENA collaboration succeeded in the first production of cold antihydrogen. By observing and imaging the annihilation products of the neutral, non-confined, antihydrogen atoms annihilating on the walls of the trap we can observe the production in quasi-real-time and study the dynamics of the formation mechanism. The formation mechanism strongly influences the final state of the formed antihydrogen atoms, important for future spectroscopic comparison with hydrogen. This paper briefly summarizes the current understanding of the antihydrogen formation in ATHENA.

  17. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim

    2012-01-01

    Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.

  18. Cold plasma decontamination of foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. This flexible sanitizing method uses electricity and a carrier gas such as air, oxygen, nitrogen or helium; antimicrobi...

  19. Images of the Cold War.

    ERIC Educational Resources Information Center

    Chomsky, Noam

    1989-01-01

    The conventional U.S. picture traces the Cold War to Soviet violation of wartime agreements, while the U.S.S.R. defends its actions as responses to American violations and foreign adventurism. An understanding of how ideology is shaped by national self-interest will help students see beyond propaganda and myth in interpreting past and current…

  20. Cold War Geopolitics: Embassy Locations.

    ERIC Educational Resources Information Center

    Vogeler, Ingolf

    1995-01-01

    Asserts that the geopolitics of the Cold War can be illustrated by the diplomatic ties among countries, particularly the superpowers and their respective allies. Describes a classroom project in which global patterns of embassy locations are examined and compared. Includes five maps and a chart indicating types of embassy locations. (CFR)

  1. "Stone Cold": Worthy of Study?

    ERIC Educational Resources Information Center

    Douthwaite, Alison

    2015-01-01

    This article draws on my experiences of teaching "Stone Cold" to respond to a blog post suggesting that the novel holds little educational value. I argue that the novel's narrative style helps to foster criticality while its subject matter can help students see the relevance of literature to the world around them. Relating this to…

  2. Advances in cold plasma technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens continue to be an issue on a variety of commodities, prompting research into novel interventions. Cold plasma is a nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry and fruits and vegetables. The prim...

  3. The Cold Blooded Killer: Hypothermia.

    ERIC Educational Resources Information Center

    Keller, Rosanne

    Part of a series of home literacy readers with conversational text and sketches, this booklet depicts the subarctic Alaskan environment where cold makes extreme demands on body metabolism. Body temperature must be maintained above 80F (26.7C). A condition of too little body-heat is termed hypo- ('deficit') thermia ('heat'). Hypothermia is the…

  4. Lupus - the cold, hard facts.

    PubMed

    Wong, N W K; Ng, Vt-Y; Ibrahim, S; Slessarev, M; Chandran, V

    2014-07-01

    Systemic lupus erythematosus (SLE) is a multisystem chronic disease with a multitude of clinical presentations. We review and synthesize how an environmental insult (exposure to extreme cold for a short duration) and endogenous (antiphospholipid antibody syndrome, SLE vasculitis) insults in a susceptible young female with lupus (peripheral arterial disease, smoking, SLE) led to a perfect storm resulting in catastrophic injuries (frostbite). PMID:24699313

  5. EDITORIAL: Cold Quantum GasesEditorial: Cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Vassen, W.; Hemmerich, A.; Arimondo, E.

    2003-04-01

    This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of cold quantum gases. Different aspects of atom optics, matter wave interferometry, laser manipulation of atoms and molecules, and production of very cold and degenerate gases are presented. The variety of subjects demonstrates the steadily expanding role associated with this research area. The topics discussed in this issue, extending from basic physics to applications of atom optics and of cold atomic samples, include: bulletBose--Einstein condensation bulletFermi degenerate gases bulletCharacterization and manipulation of quantum gases bulletCoherent and nonlinear cold matter wave optics bulletNew schemes for laser cooling bulletCoherent cold molecular gases bulletUltra-precise atomic clocks bulletApplications of cold quantum gases to metrology and spectroscopy bulletApplications of cold quantum gases to quantum computing bulletNanoprobes and nanolithography. This special issue is published in connection with the 7th International Workshop on Atom Optics and Interferometry, held in Lunteren, The Netherlands, from 28 September to 2 October 2002. This was the last in a series of Workshops organized with the support of the European Community that have greatly contributed to progress in this area. The scientific part of the Workshop was managed by A Hemmerich, W Hogervorst, W Vassen and J T M Walraven, with input from members of the International Programme Committee who are listed below. The practical aspects of the organization were ably handled by Petra de Gijsel from the Vrije Universiteit in Amsterdam. The Workshop was funded by the European Science Foundation (programme BEC2000+), the European Networks 'Cold Quantum Gases (CQG)', coordinated by E Arimondo, and 'Cold Atoms and Ultraprecise Atomic Clocks (CAUAC)', coordinated by J Henningsen, by the German Physical Society (DFG), by

  6. Cold denaturation of monoclonal antibodies

    PubMed Central

    Lazar, Kristi L; Patapoff, Thomas W

    2010-01-01

    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  7. Combustion heated cold sealed TEC

    SciTech Connect

    Yarygin, V.I.; Klepikov, V.V.; Meleta, Y.A.; Mikheyev, A.S.; Yarygin, D.V.; Wolff, L.R.

    1997-12-31

    The development of a thermionic domestic boiler system using natural gas, which as performed under an ECS-project in 1992 to 1994 by a Russian-Dutch team of researchers, will be continued again. Thanks to financial support on the part of the Netherlands Organization for Scientific Research (NWO), the major effort in 1997 to 1999 will be focused on the development, manufacture and testing of an improved, easier to fabricate, more repairable and less expensive combustion heated TEC with a longer life-time. The achievement of the aim of this project will make it possible to expand the field of the terrestrial thermionics application and to embark on the commercialization stage. This report discusses the concept of the combustion heated Cold Seal TEC. A Cold Seal TEC will be developed and tested, in which the rubber O-ring seal will electrically insulate the hot shell from the collector heat pipe. The Cold Seal TEC will use a noble gas + cesium as the working medium (the idea of such a TEC was first proposed in 1973 by Professor Musa from Romania). In its cold state, the cesium will short circuit the emitter and the collector. During operation, the interelectrode space will be filled with cesium vapor. The upper part of a Cold Seal TEC will be filled with a noble gas. This noble gas will prevent the O-ring seal from being attacked by the cesium. The TEC output characteristics will be considerably improved by using electrode materials that were developed earlier in the course of an ECS-project for the development of low temperature TEC electrodes.

  8. Gut Microbiota Orchestrates Energy Homeostasis during Cold.

    PubMed

    Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Suarez-Zamorano, Nicolas; Tarallo, Valentina; Veyrat-Durebex, Christelle; Rigo, Dorothée; Fabbiano, Salvatore; Stevanović, Ana; Hagemann, Stefanie; Montet, Xavier; Seimbille, Yann; Zamboni, Nicola; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodeling and suppression of apoptosis-the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand. PMID:26638070

  9. Vitamin C and the Common Cold Revisited.

    ERIC Educational Resources Information Center

    Travis, H. Richard

    1984-01-01

    Various studies indicate that Vitamin C does not prevent or cure a cold, but it may ameliorate symptoms in some individuals. The development of a balanced life-style is more effective towards cold prevention. (DF)

  10. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  11. Herpes Simplex (Cold Sores and Genital Herpes)

    MedlinePlus

    ... Select a Language: Fact Sheet 508 Herpes Simplex (Cold Sores and Genital Herpes) WHAT IS HERPES? HSV ... virus 1 (HSV1) is the common cause of cold sores (oral herpes) around the mouth. HSV2 normally ...

  12. Tips to Protect Workers in Cold Environments

    MedlinePlus

    ... Anti-Retaliation Tips To Protect Workers In Cold Environments Prolonged exposure to freezing or cold temperatures may ... 321-OSHA. Freedom of Information Act | Privacy & Security Statement | Disclaimers | Important Web Site Notices | International | Contact Us ...

  13. Cold moderators for pulsed neutron sources

    SciTech Connect

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs.

  14. The cold equation of state of tantalum

    SciTech Connect

    Greeff, Carl W; Rudin, Sven P; Corckett, Scott D; Wills, John M

    2009-01-01

    In high-pressure isentropic compression experiments (ICE), the pressure is dominated by the cold curve. In order to obtain an accurate semi-empirical cold curve for Ta, we calculate the thermal pressure from ab initio phonon and electronic excitation spectra. The cold curve is then inferred from ultrasonic and shock data. Our empirical cold pressure is compared to density functional calculations and found to be closer to GGA results at low pressure and to approach LDA at high pressure.

  15. Is It a Cold or an Allergy?

    MedlinePlus

    ... C AT I O N S IS IT A Cold OR AN Allergy  ? COLD Common Slight Sometimes Rare or never Usual Common Common Common Rare 3 to 14 days Cold ■■ Antihistamines ■■ Decongestants ■■ Nonsteroidal anti-inflammatory medicines ■■ Wash your ...

  16. Cold tolerance encoded in one SNP.

    PubMed

    Manishankar, Prabha; Kudla, Jörg

    2015-03-12

    Cold tolerance fundamentally affects world crop harvest. Ma et al. now identify a single-nucleotide polymorphism in a gene called COLD1 that confers cold tolerance in japonica rice. This study reveals important insights into agronomical traits that are essential for human nutrition. PMID:25768901

  17. Catching a Cold When It's Warm

    MedlinePlus

    ... our exit disclaimer . Subscribe Catching a Cold When It’s Warm What’s the Deal with Summertime Sniffles? Most ... be more unfair than catching a cold when it’s warm? How can cold symptoms arise when it’s ...

  18. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... National Park Service Meeting of the Cold War Advisory Committee for the Cold War Theme Study AGENCY... with the Federal Advisory Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will conduct a teleconference meeting on August 3, 2012. Members of...

  19. Ultra-cold molecule production.

    SciTech Connect

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-12-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled.

  20. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities. PMID:24522596

  1. Equestrian cold panniculitis in women.

    PubMed

    Beacham, B E; Cooper, P H; Buchanan, C S; Weary, P E

    1980-09-01

    We describe four patients with panniculitis attributable to a combination of cold exposure and equestrian activities. All were young, healthy women who rode horses for at least two consecutive hours per day throughout the winter. Initially, several small, erythematosus, pruritic papules appeared on the superior-lateral portions of one or both thighs. During one week, the lesions progressed to indurated, red-to-violaceous,tender plaques and nodules. Studies for cryofibrinogens and cryoglobulins were negative. The histologic picture was that of a panniculitis with prominent inflammation of veins most notable at the dermal-subcutaneus fat junction. Cold panniculitis is not limited to infancy and childhood. The distribution of lesions in our patients may have been caused, in part, by the use of tight-fitting, uninsulated riding pants. Such attire may have slowed blood flow through the skin, thereby further reducing tissue temperature. PMID:7191239

  2. Cold Spots in Protein Binding.

    PubMed

    Shirian, Jason; Sharabi, Oz; Shifman, Julia M

    2016-09-01

    Understanding the energetics and architecture of protein-binding interfaces is important for basic research and could potentially facilitate the design of novel binding domains for biotechnological applications. It is well accepted that a few key residues at binding interfaces (binding hot spots) are responsible for contributing most to the free energy of binding. In this opinion article, we introduce a new concept of 'binding cold spots', or interface positions occupied by suboptimal amino acids. Such positions exhibit a potential for affinity enhancement through various mutations. We give several examples of cold spots from different protein-engineering studies and argue that identification of such positions is crucial for studies of protein evolution and protein design. PMID:27477052

  3. Acclimatization to cold in humans

    NASA Technical Reports Server (NTRS)

    Kaciuba-Uscilko, Hanna; Greenleaf, John E.

    1989-01-01

    This review focuses on the responses and mechanisms of both natural and artificial acclimatization to a cold environment in mammals, with specific reference to human beings. The purpose is to provide basic information for designers of thermal protection systems for astronauts during intra- and extravehicular activities. Hibernation, heat production, heat loss, vascular responses, body insulation, shivering thermogenesis, water immersion, exercise responses, and clinical symptoms and hypothermia in the elderly are discussed.

  4. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  5. A Cold Strontium Ion Source

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Lyon, Mary; Blaser, Kelvin; Harper, Stuart; Durfee, Dallin

    2010-03-01

    We present a cold ion source for strontium 87. The source is based off of a standard Low-Velocity-Intense-Source (LVIS) for strontium using permanent magnets in place of anti-Helmholtz coils. Atoms from the LVIS are then ionized in a two photon process as they pass a 20kV anode plate. The result is a mono-energetic beam of ions whose velocity is tunable. Applications for the ions include spectroscopy and ion interferometry.

  6. Cold Atoms and Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Steck, Daniel A.

    2013-12-01

    Recent experiments have focused on realizing and studying asymmetric potential barriers for ultracold atoms. Practically speaking, asymmetric barriers, or "atomtronic diodes", open up newmethods for controlling cold atoms, and possibly methods for laser cooling atoms and molecules that are not amenable to present laser-cooling techniques. More fundamentally, asymmetric barriers are interesting as realizations of the textbook statistical-mechanics scenario of Maxwell's demon. This chapter reviews experimental progress in this area, as well as some related practical and theoretical issues.

  7. Micro-Kelvin cold molecules.

    SciTech Connect

    Strecker, Kevin E.; Chandler, David W.

    2009-10-01

    We have developed a novel experimental technique for direct production of cold molecules using a combination of techniques from atomic optical and molecular physics and physical chemistry. The ability to produce samples of cold molecules has application in a broad spectrum of technical fields high-resolution spectroscopy, remote sensing, quantum computing, materials simulation, and understanding fundamental chemical dynamics. Researchers around the world are currently exploring many techniques for producing samples of cold molecules, but to-date these attempts have offered only limited success achieving milli-Kelvin temperatures with low densities. This Laboratory Directed Research and Development project is to develops a new experimental technique for producing micro-Kelvin temperature molecules via collisions with laser cooled samples of trapped atoms. The technique relies on near mass degenerate collisions between the molecule of interest and a laser cooled (micro-Kelvin) atom. A subset of collisions will transfer all (nearly all) of the kinetic energy from the 'hot' molecule, cooling the molecule at the expense of heating the atom. Further collisions with the remaining laser cooled atoms will thermally equilibrate the molecules to the micro-Kelvin temperature of the laser-cooled atoms.

  8. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  9. The COLD-SAT program

    NASA Technical Reports Server (NTRS)

    Bailey, William J.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition and Transfer (COLD-SAT) satellite is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient and reliable management of cryogenic fluid in the reduced-gravity space environment. Future applications such as Space Station, Space Transportation Vehicle (STV), external tank (ET), aft cargo carrier (ACC) propellant scavenging, storage depots, and lunar and interplanetary missions, among others, have provided the impetus to pursue this technology in a timely manner to support the design efforts. A refined conceptual approach has been developed and an overview of the COLD-SAT program is described which includes the following: (1) a definition of the technology needs and the accompanying experimental six-month baseline mission; (2) a description of the experiment subsystem, major features, and rationale for satisfaction of primary and secondary experiment requirements using LH2 as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on those areas which posed the greatest technical challenge.

  10. Axion cold dark matter revisited

    NASA Astrophysics Data System (ADS)

    Visinelli, L.; Gondolo, P.

    2010-01-01

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae [1], and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass ma = (85 ± 3) μeV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for ma < 15 meV provided a specific value of the initial misalignment angle θi is chosen in correspondence to a given value of its mass ma. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle θi.

  11. Mars: Always Cold, Sometimes Wet?

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; McKay, Christoper P.

    2003-01-01

    A synthesis of a diverse suite of observations of H2O-related landforms that are possible Mars analogs from terrestrial polar regions (Devon Island in the Arctic; the Dry Valleys of Antarctica) put into question any requirement for extended episode(s) of warm and wet climate in Mars past. Geologically transient episodes of localized H2O cycling, forced by exogenic impacts, enhanced endogenic heat flow, and/or orbit-driven short-term local environmental change under an otherwise cold, low pressure (=10(exp 2) mbar) global climate, may be sufficient to account for the martian surface's exposed record of aqueous activity. A Mars that was only sometimes locally warm and wet while remaining climatically cold throughout its history is consistent with results (difficulties) encountered in modeling efforts attempting to support warm martian climate hypotheses. Possible analogs from terrestrial cold climate regions for the recent gully features on Mars also illustrate how transient localized aqueous activity might, under specific circumstances, also occur on Mars under the present frigid global climatic regime.

  12. Physiological characteristics of cold acclimatization in man

    NASA Astrophysics Data System (ADS)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Nayar, H. S.

    1981-09-01

    Studies were conducted on 15 healthy young soldiers to evaluate the effect of a cold acclimatization schedule on the thermoregulatory and metabolic activity on exposure to acute cold stress. These men were exposed to cold (10‡C) for 4 h daily wearing only shorts for 21 days, in a cold chamber. They were subjected to a standard cold test at 10 ± 1‡C the day 1, 6, 11 and 21. The subjects were made to relax in a thermoneutral room (26 28‡C) for 1 h and their heart rate, blood pressure, oxygen consumption, oral temperature, mean skin temperature, mean body temperature, peripheral temperatures, and shivering activity were recorded. Then they were exposed to 10‡C and measurements were repeated at 30 min intervals, for 2 h. The cold induced vasodilatation (CIVD), cold pressor response and thermoregulatory efficiency tests were measured initially and at the end of acclimatization schedule. The data show that the procedure resulted in elevated resting metabolism, less fall in body temperature during acute cold stress, reduction in shivering, improvement in CIVD and thermoregulatory efficiency and less rise in BP and HR during cold pressor response. The data suggest the possibility of cold acclimatization in man by repeated exposure to moderately severe cold stress.

  13. Cold Pools in the Columbia Basin

    SciTech Connect

    Whiteman, Charles D.; Zhong, Shiyuan; Shaw, William J.; Hubbe, John M.; Bian, Xindi; Mittelstadt, J.

    2001-01-01

    Persistent midwinter cold air pools produce multi-day periods of cold, dreary weather in valleys and basins. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures below freezing while the air above is warmer, freezing precipitation often occurs with consequent effects on transportation and safety. Forecasting the buildup and breakdown of these cold pools is difficult because the physical mechanisms leading to their formation, maintenance, and destruction have received little study. This paper provides a succinct meteorological definition of a cold pool, develops a climatology of Columbia Basin cold pools, and analyzes remote and in situ temperature and wind sounding data for two winter cold pool episodes that were accompanied by fog and stratus, illustrating many of the physical mechanisms affecting cold pool evolution.

  14. Cold Fusion Has Now Come Out of the Cold

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2003-10-01

    The phenomenon called cold fusion or LENR (Low-Energy-Nuclear-Reaction) has now achieved a level of reproducibility and understanding that warrants re-examination of the claims. A summary of what is known and want is being done worldwide to obtain more knowledge will be given. Rather than disappearing as better data are obtained, the effects are becoming more reproducible and of greater magnitude. Justification for this claim can be obtained at www.LENR-CANR.org. The phenomenon is too important to ignore any longer even though it conflicts with conventional theory.

  15. Creative Writing Class as Crucible

    ERIC Educational Resources Information Center

    Barron, Monica

    2007-01-01

    In this article, the author relates her experiences as creative writing teacher and her views as a teacher in the aftermath of Virginia Tech shooting. As a teacher who had taught writing and literature for twenty years, the author had received a great deal of submissions from her students about serial killers, rapists, slashers, and murderers and…

  16. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  17. Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Ma, Jiang-Tao; Wang, Chang-An

    2014-08-01

    Garnet type electrolyte "Li6.5La3Ta0.5Zr1.5O12" (LLZTO) was prepared by conventional solid-state reaction in alumina crucibles and excess lithium salt (from 0% to 50 mol%) was added into the starting materials to investigate the effects of excess lithium salt on the property of LLZTO. SEM, XRD and AC impedance were used to determine the microstructure, phase formation and Li-ion conductivity. Cubic garnet with a minor second phase LiAlO2 in the grain boundary was obtained for the pellets with excess lithium salt. As the amount of excess lithium salt increased, more Al element diffused from alumina crucibles to LLZTO pellets and reacted with excess lithium salt to form liquid Li2O-Al2O3 phase in the grain boundary, which accelerated the pellets' densification and reduced lithium loss at a high temperature. Ionic conductivity of LLZTO pellets increased with the amount of excess lithium salt added and leveled off at ∼4 × 10-4 S cm-1 when lithium salt exceeded 30 mol%. The performance of Li-air batteries with hybrid electrolytes, using homemade LLZTO thin pellets as solid electrolytes, was investigated. The LLZTO thin pellet with more excess lithium salt in starting material had a higher density and resulted in better cell performance.

  18. Canoeists' disorientation following cold immersion

    PubMed Central

    Baker, S.; Atha, J.

    1981-01-01

    As an initial step to a broader study of the disorientating effects of cold water immersions on top class competitive canoeists a survey was made of the incidence of hazardous immersions amongst a majority sample of the better canoeists in the country. Virtually the entire entry to one of the most important national competitive meets was canvassed. A total of 288 canoeists in the 1st and 2nd divisions were identified and asked to participate. Replies were received from 247 (86%). All those responding had had extensive experience of canoeing in winter spate and were capable of fast and efficient first-time canoe rolls in cases of capsize. Particular interest was focussed on the 85 (34%) who had experienced at least one capsize in cold water during training or competition in mid-winter. Respondents viewed the winter capsize seriously. Despite their familiarity with the conditions in which they trained all 85, recalling their capsize experiences, reported being concerned, most (79%) only modestly so, but a significant proportion (21%) confessed to feelings of extreme alarm. A number of marked physical symptoms that regularly attend on a capsize were widely reported, the most usual of which was severe pain in the forehead (89%) and breathing and speaking difficulties when afloat (64%). Additionally 62% reported sensory problems including visual difficulties, dizziness and disorientation. Five canoeists admitted fainting. Despite these hazards few preventive measures were taken and clothing with negligible thermal insulation properties was commonly worn. It is concluded that transient cold immersions can be disturbing, and can disorientate the canoeist, but that although conscious of this and to his own potentially high cost, he takes little notice of it in his desire to compete successfully. Imagesp111-ap111-bp112-ap113-ap114-a PMID:7272652

  19. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  20. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  1. Probing cold dense nuclear matter.

    PubMed

    Subedi, R; Shneor, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Boeglin, W; Chen, J-P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; de Jager, C W; Jans, E; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Lerose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X-C; Zhu, L

    2008-06-13

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. PMID:18511658

  2. Probing Cold Dense Nuclear Matter

    SciTech Connect

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  3. International workshop on cold neutron sources

    SciTech Connect

    Russell, G.J.; West, C.D. )

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  4. TRPA1 Contributes to Cold Hypersensitivity

    PubMed Central

    Camino, Donato del; Murphy, Sarah; Heiry, Melissa; Barrett, Lee B.; Earley, Taryn J.; Cook, Colby A.; Petrus, Matt J.; Zhao, Michael; D'Amours, Marc; Deering, Nate; Brenner, Gary J.; Costigan, Michael; Hayward, Neil J.; Chong, Jayhong A.; Fanger, Christopher M.; Woolf, Clifford J.; Patapoutian, Ardem; Moran, Magdalene M.

    2010-01-01

    TRPA1 is a non-selective cation channel expressed by nociceptors. While it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even noxious cold only increases current amplitude slightly. These results suggest that TRPA1 is a key mediator of cold hypersensitivity in pathological conditions where reactive oxygen species and pro-inflammatory activators of the channel are present, but likely plays a comparatively minor role in acute cold sensation. Supporting this, cold hypersensitivity can be induced in wild-type but not Trpa1-/- mice by subcutaneous administration of a TRPA1 agonist. Furthermore, the selective TRPA1 antagonist HC-030031 reduces cold hypersensitivity in rodent models of inflammatory and neuropathic pain. PMID:21068322

  5. Rational elicitation of cold-sensitive phenotypes.

    PubMed

    Baliga, Chetana; Majhi, Sandipan; Mondal, Kajari; Bhattacharjee, Antara; VijayRaghavan, K; Varadarajan, Raghavan

    2016-05-01

    Cold-sensitive phenotypes have helped us understand macromolecular assembly and biological phenomena, yet few attempts have been made to understand the basis of cold sensitivity or to elicit it by design. We report a method for rational design of cold-sensitive phenotypes. The method involves generation of partial loss-of-function mutants, at either buried or functional sites, coupled with selective overexpression strategies. The only essential input is amino acid sequence, although available structural information can be used as well. The method has been used to elicit cold-sensitive mutants of a variety of proteins, both monomeric and dimeric, and in multiple organisms, namely Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster This simple, yet effective technique of inducing cold sensitivity eliminates the need for complex mutations and provides a plausible molecular mechanism for eliciting cold-sensitive phenotypes. PMID:27091994

  6. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  7. Cold as a therapeutic agent.

    PubMed

    Wang, H; Olivero, W; Wang, D; Lanzino, G

    2006-05-01

    The use of cold as a therapeutic agent has a long and colorful history. The Edwin Smith Papyrus, the most ancient medical text known, dated 3500 B.C., made numerous references to the use of cold as therapy. Baron de Larrey, a French army surgeon during Napoleon's Russian campaign, packed the limbs in ice prior to amputations to render the procedures painless. In the early twentieth century, a neurosurgeon, Temple Fay, pioneered "human refrigeration" as a treatment for malignancies and head injuries. In 1961, Irving Cooper developed the first closed cryoprobe system and ushered in the modern era of cryogenic surgery with his imperturbable convictions. Fay's early work fell victim to the disruptive sequel of the World War II. The Nazis confiscated his data (presented before the Third International Cancer Congress in 1939) forwarded to Belgium for publication and brutally applied his refrigeration techniques experimentally without any benefit of anesthesia in the concentration camps, especially Dachau. Hypothermia became associated in the public mind with the atrocities exposed at the war trials in Nürnberg. After lying dormant for decades, the interest was rekindled in the late 80s when mild hypothermia was shown to confer dramatic neuroprotection in a number of experimental models of brain injury. With several large multi-center clinical studies currently under way, hypothermia is receiving unprecedented attention from the medical and scientific communities. PMID:16489500

  8. The North Atlantic Cold Bias

    NASA Astrophysics Data System (ADS)

    Greatbatch, Richard; Drews, Annika; Ding, Hui; Latif, Mojib; Park, Wonsun

    2016-04-01

    The North Atlantic cold bias, associated with a too zonal path of the North Atlantic Current and a missing "northwest corner", is a common problem in coupled climate and forecast models. The bias affects the North Atlantic and European climate mean state, variability and predictability. We investigate the use of a flow field correction to adjust the path of the North Atlantic Current as well as additional corrections to the surface heat and freshwater fluxes. Results using the Kiel Climate Model show that the flow field correction allows a northward flow into the northwest corner, largely eliminating the bias below the surface layer. A surface cold bias remains but can be eliminated by additionally correcting the surface freshwater flux, without adjusting the surface heat flux seen by the ocean model. A model version in which only the surface fluxes of heat and freshwater are corrected continues to exhibit the incorrect path of the North Atlantic Current and a strong subsurface bias. Removing the bias impacts the multi-decadal time scale variability in the model and leads to a better representation of the SST pattern associated with the Atlantic Multidecadal Variability than the uncorrected model.

  9. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  10. Piezoelectric Actuators On A Cold Finger

    NASA Technical Reports Server (NTRS)

    Kuo, Chin-Po; Garba, John A.; Glaser, Robert J.

    1995-01-01

    Developmental system for active suppression of vibrations of cold finger includes three piezoelectric actuators bonded to outer surface. Actuators used to suppress longitudinal and lateral vibrations of upper end of cold finger by applying opposing vibrations. Cold finger in question is part of a cryogenic system associated with an infrared imaging detector. When fully developed, system would be feedback sensor/control/actuator system automatically adapting to changing vibrational environment and suppresses pressure-induced vibrations by imposing compensatory vibrations via actuators.

  11. Primary cold agglutinin disease: a case report.

    PubMed

    Das, Susanta Kumar; Ghosh, Amritava; Banerjee, Niloy; Khaskil, Sudarshan; Mukherjee, Sabya Sachi

    2012-10-01

    Chronic cold agglutinin disease is a subgroup of auto-immune haemolytic anaemia. Primary cold agglutinin disease has traditionally been defined by the absence of any underlying or associated disease. It usually affects elderly. The term cold refers to the fact that the auto-antibody involved reacts with red cells poorly or not at all at 37 degrees C, whereas it reacts strongly at lower temperature. Here a case of severe pallor, jaundice and red colour urine in winter season for last 10 years diagnosed as a case of primary cold agglutinin disease is reported.The patient was managed conservatively. PMID:23738411

  12. Cold H I in faint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Patra, Narendra Nath; Chengalur, Jayaram N.; Karachentsev, Igor D.; Kaisin, Serafim S.; Begum, Ayesha

    2016-03-01

    We present the results of a study of the amount and distribution of cold atomic gas, as well its correlation with recent star formation in a sample of extremely faint dwarf irregular galaxies. Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) and its extension, FIGGS2. We use two different methods to identify cold atomic gas. In the first method, line-of-sight H I spectra were decomposed into multiple Gaussian components and narrow Gaussian components were identified as cold H I. In the second method, the brightness temperature (TB ) is used as a tracer of cold H I. We find that the amount of cold gas identified using the TB method is significantly larger than the amount of gas identified using Gaussian decomposition. We also find that a large fraction of the cold gas identified using the TB method is spatially coincident with regions of recent star formation, although the converse is not true. That is only a small fraction of the regions with recent star formation are also covered by cold gas. For regions where the star formation and the cold gas overlap, we study the relationship between the star formation rate density and the cold H I column density. We find that the star formation rate density has a power-law dependence on the H I column density, but that the slope of this power law is significantly flatter than that of the canonical Kennicutt-Schmidt relation.

  13. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  14. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  15. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  16. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  17. Cold Metal-Enhanced Fusion, Geo-Fusion and Cold Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Ellsworth, J. E.

    2005-12-01

    In our 1986 and 1989 papers, we discussed the hypothesis of cold nuclear fusion in condensed matter (which we also call metal-enhanced fusion), particularly in the planets.1,2 The purpose of this paper is to provide an update on geo-fusion research, then to consider an important extension of the cold-fusion idea: cold nucleosynthesis in condensed matter. Cold nucleosynthesis experiments are underway at Brigham Young University.

  18. Age and Ethnic Differences in Cold Weather and Contagion Theories of Colds and Flu

    ERIC Educational Resources Information Center

    Sigelman, Carol K.

    2012-01-01

    Age and ethnic group differences in cold weather and contagion or germ theories of infectious disease were explored in two studies. A cold weather theory was frequently invoked to explain colds and to a lesser extent flu but became less prominent with age as children gained command of a germ theory of disease. Explanations of how contact with…

  19. Cold warriors target arms control

    SciTech Connect

    Isaacs, J.

    1995-09-01

    While disagreements over the conflict in Bosnia have strained US relations with Western Europe and Russia, these divisions will pale in comparison to the tensions that will arise if recent congressional arms control decisions become law. If the Republicans who dominate Congress are successful, a series of arms control agreements painstakingly negotiated by Republican and Democratic presidents could be consigned to the ash heap. This list includes the Start I and Start II nuclear reduction agreements, the 1972 Anti-Ballistic Missile (ABM) Treaty and the ongoing negotiations to achieve a comprehensive test ban (CTB) by 1996. US leadership in the post-Cold War era will undermined as the international community, already skeptical about this country`s direction, will question the ability of the executive branch to surmount isolantionist impulses.

  20. Status of cold fusion (2010).

    PubMed

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined. PMID:20838756

  1. Status of cold fusion (2010)

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  2. Compensating for cold war cancers.

    PubMed Central

    Parascandola, Mark J

    2002-01-01

    Although the Cold War has ended, thousands of workers involved in nuclear weapons production are still living with the adverse health effects of working with radioactive materials, beryllium, and silica. After a series of court battles, the U.S. government passed the Energy Employees Occupational Illness Act in October 2000 to financially assist workers whose health has been compromised by these occupational exposures. Now work is underway to set out guidelines for determining which workers will be compensated. The National Institute for Occupational Safety and Health has been assigned the task of developing a model that can scientifically make these determinations, a heavy task considering the controversies that lie in estimating low-level radiation risks and the inadequate worker exposure records kept at many of the plants. PMID:12117658

  3. The cold-fog test

    SciTech Connect

    Chisholm, W.A.; Ringler, K.G.; Erven, C.C.

    1996-10-01

    The electrical performance of outdoor insulation degrades severely during combinations of factors that include surface contamination (C), ice (I), fog (F) and an ambient temperature that rises through 0 C (T{sub 0{degree}}). Failures at operating voltage on 115-kV, 230-kV and 500-kV systems occur with increasing probability under these conditions. A new CFT{sub 0{degree}} or cold-fog test method has been developed to reproduce the flashovers at all three voltage levels. Three options are identified for improving CFT{sub 0{degree}} performance: use of semi-conductive glazes, substitution of silicone for porcelain and use of silicone coatings on existing porcelain insulators.

  4. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  5. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  6. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  7. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  8. Cold plasma as a food processing technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma uses energetic, reactive gases to inactivate contaminating microbes on a variety of foods, such as meats, poultry and fruits and vegetables. The primary modes of action are reactive chemical species and ultraviolet light. Various cold plasma systems are under development, operating at am...

  9. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  10. Cold plasma processing technology makes advances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  11. Lessons on the Cold War. Lesson Plan.

    ERIC Educational Resources Information Center

    Cunningham, Susan J.

    1994-01-01

    Contends that the end of the Cold War requires teachers to change their teaching methods and content. Presents six lessons, most with three individual student activities, that trace the Cold War from the pre-World War I era through the end of the Vietnam War. (CFR)

  12. The Origins of the Cold War.

    ERIC Educational Resources Information Center

    Paterson, Thomas G.

    1986-01-01

    Briefly reviews conventional reasoning about the start of the Cold War. Describes contemporary revisionist views of the Cold War and the reasons they arose. Maintains that American leaders exaggerated the Soviet ideological and military threat, spurring an American arms build-up which ultimately led to the present-day arms race. (JDH)

  13. Is It a Cold or the Flu?

    MedlinePlus

    IS IT A Cold OR THE Flu ? SYMPTOMS FEVER HEADACHE GENERAL ACHES, PAINS FATIGUE, WEAKNESS EXTREME EXHAUSTION STUFFY NOSE SNEEZING SORE THROAT CHEST ... P L I C AT I O N S COLD Rare Rare Slight Sometimes Never Common Usual Common ...

  14. Cold head maintenance with minimal service interruption

    NASA Astrophysics Data System (ADS)

    Radovinsky, A. L.; Michael, P. C.; Zhukovsky, A.; Forton, E.; Paradis, Y.; Nuttens, V.; Minervini, J. V.

    2015-12-01

    Turn-key superconducting magnet systems are increasingly conduction-cooled by cryogenerators. Gifford-McMahon systems are reliable and cost effective, but require annual maintenance. A usual method of servicing is replacing the cold head of the cryocooler. It requires a complicated design with a vacuum chamber separate from the main vacuum of the cryostat, as well as detachable thermal contacts, which add to the thermal resistance of the cooling heat path and reduce the reliability of the system. We present a rapid warm-up scheme to bring the cold head body, which remains rigidly affixed to the cold mass, to room temperature, while the cold mass remains at cryogenic temperature. Electric heaters thermally attached to the cold head stations are used to warm them up, which permits conventional cold head maintenance with no danger of contaminating the inside of the cold head body. This scheme increases the efficiency of the cooling system, facilitates annual maintenance of the cold head and returning the magnet to operation in a short time.

  15. Heat Beats Cold for Treating Jellyfish Stings

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_158584.html Heat Beats Cold for Treating Jellyfish Stings Evidence favors hot water or hot packs to ease pain ... 29, 2016 (HealthDay News) -- If you're unlucky enough to suffer a jellyfish sting, new research says that heat is better than cold for easing the pain. ...

  16. Cold, Ice, and Snow Safety (For Parents)

    MedlinePlus

    ... to Know About Zika & Pregnancy Cold, Ice, and Snow Safety KidsHealth > For Parents > Cold, Ice, and Snow Safety Print A A A Text Size What's ... a few. Plus, someone has to shovel the snow, right? Once outdoors, however, take precautions to keep ...

  17. Cognitive Egocentrism Differentiates Warm and Cold People

    PubMed Central

    Boyd, Ryan L.; Bresin, Konrad; Ode, Scott; Robinson, Michael D.

    2012-01-01

    Warmth-coldness is a fundamental dimension of social behavior. Cold individuals are egocentric in their social relations, whereas warm individuals are not. Previous theorizing suggests that cognitive egocentrism underlies social egocentrism. It was hypothesized that higher levels of interpersonal coldness would predict greater cognitive egocentrism. Cognitive egocentrism was assessed in basic terms through tasks wherein priming a lateralized self-state biased subsequent visual perceptions in an assimilation-related manner. Such effects reflect a tendency to assume that the self's incidental state provides meaningful information concerning the external world. Cognitive egocentrism was evident at high, but not low, levels of interpersonal coldness. The findings reveal a basic difference between warm and cold people, encouraging future research linking cognitive egocentrism to variability in relationship functioning. PMID:23564985

  18. Biotechnology of Cold-Active Proteases

    PubMed Central

    Joshi, Swati; Satyanarayana, Tulasi

    2013-01-01

    The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review. PMID:24832807

  19. [Survival in cold water. Physiological consequences of accidental immersion in cold water].

    PubMed

    Mantoni, Teit; Belhage, Bo; Pott, Frank Christian

    2006-09-18

    This survey addresses the immediate physiological reactions to immersion in cold water: cold shock response, diving reflex, cardiac arrhythmias and hypothermia. Cold shock response is the initial sympathetic reaction to immersion in cold water. The diving reflex is elicited by submersion of the face. Afferent and efferent nerves are the trigeminal and vagal nerves. Cardiac arrhythmias occur immediately after immersion. If the immersion persists, hypothermia becomes an issue. Hypothermia is delayed by habituation to immersion in cold water as well as insulating garments, subcutaneous fat and a large lean body mass. PMID:17026891

  20. Maintaining the cold chain for vaccines.

    PubMed

    Petrović, Vladimir; Seguljev, Zorica; Gajin, Branka

    2005-01-01

    Cold chain for vaccines a is a system for storing and transporting vaccines at very low temperatures to maintain their effectiveness before use. Because vaccines are sensitive biological substances, their exposition to high temperatures directly affects the quality of vaccines and safety of immunization. The goal of this study was to assess the safety of cold chain for vaccines within the cold chain system in two services of Health Center Novi Sad. Cold Chain Monitors (CCM) and Freeze Watch (FW) indicators were used. A total of 155 (94.5%) Cold Chain Monitors (CCM) and 100 (95.2%) Freeze Watch (FW) indicators were analyzed. Only one CCM showed a breack in cold chain. A total of 3 CCMs indicated risk of vaccine wastage. A total of 9 CCMs were colorized without risk of vaccine wastage. FWs were positive in a high percentage in both services of Health Center Novi Sad. FWs were exposed to low temperatures during transport. Statistically significant differencies in the number of exposed CCMs to high temperatures and the number of exposed FWs to low temperatures were observed in these two services. A statistically significant difference in number of FWs exposed to low temperatures was observed in regard to the period of transport and the period of storage at the vaccination stations. The study shows high level of safety of the cold chain in two services of Health Center Novi Sad Cold Chain Monitor is a reliable indicator of the quality of cold chain for vaccines. Freeze Watch is a reliable indicator of the quality of cold chain during storage of vaccines, but not during their transport. PMID:16296574

  1. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    NASA Astrophysics Data System (ADS)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P < 0.001), preferred hot thermal stimulation ( P = 0.006), and wore heavier clothing during daily life ( P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures ( T max) ( P = 0.040), smaller amplitude ( P = 0.029), and delayed onset time of CIVD ( P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  2. Working smarter on cold cases: identifying factors associated with successful cold case investigations.

    PubMed

    Davis, Robert C; Jensen, Carl J; Burgette, Lane; Burnett, Kathryn

    2014-03-01

    Cold case squads have garnered much attention; however, they have yet to undergo significant empirical scrutiny. In the present study, the authors interviewed investigators and reviewed 189 solved and unsolved cold cases in Washington, D.C., to determine whether there are factors that can predict cold case solvability. In the interviews, new information from witnesses or information from new witnesses was cited as the most prevalent reason for case clearance. The case reviews determined that there were factors in each of the following domains that predicted whether cases would be solved during cold case investigations: Crime Context, Initial Investigation Results, Basis for Opening Cold Case, and Cold Case Investigator Actions. The results suggest that it is possible to prioritize cold case work based on the likelihood of investigations leading to clearances. PMID:24502665

  3. Some Chinese folk prescriptions for wind-cold type common cold

    PubMed Central

    Hai-long, Zhai; Shimin, Chen; Yalan, Lu

    2015-01-01

    Although self-limiting, the common cold (感冒gǎn mào) is highly prevalent. There are no effective antivirals to cure the common cold and few effective measures to prevent it, However, for thousands years, Chinese people have treated the common cold with natural herbs, According to the traditional Chinese medicine (TCM) theory (中醫理論 zhōng yī lǐ lùn), the common cold is considered as an exterior syndrome, which can be further divided into the wind-cold type (風寒型 fēng hán xíng), the wind-heat type (風熱型 fēng rè xíng), and the summer heat dampness type (暑熱型 shǔ rè xíng). Since the most common type of common cold caught in winter and spring is the wind-cold type, the article introduced some Chinese folk prescriptions for the wind-cold type common cold with normal and weak physique, respectively. For thousands of years, Chinese folk prescriptions for the common cold, as complementary and alternative medicine (CAM; 補充與替代醫學 bǔ chōng yǔ tì dài yī xué), have been proven to be effective, convenient, cheap, and most importantly, safe. The Chinese folk prescriptions (中國民間處方 zhōng guó mín jiān chǔ fāng) for the wind-cold type common cold are quite suitable for general practitioners or patients with the wind-cold type common cold, to treat the disease. Of course, their pharmacological features and mechanisms of action need to be further studied. PMID:26151024

  4. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    SciTech Connect

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  5. Cold, Flu, or Allergy? Know the Difference for Best Treatment

    MedlinePlus

    ... Human Services Latest Issue This Issue Features Sweet Stuff Cold, Flu, or Allergy? Health Capsules Genetic Clues ... infection, middle ear infection, asthma search Features Sweet Stuff Cold, Flu, or Allergy? Wise Choices Links Cold, ...

  6. Colds and the flu - what to ask your doctor - child

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000250.htm Colds and the flu - what to ask your doctor - ... enable JavaScript. Many different germs, called viruses, cause colds. Symptoms of the common cold include: Runny nose ...

  7. When Working in Cold, Be Prepared and Be Aware

    MedlinePlus

    ... Recommend on Facebook Tweet Share Compartir Some cold weather dangers are obvious, but others are harder to ... the cold, there are many risks. Some cold weather dangers are obvious, but others are harder to ...

  8. Instrument Packages for Cold, Dark, High Radiation Environments

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beaman, B.; Brigham, D.; Feng, S.

    2011-03-01

    We are developing a small cold temperature in-strument package concept that integrates cold tempera-ture power system and radhard ULT ULP electronics into a ‘cold temperature surface operational’ version of a planetary surface instrument package.

  9. 1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND COLD CALIBRATION BLOCKHOUSE IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  10. 2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, COLD CALIBRATION TEST STAND FOR FL ENGINE FOR SATURN V. EXHAUST DUCT IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  11. 5. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION OBSERVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION OBSERVATION BUNKER BACKGROUND, COLD CALIBRATION TOWER. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  12. 13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL TO COLD CALIBRATION TEST STAND BASEMENT, SHOWING HARD WIRE CONNECTION (INSTRUMENTATION AND CONTROL). - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  13. Finger cold-induced vasodilation: a review.

    PubMed

    Daanen, H A M

    2003-06-01

    Cold-induced vasodilation (CIVD) in the finger tips generally occurs 5-10 min after the start of local cold exposure of the extremities. This phenomenon is believed to reduce the risk of local cold injuries. However, CIVD is almost absent during hypothermia, when survival of the organism takes precedence over the survival of peripheral tissue. Subjects that are often exposed to local cold (e.g. fish filleters) develop an enhanced CIVD response. Also, differences between ethnic groups are obvious, with black people having the weakest CIVD response. Many other factors affect CIVD, such as diet, alcohol consumption, altitude, age and stress. CIVD is probably caused by a sudden decrease in the release of neurotransmitters from the sympathetic nerves to the muscular coat of the arterio-venous anastomoses (AVAs) due to local cold. AVAs are specific thermoregulatory organs that regulate blood flow in the cold and heat. Their relatively large diameter enables large amounts of blood to pass and convey heat to the surrounding tissue. Unfortunately, information on the quantity of AVAs is lacking, which makes it difficult to estimate the full impact on peripheral blood flow. This review illustrates the thermospecificity of the AVAs and the close link to CIVD. CIVD is influenced by many parameters, but controlled experiments yield information on how CIVD protects the extremities against cold injuries. PMID:12712346

  14. Cold Environment Fogs And Measurements

    NASA Astrophysics Data System (ADS)

    Jiusto, James E.; Lala, G. Garland

    1983-09-01

    For several years radiation fog field programs have been conducted at Albany, NY, with an emphasis on understanding the basic mechanisms leading to dense fog formation. This past year a cooperative effort ("Fog Project-1982") involved nine university, federal and private research laboratories, including NCAR staff and their remote system of 25 portable automated mesonet (PAM) weather stations. A number of comprehensive data sets (boundary layer meteorology and cloud physics variables) during the 14-16 hour nocturnal evolution of fog have been obtained. In particular, the extinction of light in the visible and infrared (10.6 pm wavelength), associated visibility, drop size distributions, liquid water content, and vertical tethered-balloon soundings provided new insights into the structure of fog. A CO2 laser transmissometer was developed that yielded direct information on fog density. During October of 1981 and 1982, a number of radiation fogs occurred that were super-cooled in their lowest 20-50 m. This posed certain troublesome to critical measurement problems with several instruments. Cold environment techniques were devised to overcome some of these instrumentation difficulties.

  15. Cold Dust in Hot Regions

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Dunlop, James S.; Gibb, Andy; Greaves, Jane S.; Halpern, Mark; Holland, Wayne S.; Ivison, Rob; Jenness, Tim; Robson, Ian; Scott, Douglas

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 1023 cm-2, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ~10 to 103 M ⊙. The outer regions of the clumps follow an r -2.36 ± 0.35 density distribution, and this power-law structure is observed outside of typically 104 AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  16. Cold dust in hot regions

    SciTech Connect

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Jenness, Tim; Dunlop, James S.; Holland, Wayne S.; Ivison, Rob; Gibb, Andy; Halpern, Mark; Scott, Douglas; Greaves, Jane S.; Robson, Ian

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 10{sup 23} cm{sup –2}, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ∼10 to 10{sup 3} M {sub ☉}. The outer regions of the clumps follow an r {sup –2.36±0.35} density distribution, and this power-law structure is observed outside of typically 10{sup 4} AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  17. Spin squeezing a cold molecule

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.

    2015-12-01

    In this article we present a concrete proposal for spin squeezing the cold ground-state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, noninteracting molecule with angular momentum greater than 1 /2 . Starting from an experimentally relevant effective Hamiltonian, we identify an adiabatic regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993), 10.1103/PhysRevA.47.5138], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T. Ng, and P. T. Leung, Phys. Rev. A 63, 055601 (2001), 10.1103/PhysRevA.63.055601], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989), 10.1103/PhysRevA.39.2969]. We then consider the situation in which nonadiabatic effects are quite large and show that the effective Hamiltonian supports spin squeezing even in this case. We provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.

  18. Neutron interferometry with cold stage

    NASA Astrophysics Data System (ADS)

    Mineeva, Taisiya; Arif, M.; Huber, M. G.; Shahi, C. B.; Clark, C. W.; Cory, D. G.; Nsofini, J.; Sarenac, D.; Pushin, D. A.

    Neutron interferometry (NI) is amongst the most precise methods for characterizing neutron interactions by measuring the relative difference between two neutron paths, one of which contains a sample-of-interest. Because neutrons carry magnetic moment and are deeply penetrating, they are excellent probes to investigate properties of magnetic materials. The advantage of NI is its unique sensitivity which allows to directly measure magnetic and structural transitions in materials. Up to now NI has been sparingly used in material research due to its sensitivity to environmental noise. However, recent successes in implementing Quantum Error Correction principles lead to an improved NI design making it robust against mechanical vibrations. Following these advances, a new user facility at the National Institute for Standards and Technology was built to study condensed matter applications, biology and quantum physics. Incorporating cold sample stage inside NI is the first of its kind experiment which can be carried out on large range of temperatures down to 4K. Upon successful realization, it will open new frontiers to characterize magnetic domains, phase transitions and spin properties in a variety of materials such as, for example, iron-based superconductors and spintronic materials. Supported in part by CERC, CIFAR, NSERC and CREATE.

  19. Cold Flow Verification Test Facility

    SciTech Connect

    Shamsi, A.; Shadle, L.J.

    1996-12-31

    The cold flow verification test facility consists of a 15-foot high, 3-foot diameter, domed vessel made of clear acrylic in two flanged sections. The unit can operate up to pressures of 14 psig. The internals include a 10-foot high jetting fluidized bed, a cylindrical baffle that hangs from the dome, and a rotating grate for control of continuous solids removal. The fluid bed is continuously fed solids (20 to 150 lb/hr) through a central nozzle made up of concentric pipes. It can either be configured as a half or full cylinder of various dimensions. The fluid bed has flow loops for separate air flow control for conveying solids (inner jet, 500 to 100000 scfh) , make-up into the jet (outer jet, 500 to 8000 scfh), spargers in the solids removal annulus (100 to 2000 scfh), and 6 air jets (20 to 200 scfh) on the sloping conical grid. Additional air (500 to 10000 scfh) can be added to the top of the dome and under the rotating grate. The outer vessel, the hanging cylindrical baffles or skirt, and the rotating grate can be used to study issues concerning moving bed reactors. There is ample allowance for access and instrumentation in the outer shell. Furthermore, this facility is available for future Cooperative Research and Development Program Manager Agreements (CRADA) to study issues and problems associated with fluid- and fixed-bed reactors. The design allows testing of different dimensions and geometries.

  20. Cold agglutinin-mediated autoimmune hemolytic anemia.

    PubMed

    Berentsen, Sigbjørn; Randen, Ulla; Tjønnfjord, Geir E

    2015-06-01

    Cold antibody types account for about 25% of autoimmune hemolytic anemias. Primary chronic cold agglutinin disease (CAD) is characterized by a clonal lymphoproliferative disorder. Secondary cold agglutinin syndrome (CAS) complicates specific infections and malignancies. Hemolysis in CAD and CAS is mediated by the classical complement pathway and is predominantly extravascular. Not all patients require treatment. Successful CAD therapy targets the pathogenic B-cell clone. Complement modulation seems promising in both CAD and CAS. Further development and documentation are necessary before clinical use. We review options for possible complement-directed therapy. PMID:26043385

  1. Cold vacuum drying facility site evaluation report

    SciTech Connect

    Diebel, J.A.

    1996-03-11

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone.

  2. CMB cold spot from inflationary feature scattering

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Ma, Yin-Zhe

    2016-05-01

    We propose a "feature-scattering" mechanism to explain the cosmic microwave background cold spot seen from WMAP and Planck maps. If there are hidden features in the potential of multi-field inflation, the inflationary trajectory can be scattered by such features. The scattering is controlled by the amount of isocurvature fluctuations, and thus can be considered as a mechanism to convert isocurvature fluctuations into curvature fluctuations. This mechanism predicts localized cold spots (instead of hot ones) on the CMB. In addition, it may also bridge a connection between the cold spot and a dip on the CMB power spectrum at ℓ ∼ 20.

  3. Cold atoms coupled with mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Valencia, Jose; Montoya, Cris; Ranjit, Gambhir; Geraci, Andrew; Eardley, Matt; Kitching, John

    2015-05-01

    Mechanical resonators can be used to probe and manipulate atomic spins with nanometer spatial resolution and single-spin sensitivity, ultimately enabling new approaches in neutral-atom quantum computation, quantum simulation, or precision sensing. We describe our experiment that manipulates the spin of trapped, cold Rb atoms using magnetic material on a cantilever. Cold atoms can also be used as a coolant for mechanical resonators: we estimate that ground state cooling of an optically trapped nano-sphere is achievable when starting at room temperature, by sympathetic cooling of a cold atomic gas optically coupled to the nanoparticle.

  4. Photosynthetic microorganisms in cold environments

    NASA Astrophysics Data System (ADS)

    Kviderova, Jana; Hajek, Josef; Elster, Josef; Bartak, Milos; Vaczi, Peter; Nedbalova, Linda

    and their physiological processes are inactive. If hydrated, they are physiologically active even at subzero temperatures (Kappen et al., 1996). Although living in cold environments, the growth optimum temperature of typical phycobiont Trebouxia (Chlorophyta) sp. is above 15 ° C, so these algae are considered to be rather psychrotolerant. Acknowledgement The work was supported from projects GA AS CR Nos. KJB 601630808 and KJ KJB600050708, CAREX and long-term institutional research plan of the Institute of Botany AS CR AV0Z600050516 and the Masaryk University. Prof. Martin Backor (Safarik University in Kosice) is kindly ac-knowledged for providing the strains Trebouxia erici and T. glomerata (Backor). References Elster, J. , Benson, E.E. Life in the polar terrestrial environment with a focus on algae and cyanobacteria, in Fuller, B.J., Lane, N. , Benson, E.E. (Eds), Life in the Frozen State. CRC Press, pp. 111-150, 2004. Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M. , Hestmark, G. Cold resistance and metabolic activity of lichens below 0 ° C. Adv. Space Res. 18, 119-128, 1996. Kviderova, J. Characterization of the community of snow algae and their photochemical performance in situ in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. accepted, 2010. Nedbalova, L., Kocianova, M. , Lukavsky, J. Ecology of snow algae in the Giant Mountains and their relation to cryoseston in Europe. Opera Corcontica 45, 59-68, 2008.

  5. Halting Hypothermia: Cold Can Be Dangerous

    MedlinePlus

    ... who spends much time outdoors in very cold weather can get hypothermia. But hypothermia can happen anywhere— ... just outside and not just in bitter winter weather. It can strike when temperatures are cool—for ...

  6. Axon reflexes in human cold exposed fingers.

    PubMed

    Daanen, H A; Ducharme, M B

    2000-02-01

    Exposure of fingers to severe cold induces cold induced vasodilatation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in water at either 5 degrees C or 35 degrees C. Axon reflexes were pronounced in the middle finger of the hand in warm water, but absent from the hand in cold water, even though the stimulation was rated as "rather painful" to "painful". These results showed that axon reflexes do not occur in a cold-exposed hand and thus are unlikely to explain the CIVD phenomenon. PMID:10638384

  7. A search for cold water rings

    NASA Technical Reports Server (NTRS)

    Cheney, R. E.

    1981-01-01

    SAR imagery obtained by Seasat in the Sargasso Sea during 1978 is examined for cold ring signatures. One orbit on August 26 is thought to have imaged the edge of a cold ring, although the ring's position was not well known at the time. During another orbit on September 23, drifting buoy and expendable bathythermography data furnished conclusive evidence that the ring was centered directly in the SAR swath. Although some suggestive patterns are visible in the images, it is not clear that cold rings can be identified by SAR, even though dynamically similar features, such as the Gulf Stream and warm rings, can be accurately detected. The suggestion is made that cold rings may be imaged inadequately because of their lack of surface temperature gradient.

  8. Compatible Transfusion Therapy for Paroxysmal Cold Hemoglobinuria

    ERIC Educational Resources Information Center

    Rausen, Aaron R.; And Others

    1975-01-01

    Presented are case histories of two children, ages 2 and 4 years, with paroxysmal cold hemoglobinuria (PCH, a syndrome characterized by acute intravascular hemoglobin dissolution and hemoglobin in the urine). (Author/CL)

  9. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  10. The Cold War: A Yearbook Perspective.

    ERIC Educational Resources Information Center

    Graebner, William

    1986-01-01

    Shows how the photographs, valedictorian addresses, nicknames, cartoons and other material contained in high school yearbook can yield information regarding the world views of Americans at the start of the Cold War. (JDH)

  11. Caring for Your Child's Cold or Flu

    MedlinePlus

    ... Print Share Caring for Your Child’s Cold or Flu Page Content ​Unfortunately, there's no cure for the ... Liquid Medicine Safely for more information. Prevent & Treatment: Flu vaccine Children 6 months or older should get ...

  12. Epitaxial crystalline growth upon cold substrates

    NASA Technical Reports Server (NTRS)

    Lebduska, R. L.

    1969-01-01

    By sputtering a material with a high-energy ion-beam bombardment, the molecules of the target can be dislodged and ejected for subsequent deposition on a cold substrate of the desired crystallographic type and orientation.

  13. Cold-induced changes in amphibian oocytes

    SciTech Connect

    Angelier, N.; Moreau, N.A.; N'Da, E.A.; Lautredou, N.F. )

    1989-08-01

    Female Pleurodeles waltl newts (Amphibia, urodele), usually raised at 20 degrees C, were submitted to low temperatures; oocytes responded to this cold stress by drastic changes both in lampbrush chromosome structure and in protein pattern. Preexisting lateral loops of lampbrush chromosomes were reduced in size and number, while cold-induced loops which were tremendously developed, occurred on defined bivalents of the oocyte at constant, reproducible sites. A comparison of protein patterns in control and stressed oocytes showed two main differences: in stressed oocytes, overall protein synthesis was reduced, except for a set of polypeptides, the cold-stress proteins; second, there was a striking inversion of the relative amount of beta- and gamma-actin found in the oocyte nucleus before and after cold stress. Whereas beta-actin was the predominant form in control oocytes, gamma-actin became the major form in stressed oocytes.

  14. Cold-War Echoes in American Children.

    ERIC Educational Resources Information Center

    Winn, Ira Jay

    1984-01-01

    The author believes a cold war ideology permeates our culture and poisons the minds of youth. The challenge to education is to awaken people to a historical and global perspective and raise public consciousness of the necessity for peace. (MD)

  15. Cold vacuum drying facility design requirements

    SciTech Connect

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  16. Improvements in Cold-Plate Fabrication

    NASA Technical Reports Server (NTRS)

    Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia

    2012-01-01

    Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.

  17. The chemistry of cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1987-01-01

    In recent years the nearby cold, dark clouds have been shown to possess a rich chemistry, with interesting differences with respect to warmer massive-star-forming regions and also among the cold clouds themselves. Thirty-nine molecular species are now known in these regions. Recent molecular detections and upper limits in dark clouds are discussed, with particular emphasis on the tricarbon species C3O, C3H, and C3H2.

  18. Properties of the Central American cold surge

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.; Reding, Philip J.; Zhang, Yuxia

    1993-01-01

    The Central American cold surge (CACS) is a frontal incursion from the United States into Central America and resembles the East Asian cold surge. They occur more frequently than analyzed by NMC or by published results, based on our observations between 1979 and 1990. Climatology and structure are quantified, based on surface and upper air stations throughout Central America and satellite products from GOES visible and infrared sensors and SSM/I precipitable water and rain rate sensors.

  19. Tight Binding Models in Cold Atoms Physics

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.

    2007-05-01

    Cold atomic gases placed in optical lattice potentials offer a unique tool to study simple tight binding models. Both the standard cases known from the condensed matter theory as well as novel situations may be addressed. Cold atoms setting allows for a precise control of parameters of the systems discussed, stimulating new questions and problems. The attempts to treat disorder in a controlled fashion are addressed in detail.

  20. Toxicity evaluation and hazard review Cold Smoke

    SciTech Connect

    Archuleta, M.M.; Stocum, W.E.

    1993-12-01

    Cold Smoke is a dense white smoke produced by the reaction of titanium tetrachloride and aqueous ammonia aerosols. Early studies on the toxicity of this nonpyrotechnically generated smoke indicated that the smoke itself is essentially non-toxic (i.e. exhibits to systemic toxicity or organ damage due to exposure) under normal deployment conditions. The purpose of this evaluation was to review and summarize the recent literature data available on the toxicity of Cold Smoke, its chemical constituents, and its starting materials.

  1. Human adaptation to repeated cold immersions.

    PubMed Central

    Golden, F S; Tipton, M J

    1988-01-01

    1. The present investigation was designed to examine human adaptation to intermittent severe cold exposure and to assess the effect of exercise on any adaptation obtained. 2. Sixteen subjects were divided into two equal groups. Each subject performed ten head-out immersions; two into thermoneutral water which was then cooled until they shivered vigorously, and eight into water at 15 degrees C for 40 min. During the majority of the 15 degrees C immersions, one group (dynamic group) exercised whilst the other (static group) rested. 3. Results showed that both groups responded to repeated cold immersions with a reduction in their initial responses to cold. The time course of these reductions varied, however, between responses. 4. Only the static group developed a reduced metabolic response to prolonged resting immersion. 5. It is concluded that repeated resting exposure to cold was the more effective way of producing an adaptation. The performance of exercise during repeated exposure to cold prevented the development of an adaptive reduction in the metabolic response to cold during a subsequent resting immersion. In addition, many of the adaptations obtained during repeated resting exposure were overridden or masked during a subsequent exercising immersion. PMID:3411500

  2. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  3. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  4. Experiences issues with plastic parts at cold temperatures

    NASA Technical Reports Server (NTRS)

    Sandor, Mike; Agarwal, Shri

    2005-01-01

    Missions to MARS/planets/asteroids require electronic parts to operate and survive at extreme cold conditions. At extreme cold temperatures many types of cold related failures can occur. Office 514 is currently evaluating plastic parts under various cold temperature conditions and applications. Evaluations, screens, and qualifications are conducted on flight parts.

  5. Gene expression analysis to understand cold tolerance in citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus cultivars show a wide range of tolerance to cold temperatures. Lemons and limes are known to be sensitive to cold while certain mandarins and trifoliate oranges can endure severe winters. To understand the mechanism of cold tolerance in citrus, we selected three known cold-sensitive and three...

  6. How cold pool triggers deep convection?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2014-05-01

    The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed

  7. Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii*

    PubMed Central

    Valledor, Luis; Furuhashi, Takeshi; Hanak, Anne-Mette; Weckwerth, Wolfram

    2013-01-01

    Chlamydomonas reinhardtii is one of the most important model organisms nowadays phylogenetically situated between higher plants and animals (Merchant et al. 2007). Stress adaptation of this unicellular model algae is in the focus because of its relevance to biomass and biofuel production. Here, we have studied cold stress adaptation of C. reinhardtii hitherto not described for this algae whereas intensively studied in higher plants. Toward this goal, high throughput mass spectrometry was employed to integrate proteome, metabolome, physiological and cell-morphological changes during a time-course from 0 to 120 h. These data were complemented with RT-qPCR for target genes involved in central metabolism, signaling, and lipid biosynthesis. Using this approach dynamics in central metabolism were linked to cold-stress dependent sugar and autophagy pathways as well as novel genes in C. reinhardtii such as CKIN1, CKIN2 and a hitherto functionally not annotated protein named CKIN3. Cold stress affected extensively the physiology and the organization of the cell. Gluconeogenesis and starch biosynthesis pathways are activated leading to a pronounced starch and sugar accumulation. Quantitative lipid profiles indicate a sharp decrease in the lipophilic fraction and an increase in polyunsaturated fatty acids suggesting this as a mechanism of maintaining membrane fluidity. The proteome is completely remodeled during cold stress: specific candidates of the ribosome and the spliceosome indicate altered biosynthesis and degradation of proteins important for adaptation to low temperatures. Specific proteasome degradation may be mediated by the observed cold-specific changes in the ubiquitinylation system. Sparse partial least squares regression analysis was applied for protein correlation network analysis using proteins as predictors and Fv/Fm, FW, total lipids, and starch as responses. We applied also Granger causality analysis and revealed correlations between proteins and

  8. Agility Following the Application of Cold Therapy

    PubMed Central

    Evans, Todd A.; Ingersoll, Christopher; Knight, Kenneth L.; Worrell, Teddy

    1995-01-01

    Cold application is commonly used before strenuous exercise due to its hypalgesic effects. Some have questioned this procedure because of reports that cold may reduce isokinetic torque. However, there have been no investigations of actual physical performance following cold application. The purpose of this study was to determine if a 20-minute ice immersion treatment to the foot and ankle affected the performance of three agility tests: the carioca maneuver, the cocontraction test, and the shuttle run. Twenty-four male athletic subjects were tested during two different treatment sessions following an orientation session. Subjects were tested following a 20-minute 1°C ice immersion treatment to the dominant foot and ankle and 20 minutes of rest. Following each treatment, subjects performed three trials of each agility test, with 30 seconds rest between each trial, and 1 minute between each different agility test. The order in which each subject performed the agility tests was determined by a balanced Latin square. A MANOVA with repeated measures was used to determine if there was an overall significant difference in the agility times recorded between the cold and control treatments and if the order of the treatment sessions affected the scores. Although the mean agility time scores were slightly slower following the cold treatment, cooling the foot and ankle caused no difference in agility times. Also, there was no difference resulting from the treatment orders. We felt that the slightly slower scores may have been a result of tissue stiffness and/or subject's apprehension immediately following the cold treatment. Cold application to the foot and ankle can be used before strenuous exercise without altering agility. Imagesp232-a PMID:16558341

  9. Asymptomatic myocardial ischemia following cold provocation

    SciTech Connect

    Shea, M.J.; Deanfield, J.E.; deLandsheere, C.M.; Wilson, R.A.; Kensett, M.; Selwyn, A.P.

    1987-09-01

    Cold is thought to provoke angina in patients with coronary disease either by an increase in myocardial demand or an increase in coronary vascular resistance. We investigated and compared the effects of cold pressor stimulation and symptom-limited supine bicycle exercise on regional myocardial perfusion in 35 patients with stable angina and coronary disease and in 10 normal subjects. Regional myocardial perfusion was assessed with positron emission tomography and rubidium-82. Following cold pressor stimulation 24 of 35 patients demonstrated significant abnormalities of regional myocardial perfusion with reduced cation uptake in affected regions of myocardium: 52 +/- 9 to 43 +/- 9 (p less than 0.001 vs normal subjects). Among these 24 patients only nine developed ST depression and only seven had angina. In contrast, 29 of 35 patients underwent supine exercise, and abnormal regional myocardial perfusion occurred in all 29, with a reduction in cation intake from 48 +/- 10 to 43 +/- 14 (p less than 0.001 vs normal subjects). Angina was present in 27 of 29 and ST depression in 25 of 29. Although the absolute decrease in cation uptake was somewhat greater following cold as opposed to exercise, the peak heart rate after cold was significantly lower than that after exercise (82 +/- 12 vs 108 +/- 16 bpm, p less than 0.05). Peak systolic blood pressures after cold and exercise were similar (159 +/- 24 vs 158 +/- 28). Thus, cold produces much more frequent asymptomatic disturbances of regional myocardial perfusion in patients with stable angina and coronary disease than is suggested by pain or ECG changes.

  10. Cold War Paradigms and the Post-Cold War High School History Curriculum.

    ERIC Educational Resources Information Center

    McAninch, Stuart A.

    1995-01-01

    Discusses how Cold War ideological models provide a way to examine the U.S. role in world affairs. Discusses and compares on the writings of Paul Gagnon and Noam Chomsky on this topic. Concludes that students should stand outside both models to develop a meaningful perspective on the U.S. role during the Cold War. (CFR)

  11. Cold-hearted or cool-headed: physical coldness promotes utilitarian moral judgment

    PubMed Central

    Nakamura, Hiroko; Ito, Yuichi; Honma, Yoshiko; Mori, Takuya; Kawaguchi, Jun

    2014-01-01

    In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1) participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2) participants had a high-level construal mindset and focused on abstract goals (e.g., save many); or (3) there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the “cool-headed” deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being “cold-hearted,” reduced empathetic concern, and facilitated utilitarian moral judgments. PMID:25324800

  12. Cold Hole Over Jupiter's Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations with two NASA telescopes show that Jupiter has an arctic polar vortex similar to a vortex over Earth's Antarctica that enables depletion of Earth's stratospheric ozone.

    These composite images of Jupiter's north polar region from the Hubble Space Telescope (right) and the Infrared Telescope Facility (left) show a quasi-hexagonal shape that extends vertically from the stratosphere down into the top of the troposphere. A sharp temperature drop, compared to surrounding air masses, creates an eastward wind that tends to keep the polar atmosphere, including the stratospheric haze, isolated from the rest of the atmosphere.

    The linear striations in the composite projections are artifacts of the image processing. The area closest to the pole has been omitted because it was too close to the edge of the planet in the original images to represent the planet reliably.

    The composite on the right combines images from the Wide Field and Planetary Camera 2 of the Hubble Space Telescope taken at a wavelength of 890 nanometers, which shows stratospheric haze particles.

    The sharp boundary and wave-like structure of the haze layer suggest a polar vortex and a similarity to Earth's stratospheric polar clouds. Images of Jupiter's thermal radiation clinch that identification. The composite on the left, for example, is made from images taken with Jet Propulsion Laboratory's Mid-Infrared Large-Well Imager at NASA's Infrared Telescope Facility at a wavelength of 17 microns. It shows polar air mass that is 5 to 6 degrees Celsius (9 to 10 degrees Fahrenheit) colder than its surroundings, with the same border as the stratospheric haze. Similar observations at other infrared wavelengths show the cold air mass extends at least as high as the middle stratosphere down to the top of the troposphere.

    These images were taken Aug. 11 through Aug. 13, 1999, near a time when Jupiter's north pole was most visible from Earth. Other Infrared Telescope Facility images at

  13. Microstructure and chemical homogeneity of plasma-arc cold-hearth melted Ti-48Al-2Mn-2Nb gamma titanium aluminide

    SciTech Connect

    Dowson, A.L.; Johnson, T.P.; Young, J.M.; Jacobs, M.H.

    1995-12-31

    The microstructure and chemical homogeneity of plasma-arc cold-hearth (PACH) melted Ti-48Al-2Mn-2Nb gamma-based titanium aluminide have been studied and potential correlation`s between compositional variations and changes in both the withdrawal rate and the crucible torch current have been explored. Periodic oscillations in composition have been identified both across the ingot cross section and down the length of the bar, and distinct regions involving both Al enrichment and depletion have been identified, primarily towards the edge and near central regions of the bar. These changes in composition were accompanied by a change in the microstructural morphology with the microstructure changing from a relatively fine, fully equiaxed gamma phase morphology at the surface, through coarse columnar, to a heavily cored dendritic-type structure on moving towards the centre of the bar. Micro-analytical studies of this dendritic region have shown the primary and secondary dendrite arms to consist of a fully transformed lamellar structure relatively rich in both Ti and Nb with Mn and Al tending to segregate preferentially to the interdendritic regions.

  14. Two cold-season derechoes in Europe

    NASA Astrophysics Data System (ADS)

    Gatzen, Christoph; Púčik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  15. Cold plasma inactivation of chronic wound bacteria.

    PubMed

    Mohd Nasir, N; Lee, B K; Yap, S S; Thong, K L; Yap, S L

    2016-09-01

    Cold plasma is partly ionized non-thermal plasma generated at atmospheric pressure. It has been recognized as an alternative approach in medicine for sterilization of wounds, promotion of wound healing, topical treatment of skin diseases with microbial involvement and treatment of cancer. Cold plasma used in wound therapy inhibits microbes in chronic wound due to its antiseptic effects, while promoting healing by stimulation of cell proliferation and migration of wound relating skin cells. In this study, two types of plasma systems are employed to generate cold plasma: a parallel plate dielectric barrier discharge and a capillary-guided corona discharge. Parameters such as applied voltage, discharge frequency, treatment time and the flow of the carrier gas influence the cold plasma chemistry and therefore change the composition and concentration of plasma species that react with the target sample. Chronic wound that fails to heal often infected by multidrug resistant organisms makes them recalcitrant to healing. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (Pseudomonas aeruginosa) are two common bacteria in infected and clinically non-infected wounds. The efficacies of the cold plasma generated by the two designs on the inactivation of three different isolates of MRSA and four isolates of P. aeruginosa are reported here. PMID:27046340

  16. Assessment of cold stress in outdoor work.

    PubMed

    Anttonen, H; Virokannas, H

    1994-01-01

    The evaluation of cold stress in working life was done in 13, mainly outdoor, occupations and 143 workers using local temperatures, body cooling and thermal sensations. The subjects in the study were young, healthy men and they wore the type of winter clothing generally used in those ambient temperatures (+6...-29 degrees C), for in a work load of from 112 to 480 W. Local temperatures on finger skin indicated that manual dexterity was often reduced in outdoor work. A risk of frostbite was frequently found on the cheek and the wind chill index predicted the risk quite well. Body cooling was often temporarily too high when measured by heat debt and mean skin temperature. Thermal sensations were cool or cold occasionally in 28% of the workers interviewed. The insulation of clothing worn was often lower than the IREQmin-value recommends. The results showed that in outdoor work in winter time cold stress frequently reduced (70%) working ability at least for a short period. Mean skin temperature seems to be, in practice, a useful indicator for body cooling and the IREQmin-value was suitable, especially in light work, to indicate body cooling. A very sensitive factor for the expression of cold stress was finger temperature, at least as an indicator of finger dexterity. Due to the adverse health effects found the cold stress should also be evaluated more systematically in occupational health and safety with health examinations, with protective clothing and technical preventive means. PMID:8049001

  17. HVAC design considerations for cold climates

    SciTech Connect

    Armstrong, R.S. )

    1993-09-01

    The design of heating, ventilating and air-conditioning (HVAC) systems in cold climate areas requires modifications to the standard designs used in more temperate climates. While most of the US experiences freezing temperatures at least once during the winter months, certain areas experience several months of extended cold. No single location in the US experiences these extended cold conditions more than Alaska. While most areas in the continental US will not require modifications to standard design guidelines, many design modifications commonly used in the Arctic regions of Alaska and Canada can also be applied to any cold climate area in the continental US. The geographic area of Alaska is about one-third the size of the continental US. Climatic extremes range from Ketchikan with 6.697 heating degree days (at 55[degree]21 minutes N latitude) to Barrow with 20,341 heating degree days (at 71[degree]18 minutes N latitude), according to the Arctic Environmental Information and Data Center. The suggestions in this article are a compilation of general approaches the authors used to address the challenge of cold climate design. Of course, each detail design must be adapted to the specific climate and application at hand.

  18. Cold stress as it affects animal production.

    PubMed

    Young, B A

    1981-01-01

    Almost two-thirds of all livestock in North America are raised in regions where the mean January temperature is below 0 C. The effects of cold conditions on productivity and efficiency of feed conversion by swine, dairy and beef cattle are reviewed. Swine are rather cold-susceptible and are therefore usually kept in heated housing when raised in colder regions. Lactating or fattening cattle are extremely cold-hardy and rarely experience climatic conditions below their lower critical temperature. Despite the absence of a challenge to homothermy in cattle, there are marked seasonal fluctuations in the cattle's level and efficiency of production which probably arise from hormonal and adaptive changes occurring as a consequence of mild cold stress. Primary among these changes are an increase resting metabolic rate, and hence an increased energy requirement for maintenance, and an increased rate of passage of digesta, which results in reduced digestive efficiency. With cold there is stimulation of appetite, which may partially counteract the reduced level of production but not the reduced efficiency of utilization of dietary energy. PMID:7240034

  19. Cold atmospheric plasma in cancer therapy

    SciTech Connect

    Keidar, Michael; Shashurin, Alex; Volotskova, Olga; Ann Stepp, Mary; Srinivasan, Priya; Sandler, Anthony; Trink, Barry

    2013-05-15

    Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup −3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

  20. [Epidemiology and clinical aspects of cold urticaria].

    PubMed

    Möller, A; Henning, M; Zuberbier, T; Czarnetzki-Henz, B M

    1996-07-01

    To study the frequency and clinical aspects of cold urticaria in Central Europe, patient data from a university dermatology clinic and a private dermatology office between 1984-94 were analysed and the patients re-examined if possible. The incidence of cold urticaria was found to be 0.05%. Of the 56 patients with cold urticaria (31 women, 25 men), 49 had idiopathic cold urticaria. The mean age was 41.0 +/- 15.6 year, the mean duration of disease 7.9 +/- 5.8 years. Atopy was found in 46.5% of patients, and 23.2% of the patients suffered from other types of urticaria (cholinergic, chronic idiopathic, dermographic, aquagenic and heat-induced). Laboratory examinations were only rarely abnormal. 44 patients were treated with antihistamines, with generally only moderate symptomatic improvement. Treatment with antibiotics (penicillin, 1-2 mil IU/d over 2-4 weeks, n = 18, or tetracyclines, 2 g/d over 2 weeks, n = 10) induced full remission in 13 patients and symptomatic improvement in 8. During an average of 6.5 year-follow-up, 20 of 43 symptomatic patients went into spontaneous remission. The good therapeutic response to antibiotics in this study underlines the need for a better elucidation of the cause of cold urticaria, in view of possible infectious causes. PMID:8926165

  1. Cold shock response in mammalian cells.

    PubMed

    Fujita, J

    1999-11-01

    Compared to bacteria and plants, the cold shock response has attracted little attention in mammals except in some areas such as adaptive thermogenesis, cold tolerance, storage of cells and organs, and recently, treatment of brain damage and protein production. At the cellular level, some responses of mammalian cells are similar to microorganisms; cold stress changes the lipid composition of cellular membranes, and suppresses the rate of protein synthesis and cell proliferation. Although previous studies have mostly dealt with temperatures below 20 degrees C, mild hypothermia (32 degrees C) can change the cell's response to subsequent stresses as exemplified by APG-1, a member of the HSP110 family. Furthermore, 32 degrees C induces expression of CIRP (cold-inducible RNA-binding protein), the first cold shock protein identified in mammalian cells, without recovery at 37 degrees C. Remniscent of HSP, CIRP is also expressed at 37 degrees C and developmentary regulated, possibly working as an RNA chaperone. Mammalian cells are metabolically active at 32 degrees C, and cells may survive and respond to stresses with different strategies from those at 37 degrees C. Cellular and molecular biology of mammalian cells at 32 degrees C is a new area expected to have considerable implications for medical sciences and possibly biotechnology. PMID:10943555

  2. Characterising Cold Weather for the UK mainland

    NASA Astrophysics Data System (ADS)

    Fradley, Kate; Dacre, Helen; Ambaum, Maarten

    2016-04-01

    Excess Winter Mortality is a peak in the population's mortality rate during winter months and is correlated with low outdoor temperatures. Excess Winter Mortality has adverse impacts, including increased demand on health services. The management of resources for such increased demands maybe improved through incorporation of weather forecasting information to advanced warnings. For the UK, prolonged cold periods are associated with easterly advection, and high pressure systems. Characterisation of the synoptic conditions associated with cold periods is important to understand forecast performance. Principal Component Analysis has been used with mean sea level pressure from 35 years of ERA interim reanalysis to capture synoptic variability on a continuous scale. Cold events in the North and South of the UK mainland have been identified as having different synoptic variability using this method. Furthermore extending the Principal Component Analysis to investigate the skill of forecasts has identified systematic under prediction of some cold weather synoptic conditions. Ensemble forecasts are used to quantify the uncertainty associated with these cold weather synoptic conditions. This information maybe be used to improve the value of existing weather warnings.

  3. Age and ethnic differences in cold weather and contagion theories of colds and flu.

    PubMed

    Sigelman, Carol K

    2012-02-01

    Age and ethnic group differences in cold weather and contagion or germ theories of infectious disease were explored in two studies. A cold weather theory was frequently invoked to explain colds and to a lesser extent flu but became less prominent with age as children gained command of a germ theory of disease. Explanations of how contact with other people causes disease were more causally sophisticated than explanations of how cold weather causes it. Finally, Mexican American and other minority children were more likely than European American children to subscribe to cold weather theories, a difference partially but not wholly attributable to ethnic group differences in parent education. Findings support the value of an intuitive or naïve theories perspective in understanding developmental and sociocultural differences in concepts of disease and in planning health education to help both children and their parents shed misconceptions so that they can focus on effective preventive actions. PMID:21586668

  4. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation.

    PubMed

    Zhu, Jianhua; Dong, Chun-Hai; Zhu, Jian-Kang

    2007-06-01

    Temperate plants are capable of developing freezing tolerance when they are exposed to low nonfreezing temperatures. Acquired freezing tolerance involves extensive reprogramming of gene expression and metabolism. Recent full-genome transcript profiling studies, in combination with mutational and transgenic plant analyses, have provided a snapshot of the complex transcriptional network that operates under cold stress. Ubiquitination-mediated proteosomal protein degradation has a crucial role in regulating one of the upstream transcription factors, INDUCER OF CBF EXPRESSION 1 (ICE1), and thus in controlling the cold-responsive transcriptome. The changes in expression of hundreds of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Genetic analysis has revealed important roles for cellular metabolic signals, and for RNA splicing, export and secondary structure unwinding, in regulating cold-responsive gene expression and chilling and freezing tolerance. PMID:17468037

  5. Pilot-scale Tests to Vitrify Korean Low-Level Wastes

    SciTech Connect

    Choi, K.; Kim, C.-W.; Park, J. K.; Shin, S. W.; Song, M.-J.; Brunelot, P.; Flament, T.

    2002-02-26

    Korea is under preparation of its first commercial vitrification plant to handle LLW from her Nuclear Power Plants (NPPs). The waste streams include three categories: combustible Dry Active Wastes (DAW), borate concentrates, and spent resin. The combustible DAW in this research contains vinyl bag, paper, and protective cloth and rubber shoe. The loaded resin was used to simulate spent resin from NPPs. As a part of this project, Nuclear Environment Technology Institute (NETEC) has tested an operation mode utilizing its pilot-scale plant and the mixed waste surrogates of resin and DAW. It has also proved, with continuous operation for more than 100 hours, the consistency and operability of the plant including cold crucible melter and its off-gas treatment equipment. Resin and combustible DAW were simultaneously fed into the glass bath with periodic addition of various glass frits as additives, so that it achieved a volume reduction factor larger than 70. By adding various glass frits, this paper discusses about maintaining the viscosity and electrical conductivity of glass bath within their operable ranges, but not about obtaining a durable glass product. The operating mode starts with a batch of glass where a titanium ring is buried. When the induced power ignites the ring, the joule heat melts the surrounding glass frit along with the oxidation heat of titanium. As soon as the molten bath is prepared, in the first stage of the mode, the wastes consisting of loaded resin and combustible DAW are fed with no or minimum addition of glass frits. Then, in the second stage, the bath composition is kept as constant as possible. This operation was successful in terms of maintaining the glass bath under operable condition and produced homogeneous glass. This operation mode could be adapted in commercial stage.

  6. PHYSIOLOGICAL AND LEUKOCYTE SUBSET RESPONSES TO EXERCISE AND COLD EXPOSURE IN COLD-ACCLIMATIZED SKATERS

    PubMed Central

    Suzuki, K.; Peake, J.; Ahn, N.; Ogawa, K.; Hong, Ch.; Kim, S.; Lee, I.; Park, J.

    2014-01-01

    We investigated physiological responses and changes in circulating immune cells following exercise in cold and thermoneutral conditions. Participants were short track skaters (n=9) who were acclimatized to cold conditions, and inline skaters (n=10) who were not acclimatized. All skaters were young, and skating at a recreational level three days per week for at least one year. Using a cross-over design, study variables were measured during 60 min of submaximal cycling (65% V.O2max) in cold (ambient temperature: 5±1°C, relative humidity: 41±9%) and thermoneutral conditions (ambient temperature: 21±1°C, relative humidity: 35±5%). Heart rate, blood lactate and tympanic temperature were measured at rest, during exercise and recovery. Plasma cortisol, calprotectin and circulating blood cell numbers were measured before and after 60 min of cold or thermoneutral conditions, and during recovery from exercise. Heart rate was lower in both groups during exercise in cold versus thermoneutral conditions (P<0.05). The increase in total leukocytes during recovery was primarily due to an increase in neutrophils in both groups. The cold-acclimatized group activated neutrophils after exercise in cold exposure, whereas the non-acclimatized group activated lymphocyte and cortisol after exercise in cold exposure. Lymphocyte subsets significantly changed in both groups over time during recovery as compared to rest. Immediately after exercise in both groups, CD16+ and CD69+ cells were elevated compared to rest or before exercise in both conditions. Acclimatization to exercise in the cold does not appear to influence exercise-induced immune changes in cold conditions, with the possible exception of neutrophils, lymphocytes and cortisol concentration. PMID:24917688

  7. Sympathetic cooling of nanospheres with cold atoms

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  8. Radio frequency field assisted cold collisions

    NASA Astrophysics Data System (ADS)

    Ding, Yijue; D'Incao, Jose; Greene, Chris

    2016-05-01

    The radio frequency (RF) field is a promising but less developed tool to control cold collisions. From the few-body perspective, we study cold atom collisions in an external magnetic field and a single-color RF field. We employ the multi-channel quantum defect theory and the hyperspherical toolkit to solve the two-body and three-body Schrödinger equations. Our results show that RF fields can effectively control the two-body scattering length through Feshbach resonances. Such RF induced Feshbach resonances can be applied to quenching experiments or spinor condensates. Analogous to photo association, RF fields can also associate cold atoms into molecules with a reasonable rate. Moreover, we will discuss the feasibility of using RF fields to control three-body recombination, which may improve the experimental timescale by suppressing three-body losses. This work is supported by the US National Science Foundation.

  9. Holocene cold events on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Mischke, Steffen; Zhang, Chengjun

    2010-06-01

    A lake sediment core from the eastern Tibetan Plateau was investigated by multi-proxy geochemical, sedimentological and magnetic analyses and its age determined using 14C AMS dating in an approach to use short-lived climate periods for a spatial assessment of the Holocene climate history on the Tibetan Plateau. Six cold events were identified from the Lake Ximencuo record which occurred between 10.3-10.0, 7.9-7.4, 5.9-5.5, 4.2-2.8, 1.7-1.3 and 0.6-0.1 cal ka BP. A comparison with previously published Holocene records from lake and peat sections, ice cores and glacial remains of the Tibetan Plateau revealed that the cold event starting around 4.2 cal ka BP had the most significant and widespread impact on almost all of the examined sites. This cold event lasted about a millennium in the western and central part of the Tibetan Plateau and possibly several hundred years longer at some sites in its eastern realm. The cold event inferred between 7.9 and 7.4 cal ka BP from Lake Ximencuo was recorded at a number of sites on the eastern Tibetan Plateau too and probably corresponds to a cold event identified around 8.2 cal ka BP at the sites on the western and central Tibetan Plateau. The coincidence with the 8.2 ka event of the North Atlantic region implies that the latter exerted a significant environmental impact on the Tibetan Plateau too. The cold spell between 10.3 and 10.0 cal ka BP was recorded at some marginal sites of the Tibetan Plateau but had apparently a less significant environmental impact. The more irregular pattern of cold events between about 7 cal ka BP and the onset of the cold event after 4.2 cal ka BP might be related to the catchment-specific response of the lake sediment and peat accumulation to the termination of the Holocene 'climatic optimum' on the Tibetan Plateau. The final two cold events between 1.7 and 1.3 cal ka BP and in the last several hundred years representing the Little Ice Age are more widely seen on the Tibetan Plateau although they

  10. Cold press sintering of simulated lunar basalt

    NASA Technical Reports Server (NTRS)

    Altemir, D. A.

    1993-01-01

    In order to predict the conditions for which the lunar regolith may be adequately sintered, experiments were conducted in which samples of simulated lunar basalt (MLS-1) were pressed at high pressures and then heated in an electric furnace. This sintering process may be referred to as cold press sintering since the material is pressed at room temperature. Although test articles were produced which possessed compressive strengths comparable to that of terrestrial concrete, the cold press sintering process requires very high press pressures and sintering temperatures in order to achieve that strength. Additionally, the prospect of poor internal heat transfer adversely affecting the quality of sintered lunar material is a major concern. Therefore, it is concluded that cold press sintering will most likely be undesirable for the production of lunar construction materials.

  11. Resource Prospector Propulsion Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Hunter; Pederson, Kevin; Dervan, Melanie; Holt, Kimberly; Jernigan, Frankie; Trinh, Huu; Flores, Sam

    2014-01-01

    For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference.

  12. Storage of Heat, Cold and Electricity.

    PubMed

    Stamatiou, Anastasia; Ammann, Andreas; Abdon, Andreas; Fischer, Ludger J; Gwerder, Damian; Worlitschek, Jörg

    2015-01-01

    A promising energy storage system is presented based on the combination of a heat pump, a heat engine, a hot and a cold storage. It can be operated as a pure bulk electricity storage (alternative to Pumped Heat Electrical Storage (PHES)/Compressed Air Energy Storage (CAES)) or as combined storage of heat, cold and electricity. Both variations have been evaluated using a steady state, thermodynamic model and two promising concepts are proposed: A transcritical CO(2) cycle for the pure electricity storage and a subcritical NH(3) cycle for combined storage of electricity, heat and cold. Parametric studies are used to evaluate the influence of different parameters on the roundtrip efficiency of the storage system. PMID:26842329

  13. Normal modes of confined cold ionic systems

    SciTech Connect

    Schiffer, J.P.; Dubin, D.H.

    1995-08-01

    The normal modes of a cloud of confined ions forming a strongly-correlated plasma were investigated. The results of molecular-dynamics simulations were compared to predictions of a cold fluid mode. Mode frequencies are observed to shift slightly compared to the cold fluid predictions, and the modes are also observed to damp in time. Simulations also reveal a set of torsional oscillations which have no counterpart in cold fluid theory. The frequency shift, damping, and torsional effects are compared to a model that treats trapped plasmas as a visco-elastic spheroid. It may be possible to measure high-frequency bulk and shear moduli of a strongly-correlated plasma from mode excitation experiments on trapped non-neutral plasmas. An example of the results of the calculation is presented.

  14. Cold-induced thermoregulation and biological aging.

    PubMed

    Florez-Duquet, M; McDonald, R B

    1998-04-01

    Aging is associated with diminished cold-induced thermoregulation (CIT). The mechanisms accounting for this phenomenon have yet to be clearly elucidated but most likely reflect a combination of increased heat loss and decreased metabolic heat production. The inability of the aged subject to reduce heat loss during cold exposure is associated with diminished reactive tone of the cutaneous vasculature and, to a lesser degree, alterations in the insulative properties of body fat. Cold-induced metabolic heat production via skeletal muscle shivering thermogenesis and brown adipose tissue nonshivering thermogenesis appears to decline with age. Few investigations have directly linked diminished skeletal muscle shivering thermogenesis with the age-related reduction in cold-induced thermoregulatory capacity. Rather, age-related declines in skeletal muscle mass and metabolic activity are cited as evidence for decreased heat production via shivering. Reduced mass, GDP binding to brown fat mitochondria, and uncoupling protein (UCP) levels are cited as evidence for attenuated brown adipose tissue cold-induced nonshivering thermogenic capacity during aging. The age-related reduction in brown fat nonshivering thermogenic capacity most likely reflects altered cellular signal transduction rather than changes in neural and hormonal signaling. The discussion in this review focuses on how alterations in CIT during the life span may offer insight into possible mechanisms of biological aging. Although the preponderance of evidence presented here demonstrates that CIT declines with chronological time, the mechanism reflecting this attenuated function remains to be elucidated. The inability to draw definitive conclusions regarding biological aging and CIT reflects the lack of a clear definition of aging. It is unlikely that the mechanisms accounting for the decline in cold-induced thermoregulation during aging will be determined until biological aging is more precisely defined. PMID

  15. Alcohol cold starting - A theoretical study

    NASA Technical Reports Server (NTRS)

    Browning, L. H.

    1983-01-01

    Two theoretical computer models have been developed to study cold starting problems with alcohol fuels. The first model, a droplet fall-out and sling-out model, shows that droplets must be smaller than 50 microns to enter the cylinder under cranking conditions without being slung-out in the intake manifold. The second model, which examines the fate of droplets during the compression process, shows that the heat of compression can be used to vaporize small droplets (less than 50 microns) producing flammable mixtures below freezing ambient temperatures. While droplet size has the greater effect on startability, a very high compression ratio can also aid cold starting.

  16. Application of Heat Pipes in Cold Region

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masataka

    Recently, there has been put into practical use of heat pipes as space application, electronics cooling, and waste heat recovery. Especially, the low temperature heat pipe which can be used in below atmospheric temperature are also actively developed and applied in terrestrial field. These are based on utilization of natural energy in cold region. This paper is described about application of snow melting and deicing system on a road and roof, snow damage prevention system for electric pole branch wire, artificial permafrost storage system as a reverse utilization of cold atmosphere, and cryo-anchor applied in Alaska and northern Canada.

  17. SuperCDMS Cold Hardware Design

    SciTech Connect

    Al Kenany, S.; Rolla, Julie A.; Godfrey, Gary; Brink, Paul L.; Seitz, Dennis N.; Figueroa-Feliciano, Enectali; Huber, Martin E.; Hines, Bruce A.; Irwin, Kent D.; /NIST, Boulder

    2012-06-13

    We discuss the current design of the cold hardware and cold electronics to be used in the upcoming SuperCDMS Soudan deployment. Engineering challenges associated with such concerns as thermal isolation, microphonics, radiopurity, and power dissipation are discussed, along with identifying the design changes necessary for SuperCDMS SNOLAB. The Cryogenic Dark Matter Search (CDMS) employs ultrapure 1-inch thick, 3-inch diameter germanium crystals operating below 50 mK in a dilution cryostat. These detectors give an ionization and phonon signal, which gives us rejection capabilities regarding background events versus dark matter signals.

  18. Chemical abundances in cold, dark interstellar clouds.

    PubMed

    Irvine, W M; Ohishi, M; Kaifu, N

    1991-05-01

    The Sun may well have formed in the type of interstellar cloud currently referred to as a cold, dark cloud. We present current tabulations of the totality of known interstellar molecules and of the subset which have been identified in cold clouds. Molecular abundances are given for two such clouds which show interesting chemical differences in spite of strong physical similarities, Taurus Molecular Cloud 1 (TMC-1) and Lynd's 134N (L134N, also referred to as L183). These regions may be at different evolutionary stages. PMID:11542208

  19. Investigation on a three-cold-finger pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Tang, Qingjun; Chen, Houlei; Cai, Jinghui

    2015-09-01

    This paper introduces a new type of pulse tube cryocooler, three-cold-finger pulse tube cryocooler (TCFPTC), which consists of one linear compressor and three cold fingers, i.e., CFA, CFB and CFC. Those three cold fingers are driven by the linear compressor simultaneously. This paper investigates two aspects. First, it studies the mass flow distribution among the three cold fingers by varying the input electrical power. The cooling powers of the three cold fingers at constant cooling temperatures and the cooling temperatures of the three cold fingers at constant cooling powers with various input electrical powers are investigated. Secondly, the interaction among the three cold fingers is investigated by varying the heating power of any one cold finger. Generally, if the heating power applied on one cold finger increases, with its cold head temperature rising up, the cold head temperatures of the others will decrease. But, when the cooling power of CFC has been 4 W, the cold head temperature of whichever cold finger increases, the cold head temperature of CFA or CFB will seldom change if its heating power keeps constant.

  20. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    PubMed

    Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2013-01-01

    The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R 0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates. PMID:24098666

  1. Cold Temperatures Increase Cold Hardiness in the Next Generation Ophraella communa Beetles

    PubMed Central

    Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao

    2013-01-01

    The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%–4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates. PMID:24098666

  2. Cold Storage Exacerbates Renal and Mitochondrial Dysfunction Following Transplantation

    PubMed Central

    Shrum, S; MacMillan-Crow, LA; Parajuli, N

    2016-01-01

    Long-term renal function is compromised in patients receiving deceased donor kidneys which require cold storage exposure prior to transplantation. It is well established that extended cold storage induces renal damage and several labs, including our own, have demonstrated renal mitochondrial damage after cold storage alone. However, to our knowledge, few studies have assessed renal and mitochondrial function after transplantation of rat kidneys exposed to short-term (4 hr) cold storage compared to transplant without cold storage (autotransplantation). Our data reveal that cold storage plus transplantation exacerbated renal and mitochondrial dysfunction when compared to autotransplantation alone. PMID:27066594

  3. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci

    PubMed Central

    2014-01-01

    Cold stress adversely affects rice (Oryza sativa L.) growth and productivity, and has so far determined its geographical distribution. Dissecting cold stress-mediated physiological changes and understanding their genetic causes will facilitate the breeding of rice for cold tolerance. Here, we review recent progress in research on cold stress-mediated physiological traits and metabolites, and indicate their roles in the cold-response network and cold-tolerance evaluation. We also discuss criteria for evaluating cold tolerance and evaluate the scope and shortcomings of each application. Moreover, we summarize research on quantitative trait loci (QTL) related to cold stress at the germination, seedling, and reproductive stages that should provide useful information to accelerate progress in breeding cold-tolerant rice. PMID:25279026

  4. Deepwater cold tapping developed for repairs

    SciTech Connect

    Quir, R.

    1984-04-01

    Deep tests of cold tapping equipment for subsea pipeline repairs and line modifications have been successfully conducted in Hjeltefjorden near Bergen, Norway, in 462 ft water depth by Total Marine Norsk A/S. The operations were conducted from the Ugland-Comex 1, a DP diving support vessel, by the Kongsberg Vapenfabrikk/Comex Services joint venture. Objective of the cold tapping project was to devise a system that would avoid flooding of a subsea oil or gas pipeline during repair of the line or during modification of the line, such as adding a tee. Principle of the cold tapping method is to insert a plug on either side of the section on which work is to be conducted, thereby effectively isolating both the pipe from the seawater and the section of pipe involved from the fluid moving through the pipeline. Pipeline repair times could be cut by as much as 50% with the cold tapping method. Repairs usually involve either a wet buckle (which produces a hole in the line and forces the operator to shut down production until repairs are made) or a dry buckle, which generally is an obstruction to pigs and a weak point in the line.

  5. Confronting Common Folklore: Catching a Cold

    ERIC Educational Resources Information Center

    Keeley, Page

    2012-01-01

    Almost every child has experienced the sniffly, stuffy, and achy congestion of the common cold. In addition, many have encountered the "old wives tales" that forge a link between personal actions and coming down with this common respiratory infection. Much of this health folklore has been passed down from generation to generation (e.g., getting a…

  6. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  7. Ultra-Cold Atoms on Optical Lattices

    ERIC Educational Resources Information Center

    Ghosh, Parag

    2009-01-01

    The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…

  8. Early season cold tolerance in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperatures at 15°C or below limit germination and seedling establishment for warm season cereal crops such as sorghum (Sorghum bicolor L. [Moench]) during early season planting. To better understand the genetics of early season cold tolerance in sorghum, mapping of quantitative trait loci (...

  9. Cold plasma technology close-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This month’s column discusses cold plasma, an emerging technology that has potential applications as an antimicrobial process for fresh and fresh-cut fruits and vegetables, low-moisture foods, and food contact surfaces. Brendan A. Niemira, the coauthor of this month’s column, is the research leader ...

  10. Decontamination of foods by cold plasma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel nonthermal food processing technology for meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium to inactivate microbes without the use of conventional antimicrobial chemical agents. ...

  11. Cold Climates Heat Pump Design Optimization

    SciTech Connect

    Abdelaziz, Omar; Shen, Bo

    2012-01-01

    Heat pumps provide an efficient heating method; however they suffer from sever capacity and performance degradation at low ambient conditions. This has deterred market penetration in cold climates. There is a continuing effort to find an efficient air source cold climate heat pump that maintains acceptable capacity and performance at low ambient conditions. Systematic optimization techniques provide a reliable approach for the design of such systems. This paper presents a step-by-step approach for the design optimization of cold climate heat pumps. We first start by describing the optimization problem: objective function, constraints, and design space. Then we illustrate how to perform this design optimization using an open source publically available optimization toolbox. The response of the heat pump design was evaluated using a validated component based vapor compression model. This model was treated as a black box model within the optimization framework. Optimum designs for different system configurations are presented. These optimum results were further analyzed to understand the performance tradeoff and selection criteria. The paper ends with a discussion on the use of systematic optimization for the cold climate heat pump design.

  12. Genomics of cold hardiness in woody plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term cold hardiness or freezing tolerance is used to represent in a general sense the ability of plants to adapt to and withstand freezing temperatures. It is a complex, multigenic trait that is too often viewed as a single entity when in fact is composed of many aspects, all of which can be to...

  13. Cold Flow Properties and Performance of Biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is defined as a fatty acid alkyl ester mixture obtained by reacting vegetable oil or fat with a short chain (C1-C4) alcohol. The cold flow properties of biodiesel depend on the fatty acid composition of its feedstock as well as alcohol chain-length. Increasing biodiesel production in the...

  14. Common colds on Tristan da Cunha

    PubMed Central

    Shibli, M.; Gooch, S.; Lewis, H. E.; Tyrrell, D. A. J.

    1971-01-01

    Eight epidemics of respiratory disease have been observed among islanders of Tristan da Cunha. They seem to be initiated by the arrival of ships and transmission seemed to occur as a result of close human contact but could not always be traced. Islanders suffered from less colds than those in less isolated communities. PMID:5282927

  15. Cold Arctic Mesopause Project (CAMP): Scientific objectives

    NASA Technical Reports Server (NTRS)

    Bjorn, L.

    1982-01-01

    During late summer 1978 a rocket campaign was carried out at Esrange. The ion chemistry and composition at and around the extremely cold arctic mesopause, particularly in connection with observations of noctilucent clouds (NLC) was studied. Several plasma parameters were measured, for example, density of electrons and positive ions and composition of both positive and negative ions.

  16. The Cold War and Revisionist Historiography

    ERIC Educational Resources Information Center

    Hogeboom, Willard L.

    1970-01-01

    An important historiographic controversy exists between those who blame the Soviets for the origins of the Cold War (orthodox) and those who blame the U. S. (revisionist--New Left). While the latter criticize the orthodox historians' methods, they are often guilty of semilar biases and simplifications. (JB)

  17. Calcinosis in juvenile dermatomyositis mimicking cold abscess.

    PubMed

    Nagar, Rajendra P; Bharati, Joyita; Sheriff, Abraar; Priyadarshini, Praytusha; Chumber, Sunil; Kabra, S K

    2016-01-01

    We report a case of dystrophic calcification presenting as soft cystic swelling in a patient with juvenile dermatomyositis. A 15-year-old boy with lumbosacral cystic swelling, which was considered a cold abscess clinically, was evaluated for nonresponse to antitubercular therapy. The cystic swelling had liquefied calcium with a well circumscribed calcified wall on imaging, which was subsequently excised. PMID:27586213

  18. Cold weather properties and performance of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel made from vegetable oil or animal fat that can be employed in compression-ignition (diesel) engines. Biodiesel is more prone to start-up and operability problems during cold weather than conventional diesel fuels (petrodiesel). This work reviews impacts that exposu...

  19. COLD-SAT Dynamic Model Computer Code

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.; Adams, N. S.

    1995-01-01

    COLD-SAT Dynamic Model (CSDM) computer code implements six-degree-of-freedom, rigid-body mathematical model for simulation of spacecraft in orbit around Earth. Investigates flow dynamics and thermodynamics of subcritical cryogenic fluids in microgravity. Consists of three parts: translation model, rotation model, and slosh model. Written in FORTRAN 77.

  20. Cold storage characteristics of mobile HTS magnet

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Miyazaki, Yoshiki; Nagashima, Ken; Kawano, Asumi; Okamura, Tetsuji

    2011-06-01

    A cold storage system specialized in mobile high-temperature superconducting (HTS) magnets (e.g. for magnetically levitated (maglev) vehicles) has been proposed. In this system, a cooling source is detachable and a HTS coil is capable of maintaining superconducting state with its heat capacity. This system allows a considerably lightweight HTS magnet. An apparatus was constructed to evaluate the possibility of using cold storage systems in maglev vehicles. The thermal characteristic of this apparatus was based on a magnet for previous maglev test vehicles [1]. The operational temperature range of the magnet was assumed from 20 K to 50 K. Some experiments indicated that heat conduction by residual gas was not negligible. Especially over 30 K, gas conduction took a large part of heat input. This phenomenon is attributable to reduction of cryopumping effect. However, activated carbon in the apparatus compensates cryopumping effect. A unique heat capacitor was also used to enhance the cold storage effect. Water ice was chosen as a heat capacitor because water ice has a higher heat capacity than metallic materials at cryogenic temperatures. A small amount of water ice also prolonged cryogenic temperature condition. These results indicate 1 day of cold storage is probable in a magnet for maglev vehicles.

  1. Cold-night responses in grapevine inflorescences.

    PubMed

    Sawicki, Mélodie; Ait Barka, Essaid; Clément, Christophe; Gilard, Françoise; Tcherkez, Guillaume; Baillieul, Fabienne; Vaillant-Gaveau, Nathalie; Jacquard, Cédric

    2015-10-01

    Cold nights impact grapevine flower development and fruit set. Regulation at the female meiosis stepmay be of considerable importance for further understanding on how flower reacts to cold stress. In this study, the impact of chilling temperature (0 °C overnight) on carbon metabolism was investigated in the inflorescencesof two cultivars, Pinot noir (Pinot) and Gewurztraminer (Gewurtz.). Fluctuations in photosynthetic activity and carbohydrate metabolism were monitored by analyzing gas exchanges, simultaneous photosystem I and II activities, andcarbohydrate content. Further, the expression of PEPc, PC, FNR, ISO, OXO, AGPase, amylases and invertase genes, activities of various enzymes, as well as metabolomic analysis were attained. Results showed that the chilling night has different impacts depending on cultivars. Thus, in Gewurtz., net photosynthesis (Pn) was transiently increased whereas, in Pinot, the Pn increase was persistent and concomitant with an inhibition of respiration. However, during the days following the cold night, photosynthetic activity was decreased, and the cyclic electron flow was inhibited in Gewurtz., suggesting lower efficient energy dissipation. Likewise, metabolomic analysis revealed that several metabolites contents (namely alanine, GABA, lysine and succinate)were distinctly modulated in the two cultivars. Taking together, these results reflect a photosynthetic metabolism alteration or internal CO2 conductance in Gewurtz. explaining partly why Pinot is less susceptible to cold stress. PMID:26398796

  2. EVALUATION OF THE COLD PIPE PRECHARGER

    EPA Science Inventory

    The article gives results of an evaluation of the performance of the cold pipe precharger, taking a more rigorous approach than had been previously taken. The approach required detailed descriptions of electrical characteristics, electro-hydrodynamics, and charging theory. The co...

  3. COLD REGIONS AIR POLLUTION: BIBLIOGRAPHY AND SUMMARY

    EPA Science Inventory

    Through a series of workshops on cold climate environmental research priorities, conducted in 1982 by Battelle for the Environmental Protection Agency and the Department of Energy, air pollution was identified as the topic of highest priority. The current state of knowledge on ai...

  4. Condensation of galactic cold dark matter

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca

    2016-07-01

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for ``canonical'' cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional ``quantum pressure'' term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the ``cuspy halo problem'' present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of Mχ c2 ≈ 10‑24 eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  5. Structural Assembly for Cold Plate Cooling

    NASA Technical Reports Server (NTRS)

    Zaffetti, Mark A. (Inventor); Taddey, Edmund P. (Inventor)

    2014-01-01

    A device including a structural member having a heat spreader and an electronic device mounted directly to a first surface of the heat spreader of the structural member. The device also includes a cold plate mounted directly to the first surface of the heat spreader of the structural member.

  6. Blackberry production options for cold areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blackberry is not widely planted in the Northeast, because most available varieties are not cold-hardy, and production can be variable from year to year with canes killed to the ground in some years. This report describes production options for more reliable cropping in blackberry. Planting variet...

  7. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions

  8. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup

  9. Cold Atmosphere Plasma in Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2012-10-01

    Plasma is an ionized gas that is typically generated in high-temperature laboratory conditions. Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Areas of potential application of cold atmospheric plasmas (CAP) include dentistry, drug delivery, dermatology, cosmetics, wound healing, cellular modifications, and cancer treatment. Various diagnostic tools have been developed for characterization of CAP including intensified charge-coupled device cameras, optical emission spectroscopy and electrical measurements of the discharge propertied. Recently a new method for temporally resolved measurements of absolute values of plasma density in the plasma column of small-size atmospheric plasma jet utilizing Rayleigh microwave scattering was proposed [1,2]. In this talk we overview state of the art of CAP diagnostics and understanding of the mechanism of plasma action of biological objects. The efficacy of cold plasma in a pre-clinical model of various cancer types (long, bladder, and skin) was recently demonstrated [3]. Both in-vitro and in-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. For instance a strong selective effect was observed; the resulting 60--70% of lung cancer cells were detached from the plate in the zone treated with plasma, whereas no detachment was observed in the treated zone for the normal lung cells under the same treatment conditions. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration

  10. Ionic basis of cold receptors acting as thermostats.

    PubMed

    Okazawa, Makoto; Takao, Keizo; Hori, Aiko; Shiraki, Takuma; Matsumura, Kiyoshi; Kobayashi, Shigeo

    2002-05-15

    When temperature (T) of skin decreases stepwise, cold fibers evoke transient afferent discharges, inducing cold sensation and heat-gain responses. Hence we have proposed that cold receptors at distal ends of cold fibers are thermostats to regulate skin T against cold. Here, with patch-clamp techniques, we studied the ionic basis of cold receptors in cultured dorsal root ganglion (DRG) neurons of rats, as a model of nerve endings. Cells that increased cytosolic Ca(2+) level in response to moderate cooling were identified as neurons with cold receptors. In whole-cell current-clamp recordings of these cells, in response to cooling, cold receptors evoked a dynamic receptor potential (RP), eliciting impulses briefly. In voltage-clamp recordings (-60 mV), step cooling induced an inward cold current (I(cold)) with inactivation, underlying the dynamic RP. Ca(2+) ions that entered into cells from extracellular side induced the inactivation. Analysis of the reversal potential implied that I(cold) was nonselective cation current with high Ca(2+) permeability. Threshold temperatures of cooling-induced Ca(2+) response and I(cold) were different primarily among cells. In outside-out patches, when T decreased, single nonselective cation channels became active at a critical T. This implies that a cold receptor is an ion channel and acts as the smallest thermostat. Because these thermal properties were consistent with that in cold fibers, we conclude that the same cold receptors exist at nerve endings and generate afferent impulses for cold sensation and heat-gain behaviors in response to cold. PMID:12019319

  11. Preserving Alaska's early Cold War legacy.

    SciTech Connect

    Hoffecker, J.; Whorton, M.

    1999-03-08

    The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

  12. LADEE Propulsion System Cold Flow Test

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.

    2013-01-01

    Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012

  13. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  14. Pharmacological Blockade of TRPM8 Ion Channels Alters Cold and Cold Pain Responses in Mice

    PubMed Central

    McCoy, Daniel D.; McKemy, David D.

    2011-01-01

    TRPM8 (Transient Receptor Potential Melastatin-8) is a cold- and menthol-gated ion channel necessary for the detection of cold temperatures in the mammalian peripheral nervous system. Functioning TRPM8 channels are required for behavioral responses to innocuous cool, noxious cold, injury-evoked cold hypersensitivity, cooling-mediated analgesia, and thermoregulation. Because of these various roles, the ability to pharmacologically manipulate TRPM8 function to alter the excitability of cold-sensing neurons may have broad impact clinically. Here we examined a novel compound, PBMC (1-phenylethyl-4-(benzyloxy)-3-methoxybenzyl(2-aminoethyl)carbamate) which robustly and selectively inhibited TRPM8 channels in vitro with sub-nanomolar affinity, as determined by calcium microfluorimetry and electrophysiology. The actions of PBMC were selective for TRPM8, with no functional effects observed for the sensory ion channels TRPV1 and TRPA1. PBMC altered TRPM8 gating by shifting the voltage-dependence of menthol-evoked currents towards positive membrane potentials. When administered systemically to mice, PBMC treatment produced a dose-dependent hypothermia in wildtype animals while TRPM8-knockout mice remained unaffected. This hypothermic response was reduced at lower doses, whereas responses to evaporative cooling were still significantly attenuated. Lastly, systemic PBMC also diminished cold hypersensitivity in inflammatory and nerve-injury pain models, but was ineffective against oxaliplatin-induced neuropathic cold hypersensitivity, despite our findings that TRPM8 is required for the cold-related symptoms of this pathology. Thus PBMC is an attractive compound that serves as a template for the formulation of highly specific and potent TRPM8 antagonists that will have utility both in vitro and in vivo. PMID:21984952

  15. Cough and Cold Medicine (DXM and Codeine Syrup)

    MedlinePlus

    ... Medicine (DXM and Codeine Syrup) Cough and Cold Medicine (DXM and Codeine Syrup) Street names: Candy, Drank, Robo Print What Are Cough and Cold Medicines? Also known as: robotripping, robo, tussin, triple c, ...

  16. MISR Browse Images: Cold Land Processes Experiment (CLPX)

    Atmospheric Science Data Center

    2013-04-02

    ... MISR Browse Images: Cold Land Processes Experiment (CLPX) These MISR Browse images provide a ... over the region observed during the NASA Cold Land Processes Experiment (CLPX). CLPX involved ground, airborne, and satellite measurements ...

  17. Actively controlling coolant-cooled cold plate configuration

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  18. 'Cold Turkey' May Work Best for Quitting Smoking

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_157753.html 'Cold Turkey' May Work Best for Quitting Smoking Stopping ... four weeks, nearly half of those who quit "cold turkey" were still not smoking. But, among people ...

  19. 12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. COLD CALIBRATION BLOCKHOUSE BASEMENT VIEW FROM LEFT TO RIGHT, CABLE TRAYS, RACKS, CABLE CONNECTION TERMINALS. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL

  20. 1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. COLD FLOW LABORATORY, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  1. 2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. Glenn L. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. COLD FLOW LABORATORY, VIEW TOWARDS NORTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Cold Flow Laboratory Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  2. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  3. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  4. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cold-pack cheese food. 133.124 Section 133.124... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the food... specified in paragraph (e) of this section may be used. (2) All cheeses used in a cold-pack cheese food...

  5. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  6. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to apply heat or cold to an area of the body. (b) Classification. Class I (general controls). The... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device...

  7. Shocks and cold fronts in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Markevitch, Maxim; Vikhlinin, Alexey

    2007-05-01

    The currently operating X-ray imaging observatories provide us with an exquisitely detailed view of the Megaparsec-scale plasma atmospheres in nearby galaxy clusters. At z<0.05, the Chandra's 1 angular resolution corresponds to linear resolution of less than a kiloparsec, which is smaller than some interesting linear scales in the intracluster plasma. This enables us to study the previously unseen hydrodynamic phenomena in clusters: classic bow shocks driven by the infalling subclusters, and the unanticipated “cold fronts,” or sharp contact discontinuities between regions of gas with different entropies. The ubiquitous cold fronts are found in mergers as well as around the central density peaks in “relaxed” clusters. They are caused by motion of cool, dense gas clouds in the ambient higher-entropy gas. These clouds are either remnants of the infalling subclusters, or the displaced gas from the cluster's own cool cores. Both shock fronts and cold fronts provide novel tools to study the intracluster plasma on microscopic and cluster-wide scales, where the dark matter gravity, thermal pressure, magnetic fields, and ultrarelativistic particles are at play. In particular, these discontinuities provide the only way to measure the gas bulk velocities in the plane of the sky. The observed temperature jumps at cold fronts require that thermal conduction across the fronts is strongly suppressed. Furthermore, the width of the density jump in the best-studied cold front is smaller than the Coulomb mean free path for the plasma particles. These findings show that transport processes in the intracluster plasma can easily be suppressed. Cold fronts also appear less prone to hydrodynamic instabilities than expected, hinting at the formation of a parallel magnetic field layer via magnetic draping. This may make it difficult to mix different gas phases during a merger. A sharp electron temperature jump across the best-studied shock front has shown that the electron proton

  8. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device...

  9. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  10. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  11. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  12. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  13. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch cold cleaning machine standards... National Emission Standards for Halogenated Solvent Cleaning § 63.462 Batch cold cleaning machine standards. (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with...

  14. The End of the Cold War, 1961-1991.

    ERIC Educational Resources Information Center

    Schulzinger, Robert D.

    1994-01-01

    Provides an overview of Cold War years from President Kennedy's inauguration to end of Soviet Union on December 31, 1991. Recommends six questions to provide a structure for studying or teaching about the Cold War era. Concludes that the Cold War remains one of the premier forces in shaping the world during the second half of the 20th century.…

  15. Can You Get Genital Herpes from a Cold Sore?

    MedlinePlus

    ... Cuts? Can You Get Genital Herpes From a Cold Sore? KidsHealth > For Teens > Can You Get Genital Herpes From a Cold Sore? Print A A A Text Size Can you get genital herpes from a cold sore? – Lucy* Yes — it is possible to get ...

  16. Phospholipase A2 activity during cold acclimation of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phospholipase A2 (EC 3.1.1.4; PLA2) activity in wheat (Triticum aestivum L.) crown tissue from plants undergoing cold acclimation and/or chilling stress was investigated in a moderately cold tolerant winter wheat, a spring wheat, and a poorly cold tolerant winter wheat. Activity levels were inv...

  17. Cold or Allergies: Which Is It? (For Parents)

    MedlinePlus

    ... Zika & Pregnancy A Cold or Allergies: Which Is It? KidsHealth > For Parents > A Cold or Allergies: Which Is It? Print A A A Text Size My son ... common cold can be so much alike that it's sometimes hard to tell the two apart. But ...

  18. Some Like It Hot, Some like It Cold

    ERIC Educational Resources Information Center

    Silberman, Robert G.

    2004-01-01

    In order to find the right combination to construct a cold pack for athletic injuries, students mix liquids and solids in a calorimeter, and use a thermometer to ascertain whether the chemical reaction is hot or cold. Many formulae for chemical reactions are given, the first of which is used for commercial cold packs.

  19. Computer Output Laser Disk (COLD) Systems--COM Replacement Units.

    ERIC Educational Resources Information Center

    Bolnick, Franklin I.

    1993-01-01

    Explains the COLD (Computer Output Laser Disk) system and describes current applications. Use of the COLD system to replace COM (Computer Output Microfilm) is discussed; advantages and disadvantages of the COLD system are considered; optical disks OD-WORM (Optical Disk-Write Once Read Many) versus CD-ROM are compared; and equipment and software…

  20. Identification of genes associated with cold acclimation in perennial ryegrass.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensitivity to cold temperatures restricts the cultivation of perennial ryegrass (Lolium perenne L.) in some temperate areas. Understanding cold-acclimation mechanisms is important for plant cultivation and breeding for cold tolerance. Our objective was to profile the transcriptome in perennial ry...

  1. Axion cold dark matter in nonstandard cosmologies

    SciTech Connect

    Visinelli, Luca; Gondolo, Paolo

    2010-03-15

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  2. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  3. Common cold outbreaks: A network theory approach

    NASA Astrophysics Data System (ADS)

    Vishkaie, Faranak Rajabi; Bakouie, Fatemeh; Gharibzadeh, Shahriar

    2014-11-01

    In this study, at first we evaluated the network structure in social encounters by which respiratory diseases can spread. We considered common-cold and recorded a sample of human population and actual encounters between them. Our results show that the database structure presents a great value of clustering. In the second step, we evaluated dynamics of disease spread with SIR model by assigning a function to each node of the structural network. The rate of disease spread in networks was observed to be inversely correlated with characteristic path length. Therefore, the shortcuts have a significant role in increasing spread rate. We conclude that the dynamics of social encounters' network stands between the random and the lattice in network spectrum. Although in this study we considered the period of common-cold disease for network dynamics, it seems that similar approaches may be useful for other airborne diseases such as SARS.

  4. Lunar Cold Trap Contamination by Landing Vehicles

    NASA Technical Reports Server (NTRS)

    Shipley, Scott T.; Metzger, Philip T.; Lane, John E.

    2014-01-01

    Tools have been developed to model and simulate the effects of lunar landing vehicles on the lunar environment (Metzger, 2011), mostly addressing the effects of regolith erosion by rocket plumes and the fate of the ejected lunar soil particles (Metzger, 2010). These tools are being applied at KSC to predict ejecta from the upcoming Google Lunar X-Prize Landers and how they may damage the historic Apollo landing sites. The emerging interest in lunar mining poses a threat of contamination to pristine craters at the lunar poles, which act as "cold traps" for water and may harbor other valuable minerals Crider and Vondrak (2002). The KSC Granular Mechanics and Regolith Operations Lab tools have been expanded to address the probability for contamination of these pristine "cold trap" craters.

  5. Coupling cold atoms with mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Valencia, Jose; Geraci, Andrew; Eardley, Matthew; Kitching, John

    2014-05-01

    Macroscopic systems, coupled to quantum systems with well understood coherence properties, can enable the study of the boundary between quantum microscopic phenomena and macroscopic systems. Ultra-cold atoms can be probed and manipulated with micro-mechanical resonators that provide single-spin sensitivity and sub-micron spatial resolution, facilitating studies of decoherence and quantum control. In the future, hybrid quantum systems consisting of cold atoms interfaced with mechanical devices may have applications in quantum information science. We describe our experiment to couple laser-cooled Rb atoms to a magnetic cantilever tip. This cantilever is precisely defined on the surface of a chip with lithography and the atoms are trapped at micron-scale distances from this chip. To match cantilever mechanical resonances, atomic magnetic resonances are tuned with a magnetic field.

  6. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  7. Outer crust of nonaccreting cold neutron stars

    SciTech Connect

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-03-15

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  8. Cold condensation of dust in the ISM.

    PubMed

    Rouillé, Gaël; Jäger, Cornelia; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas

    2014-01-01

    The condensation of complex silicates with pyroxene and olivine composition under conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 microm band of the interstellar silicates and the 10 microm band of the low-temperature siliceous condensates can be noted. PMID:25302393

  9. Large spin magnetism with cold atoms

    NASA Astrophysics Data System (ADS)

    Laburthe-Tolra, Bruno

    2016-05-01

    The properties of quantum gases made of ultra-cold atoms strongly depend on the interactions between atoms. These interactions lead to condensed-matter-like collective behavior, so that quantum gases appear to be a new platform to study quantum many-body physics. In this seminar, I will focus on the case where the atoms possess an internal (spin) degrees of freedom. The spin of atoms is naturally larger than that of electrons. Therefore, the study of the magnetic properties of ultra-cold gases allows for an exploration of magnetism beyond the typical situation in solid-state physics where magnetism is associated to the s = 1/2 spin of the electron. I will describe three specific cases: spinor Bose-Einstein condensates, where spin-dependent contact interactions introduce new quantum phases and spin dynamics; large spin magnetic atoms where strong dipole-dipole interactions lead to exotic quantum magnetism; large spin Fermi gases.

  10. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  11. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, Charles D.

    1981-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

  12. Cryogenic target formation using cold gas jets

    DOEpatents

    Hendricks, C.D.

    1980-02-26

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

  13. Hyperosmolar cold storage kidney preservative solution.

    PubMed

    Masuda, J Y; Bleich, R N; Beckerman, J H

    1975-04-01

    A hyperosmolar kidney preservative solution which can maintain kidneys from experimental animals viable for up to 72 hours is described. Using the criterion of a one-month failure rate, the cold storage preservation method was found to be superior to machine preservation methods. Sachs' solution was found to be superior to all other cold storage solutions. The most important aspect of the hyperosmolar kidney preservative solution appears to be its ability to maintain normal intracellular electrolyte composition and to prevent cellular damage due to swelling. The present formula requires that the basic solution and a magnesium chloride additive solution be prepared separately and combined before use. A stable combined solution is proposed which can be sterilized by membrane filtration. PMID:1130414

  14. Cold atom quantum sensors for space

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.

  15. Adiabatic theory for anisotropic cold molecule collisions.

    PubMed

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122

  16. COLD-SAT feasibility study safety analysis

    NASA Technical Reports Server (NTRS)

    Mchenry, Steven T.; Yost, James M.

    1991-01-01

    The Cryogenic On-orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite presents some unique safety issues. The feasibility study conducted at NASA-Lewis desired a systems safety program that would be involved from the initial design in order to eliminate and/or control the inherent hazards. Because of this, a hazards analysis method was needed that: (1) identified issues that needed to be addressed for a feasibility assessment; and (2) identified all potential hazards that would need to be controlled and/or eliminated during the detailed design phases. The developed analysis method is presented as well as the results generated for the COLD-SAT system.

  17. Cold fusion catalyzed by muons and electrons

    SciTech Connect

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  18. Polarized Cold Neutron Capture in ^27Al

    NASA Astrophysics Data System (ADS)

    Balascuta, Septimiu

    2013-04-01

    The NPDGamma Experiment at the Spallation Neutron Source at ORNL is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of cold neutrons on a 16-liter liquid parahydrogen target. The goal is to determine the strength of the weak nucleon-nucleon interaction. One of the main background contributions comes from the gamma rays produced by neutrons captured in the Al walls of the target vessel. To quantify this effect a commissioning experiment measured the parity-odd and parity-even asymmetries in the angular distribution of the gamma rays from the capture of polarized cold neutrons in a solid Al target. A status of the analysis of this experiment will be presented.

  19. Cold atom reflection from curved magnetic mirrors

    NASA Astrophysics Data System (ADS)

    Hughes, Ifan G.; Barton, P. A.; Boshier, M. G.; Hinds, Edward A.

    1997-05-01

    Multiple bounces of cold rubidium atoms have been observed for times up to one second in a trap formed by gravity and a 2 cm-diameter spherical mirror made from a sinusoidally magnetized floppy disk. We have studied the dynamics of the atoms bouncing in this trap from several different heights up to 40.5 mm and we conclude that the atoms are reflected specularly and with reflectivity 1.01(3). Slight roughness of the mirror is caused by harmonics in the magnetization of the surface and by discontinuities at the boundaries between recorded tracks. As the next step in this atom optics program we propose using a magnetic mirror to create a 2D atomic gas. We discuss how cold atoms can be loaded into the ground state of a static magnetic potential well that exists above the surface of the mirror as a consequence of the intermediate-field Zeeman effect.

  20. Metal flowing of involute spline cold roll-beating forming

    NASA Astrophysics Data System (ADS)

    Cui, Fengkui; Wang, Xiaoqiang; Zhang, Fengshou; Xu, Hongyu; Quan, Jianhui; Li, Yan

    2013-09-01

    The present research on involute spline cold roll-beating forming is mainly about the principles and motion relations of cold roll-beating, the theory of roller design, and the stress and strain field analysis of cold roll-beating, etc. However, the research on law of metal flow in the forming process of involute spline cold roll-beating is rare. According to the principle of involute spline cold roll-beating, the contact model between the rollers and the spline shaft blank in the process of cold roll-beating forming is established, and the theoretical analysis of metal flow in the cold roll-beating deforming region is proceeded. A finite element model of the spline cold roll-beating process is established, the formation mechanism of the involute spline tooth profile in cold roll-beating forming process is studied, and the node flow tracks of the deformation area are analyzed. The experimental research on the metal flow of cold roll-beating spline is conducted, and the metallographic structure variation, grain characteristics and metal flow line of the different tooth profile area are analyzed. The experimental results show that the particle flow directions of the deformable bodies in cold roll-beating deformation area are determined by the minimum moving resistance. There are five types of metal flow rules of the deforming region in the process of cold roll-beating forming. The characteristics of involute spline cold roll-beating forming are given, and the forming mechanism of involute spline cold roll-beating is revealed. This paper researches the law of metal flow in the forming process of involute spline cold roll-beating, which provides theoretical supports for solving the tooth profile forming quality problem.

  1. Cold collisions between boson or fermion molecules

    SciTech Connect

    Kajita, Masatoshi

    2004-01-01

    We theoretically investigate collisions between electrostatically trapped cold polar molecules and compare boson and fermion isotopes. Evaporative cooling seems possible for fermion molecules as the ratio of the collision loss cross section to the elastic collision cross section (R) gets smaller as the molecular temperature T lowers. With boson molecules, R gets larger as T lowers, which makes evaporative cooling difficult. The elastic collision cross section between fermion molecules can be larger than that for boson molecules with certain conditions.

  2. Review of the `cold fusion` effect

    SciTech Connect

    Storms, E.

    1996-09-01

    More than 190 studies reporting evidence for the `cold fusion` effect are evaluated. New work has answered criticisms by eliminating many of the suggested errors. Evidence for large and reproducible energy generation as well as various nuclear reactions, in addition to fusion, from a variety of environments and methods in accumulating. The field can no longer be dismissed by invoking obvious error or prosaic explanations. 192 refs., 12 figs., 10 tabs.

  3. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  4. Cold worked ferritic alloys and components

    DOEpatents

    Korenko, Michael K.

    1984-01-01

    This invention relates to liquid metal fast breeder reactor and steam generator precipitation hardening fully ferritic alloy components which have a microstructure substantially free of the primary precipitation hardening phase while having cells or arrays of dislocations of varying population densities. It also relates to the process by which these components are produced, which entails solution treating the alloy followed by a final cold working step. In this condition, the first significant precipitation hardening of the component occurs during high temperature use.

  5. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, Donald P.

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  6. Combined cold compressor/ejector helium refrigerator

    DOEpatents

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  7. Spatial distribution of cold antihydrogen formation.

    PubMed

    Madsen, N; Amoretti, M; Amsler, C; Bonomi, G; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Macri, M; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y; Zurlo, N

    2005-01-28

    Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen. PMID:15698264

  8. combined cold compressor ejector helium refrigerator

    SciTech Connect

    Brown, D. P.

    1985-10-22

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  9. CO2 laser cold cathode research results

    NASA Technical Reports Server (NTRS)

    Hochuli, U.

    1973-01-01

    The construction and processing of four test lasers are discussed, and the test results are assessed. Tests show that the best performance was obtained from cathodes made from internally oxidized Ag-Cu alloys or pure Cu. Due to the cold cathode technology developments, sealed-off 1 w CO2 lasers with gas volumes of only 50 cu cm were duplicated, and have performed satisfactorily for more than 6000 hours.

  10. Differential expression of the enzymes associated with cold-induced sweetening in long term cold stored potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accumulation of high levels of reducing sugars during cold storage (4-6°C) known as cold-induced sweetening (CIS) is a major post-harvest disorder and is one of the most significant concerns for the potato processing industry. The biochemical process of reducing sugar accumulation during cold stora...

  11. A swirl flow evaporative cold plate

    NASA Technical Reports Server (NTRS)

    Niggemann, R. E.; Greenlee, W. J.; Hill, D. G.; Ellis, W.; Marshall, P.

    1985-01-01

    A forced flow evaporative cold plate is under development for future application to the thermal bus concept being pursued by NASA for Space Station Thermal Control. The vaporizer is a swirl-flow device employing a spiral tube coil geometry sandwiched between conductive metal plates upon which electric components could be mounted. This concept is based on the inherent phase separation that occurs in a two phase stream in curvilinear flow. This is a zero 'g' design with one 'g' all-attitude capability and is capable of high heat transfer coefficients, good isothermality, and the ability to function at heat fluxes approaching 5w/sq cm on the cold plates (10w/sq cm on the tube wall) with Freon 114. The advantages of this design over other two phase evaporator approaches are high heat flux capability, simplified control requirements, insensitivity to micro-gravity oscillations, and inexpensive manufacturability. The program included design, fabrication, and test of such a cold plate utilizing an existing test stand developed for two-phase thermal management system (TPTMS) testing. Test results analysis and conclusions are included.

  12. Cold Agglutinin Disease; A Laboratory Challenge

    PubMed Central

    Nikousefat, Zahra; Javdani, Moosa; Hashemnia, Mohammad; Haratyan, Abbas; Jalili, Ali

    2015-01-01

    Introduction: Autoimmune haemolytic anemia (AIHA) is a complex process characterized by an immune reaction against red blood cell self-antigens. The analysis of specimens, drawn from patients with cold auto-immune hemolytic anemia is a difficult problem for automated hematology analyzer. This paper was written to alert technologists and pathologists to the presence of cold agglutinins and its effect on laboratory tests. Case Presentation: A 72-year-old female presented to the Shafa laboratory for hematology profile evaluation. CBC indices showed invalid findings with the Sysmex automated hematology analyzer. Checking the laboratory process showed precipitation residue sticking to the sides of the tube. After warming the tubes, results become valid and the problem attributed to cold agglutinin disease. In this situation, aggregation of RBCs, which occurs at t < 30°C, causes invalid findings meanwhile working with automated hematology analyzer. Conclusions: Knowledge of this phenomenon can help prevent wasting too much time and make an early and accurate diagnosis. PMID:26566452

  13. The University of Texas Cold Neutron Source

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Ríos-Martínez, Carlos; Wehring, Bernard W.

    1994-12-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50 × 15 mm cross-section, 58Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS.

  14. Physical properties of Planck Cold Dust Clumps

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Liu, T.; Meng, F.; Yuan, J.; Zhang, T.; Chen, P.; Hu, R.; Li, D.; Qin, S.; Ju, B.

    2016-05-01

    To explore physical properties of Planck cold dust clumps, 674 of the pilot samples were observed at the 13.7 m telescope of Purple Mountain Observatory (PMO) in J = 1 - 0 transitions of CO, 13CO and C18O. HCO+, HCN and N2H+ emissions were also observed with PMO 13.7 m and IRAM 30 m telescopes. They are real cold and quiescent with mean Tk ˜ 10 K and mean FWHM of 13CO (1-0) 1.27 km s-1. Column density ranges from 1020 to 1022 cm-2. Gas of the Planck clumps extends molecular space in the Milky Way. Turbulence dominates in cores. Filament structure is the majority and most of the cores are starless. Ten percent of the cores show asymmetric emission features including blue- and red- profiles. Planck clumps include different cold or low luminosity sources. Dense cores constitute an ideal sample for studying initial state of star formation while the diffuse clumps are suitable for investigating the formation of cores.

  15. Molecular gas of Planck cold dust clumps

    NASA Astrophysics Data System (ADS)

    Wu, Yuefang

    2015-08-01

    To probe dynamical processes and physical properties of Planck Cold Clumps, survey and mapping of 674 most reliable Planck cold dust clumps with J=1-0 of CO,13CO and C18O were made at PMO 13.7 m telescope. More than 600 molecular cores were obtained, which are mainly located in seven molecular complexes divided by Dame (1987). Parameters of cores in different regions are with some difference, showing different evolutional status and environment of the cores. As a whole they are quiescent. Some are with star forming activities. J=1-0 lines of HCO+ and HCN at CO emission peaks were also observed at PMO, of which 24 were mapped with IRAM 30 m telescope. Several cores were also observed with J=2-1 of CO and 13CO using CSO. Core splits were detected. Combining with infrared data more than 70% of CO cores are identified as starless. Planck cold clumps seem to be ideal samples to search for candidates of massive prestellar cores and pre-clusters.

  16. Anomalous cold in the Pangaean tropics

    USGS Publications Warehouse

    Soreghan, G.S.; Soreghan, M.J.; Poulsen, C.J.; Young, R.A.; Eble, C.F.; Sweet, D.E.; Davogustto, O.C.

    2008-01-01

    The late Paleozoic archives the greatest glaciation of the Phanerozoic. Whereas high-latitude Gondwanan strata preserve widespread evidence for continental ice, the Permo-Carboniferous tropics have long been considered analogous to today's: warm and shielded from the highlatitude cold. Here, we report on glacial and periglacial indicators that record episodes of freezing continental temperatures in western equatorial Pangaea. An exhumed glacial valley and associated deposits record direct evidence for glaciation that extended to low paleoelevations in the ancestral Rocky Mountains. Furthermore, the Permo-Carboniferous archives the only known occurrence of widespread tropical loess in Earth's history; the volume, chemistry, and provenance of this loess(ite) is most consistent with glacial derivation. Together with emerging indicators for cold elsewhere in low-latitude Pangaea, these results suggest that tropical climate was not buffered from the high latitudes and may record glacial-interglacial climate shifts of very large magnitude. Coupled climate-ice sheet model simulations demonstrate that low atmospheric CO2 and solar luminosity alone cannot account for such cold, and that other factors must be considered in attempting to explain this 'best-known' analogue to our present Earth. ?? 2008 The Geological Society of America.

  17. Marijuana smoking and cold tolerance in man.

    PubMed

    Hanna, J M; Strauss, R H; Itagaki, B; Kwon, W J; Stanyon, R; Bindon, J; Hong, S K

    1976-06-01

    Ten men who were marijuana users served as subjects in a study of the effects of marijuana smoking on response to cold. Cold water (28 degrees C for 60 min) and cold air (20 degrees C for 120 min) mediums were utilized with three exposures in each medium. The three exposures followed smoking marijuana, smoking placebo, and a no-smoking control period. Additionally, a breathhold experiment preceded and followed the four smoking periods. Marijuana and placebo smoke were inhaled from a spirometer with each man receiving the smoke of 0.739 g of marijuana and placebo. Smoking marijuana did not greatly modify body heat content, since rectal temperature and most peripheral temperatures were not altered. However, temperatures over voluntary muscles likely to be involved in shivering were elevated. Heat production also greatly increased after marijuana, suggesting that it had stimulated shivering. Marijuana also produced tachycardia and abolished apneic bradycardia. The mechanism of this action is not clear, but some sympathetic involvement is indicated. PMID:779756

  18. Inner caustics of cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Natarajan, Aravind; Sikivie, Pierre

    2006-01-01

    We prove that a flow of cold collisionless particles from all directions in and out of a region necessarily forms a caustic. A corollary is that, in cold dark matter cosmology, galactic halos have inner caustics in addition to the more obvious outer caustics. The outer caustics are fold catastrophes located on topological spheres surrounding the galaxy. To obtain the catastrophe structure of the inner caustics, we simulate the infall of cold collisionless particles in a fixed gravitational potential. The structure of inner caustics depends on the angular momentum distribution of the infalling particles. We confirm a previous result that the inner caustic is a “tricusp ring” when the initial velocity field is dominated by net overall rotation. A tricusp ring is a closed tube whose cross section is a section of an elliptic umbilic catastrophe. However, tidal torque theory predicts that the initial velocity field is irrotational. For irrotational initial velocity fields, we find the inner caustic to have a tentlike structure which we describe in detail in terms of the known catastrophes. We also show how the tent caustic transforms into a tricusp ring when a rotational component is added to the initial velocity field.

  19. Inner caustics of cold dark matter halos

    SciTech Connect

    Natarajan, Aravind; Sikivie, Pierre

    2006-01-15

    We prove that a flow of cold collisionless particles from all directions in and out of a region necessarily forms a caustic. A corollary is that, in cold dark matter cosmology, galactic halos have inner caustics in addition to the more obvious outer caustics. The outer caustics are fold catastrophes located on topological spheres surrounding the galaxy. To obtain the catastrophe structure of the inner caustics, we simulate the infall of cold collisionless particles in a fixed gravitational potential. The structure of inner caustics depends on the angular momentum distribution of the infalling particles. We confirm a previous result that the inner caustic is a 'tricusp ring' when the initial velocity field is dominated by net overall rotation. A tricusp ring is a closed tube whose cross section is a section of an elliptic umbilic catastrophe. However, tidal torque theory predicts that the initial velocity field is irrotational. For irrotational initial velocity fields, we find the inner caustic to have a tentlike structure which we describe in detail in terms of the known catastrophes. We also show how the tent caustic transforms into a tricusp ring when a rotational component is added to the initial velocity field.

  20. Quantum Optics of Ultra-Cold Molecules

    NASA Astrophysics Data System (ADS)

    Meiser, D.; Miyakawa, T.; Uys, H.; Meystre, P.

    Quantum optics has been a major driving force behind the rapid experimental developments that have led from the first laser cooling schemes to the Bose-Einstein condensation (BEC) of dilute atomic and molecular gases. Not only has it provided experimentalists with the necessary tools to create ultra-cold atomic systems, but it has also provided theorists with a formalism and framework to describe them: many effects now being studied in quantum-degenerate atomic and molecular systems find a very natural explanation in a quantum optics picture. This article briefly reviews three such examples that find their direct inspiration in the trailblazing work carried out over the years by Herbert Walther, one of the true giants of that field. Specifically, we use an analogy with the micromaser to analyze ultra-cold molecules in a double-well potential; study the formation and dissociation dynamics of molecules using the passage time statistics familiar from superradiance and superfluorescence studies; and show how molecules can be used to probe higher-order correlations in ultra-cold atomic gases, in particular bunching and antibunching.