Science.gov

Sample records for networks suppresses selection

  1. Suppressed epidemics in multirelational networks

    NASA Astrophysics Data System (ADS)

    Xu, Elvis H. W.; Wang, Wei; Xu, C.; Tang, Ming; Do, Younghae; Hui, P. M.

    2015-08-01

    A two-state epidemic model in networks with links mimicking two kinds of relationships between connected nodes is introduced. Links of weights w1 and w0 occur with probabilities p and 1 -p , respectively. The fraction of infected nodes ρ (p ) shows a nonmonotonic behavior, with ρ drops with p for small p and increases for large p . For small to moderate w1/w0 ratios, ρ (p ) exhibits a minimum that signifies an optimal suppression. For large w1/w0 ratios, the suppression leads to an absorbing phase consisting only of healthy nodes within a range pL≤p ≤pR , and an active phase with mixed infected and healthy nodes for p pR . A mean field theory that ignores spatial correlation is shown to give qualitative agreement and capture all the key features. A physical picture that emphasizes the intricate interplay between infections via w0 links and within clusters formed by nodes carrying the w1 links is presented. The absorbing state at large w1/w0 ratios results when the clusters are big enough to disrupt the spread via w0 links and yet small enough to avoid an epidemic within the clusters. A theory that uses the possible local environments of a node as variables is formulated. The theory gives results in good agreement with simulation results, thereby showing the necessity of including longer spatial correlations.

  2. Suppression of phase synchronisation in network based on cat's brain

    NASA Astrophysics Data System (ADS)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Iarosz, Kelly C.; Caldas, Iberê L.; Batista, Antonio M.; Viana, Ricardo L.; Kurths, Jürgen

    2016-04-01

    We have studied the effects of perturbations on the cat's cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with a small-world property. We focus on the suppression of neuronal phase synchronisation considering different kinds of perturbations. Among the various controlling interventions, we choose three methods: delayed feedback control, external time-periodic driving, and activation of selected neurons. We simulate these interventions to provide a procedure to suppress undesired and pathological abnormal rhythms that can be associated with many forms of synchronisation. In our simulations, we have verified that the efficiency of synchronisation suppression by delayed feedback control is higher than external time-periodic driving and activation of selected neurons of the cat's cerebral cortex with the same coupling strengths.

  3. Neural-Network Controller For Vibration Suppression

    NASA Technical Reports Server (NTRS)

    Boussalis, Dhemetrios; Wang, Shyh Jong

    1995-01-01

    Neural-network-based adaptive-control system proposed for vibration suppression of flexible space structures. Controller features three-layer neural network and utilizes output feedback. Measurements generated by various sensors on structure. Feed forward path also included to speed up response in case plant exhibits predominantly linear dynamic behavior. System applicable to single-input single-output systems. Work extended to multiple-input multiple-output systems as well.

  4. Broadband network selection issues

    NASA Astrophysics Data System (ADS)

    Leimer, Michael E.

    1996-01-01

    Selecting the best network for a given cable or telephone company provider is not as obvious as it appears. The cost and performance trades between Hybrid Fiber Coax (HFC), Fiber to the Curb (FTTC) and Asymmetric Digital Subscriber Line networks lead to very different choices based on the existing plant and the expected interactive subscriber usage model. This paper presents some of the issues and trades that drive network selection. The majority of the Interactive Television trials currently underway or planned are based on HFC networks. As a throw away market trial or a short term strategic incursion into a cable market, HFC may make sense. In the long run, if interactive services see high demand, HFC costs per node and an ever shrinking neighborhood node size to service large numbers of subscribers make FTTC appear attractive. For example, thirty-three 64-QAM modulators are required to fill the 550 MHz to 750 MHz spectrum with compressed video streams in 6 MHz channels. This large amount of hardware at each node drives not only initial build-out costs, but operations and maintenance costs as well. FTTC, with its potential for digitally switching large amounts of bandwidth to an given home, offers the potential to grow with the interactive subscriber base with less downstream cost. Integrated telephony on these networks is an issue that appears to be an afterthought for most of the networks being selected at the present time. The major players seem to be videocentric and include telephony as a simple add-on later. This may be a reasonable view point for the telephone companies that plan to leave their existing phone networks untouched. However, a phone company planning a network upgrade or a cable company jumping into the telephony business needs to carefully weigh the cost and performance issues of the various network choices. Each network type provides varying capability in both upstream and downstream bandwidth for voice channels. The noise characteristics

  5. Physiological consequences of selective suppression of synaptic transmission in developing cerebral cortical networks in vitro: differential effects on intrinsically generated bioelectric discharges in a living 'model' system for slow-wave sleep activity.

    PubMed

    Corner, Michael A; Baker, Robert E; van Pelt, Jaap

    2008-10-01

    Within the context of an updated thorough review of the literature concerning activity-dependent cerebro-cortical development, a survey is made of recent experiments which utilize spontaneous spike-trains as the dependent variable in rodent neocortex cultures when synaptic transmission is interfered with during early ontogeny. Emphasis is placed on the complexity of homeostatic adaptations to reduced as well as intensified firing. Two kinds of adaptation are distinguished: (i) rapid recovery (within several hours) towards baseline levels despite sustained blockade of excitatory synaptic transmission, and (ii) the generation of essentially normal firing patterns in cultures assayed in control medium following development in the presence of excitatory receptor blockers. The former category of homeostatic responses is strongly dependent on the type of preparation, with isolated organotypic explants showing greatly limited plasticity in comparison with co-cultures of matching contralateral pieces of cortical tissue. In such co-cultures, compensatory excitatory drive manifests itself even when all three known types of ionotropic glutamate receptors are chronically blocked, and is then mediated by (muscarinic) cholinergic mechanisms which normally do not contribute measurably to spontaneous activity. The rapid return of high levels of spontaneous firing during sustained selective glutamatergic receptor blockade appears to protect neuronal cultures treated in this way from becoming hyperexcitable. In particular, quasi-epileptiform paroxysmal bursting upon return to control medium, such as appears in preparations where bioelectric activity has been totally suppressed during network formation, fails to appear in chronically receptor blocked cultures. On the contrary, desensitization of blocked glutamate receptors, as a physiological compensation for the up-regulation of non-blocked receptors, could be demonstrated for both the AMPA and the NMDA glutamate receptor sub

  6. Discrimination networks for maximum selection.

    PubMed

    Jain, Brijnesh J; Wysotzki, Fritz

    2004-01-01

    We construct a novel discrimination network using differentiating units for maximum selection. In contrast to traditional competitive architectures like MAXNET the discrimination network does not only signal the winning unit, but also provides information about its evidence. In particular, we show that a discrimination network converges to a stable state within finite time and derive three characteristics: intensity normalization (P1), contrast enhancement (P2), and evidential response (P3). In order to improve the accuracy of the evidential response we incorporate distributed redundancy into the network. This leads to a system which is not only robust against failure of single units and noisy data, but also enables us to sharpen the focus on the problem given in terms of a more accurate evidential response. The proposed discrimination network can be regarded as a connectionist model for competitive learning by evidence. PMID:14690714

  7. Neural Networks for Mindfulness and Emotion Suppression

    PubMed Central

    Katsunuma, Ruri; Oba, Kentaro; Terasawa, Yuri; Motomura, Yuki; Mishima, Kazuo

    2015-01-01

    Mindfulness, an attentive non-judgmental focus on “here and now” experiences, has been incorporated into various cognitive behavioral therapy approaches and beneficial effects have been demonstrated. Recently, mindfulness has also been identified as a potentially effective emotion regulation strategy. On the other hand, emotion suppression, which refers to trying to avoid or escape from experiencing and being aware of one’s own emotions, has been identified as a potentially maladaptive strategy. Previous studies suggest that both strategies can decrease affective responses to emotional stimuli. They would, however, be expected to provide regulation through different top-down modulation systems. The present study was aimed at elucidating the different neural systems underlying emotion regulation via mindfulness and emotion suppression approaches. Twenty-one healthy participants used the two types of strategy in response to emotional visual stimuli while functional magnetic resonance imaging was conducted. Both strategies attenuated amygdala responses to emotional triggers, but the pathways to regulation differed across the two. A mindful approach appears to regulate amygdala functioning via functional connectivity from the medial prefrontal cortex, while suppression uses connectivity with other regions, including the dorsolateral prefrontal cortex. Thus, the two types of emotion regulation recruit different top-down modulation processes localized at prefrontal areas. These different pathways are discussed. PMID:26083379

  8. Optical frequency tripling with improved suppression and sideband selection.

    PubMed

    Thakur, Manoj P; Medeiros, Maria C R; Laurêncio, Paula; Mitchell, John E

    2011-12-12

    A novel optical dispersion tolerant millimetre-wave radio-over-fibre system using optical frequency tripling technique with enhanced and selectable sideband suppression is demonstrated. The implementation utilises cascaded optical modulators to achieve either an optical single sideband (OSSB) or double sideband-suppressed carrier (DSB-SC) signal with high sideband suppression. Our analysis and simulation results indicate that the achievable suppression ratio of this configuration is only limited by other system factors such as optical noise and drifting of the operational conditions. The OSSB transmission system performance is assessed experimentally by the transport of 4 WiMax channels modulating a 10 GHz optical upconverted RF carrier as well as for optical frequency doubling and tripling. The 10 GHz and tripled carrier at 30 GHz are dispersion tolerant resulting both in an average relative constellation error (RCE) of -28.7 dB after 40 km of fibre. PMID:22274056

  9. Transient amplification limits noise suppression in biochemical networks

    NASA Astrophysics Data System (ADS)

    Dixon, John; Lindemann, Anika; McCoy, Jonathan H.

    2016-01-01

    Cell physiology is orchestrated, on a molecular level, through complex networks of biochemical reactions. The propagation of random fluctuations through these networks can significantly impact cell behavior, raising challenging questions about how network design shapes the cell's ability to suppress or exploit these fluctuations. Here, drawing on insights from statistical physics, fluid dynamics, and systems biology, we explore how transient amplification phenomena arising from network connectivity naturally limit a biochemical system's ability to suppress small fluctuations around steady-state behaviors. We find that even a simple system consisting of two variables linked by a single interaction is capable of amplifying small fluctuations orders of magnitude beyond the levels predicted by linear stability theory. We also find that adding additional interactions can promote further amplification, even when these interactions implement classic design strategies known to suppress fluctuations. These results establish that transient amplification is an essential factor determining baseline noise levels in stable intracellular networks. Significantly, our analysis is not bound to specific systems or interaction mechanisms: we find that noise amplification is an emergent phenomenon found near steady states in any network containing sufficiently strong interactions, regardless of its form or function.

  10. Transient amplification limits noise suppression in biochemical networks.

    PubMed

    Dixon, John; Lindemann, Anika; McCoy, Jonathan H

    2016-01-01

    Cell physiology is orchestrated, on a molecular level, through complex networks of biochemical reactions. The propagation of random fluctuations through these networks can significantly impact cell behavior, raising challenging questions about how network design shapes the cell's ability to suppress or exploit these fluctuations. Here, drawing on insights from statistical physics, fluid dynamics, and systems biology, we explore how transient amplification phenomena arising from network connectivity naturally limit a biochemical system's ability to suppress small fluctuations around steady-state behaviors. We find that even a simple system consisting of two variables linked by a single interaction is capable of amplifying small fluctuations orders of magnitude beyond the levels predicted by linear stability theory. We also find that adding additional interactions can promote further amplification, even when these interactions implement classic design strategies known to suppress fluctuations. These results establish that transient amplification is an essential factor determining baseline noise levels in stable intracellular networks. Significantly, our analysis is not bound to specific systems or interaction mechanisms: we find that noise amplification is an emergent phenomenon found near steady states in any network containing sufficiently strong interactions, regardless of its form or function. PMID:26871109

  11. Stimulus-dependent suppression of chaos in recurrent neural networks

    SciTech Connect

    Rajan, Kanaka; Abbott, L. F.; Sompolinsky, Haim

    2010-07-15

    Neuronal activity arises from an interaction between ongoing firing generated spontaneously by neural circuits and responses driven by external stimuli. Using mean-field analysis, we ask how a neural network that intrinsically generates chaotic patterns of activity can remain sensitive to extrinsic input. We find that inputs not only drive network responses, but they also actively suppress ongoing activity, ultimately leading to a phase transition in which chaos is completely eliminated. The critical input intensity at the phase transition is a nonmonotonic function of stimulus frequency, revealing a 'resonant' frequency at which the input is most effective at suppressing chaos even though the power spectrum of the spontaneous activity peaks at zero and falls exponentially. A prediction of our analysis is that the variance of neural responses should be most strongly suppressed at frequencies matching the range over which many sensory systems operate.

  12. Neuronal Networks during Burst Suppression as Revealed by Source Analysis

    PubMed Central

    Reinicke, Christine; Moeller, Friederike; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Pressler, Ronit; Deuschl, Günther; Stephani, Ulrich; Siniatchkin, Michael

    2015-01-01

    Introduction Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG. Material/Methods Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources. Results/Conclusion Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of

  13. The ILIAS project for selective isobar suppression by laser photodetachment

    NASA Astrophysics Data System (ADS)

    Forstner, Oliver; Andersson, Pontus; Hanstorp, Dag; Lahner, Johannes; Martschini, Martin; Pitters, Johanna; Priller, Alfred; Steier, Peter; Golser, Robin

    2015-10-01

    Laser photodetachment is the process when the extra electron of a negative ion is removed by means of laser radiation. This can happen only if the photon energy is larger than the electron affinity of the ion. The process can be used in mass spectrometry to selectively suppress unwanted isobars, provided that the electron affinity of the unwanted isobar is lower than that of the isobar under investigation. At the Ion Laser InterAction Setup (ILIAS) at the University of Vienna laser photodetachment of negative atomic and molecular ions is studied and its applicability for selective isobar suppression in accelerator mass spectrometry (AMS) is evaluated. The setup provides mass separated beams of negative ions with energies up to 30 keV. Negative ions are produced in a Middleton type cesium sputter ion source, mass selected and overlapped with a strong continuous wave laser beam. In order to extend the interaction time of ions and laser, the ion beam is decelerated to thermal energies in a gas-filled radio frequency quadrupole cooler. For an appropriate choice of the photon energy, unwanted isobars are neutralized while the isobar of interest is unaffected and remains negatively charged. A description of the ILIAS setup and results from the commissioning phase of the RFQ cooler are presented. Up to 8% ion beam transmission could be achieved after a recent redesign of the extraction system. Furthermore first results of photodetachment experiments of 63Cu- within the RFQ cooler are presented.

  14. Sorting network for the partial selection problem

    NASA Astrophysics Data System (ADS)

    Belzile, Jean; Savaria, Yvon; Haccoun, David

    Sorting networks and switching networks are widely used in the communication world. Partial selection networks have applications in areas where a single answer is desired but several paths are explored such as in suboptimal breadth-first tree searching algorithms. A technique is introduced which permits the evaluation of any network in terms of average selection and in terms of the number of elements that are always in the partial selection set. The Banyan network was examined using the method and it was found that the quality of the selection decreases as the size of the input set grows. It was also shown that the sorting networks such as the Banyan are not necessarily the best choices for selection problems. Networks which partially sort two sets and then compare the two sets together can achieve much better selection. These two types of network offer a higher number of guaranteed items than the Banyan network for all considered values of elements. Finally, it was noted that deterministic pre-ordering, if present, can also be used to configure a network.

  15. Targeting prion-like protein doppel selectively suppresses tumor angiogenesis

    PubMed Central

    Al-Hilal, Taslim A.; Chung, Seung Woo; Choi, Jeong Uk; Kim, Seong Who; Kim, Sang Yoon; Ahsan, Fakhrul; Kim, In-San

    2016-01-01

    Controlled and site-specific regulation of growth factor signaling remains a major challenge for current antiangiogenic therapies, as these antiangiogenic agents target normal vasculature as well tumor vasculature. In this article, we identified the prion-like protein doppel as a potential therapeutic target for tumor angiogenesis. We investigated the interactions between doppel and VEGFR2 and evaluated whether blocking the doppel/VEGFR2 axis suppresses the process of angiogenesis. We discovered that tumor endothelial cells (TECs), but not normal ECs, express doppel; tumors from patients and mouse xenografts expressed doppel in their vasculatures. Induced doppel overexpression in ECs enhanced vascularization, whereas doppel constitutively colocalized and complexed with VEGFR2 in TECs. Doppel inhibition depleted VEGFR2 from the cell membrane, subsequently inducing the internalization and degradation of VEGFR2 and thereby attenuating VEGFR2 signaling. We also synthesized an orally active glycosaminoglycan (LHbisD4) that specifically binds with doppel. We determined that LHbisD4 concentrates over the tumor site and that genetic loss of doppel in TECs decreases LHbisD4 binding and targeting both in vitro and in vivo. Moreover, LHbisD4 eliminated VEGFR2 from the cell membrane, prevented VEGF binding in TECs, and suppressed tumor growth. Together, our results demonstrate that blocking doppel can control VEGF signaling in TECs and selectively inhibit tumor angiogenesis. PMID:26950422

  16. Suppressing disease spreading by using information diffusion on multiplex networks

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A.; Stanley, H. Eugene

    2016-07-01

    Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.

  17. Suppressing disease spreading by using information diffusion on multiplex networks.

    PubMed

    Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A; Stanley, H Eugene

    2016-01-01

    Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate. PMID:27380881

  18. Suppressing disease spreading by using information diffusion on multiplex networks

    PubMed Central

    Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A.; Stanley, H. Eugene

    2016-01-01

    Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate. PMID:27380881

  19. Selective Serotonin Reuptake Inhibitor Suppression of HIV Infectivity and Replication

    PubMed Central

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R.; Tustin, Nancy B.; Lai, Jian Ping; Metzger, David S.; Blume, Joshua; Douglas, Steven D.; Evans, Dwight L.

    2010-01-01

    Objective To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down regulate HIV infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/AIDS. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells (NK) cells and CD8+ lymphocytes, key regulators of HIV infection. Methods Ex-vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication, in 48 depressed and non-depressed women. For both the acute and chronic infection models, HIV reverse transcriptase (RT) activity was measured in the citalopram treatment condition and the control condition. Results The SSRI significantly downregulated the RT response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. Conclusions These studies suggest that an SSRI enhances NK/CD8 non-cytolytic HIV suppression in HIV/AIDS and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV. PMID:20947783

  20. Stochastic cycle selection in active flow networks.

    PubMed

    Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn

    2016-07-19

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  1. Pattern Selection in Network of Coupled Multi-Scroll Attractors

    PubMed Central

    Li, Fan

    2016-01-01

    Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behaviors. The collective behaviors of coupled oscillators with multi-scroll attractors are investigated in the regular network in two-dimensional array, which the local kinetics is described by an improved Chua circuit. A feasible scheme of negative feedback with diversity is imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved by replacing the nonlinear term with Sine function to generate infinite aquariums so that multi-scroll chaotic attractors could be generated under appropriate parameters, which could be detected by calculating the Lyapunov exponent in the parameter region. Furthermore, negative feedback with different gains (D1, D2) is imposed on the local square center area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be developed in the network under appropriate feedback gain with diversity and size of controlled area. Particularly, homogeneous state could be reached after synchronization by selecting appropriate feedback gain and controlled size in the network. Finally, the distribution for statistical factors of synchronization is calculated in the two-parameter space to understand the transition of pattern region. It is found that developed spiral waves, target waves often are associated with smaller factor of synchronization. These results show that emergence of sustained spiral wave and continuous target wave could be effective for further suppression of spatiotemporal chaos in network by generating stable pacemaker completely. PMID:27119986

  2. Pattern Selection in Network of Coupled Multi-Scroll Attractors.

    PubMed

    Li, Fan; Ma, Jun

    2016-01-01

    Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behaviors. The collective behaviors of coupled oscillators with multi-scroll attractors are investigated in the regular network in two-dimensional array, which the local kinetics is described by an improved Chua circuit. A feasible scheme of negative feedback with diversity is imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved by replacing the nonlinear term with Sine function to generate infinite aquariums so that multi-scroll chaotic attractors could be generated under appropriate parameters, which could be detected by calculating the Lyapunov exponent in the parameter region. Furthermore, negative feedback with different gains (D1, D2) is imposed on the local square center area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be developed in the network under appropriate feedback gain with diversity and size of controlled area. Particularly, homogeneous state could be reached after synchronization by selecting appropriate feedback gain and controlled size in the network. Finally, the distribution for statistical factors of synchronization is calculated in the two-parameter space to understand the transition of pattern region. It is found that developed spiral waves, target waves often are associated with smaller factor of synchronization. These results show that emergence of sustained spiral wave and continuous target wave could be effective for further suppression of spatiotemporal chaos in network by generating stable pacemaker completely. PMID:27119986

  3. Selection of hydrate suppression methods for gas streams

    SciTech Connect

    Behrens, S.D.; Covington, K.K.; Collie, J.T. III

    1999-07-01

    This paper will discuss and compare the methods used to suppress hydrate formation in natural gas streams. Included in the comparison will be regenerated systems using ethylene glycol and non-regenerated systems using methanol. A comparison will be made between the quantities of methanol and ethylene glycol required to achieve a given a suppression. A discussion of BTEX emissions resulting from the ethylene glycol regenerator along with the effect or process variables on these emissions is also given.

  4. Network Selection: A Method for Ranked Lists Selection

    PubMed Central

    Figini, Silvia

    2012-01-01

    We consider the problem of finding the set of rankings that best represents a given group of orderings on the same collection of elements (preference lists). This problem arises from social choice and voting theory, in which each voter gives a preference on a set of alternatives, and a system outputs a single preference order based on the observed voters’ preferences. In this paper, we observe that, if the given set of preference lists is not homogeneous, a unique true underling ranking might not exist. Moreover only the lists that share the highest amount of information should be aggregated, and thus multiple rankings might provide a more feasible solution to the problem. In this light, we propose Network Selection, an algorithm that, given a heterogeneous group of rankings, first discovers the different communities of homogeneous rankings and then combines only the rank orderings belonging to the same community into a single final ordering. Our novel approach is inspired by graph theory; indeed our set of lists can be loosely read as the nodes of a network. As a consequence, only the lists populating the same community in the network would then be aggregated. In order to highlight the strength of our proposal, we show an application both on simulated and on two real datasets, namely a financial and a biological dataset. Experimental results on simulated data show that Network Selection can significantly outperform existing related methods. The other way around, the empirical evidence achieved on real financial data reveals that Network Selection is also able to select the most relevant variables in data mining predictive models, providing a clear superiority in terms of predictive power of the models built. Furthermore, we show the potentiality of our proposal in the bioinformatics field, providing an application to a biological microarray dataset. PMID:22937075

  5. Modality-specificity of Selective Attention Networks

    PubMed Central

    Stewart, Hannah J.; Amitay, Sygal

    2015-01-01

    Objective: To establish the modality specificity and generality of selective attention networks. Method: Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resolution networks. The measures were subjected to an exploratory factor analysis to assess underlying attention constructs. Results: The analysis yielded a four-component solution. The first component comprised of a range of measures from the TEA and was labeled “general attention.” The third component was labeled “auditory attention,” as it only contained measures from the TAiL using pitch as the attended stimulus feature. The second and fourth components were labeled as “spatial orienting” and “spatial conflict,” respectively—they were comprised of orienting and conflict resolution measures from the vANT, aANT, and TAiL attend-location task—all tasks based upon spatial judgments (e.g., the direction of a target arrow or sound location). Conclusions: These results do not support our a-priori hypothesis that attention networks are either modality specific or supramodal. Auditory attention separated into selectively attending to spatial and non-spatial features, with the auditory spatial attention loading onto the same factor as visual spatial attention, suggesting spatial attention is supramodal. However, since our study did not include a non-spatial measure of visual attention, further research will be required to ascertain whether non-spatial attention is modality-specific. PMID:26635709

  6. Suppressing epidemics on networks by exploiting observer nodes

    NASA Astrophysics Data System (ADS)

    Takaguchi, Taro; Hasegawa, Takehisa; Yoshida, Yuichi

    2014-07-01

    To control infection spreading on networks, we investigate the effect of observer nodes that recognize infection in a neighboring node and make the rest of the neighbor nodes immune. We numerically show that random placement of observer nodes works better on networks with clustering than on locally treelike networks, implying that our model is promising for realistic social networks. The efficiency of several heuristic schemes for observer placement is also examined for synthetic and empirical networks. In parallel with numerical simulations of epidemic dynamics, we also show that the effect of observer placement can be assessed by the size of the largest connected component of networks remaining after removing observer nodes and links between their neighboring nodes.

  7. Suppressed Conductance From Spin Selection Rules in F-CNT-F Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hartman, Nikolaus; Morgan-Wall, Tyler; Markovic, Nina

    Conductance through a quantum dot can be suppressed due to spin selection rules governing the hoping of an additional electron onto an already-occupied quantum dot. Measurements of this effect in a carbon nanotube quantum dot with ferromagnetic contacts will be presented. Suppressed conductance peaks are observed in the Coulomb diamond plots at zero field and explained using spin selection rules. The pattern of suppressed peaks is observed to change with applied magnetic field as the spin ground state of the occupied quantum dot changes. This work was supported by NSF DMR-1106167.

  8. Genetic Suppression of Transgenic APP Rescues Hypersynchronous Network Activity in a Mouse Model of Alzeimer's Disease

    PubMed Central

    Born, Heather A.; Kim, Ji-Yoen; Savjani, Ricky R.; Das, Pritam; Dabaghian, Yuri A.; Guo, Qinxi; Yoo, Jong W.; Schuler, Dorothy R.; Cirrito, John R.; Zheng, Hui; Golde, Todd E.; Noebels, Jeffrey L.

    2014-01-01

    Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology. PMID:24623762

  9. Genetic suppression of transgenic APP rescues Hypersynchronous network activity in a mouse model of Alzeimer's disease.

    PubMed

    Born, Heather A; Kim, Ji-Yoen; Savjani, Ricky R; Das, Pritam; Dabaghian, Yuri A; Guo, Qinxi; Yoo, Jong W; Schuler, Dorothy R; Cirrito, John R; Zheng, Hui; Golde, Todd E; Noebels, Jeffrey L; Jankowsky, Joanna L

    2014-03-12

    Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology. PMID:24623762

  10. Botulinum Toxin Suppression of CNS Network Activity In Vitro

    PubMed Central

    Pancrazio, Joseph J.; Gopal, Kamakshi; Keefer, Edward W.; Gross, Guenter W.

    2014-01-01

    The botulinum toxins are potent agents which disrupt synaptic transmission. While the standard method for BoNT detection and quantification is based on the mouse lethality assay, we have examined whether alterations in cultured neuronal network activity can be used to detect the functional effects of BoNT. Murine spinal cord and frontal cortex networks cultured on substrate integrated microelectrode arrays allowed monitoring of spontaneous spike and burst activity with exposure to BoNT serotype A (BoNT-A). Exposure to BoNT-A inhibited spike activity in cultured neuronal networks where, after a delay due to toxin internalization, the rate of activity loss depended on toxin concentration. Over a 30 hr exposure to BoNT-A, the minimum concentration detected was 2 ng/mL, a level consistent with mouse lethality studies. A small proportion of spinal cord networks, but not frontal cortex networks, showed a transient increase in spike and burst activity with exposure to BoNT-A, an effect likely due to preferential inhibition of inhibitory synapses expressed in this tissue. Lastly, prior exposure to human-derived antisera containing neutralizing antibodies prevented BoNT-A induced inhibition of network spike activity. These observations suggest that the extracellular recording from cultured neuronal networks can be used to detect and quantify functional BoNT effects. PMID:24688538

  11. Botulinum toxin suppression of CNS network activity in vitro.

    PubMed

    Pancrazio, Joseph J; Gopal, Kamakshi; Keefer, Edward W; Gross, Guenter W

    2014-01-01

    The botulinum toxins are potent agents which disrupt synaptic transmission. While the standard method for BoNT detection and quantification is based on the mouse lethality assay, we have examined whether alterations in cultured neuronal network activity can be used to detect the functional effects of BoNT. Murine spinal cord and frontal cortex networks cultured on substrate integrated microelectrode arrays allowed monitoring of spontaneous spike and burst activity with exposure to BoNT serotype A (BoNT-A). Exposure to BoNT-A inhibited spike activity in cultured neuronal networks where, after a delay due to toxin internalization, the rate of activity loss depended on toxin concentration. Over a 30 hr exposure to BoNT-A, the minimum concentration detected was 2 ng/mL, a level consistent with mouse lethality studies. A small proportion of spinal cord networks, but not frontal cortex networks, showed a transient increase in spike and burst activity with exposure to BoNT-A, an effect likely due to preferential inhibition of inhibitory synapses expressed in this tissue. Lastly, prior exposure to human-derived antisera containing neutralizing antibodies prevented BoNT-A induced inhibition of network spike activity. These observations suggest that the extracellular recording from cultured neuronal networks can be used to detect and quantify functional BoNT effects. PMID:24688538

  12. S5FP: Spectrally Selective Suppression with Steady State Free Precession

    PubMed Central

    Derbyshire, J. A.; Herzka, D. A.; McVeigh, E. R.

    2007-01-01

    A method is presented that employs the inherent spectral selectivity of the Steady-State Free Precession (SSFP) pulse sequence to provide a spectral band of suppression. At TE = TR/2, SSFP partitions the magnetization into two phase-opposed spectral components. Z-storing one of these components simultaneously further excites the other, which is then suppressed by gradient crushing and RF spoiling. The Spectrally Selective Suppression with SSFP (S5FP) method is shown to provide significant attenuation of fat signals, while the water signals are essentially unaffected and provide the normal SSFP contrast. Fat suppression is achieved with relatively little temporal overhead (less than 10% reduction in temporal resolution). S5FP was validated using simulations, phantoms, and human studies. Published 2005 Wiley-Liss, Inc.† PMID:16155880

  13. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.

    PubMed

    Manley, Geoffrey A; van Dijk, Pim

    2016-06-01

    Frequency selectivity is a key functional property of the inner ear and since hearing research began, the frequency resolution of the human ear has been a central question. In contrast to animal studies, which permit invasive recording of neural activity, human studies must rely on indirect methods to determine hearing selectivity. Psychophysical studies, which used masking of a tone by other sounds, indicate a modest frequency selectivity in humans. By contrast, estimates using the phase delays of stimulus-frequency otoacoustic emissions (SFOAE) predict a remarkably high selectivity, unique among mammals. An alternative measure of cochlear frequency selectivity are suppression tuning curves of spontaneous otoacoustic emissions (SOAE). Several animal studies show that these measures are in excellent agreement with neural frequency selectivity. Here we contribute a large data set from normal-hearing young humans on suppression tuning curves (STC) of spontaneous otoacoustic emissions (SOAE). The frequency selectivities of human STC measured near threshold levels agree with the earlier, much lower, psychophysical estimates. They differ, however, from the typical patterns seen in animal auditory nerve data in that the selectivity is remarkably independent of frequency. In addition, SOAE are suppressed by higher-level tones in narrow frequency bands clearly above the main suppression frequencies. These narrow suppression bands suggest interactions between the suppressor tone and a cochlear standing wave corresponding to the SOAE frequency being suppressed. The data show that the relationship between pre-neural mechanical processing in the cochlea and neural coding at the hair-cell/auditory nerve synapse needs to be reconsidered. PMID:27139323

  14. Inclusive fitness effects can select for cancer suppression into old age

    PubMed Central

    Brown, Joel S.; Aktipis, C. Athena

    2015-01-01

    Natural selection can favour health at youth or middle age (high reproductive value) over health at old age (low reproductive value). This means, all else being equal, selection for cancer suppression should dramatically drop after reproductive age. However, in species with significant parental investment, the capacity to enhance inclusive fitness may increase the reproductive value of older individuals or even those past reproductive age. Variation in parental investment levels could therefore contribute to variation in cancer susceptibility across species. In this article, we describe a simple model and framework for the evolution of cancer suppression with varying levels of parental investment and use this model to make testable predictions about variation in cancer suppression across species. This model can be extended to show that selection for cancer suppression is stronger in species with cooperative breeding systems and intergenerational transfers. We consider three cases that can select for cancer suppression into old age: (i) extended parental care that increases the survivorship of their offspring, (ii) grandparents contributing to higher fecundity of their children and (iii) cooperative breeding where helpers forgo reproduction or even survivorship to assist parents in having higher fecundity. PMID:26056358

  15. On the properties of artificial neural network filters for bone-suppressed digital radiography

    NASA Astrophysics Data System (ADS)

    Park, Eunpyeong; Park, Junbeom; Kim, Daecheon; Youn, Hanbean; Jeon, Hosang; Kim, Jin Sung; Kang, Dong-Joong; Kim, Ho Kyung

    2016-04-01

    Dual-energy imaging can enhance lesion conspicuity. However, the conventional (fast kilovoltage switching) dual-shot dual-energy imaging is vulnerable to patient motion. The single-shot method requires a special design of detector system. Alternatively, single-shot bone-suppressed imaging is possible using post-image processing combined with a filter obtained from training an artificial neural network. In this study, the authors investigate the general properties of artificial neural network filters for bone-suppressed digital radiography. The filter properties are characterized in terms of various parameters such as the size of input vector, the number of hidden units, the learning rate, and so on. The preliminary result shows that the bone-suppressed image obtained from the filter, which is designed with 5,000 teaching images from a single radiograph, results in about 95% similarity with a commercial bone-enhanced image.

  16. Supplier Selection in Virtual Enterprise Model of Manufacturing Supply Network

    NASA Astrophysics Data System (ADS)

    Kaihara, Toshiya; Opadiji, Jayeola F.

    The market-based approach to manufacturing supply network planning focuses on the competitive attitudes of various enterprises in the network to generate plans that seek to maximize the throughput of the network. It is this competitive behaviour of the member units that we explore in proposing a solution model for a supplier selection problem in convergent manufacturing supply networks. We present a formulation of autonomous units of the network as trading agents in a virtual enterprise network interacting to deliver value to market consumers and discuss the effect of internal and external trading parameters on the selection of suppliers by enterprise units.

  17. Depolarization Induced Suppression of Excitation and the Emergence of Ultraslow Rhythms in Neural Networks

    NASA Astrophysics Data System (ADS)

    Hlinka, J.; Coombes, S.

    2010-02-01

    Ultraslow fluctuations (0.01-0.1 Hz) are a feature of intrinsic brain activity of as yet unclear origin. We propose a candidate mechanism based on retrograde endocannabinoid signaling in a synaptically coupled network of excitatory neurons. This is known to cause depolarization-induced suppression of excitation (DISE), which we model phenomenologically. We construct emergent network oscillations in a globally coupled network and show that for strong synaptic coupling DISE can lead to a synchronized population burst at the frequencies of resting brain rhythms.

  18. Suppression of bursting synchronization in clustered scale-free (rich-club) neuronal networks

    NASA Astrophysics Data System (ADS)

    Lameu, E. L.; Batista, C. A. S.; Batista, A. M.; Iarosz, K.; Viana, R. L.; Lopes, S. R.; Kurths, J.

    2012-12-01

    Functional brain networks are composed of cortical areas that are anatomically and functionally connected. One of the cortical networks for which more information is available in the literature is the cat cerebral cortex. Statistical analyses of the latter suggest that its structure can be described as a clustered network, in which each cluster is a scale-free network possessing highly connected hubs. Those hubs are, on their hand, connected together in a strong fashion ("rich-club" network). We have built a clustered scale-free network inspired in the cat cortex structure so as to study their dynamical properties. In this article, we focus on the synchronization of bursting activity of the cortical areas and how it can be suppressed by means of neuron deactivation through suitably applied light pulses. We show that it is possible to effectively suppress bursting synchronization by acting on a single, yet suitably chosen neuron, as long as it is highly connected, thanks to the "rich-club" structure of the network.

  19. 5-Fluorouracil targets thymidylate synthase in the selective suppression of TH17 cell differentiation

    PubMed Central

    Wang, Juan; Peng, Liang; Zhang, Ruihua; Zheng, Zihan; Chen, Chun; Cheung, Ka Lung; Cui, Miao; Bian, Guanglin; Xu, Feihong; Chiang, David; Hu, Yuan; Chen, Ye; Lu, Geming; Yang, Jianjun; Zhang, Hui; Yang, Jianfei; Zhu, Hongfa; Chen, Shu-hsia; Liu, Kebin; Zhou, Ming-Ming; Sikora, Andrew G.; Li, Liwu; Jiang, Bo; Xiong, Huabao

    2016-01-01

    While it is well established that treatment of cancer patients with 5-Fluorouracil (5-FU) can result in immune suppression, the exact function of 5-FU in the modulation of immune cells has not been fully established. We found that low dose 5-FU selectively suppresses TH17 and TH1 cell differentiation without apparent effect on Treg, TH2, and significantly suppresses thymidylate synthase (TS) expression in TH17 and TH1 cells but has a lesser effect in tumor cells and macrophages. Interestingly, the basal expression of TS varies significantly between T helper phenotypes and knockdown of TS significantly impairs TH17 and TH1 cell differentiation without affecting the differentiation of either Treg or TH2 cells. Finally, low dose 5-FU is effective in ameliorating colitis development by suppressing TH17 and TH1 cell development in a T cell transfer colitis model. Taken together, the results highlight the importance of the anti-inflammatory functions of low dose 5-FU by selectively suppressing TH17 and TH1 immune responses. PMID:27027355

  20. Computer-Based Information Networks: Selected Examples.

    ERIC Educational Resources Information Center

    Hardesty, Larry

    The history, purpose, and operation of six computer-based information networks are described in general and nontechnical terms. In the introduction the many definitions of an information network are explored. Ohio College Library Center's network (OCLC) is the first example. OCLC began in 1963, and since early 1973 has been extending its services…

  1. Formal Mate Selection Networks in the United States.

    ERIC Educational Resources Information Center

    Jedlicka, Davor

    1980-01-01

    Mate selection barriers beyond individuals' control are presented as reasons for development of formal mate selection networks. Network processes are described and classified according to the degree of third-party involvement and the degree to which anonymity of participants is protected. (Author)

  2. A lack of default network suppression is linked to increased distractibility in ADHD

    PubMed Central

    Fassbender, Catherine; Zhang, Hao; Buzy, Wendy M.; Cortes, Carlos R.; Mizuiri, Danielle; Beckett, Laurel; Schweitzer, Julie B.

    2015-01-01

    Heightened distractibility in participants with ADHD as indexed by increased reaction time (RT) variability has been hypothesized to be due to a failure to sufficiently suppress activation in the default attention network during cognitively demanding situations. The present study utilized fMRI to examine the relationship between intra-individual variability (IIV) in task RT and suppression of BOLD response in regions of the default network, using a working memory paradigm and two levels of control tasks. IIV was calculated separately for thirteen healthy control and twelve children with ADHD, Combined Type. Children with ADHD displayed significantly more RT variability than controls. Neural measures showed that although both groups displayed a pattern of increasing deactivation of the medial prefrontal cortex (PFC) with increasing task difficulty, the ADHD group was significantly less deactive than controls. Correlations between IIV and brain activation suggested that greater variability was associated with a failure to deactivate ventromedial PFC with increasing task difficulty. T-tests on brain activation between participants with ADHD with low versus high IIV implicated a similar region so that high variability was associated with greater activity in this region. These data provide support for the theory that increased distractibility in at least some participants with ADHD may be due to an inability to sufficiently suppress activity in the default attention network in response to increasing task difficulty. PMID:19281801

  3. Selective suppression of high order axial modes of the gyrotron backward-wave oscillator

    SciTech Connect

    Pao, K. F.; Fan, C. T.; Chang, T. H.; Chiu, C. C.; Chu, K. R.

    2007-09-15

    Selective suppression of high order axial modes of the gyrotron backward-wave oscillator (gyro-BWO) is investigated in theory and in experiment. The gyro-BWO interaction is much more efficient in a down-tapered interaction structure, while it is also more susceptible to the problem of axial mode competition in such a structure. Because higher order axial modes (at a higher oscillation frequency) penetrate deeper into the interaction structure, application of distributed wall loss at the downstream end of the interaction structure is shown to be effective for selective suppression of these modes with minor effects on the efficiency of the desired fundamental axial mode. A stable gyro-BWO operating in a single mode throughout the entire beam pulse is demonstrated on the basis of this principle. Theoretical and experimental results are found to be in good agreement.

  4. Bidirectional selection between two classes in complex social networks

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-12-01

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.

  5. Bidirectional selection between two classes in complex social networks

    PubMed Central

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-01-01

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks. PMID:25524835

  6. Network selection, Information filtering and Scalable computation

    NASA Astrophysics Data System (ADS)

    Ye, Changqing

    This dissertation explores two application scenarios of sparsity pursuit method on large scale data sets. The first scenario is classification and regression in analyzing high dimensional structured data, where predictors corresponds to nodes of a given directed graph. This arises in, for instance, identification of disease genes for the Parkinson's diseases from a network of candidate genes. In such a situation, directed graph describes dependencies among the genes, where direction of edges represent certain causal effects. Key to high-dimensional structured classification and regression is how to utilize dependencies among predictors as specified by directions of the graph. In this dissertation, we develop a novel method that fully takes into account such dependencies formulated through certain nonlinear constraints. We apply the proposed method to two applications, feature selection in large margin binary classification and in linear regression. We implement the proposed method through difference convex programming for the cost function and constraints. Finally, theoretical and numerical analyses suggest that the proposed method achieves the desired objectives. An application to disease gene identification is presented. The second application scenario is personalized information filtering which extracts the information specifically relevant to a user, predicting his/her preference over a large number of items, based on the opinions of users who think alike or its content. This problem is cast into the framework of regression and classification, where we introduce novel partial latent models to integrate additional user-specific and content-specific predictors, for higher predictive accuracy. In particular, we factorize a user-over-item preference matrix into a product of two matrices, each representing a user's preference and an item preference by users. Then we propose a likelihood method to seek a sparsest latent factorization, from a class of over

  7. Selective suppression of carrier-driven photochemical etching: Raman spectroscopy as a diagnostic tool

    SciTech Connect

    Ashby, C.I.H.; Myers, D.R.; Vawter, G.A.; Biefeld, R.M.; Klem, J.F.

    1990-01-01

    Carrier-driven photochemical etching of semiconductors can be selectively suppressed by altering the near-surface region to enhance carrier recombination, thereby reducing the supply of carriers that drive the surface etching reaction. Two methods for enhancing recombination and decreasing the etch rate at a given phonon flux include ion implantation and localized Zn diffusion. Raman spectroscopy can be employed to determine whether sufficient alterations of electronic properties has occurred to suppress etching. Carrier-driven photochemical reactions, which require direct participation of free carriers for the chemical reaction to proceed, can be selectively suppressed by increasing the minority carrier recombination rate, thereby reducing the supply of carriers that drive the surface etching reaction. Two methods for enhancing recombination and decreasing the etching quantum yield, which is the number of atoms removed per incident photon, include ion implantation and localized Zn diffusion. For ion implantation, recombination- promoting defect concentrations depend on ion species, fluence, and annealing both during and after the implantation process. Other recombination processes related to carrier scattering from ionized impurities from in-diffusion of dopants or following implant activation can control etching. Raman spectroscopy can be employed to detect changes in electronic properties that correlate with etching suppression. Changes that occur in the LO-phonon lineshape, such as those associated with phonon confinement and ionized impurity scattering, can be diagnostic of the carrier-driven etching behavior following a specific treatment. We have demonstrated two applications of Raman spectroscopy as a diagnostic for suppression of the carrier-driven photochemical etching of GaAs. 12 refs., 3 figs.

  8. Incorporating spatial criteria in optimum reserve network selection.

    PubMed Central

    Onal, Hayri; Briers, Robert A

    2002-01-01

    Considering the spatial location of sites that are to be selected for inclusion in a protected reserve network may be necessary to facilitate dispersal and long-term persistence of species in the selected sites. This paper presents an integer programming (IP) approach to the reserve network selection problem where spatial considerations based on intersite distances are taken into account when selecting reserve sites. The objective is to reduce the fragmentation of preserved sites and design a compact reserve network. Two IP formulations are developed which minimize the sum of pairwise distances and the maximum intersite distance between all sites in the reserve network, respectively, while representing all species under consideration. This approach is applied to a pond invertebrate dataset consisting of 131 sites containing 256 species in Oxfordshire, UK. The results show that significant reductions in reserve fragmentation can be achieved, compared with spatially unrestricted optimum reserve selection, at the expense of a small loss in reserve efficiency. PMID:12495486

  9. Voluntary strategy suppresses the positive impact of preferential selection in prisoner’s dilemma

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Lin, Pei-jie; Chen, Ya-shan

    2014-11-01

    Impact of aspiration is ubiquitous in social and biological disciplines. In this work, we try to explore the impact of such a trait on voluntary prisoners’ dilemma game via a selection parameter w. w=0 returns the traditional version of random selection. For positive w, the opponent of high payoff will be selected; while negative w means that the partner of low payoff will be chosen. We find that for positive w, cooperation will be greatly promoted in the interval of small b, at variance cooperation is inhibited with large b. For negative w, cooperation is fully restrained, irrespective of b value. It is found that the positive impact of preferential selection is suppressed by the voluntary strategy in prisoner’s dilemma. These observations can be supported by the spatial patterns. Our work may shed light on the emergence and persistence of cooperation with voluntary participation in social dilemma.

  10. Selective Memories: Infants' Encoding Is Enhanced in Selection via Suppression

    ERIC Educational Resources Information Center

    Markant, Julie; Amso, Dima

    2013-01-01

    The present study examined the hypothesis that inhibitory visual selection mechanisms play a vital role in memory by limiting distractor interference during item encoding. In Experiment 1a we used a modified spatial cueing task in which 9-month-old infants encoded multiple category exemplars in the contexts of an attention orienting mechanism…

  11. Networks in Education: An Analysis of Selected Discourses

    ERIC Educational Resources Information Center

    Sousa, Sofia Branco; Doroftei, Alexandra Oliveira; Araújo, Helena Costa

    2013-01-01

    "Network" is a fashionable and current term in every field of contemporary society and education is no exception. In this paper, the concept of network (and other associated concepts, such as partnership and collaboration) is reviewed. Such revision regards selected theoretical contributions and is explored in terms of the use of the…

  12. Popularity and Adolescent Friendship Networks: Selection and Influence Dynamics

    ERIC Educational Resources Information Center

    Dijkstra, Jan Kornelis; Cillessen, Antonius H. N.; Borch, Casey

    2013-01-01

    This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to enhance their status through befriending higher…

  13. The nest site lottery: how selectively neutral density dependent growth suppression induces frequency dependent selection.

    PubMed

    Argasinski, K; Broom, M

    2013-12-01

    Modern developments in population dynamics emphasize the role of the turnover of individuals. In the new approaches stable population size is a dynamic equilibrium between different mortality and fecundity factors instead of an arbitrary fixed carrying capacity. The latest replicator dynamics models assume that regulation of the population size acts through feedback driven by density dependent juvenile mortality. Here, we consider a simplified model to extract the properties of this approach. We show that at the stable population size, the structure of the frequency dependent evolutionary game emerges. Turnover of individuals induces a lottery mechanism where for each nest site released by a dead adult individual a single newborn is drawn from the pool of newborn candidates. This frequency dependent selection leads towards the strategy maximizing the number of newborns per adult death. However, multiple strategies can maximize this value. Among them, the strategy with the greatest mortality (which implies the greatest instantaneous growth rate) is selected. This result is important for the discussion about universal fitness measures and which parameters are maximized by natural selection. This is related to the fitness measures R0 and r, because the number of newborns per single dead individual equals the lifetime production of newborn R0 in models without aging. We thus have a two-stage procedure, instead of a single fitness measure, which is a combination of R0 and r. According to the nest site lottery mechanism, at stable population size, selection favors strategies with the greatest r, i.e. those with the highest turnover, from those with the greatest R0. PMID:24071631

  14. Impaired language function in generalized epilepsy: inadequate suppression of the default mode network.

    PubMed

    Gauffin, Helena; van Ettinger-Veenstra, Helene; Landtblom, Anne-Marie; Ulrici, Daniel; McAllister, Anita; Karlsson, Thomas; Engström, Maria

    2013-07-01

    We aimed to study the effect of a potential default mode network (DMN) dysfunction on language performance in epilepsy. Language dysfunction in focal epilepsy has previously been connected to brain damage in language-associated cortical areas. In this work, we studied generalized epilepsy (GE) without focal brain damage to see if the language function was impaired. We used functional magnetic resonance imaging (fMRI) to investigate if the DMN was involved. Eleven persons with GE and 28 healthy controls were examined with fMRI during a sentence-reading task. We demonstrated impaired language function, reduced suppression of DMN, and, specifically, an inadequate suppression of activation in the left anterior temporal lobe and the posterior cingulate cortex, as well as an aberrant activation in the right hippocampal formation. Our results highlight the presence of language decline in people with epilepsy of not only focal but also generalized origin. PMID:23648277

  15. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks

    PubMed Central

    Fogelmark, Karl; Peterson, Carsten; Troein, Carl

    2016-01-01

    Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540

  16. Noisy Speech Recognition Based on Integration/Selection of Multiple Noise Suppression Methods Using Noise GMMs

    NASA Astrophysics Data System (ADS)

    Kitaoka, Norihide; Hamaguchi, Souta; Nakagawa, Seiichi

    To achieve high recognition performance for a wide variety of noise and for a wide range of signal-to-noise ratio, this paper presents methods for integration of four noise reduction algorithms: spectral subtraction with smoothing of time direction, temporal domain SVD-based speech enhancement, GMM-based speech estimation and KLT-based comb-filtering. In this paper, we proposed two types of combination methods of noise suppression algorithms: selection of front-end processor and combination of results from multiple recognition processes. Recognition results on the CENSREC-1 task showed the effectiveness of our proposed methods.kn-abstract=

  17. Intercellular redistribution of cAMP underlies selective suppression of cancer cell growth by connexin26.

    PubMed

    Chandrasekhar, Anjana; Kalmykov, Edward A; Polusani, Srikanth R; Mathis, Sandra A; Zucker, Shoshanna N; Nicholson, Bruce J

    2013-01-01

    Connexins (Cx), which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s) still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations. PMID:24312655

  18. Intercellular Redistribution of cAMP Underlies Selective Suppression of Cancer Cell Growth by Connexin26

    PubMed Central

    Polusani, Srikanth R.; Mathis, Sandra A.; Zucker, Shoshanna N.; Nicholson, Bruce J.

    2013-01-01

    Connexins (Cx), which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s) still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations. PMID:24312655

  19. Ubiquitylation of Autophagy Receptor Optineurin by HACE1 Activates Selective Autophagy for Tumor Suppression

    PubMed Central

    Liu, Zhengzhao; Chen, Peng; Gao, Hong; Gu, Yu; Yang, Jiao; Peng, Hong; Xu, Xingxing; Wang, Haifeng; Yang, Meiqiang; Liu, Xiaoying; Fan, Libin; Chen, Shiyao; Zhou, Jian; Sun, Yihong; Ruan, Kangchen; Cheng, Shuqun; Komatsu, Masaaki; White, Eileen; Li, Lin; Ji, Hongbin; Finley, Daniel; Hu, Ronggui

    2014-01-01

    Summary In selective autophagy, receptors are central for cargo selection and delivery. However, it remains yet unclear whether and how multiple autophagy receptors might form complex and function concertedly to control autophagy. Optineurin (OPTN), implicated genetically in glaucoma and amyotrophic lateral sclerosis, was a recently identified autophagy receptor. Here we report that tumor suppressor HACE1, a ubiquitin ligase, ubiquitylates OPTN and promotes its interaction with p62/SQSTM1 to form the autophagy receptor complex, thus accelerating autophagic flux. Interestingly, the K48-linked polyubiquitin chains that HACE1 conjugates onto OPTN might predominantly target OPTN for autophagic degradation. By demonstrating that the HACE1-OPTN axis synergistically suppresses growth and tumorigenicity of lung cancer cells, our findings may open an avenue for developing autophagy-targeted therapeutic intervention into cancer. PMID:25026213

  20. Suppression of Experimental Arthritis and Associated Bone Loss by a Tissue-Selective Estrogen Complex.

    PubMed

    Andersson, Annica; Bernardi, Angelina I; Nurkkala-Karlsson, Merja; Stubelius, Alexandra; Grahnemo, Louise; Ohlsson, Claes; Carlsten, Hans; Islander, Ulrika

    2016-03-01

    In addition to the systemic inflammation present in rheumatoid arthritis (RA), decreased estradiol levels in postmenopausal RA patients further accelerate bone loss in these patients. The tissue-selective estrogen complex (TSEC), an estrogen combined with a selective estrogen receptor modulator, is a new hormone replacement therapy option. The first approved TSEC, containing conjugated estrogens and bazedoxifene (BZA), reduces menopausal symptoms and prevents osteoporosis with an improved safety profile compared with conventional hormone replacement therapy. Previous studies have shown that estrogens strongly inhibit experimental arthritis whereas BZA is mildly suppressive. In this study the antiarthritic potential of combined BZA and estradiol is explored for the first time. Female ovariectomized DBA/1 mice were subjected to collagen-induced arthritis, an experimental postmenopausal RA model, and treated with BZA, 17β-estradiol (E2), combined BZA and E2 (BZA/E2), or vehicle. BZA/E2 suppressed arthritis severity and frequency, synovitis, and joint destruction, equally efficient as E2 alone. Unwanted estrogenic proliferative effects on the endometrium were blocked by the addition of BZA, determined by collecting uterine weights. Bone mineral density was measured by peripheral quantitative computed tomography, and all treatments protected collagen-induced arthritis mice from both trabecular and cortical bone loss. Moreover, BZA/E2, but not E2 alone, inhibited preosteoclast formation and reduced serum anticollagen type II antibodies. In conclusion, a TSEC, herein combined BZA/E2, suppresses experimental arthritis and prevents associated bone loss as efficiently as E2 alone but with minimal uterine effects, highlighting the need for clinical trials that evaluate the addition of a TSEC to conventional postmenopausal RA treatment. PMID:26745543

  1. Suppression of epidemic spreading in complex networks by local information based behavioral responses

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Xie, Jia-Rong; Tang, Ming; Lai, Ying-Cheng

    2014-12-01

    The interplay between individual behaviors and epidemic dynamics in complex networks is a topic of recent interest. In particular, individuals can obtain different types of information about the disease and respond by altering their behaviors, and this can affect the spreading dynamics, possibly in a significant way. We propose a model where individuals' behavioral response is based on a generic type of local information, i.e., the number of neighbors that has been infected with the disease. Mathematically, the response can be characterized by a reduction in the transmission rate by a factor that depends on the number of infected neighbors. Utilizing the standard susceptible-infected-susceptible and susceptible-infected-recovery dynamical models for epidemic spreading, we derive a theoretical formula for the epidemic threshold and provide numerical verification. Our analysis lays on a solid quantitative footing the intuition that individual behavioral response can in general suppress epidemic spreading. Furthermore, we find that the hub nodes play the role of "double-edged sword" in that they can either suppress or promote outbreak, depending on their responses to the epidemic, providing additional support for the idea that these nodes are key to controlling epidemic spreading in complex networks.

  2. Reduced default mode network suppression during a working memory task in remitted major depression

    PubMed Central

    Bartova, Lucie; Meyer, Bernhard M.; Diers, Kersten; Rabl, Ulrich; Scharinger, Christian; Popovic, Ana; Pail, Gerald; Kalcher, Klaudius; Boubela, Roland N.; Huemer, Julia; Mandorfer, Dominik; Windischberger, Christian; Sitte, Harald H.; Kasper, Siegfried; Praschak-Rieder, Nicole; Moser, Ewald; Brocke, Burkhard; Pezawas, Lukas

    2015-01-01

    Insufficient default mode network (DMN) suppression was linked to increased rumination in symptomatic Major Depressive Disorder (MDD). Since rumination is known to predict relapse and a more severe course of MDD, we hypothesized that similar DMN alterations might also exist during full remission of MDD (rMDD), a condition known to be associated with increased relapse rates specifically in patients with adolescent onset. Within a cross-sectional functional magnetic resonance imaging study activation and functional connectivity (FC) were investigated in 120 adults comprising 78 drug-free rMDD patients with adolescent- (n = 42) and adult-onset (n = 36) as well as 42 healthy controls (HC), while performing the n-back task. Compared to HC, rMDD patients showed diminished DMN deactivation with strongest differences in the anterior-medial prefrontal cortex (amPFC), which was further linked to increased rumination response style. On a brain systems level, rMDD patients showed an increased FC between the amPFC and the dorsolateral prefrontal cortex, which constitutes a key region of the antagonistic working-memory network. Both whole-brain analyses revealed significant differences between adolescent-onset rMDD patients and HC, while adult-onset rMDD patients showed no significant effects. Results of this study demonstrate that reduced DMN suppression exists even after full recovery of depressive symptoms, which appears to be specifically pronounced in adolescent-onset MDD patients. Our results encourage the investigation of DMN suppression as a putative predictor of relapse in clinical trials, which might eventually lead to important implications for antidepressant maintenance treatment. PMID:25801734

  3. Bayesian Nonlinear Model Selection for Gene Regulatory Networks

    PubMed Central

    Ni, Yang; Stingo, Francesco C.; Baladandayuthapani, Veerabhadran

    2015-01-01

    Summary Gene regulatory networks represent the regulatory relationships between genes and their products and are important for exploring and defining the underlying biological processes of cellular systems. We develop a novel framework to recover the structure of nonlinear gene regulatory networks using semiparametric spline-based directed acyclic graphical models. Our use of splines allows the model to have both flexibility in capturing nonlinear dependencies as well as control of overfitting via shrinkage, using mixed model representations of penalized splines. We propose a novel discrete mixture prior on the smoothing parameter of the splines that allows for simultaneous selection of both linear and nonlinear functional relationships as well as inducing sparsity in the edge selection. Using simulation studies, we demonstrate the superior performance of our methods in comparison with several existing approaches in terms of network reconstruction and functional selection. We apply our methods to a gene expression dataset in glioblastoma multiforme, which reveals several interesting and biologically relevant nonlinear relationships. PMID:25854759

  4. Popularity and adolescent friendship networks: selection and influence dynamics.

    PubMed

    Dijkstra, Jan Kornelis; Cillessen, Antonius H N; Borch, Casey

    2013-07-01

    This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to enhance their status through befriending higher status adolescents, whereas higher status adolescents strive to maintain their status by keeping lower status adolescents at a distance. The results largely supported these expectations. Selection partially accounted for similarity in popularity among friends; adolescents preferred to affiliate with similar-status or higher status peers, reinforcing the attractiveness of popular adolescents and explaining stability of popularity at the individual level. Influence processes also accounted for similarity in popularity over time, showing that peers increase in popularity and become more similar to their friends. The results showed how selection and influence processes account for popularity dynamics in adolescent networks over time. PMID:22985296

  5. Social networks predict selective observation and information spread in ravens

    PubMed Central

    Rubenstein, Daniel I.; Bugnyar, Thomas; Hoppitt, William; Mikus, Nace; Schwab, Christine

    2016-01-01

    Animals are predicted to selectively observe and learn from the conspecifics with whom they share social connections. Yet, hardly anything is known about the role of different connections in observation and learning. To address the relationships between social connections, observation and learning, we investigated transmission of information in two raven (Corvus corax) groups. First, we quantified social connections in each group by constructing networks on affiliative interactions, aggressive interactions and proximity. We then seeded novel information by training one group member on a novel task and allowing others to observe. In each group, an observation network based on who observed whose task-solving behaviour was strongly correlated with networks based on affiliative interactions and proximity. Ravens with high social centrality (strength, eigenvector, information centrality) in the affiliative interaction network were also central in the observation network, possibly as a result of solving the task sooner. Network-based diffusion analysis revealed that the order that ravens first solved the task was best predicted by connections in the affiliative interaction network in a group of subadult ravens, and by social rank and kinship (which influenced affiliative interactions) in a group of juvenile ravens. Our results demonstrate that not all social connections are equally effective at predicting the patterns of selective observation and information transmission. PMID:27493780

  6. Social networks predict selective observation and information spread in ravens.

    PubMed

    Kulahci, Ipek G; Rubenstein, Daniel I; Bugnyar, Thomas; Hoppitt, William; Mikus, Nace; Schwab, Christine

    2016-07-01

    Animals are predicted to selectively observe and learn from the conspecifics with whom they share social connections. Yet, hardly anything is known about the role of different connections in observation and learning. To address the relationships between social connections, observation and learning, we investigated transmission of information in two raven (Corvus corax) groups. First, we quantified social connections in each group by constructing networks on affiliative interactions, aggressive interactions and proximity. We then seeded novel information by training one group member on a novel task and allowing others to observe. In each group, an observation network based on who observed whose task-solving behaviour was strongly correlated with networks based on affiliative interactions and proximity. Ravens with high social centrality (strength, eigenvector, information centrality) in the affiliative interaction network were also central in the observation network, possibly as a result of solving the task sooner. Network-based diffusion analysis revealed that the order that ravens first solved the task was best predicted by connections in the affiliative interaction network in a group of subadult ravens, and by social rank and kinship (which influenced affiliative interactions) in a group of juvenile ravens. Our results demonstrate that not all social connections are equally effective at predicting the patterns of selective observation and information transmission. PMID:27493780

  7. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.

    PubMed

    Pesavento, Michael J; Pinto, David J

    2012-11-01

    Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect. PMID:22896716

  8. Selective suppression of human papillomavirus transcription in non-tumorigenic cells by 5-azacytidine.

    PubMed Central

    Rösl, F; Dürst, M; zur Hausen, H

    1988-01-01

    The transcription of human papillomavirus type 18 (HPV 18) is selectively suppressed in non-tumorigenic HeLa x fibroblast or HeLa x keratinocyte cell hybrids by 5-azacytidine. In contrast, viral gene expression is not influenced by 5-azacytidine in both tumorigenic hybrid segregants and in the parental HeLa cells. The suppression mechanism seems to operate at the level of initiation of transcription since nuclear run-on experiments show the absence of elongated nascent viral RNA, whereas the transcription of cellular reference genes remains unaffected. Down-regulation of HPV 18 mRNA correlates directly with cessation of cellular growth and can be abolished using the protein synthesis inhibitor cycloheximide. Furthermore human keratinocytes immortalized by HPV 16 but still retaining the non-tumorigenic phenotype reveal the same inhibitory effect on viral transcription after treatment with 5-azacytidine. These results support a model of a postulated intracellular control mechanism, directed against papillomavirus transcription, which can be induced by 5-azacytidine and appears to correlate with the presence of specific chromosomes in non-tumorigenic cells. Images PMID:2457495

  9. Open Peer Review by a Selected-Papers Network

    PubMed Central

    Lee, Christopher

    2011-01-01

    A selected-papers (SP) network is a network in which researchers who read, write, and review articles subscribe to each other based on common interests. Instead of reviewing a manuscript in secret for the Editor of a journal, each reviewer simply publishes his review (typically of a paper he wishes to recommend) to his SP network subscribers. Once the SP network reviewers complete their review decisions, the authors can invite any journal editor they want to consider these reviews and initial audience size, and make a publication decision. Since all impact assessment, reviews, and revisions are complete, this decision process should be short. I show how the SP network can provide a new way of measuring impact, catalyze the emergence of new subfields, and accelerate discovery in existing fields, by providing each reader a fine-grained filter for high-impact. I present a three phase plan for building a basic SP network, and making it an effective peer review platform that can be used by journals, conferences, users of repositories such as arXiv, and users of search engines such as PubMed. I show how the SP network can greatly improve review and dissemination of research articles in areas that are not well-supported by existing journals. Finally, I illustrate how the SP network concept can work well with existing publication services such as journals, conferences, arXiv, PubMed, and online citation management sites. PMID:22291635

  10. Open peer review by a selected-papers network.

    PubMed

    Lee, Christopher

    2012-01-01

    A selected-papers (SP) network is a network in which researchers who read, write, and review articles subscribe to each other based on common interests. Instead of reviewing a manuscript in secret for the Editor of a journal, each reviewer simply publishes his review (typically of a paper he wishes to recommend) to his SP network subscribers. Once the SP network reviewers complete their review decisions, the authors can invite any journal editor they want to consider these reviews and initial audience size, and make a publication decision. Since all impact assessment, reviews, and revisions are complete, this decision process should be short. I show how the SP network can provide a new way of measuring impact, catalyze the emergence of new subfields, and accelerate discovery in existing fields, by providing each reader a fine-grained filter for high-impact. I present a three phase plan for building a basic SP network, and making it an effective peer review platform that can be used by journals, conferences, users of repositories such as arXiv, and users of search engines such as PubMed. I show how the SP network can greatly improve review and dissemination of research articles in areas that are not well-supported by existing journals. Finally, I illustrate how the SP network concept can work well with existing publication services such as journals, conferences, arXiv, PubMed, and online citation management sites. PMID:22291635

  11. Using Effective Subnetworks to Predict Selected Properties of Gene Networks

    PubMed Central

    Gunaratne, Gemunu H.; Gunaratne, Preethi H.; Seemann, Lars; Török, Andrei

    2010-01-01

    Background Difficulties associated with implementing gene therapy are caused by the complexity of the underlying regulatory networks. The forms of interactions between the hundreds of genes, proteins, and metabolites in these networks are not known very accurately. An alternative approach is to limit consideration to genes on the network. Steady state measurements of these influence networks can be obtained from DNA microarray experiments. However, since they contain a large number of nodes, the computation of influence networks requires a prohibitively large set of microarray experiments. Furthermore, error estimates of the network make verifiable predictions impossible. Methodology/Principal Findings Here, we propose an alternative approach. Rather than attempting to derive an accurate model of the network, we ask what questions can be addressed using lower dimensional, highly simplified models. More importantly, is it possible to use such robust features in applications? We first identify a small group of genes that can be used to affect changes in other nodes of the network. The reduced effective empirical subnetwork (EES) can be computed using steady state measurements on a small number of genetically perturbed systems. We show that the EES can be used to make predictions on expression profiles of other mutants, and to compute how to implement pre-specified changes in the steady state of the underlying biological process. These assertions are verified in a synthetic influence network. We also use previously published experimental data to compute the EES associated with an oxygen deprivation network of E.coli, and use it to predict gene expression levels on a double mutant. The predictions are significantly different from the experimental results for less than of genes. Conclusions/Significance The constraints imposed by gene expression levels of mutants can be used to address a selected set of questions about a gene network. PMID:20949025

  12. A channel-selection criterion for suppressing reverberation in cochlear implants.

    PubMed

    Kokkinakis, Kostas; Hazrati, Oldooz; Loizou, Philipos C

    2011-05-01

    Little is known about the extent to which reverberation affects speech intelligibility by cochlear implant (CI) listeners. Experiment 1 assessed CI users' performance using Institute of Electrical and Electronics Engineers (IEEE) sentences corrupted with varying degrees of reverberation. Reverberation times of 0.30, 0.60, 0.80, and 1.0 s were used. Results indicated that for all subjects tested, speech intelligibility decreased exponentially with an increase in reverberation time. A decaying-exponential model provided an excellent fit to the data. Experiment 2 evaluated (offline) a speech coding strategy for reverberation suppression using a channel-selection criterion based on the signal-to-reverberant ratio (SRR) of individual frequency channels. The SRR reflects implicitly the ratio of the energies of the signal originating from the early (and direct) reflections and the signal originating from the late reflections. Channels with SRR larger than a preset threshold were selected, while channels with SRR smaller than the threshold were zeroed out. Results in a highly reverberant scenario indicated that the proposed strategy led to substantial gains (over 60 percentage points) in speech intelligibility over the subjects' daily strategy. Further analysis indicated that the proposed channel-selection criterion reduces the temporal envelope smearing effects introduced by reverberation and also diminishes the self-masking effects responsible for flattened formants. PMID:21568424

  13. Large-scale feature selection using evolved neural networks

    NASA Astrophysics Data System (ADS)

    Stathakis, Demetris; Topouzelis, Kostas; Karathanassi, Vassilia

    2006-09-01

    In this paper computational intelligence, referring here to the synergy of neural networks and genetic algorithms, is deployed in order to determine a near-optimal neural network for the classification of dark formations in oil spills and look-alikes. Optimality is sought in the framework of a multi-objective problem, i.e. the minimization of input features used and, at the same time, the maximization of overall testing classification accuracy. The proposed method consists of two concurrent actions. The first is the identification of the subset of features that results in the highest classification accuracy on the testing data set i.e. feature selection. The second parallel process is the search for the neural network topology, in terms of number of nodes in the hidden layer, which is able to yield optimal results with respect to the selected subset of features. The results show that the proposed method, i.e. concurrently evolving features and neural network topology, yields superior classification accuracy compared to sequential floating forward selection as well as to using all features together. The accuracy matrix is deployed to show the generalization capacity of the discovered neural network topology on the evolved sub-set of features.

  14. Selecting a Local Area Network for an Academic Environment.

    ERIC Educational Resources Information Center

    Aman, Mohammed M.; And Others

    1990-01-01

    Describes the process used to select a local area network (LAN) for the University of Wisconsin-Milwaukee School of Library and Information Science. The use of computers at the library school by staff, faculty, and students is described, technical aspects of a LAN are explained, and the future of LANs is discussed. (LRW)

  15. Database Software Selection for the Egyptian National STI Network.

    ERIC Educational Resources Information Center

    Slamecka, Vladimir

    The evaluation and selection of information/data management system software for the Egyptian National Scientific and Technical (STI) Network are described. An overview of the state-of-the-art of database technology elaborates on the differences between information retrieval and database management systems (DBMS). The desirable characteristics of…

  16. Frequency selective tunable spin wave channeling in the magnonic network

    NASA Astrophysics Data System (ADS)

    Sadovnikov, A. V.; Beginin, E. N.; Odincov, S. A.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Stognij, A. I.; Nikitov, S. A.

    2016-04-01

    Using the space-resolved Brillouin light scattering spectroscopy, we study the frequency and wavenumber selective spin-wave channeling. We demonstrate the frequency selective collimation of spin-wave in an array of magnonic waveguides, formed between the adjacent magnonic crystals on the surface of yttrium iron garnet film. We show the control over spin-wave propagation length by the orientation of an in-plane bias magnetic field. Fabricated array of magnonic crystal can be used as a magnonic platform for multidirectional frequency selective signal processing applications in magnonic networks.

  17. Selective randomized load balancing and mesh networks with changing demands

    NASA Astrophysics Data System (ADS)

    Shepherd, F. B.; Winzer, P. J.

    2006-05-01

    We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.

  18. Holographic polarization-selective elements in optical network applications

    NASA Astrophysics Data System (ADS)

    Huang, Yang-Tung; Lin, Meng-Fu; Deng, Jiun-Shjou; Fan, Kai-Ting; Chen, Mu-Jung

    1996-09-01

    Highly polarization-selective holographic elements can be achieved with suitable designs. The presented holographic polarization-selective elements are compact and light- weight, and the feature of normally incident and output coupling provide better flexibility and easier alignment for system applications. With suitable designs and arrangements, these elements can be combined to implement star couplers to distribute equal optical power from each input channel to all output channels. In addition, based on our holographic polarization-selective elements with electro-optic halfwave plates, holographic polarization-dependent and polarization- independent optical switches are introduced. The structures to use these switches in various compact 3D multistage interconnection networks for reconfigurable interconnections and in self-healing rings for network service restoration are presented.

  19. Selective electrochemical reactivity of rutile VO2 towards the suppression of metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Singh, Sujay; Abtew, Tesfaye A.; Horrocks, Gregory; Kilcoyne, Colin; Marley, Peter M.; Stabile, Adam A.; Banerjee, Sarbajit; Zhang, Peihong; Sambandamurthy, G.

    2016-03-01

    We demonstrate through electrolyte gating measurements of a single nanobeam that the rultile phase of VO2 is electrochemically more reactive than the monoclinic phase. Our results show that the complete suppression of the metal-insulator transition and stabilization of the metallic phase is possible when gate voltage is applied in the rutile metallic phase. The results are discussed based on the formation of oxygen vacancies wherein accommodation of a high concentration of vacancies in the rutile phase selectively stabilizes it by disrupting dimerization of adjacent V-V pairs required for a transition to the monoclinic phase. The creation of oxygen vacancies is proposed to proceed through the oxidation of the electrolyte. Raman spectroscopy data suggest surface metallization upon electrolyte gating with an initial coexistence of insulating monoclinic and metallic domains. The selective electrochemical reactivity of the rutile phase and the resulting defect-induced stabilization of this phase across a vastly expanded temperature window suggest a facile defect engineering route to tune electronic phase transitions.

  20. Selection of Motor Programs for Suppressing Food Intake and Inducing Locomotion in the Drosophila Brain

    PubMed Central

    Schoofs, Andreas; Hückesfeld, Sebastian; Schlegel, Philipp; Miroschnikow, Anton; Peters, Marc; Zeymer, Malou; Spieß, Roland; Chiang, Ann-Shyn; Pankratz, Michael J.

    2014-01-01

    Central mechanisms by which specific motor programs are selected to achieve meaningful behaviors are not well understood. Using electrophysiological recordings from pharyngeal nerves upon central activation of neurotransmitter-expressing cells, we show that distinct neuronal ensembles can regulate different feeding motor programs. In behavioral and electrophysiological experiments, activation of 20 neurons in the brain expressing the neuropeptide hugin, a homolog of mammalian neuromedin U, simultaneously suppressed the motor program for food intake while inducing the motor program for locomotion. Decreasing hugin neuropeptide levels in the neurons by RNAi prevented this action. Reducing the level of hugin neuronal activity alone did not have any effect on feeding or locomotion motor programs. Furthermore, use of promoter-specific constructs that labeled subsets of hugin neurons demonstrated that initiation of locomotion can be separated from modulation of its motor pattern. These results provide insights into a neural mechanism of how opposing motor programs can be selected in order to coordinate feeding and locomotive behaviors. PMID:24960360

  1. Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain.

    PubMed

    Schoofs, Andreas; Hückesfeld, Sebastian; Schlegel, Philipp; Miroschnikow, Anton; Peters, Marc; Zeymer, Malou; Spieß, Roland; Chiang, Ann-Shyn; Pankratz, Michael J

    2014-06-01

    Central mechanisms by which specific motor programs are selected to achieve meaningful behaviors are not well understood. Using electrophysiological recordings from pharyngeal nerves upon central activation of neurotransmitter-expressing cells, we show that distinct neuronal ensembles can regulate different feeding motor programs. In behavioral and electrophysiological experiments, activation of 20 neurons in the brain expressing the neuropeptide hugin, a homolog of mammalian neuromedin U, simultaneously suppressed the motor program for food intake while inducing the motor program for locomotion. Decreasing hugin neuropeptide levels in the neurons by RNAi prevented this action. Reducing the level of hugin neuronal activity alone did not have any effect on feeding or locomotion motor programs. Furthermore, use of promoter-specific constructs that labeled subsets of hugin neurons demonstrated that initiation of locomotion can be separated from modulation of its motor pattern. These results provide insights into a neural mechanism of how opposing motor programs can be selected in order to coordinate feeding and locomotive behaviors. PMID:24960360

  2. Using principal component analysis for selecting network behavioral anomaly metrics

    NASA Astrophysics Data System (ADS)

    Gregorio-de Souza, Ian; Berk, Vincent; Barsamian, Alex

    2010-04-01

    This work addresses new approaches to behavioral analysis of networks and hosts for the purposes of security monitoring and anomaly detection. Most commonly used approaches simply implement anomaly detectors for one, or a few, simple metrics and those metrics can exhibit unacceptable false alarm rates. For instance, the anomaly score of network communication is defined as the reciprocal of the likelihood that a given host uses a particular protocol (or destination);this definition may result in an unrealistically high threshold for alerting to avoid being flooded by false positives. We demonstrate that selecting and adapting the metrics and thresholds, on a host-by-host or protocol-by-protocol basis can be done by established multivariate analyses such as PCA. We will show how to determine one or more metrics, for each network host, that records the highest available amount of information regarding the baseline behavior, and shows relevant deviances reliably. We describe the methodology used to pick from a large selection of available metrics, and illustrate a method for comparing the resulting classifiers. Using our approach we are able to reduce the resources required to properly identify misbehaving hosts, protocols, or networks, by dedicating system resources to only those metrics that actually matter in detecting network deviations.

  3. Hadoop neural network for parallel and distributed feature selection.

    PubMed

    Hodge, Victoria J; O'Keefe, Simon; Austin, Jim

    2016-06-01

    In this paper, we introduce a theoretical basis for a Hadoop-based neural network for parallel and distributed feature selection in Big Data sets. It is underpinned by an associative memory (binary) neural network which is highly amenable to parallel and distributed processing and fits with the Hadoop paradigm. There are many feature selectors described in the literature which all have various strengths and weaknesses. We present the implementation details of five feature selection algorithms constructed using our artificial neural network framework embedded in Hadoop YARN. Hadoop allows parallel and distributed processing. Each feature selector can be divided into subtasks and the subtasks can then be processed in parallel. Multiple feature selectors can also be processed simultaneously (in parallel) allowing multiple feature selectors to be compared. We identify commonalities among the five features selectors. All can be processed in the framework using a single representation and the overall processing can also be greatly reduced by only processing the common aspects of the feature selectors once and propagating these aspects across all five feature selectors as necessary. This allows the best feature selector and the actual features to select to be identified for large and high dimensional data sets through exploiting the efficiency and flexibility of embedding the binary associative-memory neural network in Hadoop. PMID:26403824

  4. Efficient server selection system for widely distributed multiserver networks

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-pyo; Park, Sung-sik; Lee, Kyoon-Ha

    2001-07-01

    In order to providing more improved quality of Internet service, the access speed to a subscriber's network and a server which is the Internet access device was rapidly enhanced by traffic distribution and installation of high-performance server. But the Internet access quality and the content for a speed were remained out of satisfaction. With such a hazard, an extended node at Internet access device has a limitation for coping with growing network traffic, and the root cause is located in the Middle-mile node between a CP (Content Provider) server and a user node. For such a problem, this paper proposes a new method to select a effective server to a client as minimizing the number of node between the server and the client while keeping the load balance among servers which is clustered by the client's location on the physically distributed multi-site environments. The proposed method use a NSP (Network Status Prober) and a contents server manager so as to get a status of each servers and distributed network, a new architecture will be shown for the server selecting algorithm and the implementation for the algorithm. And also, this paper shows the parameters selecting a best service providing server for client and that the grantor will be confirmed by the experiment over the proposed architectures.

  5. Suppression of cancer-initiating cells and selection of adipose-derived stem cells cultured on biomaterials having specific nanosegments.

    PubMed

    Kao, Ta-Chun; Lee, Henry Hsin-Chung; Higuchi, Akon; Ling, Qing-Dong; Yu, Wan-Chun; Chou, Yu-Hsuan; Wang, Pin-Yu; Suresh Kumar, S; Chang, Yu; Hung Chen, Yung; Chang, Yung; Chen, Da-Chung; Hsu, Shih-Tien

    2014-04-01

    Cancer-initiating cells [cancer stem cells (CSCs)] in colon cancer cells can be selectively suppressed when they are cultured on Pluronic (nanosegment)-grafted dishes, whereas CSCs are maintained on conventional tissue culture dishes and extracellular matrix-coated dishes. CSCs persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumorigenic clones. The purification or depletion (suppression) of CSCs should be useful for analyzing CSC characteristics and for clinical application. CSCs can be selectively suppressed from colon cancer cells containing adipose-derived stem cells (ADSCs) on Pluronic-grafted dishes, while ADSCs remain on the dishes. ADSCs on Pluronic-grafted dishes after the suppression of the CSCs can differentiate into osteoblasts, chondrocytes, adipocytes, cardiomyocytes, and neuronal cells. The CSCs and ADSCs exhibited different characteristics. The selection of ADSCs was possible on Pluronic-grafted dishes that suppressed the CSCs from the fat tissues of cancer patients (i.e., cell-sorting dishes), which was explained by specific biomedical characteristics of Pluronic. PMID:24039170

  6. Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma

    PubMed Central

    Nohata, N; Hanazawa, T; Kikkawa, N; Sakurai, D; Fujimura, L; Chiyomaru, T; Kawakami, K; Yoshino, H; Enokida, H; Nakagawa, M; Katayama, A; Harabuchi, Y; Okamoto, Y; Seki, N

    2011-01-01

    Background: On the basis of the microRNA (miRNA) expression signature of maxillary sinus squamous cell carcinoma (MSSCC), we found that miR-874 was significantly reduced in cancer cells. We focused on the functional significance of miR-874 in cancer cells and identification of miR-874-regulated novel cancer networks in MSSCC. Methods: We used PCR-based methods to investigate the downregulated miRNAs in clinical specimens of MSSCC. Our signature analyses identified 23 miRNAs that were significantly reduced in cancer cells, such as miR-874, miR-133a, miR-375, miR-204, and miR-1. We focused on miR-874 as the most downregulated novel miRNA in our analysis. Results: We found potential tumour suppressive functions such as inhibition of cancer cell proliferation and invasion. A molecular target search of miR-874 revealed that PPP1CA was directly regulated by miR-874. Overexpression of PPP1CA was observed in MSSCC clinical specimens. Silencing of the PPP1CA gene significantly inhibited cancer cell proliferation and invasion. Conclusion: The downregulation of miR-874 was a frequent event in MSSCC, which suggests that miR-874 functions as a tumour suppressive miRNA, directly regulating PPP1CA that has a potential role of an oncogene. The identification of novel miR-874-regulated cancer pathways could provide new insights into potential molecular mechanisms of MSSCC oncogenesis. PMID:21847129

  7. Feature Selection for Neural Network Based Stock Prediction

    NASA Astrophysics Data System (ADS)

    Sugunnasil, Prompong; Somhom, Samerkae

    We propose a new methodology of feature selection for stock movement prediction. The methodology is based upon finding those features which minimize the correlation relation function. We first produce all the combination of feature and evaluate each of them by using our evaluate function. We search through the generated set with hill climbing approach. The self-organizing map based stock prediction model is utilized as the prediction method. We conduct the experiment on data sets of the Microsoft Corporation, General Electric Co. and Ford Motor Co. The results show that our feature selection method can improve the efficiency of the neural network based stock prediction.

  8. An exotic invasive plant selects for increased competitive tolerance, but not competitive suppression, in a native grass.

    PubMed

    Fletcher, Rebecca A; Callaway, Ragan M; Atwater, Daniel Z

    2016-06-01

    Exotic invasive plants can exert strong selective pressure for increased competitive ability in native plants. There are two fundamental components of competitive ability: suppression and tolerance, and the current paradigm that these components have equal influences on a species' overall competitive ability has been recently questioned. If these components do not have equal influences on overall ability, then selection on competitive tolerance and suppression may be disproportionate. We used naturally invaded communities to study the effects of selection caused by an invasive forb, Centaurea stoebe, on a native grass, Pseudoroegneria spicata. P. spicata plants were harvested from within dense C. stoebe patches and from nearby uninvaded areas, divided clonally into replicates, then transplanted into a common garden where they grew alone or competed with C. stoebe. We found that P. spicata plants collected from within C. stoebe patches were significantly more tolerant of competition with C. stoebe than P. spicata plants collected from uninvaded areas, but plants from inside invaded patches were not superior at suppressing C. stoebe. These results are consistent with the hypothesis that strong competitors may select for tolerance to competition more than for the ability to suppress neighbors. This has important implications for how native plant communities may respond to invasion over time, and how invasive and native species may ultimately coexist. PMID:26897605

  9. Selective suppression of cytokine secretion in whole blood cell cultures of patients with colorectal cancer.

    PubMed Central

    Lahm, H.; Schindel, M.; Frikart, L.; Cerottini, J. P.; Yilmaz, A.; Givel, J. C.; Fischer, J. R.

    1998-01-01

    We have investigated the secretion of interferon alpha (IFN-alpha), IFN-gamma, interleukin-1alpha (IL-1alpha), IL-1beta, IL-2 and tumour necrosis factor alpha (TNF-alpha) in whole blood cell cultures (WBCCs) of colorectal cancer patients upon mitogen stimulation. Whereas the values for IL-1beta and TNF-alpha remained virtually unchanged in comparison with healthy control subjects, WBCCs of colorectal cancer patients secreted significantly lower amounts of IFN-alpha (P < 0.005), IFN-gamma (P < 0.0001), IL-1alpha (P < 0.0001) and IL-2 (P < 0.05). This reduction correlated with the progression of the disease. The total leucocyte and monocyte population were almost identical in both groups. In contrast, a dramatic depletion of lymphocytes was observed in colorectal cancer patients, which affected both lymphocyte counts (P < 0.0005) and their distribution (P < 0.0001). Our results suggest a selective suppression of cytokines in colorectal cancer patients that is related to tumour burden. Several mechanisms might account for this phenomenon, one of which might be lymphocyte depletion. PMID:9792144

  10. Activated Drosophila Ras1 is selectively suppressed by isoprenyl transferase inhibitors.

    PubMed Central

    Kauffmann, R C; Qian, Y; Vogt, A; Sebti, S M; Hamilton, A D; Carthew, R W

    1995-01-01

    Ras CAAX (C = cysteine, A = aliphatic amino acid, and X = any amino acid) peptidomimetic inhibitors of farnesyl protein transferase suppress Ras-dependent cell transformation by preventing farnesylation of the Ras oncoprotein. These compounds are potential anticancer agents for tumors associated with Ras mutations. The peptidomimetic FTI-254 was tested for Ras1-inhibiting activity in whole animals by injection of activated Ras1val12 Drosophila larvae. FTI-254 decreased the ability of Ras1val12 to form supernumerary R7 photoreceptor cells in the compound eye of transformed flies. In contrast, it had no effect on the related supernumerary R7 phenotypes of flies transformed with either the activated sevenless receptor tyrosine kinase, Raf kinase, or a chimeric Ras1val12 protein that is membrane associated through myristylation instead of isoprenylation. Therefore, FTI-254 acts as an isoprenylation inhibitor to selectively inhibit Ras1val12 signaling activity in a whole-animal model system. Images Fig. 2 PMID:7479910

  11. A Cytosolic Network Suppressing Mitochondria-Mediated Proteostatic Stress and Cell Death

    PubMed Central

    Wang, Xiaowen; Chen, Xin Jie

    2015-01-01

    Mitochondria are multifunctional organelles whose dysfunction leads to neuromuscular degeneration and ageing. The multi-functionality poses a great challenge for understanding the mechanisms by which mitochondrial dysfunction causes specific pathologies. Among the leading mitochondrial mediators of cell death are energy depletion, free radical production, defect in iron-sulfur cluster biosynthesis, the release of pro-apoptotic and non-cell-autonomous signaling molecules, and altered stress signaling 1–5. Here, we identified a novel pathway of mitochondria-mediated cell death. This pathway was named mitochondrial Precursor Over-accumulation Stress (mPOS), characterized by aberrant accumulation of mitochondrial precursors in the cytosol. mPOS can be triggered by clinically relevant mitochondrial damage which is not limited to the core machineries of protein import. We also identified a large network of genes that suppress mPOS, by modulating ribosomal biogenesis, mRNA decapping, transcript-specific translation, protein chaperoning and turnover. In response to mPOS, several ribosome-associated proteins were up-regulated including Gis2 and Nog2, which promote cap-independent translation and inhibit the nuclear export of the 60S ribosomal subunit respectively 6, 7. Gis2 and Nog2 up-regulation promotes cell survival, which may be part of a feedback loop that attenuates mPOS. Our data indicate that mitochondrial dysfunction contributes directly to cytosolic proteostatic stress, and provide an explanation for the enigmatic association between these two hallmarks of degenerative diseases and ageing. The results are relevant to understanding diseases (e.g., spinocerebellar ataxia, amyotrophic lateral sclerosis and myotonic dystrophy) that involve mutations within the anti-degenerative network. PMID:26192197

  12. Selecting public relations personnel of hospitals by analytic network process.

    PubMed

    Liao, Sen-Kuei; Chang, Kuei-Lun

    2009-01-01

    This study describes the use of analytic network process (ANP) in the Taiwanese hospital public relations personnel selection process. Starting with interviewing 48 practitioners and executives in north Taiwan, we collected selection criteria. Then, we retained the 12 critical criteria that were mentioned above 40 times by theses respondents, including: interpersonal skill, experience, negotiation, language, ability to follow orders, cognitive ability, adaptation to environment, adaptation to company, emotion, loyalty, attitude, and Response. Finally, we discussed with the 20 executives to take these important criteria into three perspectives to structure the hierarchy for hospital public relations personnel selection. After discussing with practitioners and executives, we find that selecting criteria are interrelated. The ANP, which incorporates interdependence relationships, is a new approach for multi-criteria decision-making. Thus, we apply ANP to select the most optimal public relations personnel of hospitals. An empirical study of public relations personnel selection problems in Taiwan hospitals is conducted to illustrate how the selection procedure works. PMID:19197656

  13. Suppression of PKR Promotes Network Excitability and Enhanced Cognition by Interferon-γ-Mediated Disinhibition

    PubMed Central

    Zhu, Ping Jun; Huang, Wei; Kalikulov, Djanenkhodja; Yoo, Jong W.; Placzek, Andon N.; Stoica, Loredana; Zhou, Hongyi; Bell, John C.; Friedlander, Michael J.; Krnjević, Krešimir; Noebels, Jeffrey L.; Costa-Mattioli, Mauro

    2013-01-01

    SUMMARY The double-stranded RNA-activated protein kinase (PKR) was originally identified as a sensor of virus infection, but its function in the brain remains unknown. Here, we report that the lack of PKR enhances learning and memory in several behavioral tasks while increasing network excitability. In addition, loss of PKR increases the late phase of long-lasting synaptic potentiation (L-LTP) in hippocampal slices. These effects are caused by an interferon-γ (IFN-γ)-mediated selective reduction in GABAergic synaptic action. Together, our results reveal that PKR finely tunes the network activity that must be maintained while storing a given episode during learning. Because PKR activity is altered in several neurological disorders, this kinase presents a promising new target for the treatment of cognitive dysfunction. As a first step in this direction, we show that a selective PKR inhibitor replicates the Pkr−/− phenotype in WT mice, enhancing long-term memory storage and L-LTP. PMID:22153080

  14. Selection of genetically diverse trichoderma spp. isolates for suppression of phytophthora capsici on bell pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmentally compatible control measures are needed for suppression of Phytophthora capsici on pepper. Twenty-four isolates of Trichoderma were screened for suppression of this pathogen on bell pepper in greenhouse pot assays. Of these twenty-four isolates, GL12, GL13, and Th23 provided signifi...

  15. Distributed estimation for adaptive sensor selection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mahmoud, Magdi S.; Hassan Hamid, Matasm M.

    2014-05-01

    Wireless sensor networks (WSNs) are usually deployed for monitoring systems with the distributed detection and estimation of sensors. Sensor selection in WSNs is considered for target tracking. A distributed estimation scenario is considered based on the extended information filter. A cost function using the geometrical dilution of precision measure is derived for active sensor selection. A consensus-based estimation method is proposed in this paper for heterogeneous WSNs with two types of sensors. The convergence properties of the proposed estimators are analyzed under time-varying inputs. Accordingly, a new adaptive sensor selection (ASS) algorithm is presented in which the number of active sensors is adaptively determined based on the absolute local innovations vector. Simulation results show that the tracking accuracy of the ASS is comparable to that of the other algorithms.

  16. Evolution and selection of river networks: statics, dynamics, and complexity.

    PubMed

    Rinaldo, Andrea; Rigon, Riccardo; Banavar, Jayanth R; Maritan, Amos; Rodriguez-Iturbe, Ignacio

    2014-02-18

    Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general equation describing landscape evolution, we review the static properties and the dynamic origins of the scale-invariant structure of optimal river patterns. Optimal channel networks (OCNs) are feasible optimal configurations of a spanning network mimicking landscape evolution and network selection through imperfect searches for dynamically accessible states. OCNs are spanning loopless configurations, however, only under precise physical requirements that arise under the constraints imposed by river dynamics--every spanning tree is exactly a local minimum of total energy dissipation. It is remarkable that dynamically accessible configurations, the local optima, stabilize into diverse metastable forms that are nevertheless characterized by universal statistical features. Such universal features explain very well the statistics of, and the linkages among, the scaling features measured for fluvial landforms across a broad range of scales regardless of geology, exposed lithology, vegetation, or climate, and differ significantly from those of the ground state, known exactly. Results are provided on the emergence of criticality through adaptative evolution and on the yet-unexplored range of applications of the OCN concept. PMID:24550264

  17. Application of Fuzzy AHP and ELECTRE to Network Selection

    NASA Astrophysics Data System (ADS)

    Charilas, Dimitris E.; Markaki, Ourania I.; Psarras, John; Constantinou, Philip

    In a heterogeneous wireless network environment services are ubiquitously delivered over multiple wireless access technologies. Ranking of the alternatives and selection of the most efficient and suitable access network to meet the QoS requirements of a specific service, as these are defined by the user, constitutes thus an important issue. Decisions on which network to connect to are however difficult to be reached, since multiple factors of different relative importance have to be taken into consideration. This paper addresses this difficulty by adopting Multi Attribute Decision Making (MADM) methods. Fuzzy AHP, a MADM method, is initially applied to determine the weights of certain Quality of Service indicators that act as the criteria impacting the decision process. The fuzzy extension of the method, and consequently the use of fuzzy numbers, is adopted in order to incorporate the existence of fuzziness as a result of subjective evaluations. Afterwards, ELECTRE, a ranking MADM method, is applied to rank the alternatives, in this case wireless networks, based on their overall performance.

  18. A Predictive Based Regression Algorithm for Gene Network Selection.

    PubMed

    Guerrier, Stéphane; Mili, Nabil; Molinari, Roberto; Orso, Samuel; Avella-Medina, Marco; Ma, Yanyuan

    2016-01-01

    Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. To do so, many of the recently proposed classification methods require some form of dimension-reduction of the problem which finally provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. We propose a new prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. Based on cross-validation techniques and the idea of importance sampling, our proposal scans low-dimensional models under the assumption of sparsity and, for each of them, estimates their objective function to assess their predictive power in order to select. Two applications on cancer data sets and a simulation study show that the proposal compares favorably with competing alternatives such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed method not only selects smaller models for better, or at least comparable, classification errors but also provides a set of selected models instead of a single one, allowing to construct a network of possible models for a target prediction accuracy level. PMID:27379155

  19. A Predictive Based Regression Algorithm for Gene Network Selection

    PubMed Central

    Guerrier, Stéphane; Mili, Nabil; Molinari, Roberto; Orso, Samuel; Avella-Medina, Marco; Ma, Yanyuan

    2016-01-01

    Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. To do so, many of the recently proposed classification methods require some form of dimension-reduction of the problem which finally provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. We propose a new prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. Based on cross-validation techniques and the idea of importance sampling, our proposal scans low-dimensional models under the assumption of sparsity and, for each of them, estimates their objective function to assess their predictive power in order to select. Two applications on cancer data sets and a simulation study show that the proposal compares favorably with competing alternatives such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed method not only selects smaller models for better, or at least comparable, classification errors but also provides a set of selected models instead of a single one, allowing to construct a network of possible models for a target prediction accuracy level. PMID:27379155

  20. Long-range recruitment of Martinotti cells causes surround suppression and promotes saliency in an attractor network model

    PubMed Central

    Krishnamurthy, Pradeep; Silberberg, Gilad; Lansner, Anders

    2015-01-01

    Although the importance of long-range connections for cortical information processing has been acknowledged for a long time, most studies focused on the long-range interactions between excitatory cortical neurons. Inhibitory interneurons play an important role in cortical computation and have thus far been studied mainly with respect to their local synaptic interactions within the cortical microcircuitry. A recent study showed that long-range excitatory connections onto Martinotti cells (MC) mediate surround suppression. Here we have extended our previously reported attractor network of pyramidal cells (PC) and MC by introducing long-range connections targeting MC. We have demonstrated how the network with Martinotti cell-mediated long-range inhibition gives rise to surround suppression and also promotes saliency of locations at which simple non-uniformities in the stimulus field are introduced. Furthermore, our analysis suggests that the presynaptic dynamics of MC is only ancillary to its orientation tuning property in enabling the network with saliency detection. Lastly, we have also implemented a disinhibitory pathway mediated by another interneuron type (VIP interneurons), which inhibits MC and abolishes surround suppression. PMID:26528143

  1. Boosting feature selection for Neural Network based regression.

    PubMed

    Bailly, Kevin; Milgram, Maurice

    2009-01-01

    The head pose estimation problem is well known to be a challenging task in computer vision and is a useful tool for several applications involving human-computer interaction. This problem can be stated as a regression one where the input is an image and the output is pan and tilt angles. Finding the optimal regression is a hard problem because of the high dimensionality of the input (number of image pixels) and the large variety of morphologies and illumination. We propose a new method combining a boosting strategy for feature selection and a neural network for the regression. Potential features are a very large set of Haar-like wavelets which are well known to be adapted to face image processing. To achieve the feature selection, a new Fuzzy Functional Criterion (FFC) is introduced which is able to evaluate the link between a feature and the output without any estimation of the joint probability density function as in the Mutual Information. The boosting strategy uses this criterion at each step: features are evaluated by the FFC using weights on examples computed from the error produced by the neural network trained at the previous step. Tests are carried out on the commonly used Pointing 04 database and compared with three state-of-the-art methods. We also evaluate the accuracy of the estimation on FacePix, a database with a high angular resolution. Our method is compared positively to a Convolutional Neural Network, which is well known to incorporate feature extraction in its first layers. PMID:19616404

  2. Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance.

    PubMed

    Ossandón, Tomas; Jerbi, Karim; Vidal, Juan R; Bayle, Dimitri J; Henaff, Marie-Anne; Jung, Julien; Minotti, Lorella; Bertrand, Olivier; Kahane, Philippe; Lachaux, Jean-Philippe

    2011-10-12

    Task performance is associated with increased brain metabolism but also with prominent deactivation in specific brain structures known as the default-mode network (DMN). The role of DMN deactivation remains enigmatic in part because its electrophysiological correlates, temporal dynamics, and link to behavior are poorly understood. Using extensive depth electrode recordings in humans, we provide first electrophysiological evidence for a direct correlation between the dynamics of power decreases in the DMN and individual subject behavior. We found that all DMN areas displayed transient suppressions of broadband gamma (60-140 Hz) power during performance of a visual search task and, critically, we show for the first time that the millisecond range duration and extent of the transient gamma suppressions are correlated with task complexity and subject performance. In addition, trial-by-trial correlations revealed that spatially distributed gamma power increases and decreases formed distinct anticorrelated large-scale networks. Beyond unraveling the electrophysiological basis of DMN dynamics, our results suggest that, rather than indicating a mere switch to a global exteroceptive mode, DMN deactivation encodes the extent and efficiency of our engagement with the external world. Furthermore, our findings reveal a pivotal role for broadband gamma modulations in the interplay between task-positive and task-negative networks mediating efficient goal-directed behavior and facilitate our understanding of the relationship between electrophysiology and neuroimaging studies of intrinsic brain networks. PMID:21994368

  3. Joint Network Selection and Discrete Power Control in Heterogeneous MIMO Networks: A Game Theoretical Approach

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Tian, Hua; Xie, Wei; Zhong, Wei

    2013-09-01

    Next-generation wireless networks will integrate multiple wireless access technologies and the users will access the network using one of several available radio access technologies. In this paper, we study the spectrum access problem in heterogeneous multipleinput multiple-output (MIMO) networks through a game theoretic approach. The spectrum access problem in the considered system model is defined as joint network selection and discrete power control. We formulate the problem as a noncooperative game where the players are the multi-mode terminals and. The proposed common utility function takes both transmission rate and the power consumption into account. This game is shown to be a potential game which possess at least one pure strategy Nash equilibrium (NE) and the optimal strategy profile which maximizes the total energy efficiency of the heterogeneous MIMO network constitutes a pure strategy NE of our proposed game. Furthermore, we prove that the price of anarchy of the proposed game is equal to 1. In order to achieve the pure strategy NE, we design an iterative spectrum access algorithm. The convergence and the complexity of our designed algorithm is discussed. It is shown that the designed algorithm can achieve optimal performance with low complexity.

  4. S3: Smart Session Selection for Voice Communications in Next Generation Wireless Network

    NASA Astrophysics Data System (ADS)

    Chung, Tein-Yaw; Yuan, Fong-Ching; Chen, Yung-Mu; Liu, Baw-Jhiune

    Selecting transparently a proper network connection for voice communication will be a fundamental requirement in future multimode heterogeneous wireless network. This paper presented a smart session selection (S3) scheme to meet this requirement. Instead of selecting a best access network as in conventional Always Best Connected (ABC) paradigm, S3 enables users to select a best network connection, which consists of source and destination access network pair, to satisfy quality constraint and users' preference. To support S3, we develop a user profile to specify network connection priority. Meanwhile IP multimedia subsystem (IMS) is extended to make smart decision for users. Finally, Analytic Hierarchy Process (AHP) is used to recommend a network connection with assistance of user profile and IMS signaling. An example is illustrated to show that AHP can successfully select a good network connection that fulfills the requirement of users.

  5. Brain networks supporting perceptual grouping and contour selection

    PubMed Central

    Volberg, Gregor; Greenlee, Mark W.

    2014-01-01

    The human visual system groups local elements into global objects seemingly without effort. Using a contour integration task and EEG source level analyses, we tested the hypothesis that perceptual grouping requires a top-down selection, rather than a passive pooling, of neural information that codes local elements in the visual image. The participants were presented visual displays with or without a hidden contour. Two tasks were performed: a central luminance-change detection task and a peripheral contour detection task. Only in the contour-detection task could we find differential brain activity between contour and non-contour conditions, within a distributed brain network including parietal, lateral occipital and primary visual areas. Contour processing was associated with an inflow of information from lateral occipital into primary visual regions, as revealed from the slope of phase differences between source level oscillations within these areas. The findings suggest that contour integration results from a selection of neural information from lower visual areas, and that this selection is driven by the lateral occipital cortex. PMID:24772096

  6. Social selection and peer influence in an online social network.

    PubMed

    Lewis, Kevin; Gonzalez, Marco; Kaufman, Jason

    2012-01-01

    Disentangling the effects of selection and influence is one of social science's greatest unsolved puzzles: Do people befriend others who are similar to them, or do they become more similar to their friends over time? Recent advances in stochastic actor-based modeling, combined with self-reported data on a popular online social network site, allow us to address this question with a greater degree of precision than has heretofore been possible. Using data on the Facebook activity of a cohort of college students over 4 years, we find that students who share certain tastes in music and in movies, but not in books, are significantly likely to befriend one another. Meanwhile, we find little evidence for the diffusion of tastes among Facebook friends-except for tastes in classical/jazz music. These findings shed light on the mechanisms responsible for observed network homogeneity; provide a statistically rigorous assessment of the coevolution of cultural tastes and social relationships; and suggest important qualifications to our understanding of both homophily and contagion as generic social processes. PMID:22184242

  7. Social selection and peer influence in an online social network

    PubMed Central

    Lewis, Kevin; Gonzalez, Marco; Kaufman, Jason

    2012-01-01

    Disentangling the effects of selection and influence is one of social science's greatest unsolved puzzles: Do people befriend others who are similar to them, or do they become more similar to their friends over time? Recent advances in stochastic actor-based modeling, combined with self-reported data on a popular online social network site, allow us to address this question with a greater degree of precision than has heretofore been possible. Using data on the Facebook activity of a cohort of college students over 4 years, we find that students who share certain tastes in music and in movies, but not in books, are significantly likely to befriend one another. Meanwhile, we find little evidence for the diffusion of tastes among Facebook friends—except for tastes in classical/jazz music. These findings shed light on the mechanisms responsible for observed network homogeneity; provide a statistically rigorous assessment of the coevolution of cultural tastes and social relationships; and suggest important qualifications to our understanding of both homophily and contagion as generic social processes. PMID:22184242

  8. Select phytochemicals suppress human T-lymphocytes and mouse splenocytes suggesting their use in autoimmunity and transplantation

    PubMed Central

    Hushmendy, Shazaan; Jayakumar, Lalithapriya; Hahn, Amy B.; Bhoiwala, Devang; Bhoiwala, Dipti L.; Crawford, Dana R.

    2009-01-01

    We have considered a novel “rational” gene targeting approach for treating pathologies whose genetic bases are defined using select phytochemicals. We reason that one such potential application of this approach would be conditions requiring immunosuppression such as autoimmune disease and transplantation, where the genetic target is clearly defined; i.e., interleukin-2 and associated T-cell activation. Therefore, we hypothesized that select phytochemicals can suppress T-lymphocyte proliferation both in vitro and in vivo. The immunosuppressive effects of berry extract, curcumin, quercetin, sulforaphane, epigallocatechin gallate (EGCG), resveratrol, α-tocopherol, vitamin C and sucrose were tested on anti-CD3 plus anti-CD28-activated primary human T-lymphocytes in culture. Curcumin, sulforaphane, quercetin, berry extract and EGCG all significantly inhibited T-cell proliferation, and this effect was not due to toxicity. IL-2 production was also reduced by these agents, implicating this important T-cell cytokine in proliferation suppression. Except for berry extract, these same agents also inhibited mouse splenic T-cell proliferation and IL-2 production. Subsequent in vivo studies revealed that quercetin (but not sulforaphane) modestly suppressed mouse splenocyte proliferation following supplementation of BALB/c mice diets. This effect was especially prominent if corrected for the loss of supplement “recall” as observed in cultured T-cells. These results suggest the potential use of these select phytochemicals for treating autoimmune and transplant patients, and support our strategy of using select phytochemicals to treat genetically-defined pathologies, an approach that we believe is simple, healthy, and cost-effective. PMID:19761891

  9. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space.

    PubMed

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  10. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space

    PubMed Central

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  11. Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    SciTech Connect

    Nong, Hanond Markmann, Sergej; Hekmat, Negar; Jukam, Nathan; Pal, Shovon; Mohandas, Reshma A.; Dean, Paul; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A.; Wieck, Andreas D.

    2014-09-15

    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunes the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode.

  12. A genetic network that suppresses genome rearrangements in Saccharomyces cerevisiae and contains defects in cancers.

    PubMed

    Putnam, Christopher D; Srivatsan, Anjana; Nene, Rahul V; Martinez, Sandra L; Clotfelter, Sarah P; Bell, Sara N; Somach, Steven B; E S de Souza, Jorge; Fonseca, André F; de Souza, Sandro J; Kolodner, Richard D

    2016-01-01

    Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes. PMID:27071721

  13. A genetic network that suppresses genome rearrangements in Saccharomyces cerevisiae and contains defects in cancers

    PubMed Central

    Putnam, Christopher D.; Srivatsan, Anjana; Nene, Rahul V.; Martinez, Sandra L.; Clotfelter, Sarah P.; Bell, Sara N.; Somach, Steven B.; E.S. de Souza, Jorge; Fonseca, André F.; de Souza, Sandro J.; Kolodner, Richard D.

    2016-01-01

    Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes. PMID:27071721

  14. Large-Scale Identification and Analysis of Suppressive Drug Interactions

    PubMed Central

    Cokol, Murat; Weinstein, Zohar B.; Yilancioglu, Kaan; Tasan, Murat; Doak, Allison; Cansever, Dilay; Mutlu, Beste; Li, Siyang; Rodriguez-Esteban, Raul; Akhmedov, Murodzhon; Guvenek, Aysegul; Cokol, Melike; Cetiner, Selim; Giaever, Guri; Iossifov, Ivan; Nislow, Corey; Shoichet, Brian; Roth, Frederick P.

    2014-01-01

    SUMMARY One drug may suppress the effects of another. Although knowledge of drug suppression is vital to avoid efficacy-reducing drug interactions or discover countermeasures for chemical toxins, drug-drug suppression relationships have not been systematically mapped. Here, we analyze the growth response of Saccharomyces cerevisiae to anti-fungal compound (“drug”) pairs. Among 440 ordered drug pairs, we identified 94 suppressive drug interactions. Using only pairs not selected on the basis of their suppression behavior, we provide an estimate of the prevalence of suppressive interactions between anti-fungal compounds as 17%. Analysis of the drug suppression network suggested that Bromopyruvate is a frequently suppressive drug and Staurosporine is a frequently suppressed drug. We investigated potential explanations for suppressive drug interactions, including chemogenomic analysis, coaggregation, and pH effects, allowing us to explain the interaction tendencies of Bromopyruvate. PMID:24704506

  15. Large-scale identification and analysis of suppressive drug interactions.

    PubMed

    Cokol, Murat; Weinstein, Zohar B; Yilancioglu, Kaan; Tasan, Murat; Doak, Allison; Cansever, Dilay; Mutlu, Beste; Li, Siyang; Rodriguez-Esteban, Raul; Akhmedov, Murodzhon; Guvenek, Aysegul; Cokol, Melike; Cetiner, Selim; Giaever, Guri; Iossifov, Ivan; Nislow, Corey; Shoichet, Brian; Roth, Frederick P

    2014-04-24

    One drug may suppress the effects of another. Although knowledge of drug suppression is vital to avoid efficacy-reducing drug interactions or discover countermeasures for chemical toxins, drug-drug suppression relationships have not been systematically mapped. Here, we analyze the growth response of Saccharomyces cerevisiae to anti-fungal compound ("drug") pairs. Among 440 ordered drug pairs, we identified 94 suppressive drug interactions. Using only pairs not selected on the basis of their suppression behavior, we provide an estimate of the prevalence of suppressive interactions between anti-fungal compounds as 17%. Analysis of the drug suppression network suggested that Bromopyruvate is a frequently suppressive drug and Staurosporine is a frequently suppressed drug. We investigated potential explanations for suppressive drug interactions, including chemogenomic analysis, coaggregation, and pH effects, allowing us to explain the interaction tendencies of Bromopyruvate. PMID:24704506

  16. Centrally controlled self-healing wavelength division multiplexing passive optical network based on optical carrier suppression technique

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhang, Jiao; Sun, Xiaohan

    2015-12-01

    We proposed and demonstrated a centrally controlled and self-healing wavelength division multiplexing passive optical network with colorless optical network units (ONUs) based on optical carrier suppression technique. By switching the affected data in the OCS signal sideband to an alternate protection path, only one optical switch is provisioned at the optical line terminal, which is controlled by a logic control circuit upon monitoring of power outage on the working path. The proposed scheme can reliably protect against both distribution and feeder fiber failures. Moreover, gain-saturated reflective semiconductor optical amplifiers are used as colorless transmitters in ONUs. The protection scheme feasibility and system performances are experimentally verified with 10 Gb/s downstream and 1.25 Gb/s upstream data in both working and protection modes. The protection switching time was measured to be around 1 ms.

  17. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli.

    PubMed

    Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain

    2015-01-01

    Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements. PMID:26539103

  18. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli

    PubMed Central

    Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain

    2015-01-01

    Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements. PMID:26539103

  19. Antitumor activity of YM155, a selective survivin suppressant, in combination with cisplatin in hepatoblastoma.

    PubMed

    Yu, Ying; Zhao, Xiaosu; Zhang, Yu; Kang, Yanling; Wang, Jiaqi; Liu, Yingchun

    2015-07-01

    Cisplatin (CDDP) is a chemotherapeutic drug that is often used for the treatment of hepatoblastoma. However, many patients acquire resistance to therapeutic agents leading to local and distant treatment failure. It has been shown that suppression survivin contributed to the inhibition of tumor growth and enhanced chemotherapeutic sensitivity in several types of cancer. The aim of the present study was to determine whether treatment with sepantronium bromide (YM155), a novel small molecule inhibitor of survivin, enhanced the sensitivity of CDDP to hepatoblastoma cells, leading to the therapeutic efficacy of cisplatin. In vitro and in vivo models were used to examine the anticancer efficacy of YM155, either as a monotherapy or in combination with CDDP to identify more effective therapeutics against hepatoblastoma. The results showed that survivin expression was upregulated in hepatoblastoma tissues and cell lines, and that YM155 inhibited survivin expression in hepatoblastoma cells in a dose-dependent manner. YM155 enhanced sensitivity of CDDP to human HepG2 and HuH-6 hepatoblastoma cells. The YM155 combination with CDDP in hepatoblastoma cells significantly decreased cell proliferation and formation, and induced cell apoptosis than either agent alone. In a mouse xenograft model, YM155 combined with CDDP significantly suppressed tumor growth compared to the monotherapy. Taken together, these findings suggested that the combination of YM155 and CDDP is a promising drug candidate for the treatment of hepatoblastoma. PMID:25955434

  20. Selective Mitochondrial Uptake of MKT-077 Can Suppress Medullary Thyroid Carcinoma Cell Survival In Vitro and In Vivo

    PubMed Central

    Starenki, Dmytro

    2015-01-01

    Background Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET) proto-oncogene. Not all patients with progressive MTC respond to current therapy inhibiting RET, demanding additional therapeutic strategies. We recently demonstrated that disrupting mitochondrial metabolism using a mitochondria-targeted agent or by depleting a mitochondrial chaperone effectively suppressed human MTC cells in culture and in mouse xenografts by inducing apoptosis and RET downregulation. These observations led us to hypothesize that mitochondria are potential therapeutic targets for MTC. This study further tests this hypothesis using1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden)]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride (MKT-077), a water-soluble rhodocyanine dye analogue, which can selectively accumulate in mitochondria. Methods The effects of MKT-077 on cell proliferation, survival, expression of RET and tumor protein 53 (TP53), and mitochondrial activity were determined in the human MTC lines in culture and in mouse xenografts. Results MKT-077 induced cell cycle arrest in TT and MZ-CRC-1. Intriguingly, MKT-077 also induced RET downregulation and strong cell death responses in TT cells, but not in MZ-CRC-1 cells. This discrepancy was mainly due to the difference between the capacities of these cell lines to retain MKT-077 in mitochondria. The cytotoxicity of MKT-077 in TT cells was mainly attributed to oxidative stress while being independent of TP53. MKT-077 also effectively suppressed tumor growth of TT xenografts. Conclusion MKT-077 can suppress cell survival of certain MTC subtypes by accumulating in mitochondria and interfering with mitochondrial activity although it can also suppress cell proliferation via other mechanisms. These results consistently support the hypothesis that mitochondrial targeting has therapeutic potential for MTC. PMID:26485469

  1. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy.

    PubMed

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. PMID:26253462

  2. Can You Hear Me Now? Musical Training Shapes Functional Brain Networks for Selective Auditory Attention and Hearing Speech in Noise

    PubMed Central

    Strait, Dana L.; Kraus, Nina

    2011-01-01

    Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker's voice amidst others). Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and non-musicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not non-musicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development and maintenance of language-related skills, musical training may aid in the prevention, habilitation, and remediation of individuals with a wide range of attention-based language, listening and learning impairments. PMID:21716636

  3. Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of AMPK and Akt signaling networks

    PubMed Central

    Chuu, Chih-Pin; Lin, Hui-Ping; Ciaccio, Mark F.; Kokontis, John M.; Hause, Ronald J.; Hiipakka, Richard A.; Liao, Shutsung; Jones, Richard Baker

    2016-01-01

    Caffeic acid phenethyl ester (CAPE) is a bioactive component derived from honeybee hive propolis. CAPE has been shown to have anti-mitogenic, anti-carcinogenic, and other beneficial medicinal properties. Many of its effects have been shown to be mediated through its inhibition of NF-κB signaling pathways. We took a systematic approach to uncover CAPE’s effects from hours to days on the signaling networks in human prostate cancer cells. We observed that CAPE dosage-dependently suppressed the proliferation of LNCaP, DU-145, and PC-3 human prostate cancer cells. Administration of CAPE by gavage significantly inhibited the tumor growth of LNCaP xenografts in nude mice. Using LNCaP cells as a model system, we examined CAPE’s effect on gene expression, protein signaling, and transcriptional regulatory networks using Micro-Western Arrays and PCR arrays. We built a model of CAPE’s impact on cell signaling which suggested that it acted through inhibition of Akt-related protein signaling networks. Over-expression of Akt1 or cMyc, a downstream target of Akt signaling, significantly blocked the anti-proliferative effects of CAPE. In summary, our results suggest that CAPE administration may be useful as an adjuvant therapy for prostate and potentially other types of cancers that are driven by the AMPK and Akt signaling networks. PMID:22562408

  4. Piperlongumine selectively suppresses ABC-DLBCL through inhibition of NF-κB p65 subunit nuclear import

    SciTech Connect

    Niu, Mingshan; Shen, Yangling; Xu, Xiaoyu; Yao, Yao; Fu, Chunling; Yan, Zhiling; Wu, Qingyun; Cao, Jiang; Sang, Wei; Zeng, Lingyu; Li, Zhenyu; Liu, Xuejiao; and others

    2015-07-10

    Constitutive NF-κB activation is required for survival of activated B cell-like subtype of diffuse large B cell lymphoma (ABC-DLBCL). However, current NF-κB targeting strategies lack cancer cell specificity. Here, we identified a novel inhibitor, piperlongumine, features direct binding to NF-κB p65 subunit and suppression of p65 nuclear import. This was accompanied by NF-κB reporter activity suppression and NF-κB target gene downregulation. Moreover, mutation of Cys{sup 38} to Ser in p65 abolished this effect of piperlongumine on inhibition of p65 nuclear import. Furthermore, we show that piperlongumine selectively inhibited proliferation and induced apoptosis of ABC-DLBCL cells. Most notably, it has been reported that piperlongumine did not affect normal cells even at high doses and was nontoxic to animals. Hence, our current study provides new insight into piperlongumine's mechanism of action and novel approach to ABC-DLBCL target therapy. - Highlights: • Current NF-κB targeting strategies lack cancer cell specificity. • Piperlongumine inhibits NF-κB p65 subunit nuclear import via directly binding to p65. • Piperlongumine selectively inhibits proliferation of ABC-DLBCL cells. • This study provides a novel approach to ABC-DLBCL target therapy.

  5. Bayesian Model Selection with Network Based Diffusion Analysis.

    PubMed

    Whalen, Andrew; Hoppitt, William J E

    2016-01-01

    A number of recent studies have used Network Based Diffusion Analysis (NBDA) to detect the role of social transmission in the spread of a novel behavior through a population. In this paper we present a unified framework for performing NBDA in a Bayesian setting, and demonstrate how the Watanabe Akaike Information Criteria (WAIC) can be used for model selection. We present a specific example of applying this method to Time to Acquisition Diffusion Analysis (TADA). To examine the robustness of this technique, we performed a large scale simulation study and found that NBDA using WAIC could recover the correct model of social transmission under a wide range of cases, including under the presence of random effects, individual level variables, and alternative models of social transmission. This work suggests that NBDA is an effective and widely applicable tool for uncovering whether social transmission underpins the spread of a novel behavior, and may still provide accurate results even when key model assumptions are relaxed. PMID:27092089

  6. A Neuronal Network Model for Pitch Selectivity and Representation

    PubMed Central

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions. PMID:27378900

  7. Bayesian Model Selection with Network Based Diffusion Analysis

    PubMed Central

    Whalen, Andrew; Hoppitt, William J. E.

    2016-01-01

    A number of recent studies have used Network Based Diffusion Analysis (NBDA) to detect the role of social transmission in the spread of a novel behavior through a population. In this paper we present a unified framework for performing NBDA in a Bayesian setting, and demonstrate how the Watanabe Akaike Information Criteria (WAIC) can be used for model selection. We present a specific example of applying this method to Time to Acquisition Diffusion Analysis (TADA). To examine the robustness of this technique, we performed a large scale simulation study and found that NBDA using WAIC could recover the correct model of social transmission under a wide range of cases, including under the presence of random effects, individual level variables, and alternative models of social transmission. This work suggests that NBDA is an effective and widely applicable tool for uncovering whether social transmission underpins the spread of a novel behavior, and may still provide accurate results even when key model assumptions are relaxed. PMID:27092089

  8. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift.

    PubMed

    Laarits, T; Bordalo, P; Lemos, B

    2016-08-01

    Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. PMID:27213992

  9. Selective Narrowing of Social Networks across Adulthood is Associated with Improved Emotional Experience in Daily Life

    ERIC Educational Resources Information Center

    English, Tammy; Carstensen, Laura L.

    2014-01-01

    Past research has documented age differences in the size and composition of social networks that suggest that networks grow smaller with age and include an increasingly greater proportion of well-known social partners. According to socioemotional selectivity theory, such changes in social network composition serve an antecedent emotion regulatory…

  10. Generative model selection using a scalable and size-independent complex network classifier

    SciTech Connect

    Motallebi, Sadegh Aliakbary, Sadegh Habibi, Jafar

    2013-12-15

    Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named “Generative Model Selection for Complex Networks,” outperforms existing methods with respect to accuracy, scalability, and size-independence.

  11. Social Capital for College: Network Composition and Access to Selective Institutions among Urban High School Students

    ERIC Educational Resources Information Center

    Hill, Lori Diane; Bregman, Allyson; Andrade, Fernando

    2015-01-01

    This study examines the relationship between networks that provide high school students with "social capital for college" (SCFC) and their access to selective institutions. It also explores the link between racial disparities in access to selective colleges and the composition of students' SCFC networks. Findings indicate that while…

  12. Selective strong-field enhancement and suppression of ionization with short laser pulses

    NASA Astrophysics Data System (ADS)

    Hart, N. A.; Strohaber, J.; Kolomenskii, A. A.; Paulus, G. G.; Bauer, D.; Schuessler, H. A.

    2016-06-01

    We experimentally demonstrate robust selective excitation and attenuation of atomic Rydberg level populations in sodium vapor (Na i) using intense laser pulses in the strong-field limit (>1012W /c m2 ). Coherent control of the atomic population and related ionization channels is realized for intensities above the over-the-barrier ionization intensity. Moreover, atomic excitation selectivity and high ionization yield are simultaneously achieved without the need to tailor the spectral phase of the laser. A qualitative model confirms that this strong-field coherent control arises through the manifestation of a Freeman resonance.

  13. Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes.

    PubMed

    Bauer, I; Kohl, M; Althues, H; Kaskel, S

    2014-03-25

    A sodiated Nafion-coating on a porous polypropylene backbone was used as a cation selective separator for room temperature sodium-sulfur batteries. The capacity of the cells after 20 cycles could be enhanced by 75% to 350 mA h g(sulfur)(-1) using the new separator. PMID:24522659

  14. P50 Suppression in Children with Selective Mutism: A Preliminary Report

    ERIC Educational Resources Information Center

    Henkin, Yael; Feinholz, Maya; Arie, Miri; Bar-Haim, Yair

    2010-01-01

    Evidence suggests that children with selective mutism (SM) display significant aberrations in auditory efferent activity at the brainstem level that may underlie inefficient auditory processing during vocalization, and lead to speech avoidance. The objective of the present study was to explore auditory filtering processes at the cortical level in…

  15. Neural repetition suppression: evidence for perceptual expectation in object-selective regions

    PubMed Central

    Mayrhauser, Lisa; Bergmann, Jürgen; Crone, Julia; Kronbichler, Martin

    2014-01-01

    It is an established finding that neuronal activity is decreased for repeated stimuli. Recent studies revealed that repetition suppression (RS) effects are altered by manipulating the probability with which stimuli are repeated. RS for faces is more pronounced when the probability of repetition is high than when it is low. This response pattern is interpreted with reference to the predictive coding (PC) account, which assumes that RS is influenced by top-down expectations. Recent findings challenge the generality of PC accounts of RS by showing repetition probability does not modulate RS for other visual stimuli than faces. However, a number of findings on visual processing are in line with PC. Thus, the influence of repetition probability on RS effects during object processing requires careful reinvestigations. In the present fMRI study, object pictures were presented in a high (75%) or low (25%) repetition probability context. We found increased RS in the high-probability context compared to the low-probability context in the left lateral occipital complex (LOC). The dorsal-caudal and the ventral-anterior subdivisions of the LOC revealed similar neuronal responses. These results indicate that repetition probability effects can be found for other visual objects than faces and provide evidence in favor of the PC account. PMID:24860461

  16. Some scale-free networks could be robust under selective node attacks

    NASA Astrophysics Data System (ADS)

    Zheng, Bojin; Huang, Dan; Li, Deyi; Chen, Guisheng; Lan, Wenfei

    2011-04-01

    It is a mainstream idea that scale-free network would be fragile under the selective attacks. Internet is a typical scale-free network in the real world, but it never collapses under the selective attacks of computer viruses and hackers. This phenomenon is different from the deduction of the idea above because this idea assumes the same cost to delete an arbitrary node. Hence this paper discusses the behaviors of the scale-free network under the selective node attack with different cost. Through the experiments on five complex networks, we show that the scale-free network is possibly robust under the selective node attacks; furthermore, the more compact the network is, and the larger the average degree is, then the more robust the network is; with the same average degrees, the more compact the network is, the more robust the network is. This result would enrich the theory of the invulnerability of the network, and can be used to build robust social, technological and biological networks, and also has the potential to find the target of drugs.

  17. To see or not to see--thalamo-cortical networks during blindsight and perceptual suppression.

    PubMed

    Schmid, Michael C; Maier, Alexander

    2015-03-01

    Even during moments when we fail to be fully aware of our environment, our brains never go silent. Instead, it appears that the brain can also operate in an alternate, unconscious mode. Delineating unconscious from conscious neural processes is a promising first step toward investigating how awareness emerges from brain activity. Here we focus on recent insights into the neuronal processes that contribute to visual function in the absence of a conscious visual percept. Drawing on insights from findings on the phenomenon of blindsight that results from injury to primary visual cortex and the results of experimentally induced perceptual suppression, we describe what kind of visual information the visual system analyzes unconsciously and we discuss the neuronal routing and responses that accompany this process. We conclude that unconscious processing of certain visual stimulus attributes, such as the presence of visual motion or the emotional expression of a face can occur in a geniculo-cortical circuit that runs independent from and in parallel to the predominant route through primary visual cortex. We speculate that in contrast, bidirectional neuronal interactions between cortex and the thalamic pulvinar nucleus that support large-scale neuronal integration and visual awareness are impeded during blindsight and perceptual suppression. PMID:25661166

  18. Piperlongumine selectively suppresses ABC-DLBCL through inhibition of NF-κB p65 subunit nuclear import.

    PubMed

    Niu, Mingshan; Shen, Yangling; Xu, Xiaoyu; Yao, Yao; Fu, Chunling; Yan, Zhiling; Wu, Qingyun; Cao, Jiang; Sang, Wei; Zeng, Lingyu; Li, Zhenyu; Liu, Xuejiao; Xu, Kailin

    2015-07-10

    Constitutive NF-κB activation is required for survival of activated B cell-like subtype of diffuse large B cell lymphoma (ABC-DLBCL). However, current NF-κB targeting strategies lack cancer cell specificity. Here, we identified a novel inhibitor, piperlongumine, features direct binding to NF-κB p65 subunit and suppression of p65 nuclear import. This was accompanied by NF-κB reporter activity suppression and NF-κB target gene downregulation. Moreover, mutation of Cys(38) to Ser in p65 abolished this effect of piperlongumine on inhibition of p65 nuclear import. Furthermore, we show that piperlongumine selectively inhibited proliferation and induced apoptosis of ABC-DLBCL cells. Most notably, it has been reported that piperlongumine did not affect normal cells even at high doses and was nontoxic to animals. Hence, our current study provides new insight into piperlongumine's mechanism of action and novel approach to ABC-DLBCL target therapy. PMID:25979358

  19. Hesperetin, a Selective Phosphodiesterase 4 Inhibitor, Effectively Suppresses Ovalbumin-Induced Airway Hyperresponsiveness without Influencing Xylazine/Ketamine-Induced Anesthesia

    PubMed Central

    Shih, Chung-Hung; Lin, Ling-Hung; Hsu, Hsin-Te; Wang, Kuo-Hsien; Lai, Chi-Yin; Chen, Chien-Ming; Ko, Wun-Chang

    2012-01-01

    Hesperetin, a selective phosphodiesterase (PDE)4 inhibitor, is present in the traditional Chinese medicine, “Chen Pi.” Therefore, we were interested in investigating its effects on ovalbumin- (OVA-) induced airway hyperresponsiveness, and clarifying its rationale for ameliorating asthma and chronic obstructive pulmonary disease (COPD). Hesperetin was revealed to have a therapeutic (PDE4H/PDE4L) ratio of >11. Hesperetin (10 ~ 30 μmol/kg, intraperitoneally (i.p.)) dose-dependently and significantly attenuated the airway hyperresponsiveness induced by methacholine. It also significantly suppressed the increases in total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL)-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF). It dose-dependently and significantly suppressed total and OVA-specific immunoglobulin E levels in the BALF and serum. However, hesperetin did not influence xylazine/ketamine-induced anesthesia, suggesting that hesperetin has few or no emetic effects. In conclusion, the rationales for ameliorating allergic asthma and COPD by hesperetin are anti-inflammation, immunoregulation, and bronchodilation. PMID:22454667

  20. Suppressed N2O formation during NH3 selective catalytic reduction using vanadium on zeolitic microporous TiO2

    NASA Astrophysics Data System (ADS)

    Lee, Seung Gwan; Lee, Hyun Jeong; Song, Inhak; Youn, Seunghee; Kim, Do Heui; Cho, Sung June

    2015-08-01

    Emission of N2O from mobile and off-road engine is now being currently regulated because of its high impact compared to that of CO2, thereby implying that N2O formation from the exhaust gas after-treatment system should be suppressed. Selective catalytic reduction using vanadium supported TiO2 catalyst in mobile and off-road engine has been considered to be major source for N2O emission in the system. Here we have demonstrated that vanadium catalyst supported on zeolitic microporous TiO2 obtained from the hydrothermal reaction of bulk TiO2 at 400 K in the presence of LiOH suppresses significantly the N2O emission compared to conventional VOx/TiO2 catalyst, while maintaining the excellent NOx reduction, which was ascribed to the location of VOx domain in the micropore of TiO2, resulting in the strong metal support interaction. The use of zeolitic microporous TiO2 provides a new way of preparing SCR catalyst with a high thermal stability and superior catalytic performance. It can be also extended further to the other catalytic system employing TiO2-based substrate.

  1. Suppressed N2O formation during NH3 selective catalytic reduction using vanadium on zeolitic microporous TiO2

    PubMed Central

    Lee, Seung Gwan; Lee, Hyun Jeong; Song, Inhak; Youn, Seunghee; Kim, Do Heui; Cho, Sung June

    2015-01-01

    Emission of N2O from mobile and off-road engine is now being currently regulated because of its high impact compared to that of CO2, thereby implying that N2O formation from the exhaust gas after-treatment system should be suppressed. Selective catalytic reduction using vanadium supported TiO2 catalyst in mobile and off-road engine has been considered to be major source for N2O emission in the system. Here we have demonstrated that vanadium catalyst supported on zeolitic microporous TiO2 obtained from the hydrothermal reaction of bulk TiO2 at 400 K in the presence of LiOH suppresses significantly the N2O emission compared to conventional VOx/TiO2 catalyst, while maintaining the excellent NOx reduction, which was ascribed to the location of VOx domain in the micropore of TiO2, resulting in the strong metal support interaction. The use of zeolitic microporous TiO2 provides a new way of preparing SCR catalyst with a high thermal stability and superior catalytic performance. It can be also extended further to the other catalytic system employing TiO2-based substrate. PMID:26235671

  2. Guidelines for Selection of Electronic Networking Software and Hardware.

    ERIC Educational Resources Information Center

    Rieck, Donald A.

    This article discusses the issues that confront network users and systems operators when they explore and adapt their professional communications activities to electronic communication. (Electronic networking here refers to the use of the telephone and the computer to facilitate communication between or among professional groups in a variety of…

  3. Comparative Analysis of Human Communication Networks in Selected Formal Organizations.

    ERIC Educational Resources Information Center

    Farace, Richard V.; Johnson, Jerome David

    This paper briefly describes the organization of a "data bank" containing research on communication networks, specifies the kinds of information compiled about various network properties, discusses some specific results of the work done to date, and presents some general conclusions about the overall project and its potential advantages to…

  4. Noise-tolerant model selection and parameter estimation for complex networks

    NASA Astrophysics Data System (ADS)

    Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali

    2015-06-01

    Real networks often exhibit nontrivial topological features that do not occur in random graphs. The need for synthesizing realistic networks has resulted in development of various network models. In this paper, we address the problem of selecting and calibrating the model that best fits a given target network. The existing model fitting approaches mostly suffer from sensitivity to network perturbations, lack of the parameter estimation component, dependency on the size of the networks, and low accuracy. To overcome these limitations, we considered a broad range of network features and employed machine learning techniques such as genetic algorithms, distance metric learning, nearest neighbor classification, and artificial neural networks. Our proposed method, which is named ModelFit, outperforms the state-of-the-art baselines with respect to accuracy and noise tolerance in different network datasets.

  5. Development of novel DIF-1 derivatives that selectively suppress innate immune responses.

    PubMed

    Nguyen, Van Hai; Kikuchi, Haruhisa; Kubohara, Yuzuru; Takahashi, Katsunori; Katou, Yasuhiro; Oshima, Yoshiteru

    2015-08-01

    The multiple pharmacological activities of differentiation-inducing factor-1 (DIF-1) of the cellular slime mold Dictyostelium discoideum led us to examine the use of DIF-1 as a 'drug template' to develop promising seed compounds for drug discovery. DIF-1 and its derivatives were synthesized and evaluated for their regulatory activities in innate immune responses. We found two new derivatives (4d and 5e) with highly selective inhibitory activities against production of the antimicrobial peptide attacin in Drosophila S2 cells and against production of interleukin-2 in Jurkat cells. PMID:26122773

  6. A Novel Crosstalk Suppression Method of the 2-D Networked Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; Wang, Lei; Li, Jianqing; Song, Aiguo

    2014-01-01

    The 2-D resistive sensor array in the row–column fashion suffered from the crosstalk problem for parasitic parallel paths. Firstly, we proposed an Improved Isolated Drive Feedback Circuit with Compensation (IIDFCC) based on the voltage feedback method to suppress the crosstalk. In this method, a compensated resistor was specially used to reduce the crosstalk caused by the column multiplexer resistors and the adjacent row elements. Then, a mathematical equivalent resistance expression of the element being tested (EBT) of this circuit was analytically derived and verified by the circuit simulations. The simulation results show that the measurement method can greatly reduce the influence on the EBT caused by parasitic parallel paths for the multiplexers' channel resistor and the adjacent elements. PMID:25046011

  7. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses

    PubMed Central

    Hammitzsch, Ariane; Tallant, Cynthia; Fedorov, Oleg; O’Mahony, Alison; Brennan, Paul E.; Hay, Duncan A.; Martinez, Fernando O.; Al-Mossawi, M. Hussein; de Wit, Jelle; Vecellio, Matteo; Wells, Christopher; Wordsworth, Paul; Müller, Susanne; Knapp, Stefan; Bowness, Paul

    2015-01-01

    Th17 responses are critical to a variety of human autoimmune diseases, and therapeutic targeting with monoclonal antibodies against IL-17 and IL-23 has shown considerable promise. Here, we report data to support selective bromodomain blockade of the transcriptional coactivators CBP (CREB binding protein) and p300 as an alternative approach to inhibit human Th17 responses. We show that CBP30 has marked molecular specificity for the bromodomains of CBP and p300, compared with 43 other bromodomains. In unbiased cellular testing on a diverse panel of cultured primary human cells, CBP30 reduced immune cell production of IL-17A and other proinflammatory cytokines. CBP30 also inhibited IL-17A secretion by Th17 cells from healthy donors and patients with ankylosing spondylitis and psoriatic arthritis. Transcriptional profiling of human T cells after CBP30 treatment showed a much more restricted effect on gene expression than that observed with the pan-BET (bromo and extraterminal domain protein family) bromodomain inhibitor JQ1. This selective targeting of the CBP/p300 bromodomain by CBP30 will potentially lead to fewer side effects than with the broadly acting epigenetic inhibitors currently in clinical trials. PMID:26261308

  8. Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise

    NASA Astrophysics Data System (ADS)

    Hinczewski, Michael; Thirumalai, D.

    2014-10-01

    Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function—such as ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.

  9. Active suppression of nonlinear composite beam vibrations by selected control algorithms

    NASA Astrophysics Data System (ADS)

    Warminski, Jerzy; Bochenski, Marcin; Jarzyna, Wojciech; Filipek, Piotr; Augustyniak, Michal

    2011-05-01

    This paper is focused on application of different control algorithms for a flexible, geometrically nonlinear beam-like structure with Macro Fiber Composite (MFC) actuator. Based on the mathematical model of a geometrically nonlinear beam, analytical solutions for Nonlinear Saturation Controller (NSC) are obtained using Multiple Scale Method. Effectiveness of different control strategies is evaluated by numerical simulations in Matlab-Simulink software. Then, the Digital Signal Processing (DSP) controller and selected control algorithms are implemented to the physical system to compare numerical and experimental results. Detailed analysis for the NSC system is carried out, especially for high level of amplitude and wide range of frequencies of excitation. Finally, the efficiency of the considered controllers is tested experimentally for a more complex autoparametric " L-shape" beam system.

  10. A CB2-Selective Cannabinoid Suppresses T-cell Activities and Increases Tregs and IL-10

    PubMed Central

    Robinson, Rebecca H.; Meissler, Joseph J.; Fan, Xiaoxuan; Yu, Daohai; Adler, Martin W.; Eisenstein, Toby K.

    2015-01-01

    We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells. Treatment with O-1966 dose-relatedly decreased levels of the active nuclear forms of the transcription factors NF-κB and NFAT in wild-type T-cells, but not T-cells from CB2 knockout (CB2R k/o) mice. Additionally, a gene expression profile of purified T-cells from MLR cultures generated using a PCR T-cell activation array showed that O-1966 decreased mRNA expression of CD40 ligand and CyclinD3, and increased mRNA expression of Src-like-adaptor 2 (SLA2), Suppressor of Cytokine Signaling 5 (SOCS5), and IL-10. The increase in IL-10 was confirmed by measuring IL-10 protein levels in MLR culture supernatants. Further, an increase in the percentage of regulatory T-cells (Tregs) was observed in MLR cultures. Pretreatment with anti-IL-10 resulted in a partial reversal of the inhibition of proliferation and blocked the increase of Tregs. Additionally, O-1966 treatment caused a dose-related decrease in the expression of CD4 in MLR cultures from wild-type, but not CB2R k/o, mice. These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability. PMID:25980325

  11. Lateral and feedforward inhibition suppress asynchronous activity in a large, biophysically-detailed computational model of the striatal network

    PubMed Central

    Moyer, Jason T.; Halterman, Benjamin L.; Finkel, Leif H.; Wolf, John A.

    2014-01-01

    Striatal medium spiny neurons (MSNs) receive lateral inhibitory projections from other MSNs and feedforward inhibitory projections from fast-spiking, parvalbumin-containing striatal interneurons (FSIs). The functional roles of these connections are unknown, and difficult to study in an experimental preparation. We therefore investigated the functionality of both lateral (MSN-MSN) and feedforward (FSI-MSN) inhibition using a large-scale computational model of the striatal network. The model consists of 2744 MSNs comprised of 189 compartments each and 121 FSIs comprised of 148 compartments each, with dendrites explicitly represented and almost all known ionic currents included and strictly constrained by biological data as appropriate. Our analysis of the model indicates that both lateral inhibition and feedforward inhibition function at the population level to limit non-ensemble MSN spiking while preserving ensemble MSN spiking. Specifically, lateral inhibition enables large ensembles of MSNs firing synchronously to strongly suppress non-ensemble MSNs over a short time-scale (10–30 ms). Feedforward inhibition enables FSIs to strongly inhibit weakly activated, non-ensemble MSNs while moderately inhibiting activated ensemble MSNs. Importantly, FSIs appear to more effectively inhibit MSNs when FSIs fire asynchronously. Both types of inhibition would increase the signal-to-noise ratio of responding MSN ensembles and contribute to the formation and dissolution of MSN ensembles in the striatal network. PMID:25505406

  12. Selective Neural Synchrony Suppression as a Forward Gatekeeper to Piecemeal Conscious Perception.

    PubMed

    Levy, Jonathan; Vidal, Juan R; Fries, Pascal; Démonet, Jean-François; Goldstein, Abraham

    2016-07-01

    The emergence of conscious visual perception is assumed to ignite late (∼250 ms) gamma-band oscillations shortly after an initial (∼100 ms) forward sweep of neural sensory (nonconscious) information. However, this neural evidence is not utterly congruent with rich behavioral data which rather point to piecemeal (i.e., graded) perceptual processing. To address the unexplored neural mechanisms of piecemeal ignition of conscious perception, hierarchical script sensitivity of the putative visual word form area (VWFA) was exploited to signal null (i.e., sensory), partial (i.e., letter-level), and full (i.e., word-level) conscious perception. Two magnetoencephalography experiments were conducted in which healthy human participants viewed masked words (Experiment I: active task, Dutch words; Experiment II: passive task, Hebrew words) while high-frequency (broadband gamma) brain activity was measured. Findings revealed that piecemeal conscious perception did not ignite a linear piecemeal increase in oscillations. Instead, whereas late (∼250 ms) gamma-band oscillations signaled full conscious perception (i.e., word-level), partial conscious perception (i.e., letter-level) was signaled via the inhibition of the early (∼100 ms) forward sweep. This inhibition regulates the downstream broadcast to filter out irrelevant (i.e., masks) information. The findings thus highlight a local (VWFA) gatekeeping mechanism for conscious perception, operating by filtering out and in selective percepts. PMID:26045565

  13. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis.

    PubMed

    Lu, Xiao-Yuan; Wang, Zhong-Chang; Ren, Shen-Zhen; Shen, Fa-Qian; Man, Ruo-Jun; Zhu, Hai-Liang

    2016-08-01

    Cyclooxygenase-2 is frequently overexpression in malignant tumors and the product PGE2 promotes cancer cell progression and metastasis. We designed novel series of coumarin sulfonamides derivatives to improve biological activities of COX-2 inhibition and anticancer. Among them, compound 7t showed most powerful selective inhibitory and antiproliferative activity (IC50=0.09μM for COX-2, IC50=48.20μM for COX-1, IC50=0.36μM against HeLa cells), comparable to the control positive compound Celecoxib (0.31μM, 43.37μM, 7.79μM). Cancer cell apoptosis assay were performed and results indicated that compound 7t effectively fuels HeLa cells apoptosis in a dose and time-dependent manner. Moreover, 7t could significantly suppress cancer cell adhesion, migration and invasion which were essential process of cancer metastasis. Docking simulations results was further indicated that compound 7t could bind well to the COX-2 active site and guided a reasonable design of selective COX-2 inhibitor with anticancer activities in future. PMID:27349331

  14. miRNAs confer phenotypic robustness to gene networks by suppressing biological noise

    PubMed Central

    Siciliano, Velia; Garzilli, Immacolata; Fracassi, Chiara; Criscuolo, Stefania; Ventre, Simona; di Bernardo, Diego

    2013-01-01

    miRNAs are small non-coding RNAs able to modulate target-gene expression. It has been postulated that miRNAs confer robustness to biological processes, but a clear experimental evidence is still missing. Using a synthetic biology approach, we demonstrate that microRNAs provide phenotypic robustness to transcriptional regulatory networks by buffering fluctuations in protein levels. Here we construct a network motif in mammalian cells exhibiting a “toggle - switch” phenotype in which two alternative protein expression levels define its ON and OFF states. The motif consists of an inducible transcription factor that self-regulates its own transcription and that of a miRNA against the transcription factor itself. We confirm, using mathematical modeling and experimental approaches, that the microRNA confers robustness to the toggle-switch by enabling the cell to maintain and transmit its state. When absent, a dramatic increase in protein noise level occurs, causing the cell to randomly switch between the two states. PMID:24077216

  15. Selective suppression of the slow-inactivating potassium currents by nootropics in molluscan neurons.

    PubMed

    Bukanova, Julia V; Solntseva, Elena I; Skrebitsky, Vladimir G

    2002-09-01

    The role of the voltage-gated K+ channels in the effect of some nootropics was investigated. Earlier, the multiple effect of high concentrations of two nootropics, piracetam and its peptide analogue GVS-111 [Seredenin et al. (1995), US Patent No. 5,439,930], on Ca2+ and K+ currents of molluscan neurons was shown [Solntseva et al. (1997), General Pharmacology 29, 85-89]. In the present work, we describe the selective effect of low concentrations of these nootropics as well as vinpocetine on certain types of K+ current. The experiments were performed on isolated neurons of the land snail Helix pomatia using a two-microelectrode voltage-clamp method. The inward voltage-gated Ca2+ current (ICa) and three subtypes of the outward voltage-gated K+ current were recorded: Ca2+-dependent K+ current (IK(Ca)), delayed rectifying current (IKD), and fast-inactivating K+ current (IA). It has been found that I Ca was not changed in the presence of 30 microM vinpocetine, 100 microM piracetam or 10 nM GVS-111, while slow-inactivating, TEA-sensitive IK(Ca) and IKD were inhibited (IK(Ca) more strongly than IKD). In contrast, the fast-inactivating, 4-AP-sensitive K+ current (IA) was not diminished by low concentrations of piracetam and GVS-111, while vinpocetine even augmented it. A possible role of slow-inactivating subtypes of the K+ channels in the development of different forms of dementia is discussed. PMID:12366875

  16. Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations

    PubMed Central

    2011-01-01

    Background Contamination of bacteria in large-scale yeast fermentations is a serious problem and a threat to the development of successful biofuel production plants. Huge research efforts have been spent in order to solve this problem, but additional ways must still be found to keep bacterial contaminants from thriving in these environments. The aim of this project was to develop process conditions that would inhibit bacterial growth while giving yeast a competitive advantage. Results Lactic acid bacteria are usually considered to be the most common contaminants in industrial yeast fermentations. Our observations support this view but also suggest that acetic acid bacteria, although not so numerous, could be a much more problematic obstacle to overcome. Acetic acid bacteria showed a capacity to drastically reduce the viability of yeast. In addition, they consumed the previously formed ethanol. Lactic acid bacteria did not show this detrimental effect on yeast viability. It was possible to combat both types of bacteria by a combined addition of NaCl and ethanol to the wood hydrolysate medium used. As a result of NaCl + ethanol additions the amount of viable bacteria decreased and yeast viability was enhanced concomitantly with an increase in ethanol concentration. The successful result obtained via addition of NaCl and ethanol was also confirmed in a real industrial ethanol production plant with its natural inherent yeast/bacterial community. Conclusions It is possible to reduce the number of bacteria and offer a selective advantage to yeast by a combined addition of NaCl and ethanol when cultivated in lignocellulosic medium such as wood hydrolysate. However, for optimal results, the concentrations of NaCl + ethanol must be adjusted to suit the challenges offered by each hydrolysate. PMID:22185398

  17. Selective pinning control of the average disease transmissibility in an HIV contact network

    NASA Astrophysics Data System (ADS)

    du Toit, E. F.; Craig, I. K.

    2015-07-01

    Medication is applied to the HIV-infected nodes of high-risk contact networks with the aim of controlling the spread of disease to a predetermined maximum level. This intervention, known as pinning control, is performed both selectively and randomly in the network. These strategies are applied to 300 independent realizations per reference level of incidence on connected undirectional networks without isolated components and varying in size from 100 to 10 000 nodes per network. It is shown that a selective on-off pinning control strategy can control the networks studied with limited steady-state error and, comparing the medians of the doses from both strategies, uses 51.3% less medication than random pinning of all infected nodes. Selective pinning could possibly be used by public health specialists to identify the maximum level of HIV incidence in a population that can be achieved in a constrained funding environment.

  18. Astrocytic gap junctional networks suppress cellular damage in an in vitro model of ischemia

    SciTech Connect

    Shinotsuka, Takanori; Yasui, Masato; Nuriya, Mutsuo

    2014-02-07

    Highlights: • Astrocytes exhibit characteristic changes in [Ca{sup 2+}]{sub i} under OGD. • Astrocytic [Ca{sup 2+}]{sub i} increase is synchronized with a neuronal anoxic depolarization. • Gap junctional couplings protect neurons as well as astrocytes during OGD. - Abstract: Astrocytes play pivotal roles in both the physiology and the pathophysiology of the brain. They communicate with each other via extracellular messengers as well as through gap junctions, which may exacerbate or protect against pathological processes in the brain. However, their roles during the acute phase of ischemia and the underlying cellular mechanisms remain largely unknown. To address this issue, we imaged changes in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in astrocytes in mouse cortical slices under oxygen/glucose deprivation (OGD) condition using two-photon microscopy. Under OGD, astrocytes showed [Ca{sup 2+}]{sub i} oscillations followed by larger and sustained [Ca{sup 2+}]{sub i} increases. While the pharmacological blockades of astrocytic receptors for glutamate and ATP had no effect, the inhibitions of gap junctional intercellular coupling between astrocytes significantly advanced the onset of the sustained [Ca{sup 2+}]{sub i} increase after OGD exposure. Interestingly, the simultaneous recording of the neuronal membrane potential revealed that the onset of the sustained [Ca{sup 2+}]{sub i} increase in astrocytes was synchronized with the appearance of neuronal anoxic depolarization. Furthermore, the blockade of gap junctional coupling resulted in a concurrent faster appearance of neuronal depolarizations, which remain synchronized with the sustained [Ca{sup 2+}]{sub i} increase in astrocytes. These results indicate that astrocytes delay the appearance of the pathological responses of astrocytes and neurons through their gap junction-mediated intercellular network under OGD. Thus, astrocytic gap junctional networks provide protection against tissue damage

  19. Selection pressure transforms the nature of social dilemmas in adaptive networks

    NASA Astrophysics Data System (ADS)

    Van Segbroeck, Sven; Santos, Francisco C.; Lenaerts, Tom; Pacheco, Jorge M.

    2011-01-01

    We have studied the evolution of cooperation in structured populations whose topology coevolves with the game strategies of the individuals. Strategy evolution proceeds according to an update rule with a free parameter, which measures the selection pressure. We explore how this parameter affects the interplay between network dynamics and strategy dynamics. A dynamical network topology can influence the strategy dynamics in two ways: (i) by modifying the expected payoff associated with each strategy and (ii) by reshaping the imitation network that underlies the evolutionary process. We show here that the selection pressure tunes the relative contribution of each of these two forces to the final outcome of strategy evolution. The dynamics of the imitation network plays only a minor role under strong selection, but becomes the dominant force under weak selection. We demonstrate how these findings constitute a mechanism supporting cooperative behavior.

  20. Correction: A Co(2+)-selective and chirality-sensitive supermolecular metallohydrogel with a nanofiber network skeleton.

    PubMed

    Wang, Xiaojuan; He, Ting; Yang, Lan; Wu, Huiqiong; Zhang, Rui; Zhang, Zhenzhu; Shen, Rujuan; Xiang, Juan; Zhang, Yi; Wei, Chuanwan

    2016-04-21

    Correction for 'A Co(2+)-selective and chirality-sensitive supermolecular metallohydrogel with a nanofiber network skeleton' by Xiaojuan Wang et al., Nanoscale, 2016, DOI: 10.1039/c6nr00822d. PMID:27021200

  1. Wavelength selective polymer network formation of end-functional star polymers.

    PubMed

    Kaupp, Michael; Hiltebrandt, Kai; Trouillet, Vanessa; Mueller, Patrick; Quick, Alexander S; Wegener, Martin; Barner-Kowollik, Christopher

    2016-01-31

    A wavelength selective technique for light-induced network formation based on two photo-active moieties, namely ortho-methylbenzaldehyde and tetrazole is introduced. The network forming species are photo-reactive star polymers generated via reversible activation fragmentation chain transfer (RAFT) polymerization, allowing the network to be based on almost any vinylic monomer. Direct laser writing (DLW) allows to form any complex three-dimensional structure based on the photo-reactive star polymers. PMID:26687371

  2. It Takes Three: Selection, Influence, and De-Selection Processes of Depression in Adolescent Friendship Networks

    ERIC Educational Resources Information Center

    Van Zalk, Maarten Herman Walter; Kerr, Margaret; Branje, Susan J. T.; Stattin, Hakan; Meeus, Wim H. J.

    2010-01-01

    The authors of this study tested a selection-influence-de-selection model of depression. This model explains friendship influence processes (i.e., friends' depressive symptoms increase adolescents' depressive symptoms) while controlling for two processes: friendship selection (i.e., selection of friends with similar levels of depressive symptoms)…

  3. Positive Selection and Centrality in the Yeast and Fly Protein-Protein Interaction Networks

    PubMed Central

    Chakraborty, Sandip

    2016-01-01

    Proteins within a molecular network are expected to be subject to different selective pressures depending on their relative hierarchical positions. However, it is not obvious what genes within a network should be more likely to evolve under positive selection. On one hand, only mutations at genes with a relatively high degree of control over adaptive phenotypes (such as those encoding highly connected proteins) are expected to be “seen” by natural selection. On the other hand, a high degree of pleiotropy at these genes is expected to hinder adaptation. Previous analyses of the human protein-protein interaction network have shown that genes under long-term, recurrent positive selection (as inferred from interspecific comparisons) tend to act at the periphery of the network. It is unknown, however, whether these trends apply to other organisms. Here, we show that long-term positive selection has preferentially targeted the periphery of the yeast interactome. Conversely, in flies, genes under positive selection encode significantly more connected and central proteins. These observations are not due to covariation of genes' adaptability and centrality with confounding factors. Therefore, the distribution of proteins encoded by genes under recurrent positive selection across protein-protein interaction networks varies from one species to another. PMID:27119079

  4. BIOLOGICAL CONTROL OF WHEAT TAKE-ALL DISEASE: II – RAPID SELECTION OF BACTERIA SUPPRESSIVE TO GAEUMANNOMYCES GRAMINIS VAR. TRITICI IN LABORATORY WITH GREENHOUSE AND FIELD CONFIRMATION TRIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening large collections of bacteria for potential biological control activity on economically important diseases is often difficult. A quick test tube assay was developed to rapidly screen selected bacterial isolates for their ability to suppress take-all disease of wheat, caused by Gaeumannomyc...

  5. Antioxidant-induced changes of the AP-1 transcription complex are paralleled by a selective suppression of human papillomavirus transcription.

    PubMed Central

    Rösl, F; Das, B C; Lengert, M; Geletneky, K; zur Hausen, H

    1997-01-01

    Considering the involvement of a redox-regulatory pathway in the expression of human papillomaviruses (HPVs), HPV type 16 (HPV-16)-immortalized human keratinocytes were treated with the antioxidant pyrrolidine-dithiocarbamate (PDTC). PDTC induces elevated binding of the transcription factor AP-1 to its cognate recognition site within the viral regulatory region. Despite of increased AP-1 binding, normally indispensable for efficient HPV-16 transcription, viral gene expression was selectively suppressed at the level of initiation of transcription. Electrophoretic mobility supershift assays showed that the composition of the AP-1 complex, predominantly consisting of Jun homodimers in untreated cells, was altered. Irrespective of enhanced c-fos expression, c-jun was phosphorylated and became primarily heterodimerized with fra-1, which was also induced after PDTC incubation. Additionally, there was also an increased complex formation between c-jun and junB. Because both fra-1 and junB overexpression negatively interferes with c-jun/c-fos trans-activation of AP-1-responsive genes, our results suggest that the observed block in viral transcription is mainly the consequence of an antioxidant-induced reconstitution of the AP-1 transcription complex. Since expression of the c-jun/c-fos gene family is tightly regulated during cellular differentiation, defined reorganization of a central viral transcription factor may represent a novel mechanism controlling the transcription of pathogenic HPVs during keratinocyte differentiation and in the progression to cervical cancer. PMID:8985358

  6. Tigecycline-Amikacin Combination Effectively Suppresses the Selection of Resistance in Clinical Isolates of KPC-Producing Klebsiella pneumoniae

    PubMed Central

    Ni, Wentao; Wei, Chuanqi; Zhou, Chufei; Zhao, Jin; Liang, Beibei; Cui, Junchang; Wang, Rui; Liu, Youning

    2016-01-01

    By far, only tigecycline, colistin, and some aminoglycosides still show favorable in vitro activities against carbapenem-resistant Enterobacteriaceae. However, rapid emergence of resistance often occurs during long-term treatment in clinic, challenging these last resort antimicrobials. In this study, we measured mutant prevention concentration (MPC) and mutant selection window (MSW) of tigecycline, colistin and amikacin alone and in combination for clinical isolates of KPC-producing K. pneumoniae, and characterized the resistant mutants recovered. The MPC90 of 30 tested isolates for tigecycline, colistin, and amikacin were 16, >128, and 128 mg/L, respectively. The average MSW of tigecycline-amikacin, tigecycline-colistin, and amikacin-colistin combinations for four representative strains were 11.99, 200.13, and 372.38, respectively. A strong correlation was found between the MSWcombination and the product of MSW of each single drug. Combinations of 1 minimal inhibitory concentration (MIC) multiple tigecycline and 1 MIC multiple amikacin could result in 1000- to 10000-fold reduction in mutational frequency relative to their individual mutational frequencies, and combinations of 1 MIC multiple amikacin and 1.5–2 MIC multiple tigecycline could successfully restrict the recovery of resistant mutants on agar plates. However, 2 MIC multiple colistin in combination with 2 MIC multiple tigecycline or amikacin merely resulted in approximately 10-fold decrease in the mutational frequency. In conclusion, this study showed tigecycline-amikacin combination could effectively suppress the selection of resistance at low concentrations compared with the colistin-tigecycline and colistin-amikacin combinations, suggesting that this combination may be useful in clinical therapy. PMID:27594855

  7. Heat dissipation does not suppress an immune response in laboratory mice divergently selected for basal metabolic rate (BMR).

    PubMed

    Książek, Aneta; Konarzewski, Marek

    2016-05-15

    The capacity for heat dissipation is considered to be one of the most important constraints on rates of energy expenditure in mammals. To date, the significance of this constraint has been tested exclusively under peak metabolic demands, such as during lactation. Here, we used a different set of metabolic stressors, which do not induce maximum energy expenditures and yet are likely to expose the potential constraining effect of heat dissipation. We compared the physiological responses of mice divergently selected for high (H-BMR) and low basal metabolic rate (L-BMR) to simultaneous exposure to the keyhole limpet haemocyanin (KLH) antigen and high ambient temperature (Ta). At 34°C (and at 23°C, used as a control), KLH challenge resulted in a transient increase in core body temperature (Tb) in mice of both line types (by approximately 0.4°C). Warm exposure did not produce line-type-dependent differences in Tb (which was consistently higher by ca. 0.6°C in H-BMR mice across both Ta values), nor did it result in the suppression of antibody synthesis. These findings were also supported by the lack of between-line-type differences in the mass of the thymus, spleen or lymph nodes. Warm exposure induced the downsizing of heat-generating internal organs (small intestine, liver and kidneys) and an increase in intrascapular brown adipose tissue mass. However, these changes were similar in scope in both line types. Mounting a humoral immune response in selected mice was therefore not affected by ambient temperature. Thus, a combined metabolic challenge of high Ta and an immune response did not appreciably compromise the capacity to dissipate heat, even in the H-BMR mice. PMID:26944492

  8. Selective Narrowing of Social Networks Across Adulthood is Associated With Improved Emotional Experience in Daily Life

    PubMed Central

    English, Tammy; Carstensen, Laura L.

    2014-01-01

    Past research has documented age differences in the size and composition of social networks that suggest that networks grow smaller with age and include an increasingly greater proportion of well-known social partners. According to socioemotional selectivity theory, such changes in social network composition serve an antecedent emotion regulatory function that supports an age-related increase in the priority that people place on emotional well-being. The present study employed a longitudinal design with a sample that spanned the full adult age range to examine whether there is evidence of within-individual (developmental) change in social networks and whether the characteristics of relationships predict emotional experiences in daily life. Using growth curve analyses, social networks were found to increase in size in young adulthood and then decline steadily throughout later life. As postulated by socioemotional selectivity theory, reductions were observed primarily in the number of peripheral partners; the number of close partners was relatively stable over time. In addition, cross-sectional analyses revealed that older adults reported that social network members elicited less negative emotion and more positive emotion. The emotional tone of social networks, particularly when negative emotions were associated with network members, also predicted experienced emotion of participants. Overall, findings were robust after taking into account demographic variables and physical health. The implications of these findings are discussed in the context of socioemotional selectivity theory and related theoretical models. PMID:24910483

  9. Potential unsatisfiability of cyclic constraints on stochastic biological networks biases selection towards hierarchical architectures

    PubMed Central

    Smith, Cameron; Pechuan, Ximo; Puzio, Raymond S.; Biro, Daniel; Bergman, Aviv

    2015-01-01

    Constraints placed upon the phenotypes of organisms result from their interactions with the environment. Over evolutionary time scales, these constraints feed back onto smaller molecular subnetworks comprising the organism. The evolution of biological networks is studied by considering a network of a few nodes embedded in a larger context. Taking into account this fact that any network under study is actually embedded in a larger context, we define network architecture, not on the basis of physical interactions alone, but rather as a specification of the manner in which constraints are placed upon the states of its nodes. We show that such network architectures possessing cycles in their topology, in contrast to those that do not, may be subjected to unsatisfiable constraints. This may be a significant factor leading to selection biased against those network architectures where such inconsistent constraints are more likely to arise. We proceed to quantify the likelihood of inconsistency arising as a function of network architecture finding that, in the absence of sampling bias over the space of possible constraints and for a given network size, networks with a larger number of cycles are more likely to have unsatisfiable constraints placed upon them. Our results identify a constraint that, at least in isolation, would contribute to a bias in the evolutionary process towards more hierarchical -modular versus completely connected network architectures. Together, these results highlight the context dependence of the functionality of biological networks. PMID:26040595

  10. Trusted Network Selection using SAW and TOPSIS Algorithms for Heterogeneous Wireless Networks

    NASA Astrophysics Data System (ADS)

    Savitha, K.; Chandrasekar, C.

    2011-07-01

    Seamless continuity is the main goal in fourth generation Wireless networks (FGWNs), to achieve this "HANDOVER" technique is used, when a mobile terminal(MT) is in overlapping area for service continuity, Handover mechanism are mainly used. In Heterogeneous wireless networks main challenge is continual connection among the different networks like WiFi, WiMax, WLAN, WPAN etc. In this paper, Vertical handover decision schemes are compared and Multi Attribute Decision Making (MADM) is used to choose the best network from the available Visitor networks (VTs) for the continuous connection by the mobile terminal. In our work we mainly concentrated to the handover decision phase and to reduce the processing delay in the period of handover. MADM algorithms SAW and TOPSIS where compared to reduce the processing delay by using NS2 to evaluate the parameters for processing delay.

  11. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to

  12. Selection of a minimum-boundary reserve network using integer programming.

    PubMed Central

    Onal, Hayri; Briers, Robert A

    2003-01-01

    In the conservation literature, heuristic procedures have been employed to incorporate spatial considerations in reserve network selection with the presumption that computationally convenient optimization models would be too difficult or impossible to formulate. This paper extends the standard set-covering formulation to incorporate a particular spatial selection criterion, namely reducing the reserve boundary to the extent possible, when selecting a reserve network that represents a set of target species at least once. Applying the model to a dataset on the occurrence of breeding birds in Berkshire, UK, demonstrated that the technique resulted in significant reductions in reserve boundary length relative to solutions produced by the standard set-covering formulation. Computational results showed that moderately large reserve network selection problems could be solved without issue. Alternative solutions may be produced to explore trade-offs between boundary length, number of sites required or alternative criteria. PMID:12965014

  13. Basal Cancer Cell Survival Involves JNK2 Suppression of a Novel JNK1/c-Jun/Bcl-3 Apoptotic Network

    PubMed Central

    Ahmed, Shafiq Uddin; Milner, Jo

    2009-01-01

    Background The regulation of apoptosis under basal (non-stress) conditions is crucial for normal mammalian development and also for normal cellular turnover in different tissues throughout life. Deficient regulation of basal apoptosis, or its perturbation, can result in impaired development and/or disease states including cancer. In contrast to stress-induced apoptosis the regulation of apoptosis under basal conditions is poorly understood. To address this issue we have compared basal- and stress-induced apoptosis in human epithelial cells of normal and cancerous origins. For this purpose we focussed our study on the opposing pro-apoptotic JNK/anti-apoptotic NFκB pathways. Methodology/Principal Findings Combinatorial RNAi plus gene knockout were employed to access and map basal regulatory pathways of apoptosis. Follow-on, in-depth analyses included exogenous expression of phosphorylation mutants and chromatin immunoprecipitation. We demonstrate that basal apoptosis is constitutively suppressed by JNK2 in a range of human cancer cell lines. This effect was not observed in non-cancer cells. Silencing JNK2 by RNAi resulted in JNK1-dependent apoptosis of cancer cells via up-regulation of the AP-1 factor c-Jun. Unexpectedly we discovered that JNK1 and c-Jun promote basal apoptosis in the absence of “activating phosphorylations” typically induced by stress. Hypo-phosphorylated c-Jun accumulated to high levels following JNK2 silencing, auto-regulated its own expression and suppressed expression of Bcl-3, an unusual IκB protein and regulator of NFκB. Basal apoptosis was mediated by components of the TNFα response pathway but was mechanistically distinct from TNFα-induced apoptosis. Conclusions/Significance Our results demonstrate that mechanistically distinct pathways operate to regulate apoptosis in mammalian cells under basal (physiological) versus stress-induced conditions. We also describe a novel apoptotic network which governs the basal survival of cancer

  14. A load-balance path selection algorithm in automatically swiched optical network (ASON)

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Lu, Yueming; Ji, Yuefeng

    2007-11-01

    In this paper, a novel load-balance algorithm is proposed to provide an approach to optimized path selection in automatically swiched optical network (ASON). By using this algorithm, improved survivability and low congestion can be achieved. The static nature of current routing algorithms, such as OSPF or IS-IS, has made the situation worse since the traffic is concentrated on the "least-cost" paths which causes the congestion for some links while leaving other links lightly loaded. So, the key is to select suitable paths to balance the network load to optimize network resource utilization and traffic performance. We present a method to provide the capability to control traffic engineering so that the carriers can define their own strategies for optimizations and apply them to path selection for dynamic load balancing. With considering load distribution and topology information, capacity utilization factor is introduced into Dijkstra (shortest path selection) for path selection to achieve balancing traffic over network. Routing simulations have been done over mesh networks to compare the two different algorithms. With the simulation results, a conclusion can be made on the performance of different algorithms.

  15. Selection for territory acquisition is modulated by social network structure in a wild songbird

    PubMed Central

    Farine, D R; Sheldon, B C

    2015-01-01

    The social environment may be a key mediator of selection that operates on animals. In many cases, individuals may experience selection not only as a function of their phenotype, but also as a function of the interaction between their phenotype and the phenotypes of the conspecifics they associate with. For example, when animals settle after dispersal, individuals may benefit from arriving early, but, in many cases, these benefits will be affected by the arrival times of other individuals in their local environment. We integrated a recently described method for calculating assortativity on weighted networks, which is the correlation between an individual's phenotype and that of its associates, into an existing framework for measuring the magnitude of social selection operating on phenotypes. We applied this approach to large-scale data on social network structure and the timing of arrival into the breeding area over three years. We found that late-arriving individuals had a reduced probability of breeding. However, the probability of breeding was also influenced by individuals’ social networks. Associating with late-arriving conspecifics increased the probability of successfully acquiring a breeding territory. Hence, social selection could offset the effects of nonsocial selection. Given parallel theoretical developments of the importance of local network structure on population processes, and increasing data being collected on social networks in free-living populations, the integration of these concepts could yield significant insights into social evolution. PMID:25611344

  16. Selection for territory acquisition is modulated by social network structure in a wild songbird.

    PubMed

    Farine, D R; Sheldon, B C

    2015-03-01

    The social environment may be a key mediator of selection that operates on animals. In many cases, individuals may experience selection not only as a function of their phenotype, but also as a function of the interaction between their phenotype and the phenotypes of the conspecifics they associate with. For example, when animals settle after dispersal, individuals may benefit from arriving early, but, in many cases, these benefits will be affected by the arrival times of other individuals in their local environment. We integrated a recently described method for calculating assortativity on weighted networks, which is the correlation between an individual's phenotype and that of its associates, into an existing framework for measuring the magnitude of social selection operating on phenotypes. We applied this approach to large-scale data on social network structure and the timing of arrival into the breeding area over three years. We found that late-arriving individuals had a reduced probability of breeding. However, the probability of breeding was also influenced by individuals' social networks. Associating with late-arriving conspecifics increased the probability of successfully acquiring a breeding territory. Hence, social selection could offset the effects of nonsocial selection. Given parallel theoretical developments of the importance of local network structure on population processes, and increasing data being collected on social networks in free-living populations, the integration of these concepts could yield significant insights into social evolution. PMID:25611344

  17. Patterns of Population Differentiation and Natural Selection on the Celiac Disease Background Risk Network

    PubMed Central

    Sams, Aaron; Hawks, John

    2013-01-01

    Celiac disease is a common small intestinal inflammatory condition induced by wheat gluten and related proteins from rye and barley. Left untreated, the clinical presentation of CD can include failure to thrive, malnutrition, and distension in juveniles. The disease can additionally lead to vitamin deficiencies, anemia, and osteoporosis. Therefore, CD potentially negatively affected fitness in past populations utilizing wheat, barley, and rye. Previous analyses of CD risk variants have uncovered evidence for positive selection on some of these loci. These studies also suggest the possibility that risk for common autoimmune conditions such as CD may be the result of positive selection on immune related loci in the genome to fight infection. Under this evolutionary scenario, disease phenotypes may be a trade-off from positive selection on immunity. If this hypothesis is generally true, we can expect to find a signal of natural selection when we survey across the network of loci known to influence CD risk. This study examines the non-HLA autosomal network of gene loci associated with CD risk in Europe. We reject the null hypothesis of neutrality on this network of CD risk loci. Additionally, we can localize evidence of selection in time and space by adding information from the genome of the Tyrolean Iceman. While we can show significant differentiation between continental regions across the CD network, the pattern of evidence is not consistent with primarily recent (Holocene) selection across this network in Europe. Further localization of ancient selection on this network may illuminate the ecological pressures acting on the immune system during this critically interesting phase of our evolution. PMID:23936230

  18. A neural network based reputation bootstrapping approach for service selection

    NASA Astrophysics Data System (ADS)

    Wu, Quanwang; Zhu, Qingsheng; Li, Peng

    2015-10-01

    With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.

  19. Suppression of vascular network formation by chronic hypoxia and prolyl-hydroxylase 2 (phd2) deficiency during vertebrate development.

    PubMed

    Metikala, Sanjeeva; Neuhaus, Herbert; Hollemann, Thomas

    2016-04-01

    In the adult, new vessels and red blood cells form in response to hypoxia. Here, the oxygen-sensing system (PHD-HIF) has recently been put into focus, since the prolyl-hydroxylase domain proteins (PHD) and hypoxia-inducible factors (HIF) are considered as potential therapeutic targets to treat ischemia, cancers or age-related macula degeneration. While the oxygen-sensing system (PHD-HIF) has been studied intensively in this respect, only little is known from developing vertebrate embryos since mutations within this pathway led to an early decease of embryos due to placental defects. During vertebrate embryogenesis, a progenitor cell called hemangioblast is assumed to give rise to blood cells and blood vessels in a process called hematopoiesis and vasculogenesis, respectively. Xenopus provides an ideal experimental system to address these processes in vivo, as its development does not depend on a functional placenta and thus allows analyzing the role of oxygen directly. To this end, we adopted a computer-controlled four-channel system, which allowed us to culture Xenopus embryos under defined oxygen concentrations. Our data show that the development of vascular structures and blood cells is strongly impaired under hypoxia, while general development is less compromised. Interestingly, suppression of Phd2 function using specific antisense morpholinos or a chemical inhibitor resulted in mostly overlapping vascular defects; nevertheless, blood cell was formed almost normally. Our results provide the first evidence that oxygen via Phd2 has a decisive influence on the formation of the vascular network during vertebrate embryogenesis. These findings may be considered in certain potential treatment concepts. PMID:26678600

  20. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics.

    PubMed

    Tjalkens, Ronald B; Zoran, Mark J; Mohl, Brianne; Barhoumi, Roula

    2006-10-01

    The neurotoxicity of manganese [Mn] is due in part to glutamate excitotoxicity. Release of ATP by astrocytes is a critical modulator of glutamatergic neurotransmission, which is regulated by calcium (Ca(2+)) waves that propagate through astrocytic networks in response to synaptic activity. It was postulated that Mn alters ATP-dependent intracellular Ca(2+) dynamics in astrocytes, thereby suppressing Ca(2+) wave activity. Confluent primary cultures of cortical astrocytes were loaded with the Ca(2+)-sensitive dye fluo-4 and examined by fluorescence microscopy for Ca(2+) wave activity following micropipet mechanical stimulation of a single cell. Mitochondrial Ca(2+) was evaluated by fluorescence microscopy following addition of ATP using the mitochondrial-specific Ca(2+) dye rhod-2-AM. Imaging studies revealed that pretreatment of astrocytes with 1-10 microM Mn significantly reduced the rate, area, and amplitude of mechanically induced Ca(2+) waves. This attenuation was not a result of inhibited mitochondrial calcium uptake because robust calcium waves were still observed following pretreatment of astrocytes with Ru360, an inhibitor of mitochondrial Ca(2+) uptake, either in coupling or uncoupling conditions. However, determination of endoplasmic reticulum (ER) Ca(2+) levels in cells using the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin indicated that Mn reduced the available pool of releasable ER Ca(2+) at concentrations as low as 1 muM. Examination of ATP-stimulated changes in mitochondrial Ca(2+) indicated that, in cells pretreated with Mn, mitochondria retained high levels of Ca(2+). It is concluded that exposure of astrocytes to low concentrations of Mn(2+) results in sequestration of Ca(2+) within the mitochondria that reduces the available pool of releasable Ca(2+) within the ER, thereby inhibiting calcium wave activity. PMID:16934782

  1. Exact Outage Probability of Cognitive Underlay DF Relay Networks with Best Relay Selection

    NASA Astrophysics Data System (ADS)

    Bao, Vo Nguyen Quoc; Duong, Trung Quang

    In this letter, we address the performance analysis of underlay selective decode-and-forward (DF) relay networks in Rayleigh fading channels with non-necessarily identical fading parameters. In particular, a novel result on the outage probability of the considered system is presented. Monte Carlo simulations are performed to verify the correctness of our exact closed-form expression. Our proposed analysis can be adopted for various underlay spectrum sharing applications of cognitive DF relay networks.

  2. Dehydroeffusol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis.

    PubMed

    Zhang, Bin; Han, Hongyan; Fu, Shilong; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng; Cao, Zhifei

    2016-03-15

    Gastric cancer is ranked as the third leading cause of cancer-related death in the world. Although extensive efforts have been made in recent decades to treat gastric cancer with various anticancer drugs, effective anti-gastric cancer therapeutics to cure the disease are still lacking in the clinics. Therefore, potent novel anti-gastric cancer drugs are greatly needed. In this study, we explored a novel anti-gastric cancer agent from a medicinal herb named Juncus effusus and found that the active component dehydroeffusol (DHE), a small molecular phenanthrene, effectively inhibited gastric cancer cell proliferation and tumorigenesis by inducing tumor suppressive endoplasmic reticulum (ER) stress and by triggering moderate apoptosis. Mechanistic studies revealed that DHE selectively activated the intracellular tumor suppressive stress response by promoting the overexpression of the key ER stress marker DNA damage-inducible transcript 3 (DDIT3), through upregulation of activating transcription factor 4 (ATF4). Concurrently, DHE suppressed the expression of the cell survival and ER stress marker glucose regulated protein of molecular mass 78 (GRP78) via downregulation of the transcription factor ATF6. In addition, DHE markedly activated the stress response signaling pathway MEKK4-MKK3/6-p38-DDIT3, but significantly inhibited ERK signaling. Our data suggest that DHE inhibits gastric cancer cell growth and tumorigenicity through selectively inducing a robust tumor suppressive ER stress response and a moderate apoptosis response. Therefore, DHE may provide a novel drug candidate for further development of potential anti-gastric cancer therapeutics. PMID:26774454

  3. Differential Selection within the Drosophila Retinal Determination Network and Evidence for Functional Divergence between Paralog Pairs

    PubMed Central

    Datta, Rhea R.; Cruickshank, Tami; Kumar, Justin P.

    2011-01-01

    The retinal determination (RD) network in Drosophila comprises fourteen known nuclear proteins that include DNA binding proteins, transcriptional co-activators, kinases and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of retinal determination genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, ten members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the retinal determination network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent to silent site substitutions (dN/dS) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared to its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs. PMID:21210943

  4. Seed selection strategy in global network alignment without destroying the entire structures of functional modules

    PubMed Central

    2012-01-01

    Background Network alignment is one of the most common biological network comparison methods. Aligning protein-protein interaction (PPI) networks of different species is of great important to detect evolutionary conserved pathways or protein complexes across species through the identification of conserved interactions, and to improve our insight into biological systems. Global network alignment (GNA) problem is NP-complete, for which only heuristic methods have been proposed so far. Generally, the current GNA methods fall into global heuristic seed-and-extend approaches. These methods can not get the best overall consistent alignment between networks for the opinionated local seed. Furthermore These methods are lost in maximizing the number of aligned edges between two networks without considering the original structures of functional modules. Methods We present a novel seed selection strategy for global network alignment by constructing the pairs of hub nodes of networks to be aligned into multiple seeds. Beginning from every hub seed and using the membership similarity of nodes to quantify to what extent the nodes can participate in functional modules associated with current seed topologically we align the networks by modules. By this way we can maintain the functional modules are not damaged during the heuristic alignment process. And our method is efficient in resolving the fatal problem of most conventional algorithms that the initialization selected seeds have a direct influence on the alignment result. The similarity measures between network nodes (e.g., proteins) include sequence similarity, centrality similarity, and dynamic membership similarity and our algorithm can be called Multiple Hubs-based Alignment (MHA). Results When applying our seed selection strategy to several pairs of real PPI networks, it is observed that our method is working to strike a balance, extending the conserved interactions while maintaining the functional modules unchanged. In

  5. Teen Alcohol Use and Social Networks: The Contributions of Friend Influence and Friendship Selection

    PubMed Central

    Cheadle, Jacob E; Walsemann, Katrina M; Goosby, Bridget J

    2015-01-01

    Background We evaluated the contributions of teen alcohol use to the formation and continuation of new and existing friendships while in turn estimating the influence of friend drinking on individuals’ regular use and heavy drinking. Method Longitudinal network analysis was used to assess the mutual influences between teen drinking and social networks among adolescents in two large Add Health schools where full network data was collected three times. Friendship processes were disaggregated into the formation of new friendships and the continuation of existing friendships in a joint model isolating friendship selection and friend influences. Results Friends have a modest influence on one another when selection is controlled. Selection is more complicated than prior studies suggest, and is only related to new friendships and not their duration in the largest school. Alcohol use predicts decreasing popularity in some cases, and popularity does not predict alcohol consumption. Conclusion Intervention efforts should continue pursuing strategies that mitigate negative peer influences. The development of socializing opportunities that facilitate relationship opportunities to select on healthy behaviors also appears promising. Future work preventing teen substance use should incorporate longitudinal network assessments to determine whether programs promote protective peer relationships in addition to how treatment effects diffuse through social networks. PMID:26692436

  6. Selective Laser Direct Patterning of Silver Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel.

    PubMed

    Hong, Sukjoon; Yeo, Junyeob; Lee, Jinhwan; Lee, Habeom; Lee, Phillip; Lee, Seung S; Ko, Seung Hwan

    2015-03-01

    We introduce a facile method to enhance the functionality of a patterned metallic transparent conductor through selective laser ablation of metal nanowire percolation network. By scanning focused nanosecond pulsed laser on silver nanowire percolation network, silver nanowires are selectively ablated and patterned without using any conventional chemical etching or photolithography steps. Various arbitrary patterns of silver nanowire transparent conductors are readily created on the percolation network by changing various laser parameters such as repetition rate and power. The macroscopic optical and electrical properties of the percolation network transparent conductor can be easily tuned by changing the conductor pattern design via digital selective laser ablation. Further investigation on the silver nanowire based electrode line prepared by the ablation process substantiates that the general relation for a conducting thin film fails at a narrow width, which should be considered for the applications that requires a high resolution patterns. Finally, as a proof of concept, a capacitive touch sensor with diamond patterns has been demonstrated by selective laser ablation of metal nanowire percolation network. PMID:26413659

  7. Multivariate Network Exploration and Presentation: From Detail to Overview via Selections and Aggregations.

    PubMed

    van den Elzen, Stef; van Wijk, Jarke J

    2014-12-01

    Network data is ubiquitous; e-mail traffic between persons, telecommunication, transport and financial networks are some examples. Often these networks are large and multivariate, besides the topological structure of the network, multivariate data on the nodes and links is available. Currently, exploration and analysis methods are focused on a single aspect; the network topology or the multivariate data. In addition, tools and techniques are highly domain specific and require expert knowledge. We focus on the non-expert user and propose a novel solution for multivariate network exploration and analysis that tightly couples structural and multivariate analysis. In short, we go from Detail to Overview via Selections and Aggregations (DOSA): users are enabled to gain insights through the creation of selections of interest (manually or automatically), and producing high-level, infographic-style overviews simultaneously. Finally, we present example explorations on real-world datasets that demonstrate the effectiveness of our method for the exploration and understanding of multivariate networks where presentation of findings comes for free. PMID:26356945

  8. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks

    NASA Astrophysics Data System (ADS)

    Ponzoni, Andrea; Comini, Elisabetta; Sberveglieri, Giorgio; Zhou, Jun; Deng, Shao Zhi; Xu, Ning Sheng; Ding, Yong; Wang, Zhong Lin

    2006-05-01

    Three-dimensional (3D) tungsten oxide nanowire networks have been demonstrated as a high-surface area material for building ultrasensitive and highly selective gas sensors. Utilizing the 3D hierarchical structure of the networks, high sensitivity has been obtained towards NO2, revealing the capability of the material to detect concentration as low as 50ppb (parts per billion). The distinctive selectivity at different working temperatures is observed for various gases. The results highlight that the nanobelts (nanowires) technology can be adopted for the development of gas sensors with performances suitable for practical applications.

  9. Determine the optimal carrier selection for a logistics network based on multi-commodity reliability criterion

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta

    2013-05-01

    From the perspective of supply chain management, the selected carrier plays an important role in freight delivery. This article proposes a new criterion of multi-commodity reliability and optimises the carrier selection based on such a criterion for logistics networks with routes and nodes, over which multiple commodities are delivered. Carrier selection concerns the selection of exactly one carrier to deliver freight on each route. The capacity of each carrier has several available values associated with a probability distribution, since some of a carrier's capacity may be reserved for various orders. Therefore, the logistics network, given any carrier selection, is a multi-commodity multi-state logistics network. Multi-commodity reliability is defined as a probability that the logistics network can satisfy a customer's demand for various commodities, and is a performance indicator for freight delivery. To solve this problem, this study proposes an optimisation algorithm that integrates genetic algorithm, minimal paths and Recursive Sum of Disjoint Products. A practical example in which multi-sized LCD monitors are delivered from China to Germany is considered to illustrate the solution procedure.

  10. Secure relay selection based on learning with negative externality in wireless networks

    NASA Astrophysics Data System (ADS)

    Zhao, Caidan; Xiao, Liang; Kang, Shan; Chen, Guiquan; Li, Yunzhou; Huang, Lianfen

    2013-12-01

    In this paper, we formulate relay selection into a Chinese restaurant game. A secure relay selection strategy is proposed for a wireless network, where multiple source nodes send messages to their destination nodes via several relay nodes, which have different processing and transmission capabilities as well as security properties. The relay selection utilizes a learning-based algorithm for the source nodes to reach their best responses in the Chinese restaurant game. In particular, the relay selection takes into account the negative externality of relay sharing among the source nodes, which learn the capabilities and security properties of relay nodes according to the current signals and the signal history. Simulation results show that this strategy improves the user utility and the overall security performance in wireless networks. In addition, the relay strategy is robust against the signal errors and deviations of some user from the desired actions.

  11. Selective pumping in a network: A novel bioinspired flow transport paradigm

    NASA Astrophysics Data System (ADS)

    Aboelkassem, Yasser; Staples, Anne

    2012-11-01

    We present a new paradigm for selectively pumping and controlling fluids at the microscale in a complex network of channels, which we call ``selective pumping in a network.'' The approach is inspired by internal flow distributions induced by rhythmic wall contraction phenomena in insect tracheal networks. The selective pumping concept presented enables fluids to be transported, controlled and directed into specific branches in networks while avoiding other possible branching routes, without the use of any mechanical valves. The results presented here might help guide efforts to fabricate novel microfluidic devices with improved efficiency for mixing purposes and targeted drug delivery applications. In this study, both theoretical analysis and Stokeslets-meshfree computational methods are used to solve for the 2D viscous flow transport in an insect-like tracheal network of channels with prescribed moving wall contractions. The derived theoretical analysis is based on both lubrication theory and quasi-steady approximations at low Reynolds numbers. The meshfree numerical method is based on the method of fundamental solutions (MFS) that uses a set of singularized force elements ``Stokeslets'' to induce the flow motions. Moreover, the passive particle tracking simulation.

  12. Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks.

    PubMed

    Vinciotti, Veronica; Augugliaro, Luigi; Abbruzzo, Antonino; Wit, Ernst C

    2016-06-01

    Factorial Gaussian graphical Models (fGGMs) have recently been proposed for inferring dynamic gene regulatory networks from genomic high-throughput data. In the search for true regulatory relationships amongst the vast space of possible networks, these models allow the imposition of certain restrictions on the dynamic nature of these relationships, such as Markov dependencies of low order - some entries of the precision matrix are a priori zeros - or equal dependency strengths across time lags - some entries of the precision matrix are assumed to be equal. The precision matrix is then estimated by l1-penalized maximum likelihood, imposing a further constraint on the absolute value of its entries, which results in sparse networks. Selecting the optimal sparsity level is a major challenge for this type of approaches. In this paper, we evaluate the performance of a number of model selection criteria for fGGMs by means of two simulated regulatory networks from realistic biological processes. The analysis reveals a good performance of fGGMs in comparison with other methods for inferring dynamic networks and of the KLCV criterion in particular for model selection. Finally, we present an application on a high-resolution time-course microarray data from the Neisseria meningitidis bacterium, a causative agent of life-threatening infections such as meningitis. The methodology described in this paper is implemented in the R package sglasso, freely available at CRAN, http://CRAN.R-project.org/package=sglasso. PMID:27023322

  13. Selective pumping in a network: insect-style microscale flow transport.

    PubMed

    Aboelkassem, Yasser; Staples, Anne E

    2013-06-01

    A new paradigm for selective pumping of fluids in a complex network of channels in the microscale flow regime is presented. The model is inspired by internal flow distributions produced by the rhythmic wall contractions observed in many insect tracheal networks. The approach presented here is a natural extension of previous two-dimensional modeling of insect-inspired microscale flow transport in a single channel, and aims to manipulate fluids efficiently in microscale networks without the use of any mechanical valves. This selective pumping approach enables fluids to be transported, controlled and precisely directed into a specific branch in a network while avoiding other possible routes. In order to present a quantitative analysis of the selective pumping approach presented here, the velocity and pressure fields and the time-averaged net flow that are induced by prescribed wall contractions are calculated numerically using the method of fundamental solutions. More specifically, the Stokeslets-meshfree method is used in this study to solve the Stokes equations that govern the flow motions in a network with moving wall contractions. The results presented here might help in understanding some features of the insect respiratory system function and guide efforts to fabricate novel microfluidic devices for flow transport and mixing, and targeted drug delivery applications. PMID:23538838

  14. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO2-expanded liquids.

    PubMed

    Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun

    2013-02-01

    Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO(2)-expanded liquid (CXL), CO(2)-methanol. The phase behavior of the CO(2)-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO(2), forming homogeneous CXL under the experimental conditions. When treated with the CO(2)-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows "thermodynamically restricted" character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia. PMID:23299578

  15. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS

    PubMed Central

    Østergaard, Michael E.; Southwell, Amber L.; Kordasiewicz, Holly; Watt, Andrew T.; Skotte, Niels H.; Doty, Crystal N.; Vaid, Kuljeet; Villanueva, Erika B.; Swayze, Eric E.; Frank Bennett, C.; Hayden, Michael R.; Seth, Punit P.

    2013-01-01

    Autosomal dominant diseases such as Huntington’s disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs—an outcome with broad application to HD and other dominant genetic disorders. PMID:23963702

  16. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    PubMed Central

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-01-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968

  17. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    NASA Astrophysics Data System (ADS)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  18. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.

    PubMed

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-01-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968

  19. Optimum cutting parameters selection strategy based on neural network and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Liang, Jian C.; Wen, Xisen; Li, Shengyi; Yang, Shuzi

    1995-08-01

    In this paper an optimum cutting parameters selection strategy based on neural network and artificial intelligence is proposed. It combines NN with AI and solves the problems of intelligent decision-making for cutting parameters during machining process. BP algorithm and inference engine design are discussed. Application examples of the strategy are simulated. The results show that the proposed strategy is very effective.

  20. An Examination of Native and Immigrant Students' Social Networking Using the College Search and Selection Process

    ERIC Educational Resources Information Center

    Neimeyer, Bruce Carlton

    2009-01-01

    This dissertation explores the use of formal and informal networks through cyber- and traditional communication methods in the college search and selection process by native and immigrant students to examine various postulates and propositions of social capital theory. In addition, the analysis of cybernetworks used by disadvantaged, college bound…

  1. Cancer Markers Selection Using Network-Based Cox Regression: A Methodological and Computational Practice

    PubMed Central

    Iuliano, Antonella; Occhipinti, Annalisa; Angelini, Claudia; De Feis, Italia; Lió, Pietro

    2016-01-01

    International initiatives such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) are collecting multiple datasets at different genome-scales with the aim of identifying novel cancer biomarkers and predicting survival of patients. To analyze such data, several statistical methods have been applied, among them Cox regression models. Although these models provide a good statistical framework to analyze omic data, there is still a lack of studies that illustrate advantages and drawbacks in integrating biological information and selecting groups of biomarkers. In fact, classical Cox regression algorithms focus on the selection of a single biomarker, without taking into account the strong correlation between genes. Even though network-based Cox regression algorithms overcome such drawbacks, such network-based approaches are less widely used within the life science community. In this article, we aim to provide a clear methodological framework on the use of such approaches in order to turn cancer research results into clinical applications. Therefore, we first discuss the rationale and the practical usage of three recently proposed network-based Cox regression algorithms (i.e., Net-Cox, AdaLnet, and fastcox). Then, we show how to combine existing biological knowledge and available data with such algorithms to identify networks of cancer biomarkers and to estimate survival of patients. Finally, we describe in detail a new permutation-based approach to better validate the significance of the selection in terms of cancer gene signatures and pathway/networks identification. We illustrate the proposed methodology by means of both simulations and real case studies. Overall, the aim of our work is two-fold. Firstly, to show how network-based Cox regression models can be used to integrate biological knowledge (e.g., multi-omics data) for the analysis of survival data. Secondly, to provide a clear methodological and computational approach for

  2. Selective suppression of the human aryl hydrocarbon receptor function can be mediated through binding interference at the C-terminal half of the receptor.

    PubMed

    Ren, Lina; Thompson, John D; Cheung, Michael; Ngo, Katherine; Sung, Sarah; Leong, Scott; Chan, William K

    2016-05-01

    The human aryl hydrocarbon receptor is a cytosolic signaling molecule which affects immune response and aberrant cell growth. Canonical signaling of the receptor requires the recruitment of coactivators to the promoter region to remodel local chromatin structure. We predicted that interference of this recruitment would block the aryl hydrocarbon receptor function. To prove that, we employed phage display to identify nine peptides of twelve-amino-acid in length which target the C-terminal half of the human aryl hydrocarbon receptor, including the region where coactivators bind. Eight 12mer peptides, in the form of GFP fusion, suppressed the ligand-dependent transcription of six AHR target genes (cyp1a1, cyp1a2, cyp1b1, ugt1a1, nqo1, and ahrr) in different patterns in Hep3B cells, whereas the AHR antagonist CH-223191 suppressed all these target genes similarly. Three of the 12mer peptides (namely 11-3, 1-7, and 7-3) suppressed the 3MC-induced, CYP1A1-dependent EROD activity and the ROS production caused by benzo[a]pyrene. These 12mer peptides suppressed the AHR function synergistically with CH-223191. In conclusion, we provide evidence that targeting the C-terminal half of the human aryl hydrocarbon receptor is a viable, new approach to selectively block the receptor function. PMID:26970402

  3. Perfect state transfers by selective quantum interferences within complex spin networks

    NASA Astrophysics Data System (ADS)

    Álvarez, Gonzalo A.; Mishkovsky, Mor; Danieli, Ernesto P.; Levstein, Patricia R.; Pastawski, Horacio M.; Frydman, Lucio

    2010-06-01

    We present a method that implements directional, perfect state transfers within a branched spin network by exploiting quantum interferences in the time domain. This method provides a tool for isolating subsystems from a large and complex one. Directionality is achieved by interrupting the spin-spin coupled evolution with periods of free Zeeman evolutions, whose timing is tuned to be commensurate with the relative phases accrued by specific spin pairs. This leads to a resonant transfer between the chosen qubits and to a detuning of all remaining pathways in the network, using only global manipulations. Since the transfer is perfect when the selected pathway is mediated by two or three spins, distant state transfers over complex networks can be achieved by successive recouplings among specific pairs or triads of spins. These effects are illustrated with a quantum simulator involving C13 NMR on leucine’s backbone; a six-spin network.

  4. A New HIV Prevention Network Approach: Sociometric Peer Change Agent Selection

    PubMed Central

    Schneider, John A.; Zhou, A. Ning; Laumann, Edward O.

    2014-01-01

    Internationally, the Peer Change Agent (PCA) model is the most frequently used conceptual framework for HIV prevention. Change agents themselves can be more important than the messages they convey. PCA selection is operationalized via heterogeneous methods based upon individual-level attributes. A sociometric position selection strategy, however, could increase peer influence potency and halt transmission at key network locations. In this study, we selected candidate PCAs based upon relative sociometric bridging and centrality scores and assessed their attributes in comparison to one another and to existing peer educators. We focused upon an emerging HIV epidemic among men who have sex with men in Southern India in 2011. PCAs selected based on their bridging score were more likely to be innovators when compared to other centrally-located PCAs, to PCAs located on the periphery, and to existing peer educators. We also found that sociodemographic attributes and risk behaviors were similar across all candidate PCAs, but risk behaviors of existing peer educators differed. Existing peer educators were more likely to engage in higher risk behavior such as receiving money for sex when compared to sociometrically selected peer changes agents. These existing peer educators were also more likely to exhibit leadership qualities within the overall network; they were, however, just as likely as other non-trained candidate peer change agents to report important HIV intravention behavior (encouraging condoms within their network). The importance of identifying bridges who may be able to diffuse innovation more effectively within high risk HIV networks is especially critical given recent efficacy data from novel HIV prevention interventions such as pre-exposure prophylaxis. Moreover, while existing peer educators were more likely to be leaders in our analysis, using peer educators with high risk behavior may have limited utility in enacting behavior change among sex worker peers or

  5. A new HIV prevention network approach: sociometric peer change agent selection.

    PubMed

    Schneider, John A; Zhou, A Ning; Laumann, Edward O

    2015-01-01

    Internationally, the Peer Change Agent (PCA) model is the most frequently used conceptual framework for HIV prevention. Change agents themselves can be more important than the messages they convey. PCA selection is operationalized via heterogeneous methods based upon individual-level attributes. A sociometric position selection strategy, however, could increase peer influence potency and halt transmission at key network locations. In this study, we selected candidate PCAs based upon relative sociometric bridging and centrality scores and assessed their attributes in comparison to one another and to existing peer educators. We focused upon an emerging HIV epidemic among men who have sex with men in Southern India in 2011. PCAs selected based on their bridging score were more likely to be innovators when compared to other centrally-located PCAs, to PCAs located on the periphery, and to existing peer educators. We also found that sociodemographic attributes and risk behaviors were similar across all candidate PCAs, but risk behaviors of existing peer educators differed. Existing peer educators were more likely to engage in higher risk behavior such as receiving money for sex when compared to sociometrically selected peer changes agents. These existing peer educators were also more likely to exhibit leadership qualities within the overall network; they were, however, just as likely as other non-trained candidate peer change agents to report important HIV intravention behavior (encouraging condoms within their network). The importance of identifying bridges who may be able to diffuse innovation more effectively within high risk HIV networks is especially critical given recent efficacy data from novel HIV prevention interventions such as pre-exposure prophylaxis. Moreover, while existing peer educators were more likely to be leaders in our analysis, using peer educators with high risk behavior may have limited utility in enacting behavior change among sex worker peers or

  6. Adolescent Friendships, BMI, and Physical Activity: Untangling Selection and Influence Through Longitudinal Social Network Analysis

    PubMed Central

    Simpkins, Sandra D.; Schaefer, David R.; Price, Chara D.; Vest, Andrea E.

    2012-01-01

    Bioecological theory suggests that adolescents’ health is a result of selection and socialization processes occurring between adolescents and their microsettings. This study examines the association between adolescents’ friends and health using a social network model and data from the National Longitudinal Study of Adolescent Health (N = 1,896, mean age = 15.97 years). Results indicated evidence of friend influence on BMI and physical activity. Friendships were more likely among adolescents who engaged in greater physical activity and who were similar to one another in BMI and physical activity. These effects emerged after controlling for alternative friend selection factors, such as endogenous social network processes and propinquity through courses and activities. Some selection effects were moderated by gender, popularity, and reciprocity. PMID:24222971

  7. Stored waveform inverse fourier-transform (SWIFT) excitation for water-suppressed whole-body slice-selected proton chemical shift spectra at 1.5 tesla

    NASA Astrophysics Data System (ADS)

    Hsu, Annjia T.; Hunter, William W.; Schmalbrock, Petra; Marshall, Alan G.

    Proton NMR spectroscopy for the in vivo study of metabolites in a spatially resolved region with a clinical NMR imaging device must contend with the 70% hydration of normal man. Theoretical and experimental comparisons of several excitation waveforms designed to suppress the H 2O signal in proton NMR spectroscopy and chemical shift imaging have been conducted. In particular, we have compared the 1 overline33 overline1 and 1 overline1 pulse sequences with those obtained via a stored waveform inverse Fourier-transform (SWIFT) time-domain apodized waveform generated by inverse Fourier transformation of a quadratically phase-encoded excitation magnitude spectrum. Theoretical excitation profiles are compared to those measured in a slice selected with a General Electric Signa 1.5 T whole-body imaging system, and demonstrated for a phantom (toluene, dioxane, and dichloromethane). The SWIFT waveform is theoretically and experimentally superior to 1 overline1 and 1 overline33 overline1 for selective suppression of one spectral segment with simultaneous uniform excitation over the rest of the spectral frequency range. SWIFT-excited water-suppressed depth-resolved chemical shift spectra are demonstrated for human brain and human calf muscle of normal volunteers.

  8. New Approach for Feature Selection of Thermomechanically Processed HSLA Steel using Pruned-Modular Neural Networks

    NASA Astrophysics Data System (ADS)

    Das, Prasun; Ghosh, Avishek; Bhattacharyay, Bidyut Kr.; Datta, Shubhabrata

    2012-10-01

    A new approach has been used in modeling of strength and ductility of high strength low alloy (HSLA) steel, where a comparative study among fully-connected neural network, modular network and pruned-module architecture has been performed. The important features for modeling such a complex steel processing system have been worked out. Performance evaluation and feature selection in the soft computing domain are the two important activities for modeling input-output relationship. The need arises specially when the system is complex in terms of type of network architecture, number of features involved, number of inter-connections, application domain etc. In this paper, an attempt is made to develop a new metric of performance evaluation, using mean squared error and the total number of inter-connections of a network to improve the understanding about a complex system of thermomechanically controlled processed HSLA steels. The methodology for feature selection is developed next based on the functional form of output in terms of input variables where gradient of the function can be computed in the network.

  9. CPAC: Energy-Efficient Data Collection through Adaptive Selection of Compression Algorithms for Sensor Networks

    PubMed Central

    Lee, HyungJune; Kim, HyunSeok; Chang, Ik Joon

    2014-01-01

    We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression algorithm should be used by the selected sensor nodes. We formulate this problem into binary integer programs, which provide an energy-optimal solution under the given latency constraint. Our simulation results show that the optimization algorithm significantly reduces the overall network-wide energy consumption for data collection. In the environment having a stationary sink from stationary sensor nodes, the optimized data collection shows 47% energy savings compared to the state-of-the-art collection protocol (CTP). More importantly, we demonstrate that our optimized data collection provides the best performance in an intermittent network under high interference. In such networks, we found that the selective compression for frequent packet retransmissions saves up to 55% energy compared to the best known protocol. PMID:24721763

  10. Efficient spiking neural network model of pattern motion selectivity in visual cortex.

    PubMed

    Beyeler, Michael; Richert, Micah; Dutt, Nikil D; Krichmar, Jeffrey L

    2014-07-01

    Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available. PMID:24497233

  11. Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison.

    PubMed

    Kim, Hongkeun

    2016-01-01

    It remains unclear whether and to what extent the default network subregions involved in episodic memory (EM) and semantic memory (SM) processes overlap or are separated from one another. This study addresses this issue through a controlled meta-analysis of functional neuroimaging studies involving healthy participants. Various EM and SM task paradigms differ widely in the extent of default network involvement. Therefore, the issue at hand cannot be properly addressed without some control for this factor. In this regard, this study employs a two-stage analysis: a preliminary meta-analysis to select EM and SM task paradigms that recruit relatively extensive default network regions and a main analysis to compare the selected task paradigms. Based on a within-EM comparison, the default network contributed more to recollection/familiarity effects than to old/new effects, and based on a within-SM comparison, it contributed more to word/pseudoword effects than to semantic/phonological effects. According to a direct comparison of recollection/familiarity and word/pseudoword effects, each involving a range of default network regions, there were more overlaps than separations in default network subregions involved in these two effects. More specifically, overlaps included the bilateral posterior cingulate/retrosplenial cortex, left inferior parietal lobule, and left anteromedial prefrontal regions, whereas separations included only the hippocampal formation and the parahippocampal cortex region, which was unique to recollection/familiarity effects. These results indicate that EM and SM retrieval processes involving strong memory signals recruit extensive and largely overlapping default network regions and differ mainly in distinct contributions of hippocampus and parahippocampal regions to EM retrieval. PMID:26562053

  12. Efficient File Sharing by Multicast - P2P Protocol Using Network Coding and Rank Based Peer Selection

    NASA Technical Reports Server (NTRS)

    Stoenescu, Tudor M.; Woo, Simon S.

    2009-01-01

    In this work, we consider information dissemination and sharing in a distributed peer-to-peer (P2P highly dynamic communication network. In particular, we explore a network coding technique for transmission and a rank based peer selection method for network formation. The combined approach has been shown to improve information sharing and delivery to all users when considering the challenges imposed by the space network environments.

  13. Selective PCAF inhibitor ameliorates cognitive and behavioral deficits by suppressing NF-κB-mediated neuroinflammation induced by Aβ in a model of Alzheimer's disease.

    PubMed

    Park, Soo-Yeon; Kim, Mi-Jeong; Kim, Young Jun; Lee, Yoo-Hyun; Bae, Donghyuk; Kim, Sunoh; Na, Younghwa; Yoon, Ho-Geun

    2015-04-01

    Several recent studies have reported an association between neurodegeneration and histone modifications, such as acetylation, deacetylation and methylation. In addition, questions have been raised regarding a potential functional role for the histone acetylation enzymes in β-amyloid (Aβ)-mediated neurotoxicity, particularly the p300/CBP-associated factor (PCAF) enzyme. We recently reported the potential utility of a PCAF inhibitor in the suppression of Aβ-induced neuronal cell death, although the in vivo effectiveness of the PCAF inhibitor remained unclear. In this study, we modified the PCAF inhibitor by chemical derivatization and selected compound C-30-27 as the most potent PCAF inhibitor. We demonstrated that C-30-27 selectively inhibited acetylation-dependent nuclear factor-κB (NF-κB) at Lys-122 and suppressed the NF-κB-mediated inflammatory response induced by lipopolysaccharide (LPS) or Aβ in both BV2 and Neuro-2A (N2A) cells. Finally, we demonstrated that C-30-27 improved cognitive deficits, as well as the capacity for locomotion and the damaged cholinergic system in the Aβ-treated rats. In conclusion, our results demonstrate that this selective PCAF inhibitor has the potential to reduce the neuroinflammatory response induced by Aβ. PMID:25672970

  14. Emergence of multilevel selection in the prisoner's dilemma game on coevolving random networks

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2009-09-01

    We study the evolution of cooperation in the prisoner's dilemma game, whereby a coevolutionary rule is introduced that molds the random topology of the interaction network in two ways. First, existing links are deleted whenever a player adopts a new strategy or its degree exceeds a threshold value; second, new links are added randomly after a given number of game iterations. These coevolutionary processes correspond to the generic formation of new links and deletion of existing links that, especially in human societies, appear frequently as a consequence of ongoing socialization, change of lifestyle or death. Due to the counteraction of deletions and additions of links the initial heterogeneity of the interaction network is qualitatively preserved, and thus cannot be held responsible for the observed promotion of cooperation. Indeed, the coevolutionary rule evokes the spontaneous emergence of a powerful multilevel selection mechanism, which despite the sustained random topology of the evolving network, maintains cooperation across the whole span of defection temptation values.

  15. Techniques for selecting topology and implementing the distributed control system network

    NASA Astrophysics Data System (ADS)

    Chernyi, S.

    2016-04-01

    On grounds of reviews devoted to flows analysis methods in the data processing networks within the automated control systems for the technological process and assessment of these methods by the selected set of requirements, one may make conclusion about expediency of using the combination of graph flow algorithms and the queuing theory. The outputs of the research concerning the impact of network dynamics on the drilling platform distributed system control quality prove the fact that the quality of the transient depends upon the frequency of discretization and intensity of flows. With increasing the intensity of flows, the static error of the control enlarges. It was concluded that in order to control the automation objects in the real-time mode it is required to minimize the delays in transmitting packets in the network.

  16. From basic network principles to neural architecture: emergence of orientation-selective cells.

    PubMed Central

    Linsker, R

    1986-01-01

    This is the second paper in a series of three that explores the emergence of several prominent features of the functional architecture of visual cortex, in a "modular self-adaptive network" containing several layers of cells with parallel feedforward connections whose strengths develop according to a Hebb-type correlation-rewarding rule. In the present paper I show that orientation-selective cells, similar to the "simple" cortical cells of Hubel and Wiesel [Hubel, D. H. & Wiesel, T. N. (1962) J. Physiol. 160, 106-154], emerge in such a network. No orientation preference is specified to the system at any stage, the orientation-selective cell layer emerges even in the absence of environmental input to the system, and none of the basic developmental rules is specific to visual processing. PMID:3464958

  17. Peers and the Emergence of Alcohol Use: Influence and Selection Processes in Adolescent Friendship Networks

    PubMed Central

    Osgood, D. Wayne; Ragan, Daniel T.; Wallace, Lacey; Gest, Scott D.; Feinberg, Mark E.; Moody, James

    2013-01-01

    This study addresses not only influence and selection of friends as sources of similarity in alcohol use, but also peer processes leading drinkers to be chosen as friends more often than non-drinkers, which increases the number of adolescents subject to their influence. Analyses apply a stochastic actor-based model to friendship networks assessed five times from 6th through 9th grades for 50 grade cohort networks in Iowa and Pennsylvania, which include 13,214 individuals. Results show definite influence and selection for similarity in alcohol use, as well as reciprocal influences between drinking and frequently being chosen as a friend. These findings suggest that adolescents view alcohol use as an attractive, high status activity and that friendships expose adolescents to opportunities for drinking. PMID:24307830

  18. Tailoring open metal sites for selective capture of CO2 in isostructural metalloporphyrin porous organic networks

    NASA Astrophysics Data System (ADS)

    Choi, Hwa Seob; Jeon, Hyung Joon; Choi, Jung Hoon; Lee, Gyu-Heon; Kang, Jeung Ku

    2015-11-01

    Porphyrin-based isostructural porous organic networks have been synthesized by varying the central metal atoms to cobalt, nickel and copper. Their selectivities for CO2 capture over N2 and Ar are found to be enhanced as the heats of adsorption for CO2 are increased in the order of Co, Ni and Cu, while the pore structures are well maintained.Porphyrin-based isostructural porous organic networks have been synthesized by varying the central metal atoms to cobalt, nickel and copper. Their selectivities for CO2 capture over N2 and Ar are found to be enhanced as the heats of adsorption for CO2 are increased in the order of Co, Ni and Cu, while the pore structures are well maintained. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05696a

  19. Descending control of neural bias and selectivity in a spatial attention network: rules and mechanisms

    PubMed Central

    Mysore, Shreesh P.; Knudsen, Eric I.

    2014-01-01

    SUMMARY The brain integrates stimulus-driven (exogenous) activity with internally generated (endogenous) activity to compute the highest priority stimulus for gaze and attention. Little is known about how this computation is accomplished neurally. We explored the underlying functional logic in a critical component of the spatial attention network, the optic tectum (OT, superior colliculus in mammals), in awake barn owls. We found that space-specific endogenous influences, evoked by activating descending forebrain pathways, bias competition among exogenous influences, and substantially enhance the quality of the categorical neural pointer to the highest priority stimulus. These endogenous influences operate across sensory modalities. Biologically grounded modeling revealed that the observed effects on network bias and selectivity require a simple circuit mechanism: endogenously driven gain modulation of feedback inhibition among competing channels. Our findings reveal fundamental principles by which internal and external information combine to guide selection of the next target for gaze and attention. PMID:25220813

  20. Topology-selective jamming of fully-connected, code-division random-access networks

    NASA Technical Reports Server (NTRS)

    Polydoros, Andreas; Cheng, Unjeng

    1990-01-01

    The purpose is to introduce certain models of topology selective stochastic jamming and examine its impact on a class of fully-connected, spread-spectrum, slotted ALOHA-type random access networks. The theory covers dedicated as well as half-duplex units. The dominant role of the spatial duty factor is established, and connections with the dual concept of time selective jamming are discussed. The optimal choices of coding rate and link access parameters (from the users' side) and the jamming spatial fraction are numerically established for DS and FH spreading.

  1. Interference Mitigation Based on Intelligent Location Selection in a Canonical Communication Network

    NASA Astrophysics Data System (ADS)

    Qu, Junyue; Cai, Yueming; Zheng, Jianchao; Yang, Wendong; Yang, Weiwei; Hu, Yajie

    2016-01-01

    In this letter, the interference mitigation in a canonical communication network is discussed from the perspective of intelligent location selection. A potential game model is constructed and a location-selection algorithm is designed combining no-regret procedure. With the proposed algorithm, all nodes can update their strategies with limited information exchange. Specifically, our proposed algorithm can converge to a set of correlated equilibria which are the globally or locally optimal solution to the problem of interference minimization. Moreover, our proposed algorithm can achieve distributed implementation without a central node. Simulation results demonstrate that the total interference can be mitigated efficiently with our proposed algorithm. And the proposed algorithm can converge fast.

  2. Comparison of neuron selection algorithms of wavelet-based neural network

    NASA Astrophysics Data System (ADS)

    Mei, Xiaodan; Sun, Sheng-He

    2001-09-01

    Wavelet networks have increasingly received considerable attention in various fields such as signal processing, pattern recognition, robotics and automatic control. Recently people are interested in employing wavelet functions as activation functions and have obtained some satisfying results in approximating and localizing signals. However, the function estimation will become more and more complex with the growth of the input dimension. The hidden neurons contribute to minimize the approximation error, so it is important to study suitable algorithms for neuron selection. It is obvious that exhaustive search procedure is not satisfying when the number of neurons is large. The study in this paper focus on what type of selection algorithm has faster convergence speed and less error for signal approximation. Therefore, the Genetic algorithm and the Tabu Search algorithm are studied and compared by some experiments. This paper first presents the structure of the wavelet-based neural network, then introduces these two selection algorithms and discusses their properties and learning processes, and analyzes the experiments and results. We used two wavelet functions to test these two algorithms. The experiments show that the Tabu Search selection algorithm's performance is better than the Genetic selection algorithm, TSA has faster convergence rate than GA under the same stopping criterion.

  3. Characterization of computer network events through simultaneous feature selection and clustering of intrusion alerts

    NASA Astrophysics Data System (ADS)

    Chen, Siyue; Leung, Henry; Dondo, Maxwell

    2014-05-01

    As computer network security threats increase, many organizations implement multiple Network Intrusion Detection Systems (NIDS) to maximize the likelihood of intrusion detection and provide a comprehensive understanding of intrusion activities. However, NIDS trigger a massive number of alerts on a daily basis. This can be overwhelming for computer network security analysts since it is a slow and tedious process to manually analyse each alert produced. Thus, automated and intelligent clustering of alerts is important to reveal the structural correlation of events by grouping alerts with common features. As the nature of computer network attacks, and therefore alerts, is not known in advance, unsupervised alert clustering is a promising approach to achieve this goal. We propose a joint optimization technique for feature selection and clustering to aggregate similar alerts and to reduce the number of alerts that analysts have to handle individually. More precisely, each identified feature is assigned a binary value, which reflects the feature's saliency. This value is treated as a hidden variable and incorporated into a likelihood function for clustering. Since computing the optimal solution of the likelihood function directly is analytically intractable, we use the Expectation-Maximisation (EM) algorithm to iteratively update the hidden variable and use it to maximize the expected likelihood. Our empirical results, using a labelled Defense Advanced Research Projects Agency (DARPA) 2000 reference dataset, show that the proposed method gives better results than the EM clustering without feature selection in terms of the clustering accuracy.

  4. Global transcription network incorporating distal regulator binding reveals selective cooperation of cancer drivers and risk genes

    PubMed Central

    Kim, Kwoneel; Yang, Woojin; Lee, Kang Seon; Bang, Hyoeun; Jang, Kiwon; Kim, Sang Cheol; Yang, Jin Ok; Park, Seongjin; Park, Kiejung; Choi, Jung Kyoon

    2015-01-01

    Global network modeling of distal regulatory interactions is essential in understanding the overall architecture of gene expression programs. Here, we developed a Bayesian probabilistic model and computational method for global causal network construction with breast cancer as a model. Whereas physical regulator binding was well supported by gene expression causality in general, distal elements in intragenic regions or loci distant from the target gene exhibited particularly strong functional effects. Modeling the action of long-range enhancers was critical in recovering true biological interactions with increased coverage and specificity overall and unraveling regulatory complexity underlying tumor subclasses and drug responses in particular. Transcriptional cancer drivers and risk genes were discovered based on the network analysis of somatic and genetic cancer-related DNA variants. Notably, we observed that the risk genes were functionally downstream of the cancer drivers and were selectively susceptible to network perturbation by tumorigenic changes in their upstream drivers. Furthermore, cancer risk alleles tended to increase the susceptibility of the transcription of their associated genes. These findings suggest that transcriptional cancer drivers selectively induce a combinatorial misregulation of downstream risk genes, and that genetic risk factors, mostly residing in distal regulatory regions, increase transcriptional susceptibility to upstream cancer-driving somatic changes. PMID:26001967

  5. Fuzzy C-Means Clustering and Energy Efficient Cluster Head Selection for Cooperative Sensor Network.

    PubMed

    Bhatti, Dost Muhammad Saqib; Saeed, Nasir; Nam, Haewoon

    2016-01-01

    We propose a novel cluster based cooperative spectrum sensing algorithm to save the wastage of energy, in which clusters are formed using fuzzy c-means (FCM) clustering and a cluster head (CH) is selected based on a sensor's location within each cluster, its location with respect to fusion center (FC), its signal-to-noise ratio (SNR) and its residual energy. The sensing information of a single sensor is not reliable enough due to shadowing and fading. To overcome these issues, cooperative spectrum sensing schemes were proposed to take advantage of spatial diversity. For cooperative spectrum sensing, all sensors sense the spectrum and report the sensed energy to FC for the final decision. However, it increases the energy consumption of the network when a large number of sensors need to cooperate; in addition to that, the efficiency of the network is also reduced. The proposed algorithm makes the cluster and selects the CHs such that very little amount of network energy is consumed and the highest efficiency of the network is achieved. Using the proposed algorithm maximum probability of detection under an imperfect channel is accomplished with minimum energy consumption as compared to conventional clustering schemes. PMID:27618061

  6. Model Selection and Hypothesis Testing for Large-Scale Network Models with Overlapping Groups

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2015-01-01

    The effort to understand network systems in increasing detail has resulted in a diversity of methods designed to extract their large-scale structure from data. Unfortunately, many of these methods yield diverging descriptions of the same network, making both the comparison and understanding of their results a difficult challenge. A possible solution to this outstanding issue is to shift the focus away from ad hoc methods and move towards more principled approaches based on statistical inference of generative models. As a result, we face instead the more well-defined task of selecting between competing generative processes, which can be done under a unified probabilistic framework. Here, we consider the comparison between a variety of generative models including features such as degree correction, where nodes with arbitrary degrees can belong to the same group, and community overlap, where nodes are allowed to belong to more than one group. Because such model variants possess an increasing number of parameters, they become prone to overfitting. In this work, we present a method of model selection based on the minimum description length criterion and posterior odds ratios that is capable of fully accounting for the increased degrees of freedom of the larger models and selects the best one according to the statistical evidence available in the data. In applying this method to many empirical unweighted networks from different fields, we observe that community overlap is very often not supported by statistical evidence and is selected as a better model only for a minority of them. On the other hand, we find that degree correction tends to be almost universally favored by the available data, implying that intrinsic node proprieties (as opposed to group properties) are often an essential ingredient of network formation.

  7. Tumor-selective mitochondrial network collapse induced by atmospheric gas plasma-activated medium.

    PubMed

    Saito, Kosuke; Asai, Tomohiko; Fujiwara, Kyoko; Sahara, Junki; Koguchi, Haruhisa; Fukuda, Noboru; Suzuki-Karasaki, Miki; Soma, Masayoshi; Suzuki-Karasaki, Yoshihiro

    2016-04-12

    Non-thermal atmospheric gas plasma (AGP) exhibits cytotoxicity against malignant cells with minimal cytotoxicity toward normal cells. However, the mechanisms of its tumor-selective cytotoxicity remain unclear. Here we report that AGP-activated medium increases caspase-independent cell death and mitochondrial network collapse in a panel of human cancer cells, but not in non-transformed cells. AGP irradiation stimulated reactive oxygen species (ROS) generation in AGP-activated medium, and in turn the resulting stable ROS, most likely hydrogen peroxide (H2O2), activated intracellular ROS generation and mitochondrial ROS (mROS) accumulation. Culture in AGP-activated medium resulted in cell death and excessive mitochondrial fragmentation and clustering, and these responses were inhibited by ROS scavengers. AGP-activated medium also increased dynamin-related protein 1-dependent mitochondrial fission in a tumor-specific manner, and H2O2 administration showed similar effects. Moreover, the vulnerability of tumor cells to mitochondrial network collapse appeared to result from their higher sensitivity to mROS accumulation induced by AGP-activated medium or H2O2. The present findings expand our previous observations on death receptor-mediated tumor-selective cell killing and reinforce the importance of mitochondrial network remodeling as a powerful target for tumor-selective cancer treatment. PMID:26942565

  8. Tumor-selective mitochondrial network collapse induced by atmospheric gas plasma-activated medium

    PubMed Central

    Saito, Kosuke; Asai, Tomohiko; Fujiwara, Kyoko; Sahara, Junki; Koguchi, Haruhisa; Fukuda, Noboru; Suzuki-Karasaki, Miki; Soma, Masayoshi; Suzuki-Karasaki, Yoshihiro

    2016-01-01

    Non-thermal atmospheric gas plasma (AGP) exhibits cytotoxicity against malignant cells with minimal cytotoxicity toward normal cells. However, the mechanisms of its tumor-selective cytotoxicity remain unclear. Here we report that AGP-activated medium increases caspase-independent cell death and mitochondrial network collapse in a panel of human cancer cells, but not in non-transformed cells. AGP irradiation stimulated reactive oxygen species (ROS) generation in AGP-activated medium, and in turn the resulting stable ROS, most likely hydrogen peroxide (H2O2), activated intracellular ROS generation and mitochondrial ROS (mROS) accumulation. Culture in AGP-activated medium resulted in cell death and excessive mitochondrial fragmentation and clustering, and these responses were inhibited by ROS scavengers. AGP-activated medium also increased dynamin-related protein 1-dependent mitochondrial fission in a tumor-specific manner, and H2O2 administration showed similar effects. Moreover, the vulnerability of tumor cells to mitochondrial network collapse appeared to result from their higher sensitivity to mROS accumulation induced by AGP-activated medium or H2O2. The present findings expand our previous observations on death receptor-mediated tumor-selective cell killing and reinforce the importance of mitochondrial network remodeling as a powerful target for tumor-selective cancer treatment. PMID:26942565

  9. Orbital-selective singlet dimer formation and suppression of double exchange in 4d and 5d systems

    NASA Astrophysics Data System (ADS)

    Streltsov, Sergey; Cao, Gang; Khomskii, Daniel

    One of the main mechanisms of ferromagnetic ordering in conducting materials is the double exchange (DE). It is usually supposed in DE model that the Hund's coupling JH is much larger than electron hopping t; in this case one stabilizes the state with maximum spin per pair of ions, which finally leads to ferromagnetism in bulk systems. We show that in the dimerized 4 d / 5 d transition metal oxides for which JH is reduced and t is in contrast enhanced, another situation is possible, when formation of the spin-singlets on delocalized orbitals is more favorable. This leads to suppression of the DE and to a strong decrease of the total spin. The model calculations using the dynamical mean-field theory show that this effect survives even in the extended systems, not only for dimers. Such a situation is realized, e.g., in Y5Mo2O12, CrO2 under pressure and in many other 4 d / 5 d based materials. Another mechanism, which may suppress DE and which is also typical for 4 d / 5 d compounds is the spin-orbit coupling (SOC). We show on the example of Ba5AlIr2O11, that in this system it is the combination of molecular-orbital formation and SOC that strongly decreases magnetic moment on Ir. Civil Research and Development Foundation via FSCX-14-61025-0.

  10. Biochanin A, a Phytoestrogenic Isoflavone with Selective Inhibition of Phosphodiesterase 4, Suppresses Ovalbumin-Induced Airway Hyperresponsiveness

    PubMed Central

    Ko, Wun-Chang; Lin, Ling-Hung; Shen, Hsin-Yi; Lai, Chi-Yin; Chen, Chien-Ming; Shih, Chung-Hung

    2011-01-01

    The present study investigated the potential of biochanin A, a phytoestrogenic isoflavone of red clover (Triflolium pratense), for use in treating asthma or chronic obstructive pulmonary disease (COPD). Biochanin A (100 μmol/kg, orally (p.o.)) significantly attenuated airway resistance (RL), enhanced pause (Penh), and increased lung dynamic compliance (Cdyn) values induced by methacholine (MCh) in sensitized and challenged mice. It also significantly suppressed an increase in the number of total inflammatory cells, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL)-2, IL-4, IL-5, and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) of the mice. However, it did not influence interferon (IFN)-γ levels. Biochanin A (100 μmol/kg, p.o.) also significantly suppressed the total and ovalbumin (OVA)-specific immunoglobulin E (IgE) levels in the serum and BALF, and enhanced the total IgG2a level in the serum of these mice. The PDE4H/PDE4L value of biochanin A was calculated as >35. Biochanin A did not influence xylazine/ketamine-induced anesthesia. Biochanin A (10~30 μM) significantly reduced cumulative OVA (10~100 μg/mL)-induced contractions in the isolated guinea pig trachealis, suggesting that it inhibits degranulation of mast cells. In conclusion, red clover containing biochanin A has the potential for treating allergic asthma and COPD. PMID:21437195

  11. Integrated network-diversity analyses suggest suppressive effect of Hodgkin's lymphoma and slightly relieving effect of chemotherapy on human milk microbiome.

    PubMed

    Ma, Zhanshan Sam; Li, Lianwei; Li, Wendy; Li, Jie; Chen, Hongju

    2016-01-01

    We aim to investigate the effects of Hodgkin's lymphoma and the chemotherapy for treating the disease on the human milk microbiome through integrated network and community diversity analyses. Our analyses suggest that Hodgkin's lymphoma seems to have a suppressing effect on the milk microbiome by lowering the milk microbial community diversity, as measured by the Hill numbers profiles. Although the diversity analysis did not reveal an effect of chemotherapy on community diversity, bacterial species interaction network analysis shows that chemotherapy may help to slightly restore the milk microbiome impacted by Hodgkin's lymphoma through its influence on the interactions among species (or OTUs). We further constructed diversity-metabolites network, which suggests that the milk microbial diversity is positively correlated with some beneficial milk metabolites such as DHA (DocosaHexaenoic Acid), and that the diversity is negatively correlated with some potentially harmful metabolites such as Butanal. We hence postulate that higher milk microbial diversity should be a signature of healthy mothers and beneficial to infants. Finally, we constructed metabolites OTU correlation networks, from which we identified some special OTUs. These OTUs deserve further investigations given their apparent involvements in regulating the levels of critical milk metabolites such as DHA, Inositol and Butanal. PMID:27386954

  12. Integrated network-diversity analyses suggest suppressive effect of Hodgkin’s lymphoma and slightly relieving effect of chemotherapy on human milk microbiome

    PubMed Central

    Ma, Zhanshan (Sam); Li, Lianwei; Li, Wendy; Li, Jie; Chen, Hongju

    2016-01-01

    We aim to investigate the effects of Hodgkin’s lymphoma and the chemotherapy for treating the disease on the human milk microbiome through integrated network and community diversity analyses. Our analyses suggest that Hodgkin’s lymphoma seems to have a suppressing effect on the milk microbiome by lowering the milk microbial community diversity, as measured by the Hill numbers profiles. Although the diversity analysis did not reveal an effect of chemotherapy on community diversity, bacterial species interaction network analysis shows that chemotherapy may help to slightly restore the milk microbiome impacted by Hodgkin’s lymphoma through its influence on the interactions among species (or OTUs). We further constructed diversity-metabolites network, which suggests that the milk microbial diversity is positively correlated with some beneficial milk metabolites such as DHA (DocosaHexaenoic Acid), and that the diversity is negatively correlated with some potentially harmful metabolites such as Butanal. We hence postulate that higher milk microbial diversity should be a signature of healthy mothers and beneficial to infants. Finally, we constructed metabolites OTU correlation networks, from which we identified some special OTUs. These OTUs deserve further investigations given their apparent involvements in regulating the levels of critical milk metabolites such as DHA, Inositol and Butanal. PMID:27386954

  13. Tofogliflozin, A Highly Selective Inhibitor of SGLT2 Blocks Proinflammatory and Proapoptotic Effects of Glucose Overload on Proximal Tubular Cells Partly by Suppressing Oxidative Stress Generation.

    PubMed

    Ishibashi, Y; Matsui, T; Yamagishi, S

    2016-03-01

    Ninety percent of glucose filtered by the glomerulus is reabsorbed by a sodium-glucose cotransporter 2 (SGLT2), which is mainly expressed on S1 and S2 segment of renal proximal tubules. Since SGLT-2-mediated glucose reabsorption is increased under diabetic conditions, selective inhibition of SGLT2 is a potential therapeutic target for the treatment of diabetes. We have recently shown that an inhibitor of SGLT2 has anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing advanced glycation end products formation and oxidative stress generation in the kidney. However, the direct effects of SGLT2 inhibitor on tubular cell damage remain unclear. In this study, we investigated the effects of tofogliflozin, a highly selective inhibitor of SGLT2 on oxidative stress generation, inflammatory and proapoptotic reactions in cultured human proximal tubular cells exposed to high glucose. Tofogliflozin dose-dependently suppressed glucose entry into tubular cells. High glucose exposure (30 mM) for 4 and 24 h significantly increased oxidative stress generation in tubular cells, which were suppressed by the treatment of tofogliflozin or an antioxidant N-acetylcysteine (NAC). Monocyte chemoattractant protein-1 (MCP-1) gene expression and apoptotic cell death were induced by 4 h- and 8 day-exposure to high glucose, respectively, both of which were also blocked by tofogliflozin or NAC. The present study suggests that SGLT2-mediated glucose entry into tubular cells could stimulate oxidative stress and evoke inflammatory and proapoptotic reactions in this cell type. Blockade of glucose reabsorption in tubular cells by SGLT2 inhibitor might exert beneficial effects on tubulointerstitial damage in diabetic nephropathy. PMID:26158396

  14. Selective β2-AR Blockage Suppresses Colorectal Cancer Growth Through Regulation of EGFR-Akt/ERK1/2 Signaling, G1-Phase Arrest, and Apoptosis.

    PubMed

    Chin, Chih-Chien; Li, Jhy-Ming; Lee, Kam-Fai; Huang, Yun-Ching; Wang, Kuan-Chieh; Lai, Hsiao-Ching; Cheng, Chih-Chung; Kuo, Yi-Hung; Shi, Chung-Sheng

    2016-02-01

    The stress-upregulated catecholamines-activated β1- and β2-adrenergic receptors (β1/2-ARs) have been shown to accelerate the progression of cancers such as colorectal cancer (CRC). We investigated the underlying mechanism of the inhibition of β1/2-ARs signaling for the treatment of CRC and elucidated the significance of β2-AR expression in CRC in vitro and in clinical samples. The impacts of β1/2-AR antagonists in CRC in vitro and CRC-xenograft in vivo were examined. We found that repression of β2-AR but not β1-AR signaling selectively suppressed cell viability, induced G1-phase cell cycle arrest, caused both intrinsic and extrinsic pathways-mediated apoptosis of specific CRC cells and inhibited CRC-xenograft growth in vivo. Moreover, the expression of β2-AR was not consistent with the progression of CRC in vitro or in clinical samples. Our data evidence that the expression profiles, signaling, and blockage of β2-AR have a unique pattern in CRC comparing to other cancers. β2-AR antagonism selectively suppresses the growth of CRC accompanying active β2-AR signaling, which potentially carries wild-type KRAS, in vitro and in vivo via the inhibition of β2-AR transactivated EFGR-Akt/ERK1/2 signaling pathway. Thus, β2-AR blockage might be a potential therapeutic strategy for combating the progressions of β2-AR-dependent CRC. PMID:26189563

  15. Frequency-selective control of cortical and subcortical networks by central thalamus

    PubMed Central

    Liu, Jia; Lee, Hyun Joo; Weitz, Andrew J; Fang, Zhongnan; Lin, Peter; Choy, ManKin; Fisher, Robert; Pinskiy, Vadim; Tolpygo, Alexander; Mitra, Partha; Schiff, Nicholas; Lee, Jin Hyung

    2015-01-01

    Central thalamus plays a critical role in forebrain arousal and organized behavior. However, network-level mechanisms that link its activity to brain state remain enigmatic. Here, we combined optogenetics, fMRI, electrophysiology, and video-EEG monitoring to characterize the central thalamus-driven global brain networks responsible for switching brain state. 40 and 100 Hz stimulations of central thalamus caused widespread activation of forebrain, including frontal cortex, sensorimotor cortex, and striatum, and transitioned the brain to a state of arousal in asleep rats. In contrast, 10 Hz stimulation evoked significantly less activation of forebrain, inhibition of sensory cortex, and behavioral arrest. To investigate possible mechanisms underlying the frequency-dependent cortical inhibition, we performed recordings in zona incerta, where 10, but not 40, Hz stimulation evoked spindle-like oscillations. Importantly, suppressing incertal activity during 10 Hz central thalamus stimulation reduced the evoked cortical inhibition. These findings identify key brain-wide dynamics underlying central thalamus arousal regulation. DOI: http://dx.doi.org/10.7554/eLife.09215.001 PMID:26652162

  16. Application of ecological criteria in selecting marine reserves and developing reserve networks

    USGS Publications Warehouse

    Roberts, C.M.; Branch, G.; Bustamante, R.H.; Castilla, J.C.; Dugan, J.; Halpern, B.S.; Lafferty, K.D.; Leslie, H.; Lubchenco, J.; McArdle, D.; Ruckelshaus, M.; Warner, R.R.

    2003-01-01

    Marine reserves are being established worldwide in response to a growing recognition of the conservation crisis that is building in the oceans. However, designation of reserves has been largely opportunistic, or protective measures have been implemented (often overlapping and sometimes in conflict) by different entities seeking to achieve different ends. This has created confusion among both users and enforcers, and the proliferation of different measures provides a false sense of protection where little is offered. This paper sets out a procedure grounded in current understanding of ecological processes, that allows the evaluation and selection of reserve sites in order to develop functional, interconnected networks of fully protected reserves that will fulfill multiple objectives. By fully protected we mean permanently closed to fishing and other resource extraction. We provide a framework that unifies the central aims of conservation and fishery management, while also meeting other human needs such as the provision of ecosystem services (e.g., maintenance of coastal water quality, shoreline protection, and recreational opportunities). In our scheme, candidate sites for reserves are evaluated against 12 criteria focused toward sustaining the biological integrity and productivity of marine systems at both local and regional scales. While a limited number of sites will be indispensable in a network, many will be of similar value as reserves, allowing the design of numerous alternative, biologically adequate networks. Devising multiple network designs will help ensure that ecological functionality is preserved throughout the socioeconomic evaluation process. Too often, socioeconomic criteria have dominated the process of reserve selection, potentially undermining their efficacy. We argue that application of biological criteria must precede and inform socioeconomic evaluation, since maintenance of ecosystem functioning is essential for meeting all of the goals for

  17. Technique to select the optimum modulation indices for suppression of undesired signals for simultaneous range and data operations

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien Manh

    An algorithm to search for the optimum set of modulation indices that will optimize a given simultaneous range/command/telemetry communications link is presented. This technique provides a way to suppress the ranging signal in order to limit performance degradation in the data channel due to interference from the ranging channel to a desired level, given a specified ranging accuracy. The link (when optimized) will (1) provide maximum available power to both the data and ranging channels for a specified degradation in the data channel so that it will transmit at the required data rate, (2) achieve a specified ranging accuracy over a maximum distance, under a certain set of conditions, and (3) provide adequate power for carrier tracking without degrading the data-channel thresholds. In addition, both data and ranging channels will fall below the threshold at the same point.

  18. Neural networks learn highly selective representations in order to overcome the superposition catastrophe.

    PubMed

    Bowers, Jeffrey S; Vankov, Ivan I; Damian, Markus F; Davis, Colin J

    2014-04-01

    A key insight from 50 years of neurophysiology is that some neurons in cortex respond to information in a highly selective manner. Why is this? We argue that selective representations support the coactivation of multiple "things" (e.g., words, objects, faces) in short-term memory, whereas nonselective codes are often unsuitable for this purpose. That is, the coactivation of nonselective codes often results in a blend pattern that is ambiguous; the so-called superposition catastrophe. We show that a recurrent parallel distributed processing network trained to code for multiple words at the same time over the same set of units learns localist letter and word codes, and the number of localist codes scales with the level of the superposition. Given that many cortical systems are required to coactivate multiple things in short-term memory, we suggest that the superposition constraint plays a role in explaining the existence of selective codes in cortex. PMID:24564411

  19. A Ranking Approach for Probe Selection and Classification of Microarray Data with Artificial Neural Networks.

    PubMed

    Faria, Alexandre Wagner Chagas; da Silva, Alisson Marques; de Souza Rodrigues, Thiago; Costa, Marcelo Azevedo; Braga, Antonio Padua

    2015-10-01

    Acute leukemia classification into its myeloid and lymphoblastic subtypes is usually accomplished according to the morphology of the tumor. Nevertheless, the subtypes may have similar histopathological appearance, making screening procedures difficult. In addition, approximately one-third of acute myeloid leukemias are characterized by aberrant cytoplasmic localization of nucleophosmin (NPMc(+)), where the majority has a normal karyotype. This work is based on two DNA microarray datasets, available publicly, to differentiate leukemia subtypes. The datasets were split into training and test sets, and feature selection methods were applied. Artificial neural network classifiers were developed to compare the feature selection methods. For the first dataset, 50 genes selected using the best classifier was able to classify all patients in the test set. For the second dataset, five genes yielded 97.5% accuracy in the test set. PMID:26418055

  20. A Selective Insular Perfusion Deficit Contributes to Compromised Salience Network Connectivity in Recovering Alcoholic Men

    PubMed Central

    Sullivan, Edith V.; Müller-Oehring, Eva; Pitel, Anne-Lise; Chanraud, Sandra; Shankaranarayanan, Ajit; Alsop, David C.; Rohlfing, Torsten; Pfefferbaum, Adolf

    2013-01-01

    Background Alcoholism can disrupt neural synchrony between nodes of intrinsic functional networks that are maximally active when resting relative to engaging in a task, the default mode network (DMN) pattern. Untested, however, are whether the DMN in alcoholics can rebound normally from the relatively depressed task-state to the active resting-state and whether local perfusion deficits could disrupt network synchrony when switching from conditions of rest to task to rest, thereby indicating a physiological mechanism of neural network adaptation capability. Methods Whole-brain, 3D pulsed-continuous arterial spin labeling (PCASL) provided measurements of regional cerebral blood flow (rCBF) in 12 alcoholics and 12 controls under three conditions: pre-task rest, spatial working-memory task, post-task rest. Results With practice, alcoholics and controls achieved similar task accuracy and reaction times. Both groups exhibited a high-low-high pattern of perfusion levels in DMN regions during the rest-task-rest runs and the opposite pattern in posterior and cerebellar regions known to be associated with spatial working memory. Alcoholics showed selective differences from controls in the rest-task-rest CBF pattern in the anterior precuneus and CBF level in the insula, a hub of the salience network. Connectivity analysis identified activation synchrony from an insula seed to salience nodes (parietal, medial frontal, anterior cingulate cortices) in controls only. Conclusions We propose that attenuated insular CBF is a mechanism underlying compromised connectivity among salience network nodes. This local perfusion deficit in alcoholics has the potential to impair ability to switch from cognitive states of interoceptive cravings to cognitive control for curbing internal urges. PMID:23587427

  1. Selective attention modulates high-frequency activity in the face-processing network.

    PubMed

    Müsch, Kathrin; Hamamé, Carlos M; Perrone-Bertolotti, Marcela; Minotti, Lorella; Kahane, Philippe; Engel, Andreas K; Lachaux, Jean-Philippe; Schneider, Till R

    2014-11-01

    Face processing depends on the orchestrated activity of a large-scale neuronal network. Its activity can be modulated by attention as a function of task demands. However, it remains largely unknown whether voluntary, endogenous attention and reflexive, exogenous attention to facial expressions equally affect all regions of the face-processing network, and whether such effects primarily modify the strength of the neuronal response, the latency, the duration, or the spectral characteristics. We exploited the good temporal and spatial resolution of intracranial electroencephalography (iEEG) and recorded from depth electrodes to uncover the fast dynamics of emotional face processing. We investigated frequency-specific responses and event-related potentials (ERP) in the ventral occipito-temporal cortex (VOTC), ventral temporal cortex (VTC), anterior insula, orbitofrontal cortex (OFC), and amygdala when facial expressions were task-relevant or task-irrelevant. All investigated regions of interest (ROI) were clearly modulated by task demands and exhibited stronger changes in stimulus-induced gamma band activity (50-150 Hz) when facial expressions were task-relevant. Observed latencies demonstrate that the activation is temporally coordinated across the network, rather than serially proceeding along a processing hierarchy. Early and sustained responses to task-relevant faces in VOTC and VTC corroborate their role for the core system of face processing, but they also occurred in the anterior insula. Strong attentional modulation in the OFC and amygdala (300 msec) suggests that the extended system of the face-processing network is only recruited if the task demands active face processing. Contrary to our expectation, we rarely observed differences between fearful and neutral faces. Our results demonstrate that activity in the face-processing network is susceptible to the deployment of selective attention. Moreover, we show that endogenous attention operates along the whole

  2. Bayesian model selection applied to artificial neural networks used for water resources modeling

    NASA Astrophysics Data System (ADS)

    Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.

    2008-04-01

    Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.

  3. Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.

    2011-01-01

    Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.

  4. Proposal of dynamic subcarrier selection technique using CSMA/CA for cognitive wireless mesh networks

    NASA Astrophysics Data System (ADS)

    Miyamoto, Shinichi; Goda, Yuichi; Sampei, Seiichi

    2009-01-01

    In wireless mesh networks using unlicensed radio frequency band, how to adaptively and efficiently allocate spectrum among multiple wireless nodes according to the surrounding environment is an important issue. Cognitive radio that includes functionalities of radio environmental awareness and intelligent radio resource management in an opportunistic way is regarded as the great candidate to enable the efficient utilization of radio resource. In order to fully exploit radio resources and enhance spectrum efficiency based on cognitive radio to wireless mesh networks, this paper proposes dynamic subcarrier selection technique and CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) based MAC layer protocol for wireless mesh networks. In the proposed technique, based on the detection of available spot-wise subcarriers using the subcarrier-level carrier sense and the estimation of channel conditions, data packet is transmitted using unused discrete subcarriers having good channel conditions. Numerical results confirm that the proposed dynamic subcarrier selection technique is effective in utilizing radio resources and enhance spectrum efficiency. Moreover, because multiple nodes can get the transmission opportunity at the same time, the degradation in transmission performance due to the contention between multiple nodes can be solved.

  5. Untangling Alzheimer's Disease Clinicoanatomical Heterogeneity Through Selective Network Vulnerability - An Effort to Understand a Complex Disease.

    PubMed

    Bergeron, David; Bensaïdane, Reda; Laforce, Robert

    2016-01-01

    Alzheimer's disease (AD) is a clinically, anatomically and biologically heterogeneous disorder encompassing a wide spectrum of cognitive profiles, ranging from the typical amnestic syndrome to visuospatial changes in posterior cortical atrophy, language deficits in primary progressive aphasia and behavioural/executive dysfunctions in anterior variants. With the emergence of functional imaging and neural network analysis using graph theory for instance, some authors have hypothesized that this phenotypic variability is produced by the differential involvement of large-scale neural networks - a model called 'molecular nexopathy'. At the moment, however, the hypothesized mechanisms underlying AD's divergent network degeneration remain speculative and mostly involve selective premorbid network vulnerability. Herein we present an overview of AD's clinicoanatomical variability, outline functional imaging and graph theory contributions to our understanding of the disease and discuss ongoing debates regarding the biological roots of its heterogeneity. We finally discuss the clinical promises of statistical signal processing disciplines (graph theory and information theory) in predicting the trajectory of AD variants. This paper aims to raise awareness about AD clinicoanatomical heterogeneity and outline how statistical signal processing methods could lead to a better understanding, diagnosis and treatment of AD variants in the future. PMID:26567745

  6. Selecting key genes associated with osteosarcoma based on a differential expression network.

    PubMed

    Wang, Y B; Jia, N; Xu, C M; Zhao, L; Zhao, Y; Wang, X; Jia, T H

    2015-01-01

    Despite recent advances in osteosarcoma diagnosis and therapy, much remains unclear about the molecular mechanisms involved in the disorder, and the discovery of novel drug-targeted genes is essential. We explored the potential molecular mechanisms and target genes involved in the development and progression of osteosarcoma. First, we identified the differentially expressed genes in osteosarcoma patients and matching normal controls. We then constructed a differential expression network based on differential and non-differential interactions. Pathway-enrichment analysis was performed based on the nodes contained in the main differential expression network. Centrality analysis was used to select hub genes that may play vital roles in the progression of human osteosarcoma. Our research revealed a total of 176 differentially expressed genes including 82 upregulated and 94 downregulated genes. A differential expression network was constructed that included 992 gene pairs (1043 nodes). Pathway-enrichment analysis indicated that the nodes in the differential expression network were mainly enriched in several pathways such as those involved in cancer, cell cycle, ubiquitin-mediated proteolysis, DNA replication, ribosomes, T-cell receptor signaling, spliceosomes, neurotrophin signaling, oxidative phosphorylation, and tight junctions. Six hub genes (APP, UBC, CAND1, RPA, YWHAG, and NEDD8) were discovered; of these, two genes (UBC and RPA) were also found to be disease genes. Our study predicted that UBC and RPA had potential as target genes for the diagnosis and treatment of osteosarcoma. PMID:26782416

  7. Elucidation of Genetic Interactions in the Yeast GATA-Factor Network Using Bayesian Model Selection

    PubMed Central

    Milias-Argeitis, Andreas; Oliveira, Ana Paula; Gerosa, Luca; Falter, Laura; Sauer, Uwe; Lygeros, John

    2016-01-01

    Understanding the structure and function of complex gene regulatory networks using classical genetic assays is an error-prone procedure that frequently generates ambiguous outcomes. Even some of the best-characterized gene networks contain interactions whose validity is not conclusively proven. Founded on dynamic experimental data, mechanistic mathematical models are able to offer detailed insights that would otherwise require prohibitively large numbers of genetic experiments. Here we attempt mechanistic modeling of the transcriptional network formed by the four GATA-factor proteins, a well-studied system of central importance for nitrogen-source regulation of transcription in the yeast Saccharomyces cerevisiae. To resolve ambiguities in the network organization, we encoded a set of five interactions hypothesized in the literature into a set of 32 mathematical models, and employed Bayesian model selection to identify the most plausible set of interactions based on dynamic gene expression data. The top-ranking model was validated on newly generated GFP reporter dynamic data and was subsequently used to gain a better understanding of how yeast cells organize their transcriptional response to dynamic changes of nitrogen sources. Our work constitutes a necessary and important step towards obtaining a holistic view of the yeast nitrogen regulation mechanisms; on the computational side, it provides a demonstration of how powerful Monte Carlo techniques can be creatively combined and used to address the great challenges of large-scale dynamical system inference. PMID:26967983

  8. A model selection algorithm for a posteriori probability estimation with neural networks.

    PubMed

    Arribas, Juan Ignacio; Cid-Sueiro, Jesús

    2005-07-01

    This paper proposes a novel algorithm to jointly determine the structure and the parameters of a posteriori probability model based on neural networks (NNs). It makes use of well-known ideas of pruning, splitting, and merging neural components and takes advantage of the probabilistic interpretation of these components. The algorithm, so called a posteriori probability model selection (PPMS), is applied to an NN architecture called the generalized softmax perceptron (GSP) whose outputs can be understood as probabilities although results shown can be extended to more general network architectures. Learning rules are derived from the application of the expectation-maximization algorithm to the GSP-PPMS structure. Simulation results show the advantages of the proposed algorithm with respect to other schemes. PMID:16121722

  9. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks

    PubMed Central

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571

  10. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    PubMed

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571