Science.gov

Sample records for neuro-fuzzy inference systems

  1. Seizure prediction using adaptive neuro-fuzzy inference system.

    PubMed

    Rabbi, Ahmed F; Azinfar, Leila; Fazel-Rezai, Reza

    2013-01-01

    In this study, we present a neuro-fuzzy approach of seizure prediction from invasive Electroencephalogram (EEG) by applying adaptive neuro-fuzzy inference system (ANFIS). Three nonlinear seizure predictive features were extracted from a patient's data obtained from the European Epilepsy Database, one of the most comprehensive EEG database for epilepsy research. A total of 36 hours of recordings including 7 seizures was used for analysis. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. We designed an ANFIS classifier constructed based on these features as input. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. The membership function optimization was conducted based on a hybrid learning algorithm. The proposed method achieved highest sensitivity of 80% with false prediction rate as low as 0.46 per hour. PMID:24110134

  2. A Neuro-Fuzzy Inference System Combining Wavelet Denoising, Principal Component Analysis, and Sequential Probability Ratio Test for Sensor Monitoring

    SciTech Connect

    Na, Man Gyun; Oh, Seungrohk

    2002-11-15

    A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.

  3. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  4. Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey

    NASA Astrophysics Data System (ADS)

    Yurdusev, Mehmet Ali; Firat, Mahmut

    2009-02-01

    SummaryIn this study, an adaptive neuro fuzzy inference system (ANFIS) is used to forecast monthly water use from several socio-economic and climatic factors including average monthly water bill, population, number of households, gross national product, monthly average temperature observed, monthly total rainfall, monthly average humidity observed and inflation rate. Water consumption modeling in this way will be more consistent than doing it using a single variable as more effective parameter could be incorporated. The ANFIS system is applied to modeling monthly water consumptions of Izmir, Turkey. The results indicated that ANFIS can be successfully applied for monthly water consumption modeling.

  5. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    PubMed Central

    Subhi Al-batah, Mohammad; Mat Isa, Nor Ashidi; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  6. Multiple adaptive neuro-fuzzy inference system with automatic features extraction algorithm for cervical cancer recognition.

    PubMed

    Al-batah, Mohammad Subhi; Isa, Nor Ashidi Mat; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  7. Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Ja'fari, Ahmad; Kadkhodaie-Ilkhchi, Ali; Sharghi, Yoosef; Ghanavati, Kiarash

    2012-02-01

    Fractures as the most common and important geological features have a significant share in reservoir fluid flow. Therefore, fracture detection is one of the important steps in fractured reservoir characterization. Different tools and methods are introduced for fracture detection from which formation image logs are considered as the common and effective tools. Due to the economical considerations, image logs are available for a limited number of wells in a hydrocarbon field. In this paper, we suggest a model to estimate fracture density from the conventional well logs using an adaptive neuro-fuzzy inference system. Image logs from two wells of the Asmari formation in one of the SW Iranian oil fields are used to verify the results of the model. Statistical data analysis indicates good correlation between fracture density and well log data including sonic, deep resistivity, neutron porosity and bulk density. The results of this study show that there is good agreement (correlation coefficient of 98%) between the measured and neuro-fuzzy estimated fracture density.

  8. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  9. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.

    PubMed

    Heddam, Salim

    2014-01-01

    This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling. PMID:24057665

  10. Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer.

    PubMed

    Ubeyli, Elif Derya

    2009-10-01

    This paper intends to an integrated view of implementing adaptive neuro-fuzzy inference system (ANFIS) for breast cancer detection. The Wisconsin breast cancer database contained records of patients with known diagnosis. The ANFIS classifiers learned how to differentiate a new case in the domain by given a training set of such records. The ANFIS classifier was used to detect the breast cancer when nine features defining breast cancer indications were used as inputs. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the impacts of features on the detection of breast cancer were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performances and classification accuracies and the results confirmed that the proposed ANFIS model has potential in detecting the breast cancer. PMID:19827261

  11. Adaptive neuro-fuzzy inference system for analysis of Doppler signals.

    PubMed

    Ubeyli, Elif Derya

    2006-01-01

    In this study, a new approach based on adaptive neuro-fuzzy inference system (ANFIS) was presented for detection of ophthalmic artery stenosis. Decision making was performed in two stages: feature extraction using the wavelet transform (WT) and the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. The ophthalmic arterial Doppler signals were recorded from 128 subjects that 62 of them had suffered from ophthalmic artery stenosis and the rest of them had been healthy subjects. Some conclusions concerning the impacts of features on the detection of ophthalmic artery stenosis were obtained through analysis of the ANFIS. The performance of the ANFIS classifier was evaluated in terms of training performance and classification accuracies (total classification accuracy was 97.59%) and the results confirmed that the proposed ANFIS classifier has potential in detecting the ophthalmic artery stenosis. PMID:17945697

  12. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    PubMed

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems. PMID:25607665

  13. Human action recognition using meta-cognitive neuro-fuzzy inference system.

    PubMed

    Subramanian, K; Suresh, S

    2012-12-01

    We propose a sequential Meta-Cognitive learning algorithm for Neuro-Fuzzy Inference System (McFIS) to efficiently recognize human actions from video sequence. Optical flow information between two consecutive image planes can represent actions hierarchically from local pixel level to global object level, and hence are used to describe the human action in McFIS classifier. McFIS classifier and its sequential learning algorithm is developed based on the principles of self-regulation observed in human meta-cognition. McFIS decides on what-to-learn, when-to-learn and how-to-learn based on the knowledge stored in the classifier and the information contained in the new training samples. The sequential learning algorithm of McFIS is controlled and monitored by the meta-cognitive components which uses class-specific, knowledge based criteria along with self-regulatory thresholds to decide on one of the following strategies: (i) Sample deletion (ii) Sample learning and (iii) Sample reserve. Performance of proposed McFIS based human action recognition system is evaluated using benchmark Weizmann and KTH video sequences. The simulation results are compared with well known SVM classifier and also with state-of-the-art action recognition results reported in the literature. The results clearly indicates McFIS action recognition system achieves better performances with minimal computational effort. PMID:23186277

  14. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    NASA Astrophysics Data System (ADS)

    Kakar, Manish; Nyström, Håkan; Rye Aarup, Lasse; Jakobi Nøttrup, Trine; Rune Olsen, Dag

    2005-10-01

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.

  15. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  16. Adaptive neuro fuzzy inference system for compressional wave velocity prediction in a carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Zoveidavianpoor, Mansoor; Samsuri, Ariffin; Shadizadeh, Seyed Reza

    2013-02-01

    Compressional-wave (Vp) data are key information for estimation of rock physical properties and formation evaluation in hydrocarbon reservoirs. However, the absence of Vp will significantly delay the application of specific risk-assessment approaches for reservoir exploration and development procedures. Since Vp is affected by several factors such as lithology, porosity, density, and etc., it is difficult to model their non-linear relationships using conventional approaches. In addition, currently available techniques are not efficient for Vp prediction, especially in carbonates. There is a growing interest in incorporating advanced technologies for an accurate prediction of lacking data in wells. The objectives of this study, therefore, are to analyze and predict Vp as a function of some conventional well logs by two approaches; Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR). Also, the significant impact of selected input parameters on response variable will be investigated. A total of 2156 data points from a giant Middle Eastern carbonate reservoir, derived from conventional well logs and Dipole Sonic Imager (DSI) log were utilized in this study. The quality of the prediction was quantified in terms of the mean squared error (MSE), correlation coefficient (R-square), and prediction efficiency error (PEE). Results show that the ANFIS outperforms MLR with MSE of 0.0552, R-square of 0.964, and PEE of 2%. It is posited that porosity has a significant impact in predicting Vp in the investigated carbonate reservoir.

  17. Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application.

    PubMed

    Fernandes, Fabiano C; Rigden, Daniel J; Franco, Octavio L

    2012-01-01

    Antimicrobial peptides (AMPs) are widely distributed defense molecules and represent a promising alternative for solving the problem of antibiotic resistance. Nevertheless, the experimental time required to screen putative AMPs makes computational simulations based on peptide sequence analysis and/or molecular modeling extremely attractive. Artificial intelligence methods acting as simulation and prediction tools are of great importance in helping to efficiently discover and design novel AMPs. In the present study, state-of-the-art published outcomes using different prediction methods and databases were compared to an adaptive neuro-fuzzy inference system (ANFIS) model. Data from our study showed that ANFIS obtained an accuracy of 96.7% and a Matthew's Correlation Coefficient (MCC) of0.936, which proved it to be an efficient model for pattern recognition in antimicrobial peptide prediction. Furthermore, a lower number of input parameters were needed for the ANFIS model, improving the speed and ease of prediction. In summary, due to the fuzzy nature ofAMP physicochemical properties, the ANFIS approach presented here can provide an efficient solution for screening putative AMP sequences and for exploration of properties characteristic of AMPs. PMID:23193592

  18. Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.

    PubMed

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2016-05-01

    In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (VO2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment. PMID:26851475

  19. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents.

    PubMed

    Ubeyli, Elif Derya

    2009-03-01

    This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for classification of electrocardiogram (ECG) signals. Decision making was performed in two stages: feature extraction by computation of Lyapunov exponents and classification by the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, and atrial fibrillation beat) obtained from the PhysioBank database were classified by four ANFIS classifiers. To improve diagnostic accuracy, the fifth ANFIS classifier (combining ANFIS) was trained using the outputs of the four ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the saliency of features on classification of the ECG signals were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the ECG signals. PMID:19084286

  20. Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Zhang, Hanqing

    2014-05-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.

  1. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  2. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    NASA Astrophysics Data System (ADS)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  3. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Akhavan, P.; Karimi, M.; Pahlavani, P.

    2014-10-01

    Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  4. Adaptive neuro-fuzzy inference system for acoustic analysis of 4-channel phonocardiograms using empirical mode decomposition.

    PubMed

    Becerra, Miguel A; Orrego, Diana A; Delgado-Trejos, Edilson

    2013-01-01

    The heart's mechanical activity can be appraised by auscultation recordings, taken from the 4-Standard Auscultation Areas (4-SAA), one for each cardiac valve, as there are invisible murmurs when a single area is examined. This paper presents an effective approach for cardiac murmur detection based on adaptive neuro-fuzzy inference systems (ANFIS) over acoustic representations derived from Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) of 4-channel phonocardiograms (4-PCG). The 4-PCG database belongs to the National University of Colombia. Mel-Frequency Cepstral Coefficients (MFCC) and statistical moments of HHT were estimated on the combination of different intrinsic mode functions (IMFs). A fuzzy-rough feature selection (FRFS) was applied in order to reduce complexity. An ANFIS network was implemented on the feature space, randomly initialized, adjusted using heuristic rules and trained using a hybrid learning algorithm made up by least squares and gradient descent. Global classification for 4-SAA was around 98.9% with satisfactory sensitivity and specificity, using a 50-fold cross-validation procedure (70/30 split). The representation capability of the EMD technique applied to 4-PCG and the neuro-fuzzy inference of acoustic features offered a high performance to detect cardiac murmurs. PMID:24109851

  5. Prediction analysis and comparison between agriculture and mining stocks in Indonesia by using adaptive neuro-fuzzy inference system (ANFIS)

    NASA Astrophysics Data System (ADS)

    Mahandrio, Irsantyo; Budi, Andriantama; Liong, The Houw; Purqon, Acep

    2015-09-01

    The growing patterns in cultural and mining sectors are interesting particularly in developed country such as in Indonesia. Here, we investigate the local characteristics of stocks between the sectors of agriculture and mining which si representing two leading companies and two common companies in these sectors. We analyze the prediction by using Adaptive Neuro Fuzzy Inference System (ANFIS). The type of Fuzzy Inference System (FIS) is Sugeno type with Generalized Bell membership function (Gbell). Our results show that ANFIS is a proper method to predicting the stock market with the RMSE : 0.14% for AALI and 0.093% for SGRO representing the agriculture sectors, meanwhile, 0.073% for ANTM and 0.1107% for MDCO representing the mining sectors.

  6. Application of Artificial Neuro-Fuzzy Logic Inference System for Predicting the Microbiological Pollution in Fresh Water

    NASA Astrophysics Data System (ADS)

    Bouharati, S.; Benmahammed, K.; Harzallah, D.; El-Assaf, Y. M.

    The classical methods for detecting the micro biological pollution in water are based on the detection of the coliform bacteria which indicators of contamination. But to check each water supply for these contaminants would be a time-consuming job and a qualify operators. In this study, we propose a novel intelligent system which provides a detection of microbiological pollution in fresh water. The proposed system is a hierarchical integration of an Artificial Neuro-Fuzzy Inference System (ANFIS). This method is based on the variations of the physical and chemical parameters occurred during bacteria growth. The instantaneous result obtained by the measurements of the variations of the physical and chemical parameters occurred during bacteria growth-temperature, pH, electrical potential and electrical conductivity of many varieties of water (surface water, well water, drinking water and used water) on the number Escherichia coli in water. The instantaneous result obtained by measurements of the inputs parameters of water from sensors.

  7. Estimating oxygen consumption from heart rate using adaptive neuro-fuzzy inference system and analytical approaches.

    PubMed

    Kolus, Ahmet; Dubé, Philippe-Antoine; Imbeau, Daniel; Labib, Richard; Dubeau, Denise

    2014-11-01

    In new approaches based on adaptive neuro-fuzzy systems (ANFIS) and analytical method, heart rate (HR) measurements were used to estimate oxygen consumption (VO2). Thirty-five participants performed Meyer and Flenghi's step-test (eight of which performed regeneration release work), during which heart rate and oxygen consumption were measured. Two individualized models and a General ANFIS model that does not require individual calibration were developed. Results indicated the superior precision achieved with individualized ANFIS modelling (RMSE = 1.0 and 2.8 ml/kg min in laboratory and field, respectively). The analytical model outperformed the traditional linear calibration and Flex-HR methods with field data. The General ANFIS model's estimates of VO2 were not significantly different from actual field VO2 measurements (RMSE = 3.5 ml/kg min). With its ease of use and low implementation cost, the General ANFIS model shows potential to replace any of the traditional individualized methods for VO2 estimation from HR data collected in the field. PMID:24793823

  8. Adaptive neuro-fuzzy inference system for classification of background EEG signals from ESES patients and controls.

    PubMed

    Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang

    2014-01-01

    Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3-9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547

  9. Analysis prediction of Indonesian banks (BCA, BNI, MANDIRI) using adaptive neuro-fuzzy inference system (ANFIS) and investment strategies

    NASA Astrophysics Data System (ADS)

    Trianto, Andriantama Budi; Hadi, I. M.; Liong, The Houw; Purqon, Acep

    2015-09-01

    Indonesian economical development is growing well. It has effect for their invesment in Banks and the stock market. In this study, we perform prediction for the three blue chips of Indonesian bank i.e. BCA, BNI, and MANDIRI by using the method of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Takagi-Sugeno rules and Generalized bell (Gbell) as the membership function. Our results show that ANFIS perform good prediction with RMSE for BCA of 27, BNI of 5.29, and MANDIRI of 13.41, respectively. Furthermore, we develop an active strategy to gain more benefit. We compare between passive strategy versus active strategy. Our results shows that for the passive strategy gains 13 million rupiah, while for the active strategy gains 47 million rupiah in one year. The active investment strategy significantly shows gaining multiple benefit than the passive one.

  10. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    PubMed Central

    Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang

    2014-01-01

    Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547

  11. Prediction of flood abnormalities for improved public safety using a modified adaptive neuro-fuzzy inference system.

    PubMed

    Aqil, M; Kita, I; Yano, A; Nishiyama, S

    2006-01-01

    It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other

  12. Fuzzy logic and adaptive neuro-fuzzy inference system for characterization of contaminant exposure through selected biomarkers in African catfish.

    PubMed

    Karami, Ali; Keiter, Steffen; Hollert, Henner; Courtenay, Simon C

    2013-03-01

    This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A "data trimming" approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies. PMID:22752811

  13. Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS) with Quantum Chemical Descriptors

    PubMed Central

    Jhin, Changho; Hwang, Keum Taek

    2014-01-01

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627

  14. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    PubMed

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167

  15. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    PubMed

    Jhin, Changho; Hwang, Keum Taek

    2014-01-01

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627

  16. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids

    PubMed Central

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167

  17. Utility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptron

    NASA Astrophysics Data System (ADS)

    Tabari, Hossein; Hosseinzadeh Talaee, P.; Abghari, Hirad

    2012-05-01

    Estimation of pan evaporation ( E pan) using black-box models has received a great deal of attention in developing countries where measurements of E pan are spatially and temporally limited. Multilayer perceptron (MLP) and coactive neuro-fuzzy inference system (CANFIS) models were used to predict daily E pan for a semi-arid region of Iran. Six MLP and CANFIS models comprising various combinations of daily meteorological parameters were developed. The performances of the models were tested using correlation coefficient ( r), root mean square error (RMSE), mean absolute error (MAE) and percentage error of estimate (PE). It was found that the MLP6 model with the Momentum learning algorithm and the Tanh activation function, which requires all input parameters, presented the most accurate E pan predictions ( r = 0.97, RMSE = 0.81 mm day-1, MAE = 0.63 mm day-1 and PE = 0.58 %). The results also showed that the most accurate E pan predictions with a CANFIS model can be achieved with the Takagi-Sugeno-Kang (TSK) fuzzy model and the Gaussian membership function. Overall performances revealed that the MLP method was better suited than CANFIS method for modeling the E pan process.

  18. Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process

    NASA Astrophysics Data System (ADS)

    Teimouri, Reza; Sohrabpoor, Hamed

    2013-12-01

    Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.

  19. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    SciTech Connect

    Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J.

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  20. Investigation of the robustness of adaptive neuro-fuzzy inference system for tracking moving tumors in external radiotherapy.

    PubMed

    Torshabi, Ahmad Esmaili

    2014-12-01

    In external radiotherapy of dynamic targets such as lung and breast cancers, accurate correlation models are utilized to extract real time tumor position by means of external surrogates in correlation with the internal motion of tumors. In this study, a correlation method based on the neuro-fuzzy model is proposed to correlate the input external motion data with internal tumor motion estimation in real-time mode, due to its robustness in motion tracking. An initial test of the performance of this model was reported in our previous studies. In this work by implementing some modifications it is resulted that ANFIS is still robust to track tumor motion more reliably by reducing the motion estimation error remarkably. After configuring new version of our ANFIS model, its performance was retrospectively tested over ten patients treated with Synchrony Cyberknife system. In order to assess the performance of our model, the predicted tumor motion as model output was compared with respect to the state of the art model. Final analyzed results show that our adaptive neuro-fuzzy model can reduce tumor tracking errors more significantly, as compared with ground truth database and even tumor tracking methods presented in our previous works. PMID:25412886

  1. Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department.

    PubMed

    Azeez, Dhifaf; Ali, Mohd Alauddin Mohd; Gan, Kok Beng; Saiboon, Ismail

    2013-01-01

    Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in

  2. Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran)

    NASA Astrophysics Data System (ADS)

    Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid

    2016-08-01

    This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS

  3. Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran)

    NASA Astrophysics Data System (ADS)

    Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid

    2015-06-01

    This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS

  4. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous 99mTc/201Tl SPECT imaging: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Heidary, Saeed; Setayeshi, Saeed

    2015-01-01

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  5. Application of Adaptive Neuro-Fuzzy Inference System for Prediction of Neutron Yield of IR-IECF Facility in High Voltages

    NASA Astrophysics Data System (ADS)

    Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.

    2013-09-01

    This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% <1.53 and 2.85 % for training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.

  6. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  7. On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Bai, Ziou; Sauer, Dirk Uwe

    2013-12-01

    The battery management system (BMS) of a battery-electric road vehicle must ensure an optimal operation of the electrochemical storage system to guarantee for durability and reliability. In particular, the BMS must provide precise information about the battery's state-of-functionality, i.e. how much dis-/charging power can the battery accept at current state and condition while at the same time preventing it from operating outside its safe operating area. These critical limits have to be calculated in a predictive manner, which serve as a significant input factor for the supervising vehicle energy management (VEM). The VEM must provide enough power to the vehicle's drivetrain for certain tasks and especially in critical driving situations. Therefore, this paper describes a new approach which can be used for state-of-available-power estimation with respect to lowest/highest cell voltage prediction using an adaptive neuro-fuzzy inference system (ANFIS). The estimated voltage for a given time frame in the future is directly compared with the actual voltage, verifying the effectiveness and accuracy of a relative voltage prediction error of less than 1%. Moreover, the real-time operating capability of the proposed algorithm was verified on a battery test bench while running on a real-time system performing voltage prediction.

  8. Use of an adaptive neuro-fuzzy inference system to obtain the correspondence among balance, gait, and depression for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Woo, Youngkeun; Lee, Juwon; Hwang, Sujin; Hong, Cheol Pyo

    2013-03-01

    The purpose of this study was to investigate the associations between gait performance, postural stability, and depression in patients with Parkinson's disease (PD) by using an adaptive neuro-fuzzy inference system (ANFIS). Twenty-two idiopathic PD patients were assessed during outpatient physical therapy by using three clinical tests: the Berg balance scale (BBS), Dynamic gait index (DGI), and Geriatric depression scale (GDS). Scores were determined from clinical observation and patient interviews, and associations among gait performance, postural stability, and depression in this PD population were evaluated. The DGI showed significant positive correlation with the BBS scores, and negative correlation with the GDS score. We assessed the relationship between the BBS score and the DGI results by using a multiple regression analysis. In this case, the GDS score was not significantly associated with the DGI, but the BBS and DGI results were. Strikingly, the ANFIS-estimated value of the DGI, based on the BBS and the GDS scores, significantly correlated with the walking ability determined by using the DGI in patients with Parkinson's disease. These findings suggest that the ANFIS techniques effectively reflect and explain the multidirectional phenomena or conditions of gait performance in patients with PD.

  9. Adaptive neuro-fuzzy inference systems with k-fold cross-validation for energy expenditure predictions based on heart rate.

    PubMed

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2015-09-01

    This paper presents a new model based on adaptive neuro-fuzzy inference systems (ANFIS) to predict oxygen consumption (V˙O2) from easily measured variables. The ANFIS prediction model consists of three ANFIS modules for estimating the Flex-HR parameters. Each module was developed based on clustering a training set of data samples relevant to that module and then the ANFIS prediction model was tested against a validation data set. Fifty-eight participants performed the Meyer and Flenghi step-test, during which heart rate (HR) and V˙O2 were measured. Results indicated no significant difference between observed and estimated Flex-HR parameters and between measured and estimated V˙O2 in the overall HR range, and separately in different HR ranges. The ANFIS prediction model (MAE = 3 ml kg(-1) min(-1)) demonstrated better performance than Rennie et al.'s (MAE = 7 ml kg(-1) min(-1)) and Keytel et al.'s (MAE = 6 ml kg(-1) min(-1)) models, and comparable performance with the standard Flex-HR method (MAE = 2.3 ml kg(-1) min(-1)) throughout the HR range. The ANFIS model thus provides practitioners with a practical, cost- and time-efficient method for V˙O2 estimation without the need for individual calibration. PMID:25959320

  10. Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena pyriformis.

    PubMed

    Zarei, Kobra; Atabati, Morteza; Kor, Kamalodin

    2014-06-01

    A quantitative structure-activity relationship (QSAR) was developed to predict the toxicity of substituted benzenes to Tetrahymena pyriformis. A set of 1,497 zero- to three-dimensional descriptors were used for each molecule in the data set. A major problem of QSAR is the high dimensionality of the descriptor space; therefore, descriptor selection is one of the most important steps. In this paper, bee algorithm was used to select the best descriptors. Three descriptors were selected and used as inputs for adaptive neuro-fuzzy inference system (ANFIS). Then the model was corrected for unstable compounds (the compounds that can be ionized in the aqueous solutions or can easily metabolize under some conditions). Finally squared correlation coefficients were obtained as 0.8769, 0.8649 and 0.8301 for training, test and validation sets, respectively. The results showed bee-ANFIS can be used as a powerful model for prediction of toxicity of substituted benzenes to T. pyriformis. PMID:24638918

  11. An exploratory investigation of an adaptive neuro fuzzy inference system (ANFIS) for estimating hydrometeors from TRMM/TMI in synergy with TRMM/PR

    NASA Astrophysics Data System (ADS)

    Islam, Tanvir; Srivastava, Prashant K.; Rico-Ramirez, Miguel A.; Dai, Qiang; Han, Dawei; Gupta, Manika

    2014-08-01

    The authors have investigated an adaptive neuro fuzzy inference system (ANFIS) for the estimation of hydrometeors from the TRMM microwave imager (TMI). The proposed algorithm, named as Hydro-Rain algorithm, is developed in synergy with the TRMM precipitation radar (PR) observed hydrometeor information. The method retrieves rain rates by exploiting the synergistic relations between the TMI and PR observations in twofold steps. First, the fundamental hydrometeor parameters, liquid water path (LWP) and ice water path (IWP), are estimated from the TMI brightness temperatures. Next, the rain rates are estimated from the retrieved hydrometeor parameters (LWP and IWP). A comparison of the hydrometeor retrievals by the Hydro-Rain algorithm is done with the TRMM PR 2A25 and GPROF 2A12 algorithms. The results reveal that the Hydro-Rain algorithm has good skills in estimating hydrometeor paths LWP and IWP, as well as surface rain rate. An examination of the Hydro-Rain algorithm is also conducted on a super typhoon case, in which the Hydro-Rain has shown very good performance in reproducing the typhoon field. Nevertheless, the passive microwave based estimate of hydrometeors appears to suffer in high rain rate regimes, and as the rain rate increases, the discrepancies with hydrometeor estimates tend to increase as well.

  12. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    PubMed

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. PMID:24566279

  13. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    NASA Astrophysics Data System (ADS)

    Ghanei, S.; Vafaeenezhad, H.; Kashefi, M.; Eivani, A. R.; Mazinani, M.

    2015-04-01

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency.

  14. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.

    2014-10-01

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.8 Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02 g adsorbent mass, 10 mg L-1 initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30 min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.

  15. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon.

    PubMed

    Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F

    2014-10-15

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (<22.46Å) and average particle size lower than 48.8Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02g adsorbent mass, 10mgL(-1) initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way. PMID:24858196

  16. Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Iphar, Melih; Yavuz, Mahmut; Ak, Hakan

    2008-11-01

    The aim of this study is to predict the peak particle velocity (PPV) values from both presently constructed simple regression model and fuzzy-based model. For this purpose, vibrations induced by bench blasting operations were measured in an open-pit mine operated by the most important magnesite producing company (MAS) in Turkey. After gathering the ordered pairs of distance and PPV values, the site-specific parameters were determined using traditional regression method. Also, an attempt has been made to investigate the applicability of a relatively new soft computing method called as the adaptive neuro-fuzzy inference system (ANFIS) to predict PPV. To achieve this objective, data obtained from the blasting measurements were evaluated by constructing an ANFIS-based prediction model. The distance from the blasting site to the monitoring stations and the charge weight per delay were selected as the input parameters of the constructed model, the output parameter being the PPV. Valid for the site, the PPV prediction capability of the constructed ANFIS-based model has proved to be successful in terms of statistical performance indices such as variance account for (VAF), root mean square error (RMSE), standard error of estimation, and correlation between predicted and measured PPV values. Also, using these statistical performance indices, a prediction performance comparison has been made between the presently constructed ANFIS-based model and the classical regression-based prediction method, which has been widely used in the literature. Although the prediction performance of the regression-based model was high, the comparison has indicated that the proposed ANFIS-based model exhibited better prediction performance than the classical regression-based model.

  17. Estimation of Flow Duration Curve for Ungauged Catchments using Adaptive Neuro-Fuzzy Inference System and Map Correlation Method: A Case Study from Turkey

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Dogulu, N.

    2015-12-01

    In Turkey the experience and data required for a hydrological model setup is limited and very often not available. Moreover there are many ungauged catchments where there are also many planned projects aimed at utilization of water resources including development of existing hydropower potential. This situation makes runoff prediction at locations with lack of data and ungauged locations where small hydropower plants, reservoirs, etc. are planned an increasingly significant challenge and concern in the country. Flow duration curves have many practical applications in hydrology and integrated water resources management. Estimation of flood duration curve (FDC) at ungauged locations is essential, particularly for hydropower feasibility studies and selection of the installed capacities. In this study, we test and compare the performances of two methods for estimating FDCs in the Western Black Sea catchment, Turkey: (i) FDC based on Map Correlation Method (MCM) flow estimates. MCM is a recently proposed method (Archfield and Vogel, 2010) which uses geospatial information to estimate flow. Flow measurements of stream gauging stations nearby the ungauged location are the only data requirement for this method. This fact makes MCM very attractive for flow estimation in Turkey, (ii) Adaptive Neuro-Fuzzy Inference System (ANFIS) is a data-driven method which is used to relate FDC to a number of variables representing catchment and climate characteristics. However, it`s ease of implementation makes it very useful for practical purposes. Both methods use easily collectable data and are computationally efficient. Comparison of the results is realized based on two different measures: the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE) value. Ref: Archfield, S. A., and R. M. Vogel (2010), Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resour. Res., 46, W10513, doi:10.1029/2009WR008481.

  18. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  19. Application of Adaptive Neuro Fuzzy Inference System (ANFIS) In Implementing of New CMOS Fuzzy Logic Controller (FLC) Chip

    NASA Astrophysics Data System (ADS)

    Aminifar, S.; Yosefi, Gh.

    2007-09-01

    In this paper, we present away of using Anfis architecture to implement a new fuzzy logic controller chip. Anfis which tunes the fuzzy inference system with a backpropagation algorithm based on collection of input-output data makes fuzzy system to learn. This training is given from a standard response of the system and membership functions are suitably modified. For adaptive Anfis based fuzzy controller and its circuit design, we propose new circuits for implementing each controller block, and illustrate the test results and control surface of Anfis controller along with CMOS fuzzy logic controller using Matlab and Hspice software respectively. For implementing controller according to the Anfis training, we proposed new and improved integrated circuits which consist of Fuzzifier, Min operator and Multiplier/Divider. The control surfaces of controller are obtained by using Anfis training and simulation results of integrated circuits in less than 0.075 mm2 area in 0.35 μm CMOS standard technology.

  20. Adaptive neuro-fuzzy estimation of optimal lens system parameters

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Pavlović, Nenad T.; Shamshirband, Shahaboddin; Mat Kiah, Miss Laiha; Badrul Anuar, Nor; Idna Idris, Mohd Yamani

    2014-04-01

    Due to the popularization of digital technology, the demand for high-quality digital products has become critical. The quantitative assessment of image quality is an important consideration in any type of imaging system. Therefore, developing a design that combines the requirements of good image quality is desirable. Lens system design represents a crucial factor for good image quality. Optimization procedure is the main part of the lens system design methodology. Lens system optimization is a complex non-linear optimization task, often with intricate physical constraints, for which there is no analytical solutions. Therefore lens system design provides ideal problems for intelligent optimization algorithms. There are many tools which can be used to measure optical performance. One very useful tool is the spot diagram. The spot diagram gives an indication of the image of a point object. In this paper, one optimization criterion for lens system, the spot size radius, is considered. This paper presents new lens optimization methods based on adaptive neuro-fuzzy inference strategy (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated.

  1. Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier.

    PubMed

    Ibrahim, Sulaimon; Chowriappa, Pradeep; Dua, Sumeet; Acharya, U Rajendra; Noronha, Kevin; Bhandary, Sulatha; Mugasa, Hatwib

    2015-12-01

    Prolonged diabetes retinopathy leads to diabetes maculopathy, which causes gradual and irreversible loss of vision. It is important for physicians to have a decision system that detects the early symptoms of the disease. This can be achieved by building a classification model using machine learning algorithms. Fuzzy logic classifiers group data elements with a degree of membership in multiple classes by defining membership functions for each attribute. Various methods have been proposed to determine the partitioning of membership functions in a fuzzy logic inference system. A clustering method partitions the membership functions by grouping data that have high similarity into clusters, while an equalized universe method partitions data into predefined equal clusters. The distribution of each attribute determines its partitioning as fine or coarse. A simple grid partitioning partitions each attribute equally and is therefore not effective in handling varying distribution amongst the attributes. A data-adaptive method uses a data frequency-driven approach to partition each attribute based on the distribution of data in that attribute. A data-adaptive neuro-fuzzy inference system creates corresponding rules for both finely distributed and coarsely distributed attributes. This method produced more useful rules and a more effective classification system. We obtained an overall accuracy of 98.55%. PMID:26109519

  2. A Neuro-Fuzzy System for Characterization of Arm Movements

    PubMed Central

    Balbinot, Alexandre; Favieiro, Gabriela

    2013-01-01

    The myoelectric signal reflects the electrical activity of skeletal muscles and contains information about the structure and function of the muscles which make different parts of the body move. Advances in engineering have extended electromyography beyond the traditional diagnostic applications to also include applications in diverse areas such as rehabilitation, movement analysis and myoelectric control of prosthesis. This paper aims to study and develop a system that uses myoelectric signals, acquired by surface electrodes, to characterize certain movements of the human arm. To recognize certain hand-arm segment movements, was developed an algorithm for pattern recognition technique based on neuro-fuzzy, representing the core of this research. This algorithm has as input the preprocessed myoelectric signal, to disclosed specific characteristics of the signal, and as output the performed movement. The average accuracy obtained was 86% to 7 distinct movements in tests of long duration (about three hours). PMID:23429579

  3. System identification of smart structures using a wavelet neuro-fuzzy model

    NASA Astrophysics Data System (ADS)

    Mitchell, Ryan; Kim, Yeesock; El-Korchi, Tahar

    2012-11-01

    This paper proposes a complex model of smart structures equipped with magnetorheological (MR) dampers. Nonlinear behavior of the structure-MR damper systems is represented by the use of a wavelet-based adaptive neuro-fuzzy inference system (WANFIS). The WANFIS is developed through the integration of wavelet transforms, artificial neural networks, and fuzzy logic theory. To evaluate the effectiveness of the WANFIS model, a three-story building employing an MR damper under a variety of natural hazards is investigated. An artificial earthquake is used for training the input-output mapping of the WANFIS model. The artificial earthquake is generated such that the characteristics of a variety of real recorded earthquakes are included. It is demonstrated that this new WANFIS approach is effective in modeling nonlinear behavior of the structure-MR damper system subjected to a variety of disturbances while resulting in shorter training times in comparison with an adaptive neuro-fuzzy inference system (ANFIS) model. Comparison with high fidelity data proves the viability of the proposed approach in a structural health monitoring setting, and it is validated using known earthquake signals such as El-Centro, Kobe, Northridge, and Hachinohe.

  4. Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99 m Tc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad

    2014-09-01

    The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.

  5. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    NASA Astrophysics Data System (ADS)

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  6. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-02-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  7. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    NASA Astrophysics Data System (ADS)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  8. A transductive neuro-fuzzy controller: application to a drilling process.

    PubMed

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage. PMID:20659865

  9. Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to predict MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using MATLAB/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  10. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  11. Simulink-based HW/SW codesign of embedded neuro-fuzzy systems.

    PubMed

    Reyneri, L M; Chiaberge, M; Lavagno, L

    2000-06-01

    We propose a semi-automatic HW/SW codesign flow for low-power and low-cost Neuro-Fuzzy embedded systems. Applications range from fast prototyping of embedded systems to high-speed simulation of Simulink models and rapid design of Neuro-Fuzzy devices. The proposed codesign flow works with different technologies and architectures (namely, software, digital and analog). We have used The Mathworks' Simulink environment for functional specification and for analysis of performance criteria such as timing (latency and throughput), power dissipation, size and cost. The proposed flow can exploit trade-offs between SW and HW as well as between digital and analog implementations, and it can generate, respectively, the C, VHDL and SKILL codes of the selected architectures. PMID:11011793

  12. Adaptive neuro-fuzzy and expert systems for power quality analysis and prediction of abnormal operation

    NASA Astrophysics Data System (ADS)

    Ibrahim, Wael Refaat Anis

    The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an

  13. An Electromyographic-driven Musculoskeletal Torque Model using Neuro-Fuzzy System Identification: A Case Study.

    PubMed

    Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza

    2014-10-01

    The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications. PMID:25426427

  14. An Electromyographic-driven Musculoskeletal Torque Model using Neuro-Fuzzy System Identification: A Case Study

    PubMed Central

    Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza

    2014-01-01

    The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications. PMID:25426427

  15. FPGA implementation of neuro-fuzzy system with improved PSO learning.

    PubMed

    Karakuzu, Cihan; Karakaya, Fuat; Çavuşlu, Mehmet Ali

    2016-07-01

    This paper presents the first hardware implementation of neuro-fuzzy system (NFS) with its metaheuristic learning ability on field programmable gate array (FPGA). Metaheuristic learning of NFS for all of its parameters is accomplished by using the improved particle swarm optimization (iPSO). As a second novelty, a new functional approach, which does not require any memory and multiplier usage, is proposed for the Gaussian membership functions of NFS. NFS and its learning using iPSO are implemented on Xilinx Virtex5 xc5vlx110-3ff1153 and efficiency of the proposed implementation tested on two dynamic system identification problems and licence plate detection problem as a practical application. Results indicate that proposed NFS implementation and membership function approximation is as effective as the other approaches available in the literature but requires less hardware resources. PMID:27136666

  16. A neuro-fuzzy system for extracting environment features based on ultrasonic sensors.

    PubMed

    Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José

    2009-01-01

    In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160

  17. A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors

    PubMed Central

    Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José

    2009-01-01

    In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160

  18. Prediction of photonic crystal fiber characteristics by Neuro-Fuzzy system

    NASA Astrophysics Data System (ADS)

    Pourmahyabadi, M.; Mohammad Nejad, S.

    2009-10-01

    The most common methods applied in the analysis of photonic crystal fibers (PCFs) are finite difference time/frequency domain (FDTD/FDFD) method and finite element method (FEM). These methods are very general and reliable (well tested). They describe arbitrary structure but are numerically intensive and require detailed treatment of boundaries and complex definition of calculation mesh. So these conventional models that simulate the photonic response of PCFs are computationally expensive and time consuming. Therefore, a practical design process with trial and error cannot be done in a reasonable amount of time. In this article, an artificial intelligence method such as Neuro-Fuzzy system is used to establish a model that can predict the properties of PCFs. Simulation results show that this model is remarkably effective in predicting the properties of PCF such as dispersion, dispersion slope and loss over the C communication band.

  19. Multi Groups Cooperation based Symbiotic Evolution for TSK-type Neuro-Fuzzy Systems Design.

    PubMed

    Cheng, Yi-Chang; Hsu, Yung-Chi; Lin, Sheng-Fuu

    2010-07-01

    In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The symbiotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbiotic evolution; with a population in MGCSE is divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and cooperate with other groups to generate the better chromosomes by using the proposed cooperation based crossover strategy (CCS). In this paper, the proposed TNFS-MGCSE is used to evaluate by numerical examples (Mackey-Glass chaotic time series and sunspot number forecasting). The performance of the TNFS-MGCSE achieves excellently with other existing models in the simulations. PMID:21709856

  20. Supervised and Dynamic Neuro-Fuzzy Systems to Classify Physiological Responses in Robot-Assisted Neurorehabilitation

    PubMed Central

    Almonacid, Miguel; Cano-Izquierdo, José M.; Sabater-Navarro, José M.; Fernández, Eduardo

    2015-01-01

    This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions. PMID:26001214

  1. Supervised and dynamic neuro-fuzzy systems to classify physiological responses in robot-assisted neurorehabilitation.

    PubMed

    Lledó, Luis D; Badesa, Francisco J; Almonacid, Miguel; Cano-Izquierdo, José M; Sabater-Navarro, José M; Fernández, Eduardo; Garcia-Aracil, Nicolás

    2015-01-01

    This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions. PMID:26001214

  2. Multi Groups Cooperation based Symbiotic Evolution for TSK-type Neuro-Fuzzy Systems Design

    PubMed Central

    Cheng, Yi-Chang; Hsu, Yung-Chi

    2010-01-01

    In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The symbiotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbiotic evolution; with a population in MGCSE is divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and cooperate with other groups to generate the better chromosomes by using the proposed cooperation based crossover strategy (CCS). In this paper, the proposed TNFS-MGCSE is used to evaluate by numerical examples (Mackey-Glass chaotic time series and sunspot number forecasting). The performance of the TNFS-MGCSE achieves excellently with other existing models in the simulations. PMID:21709856

  3. Position control of ionic polymer metal composite actuator based on neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Truong-Thinh; Yang, Young-Soo; Oh, Il-Kwon

    2009-07-01

    This paper describes the application of Neuro-Fuzzy techniques for controlling an IPMC cantilever configuration under water to improve tracking ability for an IPMC actuator. The controller was designed using an Adaptive Neuro-Fuzzy Controller (ANFC). The measured input data based including the tip-displacements and electrical signals have been recorded for generating the training in the ANFC. These data were used for training the ANFC to adjust the membership functions in the fuzzy control algorithm. The comparison between actual and reference values obtained from the ANFC gave satisfactory results, which showed that Adaptive Neuro-Fuzzy algorithm is reliable in controlling IPMC actuator. In addition, experimental results show that the ANFC performed better than the pure fuzzy controller (PFC). Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the real-time control of the ionic polymer metal composite actuator for which the performance degrades under long-term actuation.

  4. Prediction of Backbreak in Open Pit Blasting by Adaptive Neuro-Fuzzy Inference System / Prognozowanie Spękań Skał Przy Pracach Strzałowych W Kopalniach Odkrywkowych Przy Użyciu Metod Neuronowych I Wnioskowania Rozmytego (Anfis) Zastosowanych W Modelu Adaptywnym

    NASA Astrophysics Data System (ADS)

    Bazzazi, Abbas Aghajani; Esmaeili, Mohammad

    2012-12-01

    Adaptive neuro-fuzzy inference system (ANFIS) is powerful model in solving complex problems. Since ANFIS has the potential of solving nonlinear problem and can easily achieve the input-output mapping, it is perfect to be used for solving the predicting problem. Backbreak is one of the undesirable effects of blasting operations causing instability in mine walls, falling down the machinery, improper fragmentation and reduction in efficiency of drilling. In this paper, ANFIS was applied to predict backbreak in Sangan iron mine of Iran. The performance of the model was assessed through the root mean squared error (RMSE), the variance account for (VAF) and the correlation coefficient (R2) computed from the measured of backbreak and model-predicted values of the dependent variables. The RMSE, VAF, R2 indices were calculated 0.6, 0.94 and 0.95 for ANFIS model. As results, these indices revealed that the ANFIS model has very good prediction performance.

  5. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm

    NASA Astrophysics Data System (ADS)

    Hong, Yoon-Seok Timothy; White, Paul A.

    2009-01-01

    This paper introduces the dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system with on-line and local learning algorithm for complex dynamic hydrological modeling tasks. Our DNFLMS is aimed to implement a fast training speed with the capability of on-line simulation where model adaptation occurs at the arrival of each new item of hydrological data. The DNFLMS applies an on-line, one-pass, training procedure to create and update fuzzy local models dynamically. The extended Kalman filtering algorithm is then implemented to optimize the parameters of the consequence part of each fuzzy model during the training phase. Local generalization in the DNFLMS is employed to optimize the parameters of each fuzzy model separately, region-by-region, using subsets of training data rather than all training data. The proposed DNFLMS is applied to develop a model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatt Cobb hydropower station on spring flow. It is demonstrated that the proposed DNFLMS is superior in terms of model complexity and computational efficiency when compared with models that adopt global generalization such as a multi-layer perceptron (MLP) trained with the back propagation learning algorithm and the well-known adaptive neural-fuzzy system (ANFIS).

  6. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  7. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  8. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  9. Neuro-fuzzy and neural network systems for air quality control

    NASA Astrophysics Data System (ADS)

    Carnevale, Claudio; Finzi, Giovanna; Pisoni, Enrico; Volta, Marialuisa

    In order to define efficient air quality plans, Regional Authorities need suitable tools to evaluate both the impact of emission reduction strategies on pollution indexes and the costs of such emission reductions. The air quality control can be formalized as a two-objective nonlinear mathematical problem, integrating source-receptor models and the estimate of emission reduction costs. Both aspects present several complex elements. In particular the source-receptor models cannot be implemented through deterministic modelling systems, that would bring to a computationally unfeasible mathematical problem. In this paper we suggest to identify source-receptor statistical models (neural network and neuro-fuzzy) processing the simulations of a deterministic multi-phase modelling system (GAMES). The methodology has been applied to ozone and PM10 concentrations in Northern Italy. The results show that, despite a large advantage in terms of computational costs, the selected source-receptor models are able to accurately reproduce the simulation of the 3D modelling system.

  10. Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems.

    PubMed

    Shahinfar, Saleh; Mehrabani-Yeganeh, Hassan; Lucas, Caro; Kalhor, Ahmad; Kazemian, Majid; Weigel, Kent A

    2012-01-01

    Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV) of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP) with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production. PMID:22991575

  11. Prediction of autistic disorder using neuro fuzzy system by applying ANN technique.

    PubMed

    Arthi, K; Tamilarasi, A

    2008-11-01

    The major challenge in medical field is to diagnose disorder rather than a disease. In this paper, a neuro fuzzy based model is designed for identification or diagnosis of autism. The problematic areas are gathered from every individual and the related linguistic inputs are converted into fuzzy input values which are in turn given as input to feed forward multilayer neural network. The network is trained using back propagation training algorithm and tested for its performance with the expertise. PMID:18706991

  12. A Neuro-Fuzzy based System for Classification of Natural Textures

    NASA Astrophysics Data System (ADS)

    Jiji, G. Wiselin

    2016-06-01

    A statistical approach based on the coordinated clusters representation of images is used for classification and recognition of textured images. In this paper, two issues are being addressed; one is the extraction of texture features from the fuzzy texture spectrum in the chromatic and achromatic domains from each colour component histogram of natural texture images and the second issue is the concept of a fusion of multiple classifiers. The implementation of an advanced neuro-fuzzy learning scheme has been also adopted in this paper. The results of classification tests show the high performance of the proposed method that may have industrial application for texture classification, when compared with other works.

  13. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN). PMID:23705105

  14. Approximation abilities of neuro-fuzzy networks

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2010-01-01

    The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.

  15. A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Zeinali, Mohammadjavad; Amri Mazlan, Saiful; Yasser Abd Fatah, Abdul; Zamzuri, Hairi

    2013-12-01

    A magnetorheological (MR) damper is a promising appliance for semi-active suspension systems, due to its capability of damping undesired movement using an adequate control strategy. This research has been carried out a phenomenological dynamic model of two MR dampers using an adaptive-network-based fuzzy inference system (ANFIS) approach. Two kinds of Lord Corporation MR damper (a long stroke damper and a short stroke damper) were used in experiments, and then modeled using the experimental results. In addition, an investigation of the influence of the membership function selection on predicting the behavior of the MR damper and obtaining a mathematical model was conducted to realize the relationship between input current, displacement, and velocity as the inputs and force as output. The results demonstrate that the proposed models for both short stroke and long stroke MR dampers have successfully predicted the behavior of the MR damper with adequate accuracy, and an equation is presented to precisely describe the behavior of each MR damper.

  16. In vitro-in vivo correlations of self-emulsifying drug delivery systems combining the dynamic lipolysis model and neuro-fuzzy networks.

    PubMed

    Fatouros, Dimitrios G; Nielsen, Flemming Seier; Douroumis, Dionysios; Hadjileontiadis, Leontios J; Mullertz, Anette

    2008-08-01

    The aim of the current study was to evaluate the potential of the dynamic lipolysis model to simulate the absorption of a poorly soluble model drug compound, probucol, from three lipid-based formulations and to predict the in vitro-in vivo correlation (IVIVC) using neuro-fuzzy networks. An oil solution and two self-micro and nano-emulsifying drug delivery systems were tested in the lipolysis model. The release of probucol to the aqueous (micellar) phase was monitored during the progress of lipolysis. These release profiles compared with plasma profiles obtained in a previous bioavailability study conducted in mini-pigs at the same conditions. The release rate and extent of release from the oil formulation were found to be significantly lower than from SMEDDS and SNEDDS. The rank order of probucol released (SMEDDS approximately SNEDDS > oil formulation) was similar to the rank order of bioavailability from the in vivo study. The employed neuro-fuzzy model (AFM-IVIVC) achieved significantly high prediction ability for different data formations (correlation greater than 0.91 and prediction error close to zero), without employing complex configurations. These preliminary results suggest that the dynamic lipolysis model combined with the AFM-IVIVC can be a useful tool in the prediction of the in vivo behavior of lipid-based formulations. PMID:18367386

  17. Adaptive Neuro-fuzzy approach in friction identification

    NASA Astrophysics Data System (ADS)

    Zaiyad Muda @ Ismail, Muhammad

    2016-05-01

    Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.

  18. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  19. Use of an adaptive neuro-fuzzy system to characterize root distribution patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-soil relationships are pivotal to understanding crop growth and function in a changing environmental. Plant root systems are difficult to measure and remain understudied relative to above ground responses. High variation among field samples often leads to non-significance when standard statist...

  20. Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher

    1994-01-01

    Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.

  1. Prediction of conductivity by adaptive neuro-fuzzy model.

    PubMed

    Akbarzadeh, S; Arof, A K; Ramesh, S; Khanmirzaei, M H; Nor, R M

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582

  2. Prediction of Conductivity by Adaptive Neuro-Fuzzy Model

    PubMed Central

    Akbarzadeh, S.; Arof, A. K.; Ramesh, S.; Khanmirzaei, M. H.; Nor, R. M.

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582

  3. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    PubMed

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla

    2014-12-01

    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies. PMID:25406641

  4. Stock trading using RSPOP: a novel rough set-based neuro-fuzzy approach.

    PubMed

    Ang, Kai Keng; Quek, Chai

    2006-09-01

    This paper investigates the method of forecasting stock price difference on artificially generated price series data using neuro-fuzzy systems and neural networks. As trading profits is more important to an investor than statistical performance, this paper proposes a novel rough set-based neuro-fuzzy stock trading decision model called stock trading using rough set-based pseudo outer-product (RSPOP) which synergizes the price difference forecast method with a forecast bottleneck free trading decision model. The proposed stock trading with forecast model uses the pseudo outer-product based fuzzy neural network using the compositional rule of inference [POPFNN-CRI(S)] with fuzzy rules identified using the RSPOP algorithm as the underlying predictor model and simple moving average trading rules in the stock trading decision model. Experimental results using the proposed stock trading with RSPOP forecast model on real world stock market data are presented. Trading profits in terms of portfolio end values obtained are benchmarked against stock trading with dynamic evolving neural-fuzzy inference system (DENFIS) forecast model, the stock trading without forecast model and the stock trading with ideal forecast model. Experimental results showed that the proposed model identified rules with greater interpretability and yielded significantly higher profits than the stock trading with DENFIS forecast model and the stock trading without forecast model. PMID:17001989

  5. Landslide susceptibility mapping using a neuro-fuzzy

    NASA Astrophysics Data System (ADS)

    Lee, S.; Choi, J.; Oh, H.

    2009-12-01

    This paper develops and applied an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment using landslide-related factors and location for landslide susceptibility mapping. A neuro-fuzzy system is based on a fuzzy system that is trained by a learning algorithm derived from the neural network theory. The learning procedure operates on local information, and causes only local modifications in the underlying fuzzy system. The study area, Boun, suffered much damage following heavy rain in 1998 and was selected as a suitable site for the evaluation of the frequency and distribution of landslides. Boun is located in the central part of Korea. Landslide-related factors such as slope, soil texture, wood type, lithology, and density of lineament were extracted from topographic, soil, forest, and lineament maps. Landslide locations were identified from interpretation of aerial photographs and field surveys. Landslide-susceptible areas were analyzed by the ANFIS method and mapped using occurrence factors. In particular, we applied various membership functions (MFs) and analysis results were verified using the landslide location data. The predictive maps using triangular, trapezoidal, and polynomial MFs were the best individual MFs for modeling landslide susceptibility maps (84.96% accuracy), proving that ANFIS could be very effective in modeling landslide susceptibility mapping. Various MFs were used in this study, and after verification, the difference in accuracy according to the MFs was small, between 84.81% and 84.96%. The difference was just 0.15% and therefore the choice of MFs was not important in the study. Also, compared with the likelihood ratio model, which showed 84.94%, the accuracy was similar. Thus, the ANFIS could be applied to other study areas with different data and other study methods such as cross-validation. The developed ANFIS learns the if-then rules between landslide-related factors and landslide

  6. Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning

    ERIC Educational Resources Information Center

    Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun

    2012-01-01

    With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…

  7. Neuro-Fuzzy Phasing of Segmented Mirrors

    NASA Technical Reports Server (NTRS)

    Olivier, Philip D.

    1999-01-01

    A new phasing algorithm for segmented mirrors based on neuro-fuzzy techniques is described. A unique feature of this algorithm is the introduction of an observer bank. Its effectiveness is tested in a very simple model with remarkable success. The new algorithm requires much less computational effort than existing algorithms and therefore promises to be quite useful when implemented on more complex models.

  8. Prediction of ultrasonic pulse velocity for enhanced peat bricks using adaptive neuro-fuzzy methodology.

    PubMed

    Motamedi, Shervin; Roy, Chandrabhushan; Shamshirband, Shahaboddin; Hashim, Roslan; Petković, Dalibor; Song, Ki-Il

    2015-08-01

    Ultrasonic pulse velocity is affected by defects in material structure. This study applied soft computing techniques to predict the ultrasonic pulse velocity for various peats and cement content mixtures for several curing periods. First, this investigation constructed a process to simulate the ultrasonic pulse velocity with adaptive neuro-fuzzy inference system. Then, an ANFIS network with neurons was developed. The input and output layers consisted of four and one neurons, respectively. The four inputs were cement, peat, sand content (%) and curing period (days). The simulation results showed efficient performance of the proposed system. The ANFIS and experimental results were compared through the coefficient of determination and root-mean-square error. In conclusion, use of ANFIS network enhances prediction and generation of strength. The simulation results confirmed the effectiveness of the suggested strategies. PMID:25957464

  9. Recognition of Handwritten Arabic words using a neuro-fuzzy network

    SciTech Connect

    Boukharouba, Abdelhak; Bennia, Abdelhak

    2008-06-12

    We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descent learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.

  10. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach

    NASA Astrophysics Data System (ADS)

    Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata

    2014-12-01

    In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root

  11. Neuro-Fuzzy Control of a Robotic Manipulator

    NASA Astrophysics Data System (ADS)

    Gierlak, P.; Muszyńska, M.; Żylski, W.

    2014-08-01

    In this paper, to solve the problem of control of a robotic manipulator's movement with holonomical constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the approximation of the nonlinearity of the robotic manipulator's dynamic to generate a compensatory control. The control system is designed in such a way as to permit modification of its properties under different operating conditions of the two-link manipulator

  12. Prediction of contact forces of underactuated finger by adaptive neuro fuzzy approach

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Abbasi, Almas; Kiani, Kourosh; Al-Shammari, Eiman Tamah

    2015-12-01

    To obtain adaptive finger passive underactuation can be used. Underactuation principle can be used to adapt shapes of the fingers for grasping objects. The fingers with underactuation do not require control algorithm. In this study a kinetostatic model of the underactuated finger mechanism was analyzed. The underactuation is achieved by adding the compliance in every finger joint. Since the contact forces of the finger depend on contact position of the finger and object, it is suitable to make a prediction model for the contact forces in function of contact positions of the finger and grasping objects. In this study prediction of the contact forces was established by a soft computing approach. Adaptive neuro-fuzzy inference system (ANFIS) was applied as the soft computing method to perform the prediction of the finger contact forces.

  13. Potential of neuro-fuzzy methodology to estimate noise level of wind turbines

    NASA Astrophysics Data System (ADS)

    Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin

    2016-01-01

    Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.

  14. Adaptive neuro-fuzzy logic analysis based on myoelectric signals for multifunction prosthesis control.

    PubMed

    Favieiro, Gabriela W; Balbinot, Alexandre

    2011-01-01

    The myoelectric signal is a sign of control of the human body that contains the information of the user's intent to contract a muscle and, therefore, make a move. Studies shows that the Amputees are able to generate standardized myoelectric signals repeatedly before of the intention to perform a certain movement. This paper presents a study that investigates the use of forearm surface electromyography (sEMG) signals for classification of five distinguish movements of the arm using just three pairs of surface electrodes located in strategic places. The classification is done by an adaptive neuro-fuzzy inference system (ANFIS) to process signal features to recognize performed movements. The average accuracy reached for the classification of five motion classes was 86-98% for three subjects. PMID:22256169

  15. Manifestation of a neuro-fuzzy model to produce landslide susceptibility map using remote sensing data derived parameters

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet; Lee, Saro; Buchroithner, Manfred

    Landslides are the most common natural hazards in Malaysia. Preparation of landslide suscep-tibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. In this study, a new attempt is tried to produce landslide susceptibility map of a part of Cameron Valley of Malaysia. This paper develops an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment for landslide susceptibility mapping. To ob-tain the neuro-fuzzy relations for producing the landslide susceptibility map, landslide locations were identified from interpretation of aerial photographs and high resolution satellite images, field surveys and historical inventory reports. Landslide conditioning factors such as slope, plan curvature, distance to drainage lines, soil texture, lithology, and distance to lineament were extracted from topographic, soil, and lineament maps. Landslide susceptible areas were analyzed by the ANFIS model and mapped using the conditioning factors. Furthermore, we applied various membership functions (MFs) and fuzzy relations to produce landslide suscep-tibility maps. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. Results show that, triangular, trapezoidal, and polynomial MFs were the best individual MFs for modelling landslide susceptibility maps (86

  16. Neuro-fuzzy models in pattern recognition

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Kim, Yong Soo

    1993-12-01

    Research in the last decade emphasized the potential of designing adaptive pattern recognition classifiers based on algorithms using multi-layered artificial neural nets. The greatest potential in such endeavors was anticipated to be not only in the adaptivity but also in the high-speed processing through massively parallel VLSI implementation and optical computing. Computational advantages of such algorithms have been demonstrated in a number of papers. Neural networks particularly the self-organizing types have been found quite suitable crisp pattern for clustering of unlabeled datasets. The generalization of Kohonen-type learning vector quantization (LVQ) clustering algorithm to fuzzy LVQ clustering algorithm and its equivalence to fuzzy c-means has been clearly demonstrated recently. On the other hand, Carpenter/Grossberg's ART-type self organizing neural networks have been modified to perform fuzzy clustering by a number of researches in the past few years. The performance of such neuro-fuzzy models in clustering unlabeled data patterns is addressed in this paper. A recent development of a new similarity measure and a new learning rule for updating the centroid of the winning cluster in a fuzzy ART-type neural network is also described. The capability of the above neuro-fuzzy model in better partitioning of datasets into clusters of any shape is demonstrated.

  17. Neuro-fuzzy estimation of passive robotic joint safe velocity with embedded sensors of conductive silicone rubber

    NASA Astrophysics Data System (ADS)

    Al-Shammari, Eiman Tamah; Petković, Dalibor; Danesh, Amir Seyed; Shamshirband, Shahaboddin; Issa, Mirna; Zentner, Lena

    2016-05-01

    Robotic operations need to be safe for unpredictable contacts. Joints with passive compliance with springs can be used for soft robotic contacts. However the joints cannot measure external collision forces. In this investigation was developed one passive compliant joint which have soft contacts with external objects and measurement capabilities. To ensure it, conductive silicone rubber was used as material for modeling of the compliant segments of the robotic joint. These compliant segments represent embedded sensors. The conductive silicone rubber is electrically conductive by deformations. The main task was to obtain elastic absorbers for the external collision forces. These absorbers can be used for measurement in the same time. In other words, the joint has an internal measurement system. Adaptive neuro fuzzy inference system (ANFIS) was used to estimate the safety level of the robotic joint by head injury criteria (HIC).

  18. Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge.

    PubMed

    Cakmakci, Mehmet

    2007-09-01

    Modelling of anaerobic digestion systems is difficult because their performance is complex and varies significantly with influent characteristics and operational conditions. In this study, Adaptive Neuro-Fuzzy Inference System (ANFIS) were used for modelling of anaerobic digestion system of primary sludge of Kayseri municipal WasteWater Treatment Plant (WWTP). Effluent Volatile Solid (VS) and methane yield were predicted by the ANFIS. Two stage models were performed. In the first stage, effluent VS concentration was predicted using pH, VS concentration, flowrate of pre-thickened sludge and temperature of the influent as input parameters. In the second stage, effluent VS concentration in addition to first stage input parameters were used as input parameters to predict methane yield. The low Root Mean Square Error (RMSE) and high Index of agreement (IA) values were obtained with subtractive clustering method of a first order Sugeno type inference. The model performance was evaluated with statistical parameters. According to statistical evaluations, the models satisfactorily predict effluent VS concentration and methane yield. PMID:17593401

  19. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Dixon, B.

    2005-07-01

    Modeling groundwater vulnerability reliably and cost effectively for non-point source (NPS) pollution at a regional scale remains a major challenge. In recent years, Geographic Information Systems (GIS), neural networks and fuzzy logic techniques have been used in several hydrological studies. However, few of these research studies have undertaken an extensive sensitivity analysis. The overall objective of this research is to examine the sensitivity of neuro-fuzzy models used to predict groundwater vulnerability in a spatial context by integrating GIS and neuro-fuzzy techniques. The specific objectives are to assess the sensitivity of neuro-fuzzy models in a spatial domain using GIS by varying (i) shape of the fuzzy sets, (ii) number of fuzzy sets, and (iii) learning and validation parameters (including rule weights). The neuro-fuzzy models were developed using NEFCLASS-J software on a JAVA platform and were loosely integrated with a GIS. Four plausible parameters which are critical in transporting contaminants through the soil profile to the groundwater, included soil hydrologic group, depth of the soil profile, soil structure (pedality points) of the A horizon, and landuse. In order to validate the model predictions, coincidence reports were generated among model inputs, model predictions, and well/spring contamination data for NO 3-N. A total of 16 neuro-fuzzy models were developed for selected sub-basins of Illinois River Watershed, AR. The sensitivity analysis showed that neuro-fuzzy models were sensitive to the shape of the fuzzy sets, number of fuzzy sets, nature of the rule weights, and validation techniques used during the learning processes. Compared to bell-shaped and triangular-shaped membership functions, the neuro-fuzzy models with a trapezoidal membership function were the least sensitive to the various permutations and combinations of the learning and validation parameters. Over all, Models 11 and 8 showed relatively higher coincidence with well

  20. Data mining in forecasting PVT correlations of crude oil systems based on Type1 fuzzy logic inference systems

    NASA Astrophysics Data System (ADS)

    El-Sebakhy, Emad A.

    2009-09-01

    Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.

  1. A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches

    NASA Astrophysics Data System (ADS)

    Bilgehan, Mahmut

    2011-03-01

    In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been successfully used for the evaluation of relationships between concrete compressive strength and ultrasonic pulse velocity (UPV) values using the experimental data obtained from many cores taken from different reinforced concrete structures having different ages and unknown ratios of concrete mixtures. A comparative study is made using the neural nets and neuro-fuzzy (NF) techniques. Statistic measures were used to evaluate the performance of the models. Comparing of the results, it is found that the proposed ANFIS architecture with Gaussian membership function is found to perform better than the multilayer feed-forward ANN learning by backpropagation algorithm. The final results show that especially the ANFIS modelling may constitute an efficient tool for prediction of the concrete compressive strength. Architectures of the ANFIS and neural network established in the current study perform sufficiently in the estimation of concrete compressive strength, and particularly ANFIS model estimates closely follow the desired values. Both ANFIS and ANN techniques can be used in conditions where too many structures are to be examined in a restricted time. The presented approaches enable to practically find concrete strengths in the existing reinforced concrete structures, whose records of concrete mixture ratios are not available or present. Thus, researchers can easily evaluate the compressive strength of concrete specimens using UPV and density values. These methods also contribute to a remarkable reduction in the computational time without any significant loss of accuracy. A comparison of the results clearly shows that particularly the NF approach can be used effectively to predict the compressive strength of concrete using UPV and density values. In addition, these model architectures can be used as a nondestructive procedure for health monitoring of

  2. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2016-05-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  3. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    PubMed

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  4. Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine

    PubMed Central

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  5. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.

    PubMed

    Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad

    2013-05-01

    In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model. PMID:23111771

  6. Estimation of the most influential factors on the laser cutting process heat affected zone (HAZ) by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Nikolić, Vlastimir; Milovančević, Miloš; Lazov, Lyubomir

    2016-07-01

    Heat affected zone (HAZ) of the laser cutting process may be developed on the basis on combination of different factors. In this investigation was analyzed the HAZ forecasting based on the different laser cutting parameters. The main aim in this article was to analyze the influence of three inputs on the HAZ of the laser cutting process. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for HAZ forecasting. Three inputs are considered: laser power, cutting speed and gas pressure. According the results the cutting speed has the highest influence on the HAZ forecasting (RMSE: 0.0553). Gas pressure has the smallest influence on the HAZ forecasting (RMSE: 0.0801). The results can be used in order to simplify HAZ prediction and analyzing.

  7. Predictive neuro-fuzzy controller for multilink robot manipulator

    NASA Astrophysics Data System (ADS)

    Kaymaz, Emre; Mitra, Sunanda

    1995-10-01

    A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.

  8. Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model

    PubMed Central

    Acampora, Giovanni; Brown, David; Rees, Robert C.

    2016-01-01

    The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor pattern (Primary Gleason pattern) and the second most common tumor pattern (Secondary Gleason pattern) in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD) or Extra-Prostatic Disease (ED) using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA) Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC) points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC), with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR = 0.032, TPR

  9. Prediction of Pathological Stage in Patients with Prostate Cancer: A Neuro-Fuzzy Model.

    PubMed

    Cosma, Georgina; Acampora, Giovanni; Brown, David; Rees, Robert C; Khan, Masood; Pockley, A Graham

    2016-01-01

    The prediction of cancer staging in prostate cancer is a process for estimating the likelihood that the cancer has spread before treatment is given to the patient. Although important for determining the most suitable treatment and optimal management strategy for patients, staging continues to present significant challenges to clinicians. Clinical test results such as the pre-treatment Prostate-Specific Antigen (PSA) level, the biopsy most common tumor pattern (Primary Gleason pattern) and the second most common tumor pattern (Secondary Gleason pattern) in tissue biopsies, and the clinical T stage can be used by clinicians to predict the pathological stage of cancer. However, not every patient will return abnormal results in all tests. This significantly influences the capacity to effectively predict the stage of prostate cancer. Herein we have developed a neuro-fuzzy computational intelligence model for classifying and predicting the likelihood of a patient having Organ-Confined Disease (OCD) or Extra-Prostatic Disease (ED) using a prostate cancer patient dataset obtained from The Cancer Genome Atlas (TCGA) Research Network. The system input consisted of the following variables: Primary and Secondary Gleason biopsy patterns, PSA levels, age at diagnosis, and clinical T stage. The performance of the neuro-fuzzy system was compared to other computational intelligence based approaches, namely the Artificial Neural Network, Fuzzy C-Means, Support Vector Machine, the Naive Bayes classifiers, and also the AJCC pTNM Staging Nomogram which is commonly used by clinicians. A comparison of the optimal Receiver Operating Characteristic (ROC) points that were identified using these approaches, revealed that the neuro-fuzzy system, at its optimal point, returns the largest Area Under the ROC Curve (AUC), with a low number of false positives (FPR = 0.274, TPR = 0.789, AUC = 0.812). The proposed approach is also an improvement over the AJCC pTNM Staging Nomogram (FPR = 0.032, TPR

  10. Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

    NASA Astrophysics Data System (ADS)

    Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng

    2016-05-01

    Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

  11. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia

    NASA Astrophysics Data System (ADS)

    Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg

    2013-03-01

    Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.

  12. Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zheng, Y. B.

    2012-07-01

    The main goal of this paper is to develop a novel approach for vibration control on a piezoelectric rotating truss structure. This study will analyze the dynamics and control of a flexible structure system with multiple degrees of freedom, represented in this research as a clamped-free-free-free truss type plate rotated by motors. The controller has two separate feedback loops for tracking and damping, and the vibration suppression controller is independent of position tracking control. In addition to stabilizing the actual system, the proposed proportional-derivative (PD) control, based on genetic algorithm (GA) to seek the primary optimal control gain, must supplement a fuzzy control law to ensure a stable nonlinear system. This is done by using an intelligent fuzzy controller based on adaptive neuro-fuzzy inference system (ANFIS) with GA tuning to increase the efficiency of fuzzy control. The PD controller, in its assisting role, easily stabilized the linear system. The fuzzy controller rule base was then constructed based on PD performance-related knowledge. Experimental validation for such a structure demonstrates the effectiveness of the proposed controller. The broad range of problems discussed in this research will be found useful in civil, mechanical, and aerospace engineering, for flexible structures with multiple degree-of-freedom motion.

  13. Neuro-Fuzzy Support of Knowledge Management in Social Regulation

    NASA Astrophysics Data System (ADS)

    Petrovic-Lazarevic, Sonja; Coghill, Ken; Abraham, Ajith

    2002-09-01

    The aim of the paper is to demonstrate the neuro-fuzzy support of knowledge management in social regulation. Knowledge could be understood for social regulation purposes as explicit and tacit. Explicit knowledge relates to the community culture indicating how things work in the community based on social policies and procedures. Tacit knowledge is ethics and norms of the community. The former could be codified, stored and transferable in order to support decision making, while the latter being based on personal knowledge, experience and judgments is difficult to codify and store. Tacit knowledge expressed through linguistic information can be stored and used to support knowledge management in social regulation through the application of fuzzy and neuro-fuzzy logic.

  14. Development of a neuro-fuzzy technique for automated parameter optimization of inverse treatment planning

    PubMed Central

    Stieler, Florian; Yan, Hui; Lohr, Frank; Wenz, Frederik; Yin, Fang-Fang

    2009-01-01

    Background Parameter optimization in the process of inverse treatment planning for intensity modulated radiation therapy (IMRT) is mainly conducted by human planners in order to create a plan with the desired dose distribution. To automate this tedious process, an artificial intelligence (AI) guided system was developed and examined. Methods The AI system can automatically accomplish the optimization process based on prior knowledge operated by several fuzzy inference systems (FIS). Prior knowledge, which was collected from human planners during their routine trial-and-error process of inverse planning, has first to be "translated" to a set of "if-then rules" for driving the FISs. To minimize subjective error which could be costly during this knowledge acquisition process, it is necessary to find a quantitative method to automatically accomplish this task. A well-developed machine learning technique, based on an adaptive neuro fuzzy inference system (ANFIS), was introduced in this study. Based on this approach, prior knowledge of a fuzzy inference system can be quickly collected from observation data (clinically used constraints). The learning capability and the accuracy of such a system were analyzed by generating multiple FIS from data collected from an AI system with known settings and rules. Results Multiple analyses showed good agreements of FIS and ANFIS according to rules (error of the output values of ANFIS based on the training data from FIS of 7.77 ± 0.02%) and membership functions (3.9%), thus suggesting that the "behavior" of an FIS can be propagated to another, based on this process. The initial experimental results on a clinical case showed that ANFIS is an effective way to build FIS from practical data, and analysis of ANFIS and FIS with clinical cases showed good planning results provided by ANFIS. OAR volumes encompassed by characteristic percentages of isodoses were reduced by a mean of between 0 and 28%. Conclusion The study demonstrated a

  15. Development of intelligent systems based on Bayesian regularization network and neuro-fuzzy models for mass detection in mammograms: A comparative analysis.

    PubMed

    Mahersia, Hela; Boulehmi, Hela; Hamrouni, Kamel

    2016-04-01

    Female breast cancer is the second most common cancer in the world. Several efforts in artificial intelligence have been made to help improving the diagnostic accuracy at earlier stages. However, the identification of breast abnormalities, like masses, on mammographic images is not a trivial task, especially for dense breasts. In this paper we describe our novel mass detection process that includes three successive steps of enhancement, characterization and classification. The proposed enhancement system is based mainly on the analysis of the breast texture. First of all, a filtering step with morphological operators and soft thresholding is achieved. Then, we remove from the filtered breast region, all the details that may interfere with the eventual masses, including pectoral muscle and galactophorous tree. The pixels belonging to this tree will be interpolated and replaced by the average of the neighborhood. In the characterization process, measurement of the Gaussian density in the wavelet domain allows the segmentation of the masses. Finally, a comparative classification mechanism based on the Bayesian regularization back-propagation networks and ANFIS techniques is proposed. The tests were conducted on the MIAS database. The results showed the robustness of the proposed enhancement method. PMID:26831269

  16. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    PubMed

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539

  17. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder

    PubMed Central

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539

  18. An intelligent load shedding scheme using neural networks and neuro-fuzzy.

    PubMed

    Haidar, Ahmed M A; Mohamed, Azah; Al-Dabbagh, Majid; Hussain, Aini; Masoum, Mohammad

    2009-12-01

    Load shedding is some of the essential requirement for maintaining security of modern power systems, particularly in competitive energy markets. This paper proposes an intelligent scheme for fast and accurate load shedding using neural networks for predicting the possible loss of load at the early stage and neuro-fuzzy for determining the amount of load shed in order to avoid a cascading outage. A large scale electrical power system has been considered to validate the performance of the proposed technique in determining the amount of load shed. The proposed techniques can provide tools for improving the reliability and continuity of power supply. This was confirmed by the results obtained in this research of which sample results are given in this paper. PMID:20039470

  19. Forecasting of the development of professional medical equipment engineering based on neuro-fuzzy algorithms

    NASA Astrophysics Data System (ADS)

    Vaganova, E. V.; Syryamkin, M. V.

    2015-11-01

    The purpose of the research is the development of evolutionary algorithms for assessments of promising scientific directions. The main attention of the present study is paid to the evaluation of the foresight possibilities for identification of technological peaks and emerging technologies in professional medical equipment engineering in Russia and worldwide on the basis of intellectual property items and neural network modeling. An automated information system consisting of modules implementing various classification methods for accuracy of the forecast improvement and the algorithm of construction of neuro-fuzzy decision tree have been developed. According to the study result, modern trends in this field will focus on personalized smart devices, telemedicine, bio monitoring, «e-Health» and «m-Health» technologies.

  20. Synchronous Pipeline Circuit Design for an Adaptive Neuro-fuzzy Network

    NASA Astrophysics Data System (ADS)

    Lin, Che-Wei; Wang, Jeen-Shing; Yu, Chun-Chang; Chen, Ting-Yu

    This paper presents an efficient synchronous pipeline hardware implementation procedure for a neuro-fuzzy (NF) circuit. We decompose the NF circuit into a feedforward circuit and a backpropagation circuit. The concept of pre-calculation to share computation results between the feedforward circuit and backpropagation circuit is introduced to achieve a high throughput rate and low resource usage. A novel pipeline architecture has been adopted to fulfill the concept of pre-calculation. With the unique pipeline architecture, we have successfully enhanced the throughput rate and resource sharing between modules. Particularly, the multiplier usage has been reduced from 7 to 3 and the divider usage from 3 to 1. Finally, we have implemented the NF circuit on FGPA. Our experimental results show a superior performance than that of an asynchronous pipeline design approach and the NF system implemented on MATLAB®.

  1. New hybrid adaptive neuro-fuzzy algorithms for manipulator control with uncertainties- comparative study.

    PubMed

    Alavandar, Srinivasan; Nigam, M J

    2009-10-01

    Control of an industrial robot includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. In this paper, some new hybrid adaptive neuro-fuzzy control algorithms (ANFIS) have been proposed for manipulator control with uncertainties. These hybrid controllers consist of adaptive neuro-fuzzy controllers and conventional controllers. The outputs of these controllers are applied to produce the final actuation signal based on current position and velocity errors. Numerical simulation using the dynamic model of six DOF puma robot arm with uncertainties shows the effectiveness of the approach in trajectory tracking problems. Performance indices of RMS error, maximum error are used for comparison. It is observed that the hybrid adaptive neuro-fuzzy controllers perform better than only conventional/adaptive controllers and in particular hybrid controller structure consisting of adaptive neuro-fuzzy controller and critically damped inverse dynamics controller. PMID:19523623

  2. Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera

    NASA Astrophysics Data System (ADS)

    Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.

    2013-02-01

    The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the

  3. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff

    NASA Astrophysics Data System (ADS)

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-04-01

    SummaryModeling of rainfall-runoff dynamics is one of the most studied topics in hydrology due to its essential application to water resources management. Recently, artificial intelligence has gained much popularity for calibrating the nonlinear relationships inherent in the rainfall-runoff process. In this study, the advantages of artificial neural networks and neuro-fuzzy system in continuous modeling of the daily and hourly behaviour of runoff were examined. Three different adaptive techniques were constructed and examined namely, Levenberg-Marquardt feed forward neural network, Bayesian regularization feed forward neural network, and neuro-fuzzy. In addition, the effects of data transformation on model performance were also investigated. This was done by examining the performance of the three network architectures and training algorithms using both raw and transformed data. Through inspection of the results it was found that although the model built on transformed data outperforms the model built on raw data, no significant differences were found between the forecast accuracies of the three examined models. A detailed comparison of the overall performance indicated that the neuro-fuzzy model performed better than both the Levenberg-Marquardt-FFNN and the Bayesian regularization-FFNN. In order to enable users to process the data easily, a graphic user interface (GUI) was developed. This program allows users to process the rainfall-runoff data, to train/test the model using various input options and to visualize results.

  4. Neuro-fuzzy computing for vibration-based damage localization and severity estimation in an experimental wind turbine blade with superimposed operational effects

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2016-04-01

    Fueled by increasing demand for carbon neutral energy, erections of ever larger wind turbines (WTs), with WT blades (WTBs) with higher flexibilities and lower buckling capacities lead to increasing operation and maintenance costs. This can be counteracted with efficient structural health monitoring (SHM), which allows scheduling maintenance actions according to the structural state and preventing dramatic failures. The present study proposes a novel multi-step approach for vibration-based structural damage localization and severity estimation for application in operating WTs. First, partial autocorrelation coefficients (PACCs) are estimated from vibrational responses. Second, principal component analysis is applied to PACCs from the healthy structure in order to calculate scores. Then, the scores are ranked with respect to their ability to differentiate different damage scenarios. This ranking information is used for constructing hierarchical adaptive neuro-fuzzy inference systems (HANFISs), where cross-validation is used to identify optimal numbers of hierarchy levels. Different HANFISs are created for the purposes of structural damage localization and severity estimation. For demonstrating the applicability of the approach, experimental data are superimposed with signals from numerical simulations to account for characteristics of operational noise. For the physical experiments, a small scale WTB is excited with a domestic fan and damage scenarios are introduced non-destructively by attaching small masses. Numerical simulations are also performed for a representative fully functional small WT operating in turbulent wind. The obtained results are promising for future applications of vibration-based SHM to facilitate improved safety and reliability of WTs at lower costs.

  5. Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš

    2016-07-01

    Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.

  6. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  7. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  8. A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance

    PubMed Central

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928

  9. Neuro-fuzzy classification of asthma and chronic obstructive pulmonary disease

    PubMed Central

    2015-01-01

    Background This paper presents a system for classification of asthma and chronic obstructive pulmonary disease (COPD) based on fuzzy rules and the trained neural network. Methods Fuzzy rules and neural network parameters are defined according to Global Initiative for Asthma (GINA) and Global Initiative for chronic Obstructive Lung Disease (GOLD) guidelines. For neural network training more than one thousand medical reports obtained from database of the company CareFusion were used. Afterwards the system was validated on 455 patients by physicians from the Clinical Centre University of Sarajevo. Results Out of 170 patients with asthma, 99.41% of patients were correctly classified. In addition, 99.19% of the 248 COPD patients were correctly classified. The system was 100% successful on 37 patients with normal lung function. Sensitivity of 99.28% and specificity of 100% in asthma and COPD classification were obtained. Conclusion Our neuro-fuzzy system for classification of asthma and COPD uses a combination of spirometry and Impulse Oscillometry System (IOS) test results, which in the very beginning enables more accurate classification. Additionally, using bronchodilatation and bronhoprovocation tests we get a complete patient's dynamic assessment, as opposed to the solution that provides a static assessment of the patient. PMID:26391218

  10. Appraisal of adaptive neuro-fuzzy computing technique for estimating anti-obesity properties of a medicinal plant.

    PubMed

    Kazemipoor, Mahnaz; Hajifaraji, Majid; Radzi, Che Wan Jasimah Bt Wan Mohamed; Shamshirband, Shahaboddin; Petković, Dalibor; Mat Kiah, Miss Laiha

    2015-01-01

    This research examines the precision of an adaptive neuro-fuzzy computing technique in estimating the anti-obesity property of a potent medicinal plant in a clinical dietary intervention. Even though a number of mathematical functions such as SPSS analysis have been proposed for modeling the anti-obesity properties estimation in terms of reduction in body mass index (BMI), body fat percentage, and body weight loss, there are still disadvantages of the models like very demanding in terms of calculation time. Since it is a very crucial problem, in this paper a process was constructed which simulates the anti-obesity activities of caraway (Carum carvi) a traditional medicine on obese women with adaptive neuro-fuzzy inference (ANFIS) method. The ANFIS results are compared with the support vector regression (SVR) results using root-mean-square error (RMSE) and coefficient of determination (R(2)). The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following statistical characteristics are obtained for BMI loss estimation: RMSE=0.032118 and R(2)=0.9964 in ANFIS testing and RMSE=0.47287 and R(2)=0.361 in SVR testing. For fat loss estimation: RMSE=0.23787 and R(2)=0.8599 in ANFIS testing and RMSE=0.32822 and R(2)=0.7814 in SVR testing. For weight loss estimation: RMSE=0.00000035601 and R(2)=1 in ANFIS testing and RMSE=0.17192 and R(2)=0.6607 in SVR testing. Because of that, it can be applied for practical purposes. PMID:25453384

  11. Improved control configuration of PWM rectifiers based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Gani, Ahmet; Yildiz, Ceyhun; Sekkeli, Mustafa

    2016-01-01

    It is well-known that rectifiers are used widely in many applications required AC/DC transformation. With technological advances, many studies are performed for AC/DC converters and many control methods are proposed in order to improve the performance of these rectifiers in recent years. Pulse width modulation (PWM) based rectifiers are one of the most popular rectifier types. PWM rectifiers have lower input current harmonics and higher power factor compared to classical diode and thyristor rectifiers. In this study, neuro-fuzzy controller (NFC) which has robust, nonlinear structure and do not require the mathematical model of the system to be controlled has been proposed for PWM rectifiers. Three NFCs are used in control scheme of proposed PWM rectifier in order to control the dq-axis currents and DC voltage of PWM rectifier. Moreover, simulation studies are carried out to demonstrate the performance of the proposed control scheme at MATLAB/Simulink environment in terms of rise time, settling time, overshoot, power factor, total harmonic distortion and power quality. PMID:27504240

  12. Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling

    NASA Technical Reports Server (NTRS)

    Chiu, Stephen

    1996-01-01

    Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.

  13. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach.

    PubMed

    Julie, E Golden; Selvi, S Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269

  14. Performance analysis of electronic power transformer based on neuro-fuzzy controller.

    PubMed

    Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa

    2016-01-01

    In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions. PMID:27588243

  15. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    PubMed Central

    Julie, E. Golden; Selvi, S. Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269

  16. Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning

    NASA Astrophysics Data System (ADS)

    Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik

    2013-04-01

    SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.

  17. Introducing an Evolving Local Neuro-Fuzzy Model--Application to modeling of car-following behavior.

    PubMed

    Kazemi, Reza; Abdollahzade, Majid

    2015-11-01

    This paper proposes an Evolving Local Linear Neuro-Fuzzy Model for modeling and identification of nonlinear time-variant systems which change their nature and character over time. The proposed approach evolves through time to follow the structural changes in the time-variant dynamic systems. The evolution process is managed by a distance-based extended hierarchical binary tree algorithm, which decides whether the proposed evolving model should be adapted to the system variations or evolution is necessary. To represent an interesting but challenging example of the systems with changing dynamics, the proposed evolving model is applied to model car-following process in a traffic flow, as an online identification problem. Results of simulations demonstrate effectiveness of the proposed approach in modeling of the time-variant systems. PMID:26410447

  18. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.

    PubMed

    Kiguchi, Kazuo; Imada, Yasunobu; Liyanage, Manoj

    2007-01-01

    We have been developing a 4DOF exoskeleton robot system in order to assist shoulder vertical motion, shoulder horizontal motion, elbow motion, and forearm motion of physically weak persons such as elderly, injured, or disabled persons. The robot is directly attached to a user's body and activated based on EMG (Electromyogram) signals of the user's muscles, since the EMG signals directly reflect the user's motion intention. A neuro-fuzzy controller has been applied to control the exoskeleton robot system. In this paper, controller adaptation method to user's EMG signals is proposed. A motion indicator is introduced to indicate the motion intention of the user for the controller adaptation. The experimental results show the effectiveness of the proposed method. PMID:18002635

  19. A comparative study of artificial intelligent-based maximum power point tracking for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain

    2016-03-01

    Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.

  20. Detailed comparison of neuro-fuzzy estimation of subpixel land-cover composition from remotely sensed data

    NASA Astrophysics Data System (ADS)

    Baraldi, Andrea; Binaghi, Elisabetta; Blonda, Palma N.; Brivio, Pietro A.; Rampini, Anna

    1998-10-01

    Mixed pixels, which do not follow a known statistical distribution that could be parameterized, are a major source of inconvenience in classification of remote sensing images. This paper reports on an experimental study designed for the in-depth investigation of how and why two neuro-fuzzy classification schemes, whose properties are complementary, estimate sub-pixel land cover composition from remotely sensed data. The first classifier is based on the fuzzy multilayer perceptron proposed by Pal and Mitra: the second classifier consists of a two-stage hybrid (TSH) learning scheme whose unsupervised first stage is based on the fully self- organizing simplified adaptive resonance theory clustering network proposed by Baraldi. Results of the two neuro-fuzzy classifiers are assessed by means of specific evaluation tools designed to extend conventional descriptive and analytical statistical estimators to the case of multi-membership in classes. When a synthetic data set consisting of pure and mixed pixels is processed by the two neuro-fuzzy classifiers, experimental result show that: i) the two neuro- fuzzy classifiers perform better than the traditional MLP; ii) classification accuracies of the two neuro-fuzzy classifiers are comparable; and iii) the TSH classifier requires to train less background knowledge than FMLP.

  1. Streamflow Forecasting Using Nuero-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Nanduri, U. V.; Swain, P. C.

    2005-12-01

    The prediction of flow into a reservoir is fundamental in water resources planning and management. The need for timely and accurate streamflow forecasting is widely recognized and emphasized by many in water resources fraternity. Real-time forecasts of natural inflows to reservoirs are of particular interest for operation and scheduling. The physical system of the river basin that takes the rainfall as an input and produces the runoff is highly nonlinear, complicated and very difficult to fully comprehend. The system is influenced by large number of factors and variables. The large spatial extent of the systems forces the uncertainty into the hydrologic information. A variety of methods have been proposed for forecasting reservoir inflows including conceptual (physical) and empirical (statistical) models (WMO 1994), but none of them can be considered as unique superior model (Shamseldin 1997). Owing to difficulties of formulating reasonable non-linear watershed models, recent attempts have resorted to Neural Network (NN) approach for complex hydrologic modeling. In recent years the use of soft computing in the field of hydrological forecasting is gaining ground. The relatively new soft computing technique of Adaptive Neuro-Fuzzy Inference System (ANFIS), developed by Jang (1993) is able to take care of the non-linearity, uncertainty, and vagueness embedded in the system. It is a judicious combination of the Neural Networks and fuzzy systems. It can learn and generalize highly nonlinear and uncertain phenomena due to the embedded neural network (NN). NN is efficient in learning and generalization, and the fuzzy system mimics the cognitive capability of human brain. Hence, ANFIS can learn the complicated processes involved in the basin and correlate the precipitation to the corresponding discharge. In the present study, one step ahead forecasts are made for ten-daily flows, which are mostly required for short term operational planning of multipurpose reservoirs. A

  2. Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.

    2009-08-01

    In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.

  3. Classification of Horse Gaits Using FCM-Based Neuro-Fuzzy Classifier from the Transformed Data Information of Inertial Sensor.

    PubMed

    Lee, Jae-Neung; Lee, Myung-Won; Byeon, Yeong-Hyeon; Lee, Won-Sik; Kwak, Keun-Chang

    2016-01-01

    In this study, we classify four horse gaits (walk, sitting trot, rising trot, canter) of three breeds of horse (Jeju, Warmblood, and Thoroughbred) using a neuro-fuzzy classifier (NFC) of the Takagi-Sugeno-Kang (TSK) type from data information transformed by a wavelet packet (WP). The design of the NFC is accomplished by using a fuzzy c-means (FCM) clustering algorithm that can solve the problem of dimensionality increase due to the flexible scatter partitioning. For this purpose, we use the rider's hip motion from the sensor information collected by inertial sensors as feature data for the classification of a horse's gaits. Furthermore, we develop a coaching system under both real horse riding and simulator environments and propose a method for analyzing the rider's motion. Using the results of the analysis, the rider can be coached in the correct motion corresponding to the classified gait. To construct a motion database, the data collected from 16 inertial sensors attached to a motion capture suit worn by one of the country's top-level horse riding experts were used. Experiments using the original motion data and the transformed motion data were conducted to evaluate the classification performance using various classifiers. The experimental results revealed that the presented FCM-NFC showed a better accuracy performance (97.5%) than a neural network classifier (NNC), naive Bayesian classifier (NBC), and radial basis function network classifier (RBFNC) for the transformed motion data. PMID:27171098

  4. Classification of Horse Gaits Using FCM-Based Neuro-Fuzzy Classifier from the Transformed Data Information of Inertial Sensor

    PubMed Central

    Lee, Jae-Neung; Lee, Myung-Won; Byeon, Yeong-Hyeon; Lee, Won-Sik; Kwak, Keun-Chang

    2016-01-01

    In this study, we classify four horse gaits (walk, sitting trot, rising trot, canter) of three breeds of horse (Jeju, Warmblood, and Thoroughbred) using a neuro-fuzzy classifier (NFC) of the Takagi-Sugeno-Kang (TSK) type from data information transformed by a wavelet packet (WP). The design of the NFC is accomplished by using a fuzzy c-means (FCM) clustering algorithm that can solve the problem of dimensionality increase due to the flexible scatter partitioning. For this purpose, we use the rider’s hip motion from the sensor information collected by inertial sensors as feature data for the classification of a horse’s gaits. Furthermore, we develop a coaching system under both real horse riding and simulator environments and propose a method for analyzing the rider’s motion. Using the results of the analysis, the rider can be coached in the correct motion corresponding to the classified gait. To construct a motion database, the data collected from 16 inertial sensors attached to a motion capture suit worn by one of the country’s top-level horse riding experts were used. Experiments using the original motion data and the transformed motion data were conducted to evaluate the classification performance using various classifiers. The experimental results revealed that the presented FCM-NFC showed a better accuracy performance (97.5%) than a neural network classifier (NNC), naive Bayesian classifier (NBC), and radial basis function network classifier (RBFNC) for the transformed motion data. PMID:27171098

  5. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis.

    PubMed

    Chang, Fi-John; Chung, Chang-Han; Chen, Pin-An; Liu, Chen-Wuing; Coynel, Alexandra; Vachaud, Georges

    2014-10-01

    We propose a systematical approach to assessing arsenic concentration in a river through: important factor extraction by a nonlinear factor analysis; arsenic concentration estimation by the neuro-fuzzy network; and impact assessment of important factors on arsenic concentration by the membership degrees of the constructed neuro-fuzzy network. The arsenic-contaminated Huang Gang Creek in northern Taiwan is used as a study case. Results indicate that rainfall, nitrite nitrogen and temperature are important factors and the proposed estimation model (ANFIS(GT)) is superior to the two comparative models, in which 50% and 52% improvements in RMSE are made over ANFIS(CC) and ANFIS(all), respectively. Results reveal that arsenic concentration reaches the highest in an environment of lower temperature, higher nitrite nitrogen concentration and larger one-month antecedent rainfall; while it reaches the lowest in an environment of higher temperature, lower nitrite nitrogen concentration and smaller one-month antecedent rainfall. It is noted that these three selected factors are easy-to-collect. We demonstrate that the proposed methodology is a useful and effective methodology, which can be adapted to other similar settings to reliably model water quality based on parameters of interest and/or study areas of interest for universal usage. The proposed methodology gives a quick and reliable way to estimate arsenic concentration, which makes good contribution to water environment management. PMID:25046611

  6. Reactive navigation for autonomous guided vehicle using neuro-fuzzy techniques

    NASA Astrophysics Data System (ADS)

    Cao, Jin; Liao, Xiaoqun; Hall, Ernest L.

    1999-08-01

    A Neuro-fuzzy control method for navigation of an Autonomous Guided Vehicle robot is described. Robot navigation is defined as the guiding of a mobile robot to a desired destination or along a desired path in an environment characterized by as terrain and a set of distinct objects, such as obstacles and landmarks. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Neural network and fuzzy logic control techniques can improve real-time control performance for mobile robot due to its high robustness and error-tolerance ability. For a mobile robot to navigate automatically and rapidly, an important factor is to identify and classify mobile robots' currently perceptual environment. In this paper, a new approach of the current perceptual environment feature identification and classification, which are based on the analysis of the classifying neural network and the Neuro- fuzzy algorithm, is presented. The significance of this work lies in the development of a new method for mobile robot navigation.

  7. Automatic 3D object recognition and reconstruction based on neuro-fuzzy modelling

    NASA Astrophysics Data System (ADS)

    Samadzadegan, Farhad; Azizi, Ali; Hahn, Michael; Lucas, Curo

    Three-dimensional object recognition and reconstruction (ORR) is a research area of major interest in computer vision and photogrammetry. Virtual cities, for example, is one of the exciting application fields of ORR which became very popular during the last decade. Natural and man-made objects of cities such as trees and buildings are complex structures and automatic recognition and reconstruction of these objects from digital aerial images but also other data sources is a big challenge. In this paper a novel approach for object recognition is presented based on neuro-fuzzy modelling. Structural, textural and spectral information is extracted and integrated in a fuzzy reasoning process. The learning capability of neural networks is introduced to the fuzzy recognition process by taking adaptable parameter sets into account which leads to the neuro-fuzzy approach. Object reconstruction follows recognition seamlessly by using the recognition output and the descriptors which have been extracted for recognition. A first successful application of this new ORR approach is demonstrated for the three object classes 'buildings', 'cars' and 'trees' by using aerial colour images of an urban area of the town of Engen in Germany.

  8. Experimental Validation of a Neuro-Fuzzy Approach to Phasing the SIBOA Segmented Mirror Testbed

    NASA Technical Reports Server (NTRS)

    Olivier, Philip D.

    2002-01-01

    NASA is preparing to launch the Next Generation Space Telescope (NGST). This telescope will be larger than the Hubble Space Telescope, be launched on an Atlas missile rather than the Space Shuttle, have a segmented primary mirror, and be placed in a higher orbit. All these differences pose significant challenges. This effort addresses the challenge of aligning the segments of the primary mirror during the initial deployment. The segments need to piston values aligned to within one tenth of a wavelength. The present study considers using a neuro-fuzzy model of the Fraunhofer diffraction theory. The intention of the current study was to experimentally verify the algorithm derived earlier. The experimental study was to be performed on the SIBOA (Systematic Image Based Optical Alignment) test bed. Unfortunately the hardware/software for SIBOA was not ready by the end of the study period. We did succeed in capturing several images of two stacked segments with various relative phases. These images can be used to calibrate the algorithm for future implementation. This effort is a continuation of prior work. The basic effort involves developing a closed loop control algorithm to phase a segmented mirror test bed (SIBOA). The control algorithm is based on a neuro-fuzzy model of SIBOA and incorporates nonlinear observers built from observer banks. This effort involves implementing the algorithm on the SIBOA test bed.

  9. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2013-02-01

    The purpose of the present study is to compare the prediction performances of three different approaches such as decision tree (DT), support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) for landslide susceptibility mapping at Penang Hill area, Malaysia. The necessary input parameters for the landslide susceptibility assessments were obtained from various sources. At first, landslide locations were identified by aerial photographs and field surveys and a total of 113 landslide locations were constructed. The study area contains 340,608 pixels while total 8403 pixels include landslides. The landslide inventory was randomly partitioned into two subsets: (1) part 1 that contains 50% (4000 landslide grid cells) was used in the training phase of the models; (2) part 2 is a validation dataset 50% (4000 landslide grid cells) for validation of three models and to confirm its accuracy. The digitally processed images of input parameters were combined in GIS. Finally, landslide susceptibility maps were produced, and the performances were assessed and discussed. Total fifteen landslide susceptibility maps were produced using DT, SVM and ANFIS based models, and the resultant maps were validated using the landslide locations. Prediction performances of these maps were checked by receiver operating characteristics (ROC) by using both success rate curve and prediction rate curve. The validation results showed that, area under the ROC curve for the fifteen models produced using DT, SVM and ANFIS varied from 0.8204 to 0.9421 for success rate curve and 0.7580 to 0.8307 for prediction rate curves, respectively. Moreover, the prediction curves revealed that model 5 of DT has slightly higher prediction performance (83.07), whereas the success rate showed that model 5 of ANFIS has better prediction (94.21) capability among all models. The results of this study showed that landslide susceptibility mapping in the Penang Hill area using the three approaches (e

  10. Characterizing root distribution with adaptive neuro-fuzzy analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-soil relationships are pivotal to understanding crop growth and function in a changing environment. Plant root systems are difficult to measure and remain understudied relative to above ground responses. High variation among field samples often leads to non-significance when standard statistics...

  11. A neuro-fuzzy architecture for real-time applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song

    1992-01-01

    Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.

  12. Adaptive neuro-fuzzy fusion of sensor data

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor

    2014-11-01

    A framework is proposed, which consolidates the benefits of a fuzzy rationale and a neural system. The framework joins together Kalman separating and delicate processing guideline i.e. ANFIS to structure an effective information combination strategy for the target following framework. A novel versatile calculation focused around ANFIS is proposed to adjust logical progressions and to weaken the questionable aggravation of estimation information from multisensory. Fuzzy versatile combination calculation is a compelling device to make the genuine quality of the leftover covariance steady with its hypothetical worth. ANFIS indicates great taking in and forecast proficiencies, which makes it a productive device to manage experienced vulnerabilities in any framework. A neural system is presented, which can concentrate the measurable properties of the samples throughout the preparation sessions. Reproduction results demonstrate that the calculation can successfully alter the framework to adjust context oriented progressions and has solid combination capacity in opposing questionable data. This sagacious estimator is actualized utilizing Matlab/Simulink and the exhibitions are explored.

  13. Development of a Synthetic Adaptive Neuro-Fuzzy Prediction Model for Tumor Motion Tracking in External Radiotherapy by Evaluating Various Data Clustering Algorithms.

    PubMed

    Ghorbanzadeh, Leila; Torshabi, Ahmad Esmaili; Nabipour, Jamshid Soltani; Arbatan, Moslem Ahmadi

    2016-04-01

    In image guided radiotherapy, in order to reach a prescribed uniform dose in dynamic tumors at thorax region while minimizing the amount of additional dose received by the surrounding healthy tissues, tumor motion must be tracked in real-time. Several correlation models have been proposed in recent years to provide tumor position information as a function of time in radiotherapy with external surrogates. However, developing an accurate correlation model is still a challenge. In this study, we proposed an adaptive neuro-fuzzy based correlation model that employs several data clustering algorithms for antecedent parameters construction to avoid over-fitting and to achieve an appropriate performance in tumor motion tracking compared with the conventional models. To begin, a comparative assessment is done between seven nuero-fuzzy correlation models each constructed using a unique data clustering algorithm. Then, each of the constructed models are combined within an adaptive sevenfold synthetic model since our tumor motion database has high degrees of variability and that each model has its intrinsic properties at motion tracking. In the proposed sevenfold synthetic model, best model is selected adaptively at pre-treatment. The model also updates the steps for each patient using an automatic model selectivity subroutine. We tested the efficacy of the proposed synthetic model on twenty patients (divided equally into two control and worst groups) treated with CyberKnife synchrony system. Compared to Cyberknife model, the proposed synthetic model resulted in 61.2% and 49.3% reduction in tumor tracking error in worst and control group, respectively. These results suggest that the proposed model selection program in our synthetic neuro-fuzzy model can significantly reduce tumor tracking errors. Numerical assessments confirmed that the proposed synthetic model is able to track tumor motion in real time with high accuracy during treatment. PMID:25765021

  14. Verifying Stability of Dynamic Soft-Computing Systems

    NASA Technical Reports Server (NTRS)

    Wen, Wu; Napolitano, Marcello; Callahan, John

    1997-01-01

    Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.

  15. A hybrid clustering based fuzzy structure for vibration control - Part 2: An application to semi-active vehicle seat-suspension system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-05-01

    This work presents a novel neuro-fuzzy controller (NFC) for car-driver's seat-suspension system featuring magnetorheological (MR) dampers. The NFC is built based on the algorithm for building adaptive neuro-fuzzy inference systems (ANFISs) named B-ANFIS, which has been developed in Part 1, and fuzzy logic inference systems (FISs). In order to create the NFC, the following steps are performed. Firstly, a control strategy based on a ride-comfort-oriented tendency (RCOT) is established. Subsequently, optimal FISs are built based on a genetic algorithm (GA) to estimate the desired damping force that satisfies the RCOT corresponding to the road status at each time. The B-ANFIS is then used to build ANFISs for inverse dynamic models of the suspension system (I-ANFIS). Based on the FISs, the desired force values are calculated according to the status of road at each time. The corresponding exciting current value to be applied to the MR damper is then determined by the I-ANFIS. In order to validate the effectiveness of the developed neuro-fuzzy controller, control performances of the seat-suspension systems featuring MR dampers are evaluated under different road conditions. In addition, a comparative work between conventional skyhook controller and the proposed NFC is undertaken in order to demonstrate superior control performances of the proposed methodology.

  16. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy

    NASA Astrophysics Data System (ADS)

    Kurtulus, Bedri; Razack, Moumtaz

    2010-02-01

    SummaryThis paper compares two methods for modeling karst aquifers, which are heterogeneous, highly non-linear, and hierarchical systems. There is a clear need to model these systems given the crucial role they play in water supply in many countries. In recent years, the main components of soft computing (fuzzy logic (FL), and Artificial Neural Networks, (ANNs)) have come to prevail in the modeling of complex non-linear systems in different scientific and technologic disciplines. In this study, Artificial Neural Networks and Adaptive Neuro-Fuzzy Interface System (ANFIS) methods were used for the prediction of daily discharge of karstic aquifers and their capability was compared. The approach was applied to 7 years of daily data of La Rochefoucauld karst system in south-western France. In order to predict the karst daily discharges, single-input (rainfall, piezometric level) vs. multiple-input (rainfall and piezometric level) series were used. In addition to these inputs, all models used measured or simulated discharges from the previous days with a specified delay. The models were designed in a Matlab™ environment. An automatic procedure was used to select the best calibrated models. Daily discharge predictions were then performed using the calibrated models. Comparing predicted and observed hydrographs indicates that both models (ANN and ANFIS) provide close predictions of the karst daily discharges. The summary statistics of both series (observed and predicted daily discharges) are comparable. The performance of both models is improved when the number of inputs is increased from one to two. The root mean square error between the observed and predicted series reaches a minimum for two-input models. However, the ANFIS model demonstrates a better performance than the ANN model to predict peak flow. The ANFIS approach demonstrates a better generalization capability and slightly higher performance than the ANN, especially for peak discharges.

  17. Analyzing the dynamics of emotional scene sequence using recurrent neuro-fuzzy network.

    PubMed

    Zhang, Qing; Lee, Minho

    2013-02-01

    In this paper, we propose a new framework to analyze the temporal dynamics of the emotional stimuli. For this framework, both electroencephalography signal and visual information are of great importance. The fusion of visual information with brain signals allows us to capture the users' emotional state. Thus we adopt previously proposed fuzzy-GIST as emotional feature to summarize the emotional feedback. In order to model the dynamics of the emotional stimuli sequence, we develop a recurrent neuro-fuzzy network for modeling the dynamic events of emotional dimensions including valence and arousal. It can incorporate human expertise by IF-THEN fuzzy rule while recurrent connections allow the fuzzy rules of network to see its own previous output. The results show that such a framework can interact with human subjects and generate arbitrary emotional sequences after learning the dynamics of an emotional sequence with enough number of samples. PMID:24427190

  18. Extracting TSK-type Neuro-Fuzzy model using the Hunting search algorithm

    NASA Astrophysics Data System (ADS)

    Bouzaida, Sana; Sakly, Anis; M'Sahli, Faouzi

    2014-01-01

    This paper proposes a Takagi-Sugeno-Kang (TSK) type Neuro-Fuzzy model tuned by a novel metaheuristic optimization algorithm called Hunting Search (HuS). The HuS algorithm is derived based on a model of group hunting of animals such as lions, wolves, and dolphins when looking for a prey. In this study, the structure and parameters of the fuzzy model are encoded into a particle. Thus, the optimal structure and parameters are achieved simultaneously. The proposed method was demonstrated through modeling and control problems, and the results have been compared with other optimization techniques. The comparisons indicate that the proposed method represents a powerful search approach and an effective optimization technique as it can extract the accurate TSK fuzzy model with an appropriate number of rules.

  19. Neuro fuzzy force control for soft dry contact Hertzian ultrasonic probe

    NASA Astrophysics Data System (ADS)

    Gallegos, E.; Baltazar, A.; Treesatayapun, C.

    2016-02-01

    In this work the use of a cartesian robotic manipulator as scanner for the automated identification of hidden defects in an aluminum test plate is proposed. The robotic manipulator includes a custom made soft deformable ultrasonic probe and a force sensor for the recollection of the ultrasonic signals and force feedback. The contact between the soft probe and the test plate is regulated using a Neuro Fuzzy controller in order to avoid the complex mathematical model produced by the interaction. Finally the use of the correlation coefficient is proposed for the post processing of the obtained ultrasonic signals and identification of hidden defects inside the test plate. Experimental studies demonstrated the efficiency of the method.

  20. Physical activities recognition from ambulatory ECG signals using neuro-fuzzy classifiers and support vector machines.

    PubMed

    Kher, Rahul; Pawar, Tanmay; Thakar, Vishvjit; Shah, Hitesh

    2015-02-01

    The use of wearable recorders for long-term monitoring of physiological parameters has increased in the last few years. The ambulatory electrocardiogram (A-ECG) signals of five healthy subjects with four body movements or physical activities (PA)-left arm up down, right arm up down, waist twisting and walking-have been recorded using a wearable ECG recorder. The classification of these four PAs has been performed using neuro-fuzzy classifier (NFC) and support vector machines (SVM). The PA classification is based on the distinct, time-frequency features of the extracted motion artifacts contained in recorded A-ECG signals. The motion artifacts in A-ECG signals have been separated first by the discrete wavelet transform (DWT) and the time-frequency features of these motion artifacts have then been extracted using the Gabor transform. The Gabor energy feature vectors have been fed to the NFC and SVM classifiers. Both the classifiers have achieved a PA classification accuracy of over 95% for all subjects. PMID:25641014

  1. Neuro-fuzzy chip to handle complex tasks with analog performance.

    PubMed

    de Jesus Navas-Gonzalez, R; Vidal-Verdu, F; Rodriguez-Vazquez, A

    2003-01-01

    This paper presents a mixed-signal neuro-fuzzy controller chip which, in terms of power consumption, input-output delay, and precision, performs as a fully analog implementation. However, it has much larger complexity than its purely analog counterparts. This combination of performance and complexity is achieved through the use of a mixed-signal architecture consisting of a programmable analog core of reduced complexity, and a strategy, and the associated mixed-signal circuitry, to cover the whole input space through the dynamic programming of this core. Since errors and delays are proportional to the reduced number of fuzzy rules included in the analog core, they are much smaller than in the case where the whole rule set is implemented by analog circuitry. Also, the area and the power consumption of the new architecture are smaller than those of its purely analog counterparts simply because most rules are implemented through programming. The paper presents a set of building blocks associated to this architecture, and gives results for an exemplary prototype. This prototype, called multiplexing fuzzy controller (MFCON), has been realized in a CMOS 0.7 /spl mu/m standard technology. It has two inputs, implements 64 rules, and features 500 ns of input to output delay with 16-mW of power consumption. Results from the chip in a control application with a dc motor are also provided. PMID:18244584

  2. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  3. A test on a Neuro-Fuzzy algorithm used to reduce continuous gravity records for the effect of meteorological parameters

    NASA Astrophysics Data System (ADS)

    Andò, Bruno; Carbone, Daniele

    2004-05-01

    Gravity measurements are utilized at active volcanoes to detect mass changes linked to magma transfer processes and thus to recognize forerunners to paroxysmal volcanic events. Continuous gravity measurements are now increasingly performed at sites very close to active craters, where there is the greatest chance to detect meaningful gravity changes. Unfortunately, especially when used against the adverse environmental conditions usually encountered at such places, gravimeters have been proved to be affected by meteorological parameters, mainly by changes in the atmospheric temperature. The pseudo-signal generated by these perturbations is often stronger than the signal generated by actual changes in the gravity field. Thus, the implementation of well-performing algorithms for reducing the gravity signal for the effect of meteorological parameters is vital to obtain sequences useful from the volcano surveillance standpoint. In the present paper, a Neuro-Fuzzy algorithm, which was already proved to accomplish the required task satisfactorily, is tested over a data set from three gravimeters which worked continuously for about 50 days at a site far away from active zones, where changes due to actual fluctuation of the gravity field are expected to be within a few microgal. After accomplishing the reduction of the gravity series, residuals are within about 15 μGal peak-to-peak, thus confirming the capabilities of the Neuro-Fuzzy algorithm under test of performing the required task satisfactorily.

  4. System Support for Forensic Inference

    NASA Astrophysics Data System (ADS)

    Gehani, Ashish; Kirchner, Florent; Shankar, Natarajan

    Digital evidence is playing an increasingly important role in prosecuting crimes. The reasons are manifold: financially lucrative targets are now connected online, systems are so complex that vulnerabilities abound and strong digital identities are being adopted, making audit trails more useful. If the discoveries of forensic analysts are to hold up to scrutiny in court, they must meet the standard for scientific evidence. Software systems are currently developed without consideration of this fact. This paper argues for the development of a formal framework for constructing “digital artifacts” that can serve as proxies for physical evidence; a system so imbued would facilitate sound digital forensic inference. A case study involving a filesystem augmentation that provides transparent support for forensic inference is described.

  5. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants

    PubMed Central

    Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun

    2015-01-01

    Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant. PMID:26512666

  6. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants.

    PubMed

    Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun

    2015-01-01

    Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant. PMID:26512666

  7. Estimation of dew point temperature using neuro-fuzzy and neural network techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Kim, Sungwon; Shiri, Jalal

    2013-11-01

    This study investigates the ability of two different artificial neural network (ANN) models, generalized regression neural networks model (GRNNM) and Kohonen self-organizing feature maps neural networks model (KSOFM), and two different adaptive neural fuzzy inference system (ANFIS) models, ANFIS model with sub-clustering identification (ANFIS-SC) and ANFIS model with grid partitioning identification (ANFIS-GP), for estimating daily dew point temperature. The climatic data that consisted of 8 years of daily records of air temperature, sunshine hours, wind speed, saturation vapor pressure, relative humidity, and dew point temperature from three weather stations, Daego, Pohang, and Ulsan, in South Korea were used in the study. The estimates of ANN and ANFIS models were compared according to the three different statistics, root mean square errors, mean absolute errors, and determination coefficient. Comparison results revealed that the ANFIS-SC, ANFIS-GP, and GRNNM models showed almost the same accuracy and they performed better than the KSOFM model. Results also indicated that the sunshine hours, wind speed, and saturation vapor pressure have little effect on dew point temperature. It was found that the dew point temperature could be successfully estimated by using T mean and R H variables.

  8. Identification of critical genes in microarray experiments by a Neuro-Fuzzy approach.

    PubMed

    Chen, Chin-Fu; Feng, Xin; Szeto, Jack

    2006-10-01

    Gene expression profiling by microarray technology is usually difficult to interpret into a simpler pattern. One approach to resolve the complexity of gene expression profiles is the application of artificial neural networks (ANNs). A potential difficulty in this strategy, however, is that the non-linear nature of ANN makes it essentially a 'black-box' computation process. Addition of a fuzzy logic approach is useful because it can complement ANN by explicitly specifying membership function during computation. We employed a hybrid approach of neural network and fuzzy logic to further analyze a published microarray study of gene responses to eight bacteria in human macrophages. The original analysis by hierarchical clustering found common gene responses to all bacteria but did not address individual responses. Our method allowed exploration of the gene response of the host to individual bacterium. We implemented a two-layer, feed-forward neural network containing the principle of 'competitive learning' (i.e. 'winner-take-all'). The weights of the trained neural network were fed into a fuzzy logic inference system. A new measurement, called the impact rating (IR) was also introduced to explore the degree of importance of each gene. To assess the reliability of the IR value, a bootstrap re-sampling method was applied to the dataset and a confidence level for each IR was obtained. Our approach has successfully uncovered the unique features of host response to individual bacterium. Further, application of gene ontology (GO) annotation to the genes of high IR values in each response has suggested new biological pathways for individual host-pathogen interactions. PMID:16987708

  9. Clustering of noisy image data using an adaptive neuro-fuzzy system

    NASA Technical Reports Server (NTRS)

    Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    Identification of outliers or noise in a real data set is often quite difficult. A recently developed adaptive fuzzy leader clustering (AFLC) algorithm has been modified to separate the outliers from real data sets while finding the clusters within the data sets. The capability of this modified AFLC algorithm to identify the outliers in a number of real data sets indicates the potential strength of this algorithm in correct classification of noisy real data.

  10. A mathematical model of neuro-fuzzy approximation in image classification

    NASA Astrophysics Data System (ADS)

    Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.

    2016-06-01

    Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.

  11. Adaptive neuro-fuzzy sliding mode control of multi-joint movement using intraspinal microstimulation.

    PubMed

    Asadi, Ali-Reza; Erfanian, Abbas

    2012-07-01

    During the last decade, intraspinal microstimulation (ISMS) has been proposed as a potential technique for restoring motor function in paralyzed limbs. A major challenge to restoration of a desired functional limb movement through the use of ISMS is the development of a robust control strategy for determining the stimulation patterns. Accurate and stable control of limbs by functional intraspinal microstimulation is a very difficult task because neuromusculoskeletal systems have significant nonlinearity, time variability, large latency and time constant, and muscle fatigue. Furthermore, the controller must be able to compensate the effect of the dynamic interaction between motor neuron pools and electrode sites during ISMS. In this paper, we present a robust strategy for multi-joint control through ISMS in which the system parameters are adapted online and the controller requires no offline training phase. The method is based on the combination of sliding mode control with fuzzy logic and neural control. Extensive experiments on six rats are provided to demonstrate the robustness, stability, and tracking accuracy of the proposed method. Despite the complexity of the spinal neuronal networks, our results show that the proposed strategy could provide accurate tracking control with fast convergence and could generate control signals to compensate for the effects of muscle fatigue. PMID:22711783

  12. Prediction of low back pain with two expert systems.

    PubMed

    Sari, Murat; Gulbandilar, Eyyup; Cimbiz, Ali

    2012-06-01

    Low back pain (LBP) is one of the common problems encountered in medical applications. This paper proposes two expert systems (artificial neural network and adaptive neuro-fuzzy inference system) for the assessment of the LBP level objectively. The skin resistance and visual analog scale (VAS) values have been accepted as the input variables for the developed systems. The results showed that the expert systems behave very similar to real data and that use of the expert systems can be used to successfully diagnose the back pain intensity. The suggested systems were found to be advantageous approaches in addition to existing unbiased approaches. So far as the authors are aware, this is the first attempt of using the two expert systems achieving very good performance in a real application. In light of some of the limitations of this study, we also identify and discuss several areas that need continued investigation. PMID:20978929

  13. Flood Forecasting in River System Using ANFIS

    NASA Astrophysics Data System (ADS)

    Ullah, Nazrin; Choudhury, P.

    2010-10-01

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  14. Flood Forecasting in River System Using ANFIS

    SciTech Connect

    Ullah, Nazrin; Choudhury, P.

    2010-10-26

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  15. Exploiting expert systems in cardiology: a comparative study.

    PubMed

    Economou, George-Peter K; Sourla, Efrosini; Stamatopoulou, Konstantina-Maria; Syrimpeis, Vasileios; Sioutas, Spyros; Tsakalidis, Athanasios; Tzimas, Giannis

    2015-01-01

    An improved Adaptive Neuro-Fuzzy Inference System (ANFIS) in the field of critical cardiovascular diseases is presented. The system stems from an earlier application based only on a Sugeno-type Fuzzy Expert System (FES) with the addition of an Artificial Neural Network (ANN) computational structure. Thus, inherent characteristics of ANNs, along with the human-like knowledge representation of fuzzy systems are integrated. The ANFIS has been utilized into building five different sub-systems, distinctly covering Coronary Disease, Hypertension, Atrial Fibrillation, Heart Failure, and Diabetes, hence aiding doctors of medicine (MDs), guide trainees, and encourage medical experts in their diagnoses centering a wide range of Cardiology. The Fuzzy Rules have been trimmed down and the ANNs have been optimized in order to focus into each particular disease and produce results ready-to-be applied to real-world patients. PMID:25417018

  16. An inference engine for embedded diagnostic systems

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.; Brewster, Larry T.

    1987-01-01

    The implementation of an inference engine for embedded diagnostic systems is described. The system consists of two distinct parts. The first is an off-line compiler which accepts a propositional logical statement of the relationship between facts and conclusions and produces data structures required by the on-line inference engine. The second part consists of the inference engine and interface routines which accept assertions of fact and return the conclusions which necessarily follow. Given a set of assertions, it will generate exactly the conclusions which logically follow. At the same time, it will detect any inconsistencies which may propagate from an inconsistent set of assertions or a poorly formulated set of rules. The memory requirements are fixed and the worst case execution times are bounded at compile time. The data structures and inference algorithms are very simple and well understood. The data structures and algorithms are described in detail. The system has been implemented on Lisp, Pascal, and Modula-2.

  17. GA-ANFIS Expert System Prototype for Prediction of Dermatological Diseases.

    PubMed

    Begic Fazlic, Lejla; Avdagic, Korana; Omanovic, Samir

    2015-01-01

    This paper presents novel GA-ANFIS expert system prototype for dermatological disease detection by using dermatological features and diagnoses collected in real conditions. Nine dermatological features are used as inputs to classifiers that are based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for the first level of fuzzy model optimization. After that, they are used as inputs in Genetic Algorithm (GA) for the second level of fuzzy model optimization within GA-ANFIS system. GA-ANFIS system performs optimization in two steps. Modelling and validation of the novel GA-ANFIS system approach is performed in MATLAB environment by using validation set of data. Some conclusions concerning the impacts of features on the detection of dermatological diseases were obtained through analysis of the GA-ANFIS. We compared GA-ANFIS and ANFIS results. The results confirmed that the proposed GA-ANFIS model achieved accuracy rates which are higher than the ones we got by ANFIS model. PMID:25991223

  18. Prediction of Heart Attack Risk Using GA-ANFIS Expert System Prototype.

    PubMed

    Begic Fazlic, Lejla; Avdagic, Aja; Besic, Ingmar

    2015-01-01

    The aim of this research is to develop a novel GA-ANFIS expert system prototype for classifying heart disease degree of a patient by using heart diseases attributes (features) and diagnoses taken in the real conditions. Thirteen attributes have been used as inputs to classifiers being based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for the first level of fuzzy model optimization. They are used as inputs in Genetic Algorithm (GA) for the second level of fuzzy model optimization within GA-ANFIS system. GA-ANFIS system performs optimization in two steps. Modelling and validating of the novel GA-ANFIS system approach is performed in MATLAB environment. We compared GA-ANFIS and ANFIS results. The proposed GA-ANFIS model with the predicted value technique is more efficient when diagnosis of heart disease is concerned, as well the earlier method we got by ANFIS model. PMID:25980885

  19. An Adaptive Coordinated Control for an Offshore Wind Farm Connected VSC Based Multi-Terminal DC Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ajay; Srikanth, N. V.

    2014-11-01

    The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.

  20. Performance enhancement of low-cost, high-accuracy, state estimation for vehicle collision prevention system using ANFIS

    NASA Astrophysics Data System (ADS)

    Saadeddin, Kamal; Abdel-Hafez, Mamoun F.; Jaradat, Mohammad A.; Jarrah, Mohammad Amin

    2013-12-01

    In this paper, a low-cost navigation system that fuses the measurements of the inertial navigation system (INS) and the global positioning system (GPS) receiver is developed. First, the system's dynamics are obtained based on a vehicle's kinematic model. Second, the INS and GPS measurements are fused using an extended Kalman filter (EKF) approach. Subsequently, an artificial intelligence based approach for the fusion of INS/GPS measurements is developed based on an Input-Delayed Adaptive Neuro-Fuzzy Inference System (IDANFIS). Experimental tests are conducted to demonstrate the performance of the two sensor fusion approaches. It is found that the use of the proposed IDANFIS approach achieves a reduction in the integration development time and an improvement in the estimation accuracy of the vehicle's position and velocity compared to the EKF based approach.

  1. An Adaptive Network-based Fuzzy Inference System for the detection of thermal and TEC anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake of 11 August 2012

    NASA Astrophysics Data System (ADS)

    Akhoondzadeh, M.

    2013-09-01

    Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.

  2. Single board system for fuzzy inference

    NASA Technical Reports Server (NTRS)

    Symon, James R.; Watanabe, Hiroyuki

    1991-01-01

    The very large scale integration (VLSI) implementation of a fuzzy logic inference mechanism allows the use of rule-based control and decision making in demanding real-time applications. Researchers designed a full custom VLSI inference engine. The chip was fabricated using CMOS technology. The chip consists of 688,000 transistors of which 476,000 are used for RAM memory. The fuzzy logic inference engine board system incorporates the custom designed integrated circuit into a standard VMEbus environment. The Fuzzy Logic system uses Transistor-Transistor Logic (TTL) parts to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane, allowing the chip to perform application process control through the VMEbus host. High level C language functions hide details of the hardware system interface from the applications level programmer. The first version of the board was installed on a robot at Oak Ridge National Laboratory in January of 1990.

  3. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2011-01-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  4. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2010-09-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  5. Inference System Integration Via Logic Morphisms

    NASA Technical Reports Server (NTRS)

    Bjorner, Nikolaj S.; Espinosa, David

    2000-01-01

    This is a final report on the accomplishments during the period of the NASA grant. The work on inference servers accomplished the integration of the SLANG logic (Specware's default specification logic) with a number of inference servers in order to make their complementary strengths available. These inverence servers are (1) SNARK. (2) Gandalf, Setheo, and Spass, (3) the Prototype Verification System (PVS) from SRI. (4) HOL98. We designed and implemented MetaSlang, an ML-like language, which we are using to specify and implement all our logic morphisms.

  6. An Ada inference engine for expert systems

    NASA Technical Reports Server (NTRS)

    Lavallee, David B.

    1986-01-01

    The purpose is to investigate the feasibility of using Ada for rule-based expert systems with real-time performance requirements. This includes exploring the Ada features which give improved performance to expert systems as well as optimizing the tradeoffs or workarounds that the use of Ada may require. A prototype inference engine was built using Ada, and rule firing rates in excess of 500 per second were demonstrated on a single MC68000 processor. The knowledge base uses a directed acyclic graph to represent production lines. The graph allows the use of AND, OR, and NOT logical operators. The inference engine uses a combination of both forward and backward chaining in order to reach goals as quickly as possible. Future efforts will include additional investigation of multiprocessing to improve performance and creating a user interface allowing rule input in an Ada-like syntax. Investigation of multitasking and alternate knowledge base representations will help to analyze some of the performance issues as they relate to larger problems.

  7. Inference by replication in densely connected systems

    SciTech Connect

    Neirotti, Juan P.; Saad, David

    2007-10-15

    An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance.

  8. Inference by replication in densely connected systems.

    PubMed

    Neirotti, Juan P; Saad, David

    2007-10-01

    An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance. PMID:17995074

  9. Developing neuro-fuzzy hybrid networks to aid predicting abnormal behaviours of passengers and equipments inside an airplane

    NASA Astrophysics Data System (ADS)

    Ali, Ali H.; Tarter, Alex

    2009-05-01

    The terrorist attack of 9/11 has revealed how vulnerable the civil aviation industry is from both security and safety points of view. Dealing with several aircrafts cruising in the sky of a specific region requires decision makers to have an automated system that can raise their situational awareness of how much a threat an aircraft presents. In this research, an in-flight array of sensors has been deployed in a simulated aircraft to extract knowledge-base information of how passengers and equipment behave in normal flighttime which has been used to train artificial neural networks to provide real-time streams of normal behaviours. Finally, a cascading of fuzzy logic networks is designed to measure the deviation of real-time data from the predicted ones. The results suggest that Neural-Fuzzy networks have a promising future to raise the awareness of decision makers about certain aviation situations.

  10. Causal Inferences in the Campbellian Validity System

    ERIC Educational Resources Information Center

    Lund, Thorleif

    2010-01-01

    The purpose of the present paper is to critically examine causal inferences and internal validity as defined by Campbell and co-workers. Several arguments are given against their counterfactual effect definition, and this effect definition should be considered inadequate for causal research in general. Moreover, their defined independence between…

  11. LOWER LEVEL INFERENCE CONTROL IN STATISTICAL DATABASE SYSTEMS

    SciTech Connect

    Lipton, D.L.; Wong, H.K.T.

    1984-02-01

    An inference is the process of transforming unclassified data values into confidential data values. Most previous research in inference control has studied the use of statistical aggregates to deduce individual records. However, several other types of inference are also possible. Unknown functional dependencies may be apparent to users who have 'expert' knowledge about the characteristics of a population. Some correlations between attributes may be concluded from 'commonly-known' facts about the world. To counter these threats, security managers should use random sampling of databases of similar populations, as well as expert systems. 'Expert' users of the DATABASE SYSTEM may form inferences from the variable performance of the user interface. Users may observe on-line turn-around time, accounting statistics. the error message received, and the point at which an interactive protocol sequence fails. One may obtain information about the frequency distributions of attribute values, and the validity of data object names from this information. At the back-end of a database system, improved software engineering practices will reduce opportunities to bypass functional units of the database system. The term 'DATA OBJECT' should be expanded to incorporate these data object types which generate new classes of threats. The security of DATABASES and DATABASE SySTEMS must be recognized as separate but related problems. Thus, by increased awareness of lower level inferences, system security managers may effectively nullify the threat posed by lower level inferences.

  12. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS

    NASA Astrophysics Data System (ADS)

    Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi

    2016-09-01

    This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.

  13. INFeRS: Interactive Numeric Files Retrieval System. Final Report.

    ERIC Educational Resources Information Center

    Chiang, Katherine; And Others

    In 1988 Mann Library at Cornell University proposed to develop a computer system that would support interactive access to significant electronic files in agriculture and the life sciences. This system was titled the Interactive Numeric Files Retrieval System (INFeRS). This report describes how project goals were met and it presents the project's…

  14. Magma reservoir systems inferred from tilt patterns

    NASA Astrophysics Data System (ADS)

    Schimozuru, D.

    1981-09-01

    Inflation patterns based on water-tube tiltmeter and levelling observation show different features for Krafla Volcano in Iceland and Kilauea Volcano in Hawaii. Monotonous sawtooth shape inflation is observed at Krafla, while inflation curves at Kileauea are more or less complicated. The difference was attributed to differences in the system of magma reservoir for the two volcanoes. By using the electrical equivalent of a magma reservoir and volcanic conduit as a capacitor and a resistor, an electrical oseillator was considered to be a possible model for a magma reservoir system. In the case of Krafla, the magma reservoir system is replaced with one electric oscillator called «Single system» or «Icelandic type» system. The complicated inflation pattern of Kilauea was interpreted as the assembly of a main magma reservoir and the group of surrounding small reservoirs. The equivalent electric analogue is the composite parallel and serial connection of a single oscillator which generates irregular output voltage during a charging process. The proposed magma reservoir system of Kilauea is called «Multi-coupled system» or «Hawaiian type system» which also help in interpreting the wondering of the uplift center and tidal phenomena of the Halemaumau lava lake.

  15. Fuzzy exemplar-based inference system for flood forecasting

    NASA Astrophysics Data System (ADS)

    Chang, Li-Chiu; Chang, Fi-John; Tsai, Ya-Hsin

    2005-02-01

    Fuzzy inference systems have been successfully applied in numerous fields since they can effectively model human knowledge and adaptively make decision processes. In this paper we present an innovative fuzzy exemplar-based inference system (FEIS) for flood forecasting. The FEIS is based on a fuzzy inference system, with its clustering ability enhanced through the Exemplar-Aided Constructor of Hyper-rectangles algorithm, which can effectively simulate human intelligence by learning from experience. The FEIS exhibits three important properties: knowledge extraction from numerical data, knowledge (rule) modeling, and fuzzy reasoning processes. The proposed model is employed to predict streamflow 1 hour ahead during flood events in the Lan-Yang River, Taiwan. For the purpose of comparison the back propagation neural network (BPNN) is also performed. The results show that the FEIS model performs better than the BPNN. The FEIS provides a great learning ability, robustness, and high predictive accuracy for flood forecasting.

  16. Diagnosis of arthritis through fuzzy inference system.

    PubMed

    Singh, Sachidanand; Kumar, Atul; Panneerselvam, K; Vennila, J Jannet

    2012-06-01

    Expert or knowledge-based systems are the most common type of AIM (artificial intelligence in medicine) system in routine clinical use. They contain medical knowledge, usually about a very specifically defined task, and are able to reason with data from individual patients to come up with reasoned conclusion. Although there are many variations, the knowledge within an expert system is typically represented in the form of a set of rules. Arthritis is a chronic disease and about three fourth of the patients are suffering from osteoarthritis and rheumatoid arthritis which are undiagnosed and the delay of detection may cause the severity of the disease at higher risk. Thus, earlier detection of arthritis and treatment of its type of arthritis and related locomotry abnormalities is of vital importance. Thus the work was aimed to design a system for the diagnosis of Arthitis using fuzzy logic controller (FLC) which is, a successful application of Zadeh's fuzzy set theory. It is a potential tool for dealing with uncertainty and imprecision. Thus, the knowledge of a doctor can be modelled using an FLC. The performance of an FLC depends on its knowledge base which consists of a data base and a rule base. It is observed that the performance of an FLC mainly depends on its rule base, and optimizing the membership function distributions stored in the data base is a fine tuning process. PMID:20927572

  17. FIS/ANFIS Based Optimal Control for Maximum Power Extraction in Variable-speed Wind Energy Conversion System

    NASA Astrophysics Data System (ADS)

    Nadhir, Ahmad; Naba, Agus; Hiyama, Takashi

    An optimal control for maximizing extraction of power in variable-speed wind energy conversion system is presented. Intelligent gradient detection by fuzzy inference system (FIS) in maximum power point tracking control is proposed to achieve power curve operating near optimal point. Speed rotor reference can be adjusted by maximum power point tracking fuzzy controller (MPPTFC) such that the turbine operates around maximum power. Power curve model can be modelled by using adaptive neuro fuzzy inference system (ANFIS). It is required to simply well estimate just a few number of maximum power points corresponding to optimum generator rotor speed under varying wind speed, implying its training can be done with less effort. Using the trained fuzzy model, some estimated maximum power points as well as their corresponding generator rotor speed and wind speed are determined, from which a linear wind speed feedback controller (LWSFC) capable of producing optimum generator speed can be obtained. Applied to a squirrel-cage induction generator based wind energy conversion system, MPPTFC and LWSFC could maximize extraction of the wind energy, verified by a power coefficient stay at its maximum almost all the time and an actual power line close to a maximum power efficiency line reference.

  18. A knowledge-based expert system for inferring vegetation characteristics

    NASA Technical Reports Server (NTRS)

    Kimes, Daniel S.; Harrison, Patrick R.; Ratcliffe, P. A.

    1991-01-01

    A prototype knowledge-based expert system VEG is presented that focuses on extracting spectral hemispherical reflectance using any combination of nadir and/or directional reflectance data as input. The system is designed to facilitate expansion to handle other inferences regarding vegetation properties such as total hemispherical reflectance, leaf area index, percent ground cover, phosynthetic capacity, and biomass. This approach is more robust and accurate than conventional extraction techniques previously developed.

  19. An expert system shell for inferring vegetation characteristics

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann; Harrison, Patrick R.

    1992-01-01

    The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The report describes the extensions that have been made to the first generation version of VEG. An interface to a file of unkown cover type data has been constructed. An interface that allows the results of VEG to be written to a file has been implemented. A learning system that learns class descriptions from a data base of historical cover type data and then uses the learned class descriptions to classify an unknown sample has been built. This system has an interface that integrates it into the rest of VEG. The VEG subgoal PROPORTION.GROUND.COVER has been completed and a number of additional techniques that infer the proportion ground cover of a sample have been implemented.

  20. Fuzzy inductive reasoning: a consolidated approach to data-driven construction of complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Nebot, Àngela; Mugica, Francisco

    2012-10-01

    Fuzzy inductive reasoning (FIR) is a modelling and simulation methodology derived from the General Systems Problem Solver. It compares favourably with other soft computing methodologies, such as neural networks, genetic or neuro-fuzzy systems, and with hard computing methodologies, such as AR, ARIMA, or NARMAX, when it is used to predict future behaviour of different kinds of systems. This paper contains an overview of the FIR methodology, its historical background, and its evolution.

  1. Evaluation of fuzzy inference systems using fuzzy least squares

    NASA Technical Reports Server (NTRS)

    Barone, Joseph M.

    1992-01-01

    Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations. Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success. The global measures have some value in an absolute sense, but they are particularly useful when competing solutions (e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure described here can be used to identify specific areas of poor fit where special measures (e.g., the use of emphatic or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the method as an evaluation tool.

  2. Inference and learning in sparse systems with multiple states

    SciTech Connect

    Braunstein, A.; Ramezanpour, A.; Zhang, P.; Zecchina, R.

    2011-05-15

    We discuss how inference can be performed when data are sampled from the nonergodic phase of systems with multiple attractors. We take as a model system the finite connectivity Hopfield model in the memory phase and suggest a cavity method approach to reconstruct the couplings when the data are separately sampled from few attractor states. We also show how the inference results can be converted into a learning protocol for neural networks in which patterns are presented through weak external fields. The protocol is simple and fully local, and is able to store patterns with a finite overlap with the input patterns without ever reaching a spin-glass phase where all memories are lost.

  3. An intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG features.

    PubMed

    Malik, Owais A; Senanayake, S M N Arosha; Zaheer, Dansih

    2015-03-01

    An intelligent recovery evaluation system is presented for objective assessment and performance monitoring of anterior cruciate ligament reconstructed (ACL-R) subjects. The system acquires 3-D kinematics of tibiofemoral joint and electromyography (EMG) data from surrounding muscles during various ambulatory and balance testing activities through wireless body-mounted inertial and EMG sensors, respectively. An integrated feature set is generated based on different features extracted from data collected for each activity. The fuzzy clustering and adaptive neuro-fuzzy inference techniques are applied to these integrated feature sets in order to provide different recovery progress assessment indicators (e.g., current stage of recovery, percentage of recovery progress as compared to healthy group, etc.) for ACL-R subjects. The system was trained and tested on data collected from a group of healthy and ACL-R subjects. For recovery stage identification, the average testing accuracy of the system was found above 95% (95-99%) for ambulatory activities and above 80% (80-84%) for balance testing activities. The overall recovery evaluation performed by the proposed system was found consistent with the assessment made by the physiotherapists using standard subjective/objective scores. The validated system can potentially be used as a decision supporting tool by physiatrists, physiotherapists, and clinicians for quantitative rehabilitation analysis of ACL-R subjects in conjunction with the existing recovery monitoring systems. PMID:24801517

  4. Multi-objective Decision Based Available Transfer Capability in Deregulated Power System Using Heuristic Approaches

    NASA Astrophysics Data System (ADS)

    Pasam, Gopi Krishna; Manohar, T. Gowri

    2015-07-01

    Determination of available transfer capability (ATC) requires the use of experience, intuition and exact judgment in order to meet several significant aspects in the deregulated environment. Based on these points, this paper proposes two heuristic approaches to compute ATC. The first proposed heuristic algorithm integrates the five methods known as continuation repeated power flow, repeated optimal power flow, radial basis function neural network, back propagation neural network and adaptive neuro fuzzy inference system to obtain ATC. The second proposed heuristic model is used to obtain multiple ATC values. Out of these, a specific ATC value will be selected based on a number of social, economic, deregulated environmental constraints and related to specific applications like optimization, on-line monitoring, and ATC forecasting known as multi-objective decision based optimal ATC. The validity of results obtained through these proposed methods are scrupulously verified on various buses of the IEEE 24-bus reliable test system. The results presented and derived conclusions in this paper are very useful for planning, operation, maintaining of reliable power in any power system and its monitoring in an on-line environment of deregulated power system. In this way, the proposed heuristic methods would contribute the best possible approach to assess multiple objective ATC using integrated methods.

  5. Fuzzy system reliability computation of the convoy of unmanned intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Dixit, Arati M.; Mustapha, Adam; Gerhart, Grant R.

    2008-10-01

    Unmanned intelligent ground vehicles play significant role in wide range of applications. They are of great significance in military applications as well as other commercial applications. In order to assure the performance of unmanned intelligent vehicles, it is important to predict the reliability of the system. Reliability can be calculated using different approaches as seen in the literature, but we propose a Graph theoretic approach supported by Fuzzy and Neuro-Fuzzy approaches for predicting the node and branch reliability of the system. We portray the convoy of unmanned vehicles as a communication network where the nodes represent the station of the convoy of unmanned intelligent vehicles and the branches would represent the path between two stations. The node and branch reliability is calculated using the Fuzzy and Neuro Fuzzy approaches. The terminal and system reliability would be calculated using Boolean algebra. Thus the overall system reliability of a convoy of vehicles is the result of Fuzzy, Neuro-Fuzzy and Boolean approaches. A spanning tree based algorithm is proposed for computation of the system reliability of a convoy of vehicles. We also propose to simulate the overall system reliability with some existing data of factors that contribute in computation of node and branch reliability.

  6. An expert system shell for inferring vegetation characteristics

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann; Harrison, Patrick R.

    1993-01-01

    The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. VEG is described in detail in several references. The first generation version of VEG was extended. In the first year of this contract, an interface to a file of unknown cover type data was constructed. An interface that allowed the results of VEG to be written to a file was also implemented. A learning system that learned class descriptions from a data base of historical cover type data and then used the learned class descriptions to classify an unknown sample was built. This system had an interface that integrated it into the rest of VEG. The VEG subgoal PROPORTION.GROUND.COVER was completed and a number of additional techniques that inferred the proportion ground cover of a sample were implemented. This work was previously described. The work carried out in the second year of the contract is described. The historical cover type database was removed from VEG and stored as a series of flat files that are external to VEG. An interface to the files was provided. The framework and interface for two new VEG subgoals that estimate the atmospheric effect on reflectance data were built. A new interface that allows the scientist to add techniques to VEG without assistance from the developer was designed and implemented. A prototype Help System that allows the user to get more information about each screen in the VEG interface was also added to VEG.

  7. Hybrid soft computing systems for reservoir PVT properties prediction

    NASA Astrophysics Data System (ADS)

    Khoukhi, Amar

    2012-07-01

    In reservoir engineering, the knowledge of Pressure-Volume-Temperature (PVT) properties is of great importance for many uses, such as well test analyses, reserve estimation, material balance calculations, inflow performance calculations, fluid flow in porous media and the evaluation of new formations for the potential development and enhancement oil recovery projects. The determination of these properties is a complex problem because laboratory-measured properties of rock samples ("cores") are only available from limited and isolated well locations and/or intervals. Several correlation models have been developed to relate these properties to other measures which are relatively abundant. These models include empirical correlations, statistical regression and artificial neural networks (ANNs). In this paper, a comprehensive study is conducted on the prediction of the bubble point pressure and oil formation volume factor using two hybrid of soft computing techniques; a genetically optimised neural network and a genetically enhanced subtractive clustering for the parameter identification of an adaptive neuro-fuzzy inference system. Simulation experiments are provided, showing the performance of the proposed techniques as compared with commonly used regression correlations, including standard artificial neural networks.

  8. A combined sEMG and accelerometer system for monitoring functional activity in stroke.

    PubMed

    Roy, Serge H; Cheng, M Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S Hamid; De Luca, Carlo J

    2009-12-01

    Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of < 10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke. PMID:20051332

  9. A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke.

    PubMed

    Roy, S; Cheng, M; Chang, S; Moore, J; De Luca, G; Nawab, S; De Luca, C

    2014-04-23

    Remote monitoring of physical activity using bodyworn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data were recorded from 10 hemi paretic patients while they carried out a sequence of 11 activities of daily living (Identification tasks), and 10 activities used to evaluate misclassification errors (non-Identification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the non-Identification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of 4 ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0 %, and a mean specificity of 99.7 % for the identification tasks, and a mean misclassification error of < 10% for the non-Identification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke. PMID:24760921

  10. A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke

    PubMed Central

    Roy, Serge H.; Cheng, M. Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S. Hamid; De Luca, Carlo J.

    2010-01-01

    Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of <10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke. PMID:20051332

  11. ANUBIS: artificial neuromodulation using a Bayesian inference system.

    PubMed

    Smith, Benjamin J H; Saaj, Chakravarthini M; Allouis, Elie

    2013-01-01

    Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework. PMID:22970879

  12. Efficiency improvement in multi-sensor wireless network based estimation algorithms for distributed parameter systems with application at the heat transfer

    NASA Astrophysics Data System (ADS)

    Volosencu, Constantin; Curiac, Daniel-Ioan

    2013-12-01

    This paper gives a technical solution to improve the efficiency in multi-sensor wireless network based estimation for distributed parameter systems. A complex structure based on some estimation algorithms, with regression and autoregression, implemented using linear estimators, neural estimators and ANFIS estimators, is developed for this purpose. The three kinds of estimators are working with precision on different parts of the phenomenon characteristic. A comparative study of three methods - linear and nonlinear based on neural networks and adaptive neuro-fuzzy inference system - to implement these algorithms is made. The intelligent wireless sensor networks are taken in consideration as an efficient tool for measurement, data acquisition and communication. They are seen as a "distributed sensor", placed in the desired positions in the measuring field. The algorithms are based on regression using values from adjacent and also on auto-regression using past values from the same sensor. A modelling and simulation for a case study is presented. The quality of estimation is validated using a quadratic criterion. A practical implementation is made using virtual instrumentation. Applications of this complex estimation system are in fault detection and diagnosis of distributed parameter systems and discovery of malicious nodes in wireless sensor networks.

  13. Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.

    PubMed

    Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin

    2014-01-01

    The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file. PMID:24345245

  14. Automatic generation of fuzzy inference systems via unsupervised learning.

    PubMed

    Er, Meng Joo; Zhou, Yi

    2008-12-01

    In this paper, a novel approach termed Enhanced Dynamic Self-Generated Fuzzy Q-Learning (EDSGFQL) for automatically generating Fuzzy Inference Systems (FISs) is presented. In the EDSGFQL approach, structure identification and parameter estimations of FISs are achieved via Unsupervised Learning (UL) (including Reinforcement Learning (RL)). Instead of using Supervised Learning (SL), UL clustering methods are adopted for input space clustering when generating FISs. At the same time, structure and preconditioning parts of a FIS are generated in a RL manner in that fuzzy rules are adjusted and deleted according to reinforcement signals. The proposed EDSGFQL methodologies can automatically create, delete and adjust fuzzy rules dynamically. Simulation studies on wall-following and obstacle avoidance tasks by a mobile robot show that the proposed approach is superior in generating efficient FISs. PMID:18653313

  15. Metainference: A Bayesian inference method for heterogeneous systems

    PubMed Central

    Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele

    2016-01-01

    Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called “metainference,” that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors. PMID:26844300

  16. Metainference: A Bayesian inference method for heterogeneous systems.

    PubMed

    Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele

    2016-01-01

    Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors. PMID:26844300

  17. Modeling the Effects of Light and Sucrose on In Vitro Propagated Plants: A Multiscale System Analysis Using Artificial Intelligence Technology

    PubMed Central

    Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P.

    2014-01-01

    Background Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. Methodology and Principal Findings In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122–130 µmol m−2 s−1. Conclusions Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work. PMID:24465829

  18. Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Fallah-Ghalhary, G.-A.; Habibi Nokhandan, M.; Mousavi Baygi, M.

    2009-04-01

    Long-term rainfall prediction is very important to countries thriving on agro-based economy. In general, climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly effect". The parameters that are required to predict the rainfall are enormous even for a short period. Soft computing is an innovative approach to construct computationally intelligent systems that are supposed to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in changing environments, and explain how they make decisions. Unlike conventional artificial intelligence techniques the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, robustness, partial truth to achieve tractability, and better rapport with reality. In this paper, 33 years of rainfall data analyzed in khorasan state, the northeastern part of Iran situated at latitude-longitude pairs (31°-38°N, 74°- 80°E). this research attempted to train Fuzzy Inference System (FIS) based prediction models with 33 years of rainfall data. For performance evaluation, the model predicted outputs were compared with the actual rainfall data. Simulation results reveal that soft computing techniques are promising and efficient. The test results using by FIS model showed that the RMSE was obtained 52 millimeter.

  19. Classification of Microarray Data Using Kernel Fuzzy Inference System

    PubMed Central

    Kumar Rath, Santanu

    2014-01-01

    The DNA microarray classification technique has gained more popularity in both research and practice. In real data analysis, such as microarray data, the dataset contains a huge number of insignificant and irrelevant features that tend to lose useful information. Classes with high relevance and feature sets with high significance are generally referred for the selected features, which determine the samples classification into their respective classes. In this paper, kernel fuzzy inference system (K-FIS) algorithm is applied to classify the microarray data (leukemia) using t-test as a feature selection method. Kernel functions are used to map original data points into a higher-dimensional (possibly infinite-dimensional) feature space defined by a (usually nonlinear) function ϕ through a mathematical process called the kernel trick. This paper also presents a comparative study for classification using K-FIS along with support vector machine (SVM) for different set of features (genes). Performance parameters available in the literature such as precision, recall, specificity, F-measure, ROC curve, and accuracy are considered to analyze the efficiency of the classification model. From the proposed approach, it is apparent that K-FIS model obtains similar results when compared with SVM model. This is an indication that the proposed approach relies on kernel function.

  20. Automatic Road Gap Detection Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Hashemi, S.; Valadan Zoej, M. J.; Mokhtarzadeh, M.

    2011-09-01

    Automatic feature extraction from aerial and satellite images is a high-level data processing which is still one of the most important research topics of the field. In this area, most of the researches are focused on the early step of road detection, where road tracking methods, morphological analysis, dynamic programming and snakes, multi-scale and multi-resolution methods, stereoscopic and multi-temporal analysis, hyper spectral experiments, are some of the mature methods in this field. Although most researches are focused on detection algorithms, none of them can extract road network perfectly. On the other hand, post processing algorithms accentuated on the refining of road detection results, are not developed as well. In this article, the main is to design an intelligent method to detect and compensate road gaps remained on the early result of road detection algorithms. The proposed algorithm consists of five main steps as follow: 1) Short gap coverage: In this step, a multi-scale morphological is designed that covers short gaps in a hierarchical scheme. 2) Long gap detection: In this step, the long gaps, could not be covered in the previous stage, are detected using a fuzzy inference system. for this reason, a knowledge base consisting of some expert rules are designed which are fired on some gap candidates of the road detection results. 3) Long gap coverage: In this stage, detected long gaps are compensated by two strategies of linear and polynomials for this reason, shorter gaps are filled by line fitting while longer ones are compensated by polynomials.4) Accuracy assessment: In order to evaluate the obtained results, some accuracy assessment criteria are proposed. These criteria are obtained by comparing the obtained results with truly compensated ones produced by a human expert. The complete evaluation of the obtained results whit their technical discussions are the materials of the full paper.

  1. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    NASA Technical Reports Server (NTRS)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  2. An expert system shell for inferring vegetation characteristics: Prototype help system (Task 1)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA Vegetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. A prototype of the VEG subgoal HELP.SYSTEM has been completed and the Help System has been added to the VEG system. It is loaded when the user first clicks on the HELP.SYSTEM option in the Tool Box Menu. The Help System provides a user tool to support needed user information. It also provides interactive tools the scientist may use to develop new help messages and to modify existing help messages that are attached to VEG screens. The system automatically manages system and file operations needed to preserve new or modified help messages. The Help System was tested both as a help system development and a help system user tool.

  3. Erratum to Central European Journal of Engineering, Volume 4, Issue 1

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Srikanth, N.

    2014-06-01

    Paper by M. Ajay Kumar, N. V. Srikanth, et al. "An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions" in Volume 4, Issue 1, 27-38/March 2014 doi: 10.2478/s13531-013-0143-4 contains an error in the title. The correct title is presented below

  4. Erratum: Erratum to Central European Journal of Engineering, Volume 4, Issue 1

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ajay; Srikanth, N. V.

    2014-06-01

    Paper by M. Ajay Kumar, N. V. Srikanth, et al. "An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions" in Volume 4, Issue 1, 27-38/March 2014 doi: 10.2478/s13531-013-0143-4 contains an error in the title. The correct title is presented below

  5. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  6. Soil disturbance evaluation: application of ANFIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New techniques to understand the relationship of soil components as impacted by management are needed. In this work, an Adaptive Neuro-Fuzzy Inference System (ANFIS) applied for study the contiguous relations between soil disturbed indicators. Several ANFIS surfaces, which described the contiguous ...

  7. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  8. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  9. An evolutionary approach toward dynamic self-generated fuzzy inference systems.

    PubMed

    Zhou, Yi; Er, Meng Joo

    2008-08-01

    An evolutionary approach toward automatic generation of fuzzy inference systems (FISs), termed evolutionary dynamic self-generated fuzzy inference systems (EDSGFISs), is proposed in this paper. The structure and parameters of an FIS are generated through reinforcement learning, whereas an action set for training the consequents of the FIS is evolved via genetic algorithms (GAs). The proposed EDSGFIS algorithm can automatically create, delete, and adjust fuzzy rules according to the performance of the entire system, as well as evaluation of individual fuzzy rules. Simulation studies on a wall-following task by a mobile robot show that the proposed EDSGFIS approach is superior to other related methods. PMID:18632385

  10. EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment.

    PubMed

    Lin, Chin-Teng; Tsai, Shu-Fang; Ko, Li-Wei

    2013-10-01

    Motion sickness is a common experience for many people. Several previous researches indicated that motion sickness has a negative effect on driving performance and sometimes leads to serious traffic accidents because of a decline in a person's ability to maintain self-control. This safety issue has motivated us to find a way to prevent vehicle accidents. Our target was to determine a set of valid motion sickness indicators that would predict the occurrence of a person's motion sickness as soon as possible. A successful method for the early detection of motion sickness will help us to construct a cognitive monitoring system. Such a monitoring system can alert people before they become sick and prevent them from being distracted by various motion sickness symptoms while driving or riding in a car. In our past researches, we investigated the physiological changes that occur during the transition of a passenger's cognitive state using electroencephalography (EEG) power spectrum analysis, and we found that the EEG power responses in the left and right motors, parietal, lateral occipital, and occipital midline brain areas were more highly correlated to subjective sickness levels than other brain areas. In this paper, we propose the use of a self-organizing neural fuzzy inference network (SONFIN) to estimate a driver's/passenger's sickness level based on EEG features that have been extracted online from five motion sickness-related brain areas, while either in real or virtual vehicle environments. The results show that our proposed learning system is capable of extracting a set of valid motion sickness indicators that originated from EEG dynamics, and through SONFIN, a neuro-fuzzy prediction model, we successfully translated the set of motion sickness indicators into motion sickness levels. The overall performance of this proposed EEG-based learning system can achieve an average prediction accuracy of ~82%. PMID:24808604