Science.gov

Sample records for neurodegenerative generalized auditory

  1. Pleasurable emotional response to music: a case of neurodegenerative generalized auditory agnosia.

    PubMed

    Matthews, Brandy R; Chang, Chiung-Chih; De May, Mary; Engstrom, John; Miller, Bruce L

    2009-06-01

    Recent functional neuroimaging studies implicate the network of mesolimbic structures known to be active in reward processing as the neural substrate of pleasure associated with listening to music. Psychoacoustic and lesion studies suggest that there is a widely distributed cortical network involved in processing discreet musical variables. Here we present the case of a young man with auditory agnosia as the consequence of cortical neurodegeneration who continues to experience pleasure when exposed to music. In a series of musical tasks, the subject was unable to accurately identify any of the perceptual components of music beyond simple pitch discrimination, including musical variables known to impact the perception of affect. The subject subsequently misidentified the musical character of personally familiar tunes presented experimentally, but continued to report that the activity of 'listening' to specific musical genres was an emotionally rewarding experience. The implications of this case for the evolving understanding of music perception, music misperception, music memory, and music-associated emotion are discussed. PMID:19253088

  2. Pleasurable Emotional Response to Music: A Case of Neurodegenerative Generalized Auditory Agnosia

    PubMed Central

    Matthews, Brandy R.; Chang, Chiung-Chih; De May, Mary; Engstrom, John; Miller, Bruce L.

    2009-01-01

    Recent functional neuroimaging studies implicate the network of mesolimbic structures known to be active in reward processing as the neural substrate of pleasure associated with listening to music. Psychoacoustic and lesion studies suggest that there is a widely distributed cortical network involved in processing discreet musical variables. Here we present the case of a young man with auditory agnosia as the consequence of cortical neurodegeneration who continues to experience pleasure when exposed to music. In a series of musical tasks the subject was unable to accurately identify any of the perceptual components of music beyond simple pitch discrimination, including musical variables know to impact the perception of affect. The subject subsequently misidentified the musical character of personally familiar tunes presented experimentally, but continued to report the activity of “listening” to specific musical genres was an emotionally rewarding experience. The implications of this case for the evolving understanding of music perception, music misperception, music memory, and music-associated emotion are discussed. PMID:19253088

  3. Enhanced Generalization of Auditory Conditioned Fear in Juvenile Mice

    ERIC Educational Resources Information Center

    Ito, Wataru; Pan, Bing-Xing; Yang, Chao; Thakur, Siddarth; Morozov, Alexei

    2009-01-01

    Increased emotionality is a characteristic of human adolescence, but its animal models are limited. Here we report that generalization of auditory conditioned fear between a conditional stimulus (CS+) and a novel auditory stimulus is stronger in 4-5-wk-old mice (juveniles) than in their 9-10-wk-old counterparts (adults), whereas nonassociative…

  4. Lack of Generalization of Auditory Learning in Typically Developing Children

    ERIC Educational Resources Information Center

    Halliday, Lorna F.; Taylor, Jenny L.; Millward, Kerri E.; Moore, David R.

    2012-01-01

    Purpose: To understand the components of auditory learning in typically developing children by assessing generalization across stimuli, across modalities (i.e., hearing, vision), and to higher level language tasks. Method: Eighty-six 8- to 10-year-old typically developing children were quasi-randomly assigned to 4 groups. Three of the groups…

  5. Tuned with a Tune: Talker Normalization via General Auditory Processes.

    PubMed

    Laing, Erika J C; Liu, Ran; Lotto, Andrew J; Holt, Lori L

    2012-01-01

    Voices have unique acoustic signatures, contributing to the acoustic variability listeners must contend with in perceiving speech, and it has long been proposed that listeners normalize speech perception to information extracted from a talker's speech. Initial attempts to explain talker normalization relied on extraction of articulatory referents, but recent studies of context-dependent auditory perception suggest that general auditory referents such as the long-term average spectrum (LTAS) of a talker's speech similarly affect speech perception. The present study aimed to differentiate the contributions of articulatory/linguistic versus auditory referents for context-driven talker normalization effects and, more specifically, to identify the specific constraints under which such contexts impact speech perception. Synthesized sentences manipulated to sound like different talkers influenced categorization of a subsequent speech target only when differences in the sentences' LTAS were in the frequency range of the acoustic cues relevant for the target phonemic contrast. This effect was true both for speech targets preceded by spoken sentence contexts and for targets preceded by non-speech tone sequences that were LTAS-matched to the spoken sentence contexts. Specific LTAS characteristics, rather than perceived talker, predicted the results suggesting that general auditory mechanisms play an important role in effects considered to be instances of perceptual talker normalization. PMID:22737140

  6. Learning Auditory Space: Generalization and Long-Term Effects

    PubMed Central

    Mendonça, Catarina; Campos, Guilherme; Dias, Paulo; Santos, Jorge A.

    2013-01-01

    Background Previous findings have shown that humans can learn to localize with altered auditory space cues. Here we analyze such learning processes and their effects up to one month on both localization accuracy and sound externalization. Subjects were trained and retested, focusing on the effects of stimulus type in learning, stimulus type in localization, stimulus position, previous experience, externalization levels, and time. Method We trained listeners in azimuth and elevation discrimination in two experiments. Half participated in the azimuth experiment first and half in the elevation first. In each experiment, half were trained in speech sounds and half in white noise. Retests were performed at several time intervals: just after training and one hour, one day, one week and one month later. In a control condition, we tested the effect of systematic retesting over time with post-tests only after training and either one day, one week, or one month later. Results With training all participants lowered their localization errors. This benefit was still present one month after training. Participants were more accurate in the second training phase, revealing an effect of previous experience on a different task. Training with white noise led to better results than training with speech sounds. Moreover, the training benefit generalized to untrained stimulus-position pairs. Throughout the post-tests externalization levels increased. In the control condition the long-term localization improvement was not lower without additional contact with the trained sounds, but externalization levels were lower. Conclusion Our findings suggest that humans adapt easily to altered auditory space cues and that such adaptation spreads to untrained positions and sound types. We propose that such learning depends on all available cues, but each cue type might be learned and retrieved differently. The process of localization learning is global, not limited to stimulus-position pairs, and

  7. Electrophysiological evidence for a general auditory prediction deficit in adults who stutter.

    PubMed

    Daliri, Ayoub; Max, Ludo

    2015-11-01

    We previously found that stuttering individuals do not show the typical auditory modulation observed during speech planning in nonstuttering individuals. In this follow-up study, we further elucidate this difference by investigating whether stuttering speakers' atypical auditory modulation is observed only when sensory predictions are based on movement planning or also when predictable auditory input is not a consequence of one's own actions. We recorded 10 stuttering and 10 nonstuttering adults' auditory evoked potentials in response to random probe tones delivered while anticipating either speaking aloud or hearing one's own speech played back and in a control condition without auditory input (besides probe tones). N1 amplitude of nonstuttering speakers was reduced prior to both speaking and hearing versus the control condition. Stuttering speakers, however, showed no N1 amplitude reduction in either the speaking or hearing condition as compared with control. Thus, findings suggest that stuttering speakers have general auditory prediction difficulties. PMID:26335995

  8. General Auditory Processing, Speech Perception and Phonological Awareness Skills in Chinese-English Biliteracy

    ERIC Educational Resources Information Center

    Chung, Kevin K. H.; McBride-Chang, Catherine; Cheung, Him; Wong, Simpson W. L.

    2013-01-01

    This study focused on the associations of general auditory processing, speech perception, phonological awareness and word reading in Cantonese-speaking children from Hong Kong learning to read both Chinese (first language [L1]) and English (second language [L2]). Children in Grades 2--4 ("N" = 133) participated and were administered measures of…

  9. Driving and neurodegenerative diseases.

    PubMed

    Uc, Ergun Y; Rizzo, Matthew

    2008-09-01

    The proportion of elderly people in the general population is rising, resulting in greater numbers of drivers with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. These neurodegenerative disorders impair cognition, visual perception, and motor function, leading to reduced driver fitness and greater crash risk. Yet neither medical diagnosis nor age alone is reliable enough to predict driver safety or crashes or to revoke the driving privileges of these individuals. Driving research utilizes tools such as questionnaires about driving habits and history, driving simulators, standardized road tests utilizing instrumented vehicles, and state driving records. Research challenges include outlining the evolution of driving safety, understanding the mechanisms of driving impairment, and developing a reliable and efficient standardized test battery for prediction of driver safety in neurodegenerative disorders. This information will enable healthcare providers to advise their patients with neurodegenerative disorders with more certainty, affect policy, and help develop rehabilitative measures for driving. PMID:18713573

  10. Increased Signal Complexity Improves the Breadth of Generalization in Auditory Perceptual Learning

    PubMed Central

    Brown, David J.; Proulx, Michael J.

    2013-01-01

    Perceptual learning can be specific to a trained stimulus or optimally generalized to novel stimuli with the breadth of generalization being imperative for how we structure perceptual training programs. Adapting an established auditory interval discrimination paradigm to utilise complex signals, we trained human adults on a standard interval for either 2, 4, or 10 days. We then tested the standard, alternate frequency, interval, and stereo input conditions to evaluate the rapidity of specific learning and breadth of generalization over the time course. In comparison with previous research using simple stimuli, the speed of perceptual learning and breadth of generalization were more rapid and greater in magnitude, including novel generalization to an alternate temporal interval within stimulus type. We also investigated the long term maintenance of learning and found that specific and generalized learning was maintained over 3 and 6 months. We discuss these findings regarding stimulus complexity in perceptual learning and how they can inform the development of effective training protocols. PMID:24349800

  11. Adaptive auditory feedback control of the production of formant trajectories in the Mandarin triphthong /iau/ and its pattern of generalization.

    PubMed

    Cai, Shanqing; Ghosh, Satrajit S; Guenther, Frank H; Perkell, Joseph S

    2010-10-01

    In order to test whether auditory feedback is involved in the planning of complex articulatory gestures in time-varying phonemes, the current study examined native Mandarin speakers' responses to auditory perturbations of their auditory feedback of the trajectory of the first formant frequency during their production of the triphthong /iau/. On average, subjects adaptively adjusted their productions to partially compensate for the perturbations in auditory feedback. This result indicates that auditory feedback control of speech movements is not restricted to quasi-static gestures in monophthongs as found in previous studies, but also extends to time-varying gestures. To probe the internal structure of the mechanisms of auditory-motor transformations, the pattern of generalization of the adaptation learned on the triphthong /iau/ to other vowels with different temporal and spatial characteristics (produced only under masking noise) was tested. A broad but weak pattern of generalization was observed; the strength of the generalization diminished with increasing dissimilarity from /iau/. The details and implications of the pattern of generalization are examined and discussed in light of previous sensorimotor adaptation studies of both speech and limb motor control and a neurocomputational model of speech motor control. PMID:20968374

  12. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. PMID:25726291

  13. Generalization of fear-potentiated startle in the presence of auditory cues: a parametric analysis

    PubMed Central

    Norrholm, Seth Davin; Jovanovic, Tanja; Briscione, Maria A.; Anderson, Kemp M.; Kwon, Cliffe K.; Warren, Victor T.; Bosshardt, Lauren; Bradley, Bekh

    2014-01-01

    Intense fear responses observed in trauma-, stressor-, and anxiety-related disorders can be elicited by a wide range of stimuli similar to those that were present during the traumatic event. The present study investigated the experimental utility of fear-potentiated startle paradigms to study this phenomenon, known as stimulus generalization, in healthy volunteers. Fear-potentiated startle refers to a relative increase in the acoustic startle response to a previously neutral stimulus that has been paired with an aversive stimulus. Specifically, in Experiment 1 an auditory pure tone (500 Hz) was used as the conditioned stimulus (CS+) and was reinforced with an unconditioned stimulus (US), an airblast to the larynx. A distinct tone (4000 Hz) was used as the nonreinforced stimulus (CS−) and was never paired with an airblast. Twenty-four hours later subjects underwent Re-training followed by a Generalization test, during which subjects were exposed to a range of generalization stimuli (GS) (250, 1000, 2000, 4000, 8000 Hz). In order to further examine the point at which fear no longer generalizes, a follow-up experiment (Experiment 2) was performed where a 4000 Hz pure tone was used as the CS+, and during the Generalization test, 2000 and 8000 Hz were used as GS. In both Experiment 1 and 2 there was significant discrimination in US expectancy responses on all stimuli during the Generalization Test, indicating the stimuli were perceptually distinct. In Experiment 1, participants showed similar levels of fear-potentiated startle to the GS that were adjacent to the CS+, and discriminated between stimuli that were 2 or more degrees from the CS+. Experiment 2 demonstrated no fear-potentiated startle generalization. The current study is the first to use auditory cues to test generalization of conditioned fear responses; such cues may be especially relevant to combat posttraumatic stress disorder (PTSD) where much of the traumatic exposure may involve sounds. PMID:25368559

  14. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children

    PubMed Central

    Murphy, Cristina F. B.; Moore, David R.; Schochat, Eliane

    2015-01-01

    Despite the well-established involvement of both sensory (“bottom-up”) and cognitive (“top-down”) processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported “far-transfer” to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups

  15. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    PubMed

    Murphy, Cristina F B; Moore, David R; Schochat, Eliane

    2015-01-01

    Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research

  16. Bat auditory cortex – model for general mammalian auditory computation or special design solution for active time perception?

    PubMed

    Kössl, Manfred; Hechavarria, Julio; Voss, Cornelia; Schaefer, Markus; Vater, Marianne

    2015-03-01

    Audition in bats serves passive orientation, alerting functions and communication as it does in other vertebrates. In addition, bats have evolved echolocation for orientation and prey detection and capture. This put a selective pressure on the auditory system in regard to echolocation-relevant temporal computation and frequency analysis. The present review attempts to evaluate in which respect the processing modules of bat auditory cortex (AC) are a model for typical mammalian AC function or are designed for echolocation-unique purposes. We conclude that, while cortical area arrangement and cortical frequency processing does not deviate greatly from that of other mammals, the echo delay time-sensitive dorsal cortex regions contain special designs for very powerful time perception. Different bat species have either a unique chronotopic cortex topography or a distributed salt-and-pepper representation of echo delay. The two designs seem to enable similar behavioural performance. PMID:25728173

  17. Concurrent sound segregation impairments in schizophrenia: The contribution of auditory-specific and general cognitive factors.

    PubMed

    Ramage, Erin M; Klimas, Nedka; Vogel, Sally J; Vertinski, Mary; Yerkes, Breanne D; Flores, Amanda; Sutton, Griffin P; Ringdahl, Erik N; Allen, Daniel N; Snyder, Joel S

    2016-01-01

    The present study sought to test whether perceptual segregation of concurrently played sounds is impaired in schizophrenia (SZ), whether impairment in sound segregation predicts difficulties with a real-world speech-in-noise task, and whether auditory-specific or general cognitive processing accounts for sound segregation problems. Participants with SZ and healthy controls (HCs) performed a mistuned harmonic segregation task during recording of event-related potentials (ERPs). Participants also performed a brief speech-in-noise task. Participants with SZ showed deficits in the mistuned harmonic task and the speech-in-noise task, compared to HCs. No deficit in SZ was found in the ERP component related to mistuned harmonic segregation at around 150ms (the object-related negativity or ORN), but instead showed a deficit in processing at around 400ms (the P4 response). However, regression analyses showed that indexes of education level and general cognitive function were the best predictors of sound segregation difficulties, suggesting non-auditory specific causes of concurrent sound segregation problems in SZ. PMID:26644302

  18. How Challenges in Auditory fMRI Led to General Advancements for the Field

    PubMed Central

    Talavage, Thomas M.; Hall, Deborah A.

    2012-01-01

    In the early years of fMRI research, the auditory neuroscience community sought to expand its knowledge of the underlying physiology of hearing, while also seeking to come to grips with the inherent acoustic disadvantages of working in the fMRI environment. Early collaborative efforts between prominent auditory research laboratories and prominent fMRI centers led to development of a number of key technical advances that have subsequently been widely used to elucidate principles of auditory neurophysiology. Perhaps the key imaging advance was the simultaneous and parallel development of strategies to use pulse sequences in which the volume acquisitions were “clustered,” providing gaps in which stimuli could be presented without direct masking. Such sequences have become widespread in fMRI studies using auditory stimuli and also in a range of translational research domains. This review presents the parallel stories of the people and the auditory neurophysiology research that led to these sequences. PMID:22245349

  19. Utility of an airframe referenced spatial auditory display for general aviation operations

    NASA Astrophysics Data System (ADS)

    Naqvi, M. Hassan; Wigdahl, Alan J.; Ranaudo, Richard J.

    2009-05-01

    The University of Tennessee Space Institute (UTSI) completed flight testing with an airframe-referenced localized audio cueing display. The purpose was to assess its affect on pilot performance, workload, and situational awareness in two scenarios simulating single-pilot general aviation operations under instrument meteorological conditions. Each scenario consisted of 12 test procedures conducted under simulated instrument meteorological conditions, half with the cue off, and half with the cue on. Simulated aircraft malfunctions were strategically inserted at critical times during each test procedure. Ten pilots participated in the study; half flew a moderate workload scenario consisting of point to point navigation and holding pattern operations and half flew a high workload scenario consisting of non precision approaches and missed approach procedures. Flight data consisted of aircraft and navigation state parameters, NASA Task Load Index (TLX) assessments, and post-flight questionnaires. With localized cues there was slightly better pilot technical performance, a reduction in workload, and a perceived improvement in situational awareness. Results indicate that an airframe-referenced auditory display has utility and pilot acceptance in general aviation operations.

  20. Categorical vowel perception enhances the effectiveness and generalization of auditory feedback in human-machine-interfaces.

    PubMed

    Larson, Eric; Terry, Howard P; Canevari, Margaux M; Stepp, Cara E

    2013-01-01

    Human-machine interface (HMI) designs offer the possibility of improving quality of life for patient populations as well as augmenting normal user function. Despite pragmatic benefits, utilizing auditory feedback for HMI control remains underutilized, in part due to observed limitations in effectiveness. The goal of this study was to determine the extent to which categorical speech perception could be used to improve an auditory HMI. Using surface electromyography, 24 healthy speakers of American English participated in 4 sessions to learn to control an HMI using auditory feedback (provided via vowel synthesis). Participants trained on 3 targets in sessions 1-3 and were tested on 3 novel targets in session 4. An "established categories with text cues" group of eight participants were trained and tested on auditory targets corresponding to standard American English vowels using auditory and text target cues. An "established categories without text cues" group of eight participants were trained and tested on the same targets using only auditory cuing of target vowel identity. A "new categories" group of eight participants were trained and tested on targets that corresponded to vowel-like sounds not part of American English. Analyses of user performance revealed significant effects of session and group (established categories groups and the new categories group), and a trend for an interaction between session and group. Results suggest that auditory feedback can be effectively used for HMI operation when paired with established categorical (native vowel) targets with an unambiguous cue. PMID:23527278

  1. Musicians Show General Enhancement of Complex Sound Encoding and Better Inhibition of Irrelevant Auditory Change in Music: An ERP Study

    PubMed Central

    Kaganovich, Natalya; Kim, Jihyun; Herring, Caryn; Schumaker, Jennifer; MacPherson, Megan; Weber-Fox, Christine

    2012-01-01

    Using electrophysiology, we have examined two questions in relation to musical training – namely, whether it enhances sensory encoding of the human voice and whether it improves the ability to ignore irrelevant auditory change. Participants performed an auditory distraction task, in which they identified each sound as either short (350 ms) or long (550 ms) and ignored a change in sounds’ timbre. Sounds consisted of a male and a female voice saying a neutral sound [a], and of a cello and a French Horn playing an F3 note. In some blocks, musical sounds occurred on 80% of trials, while voice sounds on 20% of trials. In other blocks, the reverse was true. Participants heard naturally recorded sounds in half of experimental blocks and their spectrally-rotated versions in the other half. Regarding voice perception, we found that musicians had a larger N1 ERP component not only to vocal sounds but also to their never before heard spectrally-rotated versions. We, therefore, conclude that musical training is associated with a general improvement in the early neural encoding of complex sounds. Regarding the ability to ignore irrelevant auditory change, musicians’ accuracy tended to suffer less from the change in sounds’ timbre, especially when deviants were musical notes. This behavioral finding was accompanied by a marginally larger re-orienting negativity in musicians, suggesting that their advantage may lie in a more efficient disengagement of attention from the distracting auditory dimension. PMID:23301775

  2. Musicians show general enhancement of complex sound encoding and better inhibition of irrelevant auditory change in music: an ERP study.

    PubMed

    Kaganovich, Natalya; Kim, Jihyun; Herring, Caryn; Schumaker, Jennifer; Macpherson, Megan; Weber-Fox, Christine

    2013-04-01

    Using electrophysiology, we have examined two questions in relation to musical training - namely, whether it enhances sensory encoding of the human voice and whether it improves the ability to ignore irrelevant auditory change. Participants performed an auditory distraction task, in which they identified each sound as either short (350 ms) or long (550 ms) and ignored a change in timbre of the sounds. Sounds consisted of a male and a female voice saying a neutral sound [a], and of a cello and a French Horn playing an F3 note. In some blocks, musical sounds occurred on 80% of trials, while voice sounds on 20% of trials. In other blocks, the reverse was true. Participants heard naturally recorded sounds in half of experimental blocks and their spectrally-rotated versions in the other half. Regarding voice perception, we found that musicians had a larger N1 event-related potential component not only to vocal sounds but also to their never before heard spectrally-rotated versions. We therefore conclude that musical training is associated with a general improvement in the early neural encoding of complex sounds. Regarding the ability to ignore irrelevant auditory change, musicians' accuracy tended to suffer less from the change in timbre of the sounds, especially when deviants were musical notes. This behavioral finding was accompanied by a marginally larger re-orienting negativity in musicians, suggesting that their advantage may lie in a more efficient disengagement of attention from the distracting auditory dimension. PMID:23301775

  3. Categorization of Extremely Brief Auditory Stimuli: Domain-Specific or Domain-General Processes?

    PubMed Central

    Bigand, Emmanuel; Delbé, Charles; Gérard, Yannick; Tillmann, Barbara

    2011-01-01

    The present study investigated the minimum amount of auditory stimulation that allows differentiation of spoken voices, instrumental music, and environmental sounds. Three new findings were reported. 1) All stimuli were categorized above chance level with 50 ms-segments. 2) When a peak-level normalization was applied, music and voices started to be accurately categorized with 20 ms-segments. When the root-mean-square (RMS) energy of the stimuli was equalized, voice stimuli were better recognized than music and environmental sounds. 3) Further psychoacoustical analyses suggest that the categorization of extremely brief auditory stimuli depends on the variability of their spectral envelope in the used set. These last two findings challenge the interpretation of the voice superiority effect reported in previously published studies and propose a more parsimonious interpretation in terms of an emerging property of auditory categorization processes. PMID:22046436

  4. Uncertainty in visual and auditory series is coded by modality-general and modality-specific neural systems.

    PubMed

    Nastase, Samuel; Iacovella, Vittorio; Hasson, Uri

    2014-04-01

    Coding for the degree of disorder in a temporally unfolding sensory input allows for optimized encoding of these inputs via information compression and predictive processing. Prior neuroimaging work has examined sensitivity to statistical regularities within single sensory modalities and has associated this function with the hippocampus, anterior cingulate, and lateral temporal cortex. Here we investigated to what extent sensitivity to input disorder, quantified by Markov entropy, is subserved by modality-general or modality-specific neural systems when participants are not required to monitor the input. Participants were presented with rapid (3.3 Hz) auditory and visual series varying over four levels of entropy, while monitoring an infrequently changing fixation cross. For visual series, sensitivity to the magnitude of disorder was found in early visual cortex, the anterior cingulate, and the intraparietal sulcus. For auditory series, sensitivity was found in inferior frontal, lateral temporal, and supplementary motor regions implicated in speech perception and sequencing. Ventral premotor and central cingulate cortices were identified as possible candidates for modality-general uncertainty processing, exhibiting marginal sensitivity to disorder in both modalities. The right temporal pole differentiated the highest and lowest levels of disorder in both modalities, but did not show general sensitivity to the parametric manipulation of disorder. Our results indicate that neural sensitivity to input disorder relies largely on modality-specific systems embedded in extended sensory cortices, though uncertainty-related processing in frontal regions may be driven by both input modalities. PMID:23408389

  5. Auditory Same/Different Concept Learning and Generalization in Black-Capped Chickadees (Poecile atricapillus)

    PubMed Central

    Hoeschele, Marisa; Cook, Robert G.; Guillette, Lauren M.; Hahn, Allison H.; Sturdy, Christopher B.

    2012-01-01

    Abstract concept learning was thought to be uniquely human, but has since been observed in many other species. Discriminating same from different is one abstract relation that has been studied frequently. In the current experiment, using operant conditioning, we tested whether black-capped chickadees (Poecile atricapillus) could discriminate sets of auditory stimuli based on whether all the sounds within a sequence were the same or different from one another. The chickadees were successful at solving this same/different relational task, and transferred their learning to same/different sequences involving novel combinations of training notes and novel notes within the range of pitches experienced during training. The chickadees showed limited transfer to pitches that was not used in training, suggesting that the processing of absolute pitch may constrain their relational performance. Our results indicate, for the first time, that black-capped chickadees readily form relational auditory same and different categories, adding to the list of perceptual, behavioural, and cognitive abilities that make this species an important comparative model for human language and cognition. PMID:23077660

  6. Optogenetics for neurodegenerative diseases

    PubMed Central

    Vann, Kiara T; Xiong, Zhi-Gang

    2016-01-01

    Neurodegenerative diseases are devastating conditions that lead to progressive degeneration of neurons. Neurodegeneration may result in ataxia, dementia, and muscle atrophies, etc. Despite enormous research efforts that have been made, there is lack of effective therapeutic interventions for most of these diseases. Optogenetics is a recently developed novel technique that combines optics and genetics to modulate the activity of specific neurons. Optogenetics has been implemented in various studies including neuropsychiatric disorders and neurodegenerative diseases. This review focuses on the recent advance in using this technique for the studies of common neurodegenerative diseases. PMID:27186317

  7. A general auditory bias for handling speaker variability in speech? Evidence in humans and songbirds

    PubMed Central

    Kriengwatana, Buddhamas; Escudero, Paola; Kerkhoven, Anne H.; Cate, Carel ten

    2015-01-01

    Different speakers produce the same speech sound differently, yet listeners are still able to reliably identify the speech sound. How listeners can adjust their perception to compensate for speaker differences in speech, and whether these compensatory processes are unique only to humans, is still not fully understood. In this study we compare the ability of humans and zebra finches to categorize vowels despite speaker variation in speech in order to test the hypothesis that accommodating speaker and gender differences in isolated vowels can be achieved without prior experience with speaker-related variability. Using a behavioral Go/No-go task and identical stimuli, we compared Australian English adults’ (naïve to Dutch) and zebra finches’ (naïve to human speech) ability to categorize / I/ and /ε/ vowels of an novel Dutch speaker after learning to discriminate those vowels from only one other speaker. Experiments 1 and 2 presented vowels of two speakers interspersed or blocked, respectively. Results demonstrate that categorization of vowels is possible without prior exposure to speaker-related variability in speech for zebra finches, and in non-native vowel categories for humans. Therefore, this study is the first to provide evidence for what might be a species-shared auditory bias that may supersede speaker-related information during vowel categorization. It additionally provides behavioral evidence contradicting a prior hypothesis that accommodation of speaker differences is achieved via the use of formant ratios. Therefore, investigations of alternative accounts of vowel normalization that incorporate the possibility of an auditory bias for disregarding inter-speaker variability are warranted. PMID:26379579

  8. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  9. Glutamate and Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  10. Sleep in Neurodegenerative Diseases.

    PubMed

    Iranzo, Alex

    2016-03-01

    Disorders of sleep are an integral part of neurodegenerative diseases and include insomnia, sleep-wake cycle disruption, excessive daytime sleepiness that may be manifested as persistent somnolence or sudden onset of sleep episodes, obstructive and central sleep apnea, rapid eye movement sleep behavior disorder, and restless legs syndrome. The origin of these sleep disorders is multifactorial including degeneration of the brain areas that modulate sleep, the symptoms of the disease, and the effect of medications. Treatment of sleep disorders in patients with neurodegenerative diseases should be individualized and includes behavioral therapy, sleep hygiene, bright light therapy, melatonin, hypnotics, waking-promoting agents, and continuous positive airway pressure. PMID:26972029

  11. Aquatherapy for neurodegenerative disorders.

    PubMed

    Plecash, Alyson R; Leavitt, Blair R

    2014-01-01

    Aquatherapy is used for rehabilitation and exercise; water provides a challenging, yet safe exercise environment for many special populations. We have reviewed the use of aquatherapy programs in four neurodegenerative disorders: Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. Results support the use of aquatherapy in Parkinson's disease and multiple sclerosis, however further evidence is required to make specific recommendations in all of the aforementioned disorders. PMID:25062761

  12. Inflammation in neurodegenerative diseases

    PubMed Central

    Amor, Sandra; Puentes, Fabiola; Baker, David; van der Valk, Paul

    2010-01-01

    Neurodegeneration, the slow and progressive dysfunction and loss of neurons and axons in the central nervous system, is the primary pathological feature of acute and chronic neurodegenerative conditions such as Alzheimer’s disease and Parkinson’s disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury and multiple sclerosis. Despite different triggering events, a common feature is chronic immune activation, in particular of microglia, the resident macrophages of the central nervous system. Apart from the pathogenic role of immune responses, emerging evidence indicates that immune responses are also critical for neuroregeneration. Here, we review the impact of innate and adaptive immune responses on the central nervous system in autoimmune, viral and other neurodegenerative disorders, and discuss their contribution to either damage or repair. We also discuss potential therapies aimed at the immune responses within the central nervous system. A better understanding of the interaction between the immune and nervous systems will be crucial to either target pathogenic responses, or augment the beneficial effects of immune responses as a strategy to intervene in chronic neurodegenerative diseases. PMID:20561356

  13. Glycoproteomics in Neurodegenerative Diseases

    PubMed Central

    Hwang, Hyejin; Zhang, Jianpeng; Chung, Kathryn A.; Leverenz, James B.; Zabetian, Cyrus P.; Peskind, Elaine R.; Jankovic, Joseph; Su, Zhen; Hancock, Aneeka M.; Pan, Catherine; Montine, Thomas J.; Pan, Sheng; Nutt, John; Albin, Roger; Gearing, Marla; Beyer, Richard P.; Shi, Min; Zhang, Jing

    2009-01-01

    Protein glycosylation regulates protein function and cellular distribution. Additionally, aberrant protein glycosylations have been recognized to play major roles in human disorders, including neurodegenerative diseases. Glycoproteomics, a branch of proteomics that catalogs and quantifies glycoproteins, provides a powerful means to systematically profile the glycopeptides or glycoproteins of a complex mixture that are highly enriched in body fluids, and therefore, carry great potential to be diagnostic and/or prognostic markers. Application of this mass spectrometry-based technology to the study of neurodegenerative disorders (e.g., Alzheimer's disease and Parkinson's disease) is relatively new, and is expected to provide insight into the biochemical pathogenesis of neurodegeneration, as well as biomarker discovery. In this review, we have summarized the current understanding of glycoproteins in biology and neurodegenerative disease, and have discussed existing proteomic technologies that are utilized to characterize glycoproteins. Some of the ongoing studies, where glycoproteins isolated from cerebrospinal fluid and human brain are being characterized in Parkinson's disease at different stages versus controls, are presented, along with future applications of targeted validation of brain specific glycoproteins in body fluids. PMID:19358229

  14. Visual Hallucinations in the Psychosis Spectrum and Comparative Information From Neurodegenerative Disorders and Eye Disease

    PubMed Central

    Waters, Flavie; Collerton, Daniel; ffytche, Dominic H.; Jardri, Renaud; Pins, Delphine; Dudley, Robert; Blom, Jan Dirk; Mosimann, Urs Peter; Eperjesi, Frank; Ford, Stephen; Larøi, Frank

    2014-01-01

    Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications. PMID:24936084

  15. Nanotechnology for neurodegenerative disorders.

    PubMed

    Re, Francesca; Gregori, Maria; Masserini, Massimo

    2012-09-01

    The efficacy, cellular uptake and specific transport of drugs and/or imaging agents to target organs, tissues and cells are common issues in the diagnosis and treatment of different disorders. In the case of neurodegenerative diseases, they represent complex problems, since brain targeting remains a still unsolved challenge in pharmacology, due to the presence of the blood-brain barrier, a tightly packed layer of endothelial cells that prevents unwanted substances to enter the brain. Engineered nanomaterials, objects with dimensions of 1-100 nm, are providing interesting biomedical tools potentially able to solve these problems, thanks to their physico-chemical features and to the possibility of multi-functionalization, allowing to confer them different features at the same time, including the ability to cross the blood-brain barrier. This review focuses on the state-of-the-art of nanomaterials suitable for therapy and diagnostic imaging of the most common neurodegenerative disorders, as well as for neuroprotection and neuronal tissue regeneration. Finally, their potential neurotoxicity is discussed, and future nanotechnological approaches are described. PMID:22261367

  16. Auditory object cognition in dementia.

    PubMed

    Goll, Johanna C; Kim, Lois G; Hailstone, Julia C; Lehmann, Manja; Buckley, Aisling; Crutch, Sebastian J; Warren, Jason D

    2011-07-01

    The cognition of nonverbal sounds in dementia has been relatively little explored. Here we undertook a systematic study of nonverbal sound processing in patient groups with canonical dementia syndromes comprising clinically diagnosed typical amnestic Alzheimer's disease (AD; n=21), progressive nonfluent aphasia (PNFA; n=5), logopenic progressive aphasia (LPA; n=7) and aphasia in association with a progranulin gene mutation (GAA; n=1), and in healthy age-matched controls (n=20). Based on a cognitive framework treating complex sounds as 'auditory objects', we designed a novel neuropsychological battery to probe auditory object cognition at early perceptual (sub-object), object representational (apperceptive) and semantic levels. All patients had assessments of peripheral hearing and general neuropsychological functions in addition to the experimental auditory battery. While a number of aspects of auditory object analysis were impaired across patient groups and were influenced by general executive (working memory) capacity, certain auditory deficits had some specificity for particular dementia syndromes. Patients with AD had a disproportionate deficit of auditory apperception but preserved timbre processing. Patients with PNFA had salient deficits of timbre and auditory semantic processing, but intact auditory size and apperceptive processing. Patients with LPA had a generalised auditory deficit that was influenced by working memory function. In contrast, the patient with GAA showed substantial preservation of auditory function, but a mild deficit of pitch direction processing and a more severe deficit of auditory apperception. The findings provide evidence for separable stages of auditory object analysis and separable profiles of impaired auditory object cognition in different dementia syndromes. PMID:21689671

  17. Targeting autophagy in neurodegenerative diseases.

    PubMed

    Vidal, René L; Matus, Soledad; Bargsted, Leslie; Hetz, Claudio

    2014-11-01

    The most prevalent neurodegenerative disorders involve protein misfolding and the aggregation of specific proteins. Autophagy is becoming an attractive target to treat neurodegenerative disorders through the selective degradation of abnormally folded proteins by the lysosomal pathway. However, accumulating evidence indicates that autophagy impairment at different regulatory steps may contribute to the neurodegenerative process. Thus, a complex scenario is emerging where autophagy may play a dual role in neurodegenerative diseases by causing the downstream effect of promoting the degradation of misfolded proteins and an upstream effect where its deregulation perturbs global proteostasis, contributing to disease progression. Challenges in the future development of therapeutic strategies to target the autophagy pathway are discussed. PMID:25270767

  18. Role of neuroinflammation in neurodegenerative diseases (Review).

    PubMed

    Chen, Wei-Wei; Zhang, Xia; Huang, Wen-Juan

    2016-04-01

    Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro‑inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro‑inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases. PMID:26935478

  19. Role of neuroinflammation in neurodegenerative diseases (Review)

    PubMed Central

    CHEN, WEI-WEI; ZHANG, XIA; HUANG, WEN-JUAN

    2016-01-01

    Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro-inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro-inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases. PMID:26935478

  20. DNA damage in neurodegenerative diseases.

    PubMed

    Coppedè, Fabio; Migliore, Lucia

    2015-06-01

    Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans. PMID:26255941

  1. Oxidative Stress in Neurodegenerative Diseases.

    PubMed

    Niedzielska, Ewa; Smaga, Irena; Gawlik, Maciej; Moniczewski, Andrzej; Stankowicz, Piotr; Pera, Joanna; Filip, Małgorzata

    2016-08-01

    The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction. PMID:26198567

  2. Auditory Channel Problems.

    ERIC Educational Resources Information Center

    Mann, Philip H.; Suiter, Patricia A.

    This teacher's guide contains a list of general auditory problem areas where students have the following problems: (a) inability to find or identify source of sound; (b) difficulty in discriminating sounds of words and letters; (c) difficulty with reproducing pitch, rhythm, and melody; (d) difficulty in selecting important from unimportant sounds;…

  3. Depressive symptoms in neurodegenerative diseases

    PubMed Central

    Baquero, Miquel; Martín, Nuria

    2015-01-01

    Depressive symptoms are very common in chronic conditions. This is true so for neurodegenerative diseases. A number of patients with cognitive decline and dementia due to Alzheimer’s disease and related conditions like Parkinson’s disease, Lewy body disease, vascular dementia, frontotemporal degeneration amongst other entities, experience depressive symptoms in greater or lesser grade at some point during the course of the illness. Depressive symptoms have a particular significance in neurological disorders, specially in neurodegenerative diseases, because brain, mind, behavior and mood relationship. A number of patients may develop depressive symptoms in early stages of the neurologic disease, occurring without clear presence of cognitive decline with only mild cognitive deterioration. Classically, depression constitutes a reliable diagnostic challenge in this setting. However, actually we can recognize and evaluate depressive, cognitive or motor symptoms of neurodegenerative disease in order to establish their clinical significance and to plan some therapeutic strategies. Depressive symptoms can appear also lately, when the neurodegenerative disease is fully developed. The presence of depression and other neuropsychiatric symptoms have a negative impact on the quality-of-life of patients and caregivers. Besides, patients with depressive symptoms also tend to further decrease function and reduce cognitive abilities and also uses to present more affected clinical status, compared with patients without depression. Depressive symptoms are treatable. Early detection of depressive symptoms is very important in patients with neurodegenerative disorders, in order to initiate the most adequate treatment. We review in this paper the main neurodegenerative diseases, focusing in depressive symptoms of each other entities and current recommendations of management and treatment. PMID:26301229

  4. Depressive symptoms in neurodegenerative diseases.

    PubMed

    Baquero, Miquel; Martín, Nuria

    2015-08-16

    Depressive symptoms are very common in chronic conditions. This is true so for neurodegenerative diseases. A number of patients with cognitive decline and dementia due to Alzheimer's disease and related conditions like Parkinson's disease, Lewy body disease, vascular dementia, frontotemporal degeneration amongst other entities, experience depressive symptoms in greater or lesser grade at some point during the course of the illness. Depressive symptoms have a particular significance in neurological disorders, specially in neurodegenerative diseases, because brain, mind, behavior and mood relationship. A number of patients may develop depressive symptoms in early stages of the neurologic disease, occurring without clear presence of cognitive decline with only mild cognitive deterioration. Classically, depression constitutes a reliable diagnostic challenge in this setting. However, actually we can recognize and evaluate depressive, cognitive or motor symptoms of neurodegenerative disease in order to establish their clinical significance and to plan some therapeutic strategies. Depressive symptoms can appear also lately, when the neurodegenerative disease is fully developed. The presence of depression and other neuropsychiatric symptoms have a negative impact on the quality-of-life of patients and caregivers. Besides, patients with depressive symptoms also tend to further decrease function and reduce cognitive abilities and also uses to present more affected clinical status, compared with patients without depression. Depressive symptoms are treatable. Early detection of depressive symptoms is very important in patients with neurodegenerative disorders, in order to initiate the most adequate treatment. We review in this paper the main neurodegenerative diseases, focusing in depressive symptoms of each other entities and current recommendations of management and treatment. PMID:26301229

  5. Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Johri, Ashu

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Here, we provide a concise overview of the major findings in recent years highlighting the importance of healthy mitochondria for a healthy neuron. PMID:22700435

  6. Auditory synesthesias.

    PubMed

    Afra, Pegah

    2015-01-01

    Synesthesia is experienced when sensory stimulation of one sensory modality (the inducer) elicits an involuntary or automatic sensation in another sensory modality or different aspect of the same sensory modality (the concurrent). Auditory synesthesias (AS) occur when auditory stimuli trigger a variety of concurrents, or when non-auditory sensory stimulations trigger auditory synesthetic perception. The AS are divided into three types: developmental, acquired, and induced. Developmental AS are not a neurologic disorder but a different way of experiencing one's environment. They are involuntary and highly consistent experiences throughout one's life. Acquired AS have been reported in association with neurologic diseases that cause deafferentation of anterior optic pathways, with pathologic lesions affecting the central nervous system (CNS) outside of the optic pathways, as well as non-lesional cases associated with migraine, and epilepsy. It also has been reported with mood disorders as well as a single idiopathic case. Induced AS has been reported in experimental and postsurgical blindfolding, as well as intake of hallucinogenics or psychedelics. In this chapter the three different types of synesthesia, their characteristics, and phenomologic differences, as well as their possible neural mechanisms are discussed. PMID:25726281

  7. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  8. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases.

    PubMed

    Sharma, Meenakshi; Tiwari, Manisha; Tiwari, Rakesh Kumar

    2015-11-01

    Neurodegenerative diseases are the diseases of the central nervous system with various aetiology and symptoms. Dementia, Alzheimer's disease (AD), Parkinson's disease (PD) and autism are some examples of neurodegenerative diseases. Hyperhomocysteinemia (Hhcy) is considered to be an independent risk factor for numerous pathological conditions under neurodegenerative diseases. Along with genetic factors that are the prime cause of homocysteine (Hcy) imbalance, the nutritional and hormonal factors are also contributing to high Hcy levels in the body. Numerous clinical and epidemiological data confirm the direct correlation of Hcy levels in the body and generation of different types of central nervous system disorders, cardiovascular diseases, cancer and others. Till now, it is difficult to say whether homocysteine is the cause of the disease or whether it is one of the impacts of the diseases. However, Hhcy is a surrogate marker of vitamin B deficiency and is a neurotoxic agent. This Mini Review will give an overview of how far research has gone into understanding the homocysteine imbalance with prognostic, causative and preventive measures in treating neurodegenerative diseases. PMID:26036286

  9. Incidental Auditory Category Learning

    PubMed Central

    Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.

    2015-01-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588

  10. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system.

    PubMed

    Shao, Yu; Chang, Chip-Hong

    2007-08-01

    We present a new speech enhancement scheme for a single-microphone system to meet the demand for quality noise reduction algorithms capable of operating at a very low signal-to-noise ratio. A psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise and improve the intelligibility of speech. The proposed method is a generalized time-frequency subtraction algorithm, which advantageously exploits the wavelet multirate signal representation to preserve the critical transient information. Simultaneous masking and temporal masking of the human auditory system are modeled by the perceptual wavelet packet transform via the frequency and temporal localization of speech components. The wavelet coefficients are used to calculate the Bark spreading energy and temporal spreading energy, from which a time-frequency masking threshold is deduced to adaptively adjust the subtraction parameters of the proposed method. An unvoiced speech enhancement algorithm is also integrated into the system to improve the intelligibility of speech. Through rigorous objective and subjective evaluations, it is shown that the proposed speech enhancement system is capable of reducing noise with little speech degradation in adverse noise environments and the overall performance is superior to several competitive methods. PMID:17702286

  11. Developmental neuroplasticity and the origin of neurodegenerative diseases.

    PubMed

    Schaefers, Andrea T U; Teuchert-Noodt, Gertraud

    2013-05-24

    Objectives. Neurodegenerative diseases like Alzheimer's and Parkinson's Disease, marked by characteristic protein aggregations, are more and more accepted to be synaptic disorders and to arise from a combination of genetic and environmental factors. In this review we propose our concept that neuroplasticity might constitute a link between early life challenges and neurodegeneration. Methods. After introducing the general principles of neuroplasticity, we show how adverse environmental stimuli during development impact adult neuroplasticity and might lead to neurodegenerative processes. Results. There are significant overlaps between neurodevelopmental and neurodegenerative processes. Proteins that represent hallmarks of neurodegeneration are involved in plastic processes under physiological conditions. Brain regions - particularly the hippocampus - that retain life-long plastic capacities are the key targets of neurodegeneration. Neuroplasticity is highest in young age making the brain more susceptible to external influences than later in life. Impacts during critical periods have life-long consequences on neuroplasticity and structural self-organization and are known to be common risk factors for neurodegenerative diseases. Conclusions. Several lines of evidence support a link between developmental neuroplasticity and neurodegenerative processes later in life. A deeper insight into these processes is necessary to design strategies to mitigate or even prevent neurodegenerative pathologies. PMID:23705632

  12. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  13. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    PubMed

    Mossbridge, Julia A; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  14. Omental transplantation for neurodegenerative diseases

    PubMed Central

    Rafael, Hernando

    2014-01-01

    Up to date, almost all researchers consider that there is still no effective therapy for neurodegenerative diseases (NDDs) and therefore, these diseases are incurable. However, since May 1998, we know that a progressive ischemia in the medial temporal lobes and subcommissural regions can cause Alzheimer’s disease; because, in contrast to this, its revascularization by means of omental tissue can cure or improve this disease. Likewise we observed that the aging process, Huntington’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis; all of them are of ischemic origin caused by cerebral atherosclerosis, associated with vascular anomalies and/or environmental chemicals. On the contrary, an omental transplantation on the affected zone can stop and improve these diseases. For these reasons, I believe that NDDs, are wrongly classified as neurodegenerative disorders. PMID:25232510

  15. Molecular diagnostics of neurodegenerative disorders

    PubMed Central

    Agrawal, Megha; Biswas, Abhijit

    2015-01-01

    Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders. PMID:26442283

  16. Metal imaging in neurodegenerative diseases

    PubMed Central

    Bourassa, Megan W.

    2014-01-01

    Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194

  17. Essential Tremor: A Neurodegenerative Disease?

    PubMed Central

    Benito-León, Julián

    2014-01-01

    Background Essential tremor (ET) is one of the most common neurological disorders among adults, and is the most common of the many tremor disorders. It has classically been viewed as a benign monosymptomatic condition, yet over the past decade, a growing body of evidence indicates that ET is a progressive condition that is clinically heterogeneous, as it may be associated with a spectrum of clinical features, with both motor and non-motor elements. In this review, I will describe the most significant emerging milestones in research which, when taken together, suggest that ET is a neurodegenerative condition. Methods A PubMed search conducted in June 2014 crossing the terms “essential tremor” (ET) and “neurodegenerative” yielded 122 entries, 20 of which included the term “neurodegenerative” in the article title. This was supplemented by articles in the author's files that pertained to this topic. Results/Discussion There is an open and active dialogue in the medical community as to whether ET is a neurodegenerative disease, with considerable evidence in favor of this. Specifically, ET is a progressive disorder of aging associated with neuronal loss (reduction in Purkinje cells) as well as other post-mortem changes that occur in traditional neurodegenerative disorders. Along with this, advanced neuroimaging techniques are now demonstrating distinct structural changes, several of which are consistent with neuronal loss, in patients with ET. However, further longitudinal clinical and neuroimaging longitudinal studies to assess progression are required. PMID:25120943

  18. Individual differences in auditory abilities.

    PubMed

    Kidd, Gary R; Watson, Charles S; Gygi, Brian

    2007-07-01

    Performance on 19 auditory discrimination and identification tasks was measured for 340 listeners with normal hearing. Test stimuli included single tones, sequences of tones, amplitude-modulated and rippled noise, temporal gaps, speech, and environmental sounds. Principal components analysis and structural equation modeling of the data support the existence of a general auditory ability and four specific auditory abilities. The specific abilities are (1) loudness and duration (overall energy) discrimination; (2) sensitivity to temporal envelope variation; (3) identification of highly familiar sounds (speech and nonspeech); and (4) discrimination of unfamiliar simple and complex spectral and temporal patterns. Examination of Scholastic Aptitude Test (SAT) scores for a large subset of the population revealed little or no association between general or specific auditory abilities and general intellectual ability. The findings provide a basis for research to further specify the nature of the auditory abilities. Of particular interest are results suggestive of a familiar sound recognition (FSR) ability, apparently specialized for sound recognition on the basis of limited or distorted information. This FSR ability is independent of normal variation in both spectral-temporal acuity and of general intellectual ability. PMID:17614500

  19. Can rhythmic auditory cuing remediate language-related deficits in Parkinson's disease?

    PubMed

    Kotz, Sonja A; Gunter, Thomas C

    2015-03-01

    Neurodegenerative changes of the basal ganglia in idiopathic Parkinson's disease (IPD) lead to motor deficits as well as general cognitive decline. Given these impairments, the question arises as to whether motor and nonmotor deficits can be ameliorated similarly. We reason that a domain-general sensorimotor circuit involved in temporal processing may support the remediation of such deficits. Following findings that auditory cuing benefits gait kinematics, we explored whether reported language-processing deficits in IPD can also be remediated via auditory cuing. During continuous EEG measurement, an individual diagnosed with IPD heard two types of temporally predictable but metrically different auditory beat-based cues: a march, which metrically aligned with the speech accent structure, a waltz that did not metrically align, or no cue before listening to naturally spoken sentences that were either grammatically well formed or were semantically or syntactically incorrect. Results confirmed that only the cuing with a march led to improved computation of syntactic and semantic information. We infer that a marching rhythm may lead to a stronger engagement of the cerebello-thalamo-cortical circuit that compensates dysfunctional striato-cortical timing. Reinforcing temporal realignment, in turn, may lead to the timely processing of linguistic information embedded in the temporally variable speech signal. PMID:25773618

  20. Auditory sequence analysis and phonological skill.

    PubMed

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E; Turton, Stuart; Griffiths, Timothy D

    2012-11-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739

  1. Electrophysiological study of auditory development.

    PubMed

    Lippé, S; Martinez-Montes, E; Arcand, C; Lassonde, M

    2009-12-15

    Cortical auditory evoked potential (CAEP) testing, a non-invasive technique, is widely employed to study auditory brain development. The aim of this study was to investigate the development of the auditory electrophysiological signal without addressing specific abilities such as speech or music discrimination. We were interested in the temporal and spectral domains of conventional auditory evoked potentials. We analyzed cerebral responses to auditory stimulation (broadband noises) in 40 infants and children (1 month to 5 years 6 months) and 10 adults using high-density electrophysiological recording. We hypothesized that the adult auditory response has precursors that can be identified in infant and child responses. Results confirm that complex adult CAEP responses and spectral activity patterns appear after 5 years, showing decreased involvement of lower frequencies and increased involvement of higher frequencies. In addition, time-locked response to stimulus and event-related spectral pertubation across frequencies revealed alpha and beta band contributions to the CAEP of infants and toddlers before mutation to the beta and gamma band activity of the adult response. A detailed analysis of electrophysiological responses to a perceptual stimulation revealed general development patterns and developmental precursors of the adult response. PMID:19665050

  2. Ubiquitin pathways in neurodegenerative disease

    PubMed Central

    Atkin, Graham; Paulson, Henry

    2014-01-01

    Control of proper protein synthesis, function, and turnover is essential for the health of all cells. In neurons these demands take on the additional importance of supporting and regulating the highly dynamic connections between neurons that are necessary for cognitive function, learning, and memory. Regulating multiple unique synaptic protein environments within a single neuron while maintaining cell health requires the highly regulated processes of ubiquitination and degradation of ubiquitinated proteins through the proteasome. In this review, we examine the effects of dysregulated ubiquitination and protein clearance on the handling of disease-associated proteins and neuronal health in the most common neurodegenerative diseases. PMID:25071440

  3. Transglutaminase activation in neurodegenerative diseases

    PubMed Central

    Jeitner, Thomas M; Muma, Nancy A; Battaile, Kevin P; Cooper, Arthur JL

    2009-01-01

    The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds. PMID:20161049

  4. Preventing distraction: Assessing stimulus-specific and general effects of the predictive cueing of deviant auditory events

    PubMed Central

    Horváth, János; Sussman, Elyse; Winkler, István; Schröger, Erich

    2011-01-01

    Rare irregular sounds (deviants) embedded into a regular sound sequence have large potential to draw attention to themselves (distraction). It has been previously shown that distraction, as manifested by behavioral response delay, and the P3a and reorienting negativity (RON) event-related potentials, could be reduced when the forthcoming deviant was signaled by visual cues preceding the sounds. In the present study, we investigated the type of information used in the prevention of distraction by manipulating the information content of the visual cues preceding the sounds. Cues could signal the specific variant of the forthcoming deviant, or they could just signal that the next tone was a deviant. We found that stimulus-specific cue information was used in reducing distraction. The results also suggest that early P3a and RON index processes related to the specific deviating stimulus feature, whereas late P3a reflects a general distraction-related process. PMID:21310210

  5. Genetic variants associated with neurodegenerative Alzheimer disease in natural models.

    PubMed

    Salazar, Claudia; Valdivia, Gonzalo; Ardiles, Álvaro O; Ewer, John; Palacios, Adrián G

    2016-01-01

    The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the field. However, some important limitations, including protein overexpression and general systemic compensation for the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenerative diseases during aging. Here we review some of these models-most of them rodents, focusing especially on the genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated with the occurrence of the disease in humans. PMID:26919851

  6. Tsallis statistics and neurodegenerative disorders

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Aggelos C.; Tsolaki, Magdalini; Aifantis, Elias C.

    2016-08-01

    In this paper, we perform statistical analysis of time series deriving from four neurodegenerative disorders, namely epilepsy, amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD). The time series are concerned with electroencephalograms (EEGs) of healthy and epileptic states, as well as gait dynamics (in particular stride intervals) of the ALS, PD and HDs. We study data concerning one subject for each neurodegenerative disorder and one healthy control. The analysis is based on Tsallis non-extensive statistical mechanics and in particular on the estimation of Tsallis q-triplet, namely {qstat, qsen, qrel}. The deviation of Tsallis q-triplet from unity indicates non-Gaussian statistics and long-range dependencies for all time series considered. In addition, the results reveal the efficiency of Tsallis statistics in capturing differences in brain dynamics between healthy and epileptic states, as well as differences between ALS, PD, HDs from healthy control subjects. The results indicate that estimations of Tsallis q-indices could be used as possible biomarkers, along with others, for improving classification and prediction of epileptic seizures, as well as for studying the gait complex dynamics of various diseases providing new insights into severity, medications and fall risk, improving therapeutic interventions.

  7. Tau imaging in neurodegenerative diseases.

    PubMed

    Dani, M; Brooks, D J; Edison, P

    2016-06-01

    Aggregated tau protein is a major neuropathological substrate central to the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. In AD, it has been shown that the density of hyperphosphorylated tau tangles correlates closely with neuronal dysfunction and cell death, unlike β-amyloid. Until now, diagnostic and pathologic information about tau deposition has only been available from invasive techniques such as brain biopsy or autopsy. The recent development of selective in-vivo tau PET imaging ligands including [(18)F]THK523, [(18)F]THK5117, [(18)F]THK5105 and [(18)F]THK5351, [(18)F]AV1451(T807) and [(11)C]PBB3 has provided information about the role of tau in the early phases of neurodegenerative diseases, and provided support for diagnosis, prognosis, and imaging biomarkers to track disease progression. Moreover, the spatial and longitudinal relationship of tau distribution compared with β - amyloid and other pathologies in these diseases can be mapped. In this review, we discuss the role of aggregated tau in tauopathies, the challenges posed in developing selective tau ligands as biomarkers, the state of development in tau tracers, and the new clinical information that has been uncovered, as well as the opportunities for improving diagnosis and designing clinical trials in the future. PMID:26572762

  8. Parkin Regulation and Neurodegenerative Disorders

    PubMed Central

    Zhang, Cheng-Wu; Hang, Liting; Yao, Tso-Pang; Lim, Kah-Leong

    2016-01-01

    Parkin is a unique, multifunctional ubiquitin ligase whose various roles in the cell, particularly in neurons, are widely thought to be protective. The pivotal role that Parkin plays in maintaining neuronal survival is underscored by our current recognition that Parkin dysfunction represents not only a predominant cause of familial parkinsonism but also a formal risk factor for the more common, sporadic form of Parkinson’s disease (PD). Accordingly, keen research on Parkin over the past decade has led to an explosion of knowledge regarding its physiological roles and its relevance to PD. However, our understanding of Parkin is far from being complete. Indeed, surprises emerge from time to time that compel us to constantly update the paradigm of Parkin function. For example, we now know that Parkin’s function is not confined to mere housekeeping protein quality control (QC) roles but also includes mitochondrial homeostasis and stress-related signaling. Furthermore, emerging evidence also suggest a role for Parkin in several other major neurodegenerative diseases including Alzheimer’s disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Yet, it remains truly amazing to note that a single enzyme could serve such multitude of functions and cellular roles. Clearly, its activity has to be tightly regulated. In this review, we shall discuss this and how dysregulated Parkin function may precipitate neuronal demise in various neurodegenerative disorders. PMID:26793099

  9. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  10. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    PubMed

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine. PMID:21422516

  11. [Cellular pathology of neurodegenerative disorders].

    PubMed

    Wakabayashi, Koichi

    2013-01-01

    Common cellular and molecular mechanisms including protein aggregation and inclusion body formation are involved in many neurodegenerative diseases. α-Synuclein is a major component of Lewy bodies in Parkinson's disease (PD) as well as in glial cytoplasmic inclusions in multiple system atrophy (MSA). Tau is a principal component of neurofibrillary and glial tangles in tauopathies. Recently, TDP-43 was identified as a component of ubiquitinated inclusions in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PD is traditionally considered a movement disorder with hallmark lesions in the brainstem pigmented nuclei. However, pathological changes occur in widespread regions of the central and peripheral nervous systems in this disease. Furthermore, primary glial involvement ("gliodegeneration") can be observed in PD and MSA as well as in tauopathy. The present article reviews abnormal protein accumulation and inclusion body formation inside and outside the central nervous system. PMID:23965852

  12. Emotional dysfunctions in neurodegenerative diseases.

    PubMed

    Löffler, Leonie A K; Radke, Sina; Morawetz, Carmen; Derntl, Birgit

    2016-06-01

    Neurodegenerative diseases are characterized primarily by motor signs but are also accompanied by emotional disturbances. Because of the limited knowledge about these dysfunctions, this Review provides an overview of emotional competencies in Huntington's disease (HD), Parkinson's disease (PD), and multiple sclerosis (MS), with a focus on emotion recognition, emotion regulation, and depression. Most studies indicate facial emotion recognition deficits in HD and PD, whereas data for MS are inconsistent. On a neural level, dysfunctions of amygdala and striatum, among others, have been linked to these impairments. These dysfunctions also tap brain regions that are part of the emotion regulation network, suggesting problems in this competency, too. Research points to dysfunctional emotion regulation in MS, whereas findings for PD and HD are missing. The high prevalence of depression in all three disorders emphasizes the need for effective therapies. Research on emotional disturbances might improve treatment, thereby increasing patients' and caregivers' well-being. PMID:26011035

  13. Auditory-pupillary responses in deaf subjects.

    PubMed

    Kitajima, Naoharu; Otsuka, Koji; Ogawa, Yasuo; Shimizu, Shigetaka; Hayashi, Mami; Ichimura, Akihide; Suzuki, Mamoru

    2010-01-01

    Pupillary dilation in response to sound stimuli is well established and is generally considered to represent a startle reflex to sound. We believe that the auditory-pupillary response represents not only a simple startle reflex to sound stimuli but also represents a reaction to stimulation of other sense organs, such as otolith organs. Eight young healthy volunteers without a history of hearing and equilibrium problems and 12 subjects with bilateral deafness participated in this study. Computer pupillography was used to analyze the auditory-pupillary responses of both eyes in all subjects. We found that auditory-pupillary responses occurred even in subjects with bilateral deafness and that this response was comparable to those of normal subjects. We propose that the auditory-pupillary response also relates to vestibular function. Thus, assessing the auditory-pupillary response may be useful for evaluating the vestibulo-autonomic response in patients with peripheral disequilibrium. PMID:20826936

  14. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease.

    PubMed

    Golden, Hannah L; Agustus, Jennifer L; Goll, Johanna C; Downey, Laura E; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known 'cocktail party effect' as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory 'foreground' and 'background'. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology. PMID:26029629

  15. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    PubMed Central

    Golden, Hannah L.; Agustus, Jennifer L.; Goll, Johanna C.; Downey, Laura E.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘background’. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology. PMID:26029629

  16. Peptide aggregation in neurodegenerative disease.

    PubMed

    Murphy, Regina M

    2002-01-01

    In the not-so-distant past, insoluble aggregated protein was considered as uninteresting and bothersome as yesterday's trash. More recently, protein aggregates have enjoyed considerable scientific interest, as it has become clear that these aggregates play key roles in many diseases. In this review, we focus attention on three polypeptides: beta-amyloid, prion, and huntingtin, which are linked to three feared neurodegenerative diseases: Alzheimer's, "mad cow," and Huntington's disease, respectively. These proteins lack any significant primary sequence homology, yet their aggregates possess very similar features, specifically, high beta-sheet content, fibrillar morphology, relative insolubility, and protease resistance. Because the aggregates are noncrystalline, secrets of their structure at nanometer resolution are only slowly yielding to X-ray diffraction, solid-state NMR, and other techniques. Besides structure, the aggregates may possess similar pathways of assembly. Two alternative assembly pathways have been proposed: the nucleation-elongation and the template-assisted mode. These two modes may be complementary, not mutually exclusive. Strategies for interfering with aggregation, which may provide novel therapeutic approaches, are under development. The structural similarities between protein aggregates of dissimilar origin suggest that therapeutic strategies successful against one disease may have broad utility in others. PMID:12117755

  17. Amyloidosis in Retinal Neurodegenerative Diseases.

    PubMed

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer's disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer's patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer's patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a "window" to the brain. PMID:27551275

  18. Amyloidosis in Retinal Neurodegenerative Diseases

    PubMed Central

    Masuzzo, Ambra; Dinet, Virginie; Cavanagh, Chelsea; Mascarelli, Frederic; Krantic, Slavica

    2016-01-01

    As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer’s disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer’s patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer’s patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a “window” to the brain. PMID:27551275

  19. Auditory Imagery: Empirical Findings

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  20. Auditory Training for Central Auditory Processing Disorder.

    PubMed

    Weihing, Jeffrey; Chermak, Gail D; Musiek, Frank E

    2015-11-01

    Auditory training (AT) is an important component of rehabilitation for patients with central auditory processing disorder (CAPD). The present article identifies and describes aspects of AT as they relate to applications in this population. A description of the types of auditory processes along with information on relevant AT protocols that can be used to address these specific deficits is included. Characteristics and principles of effective AT procedures also are detailed in light of research that reflects on their value. Finally, research investigating AT in populations who show CAPD or present with auditory complaints is reported. Although efficacy data in this area are still emerging, current findings support the use of AT for treatment of auditory difficulties. PMID:27587909

  1. Auditory Risk of Air Rifles

    PubMed Central

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  2. Zinc homeostasis and neurodegenerative disorders

    PubMed Central

    Szewczyk, Bernadeta

    2013-01-01

    Zinc is an essential trace element, whose importance to the function of the central nervous system (CNS) is increasingly being appreciated. Alterations in zinc dyshomeostasis has been suggested as a key factor in the development of several neuropsychiatric disorders. In the CNS, zinc occurs in two forms: the first being tightly bound to proteins and, secondly, the free, cytoplasmic, or extracellular form found in presynaptic vesicles. Under normal conditions, zinc released from the synaptic vesicles modulates both ionotropic and metabotropic post-synaptic receptors. While under clinical conditions such as traumatic brain injury, stroke or epilepsy, the excess influx of zinc into neurons has been found to result in neurotoxicity and damage to postsynaptic neurons. On the other hand, a growing body of evidence suggests that a deficiency, rather than an excess, of zinc leads to an increased risk for the development of neurological disorders. Indeed, zinc deficiency has been shown to affect neurogenesis and increase neuronal apoptosis, which can lead to learning and memory deficits. Altered zinc homeostasis is also suggested as a risk factor for depression, Alzheimer's disease (AD), aging, and other neurodegenerative disorders. Under normal CNS physiology, homeostatic controls are put in place to avoid the accumulation of excess zinc or its deficiency. This cellular zinc homeostasis results from the actions of a coordinated regulation effected by different proteins involved in the uptake, excretion and intracellular storage/trafficking of zinc. These proteins include membranous transporters (ZnT and Zip) and metallothioneins (MT) which control intracellular zinc levels. Interestingly, alterations in ZnT and MT have been recently reported in both aging and AD. This paper provides an overview of both clinical and experimental evidence that implicates a dysfunction in zinc homeostasis in the pathophysiology of depression, AD, and aging. PMID:23882214

  3. Neuroimaging Biomarkers of Neurodegenerative Diseases and Dementia

    PubMed Central

    Risacher, Shannon L.; Saykin, Andrew J.

    2014-01-01

    Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer’s disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson’s disease with and without dementia, dementia with Lewy bodies, Huntington’s disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders. PMID:24234359

  4. [Microglial Phagocytosis in the Neurodegenerative Diseases].

    PubMed

    Cao, Sheng-nan; Bao, Xiu-qi; Sun, Hua; Zhang, Dan

    2016-04-01

    Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases. PMID:27181903

  5. Oxidative stress, mitochondrial damage and neurodegenerative diseases

    PubMed Central

    Guo, Chunyan; Sun, Li; Chen, Xueping; Zhang, Danshen

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases. PMID:25206509

  6. Auditory imagery: empirical findings.

    PubMed

    Hubbard, Timothy L

    2010-03-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d) auditory imagery's relationship to perception and memory (detection, encoding, recall, mnemonic properties, phonological loop), and (e) individual differences in auditory imagery (in vividness, musical ability and experience, synesthesia, musical hallucinosis, schizophrenia, amusia) are considered. It is concluded that auditory imagery (a) preserves many structural and temporal properties of auditory stimuli, (b) can facilitate auditory discrimination but interfere with auditory detection, (c) involves many of the same brain areas as auditory perception, (d) is often but not necessarily influenced by subvocalization, (e) involves semantically interpreted information and expectancies, (f) involves depictive components and descriptive components, (g) can function as a mnemonic but is distinct from rehearsal, and (h) is related to musical ability and experience (although the mechanisms of that relationship are not clear). PMID:20192565

  7. Auditory spatial attention representations in the human cerebral cortex.

    PubMed

    Kong, Lingqiang; Michalka, Samantha W; Rosen, Maya L; Sheremata, Summer L; Swisher, Jascha D; Shinn-Cunningham, Barbara G; Somers, David C

    2014-03-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753

  8. Auditory Memory Distortion for Spoken Prose

    PubMed Central

    Hutchison, Joanna L.; Hubbard, Timothy L.; Ferrandino, Blaise; Brigante, Ryan; Wright, Jamie M.; Rypma, Bart

    2013-01-01

    Observers often remember a scene as containing information that was not presented but that would have likely been located just beyond the observed boundaries of the scene. This effect is called boundary extension (BE; e.g., Intraub & Richardson, 1989). Previous studies have observed BE in memory for visual and haptic stimuli, and the present experiments examined whether BE occurred in memory for auditory stimuli (prose, music). Experiments 1 and 2 varied the amount of auditory content to be remembered. BE was not observed, but when auditory targets contained more content, boundary restriction (BR) occurred. Experiment 3 presented auditory stimuli with less content and BR also occurred. In Experiment 4, white noise was added to stimuli with less content to equalize the durations of auditory stimuli, and BR still occurred. Experiments 5 and 6 presented trained stories and popular music, and BR still occurred. This latter finding ruled out the hypothesis that the lack of BE in Experiments 1–4 reflected a lack of familiarity with the stimuli. Overall, memory for auditory content exhibited BR rather than BE, and this pattern was stronger if auditory stimuli contained more content. Implications for the understanding of general perceptual processing and directions for future research are discussed. PMID:22612172

  9. Auditory memory distortion for spoken prose.

    PubMed

    Hutchison, Joanna L; Hubbard, Timothy L; Ferrandino, Blaise; Brigante, Ryan; Wright, Jamie M; Rypma, Bart

    2012-11-01

    Observers often remember a scene as containing information that was not presented but that would have likely been located just beyond the observed boundaries of the scene. This effect is called boundary extension (BE; e.g., Intraub & Richardson, 1989). Previous studies have observed BE in memory for visual and haptic stimuli, and the present experiments examined whether BE occurred in memory for auditory stimuli (prose, music). Experiments 1 and 2 varied the amount of auditory content to be remembered. BE was not observed, but when auditory targets contained more content, boundary restriction (BR) occurred. Experiment 3 presented auditory stimuli with less content and BR also occurred. In Experiment 4, white noise was added to stimuli with less content to equalize the durations of auditory stimuli, and BR still occurred. Experiments 5 and 6 presented trained stories and popular music, and BR still occurred. This latter finding ruled out the hypothesis that the lack of BE in Experiments 1-4 reflected a lack of familiarity with the stimuli. Overall, memory for auditory content exhibited BR rather than BE, and this pattern was stronger if auditory stimuli contained more content. Implications for the understanding of general perceptual processing and directions for future research are discussed. PMID:22612172

  10. Olfaction in Neurologic and Neurodegenerative Diseases: A Literature Review

    PubMed Central

    Godoy, Maria Dantas Costa Lima; Voegels, Richard Louis; Pinna, Fábio de Rezende; Imamura, Rui; Farfel, José Marcelo

    2014-01-01

    Introduction Loss of smell is involved in various neurologic and neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. However, the olfactory test is usually neglected by physicians at large. Objective The aim of this study was to review the current literature about the relationship between olfactory dysfunction and neurologic and neurodegenerative diseases. Data Synthesis Twenty-seven studies were selected for analysis, and the olfactory system, olfaction, and the association between the olfactory dysfunction and dementias were reviewed. Furthermore, is described an up to date in olfaction. Conclusion Otolaryngologist should remember the importance of olfaction evaluation in daily practice. Furthermore, neurologists and physicians in general should include olfactory tests in the screening of those at higher risk of dementia. PMID:25992176

  11. PET/SPECT imaging agents for neurodegenerative diseases

    PubMed Central

    Zhu, Lin; Ploessl, Karl; Kung, Hank F.

    2014-01-01

    Single photon emission computed tomography (SPECT) or positron emission computed tomography (PET) imaging agents for neurodegenerative disease have a significant impact on clinical diagnosis and patient care. The examples of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) imaging agents described in this paper provide a general view on how imaging agents, ie radioactive drugs, are selected, chemically prepared and applied in humans. Imaging the living human brain can provide unique information on the pathology and progression of neurodegenerative diseases, such as AD and PD. The imaging method will also facilitate preclinical and clinical trials of new drugs offering specific information related to drug binding sites in the brain. In the future, chemists will continue to play important roles in identifying specific targets, synthesizing target-specific probes for screening and ultimately testing them by in vitro and in vivo assays. PMID:24676152

  12. Extracting regional brain patterns for classification of neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Pulido, Andrea; Rueda, Andrea; Romero, Eduardo

    2013-11-01

    In structural Magnetic Resonance Imaging (MRI), neurodegenerative diseases generally present complex brain patterns that can be correlated with di erent clinical onsets of this pathologies. An objective method that aims to determine both global and local changes is not usually available in clinical practice, thus the interpretation of these images is strongly dependent on the radiologist's skills. In this paper, we propose a strategy which interprets the brain structure using a framework that highlights discriminant brain patterns for neurodegenerative diseases. This is accomplished by combining a probabilistic learning technique, which identi es and groups regions with similar visual features, with a visual saliency method that exposes relevant information within each region. The association of such patterns with a speci c disease is herein evaluated in a classi cation task, using a dataset including 80 Alzheimer's disease (AD) patients and 76 healthy subjects (NC). Preliminary results show that the proposed method reaches a maximum classi cation accuracy of 81.39%.

  13. Attending to auditory memory.

    PubMed

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26638836

  14. Genetically modified pig models for neurodegenerative disorders.

    PubMed

    Holm, Ida E; Alstrup, Aage Kristian Olsen; Luo, Yonglun

    2016-01-01

    Increasing incidence of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease has become one of the most challenging health issues in ageing humans. One approach to combat this is to generate genetically modified animal models of neurodegenerative disorders for studying pathogenesis, prognosis, diagnosis, treatment, and prevention. Owing to the genetic, anatomic, physiologic, pathologic, and neurologic similarities between pigs and humans, genetically modified pig models of neurodegenerative disorders have been attractive large animal models to bridge the gap of preclinical investigations between rodents and humans. In this review, we provide a neuroanatomical overview in pigs and summarize and discuss the generation of genetically modified pig models of neurodegenerative disorders including Alzheimer's diseases, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, and ataxia-telangiectasia. We also highlight how non-invasive bioimaging technologies such as positron emission tomography (PET), computer tomography (CT), and magnetic resonance imaging (MRI), and behavioural testing have been applied to characterize neurodegenerative pig models. We further propose a multiplex genome editing and preterm recloning (MAP) approach by using the rapid growth of the ground-breaking precision genome editing technology CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). With this approach, we hope to shorten the temporal requirement in generating multiple transgenic pigs, increase the survival rate of founder pigs, and generate genetically modified pigs that will more closely resemble the disease-causing mutations and recapitulate pathological features of human conditions. PMID:26446984

  15. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Moosavi, Abdollah; Bakhshi, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim of this research was investigating effects of an auditory lateralization training on speech perception in presence of noise/competing signals in children suspected to (C)APD. Subjects and Methods In this analytical interventional study, 60 children suspected to (C)APD were selected based on multiple auditory processing assessment subtests. They were randomly divided into two groups: control (mean age 9.07) and training groups (mean age 9.00). Training program consisted of detection and pointing to sound sources delivered with interaural time differences under headphones for 12 formal sessions (6 weeks). Spatial word recognition score (WRS) and monaural selective auditory attention test (mSAAT) were used to follow the auditory lateralization training effects. Results This study showed that in the training group, mSAAT score and spatial WRS in noise (p value≤0.001) improved significantly after the auditory lateralization training. Conclusions We used auditory lateralization training for 6 weeks and showed that auditory lateralization can improve speech understanding in noise significantly. The generalization of this results needs further researches. PMID:27626084

  16. Cerebral correlates of psychotic syndromes in neurodegenerative diseases

    PubMed Central

    Jellinger, Kurt A

    2012-01-01

    Abstract Psychosis has been recognized as a common feature in neurodegenerative diseases and a core feature of dementia that worsens most clinical courses. It includes hallucinations, delusions including paranoia, aggressive behaviour, apathy and other psychotic phenomena that occur in a wide range of degenerative disorders including Alzheimer’s disease, synucleinopathies (Parkinson’s disease, dementia with Lewy bodies), Huntington’s disease, frontotemporal degenerations, motoneuron and prion diseases. Many of these psychiatric manifestations may be early expressions of cognitive impairment, but often there is a dissociation between psychotic/behavioural symptoms and the rather linear decline in cognitive function, suggesting independent pathophysiological mechanisms. Strictly neuropathological explanations are likely to be insufficient to explain them, and a large group of heterogeneous factors (environmental, neurochemical changes, genetic factors, etc.) may influence their pathogenesis. Clinico-pathological evaluation of behavioural and psychotic symptoms (PS) in the setting of neurodegenerative and dementing disorders presents a significant challenge for modern neurosciences. Recognition and understanding of these manifestations may lead to the development of more effective preventive and therapeutic options that can serve to delay long-term progression of these devastating disorders and improve the patients’ quality of life. A better understanding of the pathophysiology and distinctive pathological features underlying the development of PS in neurodegenerative diseases may provide important insights into psychotic processes in general. PMID:21418522

  17. Role of iron in neurodegenerative diseases.

    PubMed

    Li, Kai; Reichmann, Heinz

    2016-04-01

    Currently, we still lack effective measures to modify disease progression in neurodegenerative diseases. Iron-containing proteins play an essential role in many fundamental biological processes in the central nervous system. In addition, iron is a redox-active ion and can induce oxidative stress in the cell. Although the causes and pathology hallmarks of different neurodegenerative diseases vary, iron dyshomeostasis, oxidative stress and mitochondrial injury constitute a common pathway to cell death in several neurodegenerative diseases. MRI is capable of depicting iron content in the brain, and serves as a potential biomarker for early and differential diagnosis, tracking disease progression and evaluating the effectiveness of neuroprotective therapy. Iron chelators have shown their efficacy against neurodegeneration in a series of animal models, and been applied in several clinical trials. In this review, we summarize recent developments on iron dyshomeostasis in Parkinson's disease, Alzheimer's disease, Friedreich ataxia, and Huntington's disease. PMID:26794939

  18. Visual Spatial Cognition in Neurodegenerative Disease

    PubMed Central

    Possin, Katherine L.

    2011-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954

  19. Role of metabolism in neurodegenerative disorders.

    PubMed

    Procaccini, Claudio; Santopaolo, Marianna; Faicchia, Deriggio; Colamatteo, Alessandra; Formisano, Luigi; de Candia, Paola; Galgani, Mario; De Rosa, Veronica; Matarese, Giuseppe

    2016-09-01

    Along with the increase in life expectancy over the last century, the prevalence of age-related disorders, such as neurodegenerative diseases continues to rise. This is the case of Alzheimer's, Parkinson's, Huntington's diseases and Multiple sclerosis, which are chronic disorders characterized by neuronal loss in motor, sensory or cognitive systems. Accumulating evidence has suggested the presence of a strong correlation between metabolic changes and neurodegeneration. Indeed epidemiologic studies have shown strong associations between obesity, metabolic dysfunction, and neurodegeneration, while animal models have provided insights into the complex relationships between these conditions. In this context, hormones such as leptin, ghrelin, insulin and IGF-1 seem to play a key role in the regulation of neuronal damage, toxic insults and several other neurodegenerative processes. This review aims to presenting the most recent evidence supporting the crosstalk linking energy metabolism and neurodegeneration, and will focus on metabolic manipulation as a possible therapeutic tool in the prevention and treatment of neurodegenerative diseases. PMID:27506744

  20. Auditory system of fruit flies.

    PubMed

    Ishikawa, Yuki; Kamikouchi, Azusa

    2016-08-01

    The fruit fly, Drosophila melanogaster, is an invaluable model for auditory research. Advantages of using the fruit fly include its stereotyped behavior in response to a particular sound, and the availability of molecular-genetic tools to manipulate gene expression and cellular activity. Although the receiver type in fruit flies differs from that in mammals, the auditory systems of mammals and fruit flies are strikingly similar with regard to the level of development, transduction mechanism, mechanical amplification, and central projections. These similarities strongly support the use of the fruit fly to study the general principles of acoustic information processing. In this review, we introduce acoustic communication and discuss recent advances in our understanding on hearing in fruit flies. This article is part of a Special Issue entitled . PMID:26560238

  1. Genetics of neurodegenerative diseases: insights from high-throughput resequencing

    PubMed Central

    Tsuji, Shoji

    2010-01-01

    During the past three decades, we have witnessed remarkable advances in our understanding of the molecular etiologies of hereditary neurodegenerative diseases, which have been accomplished by ‘positional cloning’ strategies. The discoveries of the causative genes for hereditary neurodegenerative diseases accelerated not only the studies on the pathophysiologic mechanisms of diseases, but also the studies for the development of disease-modifying therapies. Genome-wide association studies (GWAS) based on the ‘common disease–common variants hypothesis’ are currently undertaken to elucidate disease-relevant alleles. Although GWAS have successfully revealed numerous susceptibility genes for neurodegenerative diseases, odds ratios associated with risk alleles are generally low and account for only a small proportion of estimated heritability. Recent studies have revealed that the effect sizes of the disease-relevant alleles that are identified based on comprehensive resequencing of large data sets of Parkinson disease are substantially larger than those identified by GWAS. These findings strongly argue for the role of the ‘common disease–multiple rare variants hypothesis’ in sporadic neurodegenerative diseases. Given the rapidly improving technologies of next-generation sequencing next-generation sequencing (NGS), we expect that NGS will eventually enable us to identify all the variants in an individual's personal genome, in particular, clinically relevant alleles. Beyond this, whole genome resequencing is expected to bring a paradigm shift in clinical practice, where clinical practice including diagnosis and decision-making for appropriate therapeutic procedures is based on the ‘personal genome’. The personal genome era is expected to be realized in the near future, and society needs to prepare for this new era. PMID:20413655

  2. Amylin at the interface between metabolic and neurodegenerative disorders

    PubMed Central

    Lutz, Thomas A.; Meyer, Urs

    2015-01-01

    The pancreatic peptide amylin is best known for its role as a satiation hormone in the control of food intake and as the major component of islet amyloid deposits in the pancreatic islets of patients with type 2 diabetes mellitus (T2DM). Epidemiological studies have established a clear association between metabolic and neurodegenerative disorders in general, and between T2DM and Alzheimer's disease (AD) in particular. Here, we discuss that amylin may be an important player acting at the interface between these metabolic and neurodegenerative disorders. Abnormal amylin production is a hallmark peripheral pathology both in the early (pre-diabetic) and late phases of T2DM, where hyperamylinemic (early phase) and hypoamylinemic (late phase) conditions coincide with hyper- and hypo-insulinemia, respectively. Moreover, there are notable biochemical similarities between amylin and β-amyloids (Aβ), which are both prone to amyloid plaque formation and to cytotoxic effects. Amylin's propensity to form amyloid plaques is not restricted to pancreatic islet cells, but readily extends to the CNS, where it has been found to co-localize with Aβ plaques in at least a subset of AD patients. Hence, amylin may constitute a “second amyloid” in neurodegenerative disorders such as AD. We further argue that hyperamylinemic conditions may be more relevant for the early processes of amyloid formation in the CNS, whereas hypoamylinemic conditions may be more strongly associated with late stages of central amyloid pathologies. Advancing our understanding of these temporal relationships may help to establish amylin-based interventions in the treatment of AD and other neurodegenerative disorders with metabolic comorbidities. PMID:26136651

  3. Oligonucleotide-based therapy for neurodegenerative diseases.

    PubMed

    Magen, Iddo; Hornstein, Eran

    2014-10-10

    Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity. PMID:24727531

  4. Abnormal Mitochondrial Dynamics and Neurodegenerative Diseases

    PubMed Central

    Su, Bo; Wang, Xinglong; Zheng, Ling; Perry, George; Smith, Mark A.; Zhu, Xiongwei

    2009-01-01

    Mitochondrial dysfunction is a prominent feature of various neurodegenerative diseases. A deeper understanding of the remarkably dynamic nature of mitochondria, characterized by a delicate balance of fission and fusion, has helped to fertilize a recent wave of new studies demonstrating abnormal mitochondrial dynamics in neurodegenerative diseases. This review highlights mitochondrial dysfunction and abnormal mitochondrial dynamics in Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease and discusses how these abnormal mitochondrial dynamics may contribute to mitochondrial and neuronal dysfunction. We propose that abnormal mitochondrial dynamics represents a key common pathway that mediates or amplifies mitochondrial dysfunction and neuronal dysfunction during the course of neurodegeneration. PMID:19799998

  5. Neurodegenerative disease: a different view of diagnosis.

    PubMed

    Hardy, J; Gwinn-Hardy, K

    1999-12-01

    Neurodegenerative diseases have traditionally been defined as clinicopathological entities. Although this has been a productive paradigm in terms of the development of treatment strategies, molecular genetic approaches have revealed that there is overlap between different entities in pathogenic mechanisms. In this article, it is argued that neurodegenerative disease should also be thought of as the consequences of sequential biochemical processes, and that some parts of these processes appear to operate in more than one disease entity. Defining these pathways and, in particular, developing an appreciation of the commonalities between different diseases, should aid in the development of therapies that are effective in several diseases. PMID:10562716

  6. Managing anxiety associated with neurodegenerative disorders

    PubMed Central

    Kumar, Anand

    2015-01-01

    Anxiety is a common symptom among patients with cognitive impairment. The presence of anxiety is correlated with poorer outcomes; despite this, there is limited research on anxiety related to neurodegenerative disorder. In this article, we discuss the prevalence of anxiety and factors involved in the etiology of anxiety in patients with diagnosed neurodegenerative disorders and related states of cognitive impairment as well as the evidence for currently available methods of evaluating and treating these symptoms. Specific treatments are highlighted in light of current evidence, followed by a discussion of the difficulties inherent in the study and treatment of anxiety in this population. PMID:25705388

  7. What causes auditory distraction?

    PubMed

    Macken, William J; Phelps, Fiona G; Jones, Dylan M

    2009-02-01

    The role of separating task-relevant from task-irrelevant aspects of the environment is typically assigned to the executive functioning of working memory. However, pervasive aspects of auditory distraction have been shown to be unrelated to working memory capacity in a range of studies of individual differences. We measured individual differences in global pattern matching and deliberate recoding of auditory sequences, and showed that, although deliberate processing was related to short-term memory performance, it did not predict the extent to which that performance was disrupted by task-irrelevant sound. Individual differences in global sequence processing were, however, positively related to the degree to which auditory distraction occurred. We argue that much auditory distraction, rather than being a negative function of working memory capacity, is in fact a positive function of the acuity of obligatory auditory processing. PMID:19145024

  8. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features. PMID:22271265

  9. [Verbal auditory agnosia: SPECT study of the brain].

    PubMed

    Carmona, C; Casado, I; Fernández-Rojas, J; Garín, J; Rayo, J I

    1995-01-01

    Verbal auditory agnosia are rare in clinical practice. Clinically, it characterized by impairment of comprehension and repetition of speech but reading, writing, and spontaneous speech are preserved. So it is distinguished from generalized auditory agnosia by the preserved ability to recognize non verbal sounds. We present the clinical picture of a forty-years-old, right handed woman who developed verbal auditory agnosic after an bilateral temporal ischemic infarcts due to atrial fibrillation by dilated cardiomyopathie. Neurophysiological studies by pure tone threshold audiometry: brainstem auditory evoked potentials and cortical auditory evoked potentials showed sparing of peripheral hearing and intact auditory pathway in brainstem but impaired cortical responses. Cranial CT-SCAN revealed two large hypodenses area involving both cortico-subcortical temporal lobes. Cerebral SPECT using 99mTc-HMPAO as radiotracer showed hypoperfusion just posterior in both frontal lobes nect to Roland's fissure and at level of bitemporal lobes just anterior to Sylvian's fissure. PMID:8556589

  10. Auditory and visual memory in musicians and nonmusicians

    PubMed Central

    Evans, Karla K.; Horowitz, Todd S.; Wolfe, Jeremy M.

    2014-01-01

    Numerous studies have shown that musicians outperform nonmusicians on a variety of tasks. Here we provide the first evidence that musicians have superior auditory recognition memory for both musical and nonmusical stimuli, compared to nonmusicians. However, this advantage did not generalize to the visual domain. Previously, we showed that auditory recognition memory is inferior to visual recognition memory. Would this be true even for trained musicians? We compared auditory and visual memory in musicians and nonmusicians using familiar music, spoken English, and visual objects. For both groups, memory for the auditory stimuli was inferior to memory for the visual objects. Thus, although considerable musical training is associated with better musical and nonmusical auditory memory, it does not increase the ability to remember sounds to the levels found with visual stimuli. This suggests a fundamental capacity difference between auditory and visual recognition memory, with a persistent advantage for the visual domain. PMID:21374094

  11. How phonetically selective is the human auditory cortex?

    PubMed

    Shamma, Shihab

    2014-08-01

    Responses in the human auditory cortex to natural speech reveal a dual character. Often they are categorically selective to phonetic elements, serving as a gateway to abstract linguistic representations. But at other times they reflect a distributed generalized spectrotemporal analysis of the acoustic features, as seen in early mammalian auditory cortices. PMID:24751358

  12. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases

    PubMed Central

    Johnson, William M.; Wilson-Delfosse, Amy L.; Mieyal, John. J.

    2012-01-01

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated. PMID:23201762

  13. Walking the tightrope: proteostasis and neurodegenerative disease.

    PubMed

    Yerbury, Justin J; Ooi, Lezanne; Dillin, Andrew; Saunders, Darren N; Hatters, Danny M; Beart, Philip M; Cashman, Neil R; Wilson, Mark R; Ecroyd, Heath

    2016-05-01

    A characteristic of many neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is the aggregation of specific proteins into protein inclusions and/or plaques in degenerating brains. While much of the aggregated protein consists of disease specific proteins, such as amyloid-β, α-synuclein, or superoxide dismutase1 (SOD1), many other proteins are known to aggregate in these disorders. Although the role of protein aggregates in the pathogenesis of neurodegenerative diseases remains unknown, the ubiquitous association of misfolded and aggregated proteins indicates that significant dysfunction in protein homeostasis (proteostasis) occurs in these diseases. Proteostasis is the concept that the integrity of the proteome is in fine balance and requires proteins in a specific conformation, concentration, and location to be functional. In this review, we discuss the role of specific mechanisms, both inside and outside cells, which maintain proteostasis, including molecular chaperones, protein degradation pathways, and the active formation of inclusions, in neurodegenerative diseases associated with protein aggregation. A characteristic of many neurodegenerative diseases is the aggregation of specific proteins, which alone provides strong evidence that protein homeostasis is disrupted in these disease states. Proteostasis is the maintenance of the proteome in the correct conformation, concentration, and location by functional pathways such as molecular chaperones and protein degradation machinery. Here, we discuss the potential roles of quality control pathways, both inside and outside cells, in the loss of proteostasis during aging and disease. PMID:26872075

  14. Cannabidiol: a promising drug for neurodegenerative disorders?

    PubMed

    Iuvone, Teresa; Esposito, Giuseppe; De Filippis, Daniele; Scuderi, Caterina; Steardo, Luca

    2009-01-01

    Neurodegenerative diseases represent, nowadays, one of the main causes of death in the industrialized country. They are characterized by a loss of neurons in particular regions of the nervous system. It is believed that this nerve cell loss underlies the subsequent decline in cognitive and motor function that patients experience in these diseases. A range of mutant genes and environmental toxins have been implicated in the cause of neurodegenerative disorders but the mechanism remains largely unknown. At present, inflammation, a common denominator among the diverse list of neurodegenerative diseases, has been implicated as a critical mechanism that is responsible for the progressive nature of neurodegeneration. Since, at present, there are few therapies for the wide range of neurodegenerative diseases, scientists are still in search of new therapeutic approaches to the problem. An early contribution of neuroprotective and antiinflammatory strategies for these disorders seems particularly desirable because isolated treatments cannot be effective. In this contest, marijuana derivatives have attracted special interest, although these compounds have always raised several practical and ethical problems for their potential abuse. Nevertheless, among Cannabis compounds, cannabidiol (CBD), which lacks any unwanted psychotropic effect, may represent a very promising agent with the highest prospect for therapeutic use. PMID:19228180

  15. DNA methylation, a hand behind neurodegenerative diseases

    PubMed Central

    Lu, Haoyang; Liu, Xinzhou; Deng, Yulin; Qing, Hong

    2013-01-01

    Epigenetic alterations represent a sort of functional modifications related to the genome that are not responsible for changes in the nucleotide sequence. DNA methylation is one of such epigenetic modifications that have been studied intensively for the past several decades. The transfer of a methyl group to the 5 position of a cytosine is the key feature of DNA methylation. A simple change as such can be caused by a variety of factors, which can be the cause of many serious diseases including several neurodegenerative diseases. In this review, we have reviewed and summarized recent progress regarding DNA methylation in four major neurodegenerative diseases: Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The studies of these four major neurodegenerative diseases conclude the strong suggestion of the important role DNA methylation plays in these diseases. However, each of these diseases has not yet been understood completely as details in some areas remain unclear, and will be investigated in future studies. We hope this review can provide new insights into the understanding of neurodegenerative diseases from the epigenetic perspective. PMID:24367332

  16. Auditory Cortical Plasticity in Learning to Discriminate Modulation Rate

    PubMed Central

    van Wassenhove, Virginie; Nagarajan, Srikantan S.

    2014-01-01

    The discrimination of temporal information in acoustic inputs is a crucial aspect of auditory perception, yet very few studies have focused on auditory perceptual learning of timing properties and associated plasticity in adult auditory cortex. Here, we trained participants on a temporal discrimination task. The main task used a base stimulus (four tones separated by intervals of 200 ms) that had to be distinguished from a target stimulus (four tones with intervals down to ~180 ms). We show that participants’ auditory temporal sensitivity improves with a short amount of training (3 d, 1 h/d). Learning to discriminate temporal modulation rates was accompanied by a systematic amplitude increase of the early auditory evoked responses to trained stimuli, as measured by magnetoencephalography. Additionally, learning and auditory cortex plasticity partially generalized to interval discrimination but not to frequency discrimination. Auditory cortex plasticity associated with short-term perceptual learning was manifested as an enhancement of auditory cortical responses to trained acoustic features only in the trained task. Plasticity was also manifested as induced non-phase–locked high gamma-band power increases in inferior frontal cortex during performance in the trained task. Functional plasticity in auditory cortex is here interpreted as the product of bottom-up and top-down modulations. PMID:17344404

  17. Temperature sensitive auditory neuropathy.

    PubMed

    Zhang, Qiujing; Lan, Lan; Shi, Wei; Yu, Lan; Xie, Lin-Yi; Xiong, Fen; Zhao, Cui; Li, Na; Yin, Zifang; Zong, Liang; Guan, Jing; Wang, Dayong; Sun, Wei; Wang, Qiuju

    2016-05-01

    Temperature sensitive auditory neuropathy is a very rare and puzzling disorder. In the present study, we reported three unrelated 2 to 6 year-old children who were diagnosed as auditory neuropathy patients who complained of severe hearing loss when they had fever. Their hearing thresholds varied from the morning to the afternoon. Two of these patients' hearing improved with age, and one patient received positive results from cochlear implant. Genetic analysis revealed that these three patients had otoferlin (OTOF) homozygous or compound heterozygous mutations with the genotypes c.2975_2978delAG/c.4819C>T, c.4819C>T/c.4819C>T, or c.2382_2383delC/c.1621G>A, respectively. Our study suggests that these gene mutations may be the cause of temperature sensitive auditory neuropathy. The long term follow up results suggest that the hearing loss in this type of auditory neuropathy may recover with age. PMID:26778470

  18. Subcortical modulation in auditory processing and auditory hallucinations.

    PubMed

    Ikuta, Toshikazu; DeRosse, Pamela; Argyelan, Miklos; Karlsgodt, Katherine H; Kingsley, Peter B; Szeszko, Philip R; Malhotra, Anil K

    2015-12-15

    Hearing perception in individuals with auditory hallucinations has not been well studied. Auditory hallucinations have previously been shown to involve primary auditory cortex activation. This activation suggests that auditory hallucinations activate the terminal of the auditory pathway as if auditory signals are submitted from the cochlea, and that a hallucinatory event is therefore perceived as hearing. The primary auditory cortex is stimulated by some unknown source that is outside of the auditory pathway. The current study aimed to assess the outcomes of stimulating the primary auditory cortex through the auditory pathway in individuals who have experienced auditory hallucinations. Sixteen patients with schizophrenia underwent functional magnetic resonance imaging (fMRI) sessions, as well as hallucination assessments. During the fMRI session, auditory stimuli were presented in one-second intervals at times when scanner noise was absent. Participants listened to auditory stimuli of sine waves (SW) (4-5.5kHz), English words (EW), and acoustically reversed English words (arEW) in a block design fashion. The arEW were employed to deliver the sound of a human voice with minimal linguistic components. Patients' auditory hallucination severity was assessed by the auditory hallucination item of the Brief Psychiatric Rating Scale (BPRS). During perception of arEW when compared with perception of SW, bilateral activation of the globus pallidus correlated with severity of auditory hallucinations. EW when compared with arEW did not correlate with auditory hallucination severity. Our findings suggest that the sensitivity of the globus pallidus to the human voice is associated with the severity of auditory hallucination. PMID:26275927

  19. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  20. [Central auditory prosthesis].

    PubMed

    Lenarz, T; Lim, H; Joseph, G; Reuter, G; Lenarz, M

    2009-06-01

    Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI. PMID:19517084

  1. Resveratrol: A Focus on Several Neurodegenerative Diseases

    PubMed Central

    Tellone, Ester; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno; Ficarra, Silvana

    2015-01-01

    Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply diversified not only in morphological structure but especially in their function performed in the anatomical district to which they belong. PMID:26180587

  2. Endocytic membrane trafficking and neurodegenerative disease.

    PubMed

    Schreij, Andrea M A; Fon, Edward A; McPherson, Peter S

    2016-04-01

    Neurodegenerative diseases are amongst the most devastating of human disorders. New technologies have led to a rapid increase in the identification of disease-related genes with an enhanced appreciation of the key roles played by genetics in the etiology of these disorders. Importantly, pinpointing the normal function of disease gene proteins leads to new understanding of the cellular machineries and pathways that are altered in the disease process. One such emerging pathway is membrane trafficking in the endosomal system. This key cellular process controls the localization and levels of a myriad of proteins and is thus critical for normal cell function. In this review we will focus on three neurodegenerative diseases; Parkinson disease, amyotrophic lateral sclerosis, and hereditary spastic paraplegias, for which a large number of newly discovered disease genes encode proteins that function in endosomal membrane trafficking. We will describe how alterations in these proteins affect endosomal function and speculate on the contributions of these disruptions to disease pathophysiology. PMID:26721251

  3. Active and Passive Immunotherapy for Neurodegenerative Disorders

    PubMed Central

    Brody, David L.; Holtzman, David M.

    2008-01-01

    Immunotherapeutic strategies to combat neurodegenerative disorders have galvanized the scientific community since the first dramatic successes in mouse models recreating aspects of Alzheimer disease (AD) were reported. However, initial human trials of active amyloid-beta (Aβ) vaccination were halted early because of a serious safety issue: meningoencephalitis in 6% of subjects. Nonetheless, some encouraging preliminary data were obtained, and rapid progress has been made toward developing alternative, possibly safer active and passive immunotherapeutic approaches for several neurodegenerative conditions. Many of these are currently in human trials for AD. Despite these advances, our understanding of the essential mechanisms underlying the effects seen in preclinical models and human subjects is still incomplete. Antibody-induced phagocytosis of pathological protein deposits, direct antibody-mediated disruption of aggregates, neutralization of toxic soluble proteins, a shift in equilibrium toward efflux of specific proteins from the brain, cell-mediated immune responses, and other mechanisms may all play roles depending on the specific immunotherapeutic scenario. PMID:18352830

  4. Mechanisms of protein seeding in neurodegenerative diseases.

    PubMed

    Walker, Lary C; Diamond, Marc I; Duff, Karen E; Hyman, Bradley T

    2013-03-01

    Most age-associated neurodegenerative diseases involve the aggregation of specific proteins within the nervous system. In Alzheimer disease, the insidious pathogenic process begins many years before the symptoms emerge, and the lesions that characterize the disease—senile plaques and neurofibrillary tangles—ramify systematically through the brain. We review evidence that the -amyloid and tau proteins, which aggregate to form senile plaques and neurofibrillary tangles, respectively, are induced to misfold and self-assemble by a process of templated conformational change that amplifies a toxic species. Recent data also indicate that the spread of these lesions from one site to another is mediated by the cellular uptake, transport, and release of endogenous seeds formed by the cognate proteins. This simple pathogenic principle suggests that the formation, trafficking, and metabolism of pathogenic protein seeds are promising therapeutic targets for Alzheimer disease and other neurodegenerative disorders. PMID:23599928

  5. Resveratrol: A Focus on Several Neurodegenerative Diseases.

    PubMed

    Tellone, Ester; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno; Ficarra, Silvana

    2015-01-01

    Molecules of the plant world are proving their effectiveness in countering, slowing down, and regressing many diseases. The resveratrol for its intrinsic properties related to its stilbene structure has been proven to be a universal panacea, especially for a wide range of neurodegenerative diseases. This paper evaluates (in vivo and in vitro) the various molecular targets of this peculiar polyphenol and its ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. What emerges is that, in the deep heterogeneity of the pathologies evaluated, resveratrol through a convergence on the protein targets is able to give therapeutic responses in neuronal cells deeply diversified not only in morphological structure but especially in their function performed in the anatomical district to which they belong. PMID:26180587

  6. Brain drug delivery systems for neurodegenerative disorders.

    PubMed

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2012-09-01

    Neurodegenerative disorders (NDs) are rapidly increasing as population ages. However, successful treatments for NDs have so far been limited and drug delivery to the brain remains one of the major challenges to overcome. There has recently been growing interest in the development of drug delivery systems (DDS) for local or systemic brain administration. DDS are able to improve the pharmacological and therapeutic properties of conventional drugs and reduce their side effects. The present review provides a concise overview of the recent advances made in the field of brain drug delivery for treating neurodegenerative disorders. Examples include polymeric micro and nanoparticles, lipidic nanoparticles, pegylated liposomes, microemulsions and nanogels that have been tested in experimental models of Parkinson's, Alzheimer's and Huntington's disease. Overall, the results reviewed here show that DDS have great potential for NDs treatment. PMID:23016644

  7. Dendritic Spine Pathology in Neurodegenerative Diseases.

    PubMed

    Herms, Jochen; Dorostkar, Mario M

    2016-05-23

    Substantial progress has been made toward understanding the neuropathology, genetic origins, and epidemiology of neurodegenerative diseases, including Alzheimer's disease; tauopathies, such as frontotemporal dementia; α-synucleinopathies, such as Parkinson's disease or dementia with Lewy bodies; Huntington's disease; and amyotrophic lateral sclerosis with dementia, as well as prion diseases. Recent evidence has implicated dendritic spine dysfunction as an important substrate of the pathogenesis of dementia in these disorders. Dendritic spines are specialized structures, extending from the neuronal processes, on which excitatory synaptic contacts are formed, and the loss of dendritic spines correlates with the loss of synaptic function. We review the literature that has implicated direct or indirect structural alterations at dendritic spines in the pathogenesis of major neurodegenerative diseases, focusing on those that lead to dementias such as Alzheimer's, Parkinson's, and Huntington's diseases, as well as frontotemporal dementia and prion diseases. We stress the importance of in vivo studies in animal models. PMID:26907528

  8. Neurodegenerative disorders and nanoformulated drug development

    PubMed Central

    Nowacek, Ari; Kosloski, Lisa M; Gendelman, Howard E

    2009-01-01

    Degenerative and inflammatory diseases of the CNS include, but are not limited to, Alzheimer’s and Parkinson’s disease, amyotrophic lateral sclerosis, stroke, multiple sclerosis and HIV-1-associated neurocognitive disorders. These are common, debilitating and, unfortunately, hold few therapeutic options. In recent years, the application of nanotechnologies as commonly used or developing medicines has served to improve pharmacokinetics and drug delivery specifically to CNS-diseased areas. In addition, nanomedical advances are leading to therapies that target CNS pathobiology and as such, can interrupt disordered protein aggregation, deliver functional neuroprotective proteins and alter the oxidant state of affected neural tissues. This article focuses on the pathobiology of common neurodegenerative disorders with a view towards how nanomedicine may be used to improve the clinical course of neurodegenerative disorders. PMID:19572820

  9. Epigenetic regulation in neurodevelopment and neurodegenerative diseases.

    PubMed

    Gapp, K; Woldemichael, B T; Bohacek, J; Mansuy, I M

    2014-04-01

    From fertilization throughout development and until death, cellular programs in individual cells are dynamically regulated to fulfill multiple functions ranging from cell lineage specification to adaptation to internal and external stimuli. Such regulation is of major importance in brain cells, because the brain continues to develop long after birth and incorporates information from the environment across life. When compromised, these regulatory mechanisms can have detrimental consequences on neurodevelopment and lead to severe brain pathologies and neurodegenerative diseases in the adult individual. Elucidating these processes is essential to better understand their implication in disease etiology. Because they are strongly influenced by environmental factors, they have been postulated to depend on epigenetic mechanisms. This review describes recent studies that have identified epigenetic dysfunctions in the pathophysiology of several neurodevelopmental and neurodegenerative diseases. It discusses currently known pathways and molecular targets implicated in pathologies including imprinting disorders, Rett syndrome, and Alzheimer's, Parkinson's and Hungtinton's disease, and their relevance to these diseases. PMID:23256926

  10. Synthetic prions and other human neurodegenerative proteinopathies.

    PubMed

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-01

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau. PMID:25449570

  11. Autophagy and apoptosis dysfunction in neurodegenerative disorders.

    PubMed

    Ghavami, Saeid; Shojaei, Shahla; Yeganeh, Behzad; Ande, Sudharsana R; Jangamreddy, Jaganmohan R; Mehrpour, Maryam; Christoffersson, Jonas; Chaabane, Wiem; Moghadam, Adel Rezaei; Kashani, Hessam H; Hashemi, Mohammad; Owji, Ali A; Łos, Marek J

    2014-01-01

    Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders. PMID:24211851

  12. The kynurenine pathway and neurodegenerative disease.

    PubMed

    Maddison, Daniel C; Giorgini, Flaviano

    2015-04-01

    Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been closely linked to the pathogenesis of several neurodegenerative diseases. Tryptophan is an essential amino acid required for protein synthesis, and in higher eukaryotes is also converted into the key neurotransmitters serotonin and tryptamine. However, in mammals >95% of tryptophan is metabolized through the KP, ultimately leading to the production of nicotinamide adenosine dinucleotide (NAD(+)). A number of the pathway metabolites are neuroactive; e.g. can modulate activity of several glutamate receptors and generate/scavenge free radicals. Imbalances in absolute and relative levels of KP metabolites have been strongly associated with neurodegenerative disorders including Huntington's, Alzheimer's, and Parkinson's diseases. The KP has also been implicated in the pathogenesis of other brain disorders (e.g. schizophrenia, bipolar disorder), as well as several cancers and autoimmune disorders such as HIV. Pharmacological and genetic manipulation of the KP has been shown to ameliorate neurodegenerative phenotypes in a number of model organisms, suggesting that it could prove to be a viable target for the treatment of such diseases. Here, we provide an overview of the KP, its role in neurodegeneration and the current strategies for therapeutic targeting of the pathway. PMID:25773161

  13. Nitric Oxide Homeostasis in Neurodegenerative Diseases.

    PubMed

    Hannibal, Luciana

    2016-01-01

    The role of nitric oxide in the pathogenesis and progression of neurodegenerative illnesses such as Parkinson's and Alzheimer's diseases has become prominent over the years. Increased activity of the enzymes that produce reactive oxygen species, decreased activity of antioxidant enzymes and imbalances in glutathione pools mediate and mark the neurodegenerative process. Much of the oxidative damage of proteins is brought about by the overproduction of nitric oxide by nitric oxide synthases (NOS) and its subsequent reactivity with reactive oxygen species. Proteomic methods have advanced the field tremendously, by facilitating the quantitative assessment of differential expression patterns and oxidative modifications of proteins and alongside, mapping their non-canonical functions. As a signaling molecule involved in multiple biochemical pathways, the level of nitric oxide is subject to tight regulation. All three NOS isoforms display aberrant patterns of expression in Alzheimer's disease, altering intracellular signaling and routing oxidative stress in directions that are uncompounded. This review discusses the prime factors that control nitric oxide biosynthesis, reactivity footprints and ensuing effects in the development of neurodegenerative diseases. PMID:26391043

  14. Auditory hallucinations induced by trazodone

    PubMed Central

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  15. Applied research in auditory data representation

    NASA Astrophysics Data System (ADS)

    Frysinger, Steve P.

    1990-08-01

    A class of data displays, characterized generally as Auditory Data Representation, is described and motivated. This type of data representation takes advantage of the tremendous pattern recognition capability of the human auditory channel. Audible displays offer an alternative means of conveying quantitative data to the analyst to facilitate information extraction, and are successfully used alone and in conjunction with visual displays. The Auditory Data Representation literature is reviewed, along with elements of the allied fields of investigation, Psychoacoustics and Musical Perception. A methodology for applied research in this field, based upon the well-developed discipline of psychophysics, is elaborated using a recent experiment as a case study. This method permits objective estimation of a data representation technique by comparing it to alternative displays for the pattern recognition task at hand. The psychophysical threshold of signal to noise level, for constant pattern recognition performance, is the measure of display effectiveness.

  16. 40 Hz auditory steady state response to linguistic features of stimuli during auditory hallucinations.

    PubMed

    Ying, Jun; Yan, Zheng; Gao, Xiao-rong

    2013-10-01

    The auditory steady state response (ASSR) may reflect activity from different regions of the brain, depending on the modulation frequency used. In general, responses induced by low rates (≤40 Hz) emanate mostly from central structures of the brain, and responses from high rates (≥80 Hz) emanate mostly from the peripheral auditory nerve or brainstem structures. Besides, it was reported that the gamma band ASSR (30-90 Hz) played an important role in working memory, speech understanding and recognition. This paper investigated the 40 Hz ASSR evoked by modulated speech and reversed speech. The speech was Chinese phrase voice, and the noise-like reversed speech was obtained by temporally reversing the speech. Both auditory stimuli were modulated with a frequency of 40 Hz. Ten healthy subjects and 5 patients with hallucination symptom participated in the experiment. Results showed reduction in left auditory cortex response when healthy subjects listened to the reversed speech compared with the speech. In contrast, when the patients who experienced auditory hallucinations listened to the reversed speech, the auditory cortex of left hemispheric responded more actively. The ASSR results were consistent with the behavior results of patients. Therefore, the gamma band ASSR is expected to be helpful for rapid and objective diagnosis of hallucination in clinic. PMID:24142731

  17. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  18. Overriding auditory attentional capture.

    PubMed

    Dalton, Polly; Lavie, Nilli

    2007-02-01

    Attentional capture by color singletons during shape search can be eliminated when the target is not a feature singleton (Bacon & Egeth, 1994). This suggests that a "singleton detection" search strategy must be adopted for attentional capture to occur. Here we find similar effects on auditory attentional capture. Irrelevant high-intensity singletons interfered with an auditory search task when the target itself was also a feature singleton. However, singleton interference was eliminated when the target was not a singleton (i.e., when nontargets were made heterogeneous, or when more than one target sound was presented). These results suggest that auditory attentional capture depends on the observer's attentional set, as does visual attentional capture. The suggestion that hearing might act as an early warning system that would always be tuned to unexpected unique stimuli must therefore be modified to accommodate these strategy-dependent capture effects. PMID:17557587

  19. Action-related auditory ERP attenuation: Paradigms and hypotheses.

    PubMed

    Horváth, János

    2015-11-11

    A number studies have shown that the auditory N1 event-related potential (ERP) is attenuated when elicited by self-induced or self-generated sounds. Because N1 is a correlate of auditory feature- and event-detection, it was generally assumed that N1-attenuation reflected the cancellation of auditory re-afference, enabled by the internal forward modeling of the predictable sensory consequences of the given action. Focusing on paradigms utilizing non-speech actions, the present review summarizes recent progress on action-related auditory attenuation. Following a critical analysis of the most widely used, contingent paradigm, two further hypotheses on the possible causes of action-related auditory ERP attenuation are presented. The attention hypotheses suggest that auditory ERP attenuation is brought about by a temporary division of attention between the action and the auditory stimulation. The pre-activation hypothesis suggests that the attenuation is caused by the activation of a sensory template during the initiation of the action, which interferes with the incoming stimulation. Although each hypothesis can account for a number of findings, none of them can accommodate the whole spectrum of results. It is suggested that a better understanding of auditory ERP attenuation phenomena could be achieved by systematic investigations of the types of actions, the degree of action-effect contingency, and the temporal characteristics of action-effect contingency representation-buildup and -deactivation. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25843932

  20. Overcoming obstacles to repurposing for neurodegenerative disease

    PubMed Central

    Shineman, Diana W; Alam, John; Anderson, Margaret; Black, Sandra E; Carman, Aaron J; Cummings, Jeffrey L; Dacks, Penny A; Dudley, Joel T; Frail, Donald E; Green, Allan; Lane, Rachel F; Lappin, Debra; Simuni, Tanya; Stefanacci, Richard G; Sherer, Todd; Fillit, Howard M

    2014-01-01

    Repurposing Food and Drug Administration (FDA)-approved drugs for a new indication may offer an accelerated pathway for new treatments to patients but is also fraught with significant commercial, regulatory, and reimbursement challenges. The Alzheimer’s Drug Discovery Foundation (ADDF) and the Michael J. Fox Foundation for Parkinson’s Research (MJFF) convened an advisory panel in October 2013 to understand stakeholder perspectives related to repurposing FDA-approved drugs for neurodegenerative diseases. Here, we present opportunities on how philanthropy, industry, and government can begin to address these challenges, promote policy changes, and develop targeted funding strategies to accelerate the potential of FDA-approved repurposed drugs. PMID:25356422

  1. Overcoming obstacles to repurposing for neurodegenerative disease.

    PubMed

    Shineman, Diana W; Alam, John; Anderson, Margaret; Black, Sandra E; Carman, Aaron J; Cummings, Jeffrey L; Dacks, Penny A; Dudley, Joel T; Frail, Donald E; Green, Allan; Lane, Rachel F; Lappin, Debra; Simuni, Tanya; Stefanacci, Richard G; Sherer, Todd; Fillit, Howard M

    2014-07-01

    Repurposing Food and Drug Administration (FDA)-approved drugs for a new indication may offer an accelerated pathway for new treatments to patients but is also fraught with significant commercial, regulatory, and reimbursement challenges. The Alzheimer's Drug Discovery Foundation (ADDF) and the Michael J. Fox Foundation for Parkinson's Research (MJFF) convened an advisory panel in October 2013 to understand stakeholder perspectives related to repurposing FDA-approved drugs for neurodegenerative diseases. Here, we present opportunities on how philanthropy, industry, and government can begin to address these challenges, promote policy changes, and develop targeted funding strategies to accelerate the potential of FDA-approved repurposed drugs. PMID:25356422

  2. Ocular motor abnormalities in neurodegenerative disorders

    PubMed Central

    Antoniades, C A; Kennard, C

    2015-01-01

    Eye movements are a source of valuable information to both clinicians and scientists as abnormalities of them frequently act as clues to the localization of a disease process. Classically, they are divided into two main types: those that hold the gaze, keeping images steady on the retina (vestibulo-ocular and optokinetic reflexes) and those that shift gaze and redirect the line of sight to a new object of interest (saccades, vergence, and smooth pursuit). Here we will review some of the major ocular motor abnormalities present in neurodegenerative disorders. PMID:25412716

  3. Auditory hedonic phenotypes in dementia: A behavioural and neuroanatomical analysis.

    PubMed

    Fletcher, Phillip D; Downey, Laura E; Golden, Hannah L; Clark, Camilla N; Slattery, Catherine F; Paterson, Ross W; Schott, Jonathan M; Rohrer, Jonathan D; Rossor, Martin N; Warren, Jason D

    2015-06-01

    Patients with dementia may exhibit abnormally altered liking for environmental sounds and music but such altered auditory hedonic responses have not been studied systematically. Here we addressed this issue in a cohort of 73 patients representing major canonical dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD)) using a semi-structured caregiver behavioural questionnaire and voxel-based morphometry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal aversion to environmental sounds, aversion to music or heightened pleasure in music ('musicophilia') occurred in around half of the cohort but showed clear syndromic and genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was the exclusive auditory phenotype in AD whereas more complex phenotypes including musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with grey matter loss in a common, distributed, right-lateralised network including antero-mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings suggest that abnormalities of auditory hedonic processing are a significant issue in common dementias. Sounds may constitute a novel probe of brain mechanisms for emotional salience coding that are targeted by neurodegenerative disease. PMID:25929717

  4. Bigger Brains or Bigger Nuclei? Regulating the Size of Auditory Structures in Birds

    PubMed Central

    Kubke, M. Fabiana; Massoglia, Dino P.; Carr, Catherine E.

    2012-01-01

    Increases in the size of the neuronal structures that mediate specific behaviors are believed to be related to enhanced computational performance. It is not clear, however, what developmental and evolutionary mechanisms mediate these changes, nor whether an increase in the size of a given neuronal population is a general mechanism to achieve enhanced computational ability. We addressed the issue of size by analyzing the variation in the relative number of cells of auditory structures in auditory specialists and generalists. We show that bird species with different auditory specializations exhibit variation in the relative size of their hindbrain auditory nuclei. In the barn owl, an auditory specialist, the hind-brain auditory nuclei involved in the computation of sound location show hyperplasia. This hyperplasia was also found in songbirds, but not in non-auditory specialists. The hyperplasia of auditory nuclei was also not seen in birds with large body weight suggesting that the total number of cells is selected for in auditory specialists. In barn owls, differences observed in the relative size of the auditory nuclei might be attributed to modifications in neurogenesis and cell death. Thus, hyperplasia of circuits used for auditory computation accompanies auditory specialization in different orders of birds. PMID:14726625

  5. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  6. Proactive Strategies for Managing the Behavior of Children with Neurodegenerative Diseases and Visual Impairment.

    ERIC Educational Resources Information Center

    Loftin, M. M.; Koehler, W. S.

    1998-01-01

    Presents proactive strategies to help educators deal with challenging behaviors of children with visual impairments and neurodegenerative diseases. Strategies are provided for general noncompliance, difficulty with changed or novel routines, difficulty maintaining physical movement, significant variations in affect, and intense tantrums and other…

  7. The Diagnosis and Understanding of Apraxia of Speech: Why Including Neurodegenerative Etiologies May Be Important

    ERIC Educational Resources Information Center

    Duffy, Joseph R.; Josephs, Keith A.

    2012-01-01

    Purpose: To discuss apraxia of speech (AOS) as it occurs in neurodegenerative disease (progressive AOS [PAOS]) and how its careful study may contribute to general concepts of AOS and help refine its diagnostic criteria. Method: The article summarizes our current understanding of the clinical features and neuroanatomical and pathologic correlates…

  8. Polyphenols: Multipotent Therapeutic Agents in Neurodegenerative Diseases

    PubMed Central

    Bhullar, Khushwant S.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders. PMID:23840922

  9. [The role of thiamine in neurodegenerative diseases].

    PubMed

    Bubko, Irena; Gruber, Beata M; Anuszewska, Elżbieta L

    2015-01-01

    Vitamin B1 (thiamine) plays an important role in metabolism. It is indispensable for normal growth and development of the organism. Thiamine has a favourable impact on a number of systems, including the digestive, cardiovascular and nervous systems. It also stimulates the brain and improves the psycho-emotional state. Hence it is often called the vitamin of "reassurance of the spirit". Thiamine is a water-soluble vitamin. It can be present in the free form as thiamine or as its phosphate esters: mono-, di- or triphosphate. The main source of thiamine as an exogenous vitamin is certain foodstuffs, but trace amounts can be synthesised by microorganisms of the large intestine. The recommended daily intake of thiamine is about 2.0 mg. Since vitamin B1 has no ability to accumulate in the organism, manifestations of its deficiency begin to appear very quickly. The chronic state of thiamine deficiency, to a large extent, because of its function, contributes to the development of neurodegenerative diseases. It was proved that supporting vitamin B1 therapy not only constitutes neuroprotection but can also have a favourable impact on advanced neurodegenerative diseases. This article presents the current state of knowledge as regards the effects of thiamine exerted through this vitamin in a number of diseases such as Parkinson's disease, Alzheimer's disease, Wernicke's encephalopathy or Wernicke-Korsakoff syndrome and Huntington's disease. PMID:26400895

  10. Engineering enhanced protein disaggregases for neurodegenerative disease

    PubMed Central

    Jackrel, Meredith E; Shorter, James

    2015-01-01

    Abstract Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones. PMID:25738979

  11. Systemic Redox Biomarkers in Neurodegenerative Diseases.

    PubMed

    Pastore, Anna; Petrillo, Sara; Piermarini, Emanuela; Piemonte, Fiorella

    2015-01-01

    Neurodegenerative diseases are characterized by a gradual and selective loss of neurons. ROS overload has been proved to occur early in this heterogeneous group of disorders, indicating oxidative stress as a primer factor underlying their pathogenesis. Given the importance of a better knowledge of the cause/effect of oxidative stress in the pathogenesis and evolution of neurodegeneration, recent efforts have been focused on the identification and determination of stable markers that may reflect systemic oxidative stress. This review provides an overview of these systemic redox biomarkers and their responsiveness to antioxidant therapies. Redox biomarkers can be classified as molecules that are modified by interactions with ROS in the microenvironment and antioxidant molecules that change in response to increased oxidative stress. DNA, lipids (including phospholipids), proteins and carbohydrates are examples of molecules that can be modified by excessive ROS in vivo. Some modifications have direct effects on molecule functions (e.g. to inhibit enzyme function), but others merely reflect the degree of oxidative stress in the local environment. Testing of redox biomarkers in neurodegenerative diseases has 3 important goals: 1) to confirm the presence or absence of systemic oxidative stress; 2) to identify possible underlying (and potentially reversible) causes of neurodegeneration; and 3) to estimate the severity of the disease and the risk of progression. Reflecting pathological processes occurring in the whole body, redox biomarkers may pinpoint novel therapeutic targets and lead to diagnose diseases before they are clinically evident. PMID:26152129

  12. Mitochondrial genome changes and neurodegenerative diseases☆

    PubMed Central

    Pinto, Milena; Moraes, Carlos T.

    2014-01-01

    Mitochondria are essential organelles within the cell where most of the energy production occurs by the oxidative phosphorylation system (OXPHOS). Critical components of the OXPHOS are encoded by the mitochondrial DNA (mtDNA) and therefore, mutations involving this genome can be deleterious to the cell. Post-mitotic tissues, such as muscle and brain, are most sensitive to mtDNA changes, due to their high energy requirements and non-proliferative status. It has been proposed that mtDNA biological features and location make it vulnerable to mutations, which accumulate over time. However, although the role of mtDNA damage has been conclusively connected to neuronal impairment in mitochondrial diseases, its role in age-related neurodegenerative diseases remains speculative. Here we review the pathophysiology of mtDNA mutations leading to neurodegeneration and discuss the insights obtained by studying mouse models of mtDNA dysfunction. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases. PMID:24252612

  13. HDL and Cognition in Neurodegenerative Disorders

    PubMed Central

    Hottman, David A.; Chernick, Dustin; Cheng, Shaowu; Wang, Zhe; Li, Ling

    2014-01-01

    High-density lipoproteins (HDL) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function. PMID:25131449

  14. Diagnosis of Neurodegenerative Diseases: The Clinical Approach.

    PubMed

    Gómez-Río, Manuel; Caballero, Manuel Moreno; Górriz Sáez, Juan Manuel; Mínguez-Castellanos, Adolfo

    2016-01-01

    There are a number of clinical questions for which there are no easy answers, even for well-trained doctors. The diagnostic tool commonly used to assess cognitive impairment in neurodegenerative diseases is based on established clinical criteria. However, the differential diagnosis between disorders can be difficult, especially in early phases or atypical variants. This takes on particular importance when it is still possible to use an appropriate treatment. To solve this problem, physicians need to have access to an arsenal of diagnostic tests, such as neurofunctional imaging, that allow higher specificity in clinical assessment. However, the reliability of diagnostic tests may vary from one to the next, so the diagnostic validity of a given investigation must be estimated by comparing the results obtained from "true" criteria to the "gold standard" or reference test. While pathological analysis is considered to be the gold standard in a wide spectrum of diseases, it cannot be applied to neurological processes. Other approaches could provide solutions, including clinical patient follow-up, creation of a data bank or use of computer-aided diagnostic algorithms. In this article, we discuss the development of different methodological procedures related to analysis of diagnostic validity and present an example from our own experience based on the use of I-123-ioflupane-SPECT in the study of patients with movement disorders. The aim of this chapter is to approach the problem of diagnosis from the point of view of the clinician, taking into account specific aspects of neurodegenerative disease. PMID:26567736

  15. Engineering enhanced protein disaggregases for neurodegenerative disease.

    PubMed

    Jackrel, Meredith E; Shorter, James

    2015-01-01

    Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones. PMID:25738979

  16. Diffusion-MRI in neurodegenerative disorders.

    PubMed

    Goveas, Joseph; O'Dwyer, Laurence; Mascalchi, Mario; Cosottini, Mirco; Diciotti, Stefano; De Santis, Silvia; Passamonti, Luca; Tessa, Carlo; Toschi, Nicola; Giannelli, Marco

    2015-09-01

    The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias. PMID:25917917

  17. Chronic traumatic encephalopathy and other neurodegenerative proteinopathies.

    PubMed

    Tartaglia, Maria Carmela; Hazrati, Lili-Naz; Davis, Karen D; Green, Robin E A; Wennberg, Richard; Mikulis, David; Ezerins, Leo J; Keightley, Michelle; Tator, Charles

    2014-01-01

    "Chronic traumatic encephalopathy" (CTE) is described as a slowly progressive neurodegenerative disease believed to result from multiple concussions. Traditionally, concussions were considered benign events and although most people recover fully, about 10% develop a post-concussive syndrome with persisting neurological, cognitive and neuropsychiatric symptoms. CTE was once thought to be unique to boxers, but it has now been observed in many different athletes having suffered multiple concussions as well as in military personal after repeated blast injuries. Much remains unknown about the development of CTE but its pathological substrate is usually tau, similar to that seen in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). The aim of this "perspective" is to compare and contrast clinical and pathological CTE with the other neurodegenerative proteinopathies and highlight that there is an urgent need for understanding the relationship between concussion and the development of CTE as it may provide a window into the development of a proteinopathy and thus new avenues for treatment. PMID:24550810

  18. Therapeutic potential of berberine against neurodegenerative diseases.

    PubMed

    Jiang, WenXiao; Li, ShiHua; Li, XiaoJiang

    2015-06-01

    Berberine (BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR's effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer's disease (AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson's disease (PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases. PMID:25749423

  19. Biology of Mitochondria in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2012-01-01

    Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal degeneration in these familial diseases, and in the more common idiopathic (sporadic) diseases, are unresolved. Genetic, biochemical, and morphological analyses of human AD, PD, and ALS, as well as their cell and animal models, reveal that mitochondria could have roles in this neurodegeneration. The varied functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and the overlying genetic variations. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial programmed cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This chapter reviews several aspects of mitochondrial biology and how mitochondrial pathobiology might contribute to the mechanisms of neurodegeneration in AD, PD, and ALS. PMID:22482456

  20. Chronic traumatic encephalopathy and other neurodegenerative proteinopathies

    PubMed Central

    Tartaglia, Maria Carmela; Hazrati, Lili-Naz; Davis, Karen D.; Green, Robin E. A.; Wennberg, Richard; Mikulis, David; Ezerins, Leo J.; Keightley, Michelle; Tator, Charles

    2014-01-01

    “Chronic traumatic encephalopathy” (CTE) is described as a slowly progressive neurodegenerative disease believed to result from multiple concussions. Traditionally, concussions were considered benign events and although most people recover fully, about 10% develop a post-concussive syndrome with persisting neurological, cognitive and neuropsychiatric symptoms. CTE was once thought to be unique to boxers, but it has now been observed in many different athletes having suffered multiple concussions as well as in military personal after repeated blast injuries. Much remains unknown about the development of CTE but its pathological substrate is usually tau, similar to that seen in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD). The aim of this “perspective” is to compare and contrast clinical and pathological CTE with the other neurodegenerative proteinopathies and highlight that there is an urgent need for understanding the relationship between concussion and the development of CTE as it may provide a window into the development of a proteinopathy and thus new avenues for treatment. PMID:24550810

  1. Integration of auditory and vibrotactile stimuli: Effects of frequency

    PubMed Central

    Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.

    2010-01-01

    Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754

  2. Auditory target detection in reverberation

    NASA Astrophysics Data System (ADS)

    Zurek, Patrick M.; Freyman, Richard L.; Balakrishnan, Uma

    2004-04-01

    Measurements and theoretical predictions of auditory target detection in simulated reverberant conditions are reported. The target signals were pulsed 13-octave bands of noise and the masker signal was a continuous wideband noise. Target and masker signals were passed through a software simulation of a reverberant room with a rigid sphere modeling a listener's head. The location of the target was fixed while the location of the masker was varied in the simulated room. Degree of reverberation was controlled by varying the uniform acoustic absorption of the simulated room's surfaces. The resulting target and masker signals were presented to the listeners over headphones in monaural-left, monaural-right, or binaural listening modes. Changes in detection performance in the monaural listening modes were largely predictable from the changes in target-to-masker ratio in the target band, but with a few dB of extra masking in reverberation. Binaural detection performance was generally well predicted by applying Durlach's [in Foundations of Modern Auditory Theory (Academic, New York, 1972)] equalization-cancellation theory to the direct-plus-reverberant ear signals. Predictions in all cases were based on a statistical description of room acoustics and on acoustic diffraction by a sphere. The success of these detection models in the present well-controlled reverberant conditions suggests that they can be used to incorporate listening mode and source location as factors in speech-intelligibility predictions.

  3. Auditory Memory for Timbre

    ERIC Educational Resources Information Center

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  4. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes

    PubMed Central

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S.; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  5. A Potential Alternative against Neurodegenerative Diseases: Phytodrugs

    PubMed Central

    Pérez-Hernández, Jesús; Zaldívar-Machorro, Víctor Javier; Villanueva-Porras, David; Vega-Ávila, Elisa; Chavarría, Anahí

    2016-01-01

    Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability. PMID:26881043

  6. Antisense Gene Silencing: Therapy for Neurodegenerative Disorders?

    PubMed Central

    Nielsen, Troels T.; Nielsen, Jørgen E.

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how the technique is exploited in a pre-clinical and clinical perspective in relation to neurodegenerative disorders. PMID:24705213

  7. A Potential Alternative against Neurodegenerative Diseases: Phytodrugs.

    PubMed

    Pérez-Hernández, Jesús; Zaldívar-Machorro, Víctor Javier; Villanueva-Porras, David; Vega-Ávila, Elisa; Chavarría, Anahí

    2016-01-01

    Neurodegenerative diseases (ND) primarily affect the neurons in the human brain secondary to oxidative stress and neuroinflammation. ND are more common and have a disproportionate impact on countries with longer life expectancies and represent the fourth highest source of overall disease burden in the high-income countries. A large majority of the medicinal plant compounds, such as polyphenols, alkaloids, and terpenes, have therapeutic properties. Polyphenols are the most common active compounds in herbs and vegetables consumed by man. The biological bioactivity of polyphenols against neurodegeneration is mainly due to its antioxidant, anti-inflammatory, and antiamyloidogenic effects. Multiple scientific studies support the use of herbal medicine in the treatment of ND; however, relevant aspects are still pending to explore such as metabolic analysis, pharmacokinetics, and brain bioavailability. PMID:26881043

  8. CSF biomarkers in neurodegenerative and vascular dementias.

    PubMed

    Llorens, Franc; Schmitz, Matthias; Ferrer, Isidro; Zerr, Inga

    2016-01-01

    Neurodegenerative diseases with abnormal protein aggregates such as Alzheimer's disease, tauopathies, synucleinopathies, and prionopathies, together with vascular encephalopathies, are cause of cognitive impairment and dementia. Identification of reliable biomarkers in biological fluids, particularly in the cerebrospinal fluid (CSF), is of extreme importance in optimizing the precise early clinical diagnosis of distinct entities and predicting the outcome in particular settings. In addition, the study of CSF biomarkers is useful to identify and monitor the underlying pathological processes developing in the central nervous system of affected individuals. Evidence suggests that levels of key CSF molecules correlate, in some circumstances, with prediction, disease progression, and severity of cognitive decline. Correlation of CSF markers and underlying pathological molecular substrates in brain is an exciting field for further study. However, while some dementias such as Creutzfeldt-Jakob disease have accurate CSF biomarkers, other disease types such as dementia with Lewy bodies, vascular dementia, and frontotemporal dementia lack reliable biomarkers for their specific clinical diagnosis. PMID:27016008

  9. Epigenetic mechanisms in neurodevelopmental and neurodegenerative disease

    PubMed Central

    Jakovcevski, Mira; Akbarian, Schahram

    2013-01-01

    The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of normal neural development, neurological disease and aging. Traditionally, chromatin defects in brain were considered static lesions of early development that occurred in the context of rare genetic syndromes but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum, including adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, as well as how they could influence the development of future therapies for these conditions. PMID:22869198

  10. PATHOLOGIES OF AXONAL TRANSPORT IN NEURODEGENERATIVE DISEASES

    PubMed Central

    Liu, Xin-An; Rizzo, Valerio; Puthanveettil, Sathyanarayanan V.

    2013-01-01

    Gene products such as organelles, proteins and RNAs are actively transported to synaptic terminals for the remodeling of pre-existing neuronal connections and formation of new ones. Proteins described as molecular motors mediate this transport and utilize specialized cytoskeletal proteins that function as molecular tracks for the motor based transport of cargos. Molecular motors such as kinesins and dynein's move along microtubule tracks formed by tubulins whereas myosin motors utilize tracks formed by actin. Deficits in active transport of gene products have been implicated in a number of neurological disorders. We describe such disorders collectively as “transportopathies”. Here we review current knowledge of critical components of active transport and their relevance to neurodegenerative diseases. PMID:23750323

  11. Quantitative interaction proteomics of neurodegenerative disease proteins.

    PubMed

    Hosp, Fabian; Vossfeldt, Hannes; Heinig, Matthias; Vasiljevic, Djordje; Arumughan, Anup; Wyler, Emanuel; Landthaler, Markus; Hubner, Norbert; Wanker, Erich E; Lannfelt, Lars; Ingelsson, Martin; Lalowski, Maciej; Voigt, Aaron; Selbach, Matthias

    2015-05-19

    Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD. PMID:25959826

  12. How many biomarkers to discriminate neurodegenerative dementia?

    PubMed

    Sancesario, Giulia M; Bernardini, Sergio

    2015-01-01

    A number of cerebrospinal fluid (CSF) biomarkers are currently used for the diagnosis of dementia. Opposite changes in the level of amyloid-β(1-42) versus total tau and phosphorylated-tau181 in the CSF reflect the specific pathology of Alzheimer's disease (AD) in the brain. This panel of biomarkers has proven to be effective to differentiate AD from controls and from the major types of neurodegenerative dementia, and to evaluate the progression from mild cognitive impairment to AD. In the absence of specific biomarkers reflecting the pathologies of the other most common forms of dementia, such as Lewy Body disease, Frontotemporal lobar degeneration, Creutzfeldt-Jakob disease, etc., the evaluation of biomarkers of AD pathology is used, attempting to exclude rather than to confirm AD. Other biomarkers included in the common clinical practice do not clearly relate to the underlying pathology: progranulin (PGRN) is a selective marker of frontotemporal dementia with mutations in the PGRN gene; the 14-3-3 protein is a highly sensitive and specific marker for Creutzfeldt-Jakob disease, but has to be used carefully in differentiating rapid progressive dementia; and α-synuclein is an emerging candidate biomarker of the different forms of synucleinopathy. This review summarizes several biomarkers of neurodegenerative dementia validated based on the neuropathological processes occurring in brain tissue. Notwithstanding the paucity of pathologically validated biomarkers and their high analytical variability, the combinations of these biomarkers may well represent a key and more precise analytical and diagnostic tool in the complex plethora of degenerative dementia. PMID:26292074

  13. Auditory risk estimates for youth target shooting

    PubMed Central

    Meinke, Deanna K.; Murphy, William J.; Finan, Donald S.; Lankford, James E.; Flamme, Gregory A.; Stewart, Michael; Soendergaard, Jacob; Jerome, Trevor W.

    2015-01-01

    Objective To characterize the impulse noise exposure and auditory risk for youth recreational firearm users engaged in outdoor target shooting events. The youth shooting positions are typically standing or sitting at a table, which places the firearm closer to the ground or reflective surface when compared to adult shooters. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 26 firearm/ammunition configurations representing rifles, shotguns, and pistols used by youth. Measurements were obtained relative to a youth shooter’s left ear. Results All firearms generated peak levels that exceeded the 120 dB peak limit suggested by the WHO for children. In general, shooting from the seated position over a tabletop increases the peak levels, LAeq8 and reduces the unprotected maximum permissible exposures (MPEs) for both rifles and pistols. Pistols pose the greatest auditory risk when fired over a tabletop. Conclusion Youth should utilize smaller caliber weapons, preferably from the standing position, and always wear hearing protection whenever engaging in shooting activities to reduce the risk for auditory damage. PMID:24564688

  14. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  15. Music Lessons Improve Auditory Perceptual and Cognitive Performance in Deaf Children

    PubMed Central

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5–4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes. PMID:25071518

  16. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    PubMed

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes. PMID:25071518

  17. Localized Cell and Drug Delivery for Auditory Prostheses

    PubMed Central

    Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.

    2011-01-01

    Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323

  18. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  19. The auditory characteristics of children with inner auditory canal stenosis.

    PubMed

    Ai, Yu; Xu, Lei; Li, Li; Li, Jianfeng; Luo, Jianfen; Wang, Mingming; Fan, Zhaomin; Wang, Haibo

    2016-07-01

    Conclusions This study shows that the prevalence of auditory neuropathy spectrum disorder (ANSD) in the children with inner auditory canal (IAC) stenosis is much higher than those without IAC stenosis, regardless of whether they have other inner ear anomalies. In addition, the auditory characteristics of ANSD with IAC stenosis are significantly different from those of ANSD without any middle and inner ear malformations. Objectives To describe the auditory characteristics in children with IAC stenosis as well as to examine whether the narrow inner auditory canal is associated with ANSD. Method A total of 21 children, with inner auditory canal stenosis, participated in this study. A series of auditory tests were measured. Meanwhile, a comparative study was conducted on the auditory characteristics of ANSD, based on whether the children were associated with isolated IAC stenosis. Results Wave V in the ABR was not observed in all the patients, while cochlear microphonic (CM) response was detected in 81.1% ears with stenotic IAC. Sixteen of 19 (84.2%) ears with isolated IAC stenosis had CM response present on auditory brainstem responses (ABR) waveforms. There was no significant difference in ANSD characteristics between the children with and without isolated IAC stenosis. PMID:26981851

  20. Central auditory disorders: toward a neuropsychology of auditory objects

    PubMed Central

    Goll, Johanna C.; Crutch, Sebastian J.; Warren, Jason D.

    2012-01-01

    Purpose of review Analysis of the auditory environment, source identification and vocal communication all require efficient brain mechanisms for disambiguating, representing and understanding complex natural sounds as ‘auditory objects’. Failure of these mechanisms leads to a diverse spectrum of clinical deficits. Here we review current evidence concerning the phenomenology, mechanisms and brain substrates of auditory agnosias and related disorders of auditory object processing. Recent findings Analysis of lesions causing auditory object deficits has revealed certain broad anatomical correlations: deficient parsing of the auditory scene is associated with lesions involving the parieto-temporal junction, while selective disorders of sound recognition occur with more anterior temporal lobe or extra-temporal damage. Distributed neural networks have been increasingly implicated in the pathogenesis of such disorders as developmental dyslexia, congenital amusia and tinnitus. Auditory category deficits may arise from defective interaction of spectrotemporal encoding and executive and mnestic processes. Dedicated brain mechanisms are likely to process specialised sound objects such as voices and melodies. Summary Emerging empirical evidence suggests a clinically relevant, hierarchical and fractionated neuropsychological model of auditory object processing that provides a framework for understanding auditory agnosias and makes specific predictions to direct future work. PMID:20975559

  1. Early hominin auditory capacities.

    PubMed

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

    2015-09-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  2. Early hominin auditory capacities

    PubMed Central

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J.; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G.; Thackeray, J. Francis; Arsuaga, Juan Luis

    2015-01-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  3. The Role of Copper in Neurodegenerative Disease

    NASA Astrophysics Data System (ADS)

    Rose, Francis M.

    My research concerns the fundamental atomistic mechanisms of neurodegenerative diseases and the methodologies by which they may be discerned. This thesis consists of three primary parts. The introductory material is the raison d'etre for this work and a critical overview of the specific physics, mathematics and algorithms used in this research. The methods are presented along with specific details in order to facilitate future replication and enhancement. With the groundwork of mechanisms and methods out of the way, we then explore a nouveau atomistic mechanism describing the onset of Parkinson's disease, a disease that has been closely linked to misfolded metalloproteins. Further exploration of neurodegeneration takes place in the following chapter, where a remedial approach to Alzheimer's disease via a simulated chelation of a metalloprotein is undertaken. Altogether, the methods and techniques applied here allow for simulated exploration of both the atomistic mechanisms of neurodegeneration and their potential remediation strategies. The beginning portion of the research efforts explore protein misfolding dynamics in the presence a copper ion. Misfolding of the human alpha-synuclein (aS) protein has been implicated as a central constituent in neurodegenerative disease. In Parkinson's disease (PD) in particular, aS is thought to be the causative participant when found concentrated into neuritic plaques. Here we propose a scenario involving the metal ion Cu2+ as the protein misfolding initiator of fibrillized aS, the chief component of neuritic plaques. From experimental results we know these misfolded proteins have a rich beta--sheet signature, a marker that we reproduce with our simulated model. This model identifies a process of structural modifications to a natively unfolded alpha-synuclein resulting in a partially folded intermediate with a well defined nucleation site. It serves as a precursor to the fully misfolded protein. Understanding the nucleation

  4. Auditory interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  5. The Essential Complexity of Auditory Receptive Fields.

    PubMed

    Thorson, Ivar L; Liénard, Jean; David, Stephen V

    2015-12-01

    Encoding properties of sensory neurons are commonly modeled using linear finite impulse response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-temporal receptive field (STRF), often in the framework of the generalized linear model. Despite widespread use of the FIR STRF, numerous formulations for linear filters are possible that require many fewer parameters, potentially permitting more efficient and accurate model estimates. To explore these alternative STRF architectures, we recorded single-unit neural activity from auditory cortex of awake ferrets during presentation of natural sound stimuli. We compared performance of > 1000 linear STRF architectures, evaluating their ability to predict neural responses to a novel natural stimulus. Many were able to outperform the FIR filter. Two basic constraints on the architecture lead to the improved performance: (1) factorization of the STRF matrix into a small number of spectral and temporal filters and (2) low-dimensional parameterization of the factorized filters. The best parameterized model was able to outperform the full FIR filter in both primary and secondary auditory cortex, despite requiring fewer than 30 parameters, about 10% of the number required by the FIR filter. After accounting for noise from finite data sampling, these STRFs were able to explain an average of 40% of A1 response variance. The simpler models permitted more straightforward interpretation of sensory tuning properties. They also showed greater benefit from incorporating nonlinear terms, such as short term plasticity, that provide theoretical advances over the linear model. Architectures that minimize parameter count while maintaining maximum predictive power provide insight into the essential degrees of freedom governing auditory cortical function. They also maximize statistical power available for characterizing additional nonlinear properties that limit current auditory models. PMID:26683490

  6. The Essential Complexity of Auditory Receptive Fields

    PubMed Central

    Thorson, Ivar L.; Liénard, Jean; David, Stephen V.

    2015-01-01

    Encoding properties of sensory neurons are commonly modeled using linear finite impulse response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-temporal receptive field (STRF), often in the framework of the generalized linear model. Despite widespread use of the FIR STRF, numerous formulations for linear filters are possible that require many fewer parameters, potentially permitting more efficient and accurate model estimates. To explore these alternative STRF architectures, we recorded single-unit neural activity from auditory cortex of awake ferrets during presentation of natural sound stimuli. We compared performance of > 1000 linear STRF architectures, evaluating their ability to predict neural responses to a novel natural stimulus. Many were able to outperform the FIR filter. Two basic constraints on the architecture lead to the improved performance: (1) factorization of the STRF matrix into a small number of spectral and temporal filters and (2) low-dimensional parameterization of the factorized filters. The best parameterized model was able to outperform the full FIR filter in both primary and secondary auditory cortex, despite requiring fewer than 30 parameters, about 10% of the number required by the FIR filter. After accounting for noise from finite data sampling, these STRFs were able to explain an average of 40% of A1 response variance. The simpler models permitted more straightforward interpretation of sensory tuning properties. They also showed greater benefit from incorporating nonlinear terms, such as short term plasticity, that provide theoretical advances over the linear model. Architectures that minimize parameter count while maintaining maximum predictive power provide insight into the essential degrees of freedom governing auditory cortical function. They also maximize statistical power available for characterizing additional nonlinear properties that limit current auditory models. PMID:26683490

  7. Comparative Incidence of Conformational, Neurodegenerative Disorders

    PubMed Central

    de Pedro-Cuesta, Jesús; Rábano, Alberto; Martínez-Martín, Pablo; Ruiz-Tovar, María; Alcalde-Cabero, Enrique; Almazán-Isla, Javier; Avellanal, Fuencisla; Calero, Miguel

    2015-01-01

    Background The purpose of this study was to identify incidence and survival patterns in conformational neurodegenerative disorders (CNDDs). Methods We identified 2563 reports on the incidence of eight conditions representing sporadic, acquired and genetic, protein-associated, i.e., conformational, NDD groups and age-related macular degeneration (AMD). We selected 245 papers for full-text examination and application of quality criteria. Additionally, data-collection was completed with detailed information from British, Swedish, and Spanish registries on Creutzfeldt-Jakob disease (CJD) forms, amyotrophic lateral sclerosis (ALS), and sporadic rapidly progressing neurodegenerative dementia (sRPNDd). For each condition, age-specific incidence curves, age-adjusted figures, and reported or calculated median survival were plotted and examined. Findings Based on 51 valid reported and seven new incidence data sets, nine out of eleven conditions shared specific features. Age-adjusted incidence per million person-years increased from ≤1.5 for sRPNDd, different CJD forms and Huntington's disease (HD), to 1589 and 2589 for AMD and Alzheimer's disease (AD) respectively. Age-specific profiles varied from (a) symmetrical, inverted V-shaped curves for low incidences to (b) those increasing with age for late-life sporadic CNDDs and for sRPNDd, with (c) a suggested, intermediate, non-symmetrical inverted V-shape for fronto-temporal dementia and Parkinson's disease. Frequently, peak age-specific incidences from 20–24 to ≥90 years increased with age at onset and survival. Distinct patterns were seen: for HD, with a low incidence, levelling off at middle age, and long median survival, 20 years; and for sRPNDd which displayed the lowest incidence, increasing with age, and a short median disease duration. Interpretation These results call for a unified population view of NDDs, with an age-at-onset-related pattern for acquired and sporadic CNDDs. The pattern linking age at onset to

  8. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns.

    PubMed

    Sanchez-Mut, J V; Heyn, H; Vidal, E; Moran, S; Sayols, S; Delgado-Morales, R; Schultz, M D; Ansoleaga, B; Garcia-Esparcia, P; Pons-Espinal, M; de Lagran, M M; Dopazo, J; Rabano, A; Avila, J; Dierssen, M; Lott, I; Ferrer, I; Ecker, J R; Esteller, M

    2016-01-01

    Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Alzheimer-like neurodegenerative profile associated with Down's syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies. PMID:26784972

  9. The Role of Oxidative Stress in Neurodegenerative Diseases

    PubMed Central

    Kim, Geon Ha; Kim, Jieun E.; Rhie, Sandy Jeong

    2015-01-01

    Oxidative stress is induced by an imbalanced redox states, involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system. The brain is one of organs especially vulnerable to the effects of ROS because of its high oxygen demand and its abundance of peroxidation-susceptible lipid cells. Previous studies have demonstrated that oxidative stress plays a central role in a common pathophysiology of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases, although the results with regard to their efficacy of treating neurodegenerative disease have been inconsistent. In this review, we will discuss the role of oxidative stress in the pathophysiology of neurodegenerative diseases and in vivo measurement of an index of damage by oxidative stress. Moreover, the present knowledge on antioxidant in the treatment of neurodegenerative diseases and future directions will be outlined. PMID:26713080

  10. Selective adaptation to "oddball" sounds by the human auditory system.

    PubMed

    Simpson, Andrew J R; Harper, Nicol S; Reiss, Joshua D; McAlpine, David

    2014-01-29

    Adaptation to both common and rare sounds has been independently reported in neurophysiological studies using probabilistic stimulus paradigms in small mammals. However, the apparent sensitivity of the mammalian auditory system to the statistics of incoming sound has not yet been generalized to task-related human auditory perception. Here, we show that human listeners selectively adapt to novel sounds within scenes unfolding over minutes. Listeners' performance in an auditory discrimination task remains steady for the most common elements within the scene but, after the first minute, performance improves for distinct and rare (oddball) sound elements, at the expense of rare sounds that are relatively less distinct. Our data provide the first evidence of enhanced coding of oddball sounds in a human auditory discrimination task and suggest the existence of an adaptive mechanism that tracks the long-term statistics of sounds and deploys coding resources accordingly. PMID:24478375

  11. Role of apolipoprotein E in neurodegenerative diseases

    PubMed Central

    Giau, Vo Van; Bagyinszky, Eva; An, Seong Soo A; Kim, Sang Yun

    2015-01-01

    Apolipoprotein E (APOE) is a lipid-transport protein abundantly expressed in most neurons in the central nervous system. APOE-dependent alterations of the endocytic pathway can affect different functions. APOE binds to cell-surface receptors to deliver lipids and to the hydrophobic amyloid-β peptide, regulating amyloid-β aggregations and clearances in the brain. Several APOE isoforms with major structural differences were discovered and shown to influence the brain lipid transport, glucose metabolism, neuronal signaling, neuroinflammation, and mitochondrial function. This review will summarize the updated research progress on APOE functions and its role in Alzheimer’s disease, Parkinson’s disease, cardiovascular diseases, multiple sclerosis, type 2 diabetes mellitus, Type III hyperlipoproteinemia, vascular dementia, and ischemic stroke. Understanding the mutations in APOE, their structural properties, and their isoforms is important to determine its role in various diseases and to advance the development of therapeutic strategies. Targeting APOE may be a potential approach for diagnosis, risk assessment, prevention, and treatment of various neurodegenerative and cardiovascular diseases in humans. PMID:26213471

  12. Neurodegenerative Diseases: Neurotoxins as Sufficient Etiologic Agents?

    PubMed Central

    Shaw, Christopher A.; Höglinger, Günter U.

    2008-01-01

    A dominant paradigm in neurological disease research is that the primary etiological factors for diseases such as Alzheimer’s (AD), Parkinson’s (PD), and amyotrophic lateral sclerosis (ALS) are genetic. Opposed to this perspective are the clear observations from epidemiology that purely genetic casual factors account for a relatively small fraction of all cases. Many who support a genetic etiology for neurological disease take the view that while the percentages may be relatively small, these numbers will rise in the future with the inevitable discoveries of additional genetic mutations. The follow up argument is that even if the last is not true, the events triggered by the aberrant genes identified so far will be shown to impact the same neuronal cell death pathways as those activated by environmental factors that trigger most sporadic disease cases. In this article we present a countervailing view that environmental neurotoxins may be the sole sufficient factor in at least three neurological disease clusters. For each, neurotoxins have been isolated and characterized that, at least in animal models, faithfully reproduce each disorder without the need for genetic co-factors. Based on these data, we will propose a set of principles that would enable any potential toxin to be evaluated as an etiological factor in a given neurodegenerative disease. Finally, we will attempt to put environmental toxins into the context of possible genetically-determined susceptibility. PMID:17985252

  13. Cerebral Toxocariasis: Silent Progression to Neurodegenerative Disorders?

    PubMed Central

    Holland, Celia V.; Loxton, Karen; Barghouth, Ursula

    2015-01-01

    SUMMARY Toxocara canis and T. cati are highly prevalent nematode infections of the intestines of dogs and cats. In paratenic hosts, larvae do not mature in the intestine but instead migrate through the somatic tissues and organs of the body. The presence of these migrating larvae can contribute to pathology. Toxocara larvae can invade the brains of humans, and while case descriptions of cerebral toxocariasis are historically rare, improved diagnosis and greater awareness have contributed to increased detection. Despite this, cerebral or neurological toxocariasis (NT) remains a poorly understood phenomenon. Furthermore, our understanding of cognitive deficits due to toxocariasis in human populations remains particularly deficient. Recent data describe an enhanced expression of biomarkers associated with brain injury, such as GFAP, AβPP, transforming growth factor β1 (TGF-β1), NF-L, S100B, tTG, and p-tau, in mice receiving even low doses of Toxocara ova. Finally, this review outlines a hypothesis to explore the relationship between the presence of T. canis larvae in the brain and the progression of Alzheimer's disease (AD) due to enhanced AD-associated neurodegenerative biomarker expression. PMID:26062575

  14. Mutational Analysis of TARDBP in Neurodegenerative Diseases

    PubMed Central

    Ticozzi, Nicola; LeClerc, Ashley Lyn; Van-Blitterswijk, Marka; Keagle, Pamela; McKenna-Yasek, Diane M.; Sapp, Peter C.; Silani, Vincenzo; Wills, Anne-Marie; Brown, Robert H.; Landers, John E.

    2010-01-01

    Neurodegenerative diseases are often characterized by the presence of aggregates of misfolded proteins. TDP-43 is a major component of these aggregates in Amyotrophic Lateral Sclerosis (ALS), but has also been observed in Alzheimer's (AD) and Parkinson's Diseases (PD). In addition, mutations in the TARDBP gene, encoding TDP-43, have been found to be a significant cause of familial ALS (FALS). All mutations, except for one, have been found in exon 6. To confirm this observation in ALS and to investigate whether TARDBP may play a role in the pathogenesis of AD and PD, we screened for mutations in exon 6 of the TARDBP gene in three cohorts composed of 376 AD, 463 PD (18% familial PD) and 376 ALS patients (50% FALS). We found mutations in ∼7% of FALS and ∼0.5% of sporadic ALS (SALS) patients, including two novel mutations, p.N352T and p.G384R. In contrast, we did not find TARDBP mutations in our cohort of AD and PD patients. These results suggest that mutations in TARDBP are not a significant cause of AD and PD. PMID:20031275

  15. Peripheral arterial endothelial dysfunction of neurodegenerative diseases.

    PubMed

    Fukui, Yusuke; Hishikawa, Nozomi; Shang, Jingwei; Sato, Kota; Nakano, Yumiko; Morihara, Ryuta; Ohta, Yasuyuki; Yamashita, Toru; Abe, Koji

    2016-07-15

    This study evaluates endothelial functions of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and spinocerebellar ataxia (SCA). The reactive hyperemia index (RHI) of peripheral arterial tonometry and serological data were compared between age- and gender-matched normal controls (n=302) and five disease groups (ALS; n=75, PD; n=180, PSP; n=30, MSA; n=35, SCA; n=53). Correlation analyses were performed in ALS with functional rating scale-revised (FRS-R), and in PD with the Hehn-Yahr scale (H-Y) and a heart to mediastinum ratio using (123)I-MIBG scintigraphy (MIBG). The RHI of ALS and PD, but not of PSP, MSA or SCA, were significantly lower than normal controls (p<0.01). ALS showed a negative correlation of RHI with serum triglycerides (TG) and immunoreactive insulin (IRI) levels, but not with disease severity (FRS-R) or rates of disease progression (∆FRS-R). On the other hand, PD showed a negative correlation of RHI with a progressive disease severity (H-Y) and a positive correlation of RHI with early/delayed MIBG scintigraphy, but not with serological data. The present study demonstrated significant declines of peripheral arterial endothelial functions in ALS and PD. The RHI of ALS was more correlated with disease duration and serum parameters while the RHI of PD was more correlated with disease severity and MIBG, suggesting different mechanisms of endothelial dysfunction. PMID:27288784

  16. Biomolecular Modulation of Neurodegenerative Events during Ageing

    PubMed Central

    Nebbioso, Marcella; Scarsella, Gianfranco; Librando, Aloisa; Pescosolido, Nicola

    2015-01-01

    The objective is to assess the modulation of retinal and optic nerve degenerative events induced by the combination of α-lipoic acid (ALA) and superoxide dismutase (SOD) in an animal model of ageing. For this study, 24 male Wistar-Harlan strain rats were left to age for up to 24 months. One group of rats was subjected to a diet supplemented with ALA and SOD for 8 weeks, while another group was used as a positive control and not subjected to any dietary treatment. To assess the cytoprotective effects of the antioxidants, a morphological analysis was carried out on sections of retina and optic nerve head, stained with haematoxylin-eosin, followed by an analysis of the modifications to nuclear DNA detected by the TUNEL technique. The lipid peroxidation assay was used to assess the damage induced by oxidative stress at cell membrane level. The molecules involved in apoptosis mediated by oxidative stress, such as caspase-3 and inducible nitric oxide synthase, were also assayed by immunolocalization and western blot. ALA and SOD are able to counteract senile neurodegenerative deterioration to the retina and optic nerve. Indeed, the combination of these antioxidant molecules can reduce oxidative stress levels and thus prevent both nuclear degradation and subsequent cell death. PMID:26583065

  17. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  18. Neuromechanistic Model of Auditory Bistability.

    PubMed

    Rankin, James; Sussman, Elyse; Rinzel, John

    2015-11-01

    Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept-a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition. PMID:26562507

  19. Neuromechanistic Model of Auditory Bistability

    PubMed Central

    Rankin, James; Sussman, Elyse; Rinzel, John

    2015-01-01

    Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept—a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition. PMID:26562507

  20. Auditory Reserve and the Legacy of Auditory Experience

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2014-01-01

    Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function. PMID:25405381

  1. [Diagnosis of auditory processing disorders in children].

    PubMed

    Ptok, M; Miller, S; Kühn, D

    2016-04-01

    Despite normal hearing thresholds in pure tone audiometry, 0.5-1 % of children have difficulty understanding what they hear. An auditory processing disorder (APD) can be assumed, which should be clarified and treated. Based on a selective literature search in the PubMed and Scopus databases using the term "auditory processing disorder", several consensus papers are discussed. Numerous studies on APD have revealed partially contradicting results, thus fueling critical discussion regarding validity and reliability-of specific audiometric APD methods and the APD construct in particular. In order to correctly advise parents and, where necessary, treat affected children, otorhinolaryngologists, phoniatrists, and pediatric audiologists must understand the psychometric properties of applied tests and have knowledge of current discussion. Diagnosis is generally a multistep interdisciplinary process. PMID:27038033

  2. Central auditory neurons have composite receptive fields

    PubMed Central

    Kozlov, Andrei S.; Gentner, Timothy Q.

    2016-01-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  3. Delayed auditory feedback in polyglot simultaneous interpreters.

    PubMed

    Fabbro, F; Darò, V

    1995-03-01

    Twelve polyglot students of simultaneous interpretation and 12 controls (students of the faculty of Medicine) were submitted to a task of verbal fluency under amplified normal auditory feedback (NAF) and under three delayed auditory feedback (DAF) conditions with three different delay intervals (150, 200, and 250 msec). The control group showed a significant reduction in verbal fluency and a significant increase in the number of mistakes in all three DAF conditions. The interpreters' group, however, did not show any significant speech disruption neither in the subjects' mother tongue (L1) nor in their second language (L2) across all DAF conditions. Interpreters' general high verbal fluency along with their ability to pay less attention to their own verbal output make them more resistant to the interfering effects of DAF on speech. PMID:7757448

  4. Central auditory neurons have composite receptive fields.

    PubMed

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  5. Hypermnesia using auditory input.

    PubMed

    Allen, J

    1992-07-01

    The author investigated whether hypermnesia would occur with auditory input. In addition, the author examined the effects of subjects' knowledge that they would later be asked to recall the stimuli. Two groups of 26 subjects each were given three successive recall trials after they listened to an audiotape of 59 high-imagery nouns. The subjects in the uninformed group were not told that they would later be asked to remember the words; those in the informed group were. Hypermnesia was evident, but only in the uninformed group. PMID:1447564

  6. Pediatric central auditory processing disorder showing elevated threshold on pure tone audiogram.

    PubMed

    Maeda, Yukihide; Nakagawa, Atsuko; Nagayasu, Rie; Sugaya, Akiko; Omichi, Ryotaro; Kariya, Shin; Fukushima, Kunihiro; Nishizaki, Kazunori

    2016-10-01

    Central auditory processing disorder (CAPD) is a condition in which dysfunction in the central auditory system causes difficulty in listening to conversations, particularly under noisy conditions, despite normal peripheral auditory function. Central auditory testing is generally performed in patients with normal hearing on the pure tone audiogram (PTA). This report shows that diagnosis of CAPD is possible even in the presence of an elevated threshold on the PTA, provided that the normal function of the peripheral auditory pathway was verified by distortion product otoacoustic emission (DPOAE), auditory brainstem response (ABR), and auditory steady state response (ASSR). Three pediatric cases (9- and 10-year-old girls and an 8-year-old boy) of CAPD with elevated thresholds on PTAs are presented. The chief complaint was difficulty in listening to conversations. PTA showed elevated thresholds, but the responses and thresholds for DPOAE, ABR, and ASSR were normal, showing that peripheral auditory function was normal. Significant findings of central auditory testing such as dichotic speech tests, time compression of speech signals, and binaural interaction tests confirmed the diagnosis of CAPD. These threshold shifts in PTA may provide a new concept of a clinical symptom due to central auditory dysfunction in CAPD. PMID:26922127

  7. Auditory neglect and related disorders.

    PubMed

    Gutschalk, Alexander; Dykstra, Andrew

    2015-01-01

    Neglect is a neurologic disorder, typically associated with lesions of the right hemisphere, in which patients are biased towards their ipsilesional - usually right - side of space while awareness for their contralesional - usually left - side is reduced or absent. Neglect is a multimodal disorder that often includes deficits in the auditory domain. Classically, auditory extinction, in which left-sided sounds that are correctly perceived in isolation are not detected in the presence of synchronous right-sided stimulation, has been considered the primary sign of auditory neglect. However, auditory extinction can also be observed after unilateral auditory cortex lesions and is thus not specific for neglect. Recent research has shown that patients with neglect are also impaired in maintaining sustained attention, on both sides, a fact that is reflected by an impairment of auditory target detection in continuous stimulation conditions. Perhaps the most impressive auditory symptom in full-blown neglect is alloacusis, in which patients mislocalize left-sided sound sources to their right, although even patients with less severe neglect still often show disturbance of auditory spatial perception, most commonly a lateralization bias towards the right. We discuss how these various disorders may be explained by a single model of neglect and review emerging interventions for patient rehabilitation. PMID:25726290

  8. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  9. Neurodegenerative diseases: From available treatments to prospective herbal therapy.

    PubMed

    Solanki, Isha; Parihar, Priyanka; Parihar, Mordhwaj Singh

    2016-05-01

    Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and many others represent a relevant health problem with age worldwide. Efforts have been made in recent years to discover the mechanism of neurodegenerative diseases and prospective therapy that can help to slow down the effects of the aging and prevent these diseases. Since pathogenesis of these diseases involves multiple factors therefore the important task for neuroscientists is to identify such multiple factors and prevent age-associated neurodegenerative diseases. For these neurodegenerative diseases yet we have only palliative therapies and none of them significantly capable to slow down or halt the underlying pathology. Polyphenolic compounds such as flavonoids present in vegetables and fruits are believed to have anti-aging properties and reduce the risk of neurodegenerative diseases. Despite their abundance, investigations into the benefits of these polyphenolic compounds in human health have only recently begun. Preclinical and clinical studies have demonstrated the potential beneficial effects of flavonoids in neurons. Although clinical trials on the effectiveness of dietary flavonoids to treat human diseases are limited but various animal models and cell culture studies have shown a great promise in developing these compounds as suitable therapeutic targets. In this review, we elaborate the neuroprotective properties of flavonoids especially their applications in prevention and intervention of different neurodegenerative diseases. Their multi-target properties may allow them to be potential dietary supplement in prevention and treatment of the age-associated neurodegenerative diseases. PMID:26550708

  10. Midbrain auditory selectivity to natural sounds.

    PubMed

    Wohlgemuth, Melville J; Moss, Cynthia F

    2016-03-01

    This study investigated auditory stimulus selectivity in the midbrain superior colliculus (SC) of the echolocating bat, an animal that relies on hearing to guide its orienting behaviors. Multichannel, single-unit recordings were taken across laminae of the midbrain SC of the awake, passively listening big brown bat, Eptesicus fuscus. Species-specific frequency-modulated (FM) echolocation sound sequences with dynamic spectrotemporal features served as acoustic stimuli along with artificial sound sequences matched in bandwidth, amplitude, and duration but differing in spectrotemporal structure. Neurons in dorsal sensory regions of the bat SC responded selectively to elements within the FM sound sequences, whereas neurons in ventral sensorimotor regions showed broad response profiles to natural and artificial stimuli. Moreover, a generalized linear model (GLM) constructed on responses in the dorsal SC to artificial linear FM stimuli failed to predict responses to natural sounds and vice versa, but the GLM produced accurate response predictions in ventral SC neurons. This result suggests that auditory selectivity in the dorsal extent of the bat SC arises through nonlinear mechanisms, which extract species-specific sensory information. Importantly, auditory selectivity appeared only in responses to stimuli containing the natural statistics of acoustic signals used by the bat for spatial orientation-sonar vocalizations-offering support for the hypothesis that sensory selectivity enables rapid species-specific orienting behaviors. The results of this study are the first, to our knowledge, to show auditory spectrotemporal selectivity to natural stimuli in SC neurons and serve to inform a more general understanding of mechanisms guiding sensory selectivity for natural, goal-directed orienting behaviors. PMID:26884152

  11. Midbrain auditory selectivity to natural sounds

    PubMed Central

    Moss, Cynthia F.

    2016-01-01

    This study investigated auditory stimulus selectivity in the midbrain superior colliculus (SC) of the echolocating bat, an animal that relies on hearing to guide its orienting behaviors. Multichannel, single-unit recordings were taken across laminae of the midbrain SC of the awake, passively listening big brown bat, Eptesicus fuscus. Species-specific frequency-modulated (FM) echolocation sound sequences with dynamic spectrotemporal features served as acoustic stimuli along with artificial sound sequences matched in bandwidth, amplitude, and duration but differing in spectrotemporal structure. Neurons in dorsal sensory regions of the bat SC responded selectively to elements within the FM sound sequences, whereas neurons in ventral sensorimotor regions showed broad response profiles to natural and artificial stimuli. Moreover, a generalized linear model (GLM) constructed on responses in the dorsal SC to artificial linear FM stimuli failed to predict responses to natural sounds and vice versa, but the GLM produced accurate response predictions in ventral SC neurons. This result suggests that auditory selectivity in the dorsal extent of the bat SC arises through nonlinear mechanisms, which extract species-specific sensory information. Importantly, auditory selectivity appeared only in responses to stimuli containing the natural statistics of acoustic signals used by the bat for spatial orientation—sonar vocalizations—offering support for the hypothesis that sensory selectivity enables rapid species-specific orienting behaviors. The results of this study are the first, to our knowledge, to show auditory spectrotemporal selectivity to natural stimuli in SC neurons and serve to inform a more general understanding of mechanisms guiding sensory selectivity for natural, goal-directed orienting behaviors. PMID:26884152

  12. The Perception of Auditory Motion.

    PubMed

    Carlile, Simon; Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  13. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  14. Auditory color constancy

    NASA Astrophysics Data System (ADS)

    Kluender, Keith R.; Kiefte, Michael

    2003-10-01

    It is both true and efficient that sensorineural systems respond to change and little else. Perceptual systems do not record absolute level be it loudness, pitch, brightness, or color. This fact has been demonstrated in every sensory domain. For example, the visual system is remarkable at maintaining color constancy over widely varying illumination such as sunlight and varieties of artificial light (incandescent, fluorescent, etc.) for which spectra reflected from objects differ dramatically. Results will be reported for a series of experiments demonstrating how auditory systems similarly compensate for reliable characteristics of spectral shape in acoustic signals. Specifically, listeners' perception of vowel sounds, characterized by both local (e.g., formants) and broad (e.g., tilt) spectral composition, changes radically depending upon reliable spectral composition of precursor signals. These experiments have been conducted using a variety of precursor signals consisting of meaningful and time-reversed vocoded sentences, as well as novel nonspeech precursors consisting of multiple filter poles modulating sinusoidally across a source spectrum with specific local and broad spectral characteristics. Constancy across widely varying spectral compositions shares much in common with visual color constancy. However, auditory spectral constancy appears to be more effective than visual constancy in compensating for local spectral fluctuations. [Work supported by NIDCD DC-04072.

  15. Rapid estimation of high-parameter auditory-filter shapes.

    PubMed

    Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M

    2014-10-01

    A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086

  16. Rapid estimation of high-parameter auditory-filter shapes

    PubMed Central

    Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M.

    2014-01-01

    A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086

  17. Integrated processing of spatial cues in human auditory cortex.

    PubMed

    Salminen, Nelli H; Takanen, Marko; Santala, Olli; Lamminsalo, Jarkko; Altoè, Alessandro; Pulkki, Ville

    2015-09-01

    Human sound source localization relies on acoustical cues, most importantly, the interaural differences in time and level (ITD and ILD). For reaching a unified representation of auditory space the auditory nervous system needs to combine the information provided by these two cues. In search for such a unified representation, we conducted a magnetoencephalography (MEG) experiment that took advantage of the location-specific adaptation of the auditory cortical N1 response. In general, the attenuation caused by a preceding adaptor sound to the response elicited by a probe depends on their spatial arrangement: if the two sounds coincide, adaptation is stronger than when the locations differ. Here, we presented adaptor-probe pairs that contained different localization cues, for instance, adaptors with ITD and probes with ILD. We found that the adaptation of the N1 amplitude was location-specific across localization cues. This result can be explained by the existence of auditory cortical neurons that are sensitive to sound source location independent on which cue, ITD or ILD, provides the location information. Such neurons would form a cue-independent, unified representation of auditory space in human auditory cortex. PMID:26074304

  18. Cross auditory-spatial learning in early-blind individuals.

    PubMed

    Chan, Chetwyn C H; Wong, Alex W K; Ting, Kin-Hung; Whitfield-Gabrieli, Susan; He, Jufang; Lee, Tatia M C

    2012-11-01

    Cross-modal processing enables the utilization of information received via different sensory organs to facilitate more complicated human actions. We used functional MRI on early-blind individuals to study the neural processes associated with cross auditory-spatial learning. The auditory signals, converted from echoes of ultrasonic signals emitted from a navigation device, were novel to the participants. The subjects were trained repeatedly for 4 weeks in associating the auditory signals with different distances. Subjects' blood-oxygenation-level-dependent responses were captured at baseline and after training using a sound-to-distance judgment task. Whole-brain analyses indicated that the task used in the study involved auditory discrimination as well as spatial localization. The learning process was shown to be mediated by the inferior parietal cortex and the hippocampus, suggesting the integration and binding of auditory features to distances. The right cuneus was found to possibly serve a general rather than a specific role, forming an occipital-enhanced network for cross auditory-spatial learning. This functional network is likely to be unique to those with early blindness, since the normal-vision counterparts shared activities only in the parietal cortex. PMID:21932260

  19. Presentation of dynamically overlapping auditory messages in user interfaces

    SciTech Connect

    Papp, A.L.

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  20. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  1. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex.

    PubMed

    Jiang, Fang; Stecker, G Christopher; Boynton, Geoffrey M; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness-competition across different cortical areas for functional role. PMID:27458357

  2. The Process of Auditory Distraction: Disrupted Attention and Impaired Recall in a Simulated Lecture Environment

    ERIC Educational Resources Information Center

    Zeamer, Charlotte; Fox Tree, Jean E.

    2013-01-01

    Literature on auditory distraction has generally focused on the effects of particular kinds of sounds on attention to target stimuli. In support of extensive previous findings that have demonstrated the special role of language as an auditory distractor, we found that a concurrent speech stream impaired recall of a short lecture, especially for…

  3. Glial cell inclusions and the pathogenesis of neurodegenerative diseases

    PubMed Central

    Miller, David W.; Cookson, Mark R.; Dickson, Dennis W.

    2006-01-01

    In this review, we discuss examples that show how glial-cell pathology is increasingly recognized in several neurodegenerative diseases. We also discuss the more provocative idea that some of the disorders that are currently considered to be neurodegenerative diseases might, in fact, be due to primary abnormalities in glia. Although the mechanism of glial pathology (i.e. modulating glutamate excitotoxicity) might be better established for amyotrophic lateral sclerosis (ALS), a role for neuronal–glial interactions in the pathogenesis of most neurodegenerative diseases is plausible. This burgeoning area of neuroscience will receive much attention in the future and it is expected that further understanding of basic neuronal–glial interactions will have a significant impact on the understanding of the fundamental nature of human neurodegenerative disorders. PMID:16614753

  4. A network approach to clinical intervention in neurodegenerative diseases.

    PubMed

    Santiago, Jose A; Potashkin, Judith A

    2014-12-01

    Network biology has become a powerful tool to dissect the molecular mechanisms triggering neurodegeneration. Recent developments in network biology have led to the discovery of disease-causing genes, diagnostic biomarkers, and therapeutic targets for several neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases. Network-based approaches have provided the molecular rationale for the relationship among cancer, diabetes, and neurodegenerative diseases, and have uncovered unexpected links between apparently unrelated diseases. Here, we summarize the recent advances in network biology to untangle the molecular underpinnings giving rise to the most prevalent neurodegenerative diseases. We propose that network analysis provides a feasible and practical tool for identifying biologically meaningful biomarkers and potential therapeutic targets for clinical intervention in neurodegenerative diseases. PMID:25455073

  5. Spectrin Breakdown Products (SBDPs) as Potential Biomarkers for Neurodegenerative Diseases

    PubMed Central

    Yan, Xiao-Xin; Jeromin, Andreas; Jeromin, A.

    2013-01-01

    The world’s human population ages rapidly thanks to the great advance in modern medicine. While more and more body system diseases become treatable and curable, age-related neurodegenerative diseases remain poorly understood mechanistically, and are desperately in need of preventive and therapeutic interventions. Biomarker development consists of a key part of concerted effort in combating neurodegenerative diseases. In many chronic neurodegenerative conditions, neuronal damage/death occurs long before the onset of disease symptoms, and abnormal proteolysis may either play an active role or be a companying event of neuronal injury. Increased spectrin cleavage yielding elevated spectrin breakdown products (SBDPs) by calcium-sensitive proteases such as calpain and caspases has been established in conditions associated with acute neuronal damage such as traumatic brain injury (TBI). Here we review literature regarding spectrin expression and metabolism in the brain, and propose a potential use of SBDPs as biomarkers for neurodegenerative diseases such as Alzheimer’s diseases. PMID:23710421

  6. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression

    PubMed Central

    Gao, Hui-Ming; Hong, Jau-Shyong

    2016-01-01

    Neurodegenerative diseases are a group of chronic, progressive disorders characterized by the gradual loss of neurons in discrete areas of the central nervous system (CNS). The mechanism(s) underlying their progressive nature remains unknown but a timely and well-controlled inflammatory reaction is essential for the integrity and proper function of the CNS. Substantial evidence has documented a common inflammatory mechanism in various neurodegenerative diseases. We hypothesize that in the diseased CNS, interactions between damaged neurons and dysregulated, overactivated microglia create a vicious self-propagating cycle causing uncontrolled, prolonged inflammation that drives the chronic progression of neurodegenerative diseases. We further propose that dynamic modulation of this inflammatory reaction by interrupting the vicious cycle might become a disease-modifying therapeutic strategy for neurodegenerative diseases. PMID:18599350

  7. Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases.

    PubMed

    Goldstein, David S

    2012-07-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities,treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple,interacting effectors regulated by homeostatic comparators—"homeostats". Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. "Allostatic load" refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states).Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion,and time, eventually leading to engine breakdown,allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholaminesin the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions,environmental exposures, repeated stress-related catecholamine release, and time. PMID:22297542

  8. Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases.

    PubMed

    Goldstein, D S

    2011-04-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple interacting effectors regulated by homeostatic comparators-"homeostats." Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. "Allostatic load" refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholamines in the neuronal cytoplasm are autotoxic and that catecholamines from storage visicles leak into the cytoplasm continuously during life. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:21615193

  9. Stress, Allostatic Load, Catecholamines, and Other Neurotransmitters in Neurodegenerative Diseases

    PubMed Central

    2016-01-01

    As populations age, the prevalence of geriatric neurodegenerative diseases will increase. These diseases generally are multifactorial, arising from complex interactions among genes, environment, concurrent morbidities, treatments, and time. This essay provides a concept for the pathogenesis of Lewy body diseases such as Parkinson disease, by considering them in the context of allostasis and allostatic load. Allostasis reflects active, adaptive processes that maintain apparent steady states, via multiple, interacting effectors regulated by homeostatic comparators—“homeostats.” Stress can be defined as a condition or state in which a sensed discrepancy between afferent information and a setpoint for response leads to activation of effectors, reducing the discrepancy. “Allostatic load” refers to the consequences of sustained or repeated activation of mediators of allostasis. From the analogy of an idling car, the revolutions per minute of the engine can be maintained at any of a variety of levels (allostatic states). Just as allostatic load (cumulative wear and tear) reflects design and manufacturing variations, byproducts of combustion, and time, eventually leading to engine breakdown, allostatic load in catecholaminergic neurons might eventually lead to Lewy body diseases. Central to the argument is that catecholaminergic neurons leak vesicular contents into the cytoplasm continuously during life and that catecholamines in the neuronal cytoplasm are autotoxic. These neurons therefore depend on vesicular sequestration to limit autotoxicity of cytosolic transmitter. Parkinson disease might be a disease of the elderly because of allostatic load, which depends on genetic predispositions, environmental exposures, repeated stress-related catecholamine release, and time. PMID:22297542

  10. Auditory Discrimination Learning: Role of Working Memory

    PubMed Central

    Zhang, Yu-Xuan; Moore, David R.; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal

    2016-01-01

    Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience. PMID:26799068

  11. Auditory Discrimination Learning: Role of Working Memory.

    PubMed

    Zhang, Yu-Xuan; Moore, David R; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal

    2016-01-01

    Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience. PMID:26799068

  12. BALDEY: A database of auditory lexical decisions.

    PubMed

    Ernestus, Mirjam; Cutler, Anne

    2015-01-01

    In an auditory lexical decision experiment, 5541 spoken content words and pseudowords were presented to 20 native speakers of Dutch. The words vary in phonological make-up and in number of syllables and stress pattern, and are further representative of the native Dutch vocabulary in that most are morphologically complex, comprising two stems or one stem plus derivational and inflectional suffixes, with inflections representing both regular and irregular paradigms; the pseudowords were matched in these respects to the real words. The BALDEY ("biggest auditory lexical decision experiment yet") data file includes response times and accuracy rates, with for each item morphological information plus phonological and acoustic information derived from automatic phonemic segmentation of the stimuli. Two initial analyses illustrate how this data set can be used. First, we discuss several measures of the point at which a word has no further neighbours and compare the degree to which each measure predicts our lexical decision response outcomes. Second, we investigate how well four different measures of frequency of occurrence (from written corpora, spoken corpora, subtitles, and frequency ratings by 75 participants) predict the same outcomes. These analyses motivate general conclusions about the auditory lexical decision task. The (publicly available) BALDEY database lends itself to many further analyses. PMID:25397865

  13. Cortical auditory disorders: clinical and psychoacoustic features.

    PubMed Central

    Mendez, M F; Geehan, G R

    1988-01-01

    The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and matching, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Images PMID:2450968

  14. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  15. Idealized computational models for auditory receptive fields.

    PubMed

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  16. Auditory response to pulsed radiofrequency energy.

    PubMed

    Elder, J A; Chou, C K

    2003-01-01

    The human auditory response to pulses of radiofrequency (RF) energy, commonly called RF hearing, is a well established phenomenon. RF induced sounds can be characterized as low intensity sounds because, in general, a quiet environment is required for the auditory response. The sound is similar to other common sounds such as a click, buzz, hiss, knock, or chirp. Effective radiofrequencies range from 2.4 to 10000 MHz, but an individual's ability to hear RF induced sounds is dependent upon high frequency acoustic hearing in the kHz range above about 5 kHz. The site of conversion of RF energy to acoustic energy is within or peripheral to the cochlea, and once the cochlea is stimulated, the detection of RF induced sounds in humans and RF induced auditory responses in animals is similar to acoustic sound detection. The fundamental frequency of RF induced sounds is independent of the frequency of the radiowaves but dependent upon head dimensions. The auditory response has been shown to be dependent upon the energy in a single pulse and not on average power density. The weight of evidence of the results of human, animal, and modeling studies supports the thermoelastic expansion theory as the explanation for the RF hearing phenomenon. RF induced sounds involve the perception via bone conduction of thermally generated sound transients, that is, audible sounds are produced by rapid thermal expansion resulting from a calculated temperature rise of only 5 x 10(-6) degrees C in tissue at the threshold level due to absorption of the energy in the RF pulse. The hearing of RF induced sounds at exposure levels many orders of magnitude greater than the hearing threshold is considered to be a biological effect without an accompanying health effect. This conclusion is supported by a comparison of pressure induced in the body by RF pulses to pressure associated with hazardous acoustic energy and clinical ultrasound procedures. PMID:14628312

  17. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies

    PubMed Central

    Valera, Elvira; Masliah, Eliezer

    2013-01-01

    Immunotherapy is currently being intensively explored as much-needed disease-modifying treatment for neurodegenerative diseases. While Alzheimer’s disease (AD) has been the focus of numerous immunotherapeutic studies, less attention has been paid to Parkinson’s disease (PD) and other neurodegenerative disorders. The reason for this difference is that the amyloid beta (Aβ) protein in AD is a secreted molecule that circulates in blood and is readably recognized by antibodies. In contrast, α-synuclein (α-syn), tau, huntingtin and other proteins involved in neurodegenerative diseases have been considered to be exclusively of intracellular nature. However, the recent discovery that toxic oligomeric versions of α-syn and tau accumulate in the membrane and can be excreted to the extracellular environment has provided a rationale for the development of immunotherapeutic approaches for PD, dementia with Lewy bodies, frontotemporal dementia, and other neurodegenerative disorders characterized by the abnormal accumulation of these proteins. Active immunization, passive immunization, and T cell-mediated cellular immunotherapeutic approaches have been developed targeting Aβ, α-syn and tau. Most advanced studies, including results from phase III clinical trials for passive immunization in AD, have been recently reported. Results suggest that immunotherapy might be a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and propagation of toxic protein aggregates. In this manuscript we provide an overview on immunotherapeutic advances for neurodegenerative disorders, with special emphasis on α-synucleinopathies. PMID:23384597

  18. Auditory perspective taking.

    PubMed

    Martinson, Eric; Brock, Derek

    2013-06-01

    Effective communication with a mobile robot using speech is a difficult problem even when you can control the auditory scene. Robot self-noise or ego noise, echoes and reverberation, and human interference are all common sources of decreased intelligibility. Moreover, in real-world settings, these problems are routinely aggravated by a variety of sources of background noise. Military scenarios can be punctuated by high decibel noise from materiel and weaponry that would easily overwhelm a robot's normal speaking volume. Moreover, in nonmilitary settings, fans, computers, alarms, and transportation noise can cause enough interference to make a traditional speech interface unusable. This work presents and evaluates a prototype robotic interface that uses perspective taking to estimate the effectiveness of its own speech presentation and takes steps to improve intelligibility for human listeners. PMID:23096077

  19. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26541581

  20. PREFACE: Physics and biology of neurodegenerative diseases Physics and biology of neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Pastore, Annalisa

    2012-06-01

    In 1939, William T Astbury, who was at the time a professor at the University of Leeds, wrote a letter to Dorothy Hodgkins, a crystallographer colleague who would eventually be awarded a Nobel Prize (1964) [1]. Astbury was working on determining the structure of silk and had found that these fibres had a so-called cross-beta arrangement, with the hydrogen bonds holding a beta-sheet structure perpendicular to the fibre axis. This structure was very robust and thus would account well for the properties of the silk fibre. Being very impressed by this structural solution at a time when protein structure was just being discovered, he wrote to Dorothy Hodgkins formulating the hypothesis that all proteins could adopt a cross-beta structure similar to that found for silk as a sort of ultimate solution. Approximately 70 years later, this prediction was reconsidered and is now generally accepted to be correct: most if not all proteins seem to be able to form fibrils, commonly named amyloids, that adopt the same structural features found in silk. The field of amyloid fibres bloomed in the mid-90s when several researchers—among them Chris Dobson, a professor first at Oxford and then at Cambridge—observed that proteins could aggregate by concomitant formation of fibrillar structures (reviewed in [2]). It was certainly not news that proteins could aggregate with an irreversible mechanism. However, what nearly came as a surprise was the realization that aggregation is often accompanied by a major structural rearrangement, which almost invariably associates with protein misfolding (i.e. loss of the native structure and adoption of a beta-rich structure) and amyloid fibre formation. Even more interesting was the growing evidence that amyloid fibres have very special mechanical properties, being extremely resilient and not easily degraded. At the same time it was noticed that different diseases, generically named amyloidoses, are associated with fibrillar aggregates. Today

  1. Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases

    PubMed Central

    Nakamura, Tomohiro; Cho, Dong-Hyung; Lipton, Stuart A.

    2012-01-01

    The loss or injury of neurons associated with oxidative and nitrosative redox stress plays an important role in the onset of various neurodegenerative diseases. Specifically, nitric oxide (NO), can affect neuronal survival through a process called S-nitrosylation, by which the NO group undergoes a redox reaction with specific protein thiols. This in turn can lead to the accumulation of misfolded proteins, which generally form aggregates in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Evidence suggests that S-nitrosylation can also impair mitochondrial function and lead to excessive fission of mitochondria and consequent bioenergetic compromise via effects on the activity of the fission protein dynamin-related protein 1 (Drp1). This insult leads to synaptic dysfunction and loss. Additionally, high levels of NO can S-nitrosylate a number of aberrant targets involved in neuronal survival pathways, including the antiapoptotic protein XIAP, inhibiting its ability to prevent apoptosis. PMID:22771760

  2. Auditory reafferences: the influence of real-time feedback on movement control

    PubMed Central

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person’s own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action–perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes. PMID:25688230

  3. Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia.

    PubMed

    Lehmann, Alexandre; Skoe, Erika; Moreau, Patricia; Peretz, Isabelle; Kraus, Nina

    2015-07-01

    Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine-grained automatic processing of sounds is impoverished in amusia. Compared with matched non-musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants' behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general. PMID:25900043

  4. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun; Tsuchioka, Nobuyoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2013-01-01

    To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number. PMID:24324432

  5. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the

  6. Modulation of Auditory Responses to Speech vs. Nonspeech Stimuli during Speech Movement Planning

    PubMed Central

    Daliri, Ayoub; Max, Ludo

    2016-01-01

    Previously, we showed that the N100 amplitude in long latency auditory evoked potentials (LLAEPs) elicited by pure tone probe stimuli is modulated when the stimuli are delivered during speech movement planning as compared with no-speaking control conditions. Given that we probed the auditory system only with pure tones, it remained unknown whether the nature and magnitude of this pre-speech auditory modulation depends on the type of auditory stimulus. Thus, here, we asked whether the effect of speech movement planning on auditory processing varies depending on the type of auditory stimulus. In an experiment with nine adult subjects, we recorded LLAEPs that were elicited by either pure tones or speech syllables when these stimuli were presented prior to speech onset in a delayed-response speaking condition vs. a silent reading control condition. Results showed no statistically significant difference in pre-speech modulation of the N100 amplitude (early stages of auditory processing) for the speech stimuli as compared with the nonspeech stimuli. However, the amplitude of the P200 component (later stages of auditory processing) showed a statistically significant pre-speech modulation that was specific to the speech stimuli only. Hence, the overall results from this study indicate that, immediately prior to speech onset, modulation of the auditory system has a general effect on early processing stages but a speech-specific effect on later processing stages. This finding is consistent with the hypothesis that pre-speech auditory modulation may play a role in priming the auditory system for its role in monitoring auditory feedback during speech production. PMID:27242494

  7. Maps of the Auditory Cortex.

    PubMed

    Brewer, Alyssa A; Barton, Brian

    2016-07-01

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration. PMID:27145914

  8. Auditory Processing Disorder in Children

    MedlinePlus

    ... free publications Find organizations Related Topics Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick ... NIH… Turning Discovery Into Health ® National Institute on Deafness and Other Communication Disorders 31 Center Drive, MSC ...

  9. Leiomyoma of External Auditory Canal.

    PubMed

    George, M V; Puthiyapurayil, Jamsheeda

    2016-09-01

    This article reports a case of piloleiomyoma of external auditory canal, which is the 7th case of leiomyoma of the external auditory canal being reported and the 2nd case of leiomyoma arising from arrectores pilorum muscles, all the other five cases were angioleiomyomas, arising from blood vessels. A 52 years old male presented with a mass in the right external auditory canal and decreased hearing of 6 months duration. Tumor excision done by end aural approach. Histopathological examination report was leiomyoma. It is extremely rare for leiomyoma to occur in the external auditory canal because of the non-availability of smooth muscles in the external canal. So it should be considered as a very rare differential diagnosis for any tumor or polyp in the ear canal. PMID:27508144

  10. Classroom Demonstrations of Auditory Perception.

    ERIC Educational Resources Information Center

    Haws, LaDawn; Oppy, Brian J.

    2002-01-01

    Presents activities to help students gain understanding about auditory perception. Describes demonstrations that cover topics, such as sound localization, wave cancellation, frequency/pitch variation, and the influence of media on sound propagation. (CMK)