Science.gov

Sample records for neuronal phase-response curves

  1. Measurement of infinitesimal phase response curves from noisy real neurons

    NASA Astrophysics Data System (ADS)

    Ota, Keisuke; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru

    2011-10-01

    We sought to measure infinitesimal phase response curves (iPRCs) from rat hippocampal CA1 pyramidal neurons. It is difficult to measure iPRCs from noisy neurons because of the dilemma that either the linearity or the signal-to-noise ratio of responses to external perturbations must be sacrificed. To overcome this difficulty, we used an iPRC measurement model formulated as the Langevin phase equation (LPE) to extract iPRCs in the Bayesian scheme. We then simultaneously verified the effectiveness of the measurement model and the reliability of the estimated iPRCs by demonstrating that LPEs with the estimated iPRCs could predict the stochastic behaviors of the same neurons, whose iPRCs had been measured, when they were perturbed by periodic stimulus currents. Our results suggest that the LPE is an effective model for real oscillating neurons and that many theoretical frameworks based on it may be applicable to real nerve systems.

  2. The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons

    PubMed Central

    Stiefel, Klaus M.; Gutkin, Boris S.; Sejnowski, Terrence J.

    2010-01-01

    The response of an oscillator to perturbations is described by its phase-response curve (PRC), which is related to the type of bifurcation leading from rest to tonic spiking. In a recent experimental study, we have shown that the type of PRC in cortical pyramidal neurons can be switched by cholinergic neuromodulation from type II (biphasic) to type I (monophasic). We explored how intrinsic mechanisms affected by acetylcholine influence the PRC using three different types of neuronal models: a theta neuron, single-compartment neurons and a multi-compartment neuron. In all of these models a decrease in the amount of a spike-frequency adaptation current was a necessary and sufficient condition for the shape of the PRC to change from biphasic (type II) to purely positive (type I). PMID:18784991

  3. On the Firing Rate Dependency of the Phase Response Curve of Rat Purkinje Neurons In Vitro

    PubMed Central

    Couto, João; Linaro, Daniele; De Schutter, E; Giugliano, Michele

    2015-01-01

    Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-output characterization of single cells, can provide insights into individual and collective properties of neurons and networks, by quantifying the impact of an infinitesimal depolarizing current pulse on the time of occurrence of subsequent action potentials, while a neuron is firing tonically. Recently, the PRC theory applied to cerebellar Purkinje cells revealed that these behave as phase-independent integrators at low firing rates, and switch to a phase-dependent mode at high rates. Given the implications for computation and information processing in the cerebellum and the possible role of synchrony in the communication with its post-synaptic targets, we further explored the firing rate dependency of the PRC in Purkinje cells. We isolated key factors for the experimental estimation of the PRC and developed a closed-loop approach to reliably compute the PRC across diverse firing rates in the same cell. Our results show unambiguously that the PRC of individual Purkinje cells is firing rate dependent and that it smoothly transitions from phase independent integrator to a phase dependent mode. Using computational models we show that neither channel noise nor a realistic cell morphology are responsible for the rate dependent shift in the phase response curve. PMID:25775448

  4. Phase response curves elucidating the dynamics of coupled oscillators.

    PubMed

    Granada, A; Hennig, R M; Ronacher, B; Kramer, A; Herzel, H

    2009-01-01

    Phase response curves (PRCs) are widely used in circadian clocks, neuroscience, and heart physiology. They quantify the response of an oscillator to pulse-like perturbations. Phase response curves provide valuable information on the properties of oscillators and their synchronization. This chapter discusses biological self-sustained oscillators (circadian clock, physiological rhythms, etc.) in the context of nonlinear dynamics theory. Coupled oscillators can synchronize with different frequency ratios, can generate toroidal dynamics (superposition of independent frequencies), and may lead to deterministic chaos. These nonlinear phenomena can be analyzed with the aid of a phase transition curve, which is intimately related to the phase response curve. For illustration purposes, this chapter discusses a model of circadian oscillations based on a delayed negative feedback. In a second part, the chapter provides a step-by-step recipe to measure phase response curves. It discusses specifications of this recipe for circadian rhythms, heart rhythms, neuronal spikes, central pattern generators, and insect communication. Finally, it stresses the predictive power of measured phase response curves. PRCs can be used to quantify the coupling strength of oscillations, to classify oscillator types, and to predict the complex dynamics of periodically driven oscillations. PMID:19216921

  5. Collective phase response curves for heterogeneous coupled oscillators

    NASA Astrophysics Data System (ADS)

    Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.

    2015-08-01

    Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.

  6. Optimal Colored Noise for Estimating Phase Response Curves

    NASA Astrophysics Data System (ADS)

    Morinaga, Kazuhiko; Miyata, Ryota; Aonishi, Toru

    2015-09-01

    The phase response curve (PRC) is an important measure representing the interaction between oscillatory elements. To understand synchrony in biological systems, many research groups have sought to measure PRCs directly from biological cells including neurons. Ermentrout et al. and Ota et al. showed that PRCs can be identified through measurement of white-noise spike-triggered averages. The disadvantage of this method is that one has to collect more than ten-thousand spikes to ensure the accuracy of the estimate. In this paper, to achieve a more accurate estimation of PRCs with a limited sample size, we use colored noise, which has recently drawn attention because of its unique effect on dynamical systems. We numerically show that there is an optimal colored noise to estimate PRCs in the most rigorous fashion.

  7. Phase response curves in the characterization of epileptiform activity

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, J. L.; Galán, R. F.; Dominguez, L. Garcia; Leshchenko, Y.; Lo, S.; Belkas, J.; Erra, R. Guevara

    2007-12-01

    Coordinated cellular activity is a major characteristic of nervous system function. Coupled oscillator theory offers unique avenues to address cellular coordination phenomena. In this study, we focus on the characterization of the dynamics of epileptiform activity, based on some seizures that manifest themselves with very periodic rhythmic activity, termed absence seizures. Our approach consists in obtaining experimentally the phase response curves (PRCs) in the neocortex and thalamus, and incorporating these PRCs into a model of coupled oscillators. Phase preferences of the stationary states and their stability are determined, and these results from the model are compared with the experimental recordings, and interpreted in physiological terms.

  8. Phase response curves for models of earthquake fault dynamics

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

    2016-06-01

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.

  9. Phase response curves for models of earthquake fault dynamics.

    PubMed

    Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen

    2016-06-01

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period. PMID:27368770

  10. Robust Entrainment of Circadian Oscillators Requires Specific Phase Response Curves

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin; Lefranc, Marc

    2011-01-01

    The circadian clocks keeping time in many living organisms rely on self-sustained biochemical oscillations entrained by external cues, such as light, to the 24-h cycle induced by Earth's rotation. However, environmental cues are unreliable due to the variability of habitats, weather conditions, or cue-sensing mechanisms among individuals. A tempting hypothesis is that circadian clocks have evolved so as to be robust to fluctuations in the signal that entrains them. To support this hypothesis, we analyze the synchronization behavior of weakly and periodically forced oscillators in terms of their phase response curve (PRC), which measures phase changes induced by a perturbation applied at different times of the cycle. We establish a general relationship between the robustness of key entrainment properties, such as stability and oscillator phase, on the one hand, and the shape of the PRC as characterized by a specific curvature or the existence of a dead zone, on the other hand. The criteria obtained are applied to computational models of circadian clocks and account for the disparate robustness properties of various forcing schemes. Finally, the analysis of PRCs measured experimentally in several organisms strongly suggests a case of convergent evolution toward an optimal strategy for maintaining a clock that is accurate and robust to environmental fluctuations. PMID:21641300

  11. Effect of phase response curve skew on synchronization with and without conduction delays.

    PubMed

    Canavier, Carmen C; Wang, Shuoguo; Chandrasekaran, Lakshmi

    2013-01-01

    A central problem in cortical processing including sensory binding and attentional gating is how neurons can synchronize their responses with zero or near-zero time lag. For a spontaneously firing neuron, an input from another neuron can delay or advance the next spike by different amounts depending upon the timing of the input relative to the previous spike. This information constitutes the phase response curve (PRC). We present a simple graphical method for determining the effect of PRC shape on synchronization tendencies and illustrate it using type 1 PRCs, which consist entirely of advances (delays) in response to excitation (inhibition). We obtained the following generic solutions for type 1 PRCs, which include the pulse-coupled leaky integrate and fire model. For pairs with mutual excitation, exact synchrony can be stable for strong coupling because of the stabilizing effect of the causal limit region of the PRC in which an input triggers a spike immediately upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive during a refractory period and cannot trigger an immediate spike. Right skew destabilizes antiphase and enables modes with time lags that grow as the conduction delay is increased. Therefore, right skew favors near synchrony at short conduction delays and a gradual transition between synchrony and antiphase for pairs coupled by mutual excitation. For pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging from zero to a substantial fraction of the period for pairs. However, for right skew there is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as well. These pairwise synchronization tendencies constrain the synchronization properties of neurons embedded in larger networks. PMID:24376399

  12. Optimal phase response curves for stochastic synchronization of limit-cycle oscillators by common Poisson noise

    NASA Astrophysics Data System (ADS)

    Hata, Shigefumi; Arai, Kensuke; Galán, Roberto F.; Nakao, Hiroya

    2011-07-01

    We consider optimization of phase response curves for stochastic synchronization of noninteracting limit-cycle oscillators by common Poisson impulsive signals. The optimal functional shape for sufficiently weak signals is sinusoidal, but can differ for stronger signals. By solving the Euler-Lagrange equation associated with the minimization of the Lyapunov exponent characterizing synchronization efficiency, the optimal phase response curve is obtained. We show that the optimal shape mutates from a sinusoid to a sawtooth as the constraint on its squared amplitude is varied.

  13. Phase Response Synchronization in Neuronal Population with Time-Varying Coupling Strength

    PubMed Central

    Jiao, Xianfa; Zhao, Wanyu; Cao, Jinde

    2015-01-01

    We present the dynamic model of global coupled neuronal population subject to external stimulus by the use of phase sensitivity function. We investigate the effect of time-varying coupling strength on the synchronized phase response of neural population subjected to external harmonic stimulus. For a time-periodic coupling strength, we found that the stimulus with increasing intensity or frequency can reinforce the phase response synchronization in neuronal population of the weakly coupled neural oscillators, and the neuronal population with stronger coupling strength has good adaptability to stimulus. When we consider the dynamics of coupling strength, we found that a strong stimulus can quickly cause the synchronization in the neuronal population, the degree of synchronization grows with the increasing stimulus intensity, and the period of synchronized oscillation induced by external stimulation is related to stimulus frequency. PMID:26640514

  14. Natural twilight phase-response curves for the cave-dwelling bat, Hipposideros speoris.

    PubMed

    Vanlalnghaka, C; Keny, V L; Satralkar, M K; Khare, P V; Pujari, P D; Joshi, D S

    2005-01-01

    Phase-response curves (PRCs) for the circadian rhythm of flight activity of the microchiropteran bat (Hipposideros speoris) were determined in a cave, employing discrete natural dawn and dusk twilight pulses. These PRCs are reported for the first time for any circadian system and they are unlike other PRCs constructed for nocturnal mammals. Dawn and dusk twilight pulses evoked advance and delay phase shifts, respectively. Advance phase shifts were followed by 3 to 4 advancing transients and a subsequent shortening of free-running period (tau); whereas, the delay phase shifts were instantaneous without any transients but with a subsequent lengthening of tau. PMID:16298767

  15. Melatonin shifts human circadian rhythms according to a phase-response curve.

    PubMed

    Lewy, A J; Ahmed, S; Jackson, J M; Sack, R L

    1992-10-01

    A physiological dose of orally administered melatonin shifts circadian rhythms in humans according to a phase-response curve (PRC) that is nearly opposite in phase with the PRCs for light exposure: melatonin delays circadian rhythms when administered in the morning and advances them when administered in the afternoon or early evening. The human melatonin PRC provides critical information for using melatonin to treat circadian phase sleep and mood disorders, as well as maladaptation to shift work and transmeridional air travel. The human melatonin PRC also provides the strongest evidence to date for a function of endogenous melatonin and its suppression by light in augmenting entrainment of circadian rhythms by the light-dark cycle. PMID:1394610

  16. Evaluation of the Phase-Dependent Rhythm Control of Human Walking Using Phase Response Curves

    PubMed Central

    Yamamoto, Yuki; Aoi, Shinya; Imai, Takashi; Aoyagi, Toshio; Tomita, Nozomi; Tsuchiya, Kazuo

    2016-01-01

    Humans and animals control their walking rhythms to maintain motion in a variable environment. The neural mechanism for controlling rhythm has been investigated in many studies using mechanical and electrical stimulation. However, quantitative evaluation of rhythm variation in response to perturbation at various timings has rarely been investigated. Such a characteristic of rhythm is described by the phase response curve (PRC). Dynamical simulations of human skeletal models with changing walking rhythms (phase reset) described a relation between the effective phase reset on stability and PRC, and phase reset around touch-down was shown to improve stability. A PRC of human walking was estimated by pulling the swing leg, but such perturbations hardly influenced the stance leg, so the relation between the PRC and walking events was difficult to discuss. This research thus examines human response to variations in floor velocity. Such perturbation yields another problem, in that the swing leg is indirectly (and weakly) perturbed, so the precision of PRC decreases. To solve this problem, this research adopts the weighted spike-triggered average (WSTA) method. In the WSTA method, a sequential pulsed perturbation is used for stimulation. This is in contrast with the conventional impulse method, which applies an intermittent impulsive perturbation. The WSTA method can be used to analyze responses to a large number of perturbations for each sequence. In the experiment, perturbations are applied to walking subjects by rapidly accelerating and decelerating a treadmill belt, and measured data are analyzed by the WSTA and impulse methods. The PRC obtained by the WSTA method had clear and stable waveforms with a higher temporal resolution than those obtained by the impulse method. By investigation of the rhythm transition for each phase of walking using the obtained PRC, a rhythm change that extends the touch-down and mid-single support phases is found to occur. PMID:27203839

  17. Photic entrainment of Period mutant mice is predicted from their phase response curves

    PubMed Central

    Pendergast, Julie S.; Friday, Rio C.; Yamazaki, Shin

    2010-01-01

    A fundamental property of circadian clocks is that they entrain to environmental cues. The circadian genes, Period1 and Period2, are involved in entrainment of the mammalian circadian system. To investigate the roles of the Period genes in photic entrainment, we constructed phase response curves (PRC) to light pulses for C57BL/6J wild-type, Per1−/−, Per2−/−, and Per3−/− mice and tested whether the PRCs accurately predict entrainment to non-24 light-dark cycles (T-cycles) and constant light (LL). The PRCs of wild-type and Per3−/− mice are similar in shape and amplitude and have relatively large delay zones and small advance zones, resulting in successful entrainment to T26, but not T21, with similar phase angles. Per1−/− mice have a high-amplitude PRC, resulting in entrainment to a broad range of T-cycles. Per2−/− mice also entrain to a wide range of T-cycles because the advance portion of their PRC is larger than wild-types. Period aftereffects following entrainment to T-cycles were similar among all genotypes. We found that the ratio of the advance portion to the delay portion of the PRC accurately predicts the lengthening of the period of the activity rhythm in LL. Wild-type, Per1−/−, and Per3−/− mice had larger delay zones than advance zones and lengthened (>24hrs) periods in LL, while Per2−/− mice had delay and advance zones that were equal in size and no period lengthening in LL. Together, these results demonstrate that PRCs are powerful tools for predicting and understanding photic entrainment of circadian mutant mice. PMID:20826680

  18. Evaluation of the Phase-Dependent Rhythm Control of Human Walking Using Phase Response Curves.

    PubMed

    Funato, Tetsuro; Yamamoto, Yuki; Aoi, Shinya; Imai, Takashi; Aoyagi, Toshio; Tomita, Nozomi; Tsuchiya, Kazuo

    2016-05-01

    Humans and animals control their walking rhythms to maintain motion in a variable environment. The neural mechanism for controlling rhythm has been investigated in many studies using mechanical and electrical stimulation. However, quantitative evaluation of rhythm variation in response to perturbation at various timings has rarely been investigated. Such a characteristic of rhythm is described by the phase response curve (PRC). Dynamical simulations of human skeletal models with changing walking rhythms (phase reset) described a relation between the effective phase reset on stability and PRC, and phase reset around touch-down was shown to improve stability. A PRC of human walking was estimated by pulling the swing leg, but such perturbations hardly influenced the stance leg, so the relation between the PRC and walking events was difficult to discuss. This research thus examines human response to variations in floor velocity. Such perturbation yields another problem, in that the swing leg is indirectly (and weakly) perturbed, so the precision of PRC decreases. To solve this problem, this research adopts the weighted spike-triggered average (WSTA) method. In the WSTA method, a sequential pulsed perturbation is used for stimulation. This is in contrast with the conventional impulse method, which applies an intermittent impulsive perturbation. The WSTA method can be used to analyze responses to a large number of perturbations for each sequence. In the experiment, perturbations are applied to walking subjects by rapidly accelerating and decelerating a treadmill belt, and measured data are analyzed by the WSTA and impulse methods. The PRC obtained by the WSTA method had clear and stable waveforms with a higher temporal resolution than those obtained by the impulse method. By investigation of the rhythm transition for each phase of walking using the obtained PRC, a rhythm change that extends the touch-down and mid-single support phases is found to occur. PMID:27203839

  19. A phase response curve to single bright light pulses in human subjects

    NASA Technical Reports Server (NTRS)

    Khalsa, Sat Bir S.; Jewett, Megan E.; Cajochen, Christian; Czeisler, Charles A.

    2003-01-01

    The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.

  20. A three pulse phase response curve to three milligrams of melatonin in humans

    PubMed Central

    Burgess, Helen J; Revell, Victoria L; Eastman, Charmane I

    2008-01-01

    Exogenous melatonin is increasingly used for its phase shifting and soporific effects. We generated a three pulse phase response curve (PRC) to exogenous melatonin (3 mg) by administering it to free-running subjects. Young healthy subjects (n = 27) participated in two 5 day laboratory sessions, each preceded by at least a week of habitual, but fixed sleep. Each 5 day laboratory session started and ended with a phase assessment to measure the circadian rhythm of endogenous melatonin in dim light using 30 min saliva samples. In between were three days in an ultradian dim light (< 150 lux)–dark cycle (LD 2.5 : 1.5) during which each subject took one pill per day at the same clock time (3 mg melatonin or placebo, double blind, counterbalanced). Each individual's phase shift to exogenous melatonin was corrected by subtracting their phase shift to placebo (a free-run). The resulting PRC has a phase advance portion peaking about 5 h before the dim light melatonin onset, in the afternoon. The phase delay portion peaks about 11 h after the dim light melatonin onset, shortly after the usual time of morning awakening. A dead zone of minimal phase shifts occurred around the first half of habitual sleep. The fitted maximum advance and delay shifts were 1.8 h and 1.3 h, respectively. This new PRC will aid in determining the optimal time to administer exogenous melatonin to achieve desired phase shifts and demonstrates that using exogenous melatonin as a sleep aid at night has minimal phase shifting effects. PMID:18006583

  1. Phase response curve for the ultradian rhythm of the lateral leaflets of Desmodium gyrans using DC current pulses.

    PubMed

    Sharma, V K; Jensen, C; Johnsson, A

    2001-01-01

    In the present study the leaf movement rhythm was perturbed by the application of DC current pulses (15 microA, 10 seconds, voltage applied: 10 V) to the upper part of the pulvinus, passing through the pulvinus and its stalk. The pulses were applied at four different positions of the leaflets: when the leaves were at the lowermost position, when moving up, at the uppermost position and when moving down. The pre-perturbed and the post-perturbed rhythms were compared. We found that the rhythms were shifted in phase and the phase shifts observed at the four different positions of the leaflets were significantly different in magnitude as well as direction. Furthermore, we could also observe phase advances, which is in contrast to an earlier finding. A phase response curve (PRC) was constructed to illustrate the sensitivity of the oscillating leaflet system to DC pulses. Substantial delays of about 50 s (as compared to the period of about 200 s) were obtained when pulses were administered at the lowermost position and when leaflet were moving upwards, while advances or no phase shifts were recorded in the uppermost position and when leaflet were moving down respectively. PMID:11302218

  2. Human phase response curve to a single 6.5 h pulse of short-wavelength light

    PubMed Central

    Rüger, Melanie; St Hilaire, Melissa A; Brainard, George C; Khalsa, Sat-Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2013-01-01

    The photic resetting response of the human circadian pacemaker depends on the timing of exposure, and the direction and magnitude of the resulting shift is described by a phase response curve (PRC). Previous PRCs in humans have utilized high-intensity polychromatic white light. Given that the circadian photoreception system is maximally sensitive to short-wavelength visible light, the aim of the current study was to construct a PRC to blue (480 nm) light and compare it to a 10,000 lux white light PRC constructed previously using a similar protocol. Eighteen young healthy participants (18–30 years) were studied for 9–10 days in a time-free environment. The protocol included three baseline days followed by a constant routine (CR) to assess initial circadian phase. Following this CR, participants were exposed to a 6.5 h 480 nm light exposure (11.8 μW cm−2, 11.2 lux) following mydriasis via a modified Ganzfeld dome. A second CR was conducted following the light exposure to re-assess circadian phase. Phase shifts were calculated from the difference in dim light melatonin onset (DLMO) between CRs. Exposure to 6.5 h of 480 nm light resets the circadian pacemaker according to a conventional type 1 PRC with fitted maximum delays and advances of −2.6 h and 1.3 h, respectively. The 480 nm PRC induced ∼75% of the response of the 10,000 lux white light PRC. These results may contribute to a re-evaluation of dosing guidelines for clinical light therapy and the use of light as a fatigue countermeasure. PMID:23090946

  3. The Rhythm Aftereffect: Support for Time Sensitive Neurons with Broad Overlapping Tuning Curves

    ERIC Educational Resources Information Center

    Becker, Mark W.; Rasmussen, Ian P.

    2007-01-01

    Ivry [Ivry, R. B. (1996). The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 6, 851-857.] proposed that explicit coding of brief time intervals is accomplished by neurons that are tuned to a preferred temporal interval and have broad overlapping tuning curves. This proposal is analogous to…

  4. Interaction function of coupled bursting neurons

    NASA Astrophysics Data System (ADS)

    Xia, Shi; Jiadong, Zhang

    2016-06-01

    The interaction functions of electrically coupled Hindmarsh–Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. Project supported by the National Natural Science Foundation of China (Grant Nos.  11272065 and 11472061).

  5. Differential effects of conductances on the phase resetting curve of a bursting neuronal oscillator.

    PubMed

    Soofi, Wafa; Prinz, Astrid A

    2015-06-01

    The intrinsically oscillating neurons in the crustacean pyloric circuit have membrane conductances that influence their spontaneous activity patterns and responses to synaptic activity. The relationship between the magnitudes of these membrane conductances and the response of the oscillating neurons to synaptic input has not yet been fully or systematically explored. We examined this relationship using the phase resetting curve (PRC), which summarizes the change in the cycle period of a neuronal oscillator as a function of the input's timing within the oscillation. We first utilized a large database of single-compartment model neurons to determine the effect of individual membrane conductances on PRC shape; we found that the effects vary across conductance space, but on average, the hyperpolarization-activated and leak conductances advance the PRC. We next investigated how membrane conductances affect PRCs of the isolated pacemaker kernel in the pyloric circuit of Cancer borealis by: (1) tabulating PRCs while using dynamic clamp to artificially add varying levels of specific conductances, and (2) tabulating PRCs before and after blocking the endogenous hyperpolarization-activated current. We additionally used a previously described four-compartment model to determine how the location of the hyperpolarization-activated conductance influences that current's effect on the PRC. We report that while dynamic-clamp-injected leak current has much smaller effects on the PRC than suggested by the single-compartment model, an increase in the hyperpolarization-activated conductance both advances and reduces the noisiness of the PRC in the pacemaker kernel of the pyloric circuit in both modeling and experimental studies. PMID:25835323

  6. Differential effects of conductances on the phase resetting curve of a bursting neuronal oscillator

    PubMed Central

    Prinz, Astrid A.

    2015-01-01

    The intrinsically oscillating neurons in the crustacean pyloric circuit have membrane conductances that influence their spontaneous activity patterns and responses to synaptic activity. The relationship between the magnitudes of these membrane conductances and the response of the oscillating neurons to synaptic input has not yet been fully or systematically explored. We examined this relationship using the phase resetting curve (PRC), which summarizes the change in the cycle period of a neuronal oscillator as a function of the input’s timing within the oscillation. We first utilized a large database of single-compartment model neurons to determine the effect of individual membrane conductances on PRC shape; we found that the effects vary across conductance space, but on average, the hyperpolarization-activated and leak conductances advance the PRC. We next investigated how membrane conductances affect PRCs of the isolated pacemaker kernel in the pyloric circuit of Cancer borealis by: (1) tabulating PRCs while using dynamic clamp to artificially add varying levels of specific conductances, and (2) tabulating PRCs before and after blocking the endogenous hyperpolarization-activated current. We additionally used a previously described four-compartment model to determine how the location of the hyperpolarization-activated conductance influences that current’s effect on the PRC. We report that while dynamic-clamp-injected leak current has much smaller effects on the PRC than suggested by the single-compartment model, an increase in the hyperpolarization-activated conductance both advances and reduces the noisiness of the PRC in the pacemaker kernel of the pyloric circuit in both modeling and experimental studies. PMID:25835323

  7. Segmentation of neuronal structures using SARSA (λ)-based boundary amendment with reinforced gradient-descent curve shape fitting.

    PubMed

    Zhu, Fei; Liu, Quan; Fu, Yuchen; Shen, Bairong

    2014-01-01

    The segmentation of structures in electron microscopy (EM) images is very important for neurobiological research. The low resolution neuronal EM images contain noise and generally few features are available for segmentation, therefore application of the conventional approaches to identify the neuron structure from EM images is not successful. We therefore present a multi-scale fused structure boundary detection algorithm in this study. In the algorithm, we generate an EM image Gaussian pyramid first, then at each level of the pyramid, we utilize Laplacian of Gaussian function (LoG) to attain structure boundary, we finally assemble the detected boundaries by using fusion algorithm to attain a combined neuron structure image. Since the obtained neuron structures usually have gaps, we put forward a reinforcement learning-based boundary amendment method to connect the gaps in the detected boundaries. We use a SARSA (λ)-based curve traveling and amendment approach derived from reinforcement learning to repair the incomplete curves. Using this algorithm, a moving point starts from one end of the incomplete curve and walks through the image where the decisions are supervised by the approximated curve model, with the aim of minimizing the connection cost until the gap is closed. Our approach provided stable and efficient structure segmentation. The test results using 30 EM images from ISBI 2012 indicated that both of our approaches, i.e., with or without boundary amendment, performed better than six conventional boundary detection approaches. In particular, after amendment, the Rand error and warping error, which are the most important performance measurements during structure segmentation, were reduced to very low values. The comparison with the benchmark method of ISBI 2012 and the recent developed methods also indicates that our method performs better for the accurate identification of substructures in EM images and therefore useful for the identification of imaging

  8. Segmentation of Neuronal Structures Using SARSA (λ)-Based Boundary Amendment with Reinforced Gradient-Descent Curve Shape Fitting

    PubMed Central

    Zhu, Fei; Liu, Quan; Fu, Yuchen; Shen, Bairong

    2014-01-01

    The segmentation of structures in electron microscopy (EM) images is very important for neurobiological research. The low resolution neuronal EM images contain noise and generally few features are available for segmentation, therefore application of the conventional approaches to identify the neuron structure from EM images is not successful. We therefore present a multi-scale fused structure boundary detection algorithm in this study. In the algorithm, we generate an EM image Gaussian pyramid first, then at each level of the pyramid, we utilize Laplacian of Gaussian function (LoG) to attain structure boundary, we finally assemble the detected boundaries by using fusion algorithm to attain a combined neuron structure image. Since the obtained neuron structures usually have gaps, we put forward a reinforcement learning-based boundary amendment method to connect the gaps in the detected boundaries. We use a SARSA (λ)-based curve traveling and amendment approach derived from reinforcement learning to repair the incomplete curves. Using this algorithm, a moving point starts from one end of the incomplete curve and walks through the image where the decisions are supervised by the approximated curve model, with the aim of minimizing the connection cost until the gap is closed. Our approach provided stable and efficient structure segmentation. The test results using 30 EM images from ISBI 2012 indicated that both of our approaches, i.e., with or without boundary amendment, performed better than six conventional boundary detection approaches. In particular, after amendment, the Rand error and warping error, which are the most important performance measurements during structure segmentation, were reduced to very low values. The comparison with the benchmark method of ISBI 2012 and the recent developed methods also indicates that our method performs better for the accurate identification of substructures in EM images and therefore useful for the identification of imaging

  9. Neuron curve as a tool for performance evaluation of MLP and RBF architecture in first break picking of seismic data

    NASA Astrophysics Data System (ADS)

    Kahrizi, Amin; Hashemi, Hosein

    2014-09-01

    Recently wide applications of neural networks are reported in geophysical scientific papers, mostly lack the consideration of their mathematical evaluation and performance. In these general estimators/regression function/classifiers, parameters to be tuned are the number of layers, neurons, type of transfer function, minimum size of training set, etc. These will be carefully tuned per each physical problem. Among all, the number of hidden layers and the number of neurons in each hidden layer are the two important parameters to be decided and normally no rules are available for finding them precisely. In this paper a method to find the hidden layer size is described beside the main purpose of the paper which is to compare the performance of the first break picker networks. We used a known learning-curve and introduce a measure named “neuron-curve” to find the optimal layer size & minimum size of training set. This paper shows the application of these two curves in finding the first break picks of seismic refraction data. Furthermore, the effect of noise on the architecture of two known neural networks (multilayer perceptron and radial basis function) in the first break picking is also investigated.

  10. The influence of population size, noise strength and behavioral task on best-encoded stimulus for neurons with unimodal or monotonic tuning curves

    PubMed Central

    Yarrow, Stuart; Seriès, Peggy

    2015-01-01

    Tuning curves and receptive fields are widely used to describe the selectivity of sensory neurons, but the relationship between firing rates and information is not always intuitive. Neither high firing rates nor high tuning curve gradients necessarily mean that stimuli at that part of the tuning curve are well represented by a neuron. Recent research has shown that trial-to-trial variability (noise) and population size can strongly affect which stimuli are most precisely represented by a neuron in the context of a population code (the best-encoded stimulus), and that different measures of information can give conflicting indications. Specifically, the Fisher information is greatest where the tuning curve gradient is greatest, such as on the flanks of peaked tuning curves, but the stimulus-specific information (SSI) is greatest at the tuning curve peak for small populations with high trial-to-trial variability. Previous research in this area has focussed upon unimodal (peaked) tuning curves, and in this article we extend these analyses to monotonic tuning curves. In addition, we examine how stimulus spacing in forced choice tasks affects the best-encoded stimulus. Our results show that, regardless of the tuning curve, Fisher information correctly predicts the best-encoded stimulus for large populations and where the stimuli are closely spaced in forced choice tasks. In smaller populations with high variability, or in forced choice tasks with widely-spaced choices, the best-encoded stimulus falls at the peak of unimodal tuning curves, but is more variable for monotonic tuning curves. Task, population size and variability all need to be considered when assessing which stimuli a neuron represents, but the best-encoded stimulus can be estimated on a case-by case basis using commonly available computing facilities. PMID:25774131

  11. Transcranial electrical brain stimulation modulates neuronal tuning curves in perception of numerosity and duration

    PubMed Central

    Javadi, Amir Homayoun; Brunec, Iva K.; Walsh, Vincent; Penny, Will D.; Spiers, Hugo J.

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method with many putative applications and reported to effectively modulate behaviour. However, its effects have yet to be considered at a computational level. To address this we modelled the tuning curves underlying the behavioural effects of stimulation in a perceptual task. Participants judged which of the two serially presented images contained more items (numerosity judgement task) or was presented longer (duration judgement task). During presentation of the second image their posterior parietal cortices (PPCs) were stimulated bilaterally with opposite polarities for 1.6 s. We also examined the impact of three stimulation conditions on behaviour: anodal right-PPC and cathodal left-PPC (rA-lC), reverse order (lA-rC) and no-stimulation condition. Behavioural results showed that participants were more accurate in numerosity and duration judgement tasks when they were stimulated with lA-rC and rA-lC stimulation conditions respectively. Simultaneously, a decrease in performance on numerosity and duration judgement tasks was observed when the stimulation condition favoured the other task. Thus, our results revealed a double-dissociation of laterality and task. Importantly, we were able to model the effects of stimulation on behaviour. Our computational modelling showed that participants' superior performance was attributable to a narrower tuning curve — smaller standard deviation of detection noise. We believe that this approach may prove useful in understanding the impact of brain stimulation on other cognitive domains. PMID:25130301

  12. Phase response theory extended to nonoscillatory network components

    NASA Astrophysics Data System (ADS)

    Sieling, Fred H.; Archila, Santiago; Hooper, Ryan; Canavier, Carmen C.; Prinz, Astrid A.

    2012-05-01

    New tools for analysis of oscillatory networks using phase response theory (PRT) under the assumption of pulsatile coupling have been developed steadily since the 1980s, but none have yet allowed for analysis of mixed systems containing nonoscillatory elements. This caveat has excluded the application of PRT to most real systems, which are often mixed. We show that a recently developed tool, the functional phase resetting curve (fPRC), provides a serendipitous benefit: it allows incorporation of nonoscillatory elements into systems of oscillators where PRT can be applied. We validate this method in a model system of neural oscillators and a biological system, the pyloric network of crustacean decapods.

  13. Interaction function of oscillating coupled neurons

    PubMed Central

    Dodla, Ramana; Wilson, Charles J.

    2013-01-01

    Large scale simulations of electrically coupled neuronal oscillators often employ the phase coupled oscillator paradigm to understand and predict network behavior. We study the nature of the interaction between such coupled oscillators using weakly coupled oscillator theory. By employing piecewise linear approximations for phase response curves and voltage time courses, and parameterizing their shapes, we compute the interaction function for all such possible shapes and express it in terms of discrete Fourier modes. We find that reasonably good approximation is achieved with four Fourier modes that comprise of both sine and cosine terms. PMID:24229210

  14. Phase-flip bifurcation in a coupled Josephson junction neuron system

    NASA Astrophysics Data System (ADS)

    Segall, Kenneth; Guo, Siyang; Crotty, Patrick; Schult, Dan; Miller, Max

    2014-12-01

    Aiming to understand group behaviors and dynamics of neural networks, we have previously proposed the Josephson junction neuron (JJ neuron) as a fast analog model that mimics a biological neuron using superconducting Josephson junctions. In this study, we further analyze the dynamics of the JJ neuron numerically by coupling one JJ neuron to another. In this coupled system we observe a phase-flip bifurcation, where the neurons synchronize out-of-phase at weak coupling and in-phase at strong coupling. We verify this by simulation of the circuit equations and construct a bifurcation diagram for varying coupling strength using the phase response curve and spike phase difference map. The phase-flip bifurcation could be observed experimentally using standard digital superconducting circuitry.

  15. Pathobiochemical mechanisms during the acute phase response.

    PubMed

    Kleesiek, K; Greiling, H

    1984-01-01

    The acute phase response is characterised by the following sequence of principle phenomena: (1) an early local inflammatory reaction, (2) formation of inflammatory humoral factors inducing a systemic reaction, (3) stimulation of glycoprotein synthesis predominantly in the hepatocytes, and (4) an increase in the plasma concentration of acute phase proteins, when the rate of biosynthesis exceeds the degradation rate. Inflammatory mediators (lysosomal enzymes, oxygen derived radicals, prostaglandins) are mainly released during phagocytosis by granulocytes and macrophages. The signal reaching the hepatocytes is not yet clearly identified. A leukocyte endogenous mediator (LEM) released by macrophages is described. There is evidence that prostaglandins and probably proteinase alpha 2-macroglobulin complexes are also involved. The hepatic acute phase protein synthesis is modulated by hormones (insulin, cortisol, somatotropin). The biochemical events in the hepatocyte include an increase in protein synthesis and the regulatory control of the glycosylation of polypeptide precursors. The secreted glycoproteins serve variously as inhibitors or mediators of the inflammatory processes. PMID:6208159

  16. The acute phase response in panic disorder.

    PubMed

    Herrán, Andrés; Sierra-Biddle, Deirdre; García-Unzueta, Maria Teresa; Puente, Jesús; Vázquez-Barquero, José Luis; Antonio Amado, José

    2005-12-01

    An acute-phase response (APR), manifested as an increase of acute-phase proteins has been shown in major depression. Panic disorder (PD) may share some aetiopathogenic mechanisms with depression, but APR has not been studied in this disorder. Forty-one panic patients in the first stages of their illness were compared with 32 healthy subjects of comparable sex, age, and body mass index. Clinical diagnosis was established with the mini international neuropsychiatric interview, and severity with the panic disorder severity scale and the CGI scale. Laboratory determinations included four acute phase proteins (APPs) [albumin, gammaglobulins, fibrinogen, C-reactive-protein (CRP)] and basal cortisol level. Patients were studied after 8-wk follow-up taking selective serotonin reuptake inhibitors (SSRIs) to assess the evolution of the APPs. Gammaglobulin levels were lower, and both cortisol and CRP levels were higher in PD patients than in controls. APP did not differ between patients with or without agoraphobia. At follow-up, patients who responded to SSRIs presented a decrease in albumin levels, and a trend towards a decrease in cortisol and CRP compared with levels at intake. The conclusions of this study are that there is an APR in patients suffering from PD, and this APR tends to diminish after a successful treatment with SSRIs. PMID:15927091

  17. Is the Langevin phase equation an efficient model for oscillating neurons?

    NASA Astrophysics Data System (ADS)

    Ota, Keisuke; Tsunoda, Takamasa; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru

    2009-12-01

    The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.

  18. Input-output relation and energy efficiency in the neuron with different spike threshold dynamics

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na+ and K+ currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism. PMID:26074810

  19. Frequency curves

    USGS Publications Warehouse

    Riggs, H.C.

    1968-01-01

    This manual describes graphical and mathematical procedures for preparing frequency curves from samples of hydrologic data. It also discusses the theory of frequency curves, compares advantages of graphical and mathematical fitting, suggests methods of describing graphically defined frequency curves analytically, and emphasizes the correct interpretations of a frequency curve.

  20. Nonsmooth dynamics in spiking neuron models

    NASA Astrophysics Data System (ADS)

    Coombes, S.; Thul, R.; Wedgwood, K. C. A.

    2012-11-01

    Large scale studies of spiking neural networks are a key part of modern approaches to understanding the dynamics of biological neural tissue. One approach in computational neuroscience has been to consider the detailed electrophysiological properties of neurons and build vast computational compartmental models. An alternative has been to develop minimal models of spiking neurons with a reduction in the dimensionality of both parameter and variable space that facilitates more effective simulation studies. In this latter case the single neuron model of choice is often a variant of the classic integrate-and-fire model, which is described by a nonsmooth dynamical system. In this paper we review some of the more popular spiking models of this class and describe the types of spiking pattern that they can generate (ranging from tonic to burst firing). We show that a number of techniques originally developed for the study of impact oscillators are directly relevant to their analysis, particularly those for treating grazing bifurcations. Importantly we highlight one particular single neuron model, capable of generating realistic spike trains, that is both computationally cheap and analytically tractable. This is a planar nonlinear integrate-and-fire model with a piecewise linear vector field and a state dependent reset upon spiking. We call this the PWL-IF model and analyse it at both the single neuron and network level. The techniques and terminology of nonsmooth dynamical systems are used to flesh out the bifurcation structure of the single neuron model, as well as to develop the notion of Lyapunov exponents. We also show how to construct the phase response curve for this system, emphasising that techniques in mathematical neuroscience may also translate back to the field of nonsmooth dynamical systems. The stability of periodic spiking orbits is assessed using a linear stability analysis of spiking times. At the network level we consider linear coupling between voltage

  1. Phase responses of harmonics reflected from radio-frequency electronics

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; McGowan, Sean F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Martone, Anthony F.; Narayanan, Ram M.

    2016-05-01

    The phase responses of nonlinear-radar targets illuminated by stepped frequencies are studied. Data is presented for an experimental radar and two commercial electronic targets at short standoff ranges. The amplitudes and phases of harmonics generated by each target at each frequency are captured over a 100-MHz-wide transmit band. As in the authors' prior work, target detection is demonstrated by receiving at least one harmonic of at least one transmit frequency. In the present work, experiments confirm that the phase of a harmonic reflected from a radio-frequency electronic target at a standoff distance is linear versus frequency. Similar to traditional wideband radar, the change of the reflected phase with respect to frequency indicates the range to the nonlinear target.

  2. Analysis of Cell Cycle Phase Response Captures the Synchronization Phenomena and Reveals a Novel Cell Cycle Network Topology

    NASA Astrophysics Data System (ADS)

    Li, Ying; Lin, Yihan; Scherer, Norbert; Dinner, Aaron

    2011-03-01

    Cell cycle progression requires a succession of temporally-regulated sub-processes, including chromosome replication and cell division, which are each controlled by their own regulatory modules. The modular design of cell cycle regulatory network allows robust environmental responses and evolutionary adaptations. It is emerging that some of the cell cycle modules involve their own autonomous periodic dynamics. As a consequence, the realization of robust coordination among these modules becomes challenging since each module could potentially run out of sync. We believe that an insight into this puzzle resides in the coupling between the contributing regulatory modules. Here, we measured the phase response curve (PRC) of the cell cycle oscillator by driving the expression of a master regulator of the cell cycle in a pulsatile manner and measuring the single cell phase response. We constructed a return map that quantitatively explains the synchronization phenomena that were caused by periodic chemical perturbation. To capture the measured phase response, we derived a minimalist coupled oscillator model that generalizes the basic topology of the cell cycle network. This diode-like coupling suggests that the cell is engineered to ensure complete coordination of constituent events with the cell cycle.

  3. Bradford Curves.

    ERIC Educational Resources Information Center

    Rousseau, Ronald

    1994-01-01

    Discussion of informetric distributions shows that generalized Leimkuhler functions give proper fits to a large variety of Bradford curves, including those exhibiting a Groos droop or a rising tail. The Kolmogorov-Smirnov test is used to test goodness of fit, and least-square fits are compared with Egghe's method. (Contains 53 references.) (LRW)

  4. Vestibular Neuronitis

    MedlinePlus

    ... Prevent Painful Swimmer's Ear Additional Content Medical News Vestibular Neuronitis By Lawrence R. Lustig, MD NOTE: This ... Drugs Herpes Zoster Oticus Meniere Disease Purulent Labyrinthitis Vestibular Neuronitis Vestibular neuronitis is a disorder characterized by ...

  5. The Nonlinear Phase Response Curve of the Human Circadian Pacemaker and How Complex Behaviors Might Arise in Nature

    NASA Astrophysics Data System (ADS)

    Leder, Ron S.

    2002-08-01

    Our example from nature is two groups of about 10,000 cells in the brain called Suprachiasmatic Nuclei (SCN) and how light can entrain free running endogenous periodic behavior via the retina's connection to the SCN. Our major question is how a complex behavior like this can arise in nature. Finally presented is a mathematical model and simulation showing how simple periodic signals can be coupled to produce spatio-temporal chaotic behavior and how two complex signals can combine to produce simple coherent behavior with a hypothetical analogy to phase resetting in biological circadian pacemakers.

  6. Effect of autaptic activity on the response of a Hodgkin-Huxley neuron.

    PubMed

    Wang, Hengtong; Wang, Longfei; Chen, Yueling; Chen, Yong

    2014-09-01

    An autapse is a special synapse that connects a neuron to itself. In this study, we investigated the effect of an autapse on the responses of a Hodgkin-Huxley neuron to different forms of external stimuli. When the neuron was subjected to a DC stimulus, the firing frequencies and the interspike interval distributions of the output spike trains showed periodic behaviors as the autaptic delay time increased. When the input was a synaptic pulse-like train with random interspike intervals, we observed low-pass and band-pass filtering behaviors. Moreover, the region over which the output ISIs are distributed and the mean firing frequency display periodic behaviors with increasing autaptic delay time. When specific autaptic parameters were chosen, most of the input ISIs could be filtered, and the response spike trains were nearly regular, even with a highly random input. The background mechanism of these observed dynamics has been analyzed based on the phase response curve method. We also found that the information entropy of the output spike train could be modified by the autapse. These results also suggest that the autapse can serve as a regulator of information response in the nervous system. PMID:25273202

  7. Curves and Their Properties.

    ERIC Educational Resources Information Center

    Yates, Robert C.

    This volume, a reprinting of a classic first published in 1952, presents detailed discussions of 26 curves or families of curves, and 17 analytic systems of curves. For each curve the author provides a historical note, a sketch or sketches, a description of the curve, a discussion of pertinent facts, and a bibliography. Depending upon the curve,…

  8. Neuronal polarization.

    PubMed

    Takano, Tetsuya; Xu, Chundi; Funahashi, Yasuhiro; Namba, Takashi; Kaibuchi, Kozo

    2015-06-15

    Neurons are highly polarized cells with structurally and functionally distinct processes called axons and dendrites. This polarization underlies the directional flow of information in the central nervous system, so the establishment and maintenance of neuronal polarization is crucial for correct development and function. Great progress in our understanding of how neurons establish their polarity has been made through the use of cultured hippocampal neurons, while recent technological advances have enabled in vivo analysis of axon specification and elongation. This short review and accompanying poster highlight recent advances in this fascinating field, with an emphasis on the signaling mechanisms underlying axon and dendrite specification in vitro and in vivo. PMID:26081570

  9. Standard Mastery Curves and Skew Curves.

    ERIC Educational Resources Information Center

    Warries, Egbert

    The objective of the study is to convince educational researchers of the necessity for "standard mastery curves" for the graphical representation of scores on summative tests for a group of students. Attention is drawn to the study of theoretical and empirical skew curves in education and biology. Use of standard mastery curves and study of skew…

  10. Phase Sensitivity and Entrainment in a Modeled Bursting Neuron

    PubMed Central

    Demir, S. S.; Butera, R. J.; DeFranceschi, A. A.; Clark, J. W.; Byrne, J. H.

    1997-01-01

    A model of neuron R15 in Aplysia was used to study the mechanisms determining the phase-response curve (PRC) of the cell in response to both extrinsic current pulses and modeled synaptic input and to compare entrainment predictions from PRCs with those from actual simulations. Over the range of stimulus parameters studied, the PRCs of the model exhibited minimal dependence upon stimulus amplitude, and a strong dependence upon stimulus duration. State-space analysis of the effect of transient current pulses provided several important insights into the relationship between the PRC and the underlying dynamics of the model, such as a correlation between the prestimulus concentration of Ca2+ and the poststimulus phase of the oscillation. The system nullclines were also found to provide well-defined limits upon the perturbatory extent of a hyperpolarizing input. These results demonstrated that experimentally applied current pulses are sufficient to determine the shape of the PRC in response to a synaptic input, provided that the duration of the current pulse is of a duration similar to that of the evoked synaptic current. Furthermore, we found that predictions of phase-locked 1:m entrainment from PRCs were valid, even when the duration of the periodically applied pulses were a significant portion of the control limit cycle. ImagesFIGURE 5FIGURE 7FIGURE 8 PMID:9017188

  11. Explicit superconic curves.

    PubMed

    Cho, Sunggoo

    2016-09-01

    Conics and Cartesian ovals are extremely important curves in various fields of science. In addition, aspheric curves based on conics are useful in optical design. Superconic curves, recently suggested by Greynolds, are extensions of both conics and Cartesian ovals and have been applied to optical design. However, they are not extensions of aspheric curves based on conics. In this work, we investigate another type of superconic curves. These superconic curves are extensions of not only conics and Cartesian ovals but also aspheric curves based on conics. Moreover, these are represented in explicit form, while Greynolds's superconic curves are in implicit form. PMID:27607506

  12. Neuronal arithmetic

    PubMed Central

    Silver, R. Angus

    2016-01-01

    The vast computational power of the brain has traditionally been viewed as arising from the complex connectivity of neural networks, in which an individual neuron acts as a simple linear summation and thresholding device. However, recent studies show that individual neurons utilize a wealth of nonlinear mechanisms to transform synaptic input into output firing. These mechanisms can arise from synaptic plasticity, synaptic noise, and somatic and dendritic conductances. This tool kit of nonlinear mechanisms confers considerable computational power on both morphologically simple and more complex neurons, enabling them to perform a range of arithmetic operations on signals encoded in a variety of different ways. PMID:20531421

  13. Impact of neuronal heterogeneity on correlated colored noise-induced synchronization

    PubMed Central

    Zhou, Pengcheng; Burton, Shawn D.; Urban, Nathaniel N.; Ermentrout, G. Bard

    2013-01-01

    Synchronization plays an important role in neural signal processing and transmission. Many hypotheses have been proposed to explain the origin of neural synchronization. In recent years, correlated noise-induced synchronization has received support from many theoretical and experimental studies. However, many of these prior studies have assumed that neurons have identical biophysical properties and that their inputs are well modeled by white noise. In this context, we use colored noise to induce synchronization between oscillators with heterogeneity in both phase-response curves and frequencies. In the low noise limit, we derive novel analytical theory showing that the time constant of colored noise influences correlated noise-induced synchronization and that oscillator heterogeneity can limit synchronization. Surprisingly, however, heterogeneous oscillators may synchronize better than homogeneous oscillators given low input correlations. We also find resonance of oscillator synchronization to colored noise inputs when firing frequencies diverge. Collectively, these results prove robust for both relatively high noise regimes and when applied to biophysically realistic spiking neuron models, and further match experimental recordings from acute brain slices. PMID:23970864

  14. Network oscillations of inferior olive neurons: entrainment and phase-locking of locally-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Chartrand, Thomas; Goldman, Mark S.; Lewis, Timothy J.

    2015-03-01

    Although the inferior olive is known to contribute to the generation of timing and error signals for motor control, the specific role of its distinctive spatiotemporal activity patterns is still controversial. Olivary neurons display regular, sometimes synchronized oscillations of subthreshold membrane potential, driven in part by the highest density of electrical coupling of any brain region. We show that a reduced model of coupled phase oscillators is sufficient to reproduce and study experimental observations previously only demonstrated in more complex models. These include stable phase differences, variability of entrainment frequency, wave propagation, and cluster formation. Using the phase-response curve (PRC) of a conductance-based model of olivary neurons, we derive our phase model according to the theory of weakly-coupled oscillators. We retain the heterogeneity of intrinsic frequencies and heterogeneous, spatially constrained coupling as weak perturbations to the limit-cycle dynamics. Generalizing this model to an ensemble of coupled oscillator lattices with frequency and coupling disorder, we study the onset of entrainment and phase-locking as coupling is strengthened, including the scaling of cluster sizes with coupling strength near each phase transition.

  15. Modulation of the acute phase response in feedlot steers supplemented with Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of supplementing feedlot steers with Saccharomyces cerevisiae CNCM I-1079 (SC) on the acute phase response to a lipopolysaccharide (LPS) challenge. Steers (n = 18; 266 ± 4 kilograms body weight) were separated into three treatment groups (n = 6/treatm...

  16. Altered postnatal acute phase response in heifers exposed to lipopolysachcharide in utero

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effect of prenatal lipopolysaccharide (LPS) exposure on the postnatal acute phase response (APR) to LPS challenge in heifer calves. Pregnant crossbred cows (n=50) were separated into prenatal stress (PNS; n=25; administered 0.1 microgram per kilogram...

  17. Angus and Romosinuano steers exhibit differential acute phase responses following an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our primary objective was to elucidate the acute phase response in cattle while evaluating potential genetic differences between two diverse Bos taurus breeds [Angus (AG) and Romosinuano (RO)] in response to an endotoxin challenge. The Romosinuano is a tropically adapted Bos taurus breed developed i...

  18. Profile of the bovine acute-phase response following an intravenous bolus-dose lipopolysaccharide challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two experiments were conducted to further define the acute-phase response to a lipopolysaccharide (LPS) challenge in beef steers. In Exp. 1, 9 crossbred beef steers (449 ± 12 kg BW) were used in a completely random design to determine the effects of 0.5, 1.0, or 2.0 micrograms of LPS/kilogram of bod...

  19. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level.

    PubMed Central

    Wegenka, U M; Buschmann, J; Lütticken, C; Heinrich, P C; Horn, F

    1993-01-01

    Interleukin-6 (IL-6) is known to be a major mediator of the acute-phase response in liver. We show here that IL-6 triggers the rapid activation of a nuclear factor, termed acute-phase response factor (APRF), both in rat liver in vivo and in human hepatoma (HepG2) cells in vitro. APRF bound to IL-6 response elements in the 5'-flanking regions of various acute-phase protein genes (e.g., the alpha 2-macroglobulin, fibrinogen, and alpha 1-acid glycoprotein genes). These elements contain a characteristic hexanucleotide motif, CTGGGA, known to be required for the IL-6 responsiveness of these genes. Analysis of the binding specificity of APRF revealed that it is different from NF-IL6 and NF-kappa B, transcription factors known to be regulated by cytokines and involved in the transcriptional regulation of acute-phase protein genes. In HepG2 cells, activation of APRF was observed within minutes after stimulation with IL-6 or leukemia-inhibitory factor and did not require ongoing protein synthesis. Therefore, a preexisting inactive form of APRF is activated by a posttranslational mechanism. We present evidence that this activation occurs in the cytoplasm and that a phosphorylation is involved. These results lead to the conclusions that APRF is an immediate target of the IL-6 signalling cascade and is likely to play a central role in the transcriptional regulation of many IL-6-induced genes. Images PMID:7678052

  20. Simple neuron models of ITD sensitive neurons

    NASA Astrophysics Data System (ADS)

    Dasika, Vasant; White, John A.; Colburn, H. Steven

    2002-05-01

    Neurons which show sensitivity to interaural time delay (ITD) exist in both mammalian medial superior olive (MSO), and bird nucleus laminaris (NL). In this study, we examine simple mathematical models of single MSO and NL cells which respond probabilistically to a pair of isolated inputs with a response probability that depends on the input interpulse interval. Inputs are either isolated pulse pairs or pairs of periodic trains, with or without random jitter added to their event times. Refractoriness is incorporated in the input description and/or in the cell model in specified simulations. We find that periodic rate-ITD shapes are shaped by three interacting factors: the cell's temporal response (described by the paired-pulse response), input frequency, and the degree of input synchrony. Paired-pulse responses are able to predict the widths of rate-ITD curves obtained from deterministic periodic input simulations. Reduced input synchrony predictably smears rate-ITD curves. Larger numbers of weaker inputs yield stronger rate-ITD modulation than a few strong inputs. Model response is compared with in vivo and in vitro MSO and NL physiological data. Comparisons with published analytical models as well as more complex and realistic physiological cell models are examined.

  1. Motor Neuron Diseases

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Motor Neuron Diseases Information Page Condensed from Motor Neuron Diseases ... and Information Publicaciones en Español What are Motor Neuron Diseases? The motor neuron diseases (MNDs) are a ...

  2. Motor Neuron Diseases

    MedlinePlus

    ... called upper motor neurons ) are transmitted to nerve cells in the brain stem and spinal cord (called lower motor neurons ) and from them to particular muscles. Upper motor neurons direct the lower motor neurons ...

  3. Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm

    PubMed Central

    Chang, Wei-Der

    2015-01-01

    This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168

  4. Acute phase response induced following tumor treatment by photodynamic therapy: relevance for the therapy outcome

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Merchant, Soroush; Stott, Brandon; Cecic, Ivana; Payne, Peter; Sun, Jinghai

    2006-02-01

    Acute phase response is an effector process orchestrated by the innate immune system for the optimal mobilization of the resources of the organism distant from the local insult site needed in the execution of a host-protecting reaction. Our research has shown that mice bearing tumors treated by photodynamic therapy (PDT) exhibit the three major hallmarks of acute phase response: release of acute phase reactants, neutrophilia, and pituitary/adrenal axis activation. Of particular interest in this study were acute phase proteins that have a pivotal role in the clearance of dead cells, since the occurrence of this process in PDT-treated tumors emerges as a critical event in the course of PDT-associated host response. It is shown that this type of acute phase reactants, including complement proteins (C3, C5, C9, mannose-binding lectin, and ficolin A) and related pentraxins (serum amyloid P component and PTX3), are upregulated following tumor PDT and accumulate in the targeted lesions. Based on the recently accumulated experimental evidence it is definitely established that the acute phase response is manifested in the hosts bearing PDT-treated tumors and it is becoming clear that this effector process is an important element of PDT-associated host response bearing in impact on the eventual outcome of this therapy.

  5. Roles of STAT3 in Protein Secretion Pathways during the Acute-Phase Response

    PubMed Central

    Ahyi, Ayele-Nati N.; Quinton, Lee J.; Jones, Matthew R.; Ferrari, Joseph D.; Pepper-Cunningham, Zachary A.; Mella, Juan R.; Remick, Daniel G.

    2013-01-01

    The acute-phase response is characteristic of perhaps all infections, including bacterial pneumonia. In conjunction with the acute-phase response, additional biological pathways are induced in the liver and are dependent on the transcription factors STAT3 and NF-κB, but these responses are poorly understood. Here, we demonstrate that pneumococcal pneumonia and other severe infections increase expression of multiple components of the cellular secretory machinery in the mouse liver, including the endoplasmic reticulum (ER) translocon complex, which mediates protein translation into the ER, and the coat protein complexes (COPI and COPII), which mediate vesicular transport of proteins to and from the ER. Hepatocyte-specific mutation of STAT3 prevented the induction of these secretory pathways during pneumonia, with similar results observed following pharmacological activation of ER stress by using tunicamycin. These findings implicate STAT3 in the unfolded protein response and suggest that STAT3-dependent optimization of secretion may apply broadly. Pneumonia also stimulated the binding of phosphorylated STAT3 to promoter regions of secretion-related genes in the liver, supporting a direct role for STAT3 in their transcription. Altogether, these results identify a novel function of STAT3 during the acute-phase response, namely, the induction of secretory machinery in hepatocytes. This may facilitate the processing and delivery of newly synthesized loads of acute-phase proteins, enhancing innate immunity and preventing liver injury during infection. PMID:23460517

  6. Flow-duration curves

    USGS Publications Warehouse

    Searcy, James Kincheon

    1959-01-01

    The flow-duration curve is a cumulative frequency curve that shows the percent of time specified discharges were equaled or exceeded during a given period. It combines in one curve the flow characteristics of a stream throughout the range of discharge, without regard to the sequence of occurrence. If the period upon which the curve is based represents the long-term flow of a stream, the curve may be used to predict the distribution of future flows for water- power, water-supply, and pollution studies. This report shows that differences in geology affect the low-flow ends of flow-duration curves of streams in adjacent basins. Thus, duration curves are useful in appraising the geologic characteristics of drainage basins. A method for adjusting flow-duration curves of short periods to represent long-term conditions is presented. The adjustment is made by correlating the records of a short-term station with those of a long-term station.

  7. Anodic Polarization Curves Revisited

    ERIC Educational Resources Information Center

    Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin

    2013-01-01

    An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…

  8. The Skipping Rope Curve

    ERIC Educational Resources Information Center

    Nordmark, Arne; Essen, Hanno

    2007-01-01

    The equilibrium of a flexible inextensible string, or chain, in the centrifugal force field of a rotating reference frame is investigated. It is assumed that the end points are fixed on the rotation axis. The shape of the curve, the skipping rope curve or "troposkien", is given by the Jacobi elliptic function sn. (Contains 3 figures.)

  9. Phase Response of Brain Alpha Wave to Temporally Alternating Red/Blue Light Emitting Diode Stimuli

    NASA Astrophysics Data System (ADS)

    Nishifuji, Seiji; Tanaka, Shogo

    2003-09-01

    Spatial phase response of the alpha wave is investigated under the condition that red and blue flicker stimuli are temporally alternately applied. The alternating stimuli lead to two distinct phase distributions depending on the subjects: 1) a phase reversal, in which the phases of the alpha waves are antilocked between the occipital and frontal regions, and 2) a quasi-phase-locking, in which the phase difference distribution includes the temporal alternation of a phase locking over the entire scalp and the phase reversal between the occiput and front. The result suggests possibilities for the underlying mechanism of the hyper-synchronization of the brain waves seen in photosensitive epilepsy.

  10. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

    PubMed Central

    Saber, Anne T; Jacobsen, Nicklas R; Jackson, Petra; Poulsen, Sarah Søs; Kyjovska, Zdenka O; Halappanavar, Sabina; Yauk, Carole L; Wallin, Håkan; Vogel, Ulla

    2014-01-01

    Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction of the acute phase response is intimately linked to risk of cardiovascular disease as shown in both epidemiological and animal studies. Indeed, blood levels of acute phase proteins, such as C-reactive protein and serum amyloid A, are independent predictors of risk of cardiovascular disease in prospective epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk of cardiovascular disease. Increased levels of acute phase mRNA and proteins in lung tissues, bronchoalveolar lavage fluid and plasma clearly indicate pulmonary acute phase response following pulmonary deposition of different kinds of particles including diesel exhaust particles, nanoparticles, and carbon nanotubes. The pulmonary acute phase response is dose-dependent and long lasting. Conversely, the hepatic acute phase response is reduced relative to lung or entirely absent. We also provide evidence that pulmonary inflammation, as measured by neutrophil influx, is a predictor of the acute phase response and that the total surface area of deposited particles correlates with the pulmonary acute phase response. We discuss the implications of these findings in relation to occupational exposure to nanoparticles. How to cite this article: WIREs Nanomed Nanobiotechnol 2014, 6:517–531. doi: 10.1002/wnan.1279 PMID:24920450

  11. Mechanics of Curved Folds

    NASA Astrophysics Data System (ADS)

    Dias, Marcelo A.; Santangelo, Christian D.

    2011-03-01

    Despite an almost two thousand year history, origami, the art of folding paper, remains a challenge both artistically and scientifically. Traditionally, origami is practiced by folding along straight creases. A whole new set of shapes can be explored, however, if, instead of straight creases, one folds along arbitrary curves. We present a mechanical model for curved fold origami in which the energy of a plastically-deformed crease is balanced by the bending energy of developable regions on either side of the crease. Though geometry requires that a sheet buckle when folded along a closed curve, its shape depends on the elasticity of the sheet. NSF DMR-0846582.

  12. Curve Stitching in LOGO.

    ERIC Educational Resources Information Center

    Muscat, Jean-Paul

    1992-01-01

    Uses LOGO to enhance the applicability of curve stitching in the mathematics curriculum. Presents the formulas and computer programs for the construction of parabolas, concentric circles, and epicycloids. Diagrams of constructed figures are provided. (MDH)

  13. Highly curved microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.

    1990-01-01

    Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.

  14. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    SciTech Connect

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.; Andrews, Debora; Schladweiler, Mette C.; Ghio, Andrew J.; Gavett, Stephen H.; Kodavanti, Urmila P.

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  15. Proteomics analysis of urine reveals acute phase response proteins as candidate diagnostic biomarkers for prostate cancer.

    PubMed

    Davalieva, Katarina; Kiprijanovska, Sanja; Komina, Selim; Petrusevska, Gordana; Zografska, Natasha Chokrevska; Polenakovic, Momir

    2015-01-01

    Despite the overall success of prostate specific antigen (PSA) in screening and detection of prostate cancer (PCa), its use has been limited due to the lack of specificity. The principal driving goal currently within PCa research is to identify non-invasive biomarker(s) for early detection of aggressive tumors with greater sensitivity and specificity than PSA. In this study, we focused on identification of non-invasive biomarkers in urine with higher specificity than PSA. We tested urine samples from PCa and benign prostatic hyperplasia (BPH) patients by 2-D DIGE coupled with MS and bioinformatics analysis. Statistically significant (p < 0.05), 1.8 fold variation or more in abundance, showed 41 spots, corresponding to 23 proteins. The Ingenuity Pathway Analysis showed significant association with the Acute Phase Response Signaling pathway. Nine proteins with differential abundances were included in this pathway: AMBP, APOA1, FGA, FGG, HP, ITIH4, SERPINA1, TF and TTR. The expression pattern of 4 acute phase response proteins differed from the defined expression in the canonical pathway. The urine levels of TF, AMPB and HP were measured by immunoturbidimetry in an independent validation set. The concentration of AMPB in urine was significantly higher in PCa while levels of TF and HP were opposite (p < 0.05). The AUC for the individual proteins ranged from 0.723 to 0.754. The combination of HP and AMBP yielded the highest accuracy (AUC = 0.848), greater than PSA. The proposed biomarker set is quickly quantifiable and economical with potential to improve the sensitivity and specificity of PCa detection. PMID:25653573

  16. Cardiac Atrial Circadian Rhythms in PERIOD2::LUCIFERASE and per1:luc Mice: Amplitude and Phase Responses to Glucocorticoid Signaling and Medium Treatment

    PubMed Central

    Xi, Yang; Li, Lei; Duffield, Giles E.

    2012-01-01

    Circadian rhythms in cardiac function are apparent in e.g., blood pressure, heart rate, and acute adverse cardiac events. A circadian clock in heart tissue has been identified, but entrainment pathways of this clock are still unclear. We cultured tissues of mice carrying bioluminescence reporters of the core clock genes, period 1 or 2 (per1luc or PER2LUC) and compared in vitro responses of atrium to treatment with medium and a synthetic glucocorticoid (dexamethasone [DEX]) to that of the suprachiasmatic nucleus (SCN) and liver. We observed that PER2LUC, but not per1luc is rhythmic in atrial tissue, while both per1luc and PER2LUC exhibit rhythmicity in other cultured tissues. In contrast to the SCN and liver, both per1luc and PER2LUC bioluminescence amplitudes were increased in response to DEX treatment, and the PER2LUC amplitude response was dependent on the time of treatment. Large phase-shift responses to both medium and DEX treatments were observed in the atrium, and phase responses to medium treatment were not attributed to serum content but the treatment procedure itself. The phase-response curves of atrium to both DEX and medium treatments were found to be different to the liver. Moreover, the time of day of the culturing procedure itself influenced the phase of the circadian clock in each of the cultured tissues, but the magnitude of this response was uniquely large in atrial tissue. The current data describe novel entrainment signals for the atrial circadian clock and specifically highlight entrainment by mechanical treatment, an intriguing observation considering the mechanical nature of cardiac tissue. PMID:23110090

  17. IGMtransmission: Transmission curve computation

    NASA Astrophysics Data System (ADS)

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2015-04-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.

  18. A Bayesian approach for characterizing direction tuning curves in the supplementary motor area of behaving monkeys.

    PubMed

    Taubman, Hadas; Vaadia, Eilon; Paz, Rony; Chechik, Gal

    2013-06-01

    Neural responses are commonly studied in terms of "tuning curves," characterizing changes in neuronal response as a function of a continuous stimulus parameter. In the motor system, neural responses to movement direction often follow a bell-shaped tuning curve for which the exact shape determines the properties of neuronal movement coding. Estimating the shape of that tuning curve robustly is hard, especially when directions are sampled unevenly and at a coarse resolution. Here, we describe a Bayesian estimation procedure that improves the accuracy of curve-shape estimation even when the curve is sampled unevenly and at a very coarse resolution. Using this approach, we characterize the movement direction tuning curves in the supplementary motor area (SMA) of behaving monkeys. We compare the SMA tuning curves to tuning curves of neurons from the primary motor cortex (M1) of the same monkeys, showing that the tuning curves of the SMA neurons tend to be narrower and shallower. We also show that these characteristics do not depend on the specific location in each region. PMID:23468391

  19. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  20. The Bacterial Growth Curve.

    ERIC Educational Resources Information Center

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  1. Textbook Factor Demand Curves.

    ERIC Educational Resources Information Center

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  2. Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats

    PubMed Central

    Thomsen, Karen Louise; Møller, Holger Jon; Graversen, Jonas Heilskov; Magnusson, Nils E; Moestrup, Søren K; Vilstrup, Hendrik; Grønbæk, Henning

    2016-01-01

    AIM: To study the effect of a new anti-CD163-dexamethasone conjugate targeting activated macrophages on the hepatic acute phase response in rats. METHODS: Wistar rats were injected intravenous with either the CD163 targeted dexamethasone-conjugate (0.02 mg/kg) or free dexamethasone (0.02 or 1 mg/kg) 24 h prior to lipopolysaccharide (LPS) (2.5 mg/kg intraperitoneal). We measured plasma concentrations of tumour necrosis factor-α (TNF-α) and interleukin 6 (IL-6) 2 h post-LPS and liver mRNAs and serum concentrations of the rat acute phase protein α-2-macroglobulin (α-2-M) 24 h after LPS. Also, plasma concentrations of alanine aminotransferase and bilirubin were measured at termination of the study. Spleen weight served as an indicator of systemic steroid effects. RESULTS: The conjugate halved the α-2-M liver mRNA (3.3 ± 0.6 vs 6.8 ± 1.1, P < 0.01) and serum protein (201 ± 48 μg/mL vs 389 ± 67 μg/mL, P = 0.04) after LPS compared to low dose dexamethasone treated animals, while none of the free dexamethasone doses had an effect on liver mRNA or serum levels of α-2-M. Also, the conjugate reduced TNF-α (7208 ± 1977 pg/mL vs 21583 ± 7117 pg/mL, P = 0.03) and IL-6 (15685 ± 3779 pg/mL vs 25715 ± 4036 pg/mL, P = 0.03) compared to the low dose dexamethasone. The high dose dexamethasone dose decreased the spleen weight (421 ± 11 mg vs 465 ± 12 mg, P < 0.05) compared to controls, an effect not seen in any other group. CONCLUSION: Low-dose anti-CD163-dexamethasone conjugate effectively decreased the hepatic acute phase response to LPS. This indicates an anti-inflammatory potential of the conjugate in vivo. PMID:27330681

  3. Factorization with genus 2 curves

    NASA Astrophysics Data System (ADS)

    Cosset, Romain

    2010-04-01

    The elliptic curve method (ECM) is one of the best factorization methods available. It is possible to use hyperelliptic curves instead of elliptic curves but it is in theory slower. We use special hyperelliptic curves and Kummer surfaces to reduce the complexity of the algorithm. Our implementation GMP-HECM is faster than GMP-ECM for factoring large numbers.

  4. Peripherally restricted acute phase response to a viral mimic alters hippocampal gene expression.

    PubMed

    Michalovicz, Lindsay T; Konat, Gregory W

    2014-03-01

    We have previously shown that peripherally restricted acute phase response (APR) elicited by intraperitoneal (i.p.) injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), renders the brain hypersusceptible to excitotoxic insult as seen from profoundly exacerbated kainic acid (KA)-induced seizures. In the present study, we found that this hypersusceptibility was protracted for up to 72 h. RT-PCR profiling of hippocampal gene expression revealed rapid upregulation of 23 genes encoding cytokines, chemokines and chemokine receptors generally within 6 h after PIC challenge. The expression of most of these genes decreased by 24 h. However, two chemokine genes, i.e., Ccl19 and Cxcl13 genes, as well as two chemokine receptor genes, Ccr1 and Ccr7, remained upregulated for 72 h suggesting their possible involvement in the induction and sustenance of seizure hypersusceptibility. Also, 12 genes encoding proteins related to glutamatergic and GABAergic neurotransmission featured initial upregulation or downregulation followed by gradual normalization. The upregulation of the Gabrr3 gene remained upregulated at 72 h, congruent with its plausible role in the hypersusceptible phenotype. Moreover, the expression of ten microRNAs (miRs) was rapidly affected by PIC challenge, but their levels generally exhibited oscillating profiles over the time course of seizure hypersusceptibility. These results indicate that protracted seizure susceptibility following peripheral APR is associated with a robust polygenic response in the hippocampus. PMID:24363211

  5. Tail biting induces a strong acute phase response and tail-end inflammation in finishing pigs.

    PubMed

    Heinonen, Mari; Orro, Toomas; Kokkonen, Teija; Munsterhjelm, Camilla; Peltoniemi, Olli; Valros, Anna

    2010-06-01

    The extent of inflammation associated with tail biting in finishing pigs was evaluated. Tail histopathology, carcass condemnation and the concentration of three acute phase proteins (APPs), C-reactive protein (CRP), serum amyloid-A (SAA) and haptoglobin (Hp), were examined in 12 tail-bitten and 13 control pigs. The median concentrations of APPs were higher (P<0.01) in bitten (CRP 617.5mg/L, range 80.5-969.9; SAA 128.0mg/L, 6.2-774.4; Hp 2.8g/L, 1.6-3.5) than in control pigs (CRP 65.7mg/L, 28.4-180.4; SAA 6.2mg/L, 6.2-21.4; Hp 1.2g/L, 0.9-1.5). There was a tendency for APP concentrations to rise with the histopathological score but the differences were only statistically significant between some of the scores. Five (42%) bitten cases and one (8%) control pig had partial carcass condemnations owing to abscesses (P=0.07). The results show that tail biting induces an inflammatory response in the tail end leading to an acute phase response and formation of carcass abscesses. PMID:19398209

  6. Mutational analysis of acute-phase response factor/Stat3 activation and dimerization.

    PubMed Central

    Sasse, J; Hemmann, U; Schwartz, C; Schniertshauer, U; Heesel, B; Landgraf, C; Schneider-Mergener, J; Heinrich, P C; Horn, F

    1997-01-01

    Signal transducer and transcription (STAT) factors are activated by tyrosine phosphorylation in response to a variety of cytokines, growth factors, and hormones. Tyrosine phosphorylation triggers dimerization and nuclear translocation of these transcription factors. In this study, the functional role of carboxy-terminal portions of the STAT family member acute-phase response factor/Stat3 in activation, dimerization, and transactivating potential was analyzed. We demonstrate that truncation of 55 carboxy-terminal amino acids causes constitutive activation of Stat3 in COS-7 cells, as is known for the Stat3 isoform Stat3beta. By the use of deletion and point mutants, it is shown that both carboxy- and amino-terminal portions of Stat3 are involved in this phenomenon. Dimerization of Stat3 was blocked by point mutations affecting residues both in the vicinity of the tyrosine phosphorylation site (Y705) and more distant from this site, suggesting that multiple interactions are involved in dimer formation. Furthermore, by reporter gene assays we demonstrate that carboxy-terminally truncated Stat3 proteins are incapable of transactivating an interleukin-6-responsive promoter in COS-7 cells. In HepG2 hepatoma cells, however, these truncated Stat3 forms transmit signals from the interleukin-6 signal transducer gp130 equally well as does full-length Stat3. We conclude that, dependent on the cell type, different mechanisms allow Stat3 to regulate target gene transcription either with or without involvement of its putative carboxy-terminal transactivation domain. PMID:9234724

  7. Serum Profiling of Rat Dermal Exposure to JP-8 Fuel Reveals an Acute-Phase Response.

    PubMed

    Larabee, Jason L; Hocker, James R; Cheung, John Y; Gallucci, Randle M; Hanas, Jay S

    2008-01-01

    ABSTRACT Dermal exposure to JP-8 petroleum jet fuel leads to toxicological responses in humans and rodents. Serum profiling is a molecular analysis of changes in the levels of serum proteins and other molecules in response to changes in physiology. This present study utilizes serum profiling approaches to examine biomolecular changes in the sera of rats exposed to dermal applications of JP-8 (jet propulsion fuel-8). Using gel electrophoresis and electrospray ionization (ESI) mass spectrometry (MS), levels of serum proteins as well as low-mass constituents were found to change after dermal exposures to JP-8. The serum protein levels altered included the acute-phase response proteins haptoglobin, ceruloplasmin, alpha(1)-inhibitor III, and apolipoprotein A-IV. Haptoglobin levels increased after a 1-day JP-8 dermal exposure and continued to increase through 7 days of exposure. Ceruloplasmin levels increased after 5 days of exposure. Serum alpha(1)-inhibitor III was reduced after a 1-day exposure and the depletion continued after 7 days of exposure. Apolipoprotein A-IV increased after a 1-day exposure and then returned to basal levels after 3- and 5-day exposures of JP-8. Levels of the acute-phase protein alpha(2)-macroglobulin were found to not vary over these time course studies. Using ESI-MS analysis directly on the sera from rats exposed to dermal JP-8, low-mass sera constituents were found to correlate with control (acetone) or JP-8 exposure. PMID:20020890

  8. Atlas of fatigue curves

    SciTech Connect

    Boyer, H.E.

    1986-01-01

    This Atlas was developed to serve engineers who are looking for fatigue data on a particular metal or alloy. Having these curves compiled in a single book will also facilitate the computerization of the involved data. It is pointed out that plans are under way to make the data in this book available in ASCII files for analysis by computer programs. S-N curves which typify effects of major variables are considered along with low-carbon steels, medium-carbon steels, alloy steels, HSLA steels, high-strength alloy steels, heat-resisting steels, stainless steels, maraging steels, cast irons, and heat-resisting alloys. Attention is also given to aluminum alloys, copper alloys, magnesium alloys, molybdenum, tin alloys, titanium and titanium alloys, zirconium, steel castings, closed-die forgings, powder metallurgy parts, composites, effects of surface treatments, and test results for component parts.

  9. Spinal curves and scoliosis.

    PubMed

    Anderson, Susan M

    2007-01-01

    Scoliosis, an abnormal side-to-side curve of the spine with associated vertebral rotation, affects as many as 4% of all adolescents. Several different categories of scoliosis exist, and treatment can range from observation and follow-up to bracing and surgical correction. This article discusses special imaging series for scoliosis and emphasizes the need for proper radiation protection techniques for patients with scoliosis, most of whom are girls in their early to mid-teens. PMID:17848532

  10. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  11. The Stephan Curve revisited.

    PubMed

    Bowen, William H

    2013-01-01

    The Stephan Curve has played a dominant role in caries research over the past several decades. What is so remarkable about the Stephan Curve is the plethora of interactions it illustrates and yet acid production remains the dominant focus. Using sophisticated technology, it is possible to measure pH changes in plaque; however, these observations may carry a false sense of accuracy. Recent observations have shown that there may be multiple pH values within the plaque matrix, thus emphasizing the importance of the milieu within which acid is formed. Although acid production is indeed the immediate proximate cause of tooth dissolution, the influence of alkali production within plaque has received relative scant attention. Excessive reliance on Stephan Curve leads to describing foods as "safe" if they do not lower the pH below the so-called "critical pH" at which point it is postulated enamel dissolves. Acid production is just one of many biological processes that occur within plaque when exposed to sugar. Exploration of methods to enhance alkali production could produce rich research dividends. PMID:23224410

  12. Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair

    NASA Astrophysics Data System (ADS)

    Şenyurt, Süleyman; Altun, Yasin; Cevahir, Ceyda

    2016-04-01

    In this paper, we investigate the Smarandache curves according to Sabban frame of fixed pole curve which drawn by the unit Darboux vector of the Bertrand partner curve. Some results have been obtained. These results were expressed as the depends Bertrand curve.

  13. The effect of feeding endophyte-infected fescue on the acute phase response to lipopolysaccharide in beef heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angus heifers (n = 22; 292 ± 9.0 kg body weight) were paired by body weight and randomly placed on either an endophyte-infected (E+) or endophyte-free (E-) diet for 10 days to determine the influence of feeding endophyte-infected fescue on the physiological and acute phase responses of beef heifers ...

  14. Supplementation of Lactobacillus acidophilus fermentation product can attenuate the acute phase response following a lipopolysaccharide challenge in pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if feeding a Lactobacillus acidophilus fermentation product to weaned pigs would reduce stress and acute phase responses (APR) following a lipopolysaccharide (LPS) challenge. Pigs (n=30; 6.4±0.1 kilograms body weight) were housed individually in pens with ad libi...

  15. Prenatal transportation alters the acute phase response (APR) of bull calves exposed to a lipopolysaccharide (LPS) challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if prenatal transportation influences the acute phase response (APR) to a postnatal Lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day...

  16. Acute-phase responses in cattle infected with hydatid cysts and microbial agents.

    PubMed

    Sevimli, A; Sevimli, F K; Şeker, E; Ulucan, A; Demirel, H H

    2015-07-01

    The aim of this study was to investigate the effect of hydatid cysts and microbial agents on the acute-phase response in cattle. Twenty-seven cattle with hydatid cysts and eight apparently healthy cattle comprised the study and control groups, respectively. Parasitological, microbiological, histopathological and immunohistochemical examinations of the liver and lungs were undertaken, and 49 of these organs were infected with cysts. In 14 of 31 (45.1%) livers and 10 of 18 (55.5%) lungs microbial growth was observed. The most frequent species occurring in the liver were Staphylococcus aureus, Escherichia coli, Corynebacterium spp. and Campylobacter spp., whereas in the lungs the most common species was Candida spp., followed by Streptococcus spp., Mannheimia haemolytica, Corynebacterium spp., Micrococcus spp. and S. aureus. The concentration of serum interleukin (IL-6) in infected cattle, 455.35 ± 39.68 pg/ml, was significantly higher than that of 83.02 ± 17.87 pg/ml in the control group (P0.05). The highest concentrations of IL-6 were detected in serum of the cattle where microbial growth had been detected, followed by cattle infected with bacteria + Trichostrongylus sp. (P< 0.001). Consequently, SAA showed an important increase in the group infected with hydatid cysts, whereas haptoglobin level decreased. It was noticed that IL-6, like SAA, had a significant role in hydatid cyst infection. Therefore IL-6 and SAA appear to be major markers in the detection of infection of cattle with hydatid cysts. PMID:26017333

  17. Effect of input noise on neuronal firing rate

    NASA Astrophysics Data System (ADS)

    Gonzalo-Cogno, S.; Samengo, I.

    2013-01-01

    When neurons are driven with a noisy input, the mean and the variance of the stimulus modulate the firing rate. Previous studies have shown that in linear-nonlinear model neurons the mean firing rate obtained in response to a noisy input is the average rate that would be obtained from an ensemble of constant currents. In this work, we study the firing rate of several neuron models, focusing on its dependence on the amount of input noise. We find that for models with monotonic activation curves, the theory provides a good qualitative approximation of the firing rate. For neurons with non-monotonic activation curves, however, the theory fails. The discrepancies between the theory and the simulations appear because rapidly fluctuating stimuli involve intrinsically dynamical processes that cannot be interpreted as an ensemble of constant stimuli.

  18. The Characteristic Curves of Water

    NASA Astrophysics Data System (ADS)

    Neumaier, Arnold; Deiters, Ulrich K.

    2016-09-01

    In 1960, E. H. Brown defined a set of characteristic curves (also known as ideal curves) of pure fluids, along which some thermodynamic properties match those of an ideal gas. These curves are used for testing the extrapolation behaviour of equations of state. This work is revisited, and an elegant representation of the first-order characteristic curves as level curves of a master function is proposed. It is shown that Brown's postulate—that these curves are unique and dome-shaped in a double-logarithmic p, T representation—may fail for fluids exhibiting a density anomaly. A careful study of the Amagat curve (Joule inversion curve) generated from the IAPWS-95 reference equation of state for water reveals the existence of an additional branch.

  19. Suppression of DHEA sulfotransferase (Sult2A1) during the acute-phase response.

    PubMed

    Kim, Min Sun; Shigenaga, Judy; Moser, Art; Grunfeld, Carl; Feingold, Kenneth R

    2004-10-01

    The acute-phase response (APR) induces alterations in lipid metabolism, and our data suggest that this is associated with suppression of type II nuclear hormone receptors that are key regulators of fatty acid, cholesterol, and bile acid metabolism. Recently, the farnesoid X receptor (FXR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) were found to regulate DHEA sulfotransferase (Sult2A1), which plays an important role in DHEA sulfation and detoxification of bile acids. Because FXR, PXR, and CAR are suppressed during the APR, we hypothesized that Sult2A1 is downregulated during the APR. To induce the APR, mice were treated with LPS, which will then trigger the release of various cytokines, and the mRNA levels of Sult2A1 and the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPSS2), as well as the enzyme activity of Sult2A1, were determined in the liver. We found that mRNA levels of Sult2A1 decrease in a time- and dose-dependent manner during the LPS-induced APR. Similar changes were observed in the mRNA levels of PAPSS2, the major synthase of PAPS in the liver. Moreover, hepatic Sult2A1 activity and serum levels of DHEA-sulfate (DHEA-S) were significantly decreased in LPS-treated animals. These results suggest that decreased levels or activities of FXR, PXR, and CAR during the APR could contribute to decreases in Sult2A1, resulting in decreased sulfation of DHEA and lower circulating level of DHEA-S. Finally, we found that both TNF and IL-1 caused a significant decrease in the mRNA level of Sult2A1 in Hep3B human hepatoma cells, suggesting that the proinflammatory cytokines TNF and IL-1 mediate the inhibitory effect of LPS on Sult2A1 mRNA level. Our study provides a possible mechanism by which infection and inflammation are associated with altered steroid metabolism and cholestasis. PMID:15198932

  20. Titration Curves: Fact and Fiction.

    ERIC Educational Resources Information Center

    Chamberlain, John

    1997-01-01

    Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…

  1. Particle-Induced Pulmonary Acute Phase Response Correlates with Neutrophil Influx Linking Inhaled Particles and Cardiovascular Risk

    PubMed Central

    Saber, Anne Thoustrup; Lamson, Jacob Stuart; Jacobsen, Nicklas Raun; Ravn-Haren, Gitte; Hougaard, Karin Sørig; Nyendi, Allen Njimeri; Wahlberg, Pia; Madsen, Anne Mette; Jackson, Petra; Wallin, Håkan; Vogel, Ulla

    2013-01-01

    Background Particulate air pollution is associated with cardiovascular disease. Acute phase response is causally linked to cardiovascular disease. Here, we propose that particle-induced pulmonary acute phase response provides an underlying mechanism for particle-induced cardiovascular risk. Methods We analysed the mRNA expression of Serum Amyloid A (Saa3) in lung tissue from female C57BL/6J mice exposed to different particles including nanomaterials (carbon black and titanium dioxide nanoparticles, multi- and single walled carbon nanotubes), diesel exhaust particles and airborne dust collected at a biofuel plant. Mice were exposed to single or multiple doses of particles by inhalation or intratracheal instillation and pulmonary mRNA expression of Saa3 was determined at different time points of up to 4 weeks after exposure. Also hepatic mRNA expression of Saa3, SAA3 protein levels in broncheoalveolar lavage fluid and in plasma and high density lipoprotein levels in plasma were determined in mice exposed to multiwalled carbon nanotubes. Results Pulmonary exposure to particles strongly increased Saa3 mRNA levels in lung tissue and elevated SAA3 protein levels in broncheoalveolar lavage fluid and plasma, whereas hepatic Saa3 levels were much less affected. Pulmonary Saa3 expression correlated with the number of neutrophils in BAL across different dosing regimens, doses and time points. Conclusions Pulmonary acute phase response may constitute a direct link between particle inhalation and risk of cardiovascular disease. We propose that the particle-induced pulmonary acute phase response may predict risk for cardiovascular disease. PMID:23894396

  2. Metabolizable protein supply modulated the acute-phase response following vaccination of beef steers.

    PubMed

    Moriel, P; Arthington, J D

    2013-12-01

    Our objective was to evaluate the effects of MP supply, through RUP supplementation, on the acute-phase response of beef steers following vaccination. On d 0, Brangus-crossbred steers (n = 24; 173 ± 31 kg; 175 ± 16 d of age) were randomly assigned to receive 1 of 3 isocaloric diets formulated to provide 85, 100, and 115% of the daily MP requirements of a beef steer gaining 0.66 kg of BW daily. Diets were limit-fed at 1.8% of BW (DM basis) and individually provided to steers once daily (0800 h) from d 0 to 29. Steers were weighed on d 0 and 29, following a 12-h period of feed and water withdrawal. On d 7, steers were vaccinated against Mannheimia haemolytica (OneShot, Pfizer), and blood samples were collected on d 0, 7, 8, 10, 14, 21, and 30. Plasma metabolites were analyzed as repeated measures using the MIXED procedure of SAS. Final BW and ADG were similar (P ≥ 0.50) among treatments (mean = 184 ± 9 kg and 0.5 ± 0.08 kg/d, respectively). Effects of time were detected (P < 0.01) for plasma concentrations of all acute-phase proteins, which peaked between d 7 to 14, returning to baseline concentrations by d 29. Treatment effects were not detected (P ≥ 0.19) for plasma concentrations of acid-soluble protein, albumin, fibrinogen, IGF-1 and serum amyloid-A. Plasma concentrations of total protein (TP) and plasma urea nitrogen (PUN) increased (P ≤ 0.05) with increasing supply of MP (87.1, 89.6, and 90.1 ± 1.09 mg TP/mL and 6.1, 8.3, and 10.3 ± 0.41 mg PUN/dL for 85, 100, and 115% MP steers, respectively). From d 10 to 29, steers provided 115% MP had less (P < 0.001) plasma concentrations of ceruloplasmin than steers fed 85 and 100% MP, which had similar plasma ceruloplasmin concentrations. On d 14, plasma concentrations of haptoglobin were greatest (P ≤ 0.06) for steers fed 115% MP, intermediate for 100% MP, and least for 85% MP (0.98, 0.71 and 0.44 ± 0.099 mg/mL, respectively). On d 10, plasma concentrations of creatinine were greater (P = 0.01) for steers

  3. Birational maps that send biquadratic curves to biquadratic curves

    NASA Astrophysics Data System (ADS)

    Roberts, John A. G.; Jogia, Danesh

    2015-02-01

    Recently, many papers have begun to consider so-called non-Quispel-Roberts-Thompson (QRT) birational maps of the plane. Compared to the QRT family of maps which preserve each biquadratic curve in a fibration of the plane, non-QRT maps send a biquadratic curve to another biquadratic curve belonging to the same fibration or to a biquadratic curve from a different fibration of the plane. In this communication, we give the general form of a birational map derived from a difference equation that sends a biquadratic curve to another. The necessary and sufficient condition for such a map to exist is that the discriminants of the two biquadratic curves are the same (and hence so are the j-invariants). The result allows existing examples in the literature to be better understood and allows some statements to be made concerning their generality.

  4. Dynamic Input Conductances Shape Neuronal Spiking1,2

    PubMed Central

    Franci, Alessio; Dethier, Julie; Sepulchre, Rodolphe

    2015-01-01

    Abstract Assessing the role of biophysical parameter variations in neuronal activity is critical to the understanding of modulation, robustness, and homeostasis of neuronal signalling. The paper proposes that this question can be addressed through the analysis of dynamic input conductances. Those voltage-dependent curves aggregate the concomitant activity of all ion channels in distinct timescales. They are shown to shape the current−voltage dynamical relationships that determine neuronal spiking. We propose an experimental protocol to measure dynamic input conductances in neurons. In addition, we provide a computational method to extract dynamic input conductances from arbitrary conductance-based models and to analyze their sensitivity to arbitrary parameters. We illustrate the relevance of the proposed approach for modulation, compensation, and robustness studies in a published neuron model based on data of the stomatogastric ganglion of the crab Cancer borealis. PMID:26464969

  5. The use of maps in the analysis of networks of coupled neuronal oscillators

    NASA Astrophysics Data System (ADS)

    Goel, Pranay

    In this thesis we study aspects of periodic activity in model mutually-coupled oscillators inspired by the nervous system. We define and use maps describing the timing of activity on successive cycles. The central theme here is to examine emergent behavior in networks through the properties of the individual oscillators. In the first chapter, we describe Phase Response Curves (PRCs), which map the changes in the period of an oscillator to perturbations at different phases along the cycle. We consider various networks of oscillators, pulse-coupled through their PRCs: rings, chains, arrays, and global coupling. We study conditions under which stable patterns, such as synchrony and waves, may be found. In the second and third chapters, we model beta (12--30 Hz) and gamma (30--80 Hz) rhythms in the nervous system in reduced networks of excitatory and inhibitory neurons. We look at the intriguing results of experiments that show increases in beta band activity in human MEGs upon taking the sedative Diapam. We show that the model network is able to mimic the experimental data. The model then clarifies the inhibitory action of the drug in tissue. We look at another experiment that finds disruption of long-range synchrony of gamma oscillations in transgenic mice with altered excitatory kinetics. We study this behavior in a reduced network that encodes for conduction delays across spatially distal sites. The model provides an explanation of this phenomenon in terms of the properties of the cells involved in generating the rhythm. In our analyses, we use maps to study stability of the patterns of activity.

  6. Sample Skewness as a Statistical Measurement of Neuronal Tuning Sharpness

    PubMed Central

    Samonds, Jason M.; Potetz, Brian R.; Lee, Tai Sing

    2014-01-01

    We propose using the statistical measurement of the sample skewness of the distribution of mean firing rates of a tuning curve to quantify sharpness of tuning. For some features, like binocular disparity, tuning curves are best described by relatively complex and sometimes diverse functions, making it difficult to quantify sharpness with a single function and parameter. Skewness provides a robust nonparametric measure of tuning curve sharpness that is invariant with respect to the mean and variance of the tuning curve and is straightforward to apply to a wide range of tuning, including simple orientation tuning curves and complex object tuning curves that often cannot even be described parametrically. Because skewness does not depend on a specific model or function of tuning, it is especially appealing to cases of sharpening where recurrent interactions among neurons produce sharper tuning curves that deviate in a complex manner from the feedforward function of tuning. Since tuning curves for all neurons are not typically well described by a single parametric function, this model independence additionally allows skewness to be applied to all recorded neurons, maximizing the statistical power of a set of data. We also compare skewness with other nonparametric measures of tuning curve sharpness and selectivity. Compared to these other nonparametric measures tested, skewness is best used for capturing the sharpness of multimodal tuning curves defined by narrow peaks (maximum) and broad valleys (minima). Finally, we provide a more formal definition of sharpness using a shape-based information gain measure and derive and show that skewness is correlated with this definition. PMID:24555451

  7. Mesmerising mirror neurons.

    PubMed

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. PMID:20167276

  8. Synthetic RR Lyrae velocity curves

    SciTech Connect

    Liu, Tianxing Boston Univ., MA )

    1991-02-01

    An amplitude correlation between the pulsation velocity curves and visual light curves of ab-type RR Lyrae stars is derived from a large number of RR Lyrae that have high-precision radial-velocity and photometric data. Based on the determined AVp, AV ralation, a synthetic radial-velocity curve for a typical ab-type RR Lyrae star is constructed. This would be of particular use in determining the systemic velocities of RR Lyrae. 17 refs.

  9. Quantum neuron design

    NASA Astrophysics Data System (ADS)

    Behrman, Elizabeth; Steck, James

    2014-03-01

    In previous work, we have developed quantum systems that can learn and do information processing much like artificial neural networks. These learning methods have some advantages over other implementations of quantum computing in that they construct their own algorithms and could be robust to noise and decoherence. Here we take the next step, by designing quantum neurons that have some of the important behaviors of biological neurons, yet have the advantage of being complex valued and having quantum computing power. Our neuron model consists of a two-level system coupled to a Gaussian bath representing the environment. Simulations of a interconnected network of these neurons show that the model can both learn standard AI tasks, as similar networks of classical neurons have been shown to do, and, in addition, perform quantum mechanical calculations.

  10. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response

    PubMed Central

    Rivory, L P; Slaviero, K A; Clarke, S J

    2002-01-01

    Inflammatory disease states (infection, arthritis) are associated with reduced drug oxidation by the cytochrome P450 3A system. Many chemotherapy agents are metabolised through this pathway, and disease may therefore influence inter-individual differences in drug pharmacokinetics. The purpose of this study was to assess cytochrome P450 3A function in patients with advanced cancer, and its relation to the acute-phase response. We evaluated hepatic cytochrome P450 3A function in 40 patients with advanced cancer using the erythromycin breath test. Both the traditional C20min measure and the recently proposed 1/TMAX values were estimated. The marker of acute-phase response, C-reactive protein and the pro-inflammatory cytokines IL-6, IL-1β, TNFα and IL-8 were measured in serum or plasma at baseline. Cancer patients with an acute phase response (C-reactive protein >10 mg l−1, n=26) had reduced metabolism as measured with the erythromycin breath test 1/TMAX (Kruskal–Wallis Anova, P=0.0062) as compared to controls (C-reactive protein ⩽10 mg l−1, n=14). Indeed, metabolism was significantly associated with C-reactive protein over the whole concentration range of this acute-phase marker (r=−0.64, Spearman Rank Correlation, P<0.00001). C-reactive protein serum levels were significantly correlated with those of IL-6 (Spearman coefficient=0.58, P<0.0003). The reduction in cytochrome P450 3A function with acute-phase reaction was independent of the tumour type and C-reactive protein elevation was associated with poor performance status. This indicates that the sub-group of cancer patients with significant acute-phase response have compromised drug metabolism, which may have implications for the safety of chemotherapy in this population. British Journal of Cancer (2002) 87, 277–280. doi:10.1038/sj.bjc.6600448 www.bjcancer.com © 2002 Cancer Research UK PMID:12177794

  11. Lack of acute phase response in the livers of mice exposed to diesel exhaust particles or carbon black by inhalation

    PubMed Central

    Saber, Anne T; Halappanavar, Sabina; Folkmann, Janne K; Bornholdt, Jette; Boisen, Anne Mette Z; Møller, Peter; Williams, Andrew; Yauk, Carole; Vogel, Ulla; Loft, Steffen; Wallin, Håkan

    2009-01-01

    Background Epidemiologic and animal studies have shown that particulate air pollution is associated with increased risk of lung and cardiovascular diseases. Although the exact mechanisms by which particles induce cardiovascular diseases are not known, studies suggest involvement of systemic acute phase responses, including C-reactive protein (CRP) and serum amyloid A (SAA) in humans. In this study we test the hypothesis that diesel exhaust particles (DEP) – or carbon black (CB)-induced lung inflammation initiates an acute phase response in the liver. Results Mice were exposed to filtered air, 20 mg/m3 DEP or CB by inhalation for 90 minutes/day for four consecutive days; we have previously shown that these mice exhibit pulmonary inflammation (Saber AT, Bornholdt J, Dybdahl M, Sharma AK, Loft S, Vogel U, Wallin H. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation., Arch. Toxicol. 79 (2005) 177–182). As a positive control for the induction of an acute phase response, mice were exposed to 12.5 mg/kg of lipopolysaccharide (LPS) intraperitoneally. Quantitative real time RT-PCR was used to examine the hepatic mRNA expression of acute phase proteins, serum amyloid P (Sap) (the murine homologue of Crp) and Saa1 and Saa3. While significant increases in the hepatic expression of Sap, Saa1 and Saa3 were observed in response to LPS, their levels did not change in response to DEP or CB. In a comprehensive search for markers of an acute phase response, we analyzed liver tissue from these mice using high density DNA microarrays. Globally, 28 genes were found to be significantly differentially expressed in response to DEP or CB. The mRNA expression of three of the genes (serine (or cysteine) proteinase inhibitor, clade A, member 3C, apolipoprotein E and transmembrane emp24 domain containing 3) responded to both exposures. However, these changes were very subtle and were not confirmed by real time RT-PCR. Conclusion Our findings

  12. Tool For Making Curved Holes

    NASA Technical Reports Server (NTRS)

    Allard, Robert; Calve, Andrew; Pastreck, Edwin; Padden, Edward

    1992-01-01

    Tool for use in electrical-discharge machining (EDM) guides EDM electrode in making curved holes. Guide rod fits in slot in arm, which moves through arc. Motion drives electrode into workpiece along desired curved path. Electrode burns into workpiece while arm rotates on spindle. Discharge cuts hole of same radius of curvature.

  13. Digital-voltage curve generator

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1970-01-01

    Curve generator capable of producing precisely repeatable curve for any single-valued function of voltage versus time uses digital approach, implemented by means of clocked feedback shift register, large scale integrated circuit diode matrix comprising about 12,000 diodes, counter, and digital-to-analog converter.

  14. The polar phase response property of monopolar ECG voltages using a Computer-Aided Design and Drafting (CAD)-based data acquisition system.

    PubMed

    Goswami, B; Mitra, M; Nag, B; Mitra, T K

    1993-11-01

    The present paper discusses a Computer-Aided Design and Drafting (CAD) based data acquisition and polar phase response study of the ECG. The scalar ECG does not show vector properties although such properties are embedded in it. In the present paper the polar phase response property of monopolar chest lead (V1 to V6) ECG voltages has been studied. A software tool has been used to evaluate the relative phase response of ECG voltages. The data acquisition of monopolar ECG records of chest leads V1 to V6 from the chart recorder has been done with the help of the AutoCAD application package. The spin harmonic constituents of ECG voltages are evaluated at each harmonic plane and the polar phase responses are studied at each plane. Some interesting results have been observed in some typical cases which are discussed in the paper. PMID:8307653

  15. Transporting mitochondria in neurons

    PubMed Central

    Course, Meredith M.; Wang, Xinnan

    2016-01-01

    Neurons demand vast and vacillating supplies of energy. As the key contributors of this energy, as well as primary pools of calcium and signaling molecules, mitochondria must be where the neuron needs them, when the neuron needs them. The unique architecture and length of neurons, however, make them a complex system for mitochondria to navigate. To add to this difficulty, mitochondria are synthesized mainly in the soma, but must be transported as far as the distant terminals of the neuron. Similarly, damaged mitochondria—which can cause oxidative stress to the neuron—must fuse with healthy mitochondria to repair the damage, return all the way back to the soma for disposal, or be eliminated at the terminals. Increasing evidence suggests that the improper distribution of mitochondria in neurons can lead to neurodegenerative and neuropsychiatric disorders. Here, we will discuss the machinery and regulatory systems used to properly distribute mitochondria in neurons, and how this knowledge has been leveraged to better understand neurological dysfunction. PMID:27508065

  16. How microglia kill neurons.

    PubMed

    Brown, Guy C; Vilalta, Anna

    2015-12-01

    Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection. PMID:26341532

  17. Population dynamics of the modified theta model: macroscopic phase reduction and bifurcation analysis link microscopic neuronal interactions to macroscopic gamma oscillation.

    PubMed

    Kotani, Kiyoshi; Yamaguchi, Ikuhiro; Yoshida, Lui; Jimbo, Yasuhiko; Ermentrout, G Bard

    2014-06-01

    Gamma oscillations of the local field potential are organized by collective dynamics of numerous neurons and have many functional roles in cognition and/or attention. To mathematically and physiologically analyse relationships between individual inhibitory neurons and macroscopic oscillations, we derive a modification of the theta model, which possesses voltage-dependent dynamics with appropriate synaptic interactions. Bifurcation analysis of the corresponding Fokker-Planck equation (FPE) enables us to consider how synaptic interactions organize collective oscillations. We also develop the adjoint method (infinitesimal phase resetting curve) for simultaneous equations consisting of ordinary differential equations representing synaptic dynamics and a partial differential equation for determining the probability distribution of the membrane potential. This method provides a macroscopic phase response function (PRF), which gives insights into how it is modulated by external perturbation or internal changes of parameters. We investigate the effects of synaptic time constants and shunting inhibition on these gamma oscillations. The sensitivity of rising and decaying time constants is analysed in the oscillatory parameter regions; we find that these sensitivities are not largely dependent on rate of synaptic coupling but, rather, on current and noise intensity. Analyses of shunting inhibition reveal that it can affect both promotion and elimination of gamma oscillations. When the macroscopic oscillation is far from the bifurcation, shunting promotes the gamma oscillations and the PRF becomes flatter as the reversal potential of the synapse increases, indicating the insensitivity of gamma oscillations to perturbations. By contrast, when the macroscopic oscillation is near the bifurcation, shunting eliminates gamma oscillations and a stable firing state appears. More interestingly, under appropriate balance of parameters, two branches of bifurcation are found in our

  18. Neuronal Functions of ESCRTs

    PubMed Central

    Gao, Fen-Biao

    2012-01-01

    The endosomal sorting complexes required for transport (ESCRTs) regulate protein trafficking from endosomes to lysosomes. Recent studies have shown that ESCRTs are involved in various cellular processes, including membrane scission, microRNA function, viral budding, and the autophagy pathway in many tissues, including the nervous system. Indeed, dysfunctional ESCRTs are associated with neurodegeneration. However, it remains largely elusive how ESCRTs act in post-mitotic neurons, a highly specialized cell type that requires dynamic changes in neuronal structures and signaling for proper function. This review focuses on our current understandings of the functions of ESCRTs in neuronal morphology, synaptic plasticity, and neurodegenerative diseases. PMID:22438674

  19. Poiseuille flow in curved spaces

    NASA Astrophysics Data System (ADS)

    Debus, J.-D.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2016-04-01

    We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.

  20. Poiseuille flow in curved spaces.

    PubMed

    Debus, J-D; Mendoza, M; Succi, S; Herrmann, H J

    2016-04-01

    We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects. PMID:27176437

  1. Neuromorphic silicon neuron circuits.

    PubMed

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  2. Neuronal ubiquitin homeostasis

    PubMed Central

    Hallengren, Jada; Chen, Ping-Chung; Wilson, Scott M.

    2013-01-01

    Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson’s disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating synaptic activity. PMID:23686613

  3. Neuromorphic Silicon Neuron Circuits

    PubMed Central

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  4. Curved characteristics behind blast waves.

    NASA Technical Reports Server (NTRS)

    Laporte, O.; Chang, T. S.

    1972-01-01

    The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.

  5. Parabolic curves in Lie groups

    SciTech Connect

    Pauley, Michael

    2010-05-15

    To interpolate a sequence of points in Euclidean space, parabolic splines can be used. These are curves which are piecewise quadratic. To interpolate between points in a (semi-)Riemannian manifold, we could look for curves such that the second covariant derivative of the velocity is zero. We call such curves Jupp and Kent quadratics or JK-quadratics because they are a special case of the cubic curves advocated by Jupp and Kent. When the manifold is a Lie group with bi-invariant metric, we can relate JK-quadratics to null Lie quadratics which arise from another interpolation problem. We solve JK-quadratics in the Lie groups SO(3) and SO(1,2) and in the sphere and hyperbolic plane, by relating them to the differential equation for a quantum harmonic oscillator00.

  6. Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice

    PubMed Central

    LIU, Hui-Hua; HUANG, Cai-Fei; WANG, Xin

    2014-01-01

    Under free field conditions, we used single unit extracellular recording to study the detection of acoustic signals by neurons in the ventral nucleus of the lateral lemniscus (VNLL) in Kunming mouse (Mus musculus). The results indicate two types of firing patterns in VNLL neurons: onset and sustained. The first spike latency (FSL) of onset neurons was shorter than that of sustained neurons. With increasing sound intensity, the FSL of onset neurons remained stable and that of sustained neurons was shortened, indicating that onset neurons are characterized by precise timing. By comparing the values of Q10 and Q30 of the frequency tuning curve, no differences between onset and sustained neurons were found, suggesting that firing pattern and frequency tuning are not correlated. Among the three types of rate-intensity function (RIF) found in VNLL neurons, the proportion of monotonic RIF is the largest, followed by saturated RIF, and non-monotonic RIF. The dynamic range (DR) in onset neurons was shorter than in sustained neurons, indicating different capabilities in intensity tuning of different firing patterns and that these differences are correlated with the type of RIF. Our results also show that the best frequency of VNLL neurons was negatively correlated with depth, supporting the view point that the VNLL has frequency topologic organization. PMID:25465088

  7. Application of confocal microscopy on glutamate-induced intracellular calcium transient in neurons

    NASA Astrophysics Data System (ADS)

    Zhu, Geng; Zhou, Wei; Zhang, Yuan; Liu, Xiuli; Wu, Yuxiang; Luo, Qingming

    2006-02-01

    Intracellular calcium, as an important second messenger, plays a significant role in cell signaling transduction and metabolism. Glutamate can induce the intracellular calcium transient through triggering diverse signaling pathways. To test the effect of glutamate to neurons, we loaded Fluo-3/Am in cultured rat hippocampal neurons, and then acquired two-dimensional fluorescent image by confocal microscopy and the analyzed fluorescent intensity. In cultured neurons, we observed two types of neurons that have different morphology: bipolar-type and pyramidal-type. Inducing [Ca 2+] i transient by glutamate, we found the amplitude and time constant of the response curves of bipolar neurons are larger than those of pyramidal neurons. Further, we induced [Ca 2+] ii transient under different concentrations of glutamate. Two different types of kinetic of the [Ca 2+] i transient have been found, corresponded to the two kinds of neuron. The amplitude of [Ca 2+] i transient increased when applying higher concentration of glutamate in pyramidal neurons; while it decreased in bipolar ones. Responses of neurons bathing in calcium-free extracellular solution to glutamate were different from those bathing in normal solution. [Ca 2+] i transient of pyramidal neurons caused by any concentration were totally blocked; while [Ca 2+] i transient in bipolar neurons caused by high concentration of glutamate (500μM) were partly inhibited. All of the phenomena suggest that different types of cultured hippocampal neurons may have different mechanism of the response to glutamate.

  8. Flow over riblet curved surfaces

    NASA Astrophysics Data System (ADS)

    Loureiro, J. B. R.; Silva Freire, A. P.

    2011-12-01

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  9. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    PubMed Central

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  10. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    PubMed Central

    Kunzevitzky, Noelia; Guttridge, Denis C.; Khuri, Sawsan; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2011-01-01

    Background Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Methodology/Principal Findings Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. Conclusions/Significance These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such

  11. Lack of association of acute phase response proteins with hormone levels and antidepressant medication in perimenopausal depression

    PubMed Central

    2014-01-01

    Background Major depression is associated with higher plasma levels of positive acute-phase proteins, as well as with lower plasma levels of negative acute-phase proteins. The aim of this study is to examine the levels of acute-phase response proteins and whether these levels are influenced by reproductive hormones and antidepressant medication in the perimenopausal depression. Methods Sixty-five women (age range: 40–58 years old) participated in this study. All women were in the perimenopausal phase. The diagnosis of depression was made through a psychiatric interview and with the aid of Hamilton Depression Rating Scale 17 (HAM-D 17). The acute-phase response proteins, such as haptoglobin (HP), transferrine (TRf), α1-antitrypsin, complement protein 3 (C3), complement protein 4 (C4) and C-reactive protein (CRP) and the reproductive hormones, for example follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2), were analyzed using standard laboratory methods. Pearson’s correlations were applied to evaluate the relationship between acute-phase proteins and hormones. Results Perimenopausal women were divided into three groups. The first group consisted of normal controls, the second one involved depressed perimenopausal women, who were taking selective serotonin reuptake inhibitors (SSRIs), and the third one included depressed women that were not treated with SSRIs. Depressed women in perimenopause, when being compared to non-depressed women, did not differ as to serum levels of acute-phase proteins. There was a positive correlation between HP and E2 in depressed perimenopausal women, who were not taking SSRIs. Conclusions The lack of association between acute-phase proteins and depressive mood mentioned in this study does not support previous findings in patients with major depression. This negative finding in perimenopausal depression indicates either the absence or a more complex nature of the interactions between acute-phase proteins

  12. Diminished acute phase response and increased hepatic inflammation of aged rats in response to intraperitoneal injection of lipopolysaccharide.

    PubMed

    Gomez, Christian R; Acuña-Castillo, Claudio; Pérez, Claudio; Leiva-Salcedo, Elías; Riquelme, Denise M; Ordenes, Gamaliel; Oshima, Kiyoko; Aravena, Mauricio; Pérez, Viviana I; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2008-12-01

    Aging is associated with a deterioration of the acute phase response to inflammatory challenges. However, the nature of these defects remains poorly defined. We analyzed the hepatic inflammatory response after intraperitoneal administration of lipopolysaccharide (LPS) given to Fisher 344 rats aged 6, 15, and 22-23 months. Induction of the acute phase proteins (APPs), haptoglobin, alpha-1-acid glycoprotein, and T-kininogen was reduced and/or retarded with aging. Initial induction of interleukin-6 in aged rats was normal, but the later response was increased relative to younger counterparts. An exacerbated hepatic injury was observed in aged rats receiving LPS, as evidenced by the presence of multiple microabscesses in portal tracts, confluent necrosis, higher neutrophil accumulation, and elevated serum levels of alanine aminotransferase, relative to younger animals. Our results suggest that aged rats displayed a reduced expression of APPs and increased hepatic injury in response to the inflammatory insult. PMID:19126842

  13. Cochlear microphonic broad tuning curves

    NASA Astrophysics Data System (ADS)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the

  14. Postpartum Circulating Markers of Inflammation and the Systemic Acute-Phase Response After Early-Onset Preeclampsia.

    PubMed

    van Rijn, Bas B; Bruinse, Hein W; Veerbeek, Jan H; Post Uiterweer, Emiel D; Koenen, Steven V; van der Bom, Johanna G; Rijkers, Ger T; Roest, Mark; Franx, Arie

    2016-02-01

    Preeclampsia is an inflammatory-mediated hypertensive disorder of pregnancy and seems to be an early indicator of increased cardiovascular risk, but mechanisms underlying this association are unclear. In this study, we identified levels of circulating inflammatory markers and dynamic changes in the systemic acute-phase response in 44 women with a history of severe early-onset preeclampsia, compared with 29 controls with only uneventful pregnancies at 1.5 to 3.5 years postpartum. Models used were in vivo seasonal influenza vaccination and in vitro whole-blood culture with T-cell stimulants and the toll-like receptor-4 ligand lipopolysaccharide. Outcome measures were C-reactive protein, interleukin-6 (IL-6), IL-18, fibrinogen, myeloperoxidase, and a panel of 13 cytokines representative of the innate and adaptive inflammatory response, in addition to established cardiovascular markers. The in vivo acute-phase response was higher for women with previous preeclampsia than that for controls without such a history, although only significant for C-reactive protein (P=0.04). Preeclampsia was associated with higher IL-1β (P<0.05) and IL-8 (P<0.01) responses to T-cell activation. Hierarchical clustering revealed 2 distinct inflammatory clusters associated with previous preeclampsia: an adaptive response cluster associated with increased C-reactive protein and IL-6 before and after vaccination, increased weight, and low high-density lipoprotein cholesterol; and a toll-like receptor-4 mediated the cluster associated with increased IL-18 before and after vaccination but not associated with other cardiovascular markers. Furthermore, we found interactions between previous preeclampsia, common TLR4 gene variants, and the IL-18 response to vaccination. In conclusion, preeclampsia is associated with alterations in the inflammatory response postpartum mostly independent of other established cardiovascular risk markers. PMID:26711734

  15. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge.

    PubMed

    Burdick Sanchez, Nicole C; Young, Tanner R; Carroll, Jeffery A; Corley, Jimmie R; Rathmann, Ryan J; Johnson, Bradley J

    2013-01-01

    A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred, newly-received feedlot heifers to an endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving either a control diet (n = 8), YCW-A (2.5 g/heifer/d; n = 8) or YCW-C (2.5 g/heifer/d; n = 8) and were fed for 52 d. On d 37 heifers were challenged i.v. with LPS (0.5 µg/kg body mass) and blood samples were collected from -2 h to 8 h and again at 24 h relative to LPS challenge. There was an increase in vaginal temperature in all heifers post-LPS, with YCW-C maintaining a lower vaginal temperature post-LPS than control and YCW-A heifers. Sickness behavior scores increased post-LPS in all heifers, but were not affected by treatment. Cortisol concentrations were greatest in control heifers post-LPS compared with YCW-A or YCW-C heifers. Concentrations of IFN-γ and TNF-α increased post-LPS, but were not affected by treatment. Serum IL-6 concentrations increased post-LPS and were greater in control heifers than YCW-A and YCW-C heifers. These data indicate that YCW supplementation can decrease the physiological and acute phase responses of newly-received heifers following an endotoxin challenge. PMID:23288885

  16. Neuronal avalanches and learning

    NASA Astrophysics Data System (ADS)

    de Arcangelis, Lucilla

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  17. Simulation of Code Spectrum and Code Flow of Cultured Neuronal Networks.

    PubMed

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime

    2016-01-01

    It has been shown that, in cultured neuronal networks on a multielectrode, pseudorandom-like sequences (codes) are detected, and they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is, we may consider the spectrum curve as a "signature" of its associated neuronal network that is dependent on the characteristics of neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base of natural intelligence. PMID:27239189

  18. Simulation of Code Spectrum and Code Flow of Cultured Neuronal Networks

    PubMed Central

    Tamura, Shinichi; Nishitani, Yoshi; Hosokawa, Chie; Miyoshi, Tomomitsu; Sawai, Hajime

    2016-01-01

    It has been shown that, in cultured neuronal networks on a multielectrode, pseudorandom-like sequences (codes) are detected, and they flow with some spatial decay constant. Each cultured neuronal network is characterized by a specific spectrum curve. That is, we may consider the spectrum curve as a “signature” of its associated neuronal network that is dependent on the characteristics of neurons and network configuration, including the weight distribution. In the present study, we used an integrate-and-fire model of neurons with intrinsic and instantaneous fluctuations of characteristics for performing a simulation of a code spectrum from multielectrodes on a 2D mesh neural network. We showed that it is possible to estimate the characteristics of neurons such as the distribution of number of neurons around each electrode and their refractory periods. Although this process is a reverse problem and theoretically the solutions are not sufficiently guaranteed, the parameters seem to be consistent with those of neurons. That is, the proposed neural network model may adequately reflect the behavior of a cultured neuronal network. Furthermore, such prospect is discussed that code analysis will provide a base of communication within a neural network that will also create a base of natural intelligence. PMID:27239189

  19. Relative Locality in Curved Spacetime

    NASA Astrophysics Data System (ADS)

    Kowalski-Glikman, Jerzy; Rosati, Giacomo

    2013-07-01

    In this paper we construct the action describing dynamics of the particle moving in curved spacetime, with a nontrivial momentum space geometry. Curved momentum space is the core feature of theories where relative locality effects are present. So far aspects of nonlinearities in momentum space have been studied only for flat or constantly expanding (de Sitter) spacetimes, relying on their maximally symmetric nature. The extension of curved momentum space frameworks to arbitrary spacetime geometries could be relevant for the opportunities to test Planck-scale curvature/deformation of particles momentum space. As a first example of this construction we describe the particle with κ-Poincaré momentum space on a circular orbit in Schwarzschild spacetime, where the contributes of momentum space curvature turn out to be negligible. The analysis of this problem relies crucially on the solution of the soccer ball problem.

  20. Phase nucleation in curved space

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega

    Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).

  1. Kappe neurons, a novel population of olfactory sensory neurons

    PubMed Central

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system. PMID:24509431

  2. Kappe neurons, a novel population of olfactory sensory neurons

    NASA Astrophysics Data System (ADS)

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-02-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  3. Active particles on curved surfaces

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael

    Active systems have proved to be very sensitive to the geometry of their environment. This is often achieved by spending significant time at the boundary, probing its shape by gliding along it. I will discuss coarse graining the microscopic dynamics of self-propelled particles on a general curved surface to predict the way the density profile on the surface depends on its geometry. Beyond confined active particles, this formalism is a natural starting point to study objects that cannot leave the boundary at all, such as cells crawling on a curved substrate, animals running on uneven ground, or active colloids trapped at an interface.

  4. Fitting curves to cyclic data

    USGS Publications Warehouse

    Langbein, W.B.

    1955-01-01

    A common problem in hydrology is to fit a smooth curve to cyclic or periodic data, either to define the most probable values of the data or to test some principle that one wishes to demonstrate.  This study treats of those problems where the length or period of the cycle is know beforehand - as a day, year, or meander length for example.  Curve-fitting can be made by free-hand drawing, and where the data are closely aligned this method offers the simplest and most direct course.  However, there are many problems where the best fit is far from obvious, and analytical methods may be necessary.

  5. Imaging voltage in neurons

    PubMed Central

    Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

    2011-01-01

    In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

  6. NEXT Performance Curve Analysis and Validation

    NASA Technical Reports Server (NTRS)

    Saripalli, Pratik; Cardiff, Eric; Englander, Jacob

    2016-01-01

    Performance curves of the NEXT thruster are highly important in determining the thruster's ability in performing towards mission-specific goals. New performance curves are proposed and examined here. The Evolutionary Mission Trajectory Generator (EMTG) is used to verify variations in mission solutions based on both available thruster curves and the new curves generated. Furthermore, variations in BOL and EOL curves are also examined. Mission design results shown here validate the use of EMTG and the new performance curves.

  7. Josephson junction simulation of neurons

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Schult, Dan; Segall, Ken

    2010-07-01

    With the goal of understanding the intricate behavior and dynamics of collections of neurons, we present superconducting circuits containing Josephson junctions that model biologically realistic neurons. These “Josephson junction neurons” reproduce many characteristic behaviors of biological neurons such as action potentials, refractory periods, and firing thresholds. They can be coupled together in ways that mimic electrical and chemical synapses. Using existing fabrication technologies, large interconnected networks of Josephson junction neurons would operate fully in parallel. They would be orders of magnitude faster than both traditional computer simulations and biological neural networks. Josephson junction neurons provide a new tool for exploring long-term large-scale dynamics for networks of neurons.

  8. Supply Curves of Conserved Energy

    SciTech Connect

    Meier, Alan Kevin

    1982-05-01

    Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.

  9. Interpolation and Polynomial Curve Fitting

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2014-01-01

    Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…

  10. Geomorphological origin of recession curves

    NASA Astrophysics Data System (ADS)

    Biswal, Basudev; Marani, Marco

    2010-12-01

    We identify a previously undetected link between the river network morphology and key recession curves properties through a conceptual-physical model of the drainage process of the riparian unconfined aquifer. We show that the power-law exponent, α, of -dQ/dt vs. Q curves is related to the power-law exponent of N(l) vs. G(l) curves (which we show to be connected to Hack's law), where l is the downstream distance from the channel heads, N(l) is the number of channel reaches exactly located at a distance l from their channel head, and G(l) is the total length of the network located at a distance greater or equal to l from channel heads. Using Digital Terrain Models and daily discharge observations from 67 US basins we find that geomorphologic α estimates match well the values obtained from recession curves analyses. Finally, we argue that the link between recession flows and network morphology points to an important role of low-flow discharges in shaping the channel network.

  11. CURVES, VERTICES, KNOTS AND SUCH.

    ERIC Educational Resources Information Center

    FOLEY, JACK L.

    THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE SUCH CONCEPTS AS (1) SIMPLE CLOSED CURVES, (2) NETWORKS, (3) MAP…

  12. Simple models for reading neuronal population codes.

    PubMed Central

    Seung, H S; Sompolinsky, H

    1993-01-01

    In many neural systems, sensory information is distributed throughout a population of neurons. We study simple neural network models for extracting this information. The inputs to the networks are the stochastic responses of a population of sensory neurons tuned to directional stimuli. The performance of each network model in psychophysical tasks is compared with that of the optimal maximum likelihood procedure. As a model of direction estimation in two dimensions, we consider a linear network that computes a population vector. Its performance depends on the width of the population tuning curves and is maximal for width, which increases with the level of background activity. Although for narrowly tuned neurons the performance of the population vector is significantly inferior to that of maximum likelihood estimation, the difference between the two is small when the tuning is broad. For direction discrimination, we consider two models: a perceptron with fully adaptive weights and a network made by adding an adaptive second layer to the population vector network. We calculate the error rates of these networks after exhaustive training to a particular direction. By testing on the full range of possible directions, the extent of transfer of training to novel stimuli can be calculated. It is found that for threshold linear networks the transfer of perceptual learning is nonmonotonic. Although performance deteriorates away from the training stimulus, it peaks again at an intermediate angle. This nonmonotonicity provides an important psychophysical test of these models. PMID:8248166

  13. Neuronal porosome lipidome

    PubMed Central

    Lewis, Kenneth T; Maddipati, Krishna R; Taatjes, Douglas J; Jena, Bhanu P

    2014-01-01

    Cup-shaped lipoprotein structures called porosomes are the universal secretory portals at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intravesicular contents. In neurons, porosomes measure ∼15 nm and are comprised of nearly 40 proteins, among them SNAREs, ion channels, the Gαo G-protein and several structural proteins. Earlier studies report the interaction of specific lipids and their influence on SNAREs, ion channels and G-protein function. Our own studies demonstrate the requirement of cholesterol for the maintenance of neuronal porosome integrity, and the influence of lipids on SNARE complex assembly. In this study, to further understand the role of lipids on porosome structure-function, the lipid composition of isolated neuronal porosome was determined using mass spectrometry. Using lipid-binding assays, the affinity of porosome-associated syntaxin-1A to various lipids was determined. Our mass spectrometry results demonstrate the presence of phosphatidylinositol phosphates (PIP's) and phosphatidic acid (PA) among other lipids, and the enriched presence of ceramide (Cer), lysophosphatidylinositol phosphates (LPIP) and diacylglycerol (DAG). Lipid binding assays demonstrate the binding of neuronal porosome to cardiolipin, and confirm its association with PIP's and PA. The ability of exogenous PA to alter protein–protein interaction and neurotransmitter release is further demonstrated from the study. PMID:25224862

  14. Nanoresolution radiology of neurons

    SciTech Connect

    Wu, H.R.; Chen, S.T.; Chu, Y.S.; Conley, R.; Bouet, N.; Chien, C.C.; Chen, H.H.; Lin, C.H.; Tung, H.T.; Chen, Y.S.; Margaritondo, G.; Je, J.H.; Hwu, Y.

    2013-04-08

    We report recent advances in hard-x-ray optics - including record spatial resolution - and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  15. Nanoresolution radiology of neurons

    SciTech Connect

    Wu, H. R.; Chen, S. T.; Chu, Y. S.; Conley, R.; Bouet, N.; Chien, C. C.; Chen, H. H.; Lin, C. H.; Tung, H. T.; Chen, Y. S.; Margaritondo, G.; Je, J. H.; Hwu, Y.

    2012-05-29

    We report recent advances in hard-x-ray optics—including record spatial resolution—and in staining techniques that enable synchrotron microradiology to produce neurobiology images of quality comparable to electron and visible microscopy. In addition, microradiology offers excellent penetration and effective three-dimensional detection as required for many neuron studies. Our tests include tomographic reconstruction based on projection image sets.

  16. Comparison of Two Algebraic Methods for Curve/curve Intersection

    NASA Technical Reports Server (NTRS)

    Demontaudouin, Y.; Tiller, W.

    1985-01-01

    Most geometric modeling systems use either polynomial or rational functions to represent geometry. In such systems most computational problems can be formulated as systems of polynomials in one or more variables. Classical elimination theory can be used to solve such systems. Here Cayley's method of elimination is summarized and it is shown how it can best be used to solve the curve/curve intersection problem. Cayley's method was found to be a more straightforward approach. Furthermore, it is computationally simpler, since the elements of the Cayley matrix are one variable instead of two variable polynomials. Researchers implemented and tested both methods and found Cayley's to be more efficient. Six pairs of curves, representing mixtures of lines, circles, and cubic arcs were used. Several examples had multiple intersection points. For all six cases Cayley's required less CPU time than the other method. The average time ratio of method 1 to method 2 was 3.13:1, the least difference was 2.33:1, and the most dramatic was 6.25:1. Both of the above methods can be extended to solve the surface/surface intersection problem.

  17. Inflection, canards and excitability threshold in neuronal models.

    PubMed

    Desroches, M; Krupa, M; Rodrigues, S

    2013-10-01

    A technique is presented, based on the differential geometry of planar curves, to evaluate the excitability threshold of neuronal models. The aim is to determine regions of the phase plane where solutions to the model equations have zero local curvature, thereby defining a zero-curvature (inflection) set that discerns between sub-threshold and spiking electrical activity. This transition can arise through a Hopf bifurcation, via the so-called canard explosion that happens in an exponentially small parameter variation, and this is typical for a large class of planar neuronal models (FitzHugh-Nagumo, reduced Hodgkin-Huxley), namely, type II neurons (resonators). This transition can also correspond to the crossing of the stable manifold of a saddle equilibrium, in the case of type I neurons (integrators). We compute inflection sets and study how well they approximate the excitability threshold of these neuron models, that is, both in the canard and in the non-canard regime, using tools from invariant manifold theory and singularity theory. With the latter, we investigate the topological changes that inflection sets undergo upon parameter variation. Finally, we show that the concept of inflection set gives a good approximation of the threshold in both the so-called resonator and integrator neuronal cases. PMID:22945512

  18. Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons

    PubMed Central

    2016-01-01

    Perineuronal nets (PNNs) are specialized complexes of extracellular matrix molecules that surround the somata of fast-spiking neurons throughout the vertebrate brain. PNNs are particularly prevalent throughout the auditory brainstem, which transmits signals with high speed and precision. It is unknown whether PNNs contribute to the fast-spiking ability of the neurons they surround. Whole-cell recordings were made from medial nucleus of the trapezoid body (MNTB) principal neurons in acute brain slices from postnatal day 21 (P21) to P27 mice. PNNs were degraded by incubating slices in chondroitinase ABC (ChABC) and were compared to slices that were treated with a control enzyme (penicillinase). ChABC treatment did not affect the ability of MNTB neurons to fire at up to 1000 Hz when driven by current pulses. However, f–I (frequency–intensity) curves constructed by injecting Gaussian white noise currents superimposed on DC current steps showed that ChABC treatment reduced the gain of spike output. An increase in spike threshold may have contributed to this effect, which is consistent with the observation that spikes in ChABC-treated cells were delayed relative to control-treated cells. In addition, parvalbumin-expressing fast-spiking cortical neurons in >P70 slices that were treated with ChABC also had reduced excitability and gain. The development of PNNs around somata of fast-spiking neurons may be essential for fast and precise sensory transmission and synaptic inhibition in the brain. PMID:27570824

  19. Combination-sensitive neurons in the inferior colliculus.

    PubMed

    Mittmann, D H; Wenstrup, J J

    1995-10-01

    We examined whether neurons in the inferior colliculus of the mustached bat (Pteronotus parnellii) are combination sensitive, responding to both low- and high-frequency components of the bat's sonar signal. These neurons, previously reported in the thalamus and cortex, analyze sonar target features including distance. Of 82 single units and 36 multiple units from the 58-112 kHz representations of the inferior colliculus, most (86%) displayed sensitivity to low-frequency sounds that was tuned in the range of the fundamental biosonar component (24-31 kHz). All histologically localized units were in the central nucleus of the inferior colliculus (ICC). There were two major types of combination-sensitive influences. Many neurons were facilitated by low-frequency sounds and selective for particular delays between the low- and high-frequency components. In other neurons, the low-frequency signal was inhibitory if presented simultaneously or a few milliseconds prior to the high-frequency signal. The results indicate that mechanisms creating specialized frequency comparisons and delay sensitivity in combination-sensitive neurons operate at the ICC or below. Since combination sensitivity or multipeaked tuning curves occur in the auditory systems of many species, ICC neurons in these animals may also respond to species-specific frequency combinations. PMID:8974996

  20. Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons.

    PubMed

    Balmer, Timothy S

    2016-01-01

    Perineuronal nets (PNNs) are specialized complexes of extracellular matrix molecules that surround the somata of fast-spiking neurons throughout the vertebrate brain. PNNs are particularly prevalent throughout the auditory brainstem, which transmits signals with high speed and precision. It is unknown whether PNNs contribute to the fast-spiking ability of the neurons they surround. Whole-cell recordings were made from medial nucleus of the trapezoid body (MNTB) principal neurons in acute brain slices from postnatal day 21 (P21) to P27 mice. PNNs were degraded by incubating slices in chondroitinase ABC (ChABC) and were compared to slices that were treated with a control enzyme (penicillinase). ChABC treatment did not affect the ability of MNTB neurons to fire at up to 1000 Hz when driven by current pulses. However, f-I (frequency-intensity) curves constructed by injecting Gaussian white noise currents superimposed on DC current steps showed that ChABC treatment reduced the gain of spike output. An increase in spike threshold may have contributed to this effect, which is consistent with the observation that spikes in ChABC-treated cells were delayed relative to control-treated cells. In addition, parvalbumin-expressing fast-spiking cortical neurons in >P70 slices that were treated with ChABC also had reduced excitability and gain. The development of PNNs around somata of fast-spiking neurons may be essential for fast and precise sensory transmission and synaptic inhibition in the brain. PMID:27570824

  1. Epigenomic Landscapes Reflect Neuronal Diversity.

    PubMed

    Henikoff, Steven

    2015-06-17

    Epigenomic profiling of complex tissues obscures regulatory elements that distinguish one cell type from another. In this issue of Neuron, Mo et al. (2015) apply cell-type-specific profiling to mouse neuronal subtypes and discover an unprecedented level of neuronal diversity. PMID:26087157

  2. Vitamin B12 enhances the phase-response of circadian melatonin rhythm to a single bright light exposure in humans.

    PubMed

    Hashimoto, S; Kohsaka, M; Morita, N; Fukuda, N; Honma, S; Honma, K

    1996-12-13

    Eight young males were subjected to a single blind cross-over test to see the effects of vitamin B12 (methylcobalamin; VB12) on the phase-response of the circadian melatonin rhythm to a single bright light exposure. VB12 (0.5 mg/day) or vehicle was injected intravenously at 1230 h for 11 days, which was followed by oral administration (2 mg x 3/day) for 7 days. A serial blood sampling was performed under dim light condition (less than 200 lx) and plasma melatonin rhythm was determined before and after a single bright light exposure (2500 lx for 3 h) at 0700 h. The melatonin rhythm before the light exposure showed a smaller amplitude in the VB12 trial than in the placebo. The light exposure phase-advanced the melatonin rhythm significantly in the VB12 trail, but not in the placebo. These findings indicate that VB12 enhances the light-induced phase-shift in the human circadian rhythm. PMID:8981490

  3. Neuronal cell cycle: the neuron itself and its circumstances

    PubMed Central

    Frade, José M; Ovejero-Benito, María C

    2015-01-01

    Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons. PMID:25590687

  4. Quantum walking in curved spacetime

    NASA Astrophysics Data System (ADS)

    Arrighi, Pablo; Facchini, Stefano; Forets, Marcelo

    2016-08-01

    A discrete-time quantum walk (QW) is essentially a unitary operator driving the evolution of a single particle on the lattice. Some QWs admit a continuum limit, leading to familiar PDEs (e.g., the Dirac equation). In this paper, we study the continuum limit of a wide class of QWs and show that it leads to an entire class of PDEs, encompassing the Hamiltonian form of the massive Dirac equation in (1+1) curved spacetime. Therefore, a certain QW, which we make explicit, provides us with a unitary discrete toy model of a test particle in curved spacetime, in spite of the fixed background lattice. Mathematically, we have introduced two novel ingredients for taking the continuum limit of a QW, but which apply to any quantum cellular automata: encoding and grouping.

  5. Optical conductivity of curved graphene.

    PubMed

    Chaves, A J; Frederico, T; Oliveira, O; de Paula, W; Santos, M C

    2014-05-01

    We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far- and mid-infrared frequencies for periodicities ∼100 nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthermore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type. PMID:24759188

  6. Flow Through Randomly Curved Manifolds

    PubMed Central

    Mendoza, M.; Succi, S.; Herrmann, H. J.

    2013-01-01

    We present a computational study of the transport properties of campylotic (intrinsically curved) media. It is found that the relation between the flow through a campylotic media, consisting of randomly located curvature perturbations, and the average Ricci scalar of the system, exhibits two distinct functional expressions, depending on whether the typical spatial extent of the curvature perturbation lies above or below the critical value maximizing the overall scalar of curvature. Furthermore, the flow through such systems as a function of the number of curvature perturbations is found to present a sublinear behavior for large concentrations, due to the interference between curvature perturbations leading to an overall less curved space. We have also characterized the flux through such media as a function of the local Reynolds number and the scale of interaction between impurities. For the purpose of this study, we have also developed and validated a new lattice Boltzmann model. PMID:24173367

  7. Analysis of Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Budding, E.; Rhodes, M. D.; Püsküllü, Ç.; Soydugan, F.; Soydugan, E.; Tüysüz, M.; Demircan, O.

    2015-07-01

    We have applied the close binary system analysis package WINFITTER to a variety of exoplanet transiting light curves taken both from the NASA Exoplanet Archive and our own ground-based observations. WINFitter has parameter options for a realistic physical model, including gravity brightening and structural parameters derived from Kopal's applications of the relevant Radau equation, and it includes appropriate tests for determinacy and adequacy of its best fitting parameter sets. We discuss a number of issues related to empirical checking of models for stellar limb darkening, surface maculation, Doppler beaming, microvariability, and transit time variation (TTV) effects. The Radau coefficients used in the light curve modeling, in principle, allow structural models of the component stars to be tested.

  8. Gravitational-wave sensitivity curves

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Cole, R. H.; Berry, C. P. L.

    2015-01-01

    There are several common conventions in use by the gravitational-wave community to describe the amplitude of sources and the sensitivity of detectors. These are frequently confused. We outline the merits of and differences between the various quantities used for parameterizing noise curves and characterizing gravitational-wave amplitudes. We conclude by producing plots that consistently compare different detectors. Similar figures can be generated on-line for general use at http://rhcole.com/apps/GWplotter.

  9. Phase Curves of Eccentric Exoplanets

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole K.; de Wit, Julien; Laughlin, Gregory P.; Knutson, Heather

    2016-01-01

    Nearly 15% of the known exoplanet population have significantly eccentric orbits (e > 0.25). Systems with planets on highly eccentric orbits provide natural laboratories to test theories of orbital evolution, tidal forcing, and atmospheric response. The two best studied eccentric exoplanets are HAT-P-2b (e~0.5) and HD 80606 b (e~0.9). Both of these eccentric planets have full or partial orbit phase curve observations taken with the 3.6, 4.5, and 8.0 micron channels of the Spitzer IRAC instrument. These phase-curve observations of HAT-P-2b and HD 80606 b have given us important insights into atmospheric radiative timescales, planetary rotation rates and orbital evolution, and planet-star tidal interactions. Here I will overview the key results from the Spitzer observational campaigns for HAT-P-2b and HD 80606 b and look toward the future of phase curve observations of eccentric exoplanets in the era of JWST.

  10. Growth curves for Laron syndrome.

    PubMed Central

    Laron, Z; Lilos, P; Klinger, B

    1993-01-01

    Growth curves for children with Laron syndrome were constructed on the basis of repeated measurements made throughout infancy, childhood, and puberty in 24 (10 boys, 14 girls) of the 41 patients with this syndrome investigated in our clinic. Growth retardation was already noted at birth, the birth length ranging from 42 to 46 cm in the 12/20 available measurements. The postnatal growth curves deviated sharply from the normal from infancy on. Both sexes showed no clear pubertal spurt. Girls completed their growth between the age of 16-19 years to a final mean (SD) height of 119 (8.5) cm whereas the boys continued growing beyond the age of 20 years, achieving a final height of 124 (8.5) cm. At all ages the upper to lower body segment ratio was more than 2 SD above the normal mean. These growth curves constitute a model not only for primary, hereditary insulin-like growth factor-I (IGF-I) deficiency (Laron syndrome) but also for untreated secondary IGF-I deficiencies such as growth hormone gene deletion and idiopathic congenital isolated growth hormone deficiency. They should also be useful in the follow up of children with Laron syndrome treated with biosynthetic recombinant IGF-I. PMID:8333769

  11. Phosphoinositide signaling in somatosensory neurons.

    PubMed

    Rohacs, Tibor

    2016-05-01

    Somatosensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are responsible for detecting thermal and tactile stimuli. They are also the primary neurons mediating pain and itch. A large number of cell surface receptors in these neurons couple to phospholipase C (PLC) enzymes leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the generation of downstream signaling molecules. These neurons also express many different ion channels, several of which are regulated by phosphoinositides. This review will summarize the knowledge on phosphoinositide signaling in DRG neurons, with special focus on effects on sensory and other ion channels. PMID:26724974

  12. Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity

    PubMed Central

    Abbott, L. F.; Vaadia, Eilon

    2016-01-01

    Neuronal responses characterized by regular tuning curves are typically assumed to arise from structured synaptic connectivity. However, many responses exhibit both regular and irregular components. To address the relationship between tuning curve properties and underlying circuitry, we analyzed neuronal activity recorded from primary motor cortex (M1) of monkeys performing a 3D arm posture control task and compared the results with a neural network model. Posture control is well suited for examining M1 neuronal tuning because it avoids the dynamic complexity of time-varying movements. As a function of hand position, the neuronal responses have a linear component, as has previously been described, as well as heterogeneous and highly irregular nonlinearities. These nonlinear components involve high spatial frequencies and therefore do not support explicit encoding of movement parameters. Yet both the linear and nonlinear components contribute to the decoding of EMG of major muscles used in the task. Remarkably, despite the presence of a strong linear component, a feedforward neural network model with entirely random connectivity can replicate the data, including both the mean and distributions of the linear and nonlinear components as well as several other features of the neuronal responses. This result shows that smoothness provided by the regularity in the inputs to M1 can impose apparent structure on neural responses, in this case a strong linear (also known as cosine) tuning component, even in the absence of ordered synaptic connectivity. PMID:27224735

  13. Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity.

    PubMed

    Lalazar, Hagai; Abbott, L F; Vaadia, Eilon

    2016-05-01

    Neuronal responses characterized by regular tuning curves are typically assumed to arise from structured synaptic connectivity. However, many responses exhibit both regular and irregular components. To address the relationship between tuning curve properties and underlying circuitry, we analyzed neuronal activity recorded from primary motor cortex (M1) of monkeys performing a 3D arm posture control task and compared the results with a neural network model. Posture control is well suited for examining M1 neuronal tuning because it avoids the dynamic complexity of time-varying movements. As a function of hand position, the neuronal responses have a linear component, as has previously been described, as well as heterogeneous and highly irregular nonlinearities. These nonlinear components involve high spatial frequencies and therefore do not support explicit encoding of movement parameters. Yet both the linear and nonlinear components contribute to the decoding of EMG of major muscles used in the task. Remarkably, despite the presence of a strong linear component, a feedforward neural network model with entirely random connectivity can replicate the data, including both the mean and distributions of the linear and nonlinear components as well as several other features of the neuronal responses. This result shows that smoothness provided by the regularity in the inputs to M1 can impose apparent structure on neural responses, in this case a strong linear (also known as cosine) tuning component, even in the absence of ordered synaptic connectivity. PMID:27224735

  14. Cue Reliability Represented in the Shape of Tuning Curves in the Owl's Sound Localization System

    PubMed Central

    Fischer, Brian J.; Peña, Jose L.

    2016-01-01

    Optimal use of sensory information requires that the brain estimates the reliability of sensory cues, but the neural correlate of cue reliability relevant for behavior is not well defined. Here, we addressed this issue by examining how the reliability of spatial cue influences neuronal responses and behavior in the owl's auditory system. We show that the firing rate and spatial selectivity changed with cue reliability due to the mechanisms generating the tuning to the sound localization cue. We found that the correlated variability among neurons strongly depended on the shape of the tuning curves. Finally, we demonstrated that the change in the neurons' selectivity was necessary and sufficient for a network of stochastic neurons to predict behavior when sensory cues were corrupted with noise. This study demonstrates that the shape of tuning curves can stand alone as a coding dimension of environmental statistics. SIGNIFICANCE STATEMENT In natural environments, sensory cues are often corrupted by noise and are therefore unreliable. To make the best decisions, the brain must estimate the degree to which a cue can be trusted. The behaviorally relevant neural correlates of cue reliability are debated. In this study, we used the barn owl's sound localization system to address this question. We demonstrated that the mechanisms that account for spatial selectivity also explained how neural responses changed with degraded signals. This allowed for the neurons' selectivity to capture cue reliability, influencing the population readout commanding the owl's sound-orienting behavior. PMID:26888922

  15. Robust stochastic resonance for simple threshold neurons

    NASA Astrophysics Data System (ADS)

    Kosko, Bart; Mitaim, Sanya

    2004-09-01

    Simulation and theoretical results show that memoryless threshold neurons benefit from small amounts of almost all types of additive noise and so produce the stochastic-resonance or SR effect. Input-output mutual information measures the performance of such threshold systems that use subthreshold signals. The SR result holds for all possible noise probability density functions with finite variance. The only constraint is that the noise mean must fall outside a “forbidden” threshold-related interval that the user can control—a new theorem shows that this condition is also necessary. A corollary and simulations show that the SR effect occurs for right-sided beta and Weibull noise as well. These SR results further hold for the entire uncountably infinite class of alpha-stable probability density functions. Alpha-stable noise densities have infinite variance and infinite higher-order moments and often model impulsive noise environments. The stable noise densities include the special case of symmetric bell-curve densities with thick tails such as the Cauchy probability density. The SR result for alpha-stable noise densities shows that the SR effect in threshold and thresholdlike systems is robust against occasional or even frequent violent fluctuations in noise. Regression analysis reveals both an exponential relationship for the optimal noise dispersion as a function of the alpha bell-curve tail thickness and an approximate linear relationship for the SR-maximal mutual information as a function of the alpha bell-curve tail thickness.

  16. Effect of surgical castration of bull calves at different stages of maturity with or without analgesia on the acute phase response (APR) and complete blood count (CBC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study objective was to determine if surgical castration at birth or weaning impacts the acute phase response (APR) or complete blood counts (CBC) and whether concurrent administration of an oral analgesic (meloxicam) ameliorates inflammation. Bull calves (n=29) from the University of Arkansas re...

  17. Neuronal synchrony: peculiarity and generality.

    PubMed

    Nowotny, Thomas; Huerta, Ramon; Rabinovich, Mikhail I

    2008-09-01

    Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their "dynamical repertoire" includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale). PMID:19045493

  18. RNA Protein Interaction in Neurons

    PubMed Central

    Darnell, Robert B.

    2013-01-01

    Neurons have their own systems for regulating RNA. Several multigene families encode RNA binding proteins (RNABPs) that are uniquely expressed in neurons, including the well-known neuron-specific markers ELAV and NeuN, and the disease antigen NOVA. New technologies have emerged in recent years to assess the function of these proteins in vivo, and the answers are yielding insights into how and why neurons may regulate RNA in special ways—to increase cellular complexity, to spatially localize mRNA, and to regulate their expression in response to synaptic stimuli. The functions of such restricted neuronal proteins is likely to be complimented by more widely expressed RNABPs that may themselves have developed specialized functions in neurons, including Argonaute/miRNAs. Here we review what is known about such RNABPs, and explore the potential biologic and neurologic significance of neuronal RNA regulatory systems. PMID:23701460

  19. Add neurons, subtract anxiety

    PubMed Central

    Kheirbek, Mazen A.; Hen, René

    2014-01-01

    IN BRIEF To keep memories from becoming jumbled, the brain must encode the distinct features of events and situations in a way that allows them to be distinguished from one another—a process called pattern separation. Pattern separation enables us to distinguish dangerous situations from similar ones that pose no risk. People with defects in this ability may be prone to anxiety disorders. The process occurs in one of the two regions of the brain that generate neurons throughout life. These fledgling cells seem to be critical to pattern separation. Interventions that specifically boost the ranks of rookie neurons could provide new ways to regulate mood and possibly treat conditions such as post-traumatic stress disorder. PMID:24974712

  20. Single neuron modeling and data assimilation in BNST neurons

    NASA Astrophysics Data System (ADS)

    Farsian, Reza

    Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.

  1. Micropatterning neuronal networks.

    PubMed

    Hardelauf, Heike; Waide, Sarah; Sisnaiske, Julia; Jacob, Peter; Hausherr, Vanessa; Schöbel, Nicole; Janasek, Dirk; van Thriel, Christoph; West, Jonathan

    2014-07-01

    Spatially organised neuronal networks have wide reaching applications, including fundamental research, toxicology testing, pharmaceutical screening and the realisation of neuronal implant interfaces. Despite the large number of methods catalogued in the literature there remains the need to identify a method that delivers high pattern compliance, long-term stability and is widely accessible to neuroscientists. In this comparative study, aminated (polylysine/polyornithine and aminosilanes) and cytophobic (poly(ethylene glycol) (PEG) and methylated) material contrasts were evaluated. Backfilling plasma stencilled PEGylated substrates with polylysine does not produce good material contrasts, whereas polylysine patterned on methylated substrates becomes mobilised by agents in the cell culture media which results in rapid pattern decay. Aminosilanes, polylysine substitutes, are prone to hydrolysis and the chemistries prove challenging to master. Instead, the stable coupling between polylysine and PLL-g-PEG can be exploited: Microcontact printing polylysine onto a PLL-g-PEG coated glass substrate provides a simple means to produce microstructured networks of primary neurons that have superior pattern compliance during long term (>1 month) culture. PMID:24855658

  2. Characterization of an intravenous lipopolysaccharide inflammation model in calves with respect to the acute-phase response.

    PubMed

    Plessers, Elke; Wyns, Heidi; Watteyn, Anneleen; Pardon, Bart; De Backer, Patrick; Croubels, Siska

    2015-01-15

    Our objective was to develop a lipopolysaccharide (LPS) inflammation model in calves to evaluate the acute-phase response with respect to the release of pro-inflammatory cytokines and acute-phase proteins, fever development and sickness behaviour. Fourteen 4-week-old male Holstein Friesian calves were included and randomly assigned to a negative control group (n=3) and an LPS-challenged group (n=11). The latter received an intravenous bolus injection of 0.5 μg of LPS/kg body weight. Blood collection and clinical scoring were performed at 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 12, 18, 24, 28, 32, 48, 54 and 72 h post LPS administration (p.a.). In the LPS group, the following clinical signs were observed successively: tachypnoea (on average 18 min p.a.), decubitus (29 min p.a.), general depression (1.75 h p.a.), fever (5h p.a.) and tachycardia (5h p.a.). Subsequent to the recovery from respiratory distress, general depression was prominent, which deteriorated when fever increased. One animal did not survive LPS administration, whereas the other animals recovered on average within 6.1h p.a. Moreover, the challenge significantly increased plasma concentrations of tumour necrosis factor-α, interleukin 6, serum amyloid A and haptoglobin, with peaking levels at 1, 3.5, 24 and 18 h p.a., respectively. The present LPS model was practical and reproducible, caused obvious clinical signs related to endotoxemia and a marked change in the studied inflammatory mediators, making it a suitable model to study the immunomodulatory properties of drugs in future research. PMID:25534079

  3. Survival of Campylobacter jejuni during Stationary Phase: Evidence for the Absence of a Phenotypic Stationary-Phase Response

    PubMed Central

    Kelly, Alison F.; Park, Simon F.; Bovill, Richard; Mackey, Bernard M.

    2001-01-01

    When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions. PMID:11319108

  4. Acute phase response in toxicity studies. I. Survey of beagle dogs subjected to single-dose toxicity studies.

    PubMed

    Hoshiya, T; Watanabe, D; Akagi, K; Mizoguchi, Y; Kamiya, K; Mizuguchi, H; Kumahara, M; Toya, H; Nagashima, Y; Okaniwa, A

    2001-05-01

    In the field of routine single-dose toxicity studies, we occasionally meet with transient leukocytosis associated with an increase in fibrinogen in beagle dogs within a few days after treatment with the test article. Only a little is known, however, about the toxicological significance of these changes. However, these changes were thought to belong to the category of "Acute Phase Response, APR," which has been known for a long time in connection with injury, trauma or infection. Aiming at proper understanding of these experiences, we surveyed 25 single-dose toxicity studies (7 intravenous bolus, 5 intravenous infusion, 12 oral and 1 subcutaneous treatment, hereafter referred to simply as i.v. bolus, i.v. infusion, oral and s.c.) in beagle dogs, provided with data from hematological examinations. We set the following criteria as a positive response in the present survey: increases of 50% or more in either or both WBC or fibrinogen compared to the predosing value, transiently from Day 1 to Day 3 of the study. Among 25 studies surveyed, about 1/2 of the studies exhibited increases of 50% or more in either or both fibrinogen or WBC counts compared to the predosing values showing dose-dependency transiently on Day 1 or Day 2. These changes were remarkable after intravenous application. Oral application produced similar effects, although the incidence and severity were low compared to the i.v. routes. Regarding blood chemical and hematological changes other than changes in fibrinogen and WBC counts, there were no essential differences between the groups of studies with and without the changes in fibrinogen and WBC counts. These changes were thought to be characteristic and to have occurred as incidents unrelated to other changes. The reported changes seen in single-dose toxicity studies may belong to the category of APR as the non-specific mechanism of living bodies as stated by Burns et al. (1996). PMID:11429972

  5. Acute phase response in toxicity studies. II. Findings in beagle dogs injected with endotoxin or subjected to surgical operation.

    PubMed

    Hoshiya, T; Watanabe, D; Matsuoka, T; Horiguchi, K; Miki, Y; Mizuguchi, H; Ishii, T; Nomura, N; Nagashima, Y; Okaniwa, A

    2001-05-01

    Occurrence of characteristic transient changes in WBC counts and fibrinogen values in beagle dogs subjected to single-dose toxicity studies was pointed out in the previous survey (Hoshiya et al., 2001). These changes were thought to belong to the category of "Acute Phase Response (APR)". The purpose of the present study is to compare the APR found in the single-dose toxicity studies surveyed in our previous report with those experimentally produced by intravenous injection of 1 microgram/kg endotoxin (Experiment 1), and surgical treatment (Experiment 2) (intravenous indwelling catheterization). The animals used in Experiment 2 were intravenously injected with 1 microgram/kg endotoxin 2 weeks after the operation (Experiment 3), and the results were compared with those of Experiments 1 and 2. Each experimental group consisted of 5 dogs, and clinical, hematological and blood chemical examinations were performed. Essentially the same changes were observed in response to the intravenous injection with endotoxin and the surgical operation for intravenous indwelling catheterization in beagle dogs. The most remarkable changes common to both treatments were transient increases in the fibrinogen values and WBC counts during the 2 days from Day 1 to Day 2 of the treatment. These changes were preceded by decreases in WBC counts and fibrinogen in Experiments 1 and 3. Increased erythrocyte sedimentation rates were recorded in parallel with the increase in fibrinogen. The results obtained in the present study were similar to those found in dogs treated with various xenobiotic substances in our laboratory. These changes due to different causes were thought to belong to the category of "APR" with the same biological significance as a non-specific defense mechanism. PMID:11429968

  6. Hypovitaminosis D is common among pulmonary tuberculosis patients in Tanzania but is not explained by the acute phase response.

    PubMed

    Friis, Henrik; Range, Nyagosya; Pedersen, Marianne L; Mølgaard, Christian; Changalucha, John; Krarup, Henrik; Magnussen, Pascal; Søborg, Christian; Andersen, Ase B

    2008-12-01

    Vitamin D is essential to immune function, but little is known about the vitamin D status in equatorial populations. A cross-sectional study was conducted among pulmonary tuberculosis (PTB) patients in Mwanza, Tanzania to identify the predictors of their vitamin D status. Data on sociodemography, season, and intake of food, alcohol, tobacco, and soil were collected, anthropometric measurements taken, and serum alpha(1)-antichymotrypsin (ACT), ferritin and soluble transferrin receptor (sTfR), and serum 25-hydroxy-(ergocalciferol+cholecalciferol) [25(OH)D] determined. Of the 655 patients studied, 79.7% (508/637) were culture-positive (PTB+) and 47.2% HIV infected. Mean serum ACT, an acute phase reactant, was 0.73 +/- 0.25 g/L with 69.2% >0.6 g/L. Mean serum 25(OH)D was 86.6 +/- 32.9 nmol/L, with 41.2% <75 nmol/L. Serum 25(OH)D was highest during the harvest season, May to July, compared with the remaining year. Single subjects had lower [10.4 (95% CI 4.0; 16.9) nmol/L] serum 25(OH)D concentrations than married subjects and PTB+ patients had concentrations lower [8.2 (95% CI 1.5; 14.9) nmol/L] than PTB- patients. Serum 25(OH)D increased with consumption of a large freshwater fish but not of small dried fish or other foods. BMI and serum TfR were positive predictors of serum 25(OH)D, whereas neither elevated serum ACT nor HIV were predictors. In conclusion, serum 25(OH)D is a valid measure of vitamin D status during the acute phase response. The lower concentrations in PTB+ patients may reflect lower sun exposure or increased utilization. The health consequences of hypovitaminosis D in low-income equatorial populations, at risk for both infectious and chronic diseases, should be studied. PMID:19022975

  7. Acute- phase response and iron status markers among pulmonary tuberculosis patients: a cross-sectional study in Mwanza, Tanzania.

    PubMed

    Friis, Henrik; Range, Nyagosya; Braendgaard Kristensen, Camilla; Kaestel, Pernille; Changalucha, John; Malenganisho, Wabyahe; Krarup, Henrik; Magnussen, Pascal; Bengaard Andersen, Ase

    2009-07-01

    Fe status is difficult to assess in the presence of infections. To assess the role of the acute- phase response (APR) and other predictors of serum ferritin and transferrin receptor, we conducted a cross-sectional study among pulmonary tuberculosis (PTB) patients in Mwanza, Tanzania. The acute- (serum ferritin) phase protein, serum alpha1-antichymotrypsin (ACT) and serum ferritin and serum soluble transferrin receptor (sTfR) were measured, and data on smoking, soil and alcohol intake, and infection status were collected. Linear regression analysis was used to assess the role of elevated serum ACT and other predictors of serum ferritin and serum sTfR. Of 655 patients, 81.2 % were sputum positive (PTB+) and 47.2 % HIV+. Mean serum ACT was 0.72 g/l, with 91.1 % above 0.4 g/l. Among females and males, respectively, geometric mean serum ferritin was 140.9 and 269.1 microg/l (P < 0.001), and mean serum sTfR 4.3 and 3.8 mg/l (P < 0.001). Serum sTfR was increased 0.5 mg/l and log serum ferritin increased linearly with serum ACT >0.4 g/l. PTB+ and HIV infection, alcohol drinking and smoking were the positive predictors of serum ferritin, and female sex, soil eating, Schistosoma mansoni and hookworm infection were the negative predictors. Similarly, smoking and HIV infection were the negative predictors of serum sTfR, and female sex, soil eating and PTB+ were the positive predictors. Serum ferritin and serum sTfR are affected by the APR, but may still provide information about Fe status. It may be possible to develop algorithms, based on the markers of the APR and Fe status, to assess the Fe status among the patients with tuberculosis or other infections eliciting an APR. PMID:19175946

  8. Compression of contour data through exploiting curve-to-curve dependence

    NASA Technical Reports Server (NTRS)

    Yalabik, N.; Cooper, D. B.

    1975-01-01

    An approach to exploiting curve-to-curve dependencies in order to achieve high data compression is presented. One of the approaches to date of along curve compression through use of cubic spline approximation is taken and extended by investigating the additional compressibility achievable through curve-to-curve structure exploitation. One of the models under investigation is reported on.

  9. NLINEAR - NONLINEAR CURVE FITTING PROGRAM

    NASA Technical Reports Server (NTRS)

    Everhart, J. L.

    1994-01-01

    A common method for fitting data is a least-squares fit. In the least-squares method, a user-specified fitting function is utilized in such a way as to minimize the sum of the squares of distances between the data points and the fitting curve. The Nonlinear Curve Fitting Program, NLINEAR, is an interactive curve fitting routine based on a description of the quadratic expansion of the chi-squared statistic. NLINEAR utilizes a nonlinear optimization algorithm that calculates the best statistically weighted values of the parameters of the fitting function and the chi-square that is to be minimized. The inputs to the program are the mathematical form of the fitting function and the initial values of the parameters to be estimated. This approach provides the user with statistical information such as goodness of fit and estimated values of parameters that produce the highest degree of correlation between the experimental data and the mathematical model. In the mathematical formulation of the algorithm, the Taylor expansion of chi-square is first introduced, and justification for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations are derived, which are solved by matrix algebra. To achieve convergence, the algorithm requires meaningful initial estimates for the parameters of the fitting function. NLINEAR is written in Fortran 77 for execution on a CDC Cyber 750 under NOS 2.3. It has a central memory requirement of 5K 60 bit words. Optionally, graphical output of the fitting function can be plotted. Tektronix PLOT-10 routines are required for graphics. NLINEAR was developed in 1987.

  10. Fracture toughness curve shift method

    SciTech Connect

    Nanstad, R.K.; Sokolov, M.A.; McCabe, D.E.

    1995-10-01

    The purpose of this task is to examine the technical basis for the currently accepted methods for shifting fracture toughness curves to account for irradiation damage, and to work through national codes and standards bodies to revise those methods, if a change is warranted. During this reporting period, data from all the relevant HSSI Programs were acquired and stored in a database and evaluated. The results from that evaluation have been prepared in a draft letter report and are summarized here. A method employing Weibull statistics was applied to analyze fracture toughness properties of unirradiated and irradiated pressure vessel steels. Application of the concept of a master curve for irradiated materials was examined and used to measure shifts of fracture toughness transition curves. It was shown that the maximum likelihood approach gave good estimations of the reference temperature, T{sub o}, determined by rank method and could be used for analyzing of data sets where application of the rank method did not prove to be feasible. It was shown that, on average, the fracture toughness shifts generally exceeded the Charpy 41-J shifts; a linear least-squares fit to the data set yielded a slope of 1.15. The observed dissimilarity was analyzed by taking into account differences in effects of irradiation on Charpy impact and fracture toughness properties. Based on these comparisons, a procedure to adjust Charpy 41-J shifts for achieving a more reliable correlation with the fracture toughness shifts was evaluated. An adjustment consists of multiplying the 41-J energy level by the ratio of unirradiated to irradiated Charpy upper shelves to determine an irradiated transition temperature, and then subtracting the unirradiated transition temperature determined at 41 J. For LUS welds, however, an unirradiated level of 20 J (15 ft-1b) was used for the corresponding adjustment for irradiated material.

  11. Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits

    PubMed Central

    Tricoire, Ludovic; Vitalis, Tania

    2012-01-01

    Nitric oxide (NO) is an important signaling molecule crucial for many physiological processes such as synaptic plasticity, vasomotricity, and inflammation. Neuronal nitric oxide synthase (nNOS) is the enzyme responsible for the synthesis of NO by neurons. In the juvenile and mature hippocampus and neocortex nNOS is primarily expressed by subpopulations of GABAergic interneurons. Over the past two decades, many advances have been achieved in the characterization of neocortical and hippocampal nNOS expressing neurons. In this review, we summarize past and present studies that have characterized the electrophysiological, morphological, molecular, and synaptic properties of these neurons. We also discuss recent studies that have shed light on the developmental origins and specification of GABAergic neurons with specific attention to neocortical and hippocampal nNOS expressing GABAergic neurons. Finally, we summarize the roles of NO and nNOS-expressing inhibitory neurons. PMID:23227003

  12. Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse "shotgun" neuronal activity sampling.

    PubMed

    Mishchenko, Yuriy

    2016-10-01

    We investigate the properties of recently proposed "shotgun" sampling approach for the common inputs problem in the functional estimation of neuronal connectivity. We study the asymptotic correctness, the speed of convergence, and the data size requirements of such an approach. We show that the shotgun approach can be expected to allow the inference of complete connectivity matrix in large neuronal populations under some rather general conditions. However, we find that the posterior error of the shotgun connectivity estimator grows quickly with the size of unobserved neuronal populations, the square of average connectivity strength, and the square of observation sparseness. This implies that the shotgun connectivity estimation will require significantly larger amounts of neuronal activity data whenever the number of neurons in observed neuronal populations remains small. We present a numerical approach for solving the shotgun estimation problem in general settings and use it to demonstrate the shotgun connectivity inference in the examples of simulated synfire and weakly coupled cortical neuronal networks. PMID:27515518

  13. Dirac's aether in curved spacetime.

    PubMed

    Oliveira; Teixeira

    2000-06-01

    Proca's equations for two types of fields in a Dirac's aether with electric conductivity sigma are solved exactly. The Proca electromagnetic fields are assumed with cylindrical symmetry. The background is a static, curved spacetime whose spatial section is homogeneous and has the topology of either the three-sphere S 3 or the projective three-space P 3. Simple relations between the range of Proca field lambda, the Universe radius R, the limit of photon rest mass mgamma and the conductivity sigma are written down. PMID:10932114

  14. Seeing effects on occultation curves.

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1971-01-01

    Evaluation of seeing effects on the light curve of a stellar occultation by the moon. Some theoretical studies of Fried (1966) and Hulett (1967) on the linear size of the downward-looking seeing disk are cited, showing that the seeing blur amounts to a few centimeters for a star in the zenith and that the linear blur must grow approximately as (sec z) to the 3/2 power. For most observations the seeing blur will not exceed 8 to 10 cm. The limitation on angular resolution imposed by this seeing effect is calculated.

  15. Observable Zitterbewegung in curved spacetimes

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Manning, Adrian; Tureanu, Anca

    2016-06-01

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  16. [Response characteristics of neurons to tone in dorsal nucleus of the lateral lemniscus of the mouse].

    PubMed

    Si, Wen-Juan; Cheng, Yan-Ling; Yang, Dan-Dan; Wang, Xin

    2016-02-25

    The dorsal nucleus of lateral lemniscus (DNLL) is a nucleus in the auditory ascending pathway, and casts inhibitory efferent projections to the inferior colliculus. Studies on the DNLL are less than studies on the auditory brain stem and inferior colliculus. To date, there is no information about response characteristics of neurons in DNLL of albino mouse. Under free field conditions, we used extracellular single unit recording to study the acoustic signal characteristics of DNLL neurons in Kunming mice (Mus musculus). Transient (36%) and ongoing (64%) firing patterns were found in 96 DNLL neurons. Neurons with different firing patterns have significant differences in characteristic frequency and minimal threshold. We recorded frequency tuning curves (FTCs) of 87 DNLL neurons. All of the FTCs exhibit an open "V" shape. There is no significant difference in FTCs between transient and ongoing neurons, but among the ongoing neurons, the FTCs of sustained neurons are sharper than those of onset plus sustained neurons and pauser neurons. Our results showed that the characteristic frequency of DNLL neurons of mice was not correlated with depth, supporting the view that the DNLL of mouse has no frequency topological organization through dorsal-ventral plane, which is different from cats and some other animals. Furthermore, by using rate-intensity function (RIF) analysis the mouse DNLL neurons can be classified as monotonic (60%), saturated (31%) and non-monotonic (8%) types. Each RIF type includes transient and ongoing firing patterns. Dynamic range of the transient firing pattern is smaller than that of ongoing firing ones (P < 0.01), suggesting that the inhibitory inputs may underlie the formation of transient firing pattern. Multiple firing patterns and intensity coding of DNLL neurons may derive from the projections from multiple auditory nuclei, and play different roles in auditory information processing. PMID:26915316

  17. Mechanism of quasi-periodic lag jitter in bursting rhythms by a neuronal network

    NASA Astrophysics Data System (ADS)

    Barrio, R.; Rodríguez, Marcos; Serrano, S.; Shilnikov, Andrey

    2015-11-01

    We study a heteroclinic bifurcation leading to the onset of robust phase-lag jittering in bursting rhythms generated by a neuronal circuit. We show that the jitter phenomenon is associated with the occurrence of a stable invariant curve emerging through a torus bifurcation in 2D return maps for phase lags between three constituent bursters. To study biologically plausible and phenomenological models of rhythmic neuronal networks we have further developed parallel computational techniques for parameter continuations of all possible fixed points and invariant curves of such return maps. The method is based on a “fine” brute-force analysis of the large data set generated by the computational techniques.

  18. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    PubMed Central

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  19. Metabolic reprogramming during neuronal differentiation.

    PubMed

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  20. Reciprocal relations between kinetic curves

    NASA Astrophysics Data System (ADS)

    Yablonsky, G. S.; Gorban, A. N.; Constales, D.; Galvita, V. V.; Marin, G. B.

    2011-01-01

    We study coupled irreversible processes. For linear or linearized kinetics with microreversibility, \\dot{x}=Kx , the kinetic operator K is symmetric in the entropic inner product. This form of Onsager's reciprocal relations implies that the shift in time, exp(Kt), is also a symmetric operator. This generates the reciprocity relations between the kinetic curves. For example, for the Master equation, if we start the process from the i-th pure state and measure the probability pj(t) of the j-th state (j≠i), and, similarly, measure pi(t) for the process, which starts at the j-th pure state, then the ratio of these two probabilities pj(t)/pi(t) is constant in time and coincides with the ratio of the equilibrium probabilities. We study similar and more general reciprocal relations between the kinetic curves. The experimental evidence provided as an example is from the reversible water gas shift reaction over iron oxide catalyst. The experimental data are obtained using Temporal Analysis of Products (TAP) pulse-response studies. These offer excellent confirmation within the experimental error.

  1. Miniature curved artificial compound eyes

    PubMed Central

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas

    2013-01-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  2. Miniature curved artificial compound eyes.

    PubMed

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas

    2013-06-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  3. Implicit dose-response curves.

    PubMed

    Pérez Millán, Mercedes; Dickenstein, Alicia

    2015-06-01

    We develop tools from computational algebraic geometry for the study of steady state features of autonomous polynomial dynamical systems via elimination of variables. In particular, we obtain nontrivial bounds for the steady state concentration of a given species in biochemical reaction networks with mass-action kinetics. This species is understood as the output of the network and we thus bound the maximal response of the system. The improved bounds give smaller starting boxes to launch numerical methods. We apply our results to the sequential enzymatic network studied in Markevich et al. (J Cell Biol 164(3):353-359, 2004) to find nontrivial upper bounds for the different substrate concentrations at steady state. Our approach does not require any simulation, analytical expression to describe the output in terms of the input, or the absence of multistationarity. Instead, we show how to extract information from effectively computable implicit dose-response curves, with the use of resultants and discriminants. We moreover illustrate in the application to an enzymatic network, the relation between the exact implicit dose-response curve we obtain symbolically and the standard hysteresis diagram provided by a numerical ode solver. The setting and tools we propose could yield many other results adapted to any autonomous polynomial dynamical system, beyond those where it is possible to get explicit expressions. PMID:25008963

  4. Encephalization, neuronal excess, and neuronal index in rodents.

    PubMed

    Herculano-Houzel, Suzana

    2007-10-01

    Encephalization, or brain size larger than expected from body size, has long been considered to correlate with improved cognitive abilities across species and even intelligence. However, it is still unknown what characteristics of relatively large brains underlie their improved functions. Here, it is shown that more encephalized rodent species have the number of neurons expected for their brain size, but a larger number of neurons than expected for their body size. The number of neurons in excess relative to body size might be available for improved associative functions and, thus, be responsible for the cognitive advantage observed in more encephalized animals. It is further proposed that, if such neuronal excess does provide for improved cognitive abilities, then the total number of excess neurons in each species-here dubbed the neuronal index-should be a better indicator of cognitive abilities than the encephalization quotient (EQ). Because the neuronal index is a function of both the number of neurons expected from the size of the body and the absolute number of neurons in the brain, differences in this parameter across species that share similar EQs might explain why these often have different cognitive capabilities, particularly when comparing across mammalian orders. PMID:17847061

  5. Parameter space of the Rulkov chaotic neuron model

    NASA Astrophysics Data System (ADS)

    Wang, Caixia; Cao, Hongjun

    2014-06-01

    The parameter space of the two dimensional Rulkov chaotic neuron model is taken into account by using the qualitative analysis, the co-dimension 2 bifurcation, the center manifold theorem, and the normal form. The goal is intended to clarify analytically different dynamics and firing regimes of a single neuron in a two dimensional parameter space. Our research demonstrates the origin that there exist very rich nonlinear dynamics and complex biological firing regimes lies in different domains and their boundary curves in the two dimensional parameter plane. We present the parameter domains of fixed points, the saddle-node bifurcation, the supercritical/subcritical Neimark-Sacker bifurcation, stability conditions of non hyperbolic fixed points and quasiperiodic solutions. Based on these parameter domains, it is easy to know that the Rulkov chaotic neuron model can produce what kinds of firing regimes as well as their transition mechanisms. These results are very useful for building-up a large-scale neuron network with different biological functional roles and cognitive activities, especially in establishing some specific neuron network models of neurological diseases.

  6. Galois Representations Connected with Hyperbolic Curves

    NASA Astrophysics Data System (ADS)

    Voevodskiĭ, V. A.

    1992-06-01

    The author considers Galois group actions on the fundamental groups of curves of hyperbolic type, and proves certain cases of Grothendieck's conjecture about the possibility of recovering a curve from its Galois representation.

  7. Pin1 in Neuronal Apoptosis

    PubMed Central

    Becker, Esther B.E.; Bonni, Azad

    2009-01-01

    While the role of the prolyl isomerase Pin1 in dividing cells has long been recognized, Pin1’s function in postmitotic neurons is poorly understood. We have identified a novel mechanism by which Pin1 mediates activation of the mitochondrial cell death machinery specifically in neurons. This perspective presents a sophisticated signaling pathway that triggers neuronal apoptosis upon JNK-mediated phosphorylation of the BH3-only protein BIMEL at serine 65. Pin1 is enriched at the mitochondria in neurons together with BIMEL and components of a neuron-specific JNK signaling complex and functions as a molecular switch that couples the phosphorylation of BIMEL by JNK to apoptosis specifically in neurons. We discuss how these findings relate to our understanding of the development of the nervous system and the pathogenesis of neurologic disorders. PMID:17568190

  8. Decreased expression of hepatocyte nuclear factor 3 alpha during the acute-phase response influences transthyretin gene transcription.

    PubMed Central

    Qian, X; Samadani, U; Porcella, A; Costa, R H

    1995-01-01

    Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (alpha, beta, and gamma) are known to regulate the transcription of numerous liver-specific genes. The HNF-3 proteins bind to DNA as monomers through a winged-helix motif, which is also utilized by a number of developmental regulators, including the Drosophila homeotic fork head (fkh) protein. We have previously characterized a strong-affinity HNF-3S site in the transthyretin (TTR) promoter region which is essential for expression in human hepatoma (HepG2) cells. In the current study, we identify an activating protein 1 (AP-1) site which partially overlaps the HNF-3S sequence in the TTR promoter. We show that in HepG2 cells the AP-1 sequence confers 12-O-tetradecanoylphorbol-13-acetate inducibility to the TTR promoter and contributes to normal TTR transcriptional activity. We also demonstrate that the HNF-3 proteins and AP-1 bind independently to the TTR AP-1-HNF-3 site, and cotransfection experiments suggest that they do not cooperate to activate an AP-1-HNF-3 reporter construct. In addition, 12-O-tetradecanoylphorbol-13-acetate exposure of HepG2 cells results in a reciprocal decrease in HNF-3 alpha and -3 gamma expression which may facilitate interaction of AP-1 with the TTR AP-1-HNF-3 site. In order to explore the role of HNF-3 in the liver, we have examined expression patterns of TTR and HNF-3 during the acute-phase response and liver regeneration. Partial hepatectomy produced minimal fluctuation in HNF-3 and TTR expression, suggesting that HNF-3 expression is not influenced by proliferative signals induced during liver regeneration. In acute-phase livers, we observed a dramatic reduction in HNF-3 alpha expression which correlates with a decrease in the expression of its target gene, the TTR gene. Furthermore, consistent with previous studies, the acute-phase livers are induced for c-jun but not c-fos expression. We propose that the reduction in TTR gene expression during the acute phase is likely due

  9. Fever and acute phase response induced in dwarf goats by endotoxin and bovine and human recombinant tumour necrosis factor alpha.

    PubMed

    van Miert, A S; van Duin, C T; Wensing, T

    1992-12-01

    Tumour necrosis factor (TNF), a polypeptide produced by mononuclear phagocytes, has been implicated as an important mediator of inflammatory processes and of clinical manifestations in acute infectious diseases. To study further the potential role of TNF in infectious diseases, recombinant Escherichia coli (E. coli) derived human (r.HuTNF-alpha) and bovine TNF (r.BoTNF-alpha) were intravenously (i.v.) administered in dwarf goats. Rectal temperature, heart rate, rumen motility, plasma zinc and iron concentrations, and certain other blood biochemical and haematological values were studied and compared with the changes seen after E. coli endotoxin (LPS) was administered (dose: 0.1 microgram/kg i.v.). Following a single injection of 4 micrograms/kg of r.BoTNF-alpha, shivering and biphasic febrile response were observed, accompanied by tachycardia, inhibition of rumen contractions, drop in plasma zinc and iron concentrations, lymphopenia, and neutropenia followed by neutrophilia. The i.v. administration of a single injection of 4 micrograms/kg r.HuTNF-alpha induced shivering and biphasic febrile responses, accompanied by anorexia and a similar drop in plasma trace metal concentrations when compared with r.BoTNF-alpha-treated goats. The TNF-alpha-induced symptoms were essentially the same as those that occurred after LPS administration. However, the time of onset of these changes after the injection of TNF-alpha was significantly shorter than after LPS. Moreover, the r.BoTNF-alpha induced a longer lasting neutrophilic leucopenia, less neutrophilia, and a more persistent lymphopenia than after LPS injection. Neither r.BoTNF-alpha nor LPS caused severe haemo-concentration. Furthermore, no cross-tolerance between r.BoTNF-alpha and LPS could be demonstrated. We conclude that both r.BoTNF-alpha and r.HuTNF-alpha induce many of the physiologic, haematologic and metabolic changes that characterize the acute phase response to LPS. The overlapping biological activities of r

  10. The general efficiency curve for air propellers

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1924-01-01

    This report presents a formula which may be used to obtain a "general efficiency curve" in addition to the well-known maximum efficiency curve. These two curves, when modified somewhat by experimental data, enable performance calculations to be made without detailed knowledge of the propeller. The curves may also be used to estimate the improvement in efficiency due to reduction gearing, or to judge the performance of a new propeller design.

  11. Heterogeneous potassium conductances contribute to the diverse firing properties of postnatal mouse vestibular ganglion neurons.

    PubMed

    Risner, Jessica R; Holt, Jeffrey R

    2006-11-01

    How mechanical information is encoded in the vestibular periphery has not been clarified. To begin to address the issue we examined the intrinsic firing properties of postnatal mouse vestibular ganglion neurons using the whole cell, tight-seal technique in current-clamp mode. We categorized two populations of neurons based on the threshold required to evoke an action potential. Low-threshold neurons fired with an average minimum current injection of -43 pA, whereas high-threshold neurons required -176 pA. Using sine-wave stimuli, we found that the neurons were inherently tuned with best frequencies that ranged up to 40 Hz. To investigate the membrane properties that contributed to the variability in firing properties we examined the same neurons in voltage-clamp mode. High-threshold neurons had larger cell bodies and whole cell capacitances but a resting conductance density of 0.18 nS/pF, nearly identical to that of low-threshold neurons, suggesting that cell size was an important parameter determining threshold. We also found that vestibular ganglion neurons expressed a heterogeneous population of potassium conductances. TEA-sensitive conductances contributed to the position of the tuning curve in the frequency domain. A 4-AP-sensitive conductance was active at rest and hyperpolarized resting potential, limited spontaneous activity, raised threshold, and prevented repetitive firing. In response to sine-wave stimulation 4-AP-sensitive conductances prevented action potential generation at low frequencies and thus contributed to the high-pass corner of the tuning curve. The mean low-pass corner (about 29 Hz) was determined by the membrane time constant. Together these factors contributed to the sharply tuned, band-pass characteristics intrinsic to postnatal vestibular ganglion neurons. PMID:16855108

  12. The straintronic spin-neuron.

    PubMed

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons. PMID:26112081

  13. The biophysics of neuronal growth

    NASA Astrophysics Data System (ADS)

    Franze, Kristian; Guck, Jochen

    2010-09-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  14. Euler characteristics and elliptic curves.

    PubMed

    Coates, J; Howson, S

    1997-10-14

    Let E be a modular elliptic curve over [symbol, see text], without complex multiplication; let p be a prime number where E has good ordinary reduction; and let Finfinity be the field obtained by adjoining [symbol, see text] to all p-power division points on E. Write Ginfinity for the Galois group of Finfinity over [symbol, see text]. Assume that the complex L-series of E over [symbol, see text] does not vanish at s = 1. If p >/= 5, we make a precise conjecture about the value of the Ginfinity-Euler characteristic of the Selmer group of E over Finfinity. If one makes a standard conjecture about the behavior of this Selmer group as a module over the Iwasawa algebra, we are able to prove our conjecture. The crucial local calculations in the proof depend on recent joint work of the first author with R. Greenberg. PMID:11607752

  15. Spinning bodies in curved spacetime

    NASA Astrophysics Data System (ADS)

    d'Ambrosi, G.; Satish Kumar, S.; van de Vis, J.; van Holten, J. W.

    2016-02-01

    We study the motion of neutral and charged spinning bodies in curved spacetime in the test-particle limit. We construct equations of motion using a closed covariant Poisson-Dirac bracket formulation that allows for different choices of the Hamiltonian. We derive conditions for the existence of constants of motion and apply the formalism to the case of spherically symmetric spacetimes. We show that the periastron of a spinning body in a stable orbit in a Schwarzschild or Reissner-Nordstrøm background not only precesses but also varies radially. By analyzing the stability conditions for circular motion we find the innermost stable circular orbit (ISCO) as a function of spin. It turns out that there is an absolute lower limit on the ISCOs for increasing prograde spin. Finally we establish that the equations of motion can also be derived from the Einstein equations using an appropriate energy-momentum tensor for spinning particles.

  16. Bacterial streamers in curved microchannels

    NASA Astrophysics Data System (ADS)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  17. Hexatic undulations in curved geometries.

    PubMed

    Lenz, Peter; Nelson, David R

    2003-03-01

    We discuss the influence of two-dimensional hexatic order on capillary waves and undulation modes in spherical and cylindrical geometries. In planar geometries, extended bond-orientational order has only a minor effect on the fluctuations of liquid surfaces or lipid bilayers. However, in curved geometries, the long-wavelength spectrum of these ripples is altered. We calculate this frequency shift and discuss applications to spherical vesicles, liquid metal droplets, bubbles and cylindrical jets coated with surface-active molecules, and to multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the threshold for the fission instability of charged droplets and bubbles, and for the Plateau-Rayleigh instability of liquid jets. PMID:12689068

  18. Caloric curve of star clusters.

    PubMed

    Casetti, Lapo; Nardini, Cesare

    2012-06-01

    Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results. PMID:23005049

  19. AKLSQF - LEAST SQUARES CURVE FITTING

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The Least Squares Curve Fitting program, AKLSQF, computes the polynomial which will least square fit uniformly spaced data easily and efficiently. The program allows the user to specify the tolerable least squares error in the fitting or allows the user to specify the polynomial degree. In both cases AKLSQF returns the polynomial and the actual least squares fit error incurred in the operation. The data may be supplied to the routine either by direct keyboard entry or via a file. AKLSQF produces the least squares polynomial in two steps. First, the data points are least squares fitted using the orthogonal factorial polynomials. The result is then reduced to a regular polynomial using Sterling numbers of the first kind. If an error tolerance is specified, the program starts with a polynomial of degree 1 and computes the least squares fit error. The degree of the polynomial used for fitting is then increased successively until the error criterion specified by the user is met. At every step the polynomial as well as the least squares fitting error is printed to the screen. In general, the program can produce a curve fitting up to a 100 degree polynomial. All computations in the program are carried out under Double Precision format for real numbers and under long integer format for integers to provide the maximum accuracy possible. AKLSQF was written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler. It has been implemented under DOS 3.2.1 using 23K of RAM. AKLSQF was developed in 1989.

  20. What Gets a Cell Excited? Kinky Curves

    ERIC Educational Resources Information Center

    Kay, Alan R.

    2014-01-01

    Hodgkin and Huxley's (5) revealing the origins of cellular excitability is one of the great triumphs of physiology. In an extraordinarily deft series of papers, they were able to measure the essential electrical characteristics of neurons and synthesize them into a quantitative model that accounts for the excitability of neurons and other…

  1. Stochastic resonance in models of neuronal ensembles

    NASA Astrophysics Data System (ADS)

    Chialvo, Dante R.; Longtin, André; Müautller-Gerking, Johannes

    1997-02-01

    Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the ``resonance curve'' in the multineuron stochastic resonance without tuning scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal.

  2. Bactridine's effects on DUM cricket neurons under voltage clamp conditions.

    PubMed

    Forsyth, P; Sevcik, C; Martínez, R; Castillo, C; D'Suze, G

    2012-12-01

    We describe the effects of six bactridines (150 nM) on cricket dorsal unpaired median (DUM) neurons. The addition of bactridine 2 to DUM neurons induced a large current component with a reversal potential more negative than -30 mV, most evident at the end of the pulses. This current was completely suppressed when 1 μM amiloride was applied before adding the bactridines. Since the amiloride sensitive current is able to distort the aim of our study, i.e. the effect of bactridines on sodium channels, all experiments were done in the presence of 1 μM amiloride. Most bactridines induced voltage shifts of V(1/2) of the Boltzmann inactivation voltage dependency curves in the hyperpolarizing direction. Bactridines 1, 4 and 6 reduced Na current peak by 65, 80 and 24% of the control, respectively. The sodium conductance blockage by bactridines was voltage independent at potentials >20 mV. Bactridines effect on cricket DUM neurons does not correspond to neither α- nor β-toxins. Most bactridines shifted the inactivation curves in the hyperpolarizing direction without any effects on the activation m(∞)-like curves. Also bactridines differ from other NaScpTx in that they increased an amiloride-sensitive conductance in DUM neurons. Our result suggest that the α/β classification of sodium scorpion toxins is not all encompassing. The present work shows that bactridines target more than one site: insect voltage dependent Na channels and an amiloride-sensitive ionic pathway which is under study. PMID:23085555

  3. The acute phase response induced by Escherichia coli lipopolysaccharide modifies the pharmacokinetics and metabolism of florfenicol in rabbits.

    PubMed

    Pérez, R; Palma, C; Burgos, R; Jeldres, J A; Espinoza, A; Peñailillo, A K

    2016-04-01

    The aim of this study was to determine the effect of Escherichia coli lipopolysaccharide (LPS)-induced acute phase response (APR) on the pharmaco-kinetics and biotransformation of florfenicol (FFC) in rabbits. Six rabbits (3.0 ± 0.08 kg body weight (bw)) were distributed through a crossover design with 4 weeks of washout period. Pairs of rabbits similar in bw and sex were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS at intervals of 6 h, and Group 2 (control) was treated with an equivalent volume of saline solution (SS) at the same intervals and frequency of Group 1. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples were collected from the auricular vein before drug administration and at different times between 0.05 and 24.0 h after treatment. FFC and florfenicol-amine (FFC-a) were extracted from the plasma, and their concentrations were determined by high-performance liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using the paired Student t-test. The mean values of AUC0-∞ in the endotoxaemic rabbits (26.3 ± 2.7 μg·h/mL) were significantly higher (P < 0.05) than values observed in healthy rabbits (17.2 ± 0.97 μg·h/mL). The total mean plasma clearance (CLT ) decreased from 1228 ± 107.5 mL·h/kg in the control group to 806.4 ± 91.4 mL·h/kg in the LPS-treated rabbits. A significant increase (P < 0.05) in the half-life of elimination was observed in the endotoxaemic rabbits (5.59 ± 1.14 h) compared to the values observed in healthy animals (3.44 ± 0.57 h). In conclusion, the administration of repeated doses of 1 μg/kg E. coli LPS induced an APR in rabbits, producing significant modifications in plasma concentrations of FFC leading to increases in the AUC, terminal half-life and mean residence time (MRT), but a

  4. Neuronal avalanches and coherence potentials

    NASA Astrophysics Data System (ADS)

    Plenz, D.

    2012-05-01

    The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.

  5. [Motor neuron disease: metabolic evaluation].

    PubMed

    Godoy, J M; Skacel, M; Balassiano, S L; Neves, J R

    1992-03-01

    The authors studied serum and urinary calcium and phosphorus levels, as well as abnormalities on the spine of 30 patients with motor neuron disease. The authors believe in multifactorial aspects in the pathogenesis of motor neuron disease, calling special attention to toxic and metabolic factors. PMID:1307483

  6. Synchronization by elastic neuronal latencies

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Timor, Reut; Marom, Shimon; Abeles, Moshe; Kanter, Ido

    2013-01-01

    Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal circuit delay loops. However, they require strict biological prerequisites such as precisely matched delays and connectivity, and synchronization is represented as a stationary mode of activity instead of a transient phenomenon. Here we show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops. This apparent nuisance is revealed to be an essential mechanism in various types of neuronal time controllers, where synchronization emerges as a transient phenomenon and without predefined precisely matched synaptic delays. These findings are described in an experimental procedure where conditioned stimulations were enforced on a circuit of neurons embedded within a large-scale network of cortical cells in vitro, and are corroborated and extended by simulations of circuits composed of Hodgkin-Huxley neurons with time-dependent latencies. These findings announce a cortical time scale for time controllers based on tens of microseconds stretching of neuronal circuit delay loops per spike. They call for a reexamination of the role of the temporal periodic mode in brain functionality using advanced in vitro and in vivo experiments.

  7. The Neuronal Ceroid-Lipofuscinoses

    ERIC Educational Resources Information Center

    Bennett, Michael J.; Rakheja, Dinesh

    2013-01-01

    The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in…

  8. Neuron's function revealed

    SciTech Connect

    2009-01-01

    There's a new way to explore biologys secrets. With a flash of light, scientists from the U.S. Department of Energys Lawrence Berkeley National Laboratory and the University of California, Berkeley zeroed in on the type of neural cell that controls swimming in larval zebrafish. Using innovative light-activated proteins and gene expression techniques, the scientists zapped several zebrafish with a pulse of light, and initiated a swimming action in a subset of fish that was traced back to the type of neuron that drives the side-to-side motion of their tail fins. The technique behind this needle-in-haystack search for the neural roots of a specific behavior could become a powerful way to learn how any biological system works. http://newscenter.lbl.gov/press-releases/2009/09/16/light-activated-protein/

  9. Ethanol and neuronal metabolism.

    PubMed

    Mandel, P; Ledig, M; M'Paria, J R

    1980-01-01

    The effect of ethanol on membrane enzymes (Na+, K+ and Mg2+ ATPases, 5'-nucleotidase, adenylate cyclase) alcohol dehydrogenase, aldehyde dehydrogenase and superoxide dismutase were studied in nerve cells (established cell lines, primary cultures of chick and rat brain) cultured in the presence of 100 mM ethanol, and in total rat brain, following various ethanol treatments of the rats (20% ethanol as the sole liquid source, intraperitoneal injection). The results show a difference between neuronal and glial cells. Most of the observed changes in enzymatic activities returned rapidly to control values when ethanol was withdrawn from the culture medium or from the diet. Alcohol dehydrogenase was more stimulated by ethanol than aldehyde dehydrogenase; therefore acetaldehyde may be accumulated. The inhibition of superoxide dismutase activity may allow an accumulation of cytotoxic O2- radicals in nervous tissue and may explain the polymorphism of lesions brought about by alcohol intoxication. PMID:6264495

  10. Quantum fields in curved spacetime

    NASA Astrophysics Data System (ADS)

    Hollands, Stefan; Wald, Robert M.

    2015-04-01

    We review the theory of quantum fields propagating in an arbitrary, classical, globally hyperbolic spacetime. Our review emphasizes the conceptual issues arising in the formulation of the theory and presents known results in a mathematically precise way. Particular attention is paid to the distributional nature of quantum fields, to their local and covariant character, and to microlocal spectrum conditions satisfied by physically reasonable states. We review the Unruh and Hawking effects for free fields, as well as the behavior of free fields in deSitter spacetime and FLRW spacetimes with an exponential phase of expansion. We review how nonlinear observables of a free field, such as the stress-energy tensor, are defined, as well as time-ordered-products. The "renormalization ambiguities" involved in the definition of time-ordered products are fully characterized. Interacting fields are then perturbatively constructed. Our main focus is on the theory of a scalar field, but a brief discussion of gauge fields is included. We conclude with a brief discussion of a possible approach towards a nonperturbative formulation of quantum field theory in curved spacetime and some remarks on the formulation of quantum gravity.

  11. Why subduction zones are curved

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.; Bendick, R.; Liang, Haiyi

    2010-12-01

    We give an explanation for the polarity, localization, shape, size, and initiation of subduction zones on Earth. By considering a soft, thin, curved lithospheric cap with either elastic or viscous rheology supported by a thick, nearly incompressible mantle, we find two different characteristic subduction geometries arise depending on boundary conditions: (1) plate boundaries where subduction results primarily from the gravitational body force (free subduction) have characteristic plate lengths and form arc-shaped dimpled segments resulting from the competition between bending and stretching in edge buckling modes of thin spherical shells, and (2) subduction zones due to localized applied loads that push one slab of thin, positively buoyant lithosphere beneath an overriding plate (forced subduction) form localized straight segments, consistent with the deformation of indented spherical shells. Both types of subduction are nonlinear subcritical instabilities, so small perturbations in the mechanical properties of the lithosphere have pronounced effects on subduction initiation and evolution. Yet in both cases, geometric relationships determined by the shape of the Earth itself play the most critical role in controlling the basic morphology and characteristic length scales of subduction zones.

  12. Differentialless geometry of plane curves

    NASA Astrophysics Data System (ADS)

    Latecki, Longin J.; Rosenfeld, Azriel

    1997-10-01

    We introduce a class of planar arcs and curves, called tame arcs, which is general enough to describe the boundaries of planar real objects. A tame arc can have smooth parts as well as sharp corners; thus a polygonal arc is tame. On the other hand, this class of arcs is restrictive enough to rule out pathological arcs which have infinitely many inflections or which turn infinitely often: a tame arc can have only finitely many inflections, and its total absolute turn must be finite. In order to relate boundary properties of discrete objects obtained by segmenting digital images to the corresponding properties of their continuous originals, the theory of tame arcs is based on concepts that can be directly transferred from the continuous to the discrete domain. A tame arc is composed of a finite number of supported arcs. We define supported digital arcs and motivate their definition by the fact that hey can be obtained by digitizing continuous supported arcs. Every digital arc is tame, since it contains a finite number of points, and therefore it can be decomposed into a finite number of supported digital arcs.

  13. Learning curve of speech recognition.

    PubMed

    Kauppinen, Tomi A; Kaipio, Johanna; Koivikko, Mika P

    2013-12-01

    Speech recognition (SR) speeds patient care processes by reducing report turnaround times. However, concerns have emerged about prolonged training and an added secretarial burden for radiologists. We assessed how much proofing radiologists who have years of experience with SR and radiologists new to SR must perform, and estimated how quickly the new users become as skilled as the experienced users. We studied SR log entries for 0.25 million reports from 154 radiologists and after careful exclusions, defined a group of 11 experienced radiologists and 71 radiologists new to SR (24,833 and 122,093 reports, respectively). Data were analyzed for sound file and report lengths, character-based error rates, and words unknown to the SR's dictionary. Experienced radiologists corrected 6 characters for each report and for new users, 11. Some users presented a very unfavorable learning curve, with error rates not declining as expected. New users' reports were longer, and data for the experienced users indicates that their reports, initially equally lengthy, shortened over a period of several years. For most radiologists, only minor corrections of dictated reports were necessary. While new users adopted SR quickly, with a subset outperforming experienced users from the start, identification of users struggling with SR will help facilitate troubleshooting and support. PMID:23779151

  14. Multiplying with Neurons

    NASA Astrophysics Data System (ADS)

    Gabbiani, F.; Krapp, H.; Koch, C.; Laurent, G.

    1998-03-01

    LGMD and DCMD are a pair of identified neurons in the locust brain thought to be involved in visually triggered escape behavior. LGMD integrates visual inputs in its dendritic arbor, converts them into spikes transmitted in a 1:1 manner to DCMD which relays this information to motor centers. We measured the spike activity of DCMD during simulated object approach and observed that its peak occured prior to the expected collision. The time difference between peak activity and collision depended linearly on the ratio of object size to approach velocity, as expected if LGMD/DCMD were detecting the moment in time when the approaching object reaches a fixed angular threshold θ_thresh on the locust's retina. The response of LGMD/DCMD could be fitted by multiplying the angular velocity at which an approaching object is increasing in size over the retina, dot θ, with an exponential function of the object's angular size, θ: f(t) = g(dot θ(t-δ) e^-α θ(t-δ)) where g is a static non-linearity, α a constant related to the angular threshold detected by LGMD/DCMD (θ_thresh = arctan (2/α)) and δ denotes the lag of the neuronal response with respect to the stimulus. This suggests that LGMD/DCMD derives its angular threshold sensitivity by multiplying dot θ with an exponential of θ. A biophysical implementation would be through linear summation of excitatory and inhibitory inputs proportional to log(dot θ) and -α θ, followed by a conversion to spike rate according to the static non-linearity (g circ exp). We have performed several experiments to test this hypothesis.

  15. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  16. Stimulus features coded by single neurons of a macaque body category selective patch

    PubMed Central

    Popivanov, Ivo D.; Schyns, Philippe G.; Vogels, Rufin

    2016-01-01

    Body category-selective regions of the primate temporal cortex respond to images of bodies, but it is unclear which fragments of such images drive single neurons’ responses in these regions. Here we applied the Bubbles technique to the responses of single macaque middle superior temporal sulcus (midSTS) body patch neurons to reveal the image fragments the neurons respond to. We found that local image fragments such as extremities (limbs), curved boundaries, and parts of the torso drove the large majority of neurons. Bubbles revealed the whole body in only a few neurons. Neurons coded the features in a manner that was tolerant to translation and scale changes. Most image fragments were excitatory but for a few neurons both inhibitory and excitatory fragments (opponent coding) were present in the same image. The fragments we reveal here in the body patch with Bubbles differ from those suggested in previous studies of face-selective neurons in face patches. Together, our data indicate that the majority of body patch neurons respond to local image fragments that occur frequently, but not exclusively, in bodies, with a coding that is tolerant to translation and scale. Overall, the data suggest that the body category selectivity of the midSTS body patch depends more on the feature statistics of bodies (e.g., extensions occur more frequently in bodies) than on semantics (bodies as an abstract category). PMID:27071095

  17. Stochastic models of neuronal dynamics

    PubMed Central

    Harrison, L.M; David, O; Friston, K.J

    2005-01-01

    Cortical activity is the product of interactions among neuronal populations. Macroscopic electrophysiological phenomena are generated by these interactions. In principle, the mechanisms of these interactions afford constraints on biologically plausible models of electrophysiological responses. In other words, the macroscopic features of cortical activity can be modelled in terms of the microscopic behaviour of neurons. An evoked response potential (ERP) is the mean electrical potential measured from an electrode on the scalp, in response to some event. The purpose of this paper is to outline a population density approach to modelling ERPs. We propose a biologically plausible model of neuronal activity that enables the estimation of physiologically meaningful parameters from electrophysiological data. The model encompasses four basic characteristics of neuronal activity and organization: (i) neurons are dynamic units, (ii) driven by stochastic forces, (iii) organized into populations with similar biophysical properties and response characteristics and (iv) multiple populations interact to form functional networks. This leads to a formulation of population dynamics in terms of the Fokker–Planck equation. The solution of this equation is the temporal evolution of a probability density over state-space, representing the distribution of an ensemble of trajectories. Each trajectory corresponds to the changing state of a neuron. Measurements can be modelled by taking expectations over this density, e.g. mean membrane potential, firing rate or energy consumption per neuron. The key motivation behind our approach is that ERPs represent an average response over many neurons. This means it is sufficient to model the probability density over neurons, because this implicitly models their average state. Although the dynamics of each neuron can be highly stochastic, the dynamics of the density is not. This means we can use Bayesian inference and estimation tools that have

  18. NAAG reduces NMDA receptor current in CA1 hippocampal pyramidal neurons of acute slices and dissociated neurons.

    PubMed

    Bergeron, Richard; Coyle, Joseph T; Tsai, Guochan; Greene, Robert W

    2005-01-01

    N-acetylaspartylglutamate (NAAG) is an abundant neuropeptide in the nervous system, yet its functions are not well understood. Pyramidal neurons of the CA1 sector of acutely prepared hippocampal slices were recorded using the whole-cell patch-clamp technique. At low concentrations (20 microM), NAAG reduced isolated N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic currents or NMDA-induced currents. The NAAG-induced change in the NMDA concentration/response curve suggested that the antagonism was not competitive. However, the NAAG-induced change in the concentration/response curve for the NMDAR co-agonist, glycine, indicated that glycine can overcome the NAAG antagonism. The antagonism of the NMDAR induced by NAAG was still observed in the presence of LY-341495, a potent and selective mGluR3 antagonist. Moreover, in dissociated pyramidal neurons of the CA1 region, NAAG also reduced the NMDA current and this effect was reversed by glycine. These results suggest that NAAG reduces the NMDA currents in hippocampal CA1 pyramidal neurons. PMID:15354184

  19. Intrinsic Neuronal Properties Switch the Mode of Information Transmission in Networks

    PubMed Central

    Gjorgjieva, Julijana; Mease, Rebecca A.; Moody, William J.; Fairhall, Adrienne L.

    2014-01-01

    Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons

  20. Intrinsic neuronal properties switch the mode of information transmission in networks.

    PubMed

    Gjorgjieva, Julijana; Mease, Rebecca A; Moody, William J; Fairhall, Adrienne L

    2014-12-01

    Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons

  1. Deployment of a Curved Truss

    NASA Technical Reports Server (NTRS)

    Giersch, Louis R.; Knarr, Kevin

    2010-01-01

    Structures capable of deployment into complex, three-dimensional trusses have well known space technology applications such as the support of spacecraft payloads, communications antennas, radar reflectors, and solar concentrators. Such deployable trusses could also be useful in terrestrial applications such as the rapid establishment of structures in military and emergency service situations, in particular with regard to the deployment of enclosures for habitat or storage. To minimize the time required to deploy such an enclosure, a single arch-shaped truss is preferable to multiple straight trusses arranged vertically and horizontally. To further minimize the time required to deploy such an enclosure, a synchronous deployment with a single degree of freedom is also preferable. One method of synchronizing deployment of a truss is the use of a series of gears; this makes the deployment sequence predictable and testable, allows the truss to have a minimal stowage volume, and the deployed structure exhibits the excellent stiffness-to-mass and strength-to-mass ratios characteristic of a truss. A concept for using gears with varying ratios to deploy a truss into a curved shape has been developed and appears to be compatible with both space technology applications as well as potential use in terrestrial applications such as enclosure deployment. As is the case with other deployable trusses, this truss is formed using rigid elements (e.g., composite tubes) along the edges, one set of diagonal elements composed of either cables or folding/hinged rigid members, and the other set of diagonal elements formed by a continuous cable that is tightened by a motor or hand crank in order to deploy the truss. Gears of varying ratios are used to constrain the deployment to a single degree of freedom, making the deployment synchronous, predictable, and repeatable. The relative sizes of the gears and the relative dimensions of the diagonal elements determine the deployed geometry (e

  2. Convergent properties of vestibular-related brain stem neurons in the gerbil

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    2000-01-01

    Three classes of vestibular-related neurons were found in and near the prepositus and medial vestibular nuclei of alert or decerebrate gerbils, those responding to: horizontal translational motion, horizontal head rotation, or both. Their distribution ratios were 1:2:2, respectively. Many cells responsive to translational motion exhibited spatiotemporal characteristics with both response gain and phase varying as a function of the stimulus vector angle. Rotationally sensitive neurons were distributed as Type I, II, or III responses (sensitive to ipsilateral, contralateral, or both directions, respectively) in the ratios of 4:6:1. Four tested factors shaped the response dynamics of the sampled neurons: canal-otolith convergence, oculomotor-related activity, rotational Type (I or II), and the phase of the maximum response. Type I nonconvergent cells displayed increasing gains with increasing rotational stimulus frequency (0.1-2.0 Hz, 60 degrees /s), whereas Type II neurons with convergent inputs had response gains that markedly decreased with increasing translational stimulus frequency (0.25-2.0 Hz, +/-0.1 g). Type I convergent and Type II nonconvergent neurons exhibited essentially flat gains across the stimulus frequency range. Oculomotor-related activity was noted in 30% of the cells across all functional types, appearing as burst/pause discharge patterns related to the fast phase of nystagmus during head rotation. Oculomotor-related activity was correlated with enhanced dynamic range compared with the same category that had no oculomotor-related response. Finally, responses that were in-phase with head velocity during rotation exhibited greater gains with stimulus frequency increments than neurons with out-of-phase responses. In contrast, for translational motion, neurons out of phase with head acceleration exhibited low-pass characteristics, whereas in-phase neurons did not. Data from decerebrate preparations revealed that although similar response types could

  3. A kill curve for Phanerozoic marine species

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    A kill curve for Phanerozoic species is developed from an analysis of the stratigraphic ranges of 17,621 genera, as compiled by Sepkoski. The kill curve shows that a typical species' risk of extinction varies greatly, with most time intervals being characterized by very low risk. The mean extinction rate of 0.25/m.y. is thus a mixture of long periods of negligible extinction and occasional pulses of much higher rate. Because the kill curve is merely a description of the fossil record, it does not speak directly to the causes of extinction. The kill curve may be useful, however, to li inverted question markmit choices of extinction mechanisms.

  4. Titania nanorods curve to lower their energy.

    PubMed

    Zhang, Hengzhong; Finnegan, Michael P; Banfield, Jillian F

    2013-08-01

    Spontaneous formation of curved nanorods is generally unexpected, since curvature introduces strain energy. However, electron microscopy shows that under hydrothermal conditions, some nanorods grown by oriented attachment of small anatase particles on {101} surfaces are curved and dislocation free. Molecular dynamics simulations show that the lattice energy of a curved anatase rod is actually lower than that of a linear rod due to more attractive long-range interatomic Coulombic interactions among atoms in the curved rod. The thermodynamic driving force stemming from lattice energy could be harnessed to produce asymmetric morphologies unexpected from classical Ostwald ripening with unusual shapes and properties. PMID:23794056

  5. Composite curved frames for helicopter fuselage structure

    NASA Technical Reports Server (NTRS)

    Rich, M. J.; Lowry, D. W.

    1984-01-01

    This paper presents the results of analysis and testing of composite curved frames. A major frame was selected from the UH-60 Black Hawk helicopter and designed as a composite structure. The curved beam effects were expected to increase flange axial stresses and induce transverse bending. A NASTRAN finite element analysis was conducted and the results were used in the design of composite curved frame specimens. Three specimens were fabricated and five static tests were conducted. The NASTRAN analysis and test results are compared for axial, transverse, and Web strains. Results show the curved beam effects are closely predicted by a NASTRAN analysis and the effects increase with loading on the composite frames.

  6. Craniofacial Reconstruction Using Rational Cubic Ball Curves

    PubMed Central

    Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan

    2015-01-01

    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632

  7. Ab initio yield curve dynamics [rapid communication

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.; Roy Frieden, B.; D'Anna, Joseph L.

    2005-09-01

    We derive an equation of motion for interest-rate yield curves by applying a minimum Fisher information variational approach to the implied probability density. By construction, solutions to the equation of motion recover observed bond prices. More significantly, the form of the resulting equation explains the success of the Nelson Siegel approach to fitting static yield curves and the empirically observed modal structure of yield curves. A practical numerical implementation of this equation of motion is found by using the Karhunen Lòeve expansion and Galerkin's method to formulate a reduced-order model of yield curve dynamics.

  8. Dissociative Recombination without a Curve Crossing

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1994-01-01

    Ab initio calculations show that a curve crossing is not always needed for a high dissociative- recombination cross section. For HeH(+), in which no neutral states cross the ion potential curve, dissociative recombination is driven by the nuclear kinetic-energy operator on adiabatic potential curves. The kinetic-energy derivative operator allows for capture into repulsive curves that are outside of the classical turning points for the nuclear motion. The dominant dissociative route is the C (2)Sigma(+) state leading to H(n = 2) atoms. An analogous mechanism is proposed for the dissociative recombination of H3(+).

  9. Craniofacial reconstruction using rational cubic ball curves.

    PubMed

    Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R U; Yahya, Zainor Ridzuan

    2015-01-01

    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632

  10. Simulating synchronization in neuronal networks

    NASA Astrophysics Data System (ADS)

    Fink, Christian G.

    2016-06-01

    We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.