Science.gov

Sample records for neurons controlling paradoxical

  1. Paradoxes

    ERIC Educational Resources Information Center

    Partis, M.

    1972-01-01

    Examples of logical paradoxes, including the square root of two paradox, Achilles and the tortoise paradox, author paradox, Russell paradox, bibliomaniac paradox, and Berry paradox, are presented; some are resolved. (DT)

  2. Paradoxical (rapid eye movement) sleep-on neurons in the laterodorsal pontine tegmentum in mice.

    PubMed

    Sakai, K

    2015-12-01

    A total of 211 neurons that discharged at the highest rate during sleep (sleep-active neurons) were recorded in non-anesthetized, head-restrained mice during the complete wake-sleep cycle in, and around, the laterodorsal (LDT) and sublaterodorsal (SubLDT) tegmental nuclei, which contain both cholinergic and non-cholinergic neurons. For the first time in mice, I reveal the presence, mainly in the SubLDT, of sleep-specific neurons displaying sustained tonic discharge either (i) just prior to, and during, paradoxical sleep (PS) (PS-on neurons) or (ii) during both slow-wave sleep (SWS) and PS (SWS/PS-on neurons). Both the PS-on and SWS/PS-on neurons showed either a low (< 10 Hz) or high (⩾ 10 Hz) rate of spontaneous firing and exhibited a biphasic narrow or medium-to-broad action potential, a characteristic of non-cholinergic neurons. At the transition from SWS to waking (W), the PS-on and SWS/PS-on neurons simultaneously ceased firing shortly before the onset of W, whereas, at the transition from W to SWS, only the SWS/PS-on neurons fired shortly after the onset of sleep. At the transition from SWS to PS, only the PS-on neurons exhibited a significant increase in discharge rate before PS onset, while, at the transition from PS to W, the SWS/PS-on neurons, then the PS-on neurons, displayed a significant decrease in the discharge rate before the end of PS. The SWS/PS-on neurons were more sensitive to the change in the electroencephalogram (EEG) than the PS-on neurons, as, during a PS episode, the slightest interruption of rhythmic theta activity resulted in cessation of discharge of the SWS/PS-on neurons. These findings support the view that, in the mouse SubLDT, PS-on neurons play an important role in the induction, maintenance, and cessation of PS, while SWS/PS-on neurons play a role in the maintenance of the PS state in particular and the sleep state in general. PMID:26424378

  3. Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation.

    PubMed

    Tokuda, Kazuhiro; Izumi, Yukitoshi; Zorumski, Charles F

    2011-07-01

    Using an antibody against 5α-reduced neurosteroids, predominantly allopregnanolone, we found that immunostaining in the CA1 region of rat hippocampal slices was confined to pyramidal neurons. This neurosteroid staining was increased following 15 min administration of 60 mm but not 20 mm ethanol, and the enhancement was blocked by finasteride and dutasteride, selective inhibitors of 5α-reductase, a key enzyme required for allopregnanolone synthesis. Consistent with a prior report indicating that N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation can promote steroid production, we observed that D-2-amino-5-phosphonovalerate (APV), a competitive NMDAR antagonist, blocked the effects of 60 mm ethanol on staining. We previously reported that 60 mm ethanol inhibits the induction of long-term potentiation (LTP), a cellular model for memory formation, in the CA1 region. In the present study, LTP inhibition by 60 mm ethanol was also overcome by both the 5α-reductase inhibitors and by APV. Furthermore, the effects of ethanol on neurosteroid production and LTP were mimicked by a low concentration of NMDA (1 μm), and the ability of NMDA to inhibit LTP and to enhance neurosteroid staining was reversed by finasteride and dutasteride, as well as by APV. These results indicate that ethanol paradoxically enhances GABAergic neurosteroid production by activation of unblocked NMDARs and that acute LTP inhibition by ethanol represents a form of NMDAR-mediated metaplasticity. PMID:21734282

  4. Neuronal activity controls transsynaptic geometry

    PubMed Central

    Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  5. Neuronal activity controls transsynaptic geometry.

    PubMed

    Glebov, Oleg O; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  6. The Chinese Classroom Paradox: A Cross-Cultural Comparison of Teacher Controlling Behaviors

    ERIC Educational Resources Information Center

    Zhou, Ning; Lam, Shui-Fong; Chan, Kam Chi

    2012-01-01

    Chinese classrooms present an intriguing paradox to the claim of self-determination theory that autonomy facilitates learning. Chinese teachers appear to be controlling, but Chinese students do not have poor academic performance in international comparisons. The present study addressed this paradox by examining the cultural differences in…

  7. Brainstem neurons responsible for postural, masseter or pharyngeal muscle atonia during paradoxical sleep in freely-moving cats.

    PubMed

    Sakai, K; Neuzeret, P-C

    2011-12-01

    In this mini review, we summarize our findings regarding the brainstem neurons responsible for the postural, masseter, or pharyngeal muscle atonia observed during paradoxical sleep (PS) in freely moving cats. Both the pons and medulla contain neurons showing tonic activation selective to PS and atonia, referred to as PS/atonia-on-neurons. The PS/atonia-on neurons, characterized by their most slow conducting property and located in the peri-locus coeruleus alpha (peri-LCa) and adjacent LCa of the mediodorsal pontine tegmentum, play a critical executive role in the somatic and orofacial muscle atonia observed during PS. Slow conducting medullary PS/atonia-on neurons located in the nuclei reticularis magnocellularis (Mc) and parvocellularis (Pc) may play a critical executive role in the generation of, respectively, antigravity or orofacial muscle atonia during PS. In addition, either tonic or phasic cessation of activity of medullary serotonergic neurons may play an important role in the atonia of genioglossus muscles during PS via a mechanism of disfacilitation. PMID:22205587

  8. Control of Neuronal Network in Caenorhabditis elegans

    PubMed Central

    Badhwar, Rahul; Bagler, Ganesh

    2015-01-01

    Caenorhabditis elegans, a soil dwelling nematode, is evolutionarily rudimentary and contains only ∼ 300 neurons which are connected to each other via chemical synapses and gap junctions. This structural connectivity can be perceived as nodes and edges of a graph. Controlling complex networked systems (such as nervous system) has been an area of excitement for mankind. Various methods have been developed to identify specific brain regions, which when controlled by external input can lead to achievement of control over the state of the system. But in case of neuronal connectivity network the properties of neurons identified as driver nodes is of much importance because nervous system can produce a variety of states (behaviour of the animal). Hence to gain insight on the type of control achieved in nervous system we implemented the notion of structural control from graph theory to C. elegans neuronal network. We identified ‘driver neurons’ which can provide full control over the network. We studied phenotypic properties of these neurons which are referred to as ‘phenoframe’ as well as the ‘genoframe’ which represents their genetic correlates. We find that the driver neurons are primarily motor neurons located in the ventral nerve cord and contribute to biological reproduction of the animal. Identification of driver neurons and its characterization adds a new dimension in controllability of C. elegans neuronal network. This study suggests the importance of driver neurons and their utility to control the behaviour of the organism. PMID:26413834

  9. Network of hypothalamic neurons that control appetite

    PubMed Central

    Sohn, Jong-Woo

    2015-01-01

    The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233] PMID:25560696

  10. Paradoxes of photoconductive target and optical control of secondary ion yield

    SciTech Connect

    Rokakh, A. G. Matasov, M. D.

    2010-01-15

    This study of the photoconductivity of semiconductors, in particular, cadmium chalcogenides as materials for targets of vacuum image converters followed the path of overcoming paradoxes. The concepts developed by the classics of photoelectricity also help to understand the paradoxes of the new secondary-ion photoelectric effect, especially, its spectral characteristic. The optical channel of secondary ion yield control via a photoconductive target opens the way to a new branch of nanotechnology, i.e., optoionics.

  11. Salicylate selectively kills cochlear spiral ganglion neurons by paradoxically up-regulating superoxide.

    PubMed

    Deng, Lili; Ding, Dalian; Su, Jiping; Manohar, Senthilvelan; Salvi, Richard

    2013-10-01

    Aspirin and its active ingredient salicylate are potent antioxidants that have been reported to be neuro- and otoprotective. However, when consumed in large quantities, these drugs can cause temporary hearing loss and tinnitus. Moreover, recent studies indicate that after several days of treatment, salicylate selectively destroys the spiral ganglion neurons and auditory nerve fibers that relay sounds from the sensory hair cells to the brain. Why salicylate selectively damages spiral ganglion neurons while sparing the hair cells and supports cells is unclear. Here we show that high dose of salicylate trigger an apoptotic response in spiral ganglion neurons characterized morphologically by soma shrinkage and nuclear condensation and fragmentation plus activation of extrinsic initiator caspase-8 and intrinsic initiator caspase-9 several days after the onset of drug treatment. Salicylate treatment triggered an upsurge in the toxic superoxide radical only in spiral ganglion neurons, but not in neighboring hair cells and support cells. Mn TMPyP pentachloride, a cell permeable scavenger of superoxide blocked the expression of superoxide staining in spiral ganglion neurons and almost completely blocked the damage to the nerve fibers and spiral ganglion neurons. NMDA receptor activation is known to increase neuronal superoxide levels. Since NMDA receptors are mainly found on spiral ganglion neurons and since salicylate enhances NMDA receptor currents, the selective killing of spiral ganglion neurons is likely a consequence of enhanced and sustained activation of NMDA receptors by salicylate. PMID:23494753

  12. Timing control by redundant inhibitory neuronal circuits

    SciTech Connect

    Tristan, I. Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-15

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  13. Timing control by redundant inhibitory neuronal circuits

    NASA Astrophysics Data System (ADS)

    Tristan, I.; Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-03-01

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  14. Remote Control of Neuronal Signaling

    PubMed Central

    Rogan, Sarah C.

    2011-01-01

    A significant challenge for neuroscientists is to determine how both electrical and chemical signals affect the activity of cells and circuits and how the nervous system subsequently translates that activity into behavior. Remote, bidirectional manipulation of those signals with high spatiotemporal precision is an ideal approach to addressing that challenge. Neuroscientists have recently developed a diverse set of tools that permit such experimental manipulation with varying degrees of spatial, temporal, and directional control. These tools use light, peptides, and small molecules to primarily activate ion channels and G protein-coupled receptors (GPCRs) that in turn activate or inhibit neuronal firing. By monitoring the electrophysiological, biochemical, and behavioral effects of such activation/inhibition, researchers can better understand the links between brain activity and behavior. Here, we review the tools that are available for this type of experimentation. We describe the development of the tools and highlight exciting in vivo data. We focus primarily on designer GPCRs (receptors activated solely by synthetic ligands, designer receptors exclusively activated by designer drugs) and microbial opsins (e.g., channelrhodopsin-2, halorhodopsin, Volvox carteri channelrhodopsin) but also describe other novel techniques that use orthogonal receptors, caged ligands, allosteric modulators, and other approaches. These tools differ in the direction of their effect (activation/inhibition, hyperpolarization/depolarization), their onset and offset kinetics (milliseconds/minutes/hours), the degree of spatial resolution they afford, and their invasiveness. Although none of these tools is perfect, each has advantages and disadvantages, which we describe, and they are all still works in progress. We conclude with suggestions for improving upon the existing tools. PMID:21415127

  15. Paradoxical control properties of enzymes within pathways: can activation cause an enzyme to have increased control?

    PubMed Central

    Kholodenko, B N; Brown, G C

    1996-01-01

    It is widely assumed that within a metabolic pathway inhibition of an enzyme causes the control exerted by that enzyme over the flux through its own reaction to increase, whereas activation causes its control to decrease. This assumption forms the basis of a number of experimental methods. For a pathway conceptually divided into two enzyme groups connected via a single metabolite we have derived a general condition under which this assumption is false, and thus the pathway shows paradoxical control behaviour, i.e. increased control with activation and decreased control with inhibition of an enzyme or group of enzymes. Paradoxical control behaviour occurs widely when enzyme activity is altered by changing Km (if an enzyme is already close to saturation by its substrate), but may also occur with changes in Vmax. when the elasticity to the linking metabolite increases with its concentration (as in some cases of sigmoidal and exponential kinetics or for reactions catalysed by isoenzymes). These findings suggest that enzymes with sigmoidal kinetics may have low control in the absence of activation, but may gain control with activation, and thus have beneficial regulatory properties. PMID:8615766

  16. Parabrachial CGRP Neurons Control Meal Termination.

    PubMed

    Campos, Carlos A; Bowen, Anna J; Schwartz, Michael W; Palmiter, Richard D

    2016-05-10

    The lateral parabrachial nucleus is a conduit for visceral signals that cause anorexia. We previously identified a subset of neurons located in the external lateral parabrachial nucleus (PBel) that express calcitonin gene-related peptide (CGRP) and inhibit feeding when activated by illness mimetics. We report here that in otherwise normal mice, functional inactivation of CGRP neurons markedly increases meal size, with meal frequency being reduced in a compensatory manner, and renders mice insensitive to the anorexic effects of meal-related satiety peptides. Furthermore, CGRP neurons are directly innervated by orexigenic hypothalamic AgRP neurons, and photostimulation of AgRP fibers supplying the PBel delays satiation by inhibiting CGRP neurons, thereby contributing to AgRP-driven hyperphagia. By establishing a role for CGRP neurons in the control of meal termination and as a downstream mediator of feeding elicited by AgRP neurons, these findings identify a node in which hunger and satiety circuits interact to control feeding behavior. PMID:27166945

  17. Overcoming the Pigou-Downs Paradox Using Advanced Traffic Signal Control

    NASA Astrophysics Data System (ADS)

    Fowdur, S. C.; Rughooputh, S. D. D. V.

    2013-06-01

    Expansion of a road network has often been observed to cause more congestion and has led researchers to the formulation of traffic paradoxes such as the Pigou-Downs and the Braess paradoxes. In this paper, we present an application of advanced traffic signal control (ATSC) to overcome the Pigou-Downs paradox. Port Louis, the capital city of Mauritius is used to investigate the effect of using a harbor bridge to by-pass the city center. Using traffic cellular automata (TCA) simulations it has been shown how, if traffic is only gradually deviated along the by-pass, an overall longer travel time and decreased flux would result. By making use of ATSC, which involves traffic lights that sense the number of vehicles accumulated in the queue, better travel times and fluxes are achieved.

  18. Synchrony and Control of Neuronal Networks.

    NASA Astrophysics Data System (ADS)

    Schiff, Steven

    2001-03-01

    Cooperative behavior in the brain stems from the nature and strength of the interactions between neurons within a networked ensemble. Normal network activity takes place in a state of partial synchrony between neurons, and some pathological behaviors, such as epilepsy and tremor, appear to share a common feature of increased interaction strength. We have focused on the parallel paths of both detecting and characterizing the nonlinear synchronization present within neuronal networks, and employing feedback control methodology using electrical fields to modulate that neuronal activity. From a theoretical perspective, we see evidence for nonlinear generalized synchrony in networks of neurons that linear techniques are incapable of detecting (PRE 54: 6708, 1996), and we have described a decoherence transition between asymmetric nonlinear systems that is experimentally observable (PRL 84: 1689, 2000). In addition, we have seen evidence for unstable dimension variability in real neuronal systems that indicates certain physical limits of modelability when observing such systems (PRL 85, 2490, 2000). From an experimental perspective, we have achieved success in modulating epileptic seizures in neuronal networks using electrical fields. Extracellular neuronal activity is continuously recorded during field application through differential extracellular recording techniques, and the applied electric field strength is continuously updated using a computer controlled proportional feedback algorithm. This approach appears capable of sustained amelioration of seizure events when used with negative feedback. In negative feedback mode, such findings may offer a novel technology for seizure control. In positive feedback mode, adaptively applied electric fields may offer a more physiological means for neural modulation for prosthetic purposes than previously possible (J. Neuroscience, 2001).

  19. Prefrontal Parvalbumin Neurons in Control of Attention

    PubMed Central

    Kim, Hoseok; Ährlund-Richter, Sofie; Wang, Xinming; Deisseroth, Karl; Carlén, Marie

    2016-01-01

    Summary While signatures of attention have been extensively studied in sensory systems, the neural sources and computations responsible for top-down control of attention are largely unknown. Using chronic recordings in mice, we found that fast-spiking parvalbumin (FS-PV) interneurons in medial prefrontal cortex (mPFC) uniformly show increased and sustained firing during goal-driven attentional processing, correlating to the level of attention. Elevated activity of FS-PV neurons on the timescale of seconds predicted successful execution of behavior. Successful allocation of attention was characterized by strong synchronization of FS-PV neurons, increased gamma oscillations, and phase locking of pyramidal firing. Phase-locked pyramidal neurons showed gamma-phase-dependent rate modulation during successful attentional processing. Optogenetic silencing of FS-PV neurons deteriorated attentional processing, while optogenetic synchronization of FS-PV neurons at gamma frequencies had pro-cognitive effects and improved goal-directed behavior. FS-PV neurons thus act as a functional unit coordinating the activity in the local mPFC circuit during goal-driven attentional processing. PMID:26771492

  20. Paradoxes of Social Control: Children's Perspectives and Actions.

    ERIC Educational Resources Information Center

    Chevalier, Marsha

    1998-01-01

    Describes an action research project that explored whether internally negotiated group control was possible among preadolescents in school settings. Presents John Dewey's thoughts on social control. Discusses study of students' perspectives and actions concerning authority issues and social control. Describes a social studies curriculum used to…

  1. Neuronal Control of Adaptive Thermogenesis

    PubMed Central

    Yang, Xiaoyong; Ruan, Hai-Bin

    2015-01-01

    The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and associated metabolic disorders. By contrast, brown adipose tissue (BAT) burns fat and dissipates chemical energy as heat. The development and activation of “brown-like” adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation. PMID:26441839

  2. Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact.

    PubMed

    Belousov, Andrei B; Wang, Yongfu; Song, Ji-Hoon; Denisova, Janna V; Berman, Nancy E; Fontes, Joseph D

    2012-08-22

    In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death. PMID:22781494

  3. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc. PMID:26441452

  4. Prefrontal neuronal assemblies temporally control fear behaviour.

    PubMed

    Dejean, Cyril; Courtin, Julien; Karalis, Nikolaos; Chaudun, Fabrice; Wurtz, Hélène; Bienvenu, Thomas C M; Herry, Cyril

    2016-07-21

    Precise spike timing through the coordination and synchronization of neuronal assemblies is an efficient and flexible coding mechanism for sensory and cognitive processing. In cortical and subcortical areas, the formation of cell assemblies critically depends on neuronal oscillations, which can precisely control the timing of spiking activity. Whereas this form of coding has been described for sensory processing and spatial learning, its role in encoding emotional behaviour remains unknown. Fear behaviour relies on the activation of distributed structures, among which the dorsal medial prefrontal cortex (dmPFC) is known to be critical for fear memory expression. In the dmPFC, the phasic activation of neurons to threat-predicting cues, a spike-rate coding mechanism, correlates with conditioned fear responses and supports the discrimination between aversive and neutral stimuli. However, this mechanism does not account for freezing observed outside stimuli presentations, and the contribution of a general spike-time coding mechanism for freezing in the dmPFC remains to be established. Here we use a combination of single-unit and local field potential recordings along with optogenetic manipulations to show that, in the dmPFC, expression of conditioned fear is causally related to the organization of neurons into functional assemblies. During fear behaviour, the development of 4 Hz oscillations coincides with the activation of assemblies nested in the ascending phase of the oscillation. The selective optogenetic inhibition of dmPFC neurons during the ascending or descending phases of this oscillation blocks and promotes conditioned fear responses, respectively. These results identify a novel phase-specific coding mechanism, which dynamically regulates the development of dmPFC assemblies to control the precise timing of fear responses. PMID:27409809

  5. Paradoxical Relations between Perceived Power and Maternal Control.

    ERIC Educational Resources Information Center

    Mills, Rosemary S. L.

    1998-01-01

    Mothers of 3-year-old girls completed measures of parenting patterns and perceived power. Fathers and mothers assessed their daughters' fearfulness and extraversion. Found that low-power mothers appeared to assert greater or lesser control depending on their daughter's temperamental characteristics; mothers behaved in a more authoritarian manner…

  6. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling

    PubMed Central

    Chuhma, Nao; Mingote, Susana; Moore, Holly; Rayport, Stephen

    2014-01-01

    Summary Midbrain dopamine neurons fire in bursts conveying salient information. Bursts are associated with pauses in tonic firing of striatal cholinergic interneurons. While the reciprocal balance of dopamine and acetylcholine in the striatum is well known, how dopamine neurons control cholinergic neurons has not been elucidated. Here we show that dopamine neurons make direct fast dopaminergic and glutamatergic connections with cholinergic interneurons, with regional heterogeneity. Dopamine neurons drive a burst-pause firing sequence in cholinergic interneurons in the medial shell of the nucleus accumbens, mixed actions in the accumbens core, and a pause in the dorsal striatum. This heterogeneity is due mainly to regional variation in dopamine-neuron glutamate cotransmission. A single dose of amphetamine attenuates dopamine neuron connections to cholinergic interneurons with dose-dependent regional specificity. Overall, the present data indicate that dopamine neurons control striatal circuit function via discrete, plastic connections with cholinergic interneurons. PMID:24559678

  7. Investigating neuronal function with optically controllable proteins

    PubMed Central

    Zhou, Xin X.; Pan, Michael; Lin, Michael Z.

    2015-01-01

    In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603

  8. Hybrid upconversion nanomaterials for optogenetic neuronal control

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas; Liu, Jing-Jing; Pasquale, Nicholas; Lai, Jinping; McGowan, Heather; Pang, Zhiping P.; Lee, Ki-Bum

    2015-10-01

    Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by embedding upconversion nanomaterials, which can convert NIR light to blue luminescence, into polymeric scaffolds. These hybrid nanomaterial scaffolds allowed for NIR-mediated neuronal stimulation, with comparable efficiency as that of 470 nm blue light. Our platform was optimized for NIR-mediated optogenetic control by balancing multiple physicochemical properties of the nanomaterial (e.g. size, morphology, structure, emission spectra, concentration), thus providing an early demonstration of rationally-designing nanomaterial-based strategies for advanced neural applications.Nanotechnology-based approaches offer the chemical control required to develop precision tools suitable for applications in neuroscience. We report a novel approach employing hybrid upconversion nanomaterials, combined with the photoresponsive ion channel channelrhodopsin-2 (ChR2), to achieve near-infrared light (NIR)-mediated optogenetic control of neuronal activity. Current optogenetic methodologies rely on using visible light (e.g. 470 nm blue light), which tends to exhibit high scattering and low tissue penetration, to activate ChR2. In contrast, our approach enables the use of 980 nm NIR light, which addresses the short-comings of visible light as an excitation source. This was facilitated by

  9. Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning

    PubMed Central

    Joly-Amado, Aurélie; Denis, Raphaël G P; Castel, Julien; Lacombe, Amélie; Cansell, Céline; Rouch, Claude; Kassis, Nadim; Dairou, Julien; Cani, Patrice D; Ventura-Clapier, Renée; Prola, Alexandre; Flamment, Melissa; Foufelle, Fabienne; Magnan, Christophe; Luquet, Serge

    2012-01-01

    Obesity-related diseases such as diabetes and dyslipidemia result from metabolic alterations including the defective conversion, storage and utilization of nutrients, but the central mechanisms that regulate this process of nutrient partitioning remain elusive. As positive regulators of feeding behaviour, agouti-related protein (AgRP) producing neurons are indispensible for the hypothalamic integration of energy balance. Here, we demonstrate a role for AgRP-neurons in the control of nutrient partitioning. We report that ablation of AgRP-neurons leads to a change in autonomic output onto liver, muscle and pancreas affecting the relative balance between lipids and carbohydrates metabolism. As a consequence, mice lacking AgRP-neurons become obese and hyperinsulinemic on regular chow but display reduced body weight gain and paradoxical improvement in glucose tolerance on high-fat diet. These results provide a direct demonstration of a role for AgRP-neurons in the coordination of efferent organ activity and nutrient partitioning, providing a mechanistic link between obesity and obesity-related disorders. PMID:22990237

  10. Neuronal control of locomotor handedness in Drosophila

    PubMed Central

    Buchanan, Sean M.; Kain, Jamey S.; de Bivort, Benjamin L.

    2015-01-01

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  11. Control of aromatase in hippocampal neurons.

    PubMed

    Fester, Lars; Brandt, Nicola; Windhorst, Sabine; Pröls, Felicitas; Bläute, Corinna; Rune, Gabriele M

    2016-06-01

    Our knowledge on estradiol-induced modulation of synaptic function in the hippocampus is widely based on results following the application of the steroid hormone to either cell cultures, or after the treatment of gonadectomized animals, thus ignoring local neuronal estrogen synthesis. We and others, however, have shown that hippocampus-derived estradiol also controls synaptic plasticity in the hippocampus. Estradiol synthesis in the hippocampus is regulated by several mechanisms, which are reviewed in this report. The regulation of the activity of aromatase, the final enzyme of estrogen biosynthesis, by Ca(2+) transients, is of particular interest. Aromatase becomes inactivated as soon as it is phosphorylated by Ca(2+)-dependent kinases upon calcium release from internal stores. Accordingly, thapsigargin dephosphorylates aromatase and stimulates estradiol synthesis by depletion of internal Ca(2+) stores. Vice versa, letrozole, an aromatase inhibitor, phosphorylates aromatase and reduces estradiol synthesis. Treatment of the cultures with 17β-estradiol results in phosphorylation of the enzyme and increased aromatase protein expression, which suggests that estradiol synthesis in hippocampal neurons is regulated in an autocrine manner. PMID:26472556

  12. Neuronal control of locomotor handedness in Drosophila.

    PubMed

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  13. Paradoxical responses to positive end-expiratory pressure in patients with airway obstruction during controlled ventilation*

    PubMed Central

    Caramez, Maria Paula; Borges, Joao B.; Tucci, Mauro R.; Okamoto, Valdelis N.; Carvalho, Carlos R. R.; Kacmarek, Robert M.; Malhotra, Atul; Velasco, Irineu Tadeu; Amato, Marcelo B. P.

    2008-01-01

    Objective To reevaluate the clinical impact of external positive end-expiratory pressure (external-PEEP) application in patients with severe airway obstruction during controlled mechanical ventilation. The controversial occurrence of a paradoxic lung deflation promoted by PEEP was scrutinized. Design External-PEEP was applied stepwise (2 cm H2O, 5-min steps) from zero-PEEP to 150% of intrinsic-PEEP in patients already submitted to ventilatory settings minimizing overinflation. Two commonly used frequencies during permissive hypercapnia (6 and 9/min), combined with two different tidal volumes (VT: 6 and 9 mL/kg), were tested. Setting A hospital intensive care unit. Patients Eight patients were enrolled after confirmation of an obstructive lung disease (inspiratory resistance, >20 cm H2O/L per sec) and the presence of intrinsic-PEEP (≥5 cm H2O) despite the use of very low minute ventilation. Interventions All patients were continuously monitored for intra-arterial blood gas values, cardiac output, lung mechanics, and lung volume with plethysmography. Measurements and Main Results Three different responses to external-PEEP were observed, which were independent of ventilatory settings. In the biphasic response, isovolume-expiratory flows and lung volumes remained constant during progressive PEEP steps until a threshold, beyond which overinflation ensued. In the classic overinflation response, any increment of external-PEEP caused a decrease in isovolume-expiratory flows, with evident overinflation. In the paradoxic response, a drop in functional residual capacity during external-PEEP application (when compared to zero-external-PEEP) was commonly accompanied by decreased plateau pressures and total-PEEP, with increased isovolume-expiratory flows. The paradoxic response was observed in five of the eight patients (three with asthma and two with chronic obstructive pulmonary disease) during at least one ventilator pattern. Conclusions External-PEEP application may

  14. Predator interference effects on biological control: The "paradox" of the generalist predator revisited

    NASA Astrophysics Data System (ADS)

    Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Upadhyay, Ranjit Kumar

    2016-10-01

    An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a biological control, to check the population of a middle predator, that in turn is depredating on a prey species. We show that the inclusion of predator interference alone, can cause the solution of the top predator equation to blow-up in finite time, while there is global existence in the no interference case. This result shows that interference could actually cause a population explosion of the top predator, enabling it to control the target species, thus corroborating recent field evidence. Our results might also partially explain the population explosion of certain species, introduced originally for biological control purposes, such as the cane toad (Bufo marinus) in Australia, which now functions as a generalist top predator. We also show both Turing instability and spatio-temporal chaos in the model. Lastly we investigate time delay effects.

  15. Rapid Mechanically Controlled Rewiring of Neuronal Circuits.

    PubMed

    Magdesian, Margaret H; Lopez-Ayon, G Monserratt; Mori, Megumi; Boudreau, Dominic; Goulet-Hanssens, Alexis; Sanz, Ricardo; Miyahara, Yoichi; Barrett, Christopher J; Fournier, Alyson E; De Koninck, Yves; Grütter, Peter

    2016-01-20

    CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. Significance statement: Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain-machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function. PMID:26791225

  16. Neurons controlling jumping in froghopper insects.

    PubMed

    Bräunig, Peter; Burrows, Malcolm

    2008-03-01

    The neurons innervating muscles that deliver the enormous power enabling froghopper insects to excel at jumping were revealed by backfilling the nerves from those muscles. The huge trochanteral depressor muscle (M133) of a hind leg consists of four parts. The two largest parts (M133b,c) occupy most of the metathorax and are innervated by the same two motor neurons that have small, laterally placed somata in the metathoracic ganglion and axons in nerve N3C(2). They are also supplied by three dorsal unpaired median (DUM) neurons with the largest diameter somata in the central nervous system. A small metathoracic part of the muscle (M133d) is supplied by two motor neurons with lateral somata and by common inhibitory motor neuron CI(1), all with axons in nerve N3C(3) The motor neuron with the larger soma has a thick primary neurite that projects across the midline of the ganglion so that its branches overlap those of its symmetrical counterpart,innervating the same muscle of the other hind leg. The fourth coxal part of the muscle (M133a) is innervated by two motor neurons (one with a ventral and the other with a dorsal and lateral soma), by CI(1), and by a DUM neuron with a small soma. All have axons in nerve N5A. The two trochanteral levator muscles of a hind leg are contained within the coxa and are separately innervated by nerves N3B and N4, respectively. The properties of the different motor neurons are discussed in the context of the neural patterns that generate jumping. PMID:18095320

  17. The Paradoxical Role of Perceived Control in Late Life Health Behavior

    PubMed Central

    Chipperfield, Judith G.; Perry, Raymond P.; Pekrun, Reinhard; Barchfeld, Petra; Lang, Frieder R.; Hamm, Jeremy M.

    2016-01-01

    Research has established the health benefits of psychological factors, including the way individuals appraise outcomes. Although many studies confirm that appraising outcomes as controllable is adaptive for health, a paradoxical possibility is largely ignored: Perceived control may be detrimental under some conditions. Our premise was that appraising health as controllable but at the same time ascribing little value to it might signal a dysfunctional psychological mindset that fosters a mistaken sense of invincibility. During face-to-face interviews with a representative sample of older adults (age range = 72–99), we identified individuals with such a potentially maladaptive “invincible” mindset (high perceived control and low health value) and compared them to their counterparts on several outcomes. The findings were consistent with our hypotheses. The invincibles denied future risks, they lacked the activating emotion of fear, and they visited their physicians less often over a subsequent five-year period. Moreover, in contrast to their counterparts, the invincibles did not appear strategic in their approach to seeking care: Even poor health did not prompt them to seek the counsel of a physician. The recognition that psychological appraisals are modifiable highlights the promise of remedial methods to alter maladaptive mindsets, potentially improving quality of life. PMID:26974153

  18. The Paradoxical Role of Perceived Control in Late Life Health Behavior.

    PubMed

    Chipperfield, Judith G; Perry, Raymond P; Pekrun, Reinhard; Barchfeld, Petra; Lang, Frieder R; Hamm, Jeremy M

    2016-01-01

    Research has established the health benefits of psychological factors, including the way individuals appraise outcomes. Although many studies confirm that appraising outcomes as controllable is adaptive for health, a paradoxical possibility is largely ignored: Perceived control may be detrimental under some conditions. Our premise was that appraising health as controllable but at the same time ascribing little value to it might signal a dysfunctional psychological mindset that fosters a mistaken sense of invincibility. During face-to-face interviews with a representative sample of older adults (age range = 72-99), we identified individuals with such a potentially maladaptive "invincible" mindset (high perceived control and low health value) and compared them to their counterparts on several outcomes. The findings were consistent with our hypotheses. The invincibles denied future risks, they lacked the activating emotion of fear, and they visited their physicians less often over a subsequent five-year period. Moreover, in contrast to their counterparts, the invincibles did not appear strategic in their approach to seeking care: Even poor health did not prompt them to seek the counsel of a physician. The recognition that psychological appraisals are modifiable highlights the promise of remedial methods to alter maladaptive mindsets, potentially improving quality of life. PMID:26974153

  19. Optogenetic pharmacology for control of native neuronal signaling proteins

    PubMed Central

    Kramer, Richard H; Mourot, Alexandre; Adesnik, Hillel

    2016-01-01

    The optical neuroscience revolution is transforming how we study neural circuits. By providing a precise way to manipulate endogenous neuronal signaling proteins, it also has the potential to transform our understanding of molecular neuroscience. Recent advances in chemical biology have produced light-sensitive compounds that photoregulate a wide variety of proteins underlying signaling between and within neurons. Chemical tools for optopharmacology include caged agonists and antagonists and reversibly photoswitchable ligands. These reagents act on voltage-gated ion channels and neurotransmitter receptors, enabling control of neuronal signaling with a high degree of spatial and temporal precision. By covalently attaching photoswitch molecules to genetically tagged proteins, the newly emerging methodology of optogenetic pharmacology allows biochemically precise control in targeted subsets of neurons. Now that the tools for manipulating endogenous neuronal signaling proteins are available, they can be implemented in vivo to enhance our understanding of the molecular bases of brain function and dysfunctions. PMID:23799474

  20. Optogenetic pharmacology for control of native neuronal signaling proteins.

    PubMed

    Kramer, Richard H; Mourot, Alexandre; Adesnik, Hillel

    2013-07-01

    The optical neuroscience revolution is transforming how we study neural circuits. By providing a precise way to manipulate endogenous neuronal signaling proteins, it also has the potential to transform our understanding of molecular neuroscience. Recent advances in chemical biology have produced light-sensitive compounds that photoregulate a wide variety of proteins underlying signaling between and within neurons. Chemical tools for optopharmacology include caged agonists and antagonists and reversibly photoswitchable ligands. These reagents act on voltage-gated ion channels and neurotransmitter receptors, enabling control of neuronal signaling with a high degree of spatial and temporal precision. By covalently attaching photoswitch molecules to genetically tagged proteins, the newly emerging methodology of optogenetic pharmacology allows biochemically precise control in targeted subsets of neurons. Now that the tools for manipulating endogenous neuronal signaling proteins are available, they can be implemented in vivo to enhance our understanding of the molecular bases of brain function and dysfunctions. PMID:23799474

  1. Egr2-neurons control the adult respiratory response to hypercapnia

    PubMed Central

    Ray, Russell S.; Corcoran, Andrea E.; Brust, Rachael D.; Soriano, Laura P.; Nattie, Eugene E.; Dymecki, Susan M.

    2013-01-01

    ‘The early growth response 2 transcription factor, Egr2, establishes a population of brainstem neurons essential for normal breathing at birth. Egr2-null mice die perinatally of respiratory insufficiency characterized by subnormal respiratory rate and severe apneas. Here we bypass this lethality using a noninvasive pharmacogenetic approach to inducibly perturb neuron activity postnatally, and ask if Egr2-neurons control respiration in adult mice. We found that the normal ventilatory increase in response to elevated tissue CO2 was impaired, blunted by 63.1±8.7% after neuron perturbation due to deficits in both respiratory amplitude and frequency. By contrast, room-air breathing was unaffected, suggesting that the drive for baseline breathing may not require those Egr2-neurons manipulated here. Of the multiple brainstem sites proposed to affect ventilation in response to hypercapnia, only the retrotrapezoid nucleus, a portion of the serotonergic raphé, and a portion of the A5 nucleus have a history of Egr2 expression. We recently showed that acute inhibition of serotonergic neurons en masse blunts the CO2 chemoreflex in adults, causing a difference in hypercapnic response of ~50% after neuron perturbation through effects on respiratory amplitude only. The suppressed respiratory frequency upon perturbation of Egr2-neurons thus may stem from non-serotonergic neurons within the Egr2 domain. Perturbation of Egr2-neurons did not affect body temperature, even on exposure to ambient 4 °C. These findings support a model in which Egr2-neurons are a critical component of the respiratory chemoreflex into adulthood. Methodologically, these results highlight how pharmacogenetic approaches allow neuron function to be queried in unanesthetized adult animals, reaching beyond the roadblocks of developmental lethality and compensation as well as the anatomical disturbances associated with invasive methods. PMID:23261662

  2. Paradoxical response preceding control of Scedosporium apiospermum mycetoma with posaconazole treatment.

    PubMed

    Béraud, Guillaume; Desbois, Nicole; Coyo, Caroline; Quist, Danièle; Rozé, Benoit; Savorit, Luc; Cabié, André

    2015-01-01

    Mycetoma is a chronic granulomatous infection that is difficult to treat, notably when due to fungi such as Scedosporium apiospermum. Recent antifungal agents could be an option, but cases are rarely reported, and none with posaconazole. Paradoxical responses, defined as initial clinical worsening despite appropriate treatment, are common in tuberculosis but rare in deep mycoses in non-immunocompromised hosts. Hence, paradoxical responses in context other than mycobacterial infection in an immunocompromised host could provide insights into the pathophysiology and the optimal strategy for treatment. We report the first case of a mycetoma caused by S. apiospermum with bone involvement treated with posaconazole, and the paradoxical response observed at the beginning of the treatment. As with mycobacterial infections, a paradoxical response in deep mycosis could represent the earliest marker of therapeutic efficacy. PMID:26114987

  3. Evaluation of hydrogeologic aspects of proposed salinity control in Paradox Valley, Colorado

    USGS Publications Warehouse

    Konikow, Leonard F.; Bedinger, M.S.

    1978-01-01

    The salt load in the Dolores River increases by about 200,000 tons per year where it crosses Paradox Valley, Colorado, because of the discharge of a sodium chloride brine from an underlying aquifer. A ground-water management program to nearly eliminate this major source of salt, which eventually enters the Colorado River, can be designed on the basis of an accurate description of the hydrogeologic framework of Paradox Valley.

  4. Genesis and Control of bursting activity in a neuronal model

    NASA Astrophysics Data System (ADS)

    Cymbalyuk, Gennady

    2005-11-01

    Neurons are observed in one of four fundamental activity modes: silence, sub-threshold oscillations, tonic spiking, and bursting. Neurons exhibit various activity regimes and regime transitions that reflect their complement of ionic channels and modulatory state. The leech presents unique opportunities for experimental and theoretical studies on the dynamics of neuronal activity. The central pattern generator controlling the leech's heartbeat contains identified pairs of mutually inhibitory neurons. Bursting activity of neurons is an oscillatory activity consisting of intervals of repetitive spiking separated by intervals of quiescence. It has been observed in neurons under normal and pathological conditions. Neurons which are capable of generating bursting activity endogenously play an important role in motor control and other brain functions. Burst duration, interburst interval and spike frequency are crucial temporal characteristics of bursting activity and thus have to be regulated. Application of the bifurcation theory of dynamical systems suggests new mechanism of how bursting activity can be generated by neurons and how burst duration can be regulated. Here we describe two mechanisms for the transition between tonic spiking and bursting. First mechanism describes a smooth, continuous and reversible transition from tonic spiking into bursting in a model neuron. The burst duration increases with no bound as 1/(a-a0)^1/2, where a0 is a parameter determining the transition. The characteristic features of this mechanism are that (a) the burst duration can be made arbitrarily long while (b) inter-burst interval does not depend on the parameter. The second mechanism is concerned with bi-stability where simultaneous tonic spiking and bursting activities co-exist in a neuron. The mechanism is based on a saddle-node periodic orbit bifurcation with non-central homoclinic orbits. This bifurcation describes a transition between three qualitatively different types of

  5. Signal Propagation between Neuronal Populations Controlled by Micropatterning

    PubMed Central

    Albers, Jonas; Offenhäusser, Andreas

    2016-01-01

    The central nervous system consists of an unfathomable number of functional networks enabling highly sophisticated information processing. Guided neuronal growth with a well-defined connectivity and accompanying polarity is essential for the formation of these networks. To investigate how two-dimensional protein patterns influence neuronal outgrowth with respect to connectivity and functional polarity between adjacent populations of neurons, a microstructured model system was established. Exclusive cell growth on patterned substrates was achieved by transferring a mixture of poly-l-lysine and laminin to a cell-repellent glass surface by microcontact printing. Triangular structures with different opening angle, height, and width were chosen as a pattern to achieve network formation with defined behavior at the junction of adjacent structures. These patterns were populated with dissociated primary cortical embryonic rat neurons and investigated with respect to their impact on neuronal outgrowth by immunofluorescence analysis, as well as their functional connectivity by calcium imaging. Here, we present a highly reproducible technique to devise neuronal networks in vitro with a predefined connectivity induced by the design of the gateway. Daisy-chained neuronal networks with predefined connectivity and functional polarity were produced using the presented micropatterning method. Controlling the direction of signal propagation among populations of neurons provides insights to network communication and offers the chance to investigate more about learning processes in networks by external manipulation of cells and signal cascades. PMID:27379230

  6. Signal Propagation between Neuronal Populations Controlled by Micropatterning.

    PubMed

    Albers, Jonas; Offenhäusser, Andreas

    2016-01-01

    The central nervous system consists of an unfathomable number of functional networks enabling highly sophisticated information processing. Guided neuronal growth with a well-defined connectivity and accompanying polarity is essential for the formation of these networks. To investigate how two-dimensional protein patterns influence neuronal outgrowth with respect to connectivity and functional polarity between adjacent populations of neurons, a microstructured model system was established. Exclusive cell growth on patterned substrates was achieved by transferring a mixture of poly-l-lysine and laminin to a cell-repellent glass surface by microcontact printing. Triangular structures with different opening angle, height, and width were chosen as a pattern to achieve network formation with defined behavior at the junction of adjacent structures. These patterns were populated with dissociated primary cortical embryonic rat neurons and investigated with respect to their impact on neuronal outgrowth by immunofluorescence analysis, as well as their functional connectivity by calcium imaging. Here, we present a highly reproducible technique to devise neuronal networks in vitro with a predefined connectivity induced by the design of the gateway. Daisy-chained neuronal networks with predefined connectivity and functional polarity were produced using the presented micropatterning method. Controlling the direction of signal propagation among populations of neurons provides insights to network communication and offers the chance to investigate more about learning processes in networks by external manipulation of cells and signal cascades. PMID:27379230

  7. Inhibition Controls Asynchronous States of Neuronal Networks

    PubMed Central

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  8. Direct Bidirectional μ-Opioid Control of Midbrain Dopamine Neurons

    PubMed Central

    Hjelmstad, Gregory O.; Fujita, Wakako; Fields, Howard L.

    2014-01-01

    The ventral tegmental area (VTA) is required for the rewarding and motivational actions of opioids and activation of dopamine neurons has been implicated in these effects. The canonical model posits that opioid activation of VTA dopamine neurons is indirect, through inhibition of GABAergic inputs. However, VTA dopamine neurons also express postsynaptic μ-opioid peptide (MOP) receptors. We report here that in Sprague Dawley rat, the MOP receptor-selective agonist DAMGO (0.5–3 μm) depolarized or increased the firing rate of 87 of 451 VTA neurons (including 22 of 110 dopamine neurons). This DAMGO excitation occurs in the presence of GABAA receptor blockade and its EC50 value is two orders of magnitude lower than for presynaptic inhibition of GABA release on to VTA neurons. Consistent with a postsynaptic channel opening, excitations were accompanied by a decrease in input resistance. Excitations were blocked by CdCl2 (100 μm, n = 5) and ω-agatoxin-IVA (100 nm, n = 3), nonselective and Cav2.1 Ca2+ channel blockers, respectively. DAMGO also produced a postsynaptic inhibition in 233 of 451 VTA neurons, including 45 of 110 dopamine neurons. The mean reversal potential of the inhibitory current was −78 ± 7 mV and inhibitions were blocked by the K+ channel blocker BaCl2 (100 μm, n = 7). Blockade of either excitation or inhibition unmasked the opposite effect, suggesting that MOP receptors activate concurrent postsynaptic excitatory and inhibitory processes in most VTA neurons. These results provide a novel direct mechanism for MOP receptor control of VTA dopamine neurons. PMID:25355223

  9. Stochastic optimal control of single neuron spike trains

    NASA Astrophysics Data System (ADS)

    Iolov, Alexandre; Ditlevsen, Susanne; Longtin, André

    2014-08-01

    Objective. External control of spike times in single neurons can reveal important information about a neuron's sub-threshold dynamics that lead to spiking, and has the potential to improve brain-machine interfaces and neural prostheses. The goal of this paper is the design of optimal electrical stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic origin. In particular, we allow for the noise to be of arbitrary intensity. The optimal control problem is solved using dynamic programming when the controller has access to the voltage (closed-loop control), and using a maximum principle for the transition density when the controller only has access to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy of control degrades with increasing intensity of the noise. Simulations show that our algorithms produce the desired results for the LIF model, but also for the case where the neuron dynamics are given by more complex models than the LIF model. This is illustrated explicitly using the Morris-Lecar spiking neuron model, for which an LIF approximation is first obtained from a spike sequence using a previously published method. We further show that a related control strategy based on the assumption that there is no noise performs poorly in comparison to our noise-based strategies. The algorithms are numerically intensive and may require efficiency refinements to achieve real-time control; in particular, the open-loop context is more numerically demanding than the closed

  10. Optogenetic control of human neurons in organotypic brain cultures.

    PubMed

    Andersson, My; Avaliani, Natalia; Svensson, Andreas; Wickham, Jenny; Pinborg, Lars H; Jespersen, Bo; Christiansen, Søren H; Bengzon, Johan; Woldbye, David P D; Kokaia, Merab

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies. PMID:27098488

  11. Optogenetic control of human neurons in organotypic brain cultures

    PubMed Central

    Andersson, My; Avaliani, Natalia; Svensson, Andreas; Wickham, Jenny; Pinborg, Lars H.; Jespersen, Bo; Christiansen, Søren H.; Bengzon, Johan; Woldbye, David P.D.; Kokaia, Merab

    2016-01-01

    Optogenetics is one of the most powerful tools in neuroscience, allowing for selective control of specific neuronal populations in the brain of experimental animals, including mammals. We report, for the first time, the application of optogenetic tools to human brain tissue providing a proof-of-concept for the use of optogenetics in neuromodulation of human cortical and hippocampal neurons as a possible tool to explore network mechanisms and develop future therapeutic strategies. PMID:27098488

  12. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  13. Control of cortical neuronal migration by glutamate and GABA.

    PubMed

    Luhmann, Heiko J; Fukuda, A; Kilb, W

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca(2+) transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  14. Direct control of paralysed muscles by cortical neurons.

    PubMed

    Moritz, Chet T; Perlmutter, Steve I; Fetz, Eberhard E

    2008-12-01

    A potential treatment for paralysis resulting from spinal cord injury is to route control signals from the brain around the injury by artificial connections. Such signals could then control electrical stimulation of muscles, thereby restoring volitional movement to paralysed limbs. In previously separate experiments, activity of motor cortex neurons related to actual or imagined movements has been used to control computer cursors and robotic arms, and paralysed muscles have been activated by functional electrical stimulation. Here we show that Macaca nemestrina monkeys can directly control stimulation of muscles using the activity of neurons in the motor cortex, thereby restoring goal-directed movements to a transiently paralysed arm. Moreover, neurons could control functional stimulation equally well regardless of any previous association to movement, a finding that considerably expands the source of control signals for brain-machine interfaces. Monkeys learned to use these artificial connections from cortical cells to muscles to generate bidirectional wrist torques, and controlled multiple neuron-muscle pairs simultaneously. Such direct transforms from cortical activity to muscle stimulation could be implemented by autonomous electronic circuitry, creating a relatively natural neuroprosthesis. These results are the first demonstration that direct artificial connections between cortical cells and muscles can compensate for interrupted physiological pathways and restore volitional control of movement to paralysed limbs. PMID:18923392

  15. Control of central synaptic specificity in insect sensory neurons.

    PubMed

    Blagburn, Jonathan M; Bacon, Jonathan P

    2004-01-01

    Synaptic specificity is the culmination of several processes, beginning with the establishment of neuronal subtype identity, followed by navigation of the axon to the correct subdivision of neuropil, and finally, the cell-cell recognition of appropriate synaptic partners. In this review we summarize the work on sensory neurons in crickets, cockroaches, moths, and fruit flies that establishes some of the principles and molecular mechanisms involved in the control of synaptic specificity. The identity of a sensory neuron is controlled by combinatorial expression of transcription factors, the products of patterning and proneural genes. In the nervous system, sensory axon projections are anatomically segregated according to modality, stimulus quality, and cell-body position. A variety of cell-surface and intracellular signaling molecules are used to achieve this. Synaptic target recognition is also controlled by transcription factors such as Engrailed and may be, in part, mediated by cadherin-like molecules. PMID:15217325

  16. Control of REM sleep by ventral medulla GABAergic neurons.

    PubMed

    Weber, Franz; Chung, Shinjae; Beier, Kevin T; Xu, Min; Luo, Liqun; Dan, Yang

    2015-10-15

    Rapid eye movement (REM) sleep is a distinct brain state characterized by activated electroencephalogram and complete skeletal muscle paralysis, and is associated with vivid dreams. Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation, and the neural circuits in the pons have since been studied extensively. The medulla also contains neurons that are active during REM sleep, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic (γ-aminobutyric-acid-releasing) pathway originating from the ventral medulla powerfully promotes REM sleep in mice. Optogenetic activation of ventral medulla GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. Optrode recordings from channelrhodopsin-2-tagged ventral medulla GABAergic neurons showed that they were most active during REM sleep (REMmax), and during wakefulness they were preferentially active during eating and grooming. Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate ventral medulla neuron populations. Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, which are probably mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal grey. These results identify a key component of the pontomedullary network controlling REM sleep. The capability to induce REM sleep on command may offer a powerful tool for investigating its functions. PMID:26444238

  17. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  18. The paradox of adult asthma control: “Who’s in control anyway?”

    PubMed Central

    Hodder, Rick

    2007-01-01

    Surveys of Canadian patients with asthma and their physicians consistently report satisfaction with asthma management; however, when objective indicators are used, these same surveys also observe very poor levels of asthma control. The reasons for this apparent discrepancy, with an emphasis on the factors influencing adherence to therapy, are explored in the present review. Clues to the identification of patients at risk of dying from asthma and an approach to difficult asthma are discussed. PMID:17551599

  19. Microglia Control Neuronal Network Excitability via BDNF Signalling

    PubMed Central

    2013-01-01

    Microglia-neuron interactions play a crucial role in several neurological disorders characterized by altered neural network excitability, such as epilepsy and neuropathic pain. While a series of potential messengers have been postulated as substrates of the communication between microglia and neurons, including cytokines, purines, prostaglandins, and nitric oxide, the specific links between messengers, microglia, neuronal networks, and diseases have remained elusive. Brain-derived neurotrophic factor (BDNF) released by microglia emerges as an exception in this riddle. Here, we review the current knowledge on the role played by microglial BDNF in controlling neuronal excitability by causing disinhibition. The efforts made by different laboratories during the last decade have collectively provided a robust mechanistic paradigm which elucidates the mechanisms involved in the synthesis and release of BDNF from microglia, the downstream TrkB-mediated signals in neurons, and the biophysical mechanism by which disinhibition occurs, via the downregulation of the K+-Cl− cotransporter KCC2, dysrupting Cl−homeostasis, and hence the strength of GABAA- and glycine receptor-mediated inhibition. The resulting altered network activity appears to explain several features of the associated pathologies. Targeting the molecular players involved in this canonical signaling pathway may lead to novel therapeutic approach for ameliorating a wide array of neural dysfunctions. PMID:24089642

  20. On-line, voluntary control of human temporal lobe neurons

    PubMed Central

    Cerf, Moran; Thiruvengadam, Nikhil; Mormann, Florian; Kraskov, Alexander; Quiroga, Rodrigo Quian; Koch, Christof; Fried, Itzhak

    2010-01-01

    Daily life continually confronts us with an exuberance of external, sensory stimuli competing with a rich stream of internal deliberations, plans and ruminations. The brain must select one or more of these for further processing. How this competition is resolved across multiple sensory and cognitive regions is not known; nor is it clear how internal thoughts and attention regulate this competition1–4. Recording from single neurons in patients implanted with intracranial electrodes for clinical reasons5–9, here we demonstrate that humans can regulate the activity of their neurons in the medial temporal lobe (MTL) to alter the outcome of the contest between external images and their internal representation. Subjects looked at a hybrid superposition of two images representing familiar individuals, landmarks, objects or animals and had to enhance one image at the expense of the other, competing one. Simultaneously, the spiking activity of their MTL neurons in different subregions and hemispheres was decoded in real time to control the content of the hybrid. Subjects reliably regulated, often on the first trial, the firing rate of their neurons, increasing the rate of some while simultaneously decreasing the rate of others. They did so by focusing onto one image, which gradually became clearer on the computer screen in front of their eyes, and thereby overriding sensory input. On the basis of the firing of these MTL neurons, the dynamics of the competition between visual images in the subject's mind was visualized on an external display. PMID:20981100

  1. Optogenetic photochemical control of designer K+ channels in mammalian neurons.

    PubMed

    Fortin, Doris L; Dunn, Timothy W; Fedorchak, Alexis; Allen, Duane; Montpetit, Rachel; Banghart, Matthew R; Trauner, Dirk; Adelman, John P; Kramer, Richard H

    2011-07-01

    Currently available optogenetic tools, including microbial light-activated ion channels and transporters, are transforming systems neuroscience by enabling precise remote control of neuronal firing, but they tell us little about the role of indigenous ion channels in controlling neuronal function. Here, we employ a chemical-genetic strategy to engineer light sensitivity into several mammalian K(+) channels that have different gating and modulation properties. These channels provide the means for photoregulating diverse electrophysiological functions. Photosensitivity is conferred on a channel by a tethered ligand photoswitch that contains a cysteine-reactive maleimide (M), a photoisomerizable azobenzene (A), and a quaternary ammonium (Q), a K(+) channel pore blocker. Using mutagenesis, we identify the optimal extracellular cysteine attachment site where MAQ conjugation results in pore blockade when the azobenzene moiety is in the trans but not cis configuration. With this strategy, we have conferred photosensitivity on channels containing Kv1.3 subunits (which control axonal action potential repolarization), Kv3.1 subunits (which contribute to rapid-firing properties of brain neurons), Kv7.2 subunits (which underlie "M-current"), and SK2 subunits (which are Ca(2+)-activated K(+) channels that contribute to synaptic responses). These light-regulated channels may be overexpressed in genetically targeted neurons or substituted for native channels with gene knockin technology to enable precise optopharmacological manipulation of channel function. PMID:21525363

  2. Selection and parameterization of cortical neurons for neuroprosthetic control

    NASA Astrophysics Data System (ADS)

    Wahnoun, Remy; He, Jiping; Helms Tillery, Stephen I.

    2006-06-01

    When designing neuroprosthetic interfaces for motor function, it is crucial to have a system that can extract reliable information from available neural signals and produce an output suitable for real life applications. Systems designed to date have relied on establishing a relationship between neural discharge patterns in motor cortical areas and limb movement, an approach not suitable for patients who require such implants but who are unable to provide proper motor behavior to initially tune the system. We describe here a method that allows rapid tuning of a population vector-based system for neural control without arm movements. We trained highly motivated primates to observe a 3D center-out task as the computer played it very slowly. Based on only 10-12 s of neuronal activity observed in M1 and PMd, we generated an initial mapping between neural activity and device motion that the animal could successfully use for neuroprosthetic control. Subsequent tunings of the parameters led to improvements in control, but the initial selection of neurons and estimated preferred direction for those cells remained stable throughout the remainder of the day. Using this system, we have observed that the contribution of individual neurons to the overall control of the system is very heterogeneous. We thus derived a novel measure of unit quality and an indexing scheme that allowed us to rate each neuron's contribution to the overall control. In offline tests, we found that fewer than half of the units made positive contributions to the performance. We tested this experimentally by having the animals control the neuroprosthetic system using only the 20 best neurons. We found that performance in this case was better than when the entire set of available neurons was used. Based on these results, we believe that, with careful task design, it is feasible to parameterize control systems without any overt behaviors and that subsequent control system design will be enhanced with

  3. Corticothalamic Projection Neuron Development beyond Subtype Specification: Fog2 and Intersectional Controls Regulate Intraclass Neuronal Diversity.

    PubMed

    Galazo, Maria J; Emsley, Jason G; Macklis, Jeffrey D

    2016-07-01

    Corticothalamic projection neurons (CThPN) are a diverse set of neurons, critical for function of the neocortex. CThPN development and diversity need to be precisely regulated, but little is known about molecular controls over their differentiation and functional specialization, critically limiting understanding of cortical development and complexity. We report the identification of a set of genes that both define CThPN and likely control their differentiation, diversity, and function. We selected the CThPN-specific transcriptional coregulator Fog2 for functional analysis. We identify that Fog2 controls CThPN molecular differentiation, axonal targeting, and diversity, in part by regulating the expression level of Ctip2 by CThPN, via combinatorial interactions with other molecular controls. Loss of Fog2 specifically disrupts differentiation of subsets of CThPN specialized in motor function, indicating that Fog2 coordinates subtype and functional-area differentiation. These results confirm that we identified key controls over CThPN development and identify Fog2 as a critical control over CThPN diversity. PMID:27321927

  4. Control of REM Sleep by Ventral Medulla GABAergic Neurons

    PubMed Central

    Weber, Franz; Chung, Shinjae; Beier, Kevin T.; Luo, Liqun; Dan, Yang

    2015-01-01

    Rapid eye movement (REM) sleep is a distinct brain state characterized by activated electroencephalogram (EEG) and complete skeletal muscle paralysis, and it is associated with vivid dreams1-3. Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation2, and the neural circuits in the pons have since been studied extensively4-8. The medulla also contains neurons that are active during REM sleep9-13, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic pathway originating from the ventral medulla (vM) powerfully promotes REM sleep. Optogenetic activation of vM GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. Optrode recordings from channelrhodopsin 2 (ChR2)-tagged vM GABAergic neurons showed that they were most active during REM sleep (REM-max), and during wakefulness they were preferentially active during eating and grooming. Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate vM neuron populations. Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, which are likely mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal gray (vlPAG). These results identify a key component of the pontomedullary network controlling REM sleep. The capability to induce REM sleep on command may offer a powerful tool for investigating its functions. PMID:26444238

  5. Inhibitory control and error monitoring by human subthalamic neurons

    PubMed Central

    Bastin, J; Polosan, M; Benis, D; Goetz, L; Bhattacharjee, M; Piallat, B; Krainik, A; Bougerol, T; Chabardès, S; David, O

    2014-01-01

    The subthalamic nucleus (STN) has been shown to be implicated in the control of voluntary action, especially during tasks involving conflicting choice alternatives or rapid response suppression. However, the precise role of the STN during nonmotor functions remains controversial. First, we tested whether functionally distinct neuronal populations support different executive control functions (such as inhibitory control or error monitoring) even within a single subterritory of the STN. We used microelectrode recordings during deep brain stimulation surgery to study extracellular activity of the putative associative-limbic part of the STN while patients with severe obsessive-compulsive disorder performed a stop-signal task. Second, 2–4 days after the surgery, local field potential recordings of STN were used to test the hypothesis that STN oscillations may also reflect executive control signals. Extracellular recordings revealed three functionally distinct neuronal populations: the first one fired selectively before and during motor responses, the second one selectively increased their firing rate during successful inhibitory control, and the last one fired selectively during error monitoring. Furthermore, we found that beta band activity (15–35 Hz) rapidly increased during correct and incorrect behavioral stopping. Taken together, our results provide critical electrophysiological support for the hypothesized role of the STN in the integration of motor and cognitive-executive control functions. PMID:25203170

  6. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  7. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    PubMed Central

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin

    2016-01-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels. PMID:22270644

  8. Reflex carotid body chemoreceptor control of phrenic sympathetic neurons.

    PubMed

    Bałkowiec, A; Revenko, S; Szulczyk, P

    1993-04-01

    The reflex reaction of phrenic sympathetic neurons to stimulation of carotid body chemoreceptors was tested in chloralose-anesthetized and paralyzed cats with both vago-aortic nerves cut. During systemic hypoxia (animals ventilated with 10% O2 in N2) the sympathetic phrenic nerve activity increased from 100% in the control to 269%. This increase was markedly attenuated after cutting both sinus nerves. Reflex excitatory response in phrenic sympathetic neurons with the latency of 150 msec was evoked by electrical stimulation of the right carotid sinus nerve (3 pulses of 0.2 msec, 333 Hz). The central transmission time of the reflex was about 90 msec. Injecting 0.1 ml of 1 M NaHCO3 saturated with CO2 (in order to activate carotid body chemoreceptors) into the right or left carotid sinus, evoked excitatory responses in sympathetic neurons regardless of the side. The stimulation of carotid body chemoreceptors also increased somatic phrenic nerve activity. The three methods applied to the stimulation of carotid body chemoreceptors produced increase of phrenic nerve sympathetic activity. PMID:8390088

  9. Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes.

    PubMed

    Imaizumi, Kent; Sone, Takefumi; Ibata, Keiji; Fujimori, Koki; Yuzaki, Michisuke; Akamatsu, Wado; Okano, Hideyuki

    2015-12-01

    The CNS contains many diverse neuronal subtypes, and most neurological diseases target specific subtypes. However, the mechanism of neuronal subtype specificity of disease phenotypes remains elusive. Although in vitro disease models employing human pluripotent stem cells (PSCs) have great potential to clarify the association of neuronal subtypes with disease, it is currently difficult to compare various PSC-derived subtypes. This is due to the limited number of subtypes whose induction is established, and different cultivation protocols for each subtype. Here, we report a culture system to control the regional identity of PSC-derived neurons along the anteroposterior (A-P) and dorsoventral (D-V) axes. This system was successfully used to obtain various neuronal subtypes based on the same protocol. Furthermore, we reproduced subtype-specific phenotypes of amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) by comparing the obtained subtypes. Therefore, our culture system provides new opportunities for modeling neurological diseases with PSCs. PMID:26549851

  10. Kalman meets neuron - the intersection of control theory and neuroscience

    NASA Astrophysics Data System (ADS)

    Schiff, Steven

    2009-03-01

    Since the 1950s, we have developed mature theories of modern control theory and computational neuroscience with almost no interaction between these disciplines. With the advent of computationally efficient nonlinear Kalman filtering techniques, along with improved neuroscience models which provide increasingly accurate reconstruction of dynamics in a variety of important normal and disease states in the brain, the prospects for a synergistic interaction between these fields are now strong. I will show recent examples of the use of nonlinear control theory for the assimilation and control of single neuron dynamics, a novel framework for dynamic clamp, the modulation of oscillatory wave dynamics in brain cortex, a control framework for Parkinsonian dynamics and seizures, and the use of optimized parameter model networks to assimilate complex network data.

  11. Fuzzy decoupling controller based on multimode control algorithm of PI-single neuron and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Xianxia; Wang, Jian; Qin, Tinggao

    2003-09-01

    Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.

  12. Hippocampal Somatostatin Interneurons Control the Size of Neuronal Memory Ensembles.

    PubMed

    Stefanelli, Thomas; Bertollini, Cristina; Lüscher, Christian; Muller, Dominique; Mendez, Pablo

    2016-03-01

    Hippocampal neurons activated during encoding drive the recall of contextual fear memory. Little is known about how such ensembles emerge during acquisition and eventually form the cellular engram. Manipulating the activity of granule cells (GCs) of the dentate gyrus (DG), we reveal a mechanism of lateral inhibition that modulates the size of the cellular engram. GCs engage somatostatin-positive interneurons that inhibit the dendrites of surrounding GCs. Our findings reveal a microcircuit within the DG that controls the size of the cellular engram and the stability of contextual fear memory. PMID:26875623

  13. Combinatorial control of a neuron-specific exon.

    PubMed Central

    Modafferi, E F; Black, D L

    1999-01-01

    The mouse c-src gene contains a short neuron-specific exon, N1. N1 exon splicing is partly controlled by an intronic splicing enhancer sequence that activates splicing of a heterologous reporter exon in both neural and nonneural cells. Here we attempt to dissect all of the regulatory elements controlling the N1 exon and examine how these multiple elements work in combination. We show that the 3' splice site sequence upstream of exon N1 represses the activation of splicing by the downstream intronic enhancer. This repression is stronger in nonneural cells and these two regulatory sequences combine to make a reporter exon highly cell-type specific. Substitution of the 3' splice site of this test exon with sites from other exons indicates that activation by the enhancer is very dependent on the nature of the upstream 3' splice site. In addition, we identify a previously uncharacterized purine-rich sequence within exon N1 that cooperates with the downstream intronic enhancer to increase exon inclusion. Finally, different regulatory elements were tested in multiple cell lines of both neuronal and nonneuronal origin. The individual splicing regulatory sequences from the src gene vary widely in their activity between different cell lines. These results demonstrate how a simple cassette exon is controlled by a variety of regulatory elements that only in combination will produce the correct tissue specificity of splicing. PMID:10334339

  14. Spatial organization of cortical and spinal neurons controlling motor behavior

    PubMed Central

    Levine, Ariel J; Lewallen, Kathryn A; Pfaff, Samuel L

    2013-01-01

    A major task of the central nervous system (CNS) is to control behavioral actions, which necessitates a precise regulation of muscle activity. The final components of the circuitry controlling muscles are the motorneurons, which settle into pools in the ventral horn of the spinal cord in positions that mirror the musculature organization within the body. This ‘musculotopic’ motor-map then becomes the internal CNS reference for the neuronal circuits that control motor commands. This review describes recent progress in defining the neuroanatomical organization of the higher-order motor circuits in the cortex and spinal cord, and our current understanding of the integrative features that contribute to complex motor behaviors. We highlight emerging evidence that cortical and spinal motor command centers are loosely organized with respect to the musculotopic spatial-map, but these centers also incorporate organizational features that associate with the function of different muscle groups during commonly enacted behaviors. PMID:22841417

  15. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox

    PubMed Central

    Lee, Junghee; Ryu, Hoon; Ferrante, Robert J.; Morris, Sidney M.; Ratan, Rajiv R.

    2003-01-01

    l-Arginine is the only endogenous nitrogen-containing substrate of NO synthase (NOS), and it thus governs the production of NO during nervous system development as well as in disease states such as stroke, multiple sclerosis, Parkinson's disease, and HIV dementia. The “arginine paradox” refers to the dependence of cellular NO production on exogenous l-arginine concentration despite the theoretical saturation of NOS enzymes with intracellular l-arginine. Herein, we report that decreased availability of l-arginine blocked induction of NO production in cytokine-stimulated astrocytes, owing to inhibition of inducible NOS (iNOS) protein expression. However, activity of the promoter of the iNOS gene, induction of iNOS mRNA, and stability of iNOS protein were not inhibited under these conditions. Our results indicate that inhibition of iNOS activity by arginine depletion in stimulated astrocyte cultures occurs via inhibition of translation of iNOS mRNA. After stimulation by cytokines, uptake of l-arginine negatively regulates the phosphorylation status of the eukaryotic initiation factor (eIF2α), which, in turn, regulates translation of iNOS mRNA. eIF2α phosphorylation correlates with phosphorylation of the mammalian homolog of yeast GCN2 eIF2α kinase. As the kinase activity of GCN2 is activated by phosphorylation, these findings suggest that GCN2 activity represents a proximal step in the iNOS translational regulation by availability of l-arginine. These results provide an explanation for the arginine paradox for iNOS and define a distinct mechanism by which a substrate can regulate the activity of its associated enzyme. PMID:12655043

  16. Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition.

    PubMed

    Singh, Shalini; Howell, Danielle; Trivedi, Niraj; Kessler, Ketty; Ong, Taren; Rosmaninho, Pedro; Raposo, Alexandre Asf; Robinson, Giles; Roussel, Martine F; Castro, Diogo S; Solecki, David J

    2016-01-01

    In the developing mammalian brain, differentiating neurons mature morphologically via neuronal polarity programs. Despite discovery of polarity pathways acting concurrently with differentiation, it's unclear how neurons traverse complex polarity transitions or how neuronal progenitors delay polarization during development. We report that zinc finger and homeobox transcription factor-1 (Zeb1), a master regulator of epithelial polarity, controls neuronal differentiation by transcriptionally repressing polarity genes in neuronal progenitors. Necessity-sufficiency testing and functional target screening in cerebellar granule neuron progenitors (GNPs) reveal that Zeb1 inhibits polarization and retains progenitors in their germinal zone (GZ). Zeb1 expression is elevated in the Sonic Hedgehog (SHH) medulloblastoma subgroup originating from GNPs with persistent SHH activation. Restored polarity signaling promotes differentiation and rescues GZ exit, suggesting a model for future differentiative therapies. These results reveal unexpected parallels between neuronal differentiation and mesenchymal-to-epithelial transition and suggest that active polarity inhibition contributes to altered GZ exit in pediatric brain cancers. PMID:27178982

  17. Control of abdominal muscles by brain stem respiratory neurons in the cat

    NASA Technical Reports Server (NTRS)

    Miller, Alan D.; Ezure, Kazuhisa; Suzuki, Ichiro

    1985-01-01

    The nature of the control of abdominal muscles by the brain stem respiratory neurons was investigated in decerebrate unanesthetized cats. First, it was determined which of the brain stem respiratory neurons project to the lumbar cord (from which the abdominal muscles receive part of their innervation), by stimulating the neurons monopolarly. In a second part of the study, it was determined if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons; in these experiments, discriminate spontaneous spikes of antidromically acivated expiratory (E) neurons were used to trigger activity from both L1 and L2 nerves. A large projection was observed from E neurons in the caudal ventral respiratory group to the contralateral upper lumber cord. However, cross-correlation experiments found only two (out of 47 neuron pairs tested) strong monosynaptic connections between brain stem neurons and abdominal motoneurons.

  18. Control of abdominal muscles by brain stem respiratory neurons in the cat.

    PubMed

    Miller, A D; Ezure, K; Suzuki, I

    1985-07-01

    Control of abdominal musculature by brain stem respiratory neurons was studied in decerebrate unanesthetized cats by determining 1) which brain stem respiratory neurons could be antidromically activated from the lumbar cord, from which the abdominal muscles receive part of their innervation, and 2) if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons. A total of 462 respiratory neurons, located between caudal C2 and the retrofacial nucleus (Bötzinger complex), were tested for antidromic activation from the upper lumbar cord. Fifty-eight percent of expiratory (E) neurons (70/121) in the caudal ventral respiratory group (VRG) between the obex and rostral C1 were antidromically activated from contralateral L1. Eight of these neurons were activated at low thresholds from lamina VIII and IX in the L1-2 gray matter. One-third (14/41) of the E neurons that projected to L1 could also be activated from L4-5. Almost all antidromic E neurons had an augmenting firing pattern. Ten scattered inspiratory (I) neurons projected to L1 but could not be activated from L4-5. No neurons that fired during both E and I phases (phase-spanning neurons) were antidromically activated from the lumbar cord. In order to test for possible monosynaptic connections between descending E neurons and abdominal motoneurons, cross-correlations were obtained between 27 VRG E neurons, which were antidromically activated from caudal L2 and contralateral L1 and L2 abdominal nerve activity (47 neuron-nerve combinations). Only two neurons showed a correlation with one of the two nerves tested. Although there is a large projection to the lumbar cord from expiratory neurons in the ventral respiratory group caudal to the obex, cross-correlation analyses suggest that strong monosynaptic connections between these neurons and abdominal motoneurons are scarce. PMID:3162005

  19. Central Control of Circadian Phase in Arousal-Promoting Neurons

    PubMed Central

    Mahoney, Carrie E.; McKinley Brewer, Judy; Bittman, Eric L.

    2013-01-01

    Cells of the dorsomedial/lateral hypothalamus (DMH/LH) that produce hypocretin (HCRT) promote arousal in part by activation of cells of the locus coeruleus (LC) which express tyrosine hydroxylase (TH). The suprachiasmatic nucleus (SCN) drives endogenous daily rhythms, including those of sleep and wakefulness. These circadian oscillations are generated by a transcriptional-translational feedback loop in which the Period (Per) genes constitute critical components. This cell-autonomous molecular clock operates not only within the SCN but also in neurons of other brain regions. However, the phenotype of such neurons and the nature of the phase controlling signal from the pacemaker are largely unknown. We used dual fluorescent in situ hybridization to assess clock function in vasopressin, HCRT and TH cells of the SCN, DMH/LH and LC, respectively, of male Syrian hamsters. In the first experiment, we found that Per1 expression in HCRT and TH oscillated in animals held in constant darkness with a peak phase that lagged that in AVP cells of the SCN by several hours. In the second experiment, hamsters induced to split their locomotor rhythms by exposure to constant light had asymmetric Per1 expression within cells of the middle SCN at 6 h before activity onset (AO) and in HCRT cells 9 h before and at AO. We did not observe evidence of lateralization of Per1 expression in the LC. We conclude that the SCN communicates circadian phase to HCRT cells via lateralized neural projections, and suggests that Per1 expression in the LC may be regulated by signals of a global or bilateral nature. PMID:23826226

  20. Contribution of different limb controllers to modulation of motor cortex neurons during locomotion

    PubMed Central

    Zelenin, P. V.; Deliagina, T. G.; Orlovsky, G. N.; Karayannidou, A.; Dasgupta, N. M.; Sirota, M. G.; Beloozerova, I. N.

    2011-01-01

    During locomotion, neurons in motor cortex exhibit profound step-related frequency modulation. The source of this modulation is unclear. The aim of this study was to reveal the contribution of different limb controllers (locomotor mechanisms of individual limbs) to the periodic modulation of motor cortex neurons during locomotion. Experiments were conducted in chronically instrumented cats. The activity of single neurons was recorded during regular quadrupedal locomotion (control), as well as when only one pair of limbs (fore, hind, right, or left) was walking while another pair was standing. Comparison of the modulation patterns in these neurons (their discharge profile with respect to the step cycle) during control and different bipedal locomotor tasks revealed several groups of neurons that receive distinct combinations of inputs from different limb controllers. In the majority (73%) of neurons from the forelimb area of motor cortex, modulation during control was determined exclusively by forelimb controllers (right, left or both), while in the minority (27%) hindlimb controllers also contributed. By contrast, only in 30% of neurons from the hindlimb area was modulation determined exclusively by hindlimb controllers (right or both), while in 70% of them, the controllers of forelimbs also contributed. We suggest that such organization of inputs allows the motor cortex to contribute to the right-left limbs coordination within each of the girdles during locomotion, and that it also allows hindlimb neurons to participate in coordination of the movements of the hindlimbs with those of the forelimbs. PMID:21430163

  1. Control of neuronal subtype identity by the C. elegans ARID protein CFI-1.

    PubMed

    Shaham, Shai; Bargmann, Cornelia I

    2002-04-15

    The Caenorhabditis elegans hermaphrodite nervous system is composed of 302 neurons that fall into at least 118 diverse classes. Here we describe cfi-1, a gene that contributes to the development of neuronal diversity. cfi-1 promotes appropriate differentiation of the URA sensory neurons and inhibits URA from expressing the male-specific CEM neuronal fate. The UNC-86 POU homeodomain protein is present in CEM and URA neurons, and can promote expression of CEM-specific genes in both CEM and URA, but CFI-1 inhibits expression of these genes in the URA cells. cfi-1 also promotes appropriate differentiation and glutamate receptor expression in the AVD and PVC interneurons. cfi-1 encodes a conserved neuron- and muscle-restricted DNA-binding protein containing an A/T rich interaction domain (ARID). ARID proteins regulate early patterning and muscle fate in Drosophila, but they have not previously been implicated in the control of neuronal subtype identity. PMID:11959845

  2. Translational Control of Mitochondrial Energy Production Mediates Neuron Morphogenesis

    PubMed Central

    Oruganty-Das, Aparna; Ng, Teclise; Udagawa, Tsuyoshi; Goh, Eyleen L.K.; Richter, Joel D.

    2012-01-01

    SUMMARY Mitochondrial energy production is a tightly regulated process involving the coordinated transcription of several genes, catalysis of a plethora of posttranslational modifications, and the formation of very large molecular supercomplexes. The regulation of mitochondrial activity is particularly important for the brain, which is a high-energy-consuming organ that depends on oxidative phosphorylation to generate ATP. Here we show that brain mitochondrial ATP production is controlled by the cytoplasmic polyadenylation-induced translation of an mRNA encoding NDUFV2, a key mitochondrial protein. Knockout mice lacking the Cytoplasmic Polyadenylation Element Binding protein 1 (CPEB1) have brain-specific dysfunctional mitochondria and reduced ATP levels, which is due to defective polyadenylation-induced translation of electron transport chain complex I protein NDUFV2 mRNA. This reduced ATP results in defective dendrite morphogenesis of hippocampal neurons both in vitro and in vivo. These and other results demonstrate that CPEB1 control of mitochondrial activity is essential for normal brain development. PMID:23217258

  3. On controllability of neuronal networks with constraints on the average of control gains.

    PubMed

    Tang, Yang; Wang, Zidong; Gao, Huijun; Qiao, Hong; Kurths, Jürgen

    2014-12-01

    Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently. PMID:24733036

  4. Control of Food Intake and Energy Expenditure by Nos1 Neurons of the Paraventricular Hypothalamus

    PubMed Central

    Sutton, Amy K.; Pei, Hongjuan; Burnett, Korri H.; Myers, Martin G.; Rhodes, Christopher J.

    2014-01-01

    The paraventricular nucleus of the hypothalamus (PVH) contains a heterogeneous cluster of Sim1-expressing cell types that comprise a major autonomic output nucleus and play critical roles in the control of food intake and energy homeostasis. The roles of specific PVH neuronal subtypes in energy balance have yet to be defined, however. The PVH contains nitric oxide synthase-1 (Nos1)-expressing (Nos1PVH) neurons of unknown function; these represent a subset of the larger population of Sim1-expressing PVH (Sim1PVH) neurons. To determine the role of Nos1PVH neurons in energy balance, we used Cre-dependent viral vectors to both map their efferent projections and test their functional output in mice. Here we show that Nos1PVH neurons project to hindbrain and spinal cord regions important for food intake and energy expenditure control. Moreover, pharmacogenetic activation of Nos1PVH neurons suppresses feeding to a similar extent as Sim1PVH neurons, and increases energy expenditure and activity. Furthermore, we found that oxytocin-expressing PVH neurons (OXTPVH) are a subset of Nos1PVH neurons. OXTPVH cells project to preganglionic, sympathetic neurons in the thoracic spinal cord and increase energy expenditure upon activation, though not to the same extent as Nos1PVH neurons; their activation fails to alter feeding, however. Thus, Nos1PVH neurons promote negative energy balance through changes in feeding and energy expenditure, whereas OXTPVH neurons regulate energy expenditure alone, suggesting a crucial role for non-OXT Nos1PVH neurons in feeding regulation. PMID:25392498

  5. Rubrospinal control of static and dynamic fusimotor neurones.

    PubMed

    Appelberg, B; Jeneskog, T; Johansson, H

    1975-12-01

    Rubrospinal effects on about 60 extracellularyl recorded gamma-motoneurones were studied in anesthetized cats. All cells were antidromically identified from various muscle nerves. 23 cells were regarded as dynamic as they were activated from a mesencephalic region previously known to influence selectively muscle spindle dynamic sensitivity. The pattern of rubrospinal influence on static fusimotor neurones to different muscles closely followed that previously demonstrated for alpha-motoneurones with pr edominantly excitation of flexor neurones and excitation or inhibition in equal amounts of extensor cells. Dynamic fusimotor neurones were influenced in a strictly reciprocal manner with excitation of flexor cells and inhibition of extensor cells except for a few neurones which could not be reached from nucleur ruber. Evidence was also obtained indicating that the shortest path from nucleus ruber to static fusimotor neurones involves one interneurone. PMID:1211199

  6. Can Simple Rules Control Development of a Pioneer Vertebrate Neuronal Network Generating Behavior?

    PubMed Central

    Conte, Deborah; Hull, Mike; Merrison-Hort, Robert; al Azad, Abul Kalam; Buhl, Edgar; Borisyuk, Roman; Soffe, Stephen R.

    2014-01-01

    How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting “network” is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental “rules,” which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition. PMID:24403159

  7. A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb

    PubMed Central

    Tatti, Roberta; Seal, Rebecca P.; Edwards, Robert H.; Rodriguez, Ivan; Carleton, Alan

    2014-01-01

    In sensory systems, peripheral organs convey sensory inputs to relay networks where information is shaped by local microcircuits before being transmitted to cortical areas. In the olfactory system, odorants evoke specific patterns of sensory neuron activity which are transmitted to output neurons in olfactory bulb glomeruli. How sensory information is transferred and shaped at this level remains still unclear. Here we employ mouse genetics, 2-photon microscopy, electrophysiology and optogenetics, to identify a novel population of glutamatergic neurons (VGLUT3+) in the glomerular layer of the adult mouse olfactory bulb as well as several of their synaptic targets. Both peripheral and serotoninergic inputs control VGLUT3+ neurons firing. Furthermore, we show that VGLUT3+ neurons photostimulation in vivo strongly suppresses both spontaneous and odor-evoked firing of bulbar output neurons. In conclusion, we identify and characterize here a microcircuit controlling the transfer of sensory information at an early stage of the olfactory pathway. PMID:24804702

  8. Synapses with inhibitory neurons differentiate anterior cingulate from dorsolateral prefrontal pathways associated with cognitive control

    PubMed Central

    Medalla, M.; Barbas, H.

    2009-01-01

    Summary The primate dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) focus attention on relevant signals and suppress noise in cognitive tasks. However, their synaptic interactions and unique roles in cognitive control are unknown. We report that two distinct pathways to DLPFC area 9, one from the neighboring area 46 and the other from the functionally distinct ACC, similarly innervate excitatory neurons associated with selecting relevant stimuli. However, ACC has more prevalent and larger synapses with inhibitory neurons and preferentially innervates calbindin inhibitory neurons, which reduce noise by inhibiting excitatory neurons. In contrast, area 46 mostly innervates calretinin inhibitory neurons, which disinhibit excitatory neurons. These synaptic specializations suggest that ACC has a greater impact in reducing noise in dorsolateral areas during challenging cognitive tasks involving conflict, error, or reversing decisions, mechanisms that are disrupted in schizophrenia. These observations highlight the unique roles of the DLPFC and ACC in cognitive control. PMID:19249280

  9. Surface strategies for control of neuronal cell adhesion: A review

    NASA Astrophysics Data System (ADS)

    Roach, P.; Parker, T.; Gadegaard, N.; Alexander, M. R.

    2010-06-01

    Material engineering methods have been used for many years to develop biomedical devices for use within the body to augment, repair or replace damaged tissues ranging from contact lenses to heart valves. Here we review the findings gathered from the wide and varied surface analytical approaches applied to study the interaction between biology and man-made materials. The key material characteristics identified to be important for biological recognition are surface chemistry, topography and compliance. Model surfaces with controlled chemistry and topography have provided insight into biological response to various types of topographical features over a wide range of length scales from nano to micrometres, along with 3D matrices that have been used as scaffolds to support cells for tissue formation. The cellular response to surfaces with localised areas of patterned chemistry and to those presenting gradually changing chemistry are discussed. Where previous reviews have been structured around specific classes of surface modification, e.g. self-assembly, or have broadly examined the response of various cells to numerous surfaces, we aim in this article to focus in particular on the tissues involved in the nervous system whilst providing a broad overview of key issues from the field of cell and protein surface interactions with surfaces. The goal of repair and treatment of diseases related to the central and peripheral nervous systems rely on understanding the local interfacial environment and controlling responses at the cellular level. The role of the protein layer deposited from serum containing media onto man-made surfaces is discussed. We highlight the particular problems associated with the repair of the nervous system, and review how neuronal attachment and axon guidance can be accomplished using various surface cues when cultured with single and multiple cell types. We include a brief glossary of techniques discussed in the body of this article aimed at the

  10. Gene control in eukaryotes and the c-value paradox "excess" DNA as an impediment to transcription of coding sequences.

    PubMed

    Zuckerkandl, E

    1976-12-31

    mechanism, and the fugas involved thus may not puff. Puffs, large chromomeres and highest order interphase euchromatic DNP structure seem to be correlated with genes that need to be transcribed only under certain developmental conditions. It is proposed that the function of high order structure is to sequester genetic material, namely mainly controller sequences. Since such high order structure, in most cases, would be built up to house the controller dependencies of just one structural gene, the amount of DNA per structural gene needed for gene control would be considerable, and the concept, if correct, would go a long way towards explaining the c-value paradox ("excess" DNA in eukaryotes). In eurygenic determination, the high order structure is thought to be conditioned for melting or to actually melt to an intermediate level of structure. From there, stenogenic control, leading to transcription, is considered to carry the melting process further to yet lower structural levels... PMID:798041

  11. Biochemical pharmacology of paradoxical sleep

    PubMed Central

    Gaillard, J. -M.

    1983-01-01

    1 The role of noradrenergic cells in the regulation of paradoxical sleep is still controversial, and experimental data have given rise to contradictory interpretations. 2 Early investigations focused primarily on chemical neurotransmissions. However, the process of information transmission between cells involves many other factors, and the cell surface is an important site for transduction of messages into modifications of the activity of postsynaptic cells. 3 α-adrenoceptors are believed to play an important role in the control of wakefulness and paradoxical sleep. Experimental evidence suggests that physiological modulation of receptor sensitivity, possibly by specific neuro-modulators, may be a key mechanism in synaptic transmission. 4 In the investigation of the mechanisms involved in paradoxical sleep regulation, lesions of the locus coeruleus have given equivocal results. Collateral inhibition, probably mediated by α2-adrenoceptors, appears to be a powerful mechanism. The exact temporal relationship between noradrenergic cell activation and paradoxical sleep production is not established, but 5-HT appears to be involved. Differences between paradoxical sleep and waking may be related to a physiological modulation of α2-adrenoceptor sensitivity. PMID:6140943

  12. Adaptive Fractional-order Control for Synchronization of Two Coupled Neurons in the External Electrical Stimulation

    PubMed Central

    Mehdiabadi, M. R. Rahmani; Rouhani, E.; Mashhadi, S. K. Mousavi; Jalali, A. A.

    2014-01-01

    This paper addresses synchronizing two coupled chaotic FitzHugh–Nagumo (FHN) neurons with weakly gap junction under external electrical stimulation (EES). To transmit information among coupled neurons, by generalization of the integer-order FHN equations of the coupled system into the fractional-order in frequency domain using Crone approach, the behavior of each coupled neuron relies on its past behavior and the memorized system can be a better fit for the neuron response. An adaptive fractional-order controller based on the Lyaponuv stability theory was designed to synchronize two neurons electrically coupled with gap junction in EES. The proposed controller is also robust to the inevitable random noise such as disturbances of ionic channels. The simulation results demonstrate the effectiveness of the control scheme. PMID:25337373

  13. Adaptive Fractional-order Control for Synchronization of Two Coupled Neurons in the External Electrical Stimulation.

    PubMed

    Mehdiabadi, M R Rahmani; Rouhani, E; Mashhadi, S K Mousavi; Jalali, A A

    2014-01-01

    This paper addresses synchronizing two coupled chaotic FitzHugh-Nagumo (FHN) neurons with weakly gap junction under external electrical stimulation (EES). To transmit information among coupled neurons, by generalization of the integer-order FHN equations of the coupled system into the fractional-order in frequency domain using Crone approach, the behavior of each coupled neuron relies on its past behavior and the memorized system can be a better fit for the neuron response. An adaptive fractional-order controller based on the Lyaponuv stability theory was designed to synchronize two neurons electrically coupled with gap junction in EES. The proposed controller is also robust to the inevitable random noise such as disturbances of ionic channels. The simulation results demonstrate the effectiveness of the control scheme. PMID:25337373

  14. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2

    PubMed Central

    Liske, Holly; Qian, Xiang; Anikeeva, Polina; Deisseroth, Karl; Delp, Scott

    2013-01-01

    The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro. PMID:24173561

  15. Neuronal activity controls Bdnf expression via Polycomb de-repression and CREB/CBP/JMJD3 activation in mature neurons

    PubMed Central

    Palomer, Ernest; Carretero, Javier; Benvegnù, Stefano; Dotti, Carlos G.; Martin, Mauricio G.

    2016-01-01

    It has been recently described that in embryonic stem cells, the expression of some important developmentally regulated genes is repressed, but poised for fast activation under the appropriate stimuli. In this work we show that Bdnf promoters are repressed by Polycomb Complex 2 in mature hippocampal neurons, and basal expression is guaranteed by the coexistence with activating histone marks. Neuronal stimulation triggered by N-methyl-D-aspartate application induces the transcription of these promoters by H3K27Me3 demethylation and H3K27Me3 phosphorylation at Serine 28 leading to displacement of EZH2, the catalytic subunit of Polycomb Repressor Complex 2. Our data show that the fast transient expression of Bdnf promoters II and VI after neuronal stimulation is dependent on acetylation of histone H3K27 by CREB-p/CBP. Thus, regulatory mechanisms established during development seem to remain after differentiation controlling genes induced by different stimuli, as would be the case of early memory genes in mature neurons. PMID:27010597

  16. Circadian neuron feedback controls the Drosophila sleep--activity profile.

    PubMed

    Guo, Fang; Yu, Junwei; Jung, Hyung Jae; Abruzzi, Katharine C; Luo, Weifei; Griffith, Leslie C; Rosbash, Michael

    2016-08-18

    Little is known about the ability of Drosophila circadian neurons to promote sleep. Here we show, using optogenetic manipulation and video recording, that a subset of dorsal clock neurons (DN1s) are potent sleep-promoting cells that release glutamate to directly inhibit key pacemaker neurons. The pacemakers promote morning arousal by activating these DN1s, implying that a late-day feedback circuit drives midday siesta and night-time sleep. To investigate more plastic aspects of the sleep program, we used a calcium assay to monitor and compare the real-time activity of DN1 neurons in freely behaving males and females. Our results revealed that DN1 neurons were more active in males than in females, consistent with the finding that male flies sleep more during the day. DN1 activity is also enhanced by elevated temperature, consistent with the ability of higher temperatures to increase sleep. These new approaches indicate that DN1s have a major effect on the fly sleep-wake profile and integrate environmental information with the circadian molecular program. PMID:27479324

  17. Neuronal polarity selection by topography-induced focal adhesion control.

    PubMed

    Ferrari, Aldo; Cecchini, Marco; Serresi, Michela; Faraci, Paolo; Pisignano, Dario; Beltram, Fabio

    2010-06-01

    Interaction between differentiating neurons and the extracellular environment guides the establishment of cell polarity during nervous system development. Developing neurons read the physical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. In previous works we demonstrated that PC12 cell interaction with nanogratings (alternating lines of ridges and grooves of submicron size) promotes bipolarity and alignment to the substrate topography. Here, we investigate the role of focal adhesions, cell contractility, and actin dynamics in this process. Exploiting nanoimprint lithography techniques and a cyclic olefin copolymer, we engineered biocompatible nanostructured substrates designed for high-resolution live-cell microscopy. Our results reveal that neuronal polarization and contact guidance are based on a geometrical constraint of focal adhesions resulting in an angular modulation of their maturation and persistence. We report on ROCK1/2-myosin-II pathway activity and demonstrate that ROCK-mediated contractility contributes to polarity selection during neuronal differentiation. Importantly, the selection process confined the generation of actin-supported membrane protrusions and the initiation of new neurites at the poles. Maintenance of the established polarity was independent from NGF stimulation. Altogether our results imply that focal adhesions and cell contractility stably link the topographical configuration of the extracellular environment to a corresponding neuronal polarity state. PMID:20304485

  18. Ventromedial hypothalamic neurons control a defensive emotion state.

    PubMed

    Kunwar, Prabhat S; Zelikowsky, Moriel; Remedios, Ryan; Cai, Haijiang; Yilmaz, Melis; Meister, Markus; Anderson, David J

    2015-01-01

    Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers. PMID:25748136

  19. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control

    PubMed Central

    Zhang, Tianhe C.; Janik, John J.; Peters, Ryan V.; Chen, Gang; Ji, Ru-Rong

    2015-01-01

    Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry. PMID:25972582

  20. A Specific Population of Reticulospinal Neurons Controls the Termination of Locomotion.

    PubMed

    Juvin, Laurent; Grätsch, Swantje; Trillaud-Doppia, Emilie; Gariépy, Jean-François; Büschges, Ansgar; Dubuc, Réjean

    2016-06-14

    Locomotion requires the proper sequencing of neural activity to start, maintain, and stop it. Recently, brainstem neurons were shown to specifically stop locomotion in mammals. However, the cellular properties of these neurons and their activity during locomotion are still unknown. Here, we took advantage of the lamprey model to characterize the activity of a cell population that we now show to be involved in stopping locomotion. We find that these neurons display a burst of spikes that coincides with the end of swimming activity. Their pharmacological activation ends ongoing swimming, whereas the inactivation of these neurons dramatically impairs the rapid termination of swimming. These neurons are henceforth referred to as stop cells, because they play a crucial role in the termination of locomotion. Our findings contribute to the fundamental understanding of motor control and provide important details about the cellular mechanisms involved in locomotor termination. PMID:27264174

  1. Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition

    PubMed Central

    Singh, Shalini; Howell, Danielle; Trivedi, Niraj; Kessler, Ketty; Ong, Taren; Rosmaninho, Pedro; Raposo, Alexandre ASF; Robinson, Giles; Roussel, Martine F; Castro, Diogo S; Solecki, David J

    2016-01-01

    In the developing mammalian brain, differentiating neurons mature morphologically via neuronal polarity programs. Despite discovery of polarity pathways acting concurrently with differentiation, it's unclear how neurons traverse complex polarity transitions or how neuronal progenitors delay polarization during development. We report that zinc finger and homeobox transcription factor-1 (Zeb1), a master regulator of epithelial polarity, controls neuronal differentiation by transcriptionally repressing polarity genes in neuronal progenitors. Necessity-sufficiency testing and functional target screening in cerebellar granule neuron progenitors (GNPs) reveal that Zeb1 inhibits polarization and retains progenitors in their germinal zone (GZ). Zeb1 expression is elevated in the Sonic Hedgehog (SHH) medulloblastoma subgroup originating from GNPs with persistent SHH activation. Restored polarity signaling promotes differentiation and rescues GZ exit, suggesting a model for future differentiative therapies. These results reveal unexpected parallels between neuronal differentiation and mesenchymal-to-epithelial transition and suggest that active polarity inhibition contributes to altered GZ exit in pediatric brain cancers. DOI: http://dx.doi.org/10.7554/eLife.12717.001 PMID:27178982

  2. Designing optimal stimuli to control neuronal spike timing.

    PubMed

    Ahmadian, Yashar; Packer, Adam M; Yuste, Rafael; Paninski, Liam

    2011-08-01

    Recent advances in experimental stimulation methods have raised the following important computational question: how can we choose a stimulus that will drive a neuron to output a target spike train with optimal precision, given physiological constraints? Here we adopt an approach based on models that describe how a stimulating agent (such as an injected electrical current or a laser light interacting with caged neurotransmitters or photosensitive ion channels) affects the spiking activity of neurons. Based on these models, we solve the reverse problem of finding the best time-dependent modulation of the input, subject to hardware limitations as well as physiologically inspired safety measures, that causes the neuron to emit a spike train that with highest probability will be close to a target spike train. We adopt fast convex constrained optimization methods to solve this problem. Our methods can potentially be implemented in real time and may also be generalized to the case of many cells, suitable for neural prosthesis applications. With the use of biologically sensible parameters and constraints, our method finds stimulation patterns that generate very precise spike trains in simulated experiments. We also tested the intracellular current injection method on pyramidal cells in mouse cortical slices, quantifying the dependence of spiking reliability and timing precision on constraints imposed on the applied currents. PMID:21511704

  3. Ventromedial hypothalamic neurons control a defensive emotion state

    PubMed Central

    Kunwar, Prabhat S; Zelikowsky, Moriel; Remedios, Ryan; Cai, Haijiang; Yilmaz, Melis; Meister, Markus; Anderson, David J

    2015-01-01

    Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers. DOI: http://dx.doi.org/10.7554/eLife.06633.001 PMID:25748136

  4. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. PMID:27015310

  5. Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment

    PubMed Central

    Goeritz, Marie L.; Marder, Eve

    2014-01-01

    We describe a new technique to fit conductance-based neuron models to intracellular voltage traces from isolated biological neurons. The biological neurons are recorded in current-clamp with pink (1/f) noise injected to perturb the activity of the neuron. The new algorithm finds a set of parameters that allows a multicompartmental model neuron to match the recorded voltage trace. Attempting to match a recorded voltage trace directly has a well-known problem: mismatch in the timing of action potentials between biological and model neuron is inevitable and results in poor phenomenological match between the model and data. Our approach avoids this by applying a weak control adjustment to the model to promote alignment during the fitting procedure. This approach is closely related to the control theoretic concept of a Luenberger observer. We tested this approach on synthetic data and on data recorded from an anterior gastric receptor neuron from the stomatogastric ganglion of the crab Cancer borealis. To test the flexibility of this approach, the synthetic data were constructed with conductance models that were different from the ones used in the fitting model. For both synthetic and biological data, the resultant models had good spike-timing accuracy. PMID:25008414

  6. Aharonov-bohm paradox.

    NASA Technical Reports Server (NTRS)

    Trammel, G. T.

    1964-01-01

    Aharonov-bohm paradox involving charge particle interaction with stationary current distribution showing that vector potential term in canonical momenta expression represents electromagnetic field momentum

  7. The Integration Paradox

    PubMed Central

    Verkuyten, Maykel

    2016-01-01

    The integration paradox refers to the phenomenon of the more highly educated and structurally integrated immigrants turning away from the host society, rather than becoming more oriented toward it. This article provides an overview of the empirical evidence documenting this paradox in the Netherlands. In addition, the theoretical arguments and the available findings about the social psychological processes involved in this paradox are considered. The existing evidence for the integration paradox and what might explain it form the basis for making suggestion for future theoretical work and empirical research, and for discussing possible policy implications. PMID:27152028

  8. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    NASA Technical Reports Server (NTRS)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  9. Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS

    PubMed Central

    Scholz-Starke, Joachim; Cesca, Fabrizia

    2016-01-01

    The correct functioning of the nervous system depends on the exquisitely fine control of neuronal excitability and synaptic plasticity, which relies on an intricate network of protein-protein interactions and signaling that shapes neuronal homeostasis during development and in adulthood. In this complex scenario, Kinase D interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning (Kidins220/ARMS) acts as a multi-functional scaffold protein with preferential expression in the nervous system. Engaged in a plethora of interactions with membrane receptors, cytosolic signaling components and cytoskeletal proteins, Kidins220/ARMS is implicated in numerous cellular functions including neuronal survival, neurite outgrowth and maturation and neuronal activity, often in the context of neurotrophin (NT) signaling pathways. Recent studies have highlighted a number of cell- and context-specific roles for this protein in the control of synaptic transmission and neuronal excitability, which are at present far from being completely understood. In addition, some evidence has began to emerge, linking alterations of Kidins220 expression to the onset of various neurodegenerative diseases and neuropsychiatric disorders. In this review, we present a concise summary of our fragmentary knowledge of Kidins220/ARMS biological functions, focusing on the mechanism(s) by which it controls various aspects of neuronal activity. We have tried, where possible, to discuss the available evidence in the wider context of NT-mediated regulation, and to outline emerging roles of Kidins220/ARMS in human pathologies. PMID:27013979

  10. Control of proliferation rate of N27 dopaminergic neurons using Transcranial Magnetic Stimulation orientation

    NASA Astrophysics Data System (ADS)

    Meng, Yiwen; Hadimani, Ravi; Anantharam, Vellareddy; Kanthasamy, Anumantha; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) has been used to investigate possible treatments for a variety of neurological disorders. However, the effect that magnetic fields have on neurons has not been well documented in the literature. We have investigated the effect of different orientation of magnetic field generated by TMS coils with a monophasic stimulator on the proliferation rate of N27 neuronal cells cultured in flasks and multi-well plates. The proliferation rate of neurons would increase by exposed horizontally adherent N27 cells to a magnetic field pointing upward through the neuronal proliferation layer compared with the control group. On the other hand, proliferation rate would decrease in cells exposed to a magnetic field pointing downward through the neuronal growth layer compared with the control group. We confirmed results obtained from the Trypan-blue and automatic cell counting methods with those from the CyQuant and MTS cell viability assays. Our findings could have important implications for the preclinical development of TMS treatments of neurological disorders and represents a new method to control the proliferation rate of neuronal cells.

  11. Chemical identity of hypothalamic neurons engaged by leptin in reproductive control.

    PubMed

    Ratra, Dhirender V; Elias, Carol F

    2014-11-01

    The adipocyte-derived hormone leptin plays a critical role as a metabolic cue for the reproductive system. Conditions of low leptin levels observed in negative energy balance and loss-of-function mutations of leptin or leptin receptor genes are characterized by decreased fertility. In recent years, advances have been made for identifying possible hypothalamic neurons relaying leptin's neuroendocrine control of reproductive function. Studies from different laboratories have demonstrated that leptin action in the hypothalamo-pituitary-gonadal (HPG) axis is exerted via hypothalamic interneurons regulating gonadotropin-releasing hormone (GnRH) cells, oppose to direct action on GnRH neurons. Following this observation, studies focused on identifying leptin responsive interneurons. Using a Cre-loxP system to re-express or delete the leptin receptor long form (LepRb) from kisspeptin neurons, our laboratory found that leptin's action on kiss1 cells is neither required nor sufficient for leptin's role in reproductive function. Endogenous re-expression of LepRb however, in glutamatergic neurons of the ventral premammilary nucleus (PMV) or ablation of agouti-related protein (AgRP) neurons from leptin signaling-deficient mice are both sufficient to induce puberty and improve fertility. Recent studies have also shown that leptin action in first order GABAergic neurons is required for fertility. Together, these studies begin to delineate key neuronal populations involved in leptin's action in reproduction. In this review, we discuss recent advances made in the field and highlight the questions yet to be answered. PMID:24915437

  12. Laser speckle contrast reveals cerebral blood flow dynamics evoked by optogenetically controlled neuronal activity

    NASA Astrophysics Data System (ADS)

    Li, Nan; Thakor, Nitish V.; Pelled, Galit

    2013-03-01

    As a critical basis of functional brain imaging, neurovascular coupling describes the link between neuronal and hemodynamic changes. The majority of in vivo neurovascular coupling studies was performed by inducing sensory stimulation via afferent inputs. Unfortunately such an approach results in recruiting of multiple types of cells, which confounds the explanation of neuronal roles in stimulus evoked hemodynamic changes. Recently optogenetics has emerged to provide immediate control of neurons by exciting or inhibiting genetically engineered neurons expressing light sensitive proteins. However, there is a need for optical methods capable of imaging the concurrent hemodynamic changes. We utilize laser speckle contrast imaging (LSCI) to obtain high resolution display of cerebral blood flow (CBF) in the vicinity of the targeted neural population. LSCI is a minimally invasive method for imaging CBF in microvessels through thinned skull, and produces images with high spatiotemporal resolution, wide field of view. In the integrated system light sources with different wavelengths and band-passing/blocking filters were used to allow simultaneous optical manipulation of neuronal activities and optical imaging of corresponding CBF. Experimental studies were carried out in a rodent model expressing channalrhodopsin (ChR2) in excitatory neurons in the somatosensory cortex (S1). The results demonstrated significant increases of CBF in response to ChR2 stimulation (exciting neuronal firing) comparable to the CBF response to contralateral forepaw stimulation. The approach promises to be an exciting minimally invasive method to study neurovascular coupling. The complete system provides a novel approach for broad neuroscience applications.

  13. Paradoxes in dermatology

    PubMed Central

    Adya, Keshavmurthy A.; Inamadar, Arun C.; Palit, Aparna

    2013-01-01

    Many paradoxical phenomena related to clinical, immunological, and therapeutic dermatology have been described. While some of them can be explained logically, the cause for others can only be speculated. Whenever encountered in clinical practice, background knowledge of such paradoxes may be useful to the clinician. PMID:23741675

  14. Neurotrophin-receptor immunoreactive neurons in mesopontine regions involved in the control of behavioral states.

    PubMed

    Yamuy, J; Sampogna, S; Chase, M H

    2000-06-01

    The microinjection of nerve growth factor (NGF) and neurotrophin-3 (NT-3) into the rostral pontine tegmentum of adult cats rapidly induces long-lasting episodes of rapid eye movement (REM) sleep [J. Yamuy, F.R. Morales, M.H. Chase, Induction of rapid eye movement sleep by the microinjection of nerve growth factor into the pontine reticular formation of the cat, Neuroscience 66 (1995) 9-13]. Because this effect may be mediated by neurotrophin receptors, we sought to determine the distribution of neurons that contain low- and high-affinity neurotrophin receptors in regions of the feline pons and mesencephalon which are involved in the generation of REM sleep as well as neuronal groups that are involved in the control of REM sleep-related patterns of physiological activity. Using antibodies directed against p75, trkA, trkB and trkC, immunolabeled neurons were present in the latero-dorsal and pedunculo-pontine tegmental nuclei, the peribrachial nuclei, medial and lateral pontine reticular formation, the raphe nuclei, and the locus coeruleus. Giant reticular cells and large neurons in the mesencephalic trigeminal nucleus were immunoreactive for p75 and all trk receptors. Neurons that were devoid of neurotrophin-receptor immunoreactivity were intermingled with immunostained neurons in all explored structures. Thus, both low- and high-affinity neurotrophin receptors are conspicuously present in neurons located in mesopontine regions of adult cats. These data underscore the importance of neurotrophin-induced trophic actions on mesopontine neurons. Furthermore, the results support the hypothesis that NGF and NT-3 may modulate the electrical activity of neurons in the rostral pontine tegmentum that are responsible for the generation of REM sleep by acting on one or more of the neurotrophin receptors. PMID:10825475

  15. Scalable Control of Mounting and Attack by ESR1+ Neurons in the Ventromedial Hypothalamus

    PubMed Central

    Lee, Hyosang; Kim, Dong-Wook; Remedios, Ryan; Anthony, Todd E.; Chang, Angela; Madisen, Linda; Zeng, Hongkui; Anderson, David J.

    2014-01-01

    Social behaviors, such as aggression or mating, proceed through a series of appetitive and consummatory phases1 that are associated with increasing levels of arousal2. How such escalation is encoded in the brain, and linked to behavioral action selection, remains an important unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell type-specific optogenetic activation of this region elicited attack behavior, but not mounting3. We have identified a subset of VMHvl neurons marked by the estrogen receptor 1 (Esr1), and investigated their role in male social behavior. Optogenetic manipulations indicated that Esr1+ (but not Esr1-) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behavior. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behavior, rather than attack, towards both males and females, as well as sniffing and close investigation (CI). Increasing photostimulation intensity could promote a transition from CI and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1+ neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1+ neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population. PMID:24739975

  16. The activity of isolated snail neurons controlling locomotion is affected by glucose

    PubMed Central

    Dyakonova, Varvara; Hernádi, László; Ito, Etsuro; Dyakonova, Taisia; Zakharov, Igor; Sakharov, Dmitri

    2015-01-01

    The involvement of serotonin in mediating hunger-related changes in behavioral state has been described in many invertebrates. However, the mechanisms by which hunger signals to serotonergic cells remain unknown. We tested the hypothesis that serotonergic neurons can directly sense the concentration of glucose, a metabolic indicator of nutritional state. In the snail Lymnaea stagnalis, we demonstrate that completely isolated pedal serotonergic neurons that control locomotion changed their biophysical characteristics in response to glucose application by lowering membrane potential and decreasing the firing rate. Additionally, the excitatory response of the isolated serotonergic neurons to the neuroactive microenvironment of the pedal ganglia was significantly lowered by glucose application. Because hunger has been reported to increase the activity of select neurons and their responses to the pedal ganglia microenvironment, these responses to glucose are in accordance with the hypothesis that direct glucose signaling is involved in the mediation of the hunger-related behavioral state. PMID:27493515

  17. Contributions of 5-HT Neurons to Respiratory Control: Neuromodulatory and Trophic Effects

    PubMed Central

    Hodges, Matthew R.; Richerson, George B.

    2008-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is a neurotransmitter produced by a small number of neurons in the midbrain, pons and medulla. These neurons project widely throughout the neuraxis, where they release 5-HT and co-localized neuropeptides such as substance P (SP) and thyrotropin-releasing hormone (TRH). Each of these chemicals produce effects largely through G protein-coupled receptors, second messenger systems and subsequent neuromodulatory effects on target neurons. Emerging evidence suggests that 5-HT has additional modes of action during development and in adult mammals, including trophic effects (neurogenesis, cell differentiation, proliferation, migration and maturation) and influences on synaptic plasticity. Here, we discuss some of the neuromodulatory and trophic roles of 5-HT in general and in the context of respiratory control, as well as the regulation of release of modulatory neurotransmitters from 5-HT neurons. Future directions of study are also discussed. PMID:18595785

  18. Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes.

    PubMed

    Sultan, Sébastien; Li, Liyi; Moss, Jonathan; Petrelli, Francesco; Cassé, Frédéric; Gebara, Elias; Lopatar, Jan; Pfrieger, Frank W; Bezzi, Paola; Bischofberger, Josef; Toni, Nicolas

    2015-12-01

    Adult neurogenesis is regulated by the neurogenic niche, through mechanisms that remain poorly defined. Here, we investigated whether niche-constituting astrocytes influence the maturation of adult-born hippocampal neurons using two independent transgenic approaches to block vesicular release from astrocytes. In these models, adult-born neurons but not mature neurons showed reduced glutamatergic synaptic input and dendritic spine density that was accompanied with lower functional integration and cell survival. By taking advantage of the mosaic expression of transgenes in astrocytes, we found that spine density was reduced exclusively in segments intersecting blocked astrocytes, revealing an extrinsic, local control of spine formation. Defects in NMDA receptor (NMDAR)-mediated synaptic transmission and dendrite maturation were partially restored by exogenous D-serine, whose extracellular level was decreased in transgenic models. Together, these results reveal a critical role for adult astrocytes in local dendritic spine maturation, which is necessary for the NMDAR-dependent functional integration of newborn neurons. PMID:26606999

  19. Parkin Controls Dopamine Utilization in Human Midbrain Dopaminergic Neurons Derived from Induced Pluripotent Stem Cells

    PubMed Central

    Jiang, Houbo; Ren, Yong; Yuen, Eunice Y; Zhong, Ping; Ghaedi, Mahboobe; Hu, Zhixing; Azabdaftari, Gissou; Nakaso, Kazuhiro; Yan, Zhen; Feng, Jian

    2012-01-01

    Parkinson’s disease (PD) is defined by the degeneration of nigral dopaminergic (DA) neurons and can be caused by monogenic mutations of genes such as parkin. The lack of phenotype in parkin knockout mice suggests that human nigral DA neurons have unique vulnerabilities. Through the generation and analyses of induced pluripotent stem cells (iPSCs) from normal subjects and PD patients with parkin mutations, we show here that loss of parkin in human midbrain DA neurons greatly increased the transcription of monoamine oxidases and oxidative stress, significantly reduced DA uptake and increased spontaneous DA release. Lentiviral expression of parkin, but not its PD-linked mutant, rescued all the phenotypes. The results suggest that parkin controls dopamine utilization in human midbrain DA neurons by enhancing the precision of dopaminergic neurotransmission and suppressing dopamine oxidation. Thus, the study provides novel targets and a physiologically relevant screening platform for disease-modifying therapies of PD. PMID:22314364

  20. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells.

    PubMed

    Jiang, Houbo; Ren, Yong; Yuen, Eunice Y; Zhong, Ping; Ghaedi, Mahboobe; Hu, Zhixing; Azabdaftari, Gissou; Nakaso, Kazuhiro; Yan, Zhen; Feng, Jian

    2012-01-01

    Parkinson's disease (PD) is defined by the degeneration of nigral dopaminergic (DA) neurons and can be caused by monogenic mutations of genes such as parkin. The lack of phenotype in parkin knockout mice suggests that human nigral DA neurons have unique vulnerabilities. Here we generate induced pluripotent stem cells from normal subjects and PD patients with parkin mutations. We demonstrate that loss of parkin in human midbrain DA neurons greatly increases the transcription of monoamine oxidases and oxidative stress, significantly reduces DA uptake and increases spontaneous DA release. Lentiviral expression of parkin, but not its PD-linked mutant, rescues these phenotypes. The results suggest that parkin controls dopamine utilization in human midbrain DA neurons by enhancing the precision of DA neurotransmission and suppressing dopamine oxidation. Thus, the study provides novel targets and a physiologically relevant screening platform for disease-modifying therapies of PD. PMID:22314364

  1. Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns.

    PubMed

    Dogas, Z; Krolo, M; Stuth, E A; Tonkovic-Capin, M; Hopp, F A; McCrimmon, D R; Zuperku, E J

    1998-11-01

    To ascertain the role of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in shaping and controlling the phasic discharge patterns of medullary respiratory premotor neurons, localized pressure applications of the competitive GABAA receptor antagonist bicuculline (BIC) and the noncompetitive GABAA receptor antagonist picrotoxin (PIC) were studied. Multibarrel micropipettes were used in halothane anesthetized, paralyzed, ventilated, vagotomized dogs to record single unit activity from inspiratory and expiratory neurons in the caudal ventral respiratory group and to picoeject GABAA receptor antagonists. The moving time average of phrenic nerve activity was used to determine respiratory phase durations and to synchronize cycle-triggered histograms of discharge patterns. Picoejection of BIC and PIC had qualitatively different effects on the discharge patterns of respiratory neurons. BIC caused an increase in the discharge rate during the neuron's active phase without inducing activity during the neuron's normally silent phase. The resulting discharge patterns were amplified replicas (x2-3) of the underlying preejection phasic patterns. In contrast, picoejection of PIC did not increase the peak discharge rate during the neuron's active phase but induced a tonic level of activity during the neuron's normally silent phase. The maximum effective BIC dose (15 +/- 1.8 pmol/min) was considerably smaller than that for PIC (280 +/- 53 pmol/min). These findings suggest that GABAA receptors with differential pharmacology mediate distinct functions within the same neuron, 1) gain modulation that is BIC sensitive but PIC insensitive and 2) silent-phase inhibition blocked by PIC. These studies also suggest that the choice of an antagonist is an important consideration in the determination of GABA receptor function within the respiratory motor control system. PMID:9819249

  2. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals

    PubMed Central

    Koos, Tibor; Buzsáki, György

    2012-01-01

    Neuronal control with high temporal precision is possible with optogenetics, yet currently available methods do not enable to control independently multiple locations in the brains of freely moving animals. Here, we describe a diode-probe system that allows real-time and location-specific control of neuronal activity at multiple sites. Manipulation of neuronal activity in arbitrary spatiotemporal patterns is achieved by means of an optoelectronic array, manufactured by attaching multiple diode-fiber assemblies to high-density silicon probes or wire tetrodes and implanted into the brains of animals that are expressing light-responsive opsins. Each diode can be controlled separately, allowing localized light stimulation of neuronal activators and silencers in any temporal configuration and concurrent recording of the stimulated neurons. Because the only connections to the animals are via a highly flexible wire cable, unimpeded behavior is allowed for circuit monitoring and multisite perturbations in the intact brain. The capacity of the system to generate unique neural activity patterns facilitates multisite manipulation of neural circuits in a closed-loop manner and opens the door to addressing novel questions. PMID:22496529

  3. Quantum Quasi-Paradoxes and Quantum Sorites Paradoxes

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2009-03-01

    There can be generated many paradoxes or quasi-paradoxes that may occur from the combination of quantum and non-quantum worlds in physics. Even the passage from the micro-cosmos to the macro-cosmos, and reciprocally, can generate unsolved questions or counter-intuitive ideas. We define a quasi-paradox as a statement which has a prima facie self-contradictory support or an explicit contradiction, but which is not completely proven as a paradox. We present herein four elementary quantum quasi-paradoxes and their corresponding quantum Sorites paradoxes, which form a class of quantum quasi-paradoxes.

  4. Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons.

    PubMed

    Tabet, Ricardos; Moutin, Enora; Becker, Jérôme A J; Heintz, Dimitri; Fouillen, Laetitia; Flatter, Eric; Krężel, Wojciech; Alunni, Violaine; Koebel, Pascale; Dembélé, Doulaye; Tassone, Flora; Bardoni, Barbara; Mandel, Jean-Louis; Vitale, Nicolas; Muller, Dominique; Le Merrer, Julie; Moine, Hervé

    2016-06-28

    Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine. PMID:27233938

  5. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.

    PubMed

    Berglund, Ken; Birkner, Elisabeth; Augustine, George J; Hochgeschwender, Ute

    2013-01-01

    Manipulation of neuronal activity through genetically targeted actuator molecules is a powerful approach for studying information flow in the brain. In these approaches the genetically targeted component, a receptor or a channel, is activated either by a small molecule (chemical genetics) or by light from a physical source (optogenetics). We developed a hybrid technology that allows control of the same neurons by both optogenetic and chemical genetic means. The approach is based on engineered chimeric fusions of a light-generating protein (luciferase) to a light-activated ion channel (channelrhodopsin). Ionic currents then can be activated by bioluminescence upon activation of luciferase by its substrate, coelenterazine (CTZ), as well as by external light. In cell lines, expression of the fusion of Gaussia luciferase to Channelrhodopsin-2 yielded photocurrents in response to CTZ. Larger photocurrents were produced by fusing the luciferase to Volvox Channelrhodopsin-1. This version allowed chemical modulation of neuronal activity when expressed in cultured neurons: CTZ treatment shifted neuronal responses to injected currents and sensitized neurons to fire action potentials in response to subthreshold synaptic inputs. These luminescent channelrhodopsins--or luminopsins--preserve the advantages of light-activated ion channels, while extending their capabilities. Our proof-of-principle results suggest that this novel class of tools can be improved and extended in numerous ways. PMID:23544095

  6. A microfluidic platform for controlled biochemical stimulation of twin neuronal networks.

    PubMed

    Biffi, Emilia; Piraino, Francesco; Pedrocchi, Alessandra; Fiore, Gianfranco B; Ferrigno, Giancarlo; Redaelli, Alberto; Menegon, Andrea; Rasponi, Marco

    2012-06-01

    Spatially and temporally resolved delivery of soluble factors is a key feature for pharmacological applications. In this framework, microfluidics coupled to multisite electrophysiology offers great advantages in neuropharmacology and toxicology. In this work, a microfluidic device for biochemical stimulation of neuronal networks was developed. A micro-chamber for cell culturing, previously developed and tested for long term neuronal growth by our group, was provided with a thin wall, which partially divided the cell culture region in two sub-compartments. The device was reversibly coupled to a flat micro electrode array and used to culture primary neurons in the same microenvironment. We demonstrated that the two fluidically connected compartments were able to originate two parallel neuronal networks with similar electrophysiological activity but functionally independent. Furthermore, the device allowed to connect the outlet port to a syringe pump and to transform the static culture chamber in a perfused one. At 14 days invitro, sub-networks were independently stimulated with a test molecule, tetrodotoxin, a neurotoxin known to block action potentials, by means of continuous delivery. Electrical activity recordings proved the ability of the device configuration to selectively stimulate each neuronal network individually. The proposed microfluidic approach represents an innovative methodology to perform biological, pharmacological, and electrophysiological experiments on neuronal networks. Indeed, it allows for controlled delivery of substances to cells, and it overcomes the limitations due to standard drug stimulation techniques. Finally, the twin network configuration reduces biological variability, which has important outcomes on pharmacological and drug screening. PMID:22655017

  7. Role of non-neuronal cells in body weight and appetite control.

    PubMed

    Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Argente, Jesús; Chowen, Julie A

    2015-01-01

    The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control. PMID:25859240

  8. Role of Non-Neuronal Cells in Body Weight and Appetite Control

    PubMed Central

    Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Argente, Jesús; Chowen, Julie A.

    2015-01-01

    The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control. PMID:25859240

  9. Paradoxical response to levalbuterol.

    PubMed

    Broski, Sarah E; Amundson, Dennis E

    2008-04-01

    Asthma is a common condition that can substantially affect patients' quality of life. Although several drugs, most commonly beta-adrenergic agonists, alleviate symptoms of asthma, they may cause paradoxical bronchospasm or paradoxical bronchoconstriction. Levalbuterol hydrochloride-a pure form of the (R)-stereoisomer in racemic albuterol-eliminates the adrenergic properties that can cause such adverse effects. However, we report a case of paradoxical bronchoconstriction in a 36-year-old man who was recently diagnosed as having new-onset asthma and was treated with levalbuterol. PMID:18443029

  10. Controlling automatic imitative tendencies: Interactions between mirror neuron and cognitive control systems

    PubMed Central

    Cross, Katy A.; Torrisi, Salvatore; Losin, Elizabeth A. R.; Iacoboni, Marco

    2013-01-01

    Humans have an automatic tendency to imitate others. Although several regions commonly observed in social tasks have been shown to be involved in imitation control, there is little work exploring how these regions interact with one another. We used fMRI and dynamic causal modeling to identify imitation-specific control mechanisms and examine functional interactions between regions. Participants performed a pre-specified action (lifting their index or middle finger) in response to videos depicting the same two actions (biological cues) or dots moving with similar trajectories (non-biological cues). On congruent trials, the stimulus and response were similar (e.g. index finger response to index finger or left side dot stimulus), while on incongruent trials the stimulus and response were dissimilar (e.g. index finger response to middle finger or right side dot stimulus). Reaction times were slower on incongruent compared to congruent trials for both biological and non-biological stimuli, replicating previous findings that suggest the automatic imitative or spatially compatible (congruent) response must be controlled on incongruent trials. Neural correlates of the congruency effects were different depending on the cue type. The medial prefrontal cortex, anterior cingulate, inferior frontal gyrus pars opercularis (IFGpo) and the left anterior insula were involved specifically in controlling imitation. In addition, the IFGpo was also more active for biological compared to non-biological stimuli, suggesting the region represents the frontal node of the human mirror neuron system (MNS). Effective connectivity analysis exploring the interactions between these regions, suggests a role for the mPFC and ACC in imitative conflict detection and the anterior insula in conflict resolution processes, which may occur through interactions with the frontal node of the MNS. We suggest an extension of the previous models of imitation control involving interactions between imitation

  11. Control of a neuronal morphology program by an RNA-binding zinc finger protein, Unkempt.

    PubMed

    Murn, Jernej; Zarnack, Kathi; Yang, Yawei J; Durak, Omer; Murphy, Elisabeth A; Cheloufi, Sihem; Gonzalez, Dilenny M; Teplova, Marianna; Curk, Tomaž; Zuber, Johannes; Patel, Dinshaw J; Ule, Jernej; Luscombe, Nicholas M; Tsai, Li-Huei; Walsh, Christopher A; Shi, Yang

    2015-03-01

    Cellular morphology is an essential determinant of cellular function in all kingdoms of life, yet little is known about how cell shape is controlled. Here we describe a molecular program that controls the early morphology of neurons through a metazoan-specific zinc finger protein, Unkempt. Depletion of Unkempt in mouse embryos disrupts the shape of migrating neurons, while ectopic expression confers neuronal-like morphology to cells of different nonneuronal lineages. We found that Unkempt is a sequence-specific RNA-binding protein and identified its precise binding sites within coding regions of mRNAs linked to protein metabolism and trafficking. RNA binding is required for Unkempt-induced remodeling of cellular shape and is directly coupled to a reduced production of the encoded proteins. These findings link post-transcriptional regulation of gene expression with cellular shape and have general implications for the development and disease of multicellular organisms. PMID:25737280

  12. Control of a neuronal morphology program by an RNA-binding zinc finger protein, Unkempt

    PubMed Central

    Zarnack, Kathi; Durak, Omer; Murphy, Elisabeth A.; Cheloufi, Sihem; Gonzalez, Dilenny M.; Teplova, Marianna; Curk, Tomaž; Zuber, Johannes; Patel, Dinshaw J.; Ule, Jernej; Luscombe, Nicholas M.; Tsai, Li-Huei; Walsh, Christopher A.

    2015-01-01

    Cellular morphology is an essential determinant of cellular function in all kingdoms of life, yet little is known about how cell shape is controlled. Here we describe a molecular program that controls the early morphology of neurons through a metazoan-specific zinc finger protein, Unkempt. Depletion of Unkempt in mouse embryos disrupts the shape of migrating neurons, while ectopic expression confers neuronal-like morphology to cells of different nonneuronal lineages. We found that Unkempt is a sequence-specific RNA-binding protein and identified its precise binding sites within coding regions of mRNAs linked to protein metabolism and trafficking. RNA binding is required for Unkempt-induced remodeling of cellular shape and is directly coupled to a reduced production of the encoded proteins. These findings link post-transcriptional regulation of gene expression with cellular shape and have general implications for the development and disease of multicellular organisms. PMID:25737280

  13. Control of bursting synchronization in networks of Hodgkin-Huxley-type neurons with chemical synapses

    NASA Astrophysics Data System (ADS)

    Batista, C. A. S.; Viana, R. L.; Ferrari, F. A. S.; Lopes, S. R.; Batista, A. M.; Coninck, J. C. P.

    2013-04-01

    Thermally sensitive neurons present bursting activity for certain temperature ranges, characterized by fast repetitive spiking of action potential followed by a short quiescent period. Synchronization of bursting activity is possible in networks of coupled neurons, and it is sometimes an undesirable feature. Control procedures can suppress totally or partially this collective behavior, with potential applications in deep-brain stimulation techniques. We investigate the control of bursting synchronization in small-world networks of Hodgkin-Huxley-type thermally sensitive neurons with chemical synapses through two different strategies. One is the application of an external time-periodic electrical signal and another consists of a time-delayed feedback signal. We consider the effectiveness of both strategies in terms of protocols of applications suitable to be applied by pacemakers.

  14. Counsellor Education: A Paradox

    ERIC Educational Resources Information Center

    Davis, William L.; Marks, Stephen E.

    1972-01-01

    This article examines the nature and impact of paradoxical situations in counsellor education. The counsellor educator and trainee are the focus for defining and then examining these dilemmas. (Author)

  15. Thermal Expansion "Paradox."

    ERIC Educational Resources Information Center

    Fakhruddin, Hasan

    1993-01-01

    Describes a paradox in the equation for thermal expansion. If the calculations for heating a rod and subsequently cooling a rod are determined, the new length of the cool rod is shorter than expected. (PR)

  16. Length Paradox in Relativity

    ERIC Educational Resources Information Center

    Martins, Roberto de A.

    1978-01-01

    Describes a thought experiment using a general analysis approach with Lorentz transformations to show that the apparent self-contradictions of special relativity concerning the length-paradox are really non-existant. (GA)

  17. Paradoxes of geoelectrics

    NASA Astrophysics Data System (ADS)

    Savin, M. G.

    2016-03-01

    The problem of energy paradoxes revealed in geoelectrics are discussed. The experimental facts illustrating the anomalous energy characteristics of the magnetotelluric (MT) field are presented. An attempt is made to interpret these anomalies from the standpoint of directional analysis. Two three-layer models corresponding to the situation | Q| > 1 and widetilde {{S_z}} < 0 are found by the numerical modeling. The possibility of accounting for the observed paradoxes within the resonance model "heterogeneous plane wave—layered medium" is discussed.

  18. The core paradox.

    NASA Technical Reports Server (NTRS)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  19. Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve

    PubMed Central

    Machhada, Asif; Ang, Richard; Ackland, Gareth L.; Ninkina, Natalia; Buchman, Vladimir L.; Lythgoe, Mark F.; Trapp, Stefan; Tinker, Andrew; Marina, Nephtali; Gourine, Alexander V.

    2015-01-01

    Background The central nervous origins of functional parasympathetic innervation of cardiac ventricles remain controversial. Objective This study aimed to identify a population of vagal preganglionic neurons that contribute to the control of ventricular excitability. An animal model of synuclein pathology relevant to Parkinson’s disease was used to determine whether age-related loss of the activity of the identified group of neurons is associated with changes in ventricular electrophysiology. Methods In vivo cardiac electrophysiology was performed in anesthetized rats in conditions of selective inhibition of the dorsal vagal motor nucleus (DVMN) neurons by pharmacogenetic approach and in mice with global genetic deletion of all family members of the synuclein protein. Results In rats anesthetized with urethane (in conditions of systemic beta-adrenoceptor blockade), muscarinic and neuronal nitric oxide synthase blockade confirmed the existence of a tonic parasympathetic control of cardiac excitability mediated by the actions of acetylcholine and nitric oxide. Acute DVMN silencing led to shortening of the ventricular effective refractory period (vERP), a lowering of the threshold for triggered ventricular tachycardia, and prolongation of the corrected QT (QTc) interval. Lower resting activity of the DVMN neurons in aging synuclein-deficient mice was found to be associated with vERP shortening and QTc interval prolongation. Conclusion Activity of the DVMN vagal preganglionic neurons is responsible for tonic parasympathetic control of ventricular excitability, likely to be mediated by nitric oxide. These findings provide the first insight into the central nervous substrate that underlies functional parasympathetic innervation of the ventricles and highlight its vulnerability in neurodegenerative diseases. PMID:26051529

  20. The quercetin paradox

    SciTech Connect

    Boots, Agnes W. . E-mail: a.boots@farmaco.unimaas.nl; Li, Hui; Schins, Roel P.F.; Duffin, Rodger; Heemskerk, Johan W.M.; Bast, Aalt; Haenen, Guido R.M.M.

    2007-07-01

    Free radical scavenging antioxidants, such as quercetin, are chemically converted into oxidation products when they protect against free radicals. The main oxidation product of quercetin, however, displays a high reactivity towards thiols, which can lead to the loss of protein function. The quercetin paradox is that in the process of offering protection, quercetin is converted into a potential toxic product. In the present study, this paradox is evaluated using rat lung epithelial (RLE) cells. It was found that quercetin efficiently protects against H{sub 2}O{sub 2}-induced DNA damage in RLE cells, but this damage is swapped for a reduction in GSH level, an increase in LDH leakage as well as an increase of the cytosolic free calcium concentration. To our knowledge, this is the first study that indicates that the quercetin paradox, i.e. the exchange of damage caused by quercetin and its metabolites, also occurs in living lung cells. Following depletion of GSH in the cells by BSO pre-treatment, this quercetin paradox becomes more pronounced, confirming that the formation of thiol reactive quercetin metabolites is involved in the quercetin paradox. The quercetin paradox in living cells implies that the anti-oxidant directs oxidative damage selectively to thiol arylation. Apparently, the potential toxicity of metabolites formed during the actual antioxidant activity of free radical scavengers should be considered in antioxidant supplementation.

  1. Motor control may support mirror neuron research with new hypotheses and methods. Reply to comments on "Grasping synergies: A motor-control approach to the mirror neuron mechanism"

    NASA Astrophysics Data System (ADS)

    D'Ausilio, Alessandro; Bartoli, Eleonora; Maffongelli, Laura

    2015-03-01

    We are grateful to all commentators for their insightful commentaries and observations that enrich our proposal. One of our aims was indeed to bridge the gap between fields of research that, progressing independently, are facing similar issues regarding the neural representation of motor knowledge. In this respect, we were pleased to receive feedback from eminent researchers on both the mirror neuron as well as the motor control fields. Their expertise covers animal and human neurophysiology, as well as the computational modeling of neural and behavioral processes. Given their heterogeneous cultural perspectives and research approaches, a number of important open questions were raised. For simplicity we separated these issues into four sections. In the first section we present methodological aspects regarding how synergies can be measured in paradigms investigating the human mirror system. The second section regards the fundamental definition of what exactly synergies might be. The third concerns how synergies can generate testable predictions in mirror neuron research. Finally, the fourth section deals with the ultimate question regarding the function of the mirror neuron system.

  2. Chemical Identity of Hypothalamic Neurons Engaged by Leptin in Reproductive Control

    PubMed Central

    Ratra, Dhirender V.; Elias, Carol F.

    2014-01-01

    The adipocyte-derived hormone leptin plays a critical role as a metabolic cue for the reproductive system. Conditions of low leptin levels observed in negative energy balance and loss-of-function mutations of leptin or leptin receptor genes are characterized by decreased fertility. In recent years, advances have been made identifying possible hypothalamic neurons relaying leptin’s neuroendocrine control of reproductive function. Studies from different laboratories have demonstrated that leptin action in the hypothalamo-pituitary-gonadal (HPG) axis is exerted via hypothalamic interneurons regulating gonadotropin-releasing hormone (GnRH) cells, oppose to direct action on GnRH neurons. Following this observation, studies focused on identifying leptin responsive interneurons. Using a Cre-loxP system to re-express or delete the leptin receptor long form (LepRb) from Kisspeptin neurons, our laboratory found that leptin’s action on Kiss1 cells is neither required nor sufficient for leptin’s role in reproductive function. Endogenous re-expression of LepRb however, in glutamatergic neurons of the ventral premammilary nucleus (PMV) or ablation of agouti-related protein (AgRP) neurons from leptin signaling-deficient mice are both sufficient to induce puberty and improve fertility. Recent studies have also shown that leptin action in first order GABAergic neurons is required for fertility. Together, these studies begin to delineate key neuronal populations involved in leptin’s action in reproduction. In this review, we discuss recent advances made in the field and highlight the questions yet to be answered. PMID:24915437

  3. Optical controling dynamic and fluctuation processes in ensemble of neurons at pulsed electrical excitation ex vivo

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Seliverstov, George A.; Akchurin, Alexander G.; Akchurin, George G.

    2004-05-01

    Dynamic response of the somatic frog nerve on electrical pulsed excitation was investigated ex vivo. Strong fluctuation of consequence compound action potential in ensemble of neurons near-threshold was discovered. The nonlinear response of the Hodgkin-Huxley model neurons with external electrical pulsed was investigated and numeral results correlation with experiments. Complex dynamic of compound action potential was discovered when on-line time of stimulatory electrical pulses comparable with nerve refractory period. New techniques research nonlinear behavior using photodynamic reactions or UV-A radiation at somatic frog nerve was approved. This nonlinear dynamic regime was controlling laser induced inactivation of processes in membrane of nerve.

  4. Balance between Excitation and Inhibition Controls the Temporal Organization of Neuronal Avalanches

    NASA Astrophysics Data System (ADS)

    Lombardi, F.; Herrmann, H. J.; Perrone-Capano, C.; Plenz, D.; de Arcangelis, L.

    2012-06-01

    Neuronal avalanches, measured in vitro and in vivo, exhibit a robust critical behavior. Their temporal organization hides the presence of correlations. Here we present experimental measurements of the waiting time distribution between successive avalanches in the rat cortex in vitro. This exhibits a nonmonotonic behavior not usually found in other natural processes. Numerical simulations provide evidence that this behavior is a consequence of the alternation between states of high and low activity, named up and down states, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods, both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homeostatic mechanisms.

  5. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    PubMed

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception. PMID:25891934

  6. The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster.

    PubMed

    Li, Xianghua; Overton, Ian M; Baines, Richard A; Keegan, Liam P; O'Connell, Mary A

    2014-01-01

    RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar(5G1) null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar(5G1) mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar(5G1) null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability. PMID:24137011

  7. Motor neurons in Drosophila flight control: could b1 be the one?

    NASA Astrophysics Data System (ADS)

    Whitehead, Samuel; Shirangi, Troy; Cohen, Itai

    Similar to balancing a stick on one's fingertip, flapping flight is inherently unstable; maintaining stability is a delicate balancing act made possible only by near-constant, often-subtle corrective actions. For fruit flies, such corrective responses need not only be robust, but also fast: the Drosophila flight control reflex has a response latency time of ~5 ms, ranking it among the fastest reflexes in the animal kingdom. How is such rapid, robust control implemented physiologically? Here we present an analysis of a putatively crucial component of the Drosophila flight control circuit: the b1 motor neuron. Specifically, we apply mechanical perturbations to freely-flying Drosophila and analyze the differences in kinematics patterns between flies with manipulated and un-manipulated b1 motor neurons. Ultimately, we hope to identify the functional role of b1 in flight stabilization, with the aim of linking it to previously-proposed, reduced-order models for reflexive control.

  8. Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses

    PubMed Central

    Hu, Xiao; Tang-Schomer, Min D.; Huang, Wenwen; Xia, Xiao-Xia; Weiss, Anthony S.

    2014-01-01

    Tunable protein composites are important for constructing extracellular matrix mimics of human tissues with control of biochemical, structural, and mechanical properties. Molecular interaction mechanisms between silk fibroin protein and recombinant human tropoelastin, based on charge, are utilized to generate a new group of multifunctional protein alloys (mixtures of silk and tropoelastin) with different net charges. These new biomaterials are then utilized as a biomaterial platform to control neuron cell response. With a +38 net charge in water, tropoelastin molecules provide extraordinary elasticity and selective interactions with cell surface integrins. In contrast, negatively charged silk fibroin protein (net charge −36) provides remarkable toughness and stiffness with morphologic stability in material formats via autoclaving-induced beta-sheet crystal physical crosslinks. The combination of these properties in alloy format extends the versatility of both structural proteins, providing a new biomaterial platform. The alloys with weak positive charges (silk/tropoelastin mass ratio 75/25, net charge around +16) significantly improved the formation of neuronal networks and maintained cell viability of rat cortical neurons after 10 days in vitro. The data point to these protein alloys as an alternative to commonly used poly-L-lysine (PLL) coatings or other charged synthetic polymers, particularly with regard to the versatility of material formats (e.g., gels, sponges, films, fibers). The results also provide a practical example of physically designed protein materials with control of net charge to direct biological outcomes, in this case for neuronal tissue engineering. PMID:25093018

  9. Chemical Control of Grafted Human PSC-Derived Neurons in a Mouse Model of Parkinson's Disease.

    PubMed

    Chen, Yuejun; Xiong, Man; Dong, Yi; Haberman, Alexander; Cao, Jingyuan; Liu, Huisheng; Zhou, Wenhao; Zhang, Su-Chun

    2016-06-01

    Transplantation of human pluripotent stem cell (hPSC)-derived neurons is a promising avenue for treating disorders including Parkinson's disease (PD). Precise control over engrafted cell activity is highly desired, as cells do not always integrate properly into host circuitry and can cause suboptimal graft function or undesired outcomes. Here, we show tunable rescue of motor function in a mouse model of PD, following transplantation of human midbrain dopaminergic (mDA) neurons differentiated from hPSCs engineered to express DREADDs (designer receptors exclusively activated by designer drug). Administering clozapine-N-oxide (CNO) enabled precise DREADD-dependent stimulation or inhibition of engrafted neurons, revealing D1 receptor-dependent regulation of host neuronal circuitry by engrafted cells. Transplanted cells rescued motor defects, which could be reversed or enhanced by CNO-based control of graft function, and activating engrafted cells drives behavioral changes in transplanted mice. These results highlight the ability to exogenously and noninvasively control and refine therapeutic outcomes following cell transplantation. PMID:27133795

  10. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain.

    PubMed Central

    Goldman, S A; Nottebohm, F

    1983-01-01

    The vocal control nucleus designated HVc (hyperstriatum ventrale, pars caudalis) of adult female canaries expands in response to systemic testosterone administration, which also induces the females to sing in a male-like manner. We became interested in the possibility of neurogenesis as a potential basis for this phenomenon. Intact adult female canaries were injected with [3H]thymidine over a 2-day period. Some birds were given testosterone implants at various times before thymidine. The birds were sacrificed 5 wk after hormone implantation, and their brains were processed for autoradiography. In parallel control experiments, some birds were given implants of cholesterol instead of testosterone. All birds showed considerable numbers of labeled neurons, glia, endothelia, and ventricular zone cells in and around HVc. Ultrastructural analysis confirmed the identity of these labeled neurons. Cholesterol- and testosterone-treated birds had similar neuronal labeling indices, which ranged from 1.8% to 4.0% in HVc. Thus, neurogenesis occurred in these adults independently of exogenous hormone treatment. Conversely, both glial and endothelial proliferation rates were markedly stimulated by exogenous testosterone treatment. We determined the origin of the thymidine-incorporating neurons by sacrificing two thymidine-treated females soon after their thymidine injections, precluding any significant migration of newly labeled cells. Analysis of these brains revealed no cells of neuronal morphology present in HVc but a very heavily labeled ventricular zone overlying HVc. We conclude that neuronal precursors exist in the HVc ventricular zone that incorporate tritiated thymidine during the S phase preceding their mitosis; after division these cells migrate into, and to some extent beyond, HVc. This ventricular zone neurogenesis seems to be a normally occurring phenomenon in intact adult female canaries. Images PMID:6572982

  11. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state.

    PubMed

    Hedwig, B

    2000-02-01

    Crickets use different song patterns for acoustic communication. The stridulatory pattern-generating networks are housed within the thoracic ganglia but are controlled by the brain. This descending control of stridulation was identified by intracellular recordings and stainings of brain neurons. Its impact on the generation of calling song was analyzed both in resting and stridulating crickets and during cercal wind stimulation, which impaired the stridulatory movements and caused transient silencing reactions. A descending interneuron in the brain serves as a command neuron for calling-song stridulation. The neuron has a dorsal soma position, anterior dendritic processes, and an axon that descends in the contralateral connective. The neuron is present in each side of the CNS. It is not activated in resting crickets. Intracellular depolarization of the interneuron so that its spike frequency is increased to 60-80 spikes/s reliably elicits calling-song stridulation. The spike frequency is modulated slightly in the chirp cycle with the maximum activity in phase with each chirp. There is a high positive correlation between the chirp repetition rate and the interneuron's spike frequency. Only a very weak correlation, however, exists between the syllable repetition rate and the interneuron activity. The effectiveness of the command neuron depends on the activity state of the cricket. In resting crickets, experimentally evoked short bursts of action potentials elicit only incomplete calling-song chirps. In crickets that previously had stridulated during the experiment, short elicitation of interneuron activity can trigger sustained calling songs during which the interneuron exhibits a spike frequency of approximately 30 spikes/s. During sustained calling songs, the command neuron activity is necessary to maintain the stridulatory behavior. Inhibition of the interneuron stops stridulation. A transient increase in the spike frequency of the interneuron speeds up the chirp

  12. Controlled neuronal cell patterning and guided neurite growth on micropatterned nanofiber platforms

    NASA Astrophysics Data System (ADS)

    Malkoc, Veysi; Gallego-Perez, Daniel; Nelson, Tyler; Lannutti, John J.; Hansford, Derek J.

    2015-12-01

    Patterning neuronal cells and guiding neurite growth are important for applications such as prosthetics, cell based biosensors, and tissue engineering. In this paper, a microdevice is presented that provides neuronal cell patterning and guided neurite growth on a collagen coated gelatin/PCL nanofiber mat. The pattern consisted of a grid of polystyrene microwells/nodes to confine the cell bodies and orthogonal grooves to guide neurite growth from each node. Vacuum assisted cell seeding was used to localize cell bodies in the microwells and physically separate the cells during seeding. The electrospun nanofiber mats under the polystyrene microstructures were coated with collagen to enhance the cellular attachment and enhance differentiation. We evaluated the performance of our device using adhesion, viability, and differentiation assays of neuron-like PC12 cells compared to controls for vacuum seeding, spatial isolation and guidance, and collagen coating of the fibers. The device provided PC12 cell patterning with increased adhesion, differentiation, and guided neurite outgrowth compared to controls, demonstrating its potential for in vitro neuronal cell patterning studies.

  13. Automated analysis of sleep control via a single neuron active at sleep onset in C. elegans.

    PubMed

    Urmersbach, Birk; Besseling, Judith; Spies, Jan-Philipp; Bringmann, Henrik

    2016-04-01

    Longitudinal analyses are crucial for understanding long-term processes such as development and behavioral rhythms. For a complete understanding of such processes, both organism-level observations as well as single-cell observations are necessary. Sleep is an example for a long-term process that is under developmental control. This behavioral state is induced by conserved sleep-active neurons, but little is known about how sleep neurons control the physiology of an animal systemically. In the nematode C. elegans, sleep induction crucially requires the single RIS interneuron to actively induce a developmentally regulated sleep behavior. Here, we used RIS-induced sleep as an example of how longitudinal analyses can be automated. We developed methods to analyze both behavior and neural activity in larva across the sleep-wake cycle. To image behavior, we used an improved DIC contrast to extract the head and detect the nose. To image neural activity, we used GCaMP3 expression in a small number of neurons including RIS combined with a neuron discrimination algorithm. Thus, we present a comprehensive platform for automatically analyzing behavior and neural activity in C. elegans exemplified by using RIS-induced sleep during C. elegans development. genesis, 2016. © 2016 Wiley Periodicals, Inc. genesis 54:212-219, 2016. © 2016 Wiley Periodicals, Inc. PMID:26833569

  14. The study of the Bithorax-complex genes in patterning CCAP neurons reveals a temporal control of neuronal differentiation by Abd-B

    PubMed Central

    Moris-Sanz, M.; Estacio-Gómez, A.; Sánchez-Herrero, E.; Díaz-Benjumea, F. J.

    2015-01-01

    ABSTRACT During development, HOX genes play critical roles in the establishment of segmental differences. In the Drosophila central nervous system, these differences are manifested in the number and type of neurons generated by each neuroblast in each segment. HOX genes can act either in neuroblasts or in postmitotic cells, and either early or late in a lineage. Additionally, they can be continuously required during development or just at a specific stage. Moreover, these features are generally segment-specific. Lately, it has been shown that contrary to what happens in other tissues, where HOX genes define domains of expression, these genes are expressed in individual cells as part of the combinatorial codes involved in cell type specification. In this report we analyse the role of the Bithorax-complex genes – Ultrabithorax, abdominal-A and Abdominal-B – in sculpting the pattern of crustacean cardioactive peptide (CCAP)-expressing neurons. These neurons are widespread in invertebrates, express CCAP, Bursicon and MIP neuropeptides and play major roles in controlling ecdysis. There are two types of CCAP neuron: interneurons and efferent neurons. Our results indicate that Ultrabithorax and Abdominal-A are not necessary for specification of the CCAP-interneurons, but are absolutely required to prevent the death by apoptosis of the CCAP-efferent neurons. Furthermore, Abdominal-B controls by repression the temporal onset of neuropeptide expression in a subset of CCAP-efferent neurons, and a peak of ecdysone hormone at the end of larval life counteracts this repression. Thus, Bithorax complex genes control the developmental appearance of these neuropeptides both temporally and spatially. PMID:26276099

  15. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission.

    PubMed

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B; Zhang, Hailin; Gamper, Nikita

    2014-11-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na(+), and T-type Ca(2+) channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  16. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    PubMed Central

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  17. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    PubMed Central

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  18. Control of postnatal apoptosis in the neocortex by RhoA-subfamily GTPases determines neuronal density.

    PubMed

    Sanno, Hitomi; Shen, Xiao; Kuru, Nilgün; Bormuth, Ingo; Bobsin, Kristin; Gardner, Humphrey A R; Komljenovic, Dorde; Tarabykin, Victor; Erzurumlu, Reha S; Tucker, Kerry L

    2010-03-24

    Apoptosis of neurons in the maturing neocortex has been recorded in a wide variety of mammals, but very little is known about its effects on cortical differentiation. Recent research has implicated the RhoA GTPase subfamily in the control of apoptosis in the developing nervous system and in other tissue types. Rho GTPases are important components of the signaling pathways linking extracellular signals to the cytoskeleton. To investigate the role of the RhoA GTPase subfamily in neocortical apoptosis and differentiation, we have engineered a mouse line in which a dominant-negative RhoA mutant (N19-RhoA) is expressed from the Mapt locus, such that all neurons of the developing nervous system are expressing the N19-RhoA inhibitor. Postnatal expression of N19-RhoA led to no major changes in neocortical anatomy. Six layers of the neocortex developed and barrels (whisker-related neural modules) formed in layer IV. However, the density and absolute number of neurons in the somatosensory cortex increased by 12-26% compared with wild-type littermates. This was not explained by a change in the migration of neurons during the formation of cortical layers but rather by a large decrease in the amount of neuronal apoptosis at postnatal day 5, the developmental maximum of cortical apoptosis. In addition, overexpression of RhoA in cortical neurons was seen to cause high levels of apoptosis. These results demonstrate that RhoA-subfamily members play a major role in developmental apoptosis in postnatal neocortex of the mouse but that decreased apoptosis does not alter cortical cytoarchitecture and patterning. PMID:20335457

  19. Control of postnatal apoptosis in the neocortex by RhoA-subfamily GTPases determines neuronal density

    PubMed Central

    Sanno, Hitomi; Shen, Xiao; Kuru, Nilgün; Bormuth, Ingo; Bobsin, Kristin; Komljenovic, Dorde; Tarabykin, Victor; Erzurumlu, Reha S.; Tucker, Kerry L.

    2010-01-01

    Apoptosis of neurons in the maturing neocortex has been recorded in a wide variety of mammals, but very little is known about its effects on cortical differentiation. Recent research has implicated the RhoA GTPase subfamily in the control of apoptosis in the developing nervous system and in other tissue types. Rho GTPases are important components of the signaling pathways linking extracellular signals to the cytoskeleton. To investigate the role of the RhoA GTPase subfamily in neocortical apoptosis and differentiation, we have engineered a mouse line in which a dominant-negative RhoA mutant (N19-RhoA) is expressed from the Mapt locus, such that all neurons of the developing nervous system are expressing the N19-RhoA inhibitor. Postnatal expression of N19-RhoA led to no major changes in neocortical anatomy. Six layers of the neocortex developed and barrels (whisker-related neural modules) formed in layer IV. However, the density and absolute number of neurons in the somatosensory cortex increased by 12 - 26%, as compared to wildtype littermates. This was not explained by a change in the migration of neurons during the formation of cortical layers, but rather by a large decrease in the amount of neuronal apoptosis at P5, the developmental maximum of cortical apoptosis. In addition, overexpression of RhoA in cortical neurons was seen to cause high levels of apoptosis. These results demonstrate that RhoA-subfamily members play a major role in developmental apoptosis in postnatal neocortex of the mouse, but that decreased apoptosis does not alter cortical cytoarchitecture and patterning. PMID:20335457

  20. The MedDRA paradox.

    PubMed

    Merrill, Gary H

    2008-01-01

    MedDRA (the Medical Dictionary for Regulatory Activities Terminology) is a controlled vocabulary widely used as a medical coding scheme. However, MedDRA's characterization of its structural hierarchy exhibits some confusing and paradoxical features. The goal of this paper is to examine these features, determine whether there is a coherent view of the MedDRA hierarchy that emerges, and explore what lessons are to be learned from this for using MedDRA and similar terminologies in a broad medical informatics context that includes relations among multiple disparate terminologies, thesauri, and ontologies. PMID:18998828

  1. Paradoxic vocal fold movement disorder.

    PubMed

    Matrka, Laura

    2014-02-01

    Paradoxical Vocal Fold Movement Disorder (PVFMD) is a cause of dyspnea that can mimic or occur alongside asthma or other pulmonary disease. Treatment with Laryngeal Control Therapy is very effective once the entity is properly diagnosed and contributing comorbidities are managed appropriately. In understanding the etiology of PVFMD, focus has broadened beyond psychiatric factors alone to include the spectrum of laryngeal irritants (laryngopharyngeal reflux, allergic and sinus disease, sicca, and possibly obstructive sleep apnea). The following is a discussion of the history, terminology, epidemiology, diagnosis, comorbid conditions, and treatment of this entity. PMID:24286687

  2. Control of neuronal apoptosis by reciprocal regulation of NFATc3 and Trim17

    PubMed Central

    Mojsa, B; Mora, S; Bossowski, J P; Lassot, I; Desagher, S

    2015-01-01

    Neuronal apoptosis induced by survival factor deprivation is strongly regulated at the transcriptional level. Notably, the nuclear factor of activated T cell (NFAT) transcription factors have an important role in the control of the survival/death fate of neurons. However, the mechanisms that regulate NFAT activity in response to apoptotic stimuli and the target genes that mediate their effect on neuronal apoptosis are mostly unknown. In a previous study, we identified Trim17 as a crucial E3 ubiquitin ligase that is necessary and sufficient for neuronal apoptosis. Here, we show that Trim17 binds preferentially SUMOylated forms of NFATc3. Nonetheless, Trim17 does not promote the ubiquitination/degradation of NFATc3. NFAT transcription factors are regulated by calcium/calcineurin-dependent nuclear-cytoplasmic shuttling. Interestingly, Trim17 reduced by twofold the calcium-mediated nuclear localization of NFATc3 and, consistent with this, halved NFATc3 activity, as estimated by luciferase assays and by measurement of target gene expression. Trim17 also inhibited NFATc4 nuclear translocation and activity. NFATc4 is known to induce the expression of survival factors and, as expected, overexpression of NFATc4 protected cerebellar granule neurons from serum/KCl deprivation-induced apoptosis. Inhibition of NFATc4 by Trim17 may thus partially mediate the proapoptotic effect of Trim17. In contrast, overexpression of NFATc3 aggravated neuronal death, whereas knockdown of NFATc3 protected neurons from apoptosis. This proapoptotic effect of NFATc3 might be due to a feedback loop in which NFATc3, but not NFATc4, induces the transcription of the proapoptotic gene Trim17. Indeed, we found that overexpression or silencing of NFATc3, respectively, increased or decreased Trim17 levels, whereas NFATc4 had no significant effect on Trim17 expression. Moreover, we showed that NFATc3 binds to the promoter of the Trim17 gene together with c-Jun. Therefore, our results describe a novel

  3. Does an Obesity Paradox Really Exist After Cardiovascular Intervention?: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Observational Studies

    PubMed Central

    Bundhun, Pravesh Kumar; Li, Nuo; Chen, Meng-Hua

    2015-01-01

    Abstract Several studies have shown the existence of an obesity paradox after Percutaneous Coronary Intervention (PCI). However, other studies have shown its absence. This study sought to perform a systematic review and meta-analysis of studies comparing the mortality risk between high body mass index patients and normal weight patients after PCI. We have searched PubMed, Embase, and Chinese medical journal for randomized controlled trials (RCTs) and observational studies published between the year 2000 and 2015 by typing the keywords “percutaneous coronary intervention” and “obesity paradox.” The main outcome was “all-cause mortality”. RevMan 5.3 software was used to calculate the risk ratio (RR) with 95% confidence interval (CI) to express the pooled effect on discontinuous variables. Twenty-two studies have been included in this meta-analysis consisting of a total of 242,377 patients with 73,143 normal weight patients, 103,608 overweight, and 65,626 obese patients. Younger age, higher cardiovascular risk factors and the intensive use of medications have mainly been observed among obese patients followed by overweight and normal weight patients respectively. In-hospital, 12 months and ≥ 1 year (long-term) mortality risks were significantly lower in the overweight and obese groups with (RR: 0.67; 95% CI: 0.63–0.72, P < 0.00001) and (RR: 0.60; 95% CI: 0.56–0.65, P < 0.00001) respectively in the in-hospital follow-up (RR: 0.62; 95% CI: 0.55–0.71 and 0.57; 95% CI: 0.52–0.63, P < 0.00001) at 12 months, and (RR: 0.70; 95% CI: 0.64–0.76; P < 0.00001) and (RR: 0.80; 95% CI: 0.71–0.91, P = 0.0006) respectively for the long-term follow-up after PCI. This “obesity paradox” does exist after PCI. The mortality in overweight and obese patients is really significantly lower compared to the normal weight patients. However, the exact reasons for this phenomenon need further exploration and research in the future. PMID:26554791

  4. Creative Paradoxical Thinking and Its Implications for Teaching and Learning Motor Skills

    ERIC Educational Resources Information Center

    Chen, David

    2011-01-01

    A paradox is a statement or situation that involves two or more contradictory, mutually exclusive elements that operate at the same time. This article examines a number of findings in motor-learning and motor-control research and categorizes them into six paradoxes. Based on those research findings, the concept of creative paradoxical thinking is…

  5. Some irreverent thoughts on paradox.

    PubMed

    Dell, P F

    1981-03-01

    There is currently great interest in the use of paradox in psychotherapy. Unfortunately, there is also considerable confusion and misunderstanding of paradox, owing, in part, to the lack of a comprehensive theory that explains the role of paradox in human problems. This paper does not address itself to such theory but explores some cultural and epistemological components of therapists' misperceptions and misattributions of "paradox." PMID:7215523

  6. Control of abdominal and expiratory intercostal muscle activity during vomiting - Role of ventral respiratory group expiratory neurons

    NASA Technical Reports Server (NTRS)

    Miller, Alan D.; Tan, L. K.; Suzuki, Ichiro

    1987-01-01

    The role of ventral respiratory group (VRG) expiratory (E) neurons in the control of abdominal and internal intercostal muscle activity during vomiting was investigated in cats. Two series of experiments were performed: in one, the activity of VRG E neurons was recorded during fictive vomiting in cats that were decerebrated, paralyzed, and artificially ventilated; in the second, the abdominal muscle activity during vomiting was compared before and after sectioning the axons of descending VRG E neurons in decerebrate spontaneously breathing cats. The results show that about two-thirds of VRG E neurons that project at least as far caudally as the lower thoracic cord contribute to internal intercostal muscle activity during vomiting. The remaining VRG E neurons contribute to abdominal muscle activation. As shown by severing the axons of the VRG E neurons, other, as yet unidenified, inputs (either descending from the brain stem or arising from spinal reflexes) can also produce abdominal muscle activation.

  7. Expiratory muscle control during vomiting - Role of brain stem expiratory neurons

    NASA Technical Reports Server (NTRS)

    Miller, A. D.; Tan, L. K.

    1987-01-01

    The neural mechanisms controlling the muscles involved during vomiting were examined using decerebrated cats. In one experiment, the activity of the ventral respiratory group (VRG) expiratory (E) neurons was recorded during induced 'fictive vomiting' (i.e., a series of bursts of coactivation of abdominal and phrenic nerves that would be expected to produce expulsion in unparalyzed animals) and vomiting. In a second, abdominal muscle electromyographic and nerve activity were compared before and after sectioning the axons of descending VRG E neurons as they cross the midline between C1 and the obex (the procedure that is known to abolish expiratory modulation of internal intercostal muscle activity). The results of the study indicate that the abdominal muscles are controlled differently during respiration and vomiting.

  8. Neuronal Representation of 3-D Space in the Primary Visual Cortex and Control of Eye Movements.

    PubMed

    Alekseenko, Svetlana V

    2015-01-01

    The aim of this article is to consider the correlations between the structure of the primary visual cortical area V1 and control of coordinated movements of the two eyes. Using the anatomical data available, a schematic map of 3-D space representation in the layer IV of area V1 containing only monocular cells has been constructed. The analysis of this map revealed that binocular neurons of V1, which are formed by convergence of monocular cells, should encode the absolute disparity. Participation of monocular and binocular neurons of V1 in the control of convergence, divergence, and version eye movements is discussed. It is proposed that synchronous contraction of corresponding extraocular muscles of both eyes for vergence might be ensured by duplicated transmission of information from the central part of retina to visual cortex of both hemispheres. PMID:26562914

  9. Desynchronization in an ensemble of globally coupled chaotic bursting neuronal oscillators by dynamic delayed feedback control

    NASA Astrophysics Data System (ADS)

    Che, Yanqiu; Yang, Tingting; Li, Ruixue; Li, Huiyan; Han, Chunxiao; Wang, Jiang; Wei, Xile

    2015-09-01

    In this paper, we propose a dynamic delayed feedback control approach or desynchronization of chaotic-bursting synchronous activities in an ensemble of globally coupled neuronal oscillators. We demonstrate that the difference signal between an ensemble's mean field and its time delayed state, filtered and fed back to the ensemble, can suppress the self-synchronization in the ensemble. These individual units are decoupled and stabilized at the desired desynchronized states while the stimulation signal reduces to the noise level. The effectiveness of the method is illustrated by examples of two different populations of globally coupled chaotic-bursting neurons. The proposed method has potential for mild, effective and demand-controlled therapy of neurological diseases characterized by pathological synchronization.

  10. Glial cells, but not neurons, exhibit a controllable response to a localized inflammatory microenvironment in vitro

    PubMed Central

    Sommakia, Salah; Rickus, Jenna L.; Otto, Kevin J.

    2014-01-01

    The ability to design long-lasting intracortical implants hinges on understanding the factors leading to the loss of neuronal density and the formation of the glial scar. In this study, we modify a common in vitro mixed cortical culture model using lipopolysaccharide (LPS) to examine the responses of microglia, astrocytes, and neurons to microwire segments. We also use dip-coated polyethylene glycol (PEG), which we have previously shown can modulate impedance changes to neural microelectrodes, to control the cellular responses. We find that microglia, as expected, exhibit an elevated response to LPS-coated microwire for distances of up to 150 μm, and that this elevated response can be mitigated by co-depositing PEG with LPS. Astrocytes exhibit a more complex, distance-dependent response, whereas neurons do not appear to be affected by the type or magnitude of glial response within this in vitro model. The discrepancy between our in vitro responses and typically observed in vivo responses suggest the importance of using a systems approach to understand the responses of the various brain cell types in a chronic in vivo setting, as well as the necessity of studying the roles of cell types not native to the brain. Our results further indicate that the loss of neuronal density observed in vivo is not a necessary consequence of elevated glial activation. PMID:25452724

  11. Paradoxical Interventions in Counseling Psychology.

    ERIC Educational Resources Information Center

    Dowd, E. Thomas; Milne, Christopher R.

    1986-01-01

    Discusses the use of paradoxical interventions in counseling psychology and surveys the research literature to date. After a description of the historical background of paradoxical interventions, current schools of therapy using paradox are presented. Discusses theoretical and definitional underpinnings, with particular attention paid to the…

  12. Mechanisms of gain control by voltage-gated channels in intrinsically-firing neurons.

    PubMed

    Patel, Ameera X; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  13. Frontoparietal Structural Connectivity Mediates the Top-Down Control of Neuronal Synchronization Associated with Selective Attention

    PubMed Central

    Marshall, Tom Rhys; Bergmann, Til Ole; Jensen, Ole

    2015-01-01

    Neuronal synchronization reflected by oscillatory brain activity has been strongly implicated in the mechanisms supporting selective gating. We here aimed at identifying the anatomical pathways in humans supporting the top-down control of neuronal synchronization. We first collected diffusion imaging data using magnetic resonance imaging to identify the medial branch of the superior longitudinal fasciculus (SLF), a white-matter tract connecting frontal control areas to parietal regions. We then quantified the modulations in oscillatory activity using magnetoencephalography in the same subjects performing a spatial attention task. We found that subjects with a stronger SLF volume in the right compared to the left hemisphere (or vice versa) also were the subjects who had a better ability to modulate right compared to left hemisphere alpha and gamma band synchronization, with the latter also predicting biases in reaction time. Our findings implicate the medial branch of the SLF in mediating top-down control of neuronal synchronization in sensory regions that support selective attention. PMID:26441286

  14. Adventures in Paradox

    ERIC Educational Resources Information Center

    Lynch, Pip; Moore, Kevin

    2004-01-01

    The popularity of adventure recreation and adventure education has arisen, in part, from an assumption that adventure experiences are radically different from those of everyday life in modern societies. A paradox previously pointed out is that those seeking adventurous experiences often make use of technical and technological prosthetics, thus…

  15. The Hydrostatic Paradox.

    ERIC Educational Resources Information Center

    Wilson, Alpha E.

    1995-01-01

    Presents an example demonstrating the quantitative resolution of the hydrostatic paradox which is the realization that the force due to fluid pressure on the bottom of a vessel can be considerably greater or considerably less than the weight of the fluid in the vessel. (JRH)

  16. A Hydrostatic Paradox Revisited

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2012-01-01

    This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…

  17. Behind the Mpemba paradox.

    PubMed

    Sun, Chang Qing

    2015-01-01

    Mpemba paradox results from hydrogen-bond anomalous relaxation. Heating stretches the O:H nonbond and shortens the H-O bond via Coulomb coupling; cooling reverses this process to emit heat at a rate depending on its initial storage. Skin ultra-low mass density raises the thermal diffusivity and favors outward heat flow from the liquid. PMID:27227000

  18. A Magnetic Paradox

    NASA Astrophysics Data System (ADS)

    Arndt, Ebe

    2006-11-01

    Two recent articles1,2 in this journal described how an air core solenoid connected to an ac power source may restore the magnetization of a bar magnet with an alternating magnetic field (see Figs. 1 and 2). Although we are quite accustomed to using a constant magnetic field in an air core solenoid to remagnetize a ferromagnet, it is puzzling that we can also use an alternating magnetic field to realign the magnetic domains of a ferromagnet. To make the puzzle even more intriguing, the very same setup may be used to degauss a TV screen; that is, the alternating magnetic field of an air core solenoid can also "scramble" the magnetic domains of a ferromagnet! Although the latter phenomenon intuitively makes more sense, we are still left with a confusing paradox: How can an alternating magnetic field align the magnetic domains in one ferromagnet and scramble the magnetic domains in another? Paradoxes like these are ideal for student investigations because they create a natural interest. In fact, since the two articles mentioned above were unable to explain the magnetic paradox, my students and I were intrigued enough to investigate the phenomenon and then try to understand it theoretically. This paper describes how we used the paradoxical phenomenon for a student investigation into nonlinear systems. In order to be successful, students should be familiar with calculus, preferably at the level of an advanced-placement class.

  19. Paramagnetism Paradoxes: Projectable Demonstrations

    ERIC Educational Resources Information Center

    Sauls, Frederick C.; Vitz, Ed

    2008-01-01

    Drops of oil in Mn(SO[subscript 4])(aq) and drops of the solution in oil show opposite effects when brought near a rare earth magnet. Oxygen, nitrogen, and air bubbles atop water show expected attraction, repulsion, and null behavior, respectively. Air bubbles atop aqueous Mn(SO[subscript 4]) show paradoxical behavior because the magnet's…

  20. VEGF signalling controls GnRH neuron survival via NRP1 independently of KDR and blood vessels.

    PubMed

    Cariboni, Anna; Davidson, Kathryn; Dozio, Elena; Memi, Fani; Schwarz, Quenten; Stossi, Fabio; Parnavelas, John G; Ruhrberg, Christiana

    2011-09-01

    Gonadotropin-releasing hormone (GnRH) neurons are neuroendocrine cells that are born in the nasal placode during embryonic development and migrate through the nose and forebrain to the hypothalamus, where they regulate reproduction. Many molecular pathways that guide their migration have been identified, but little is known about the factors that control the survival of the migrating GnRH neurons as they negotiate different environments. We previously reported that the class 3 semaphorin SEMA3A signals through its neuropilin receptors, NRP1 and NRP2, to organise the axons that guide migrating GnRH neurons from their birthplace into the brain. By combining analysis of genetically altered mice with in vitro models, we show here that the alternative neuropilin ligand VEGF164 promotes the survival of migrating GnRH neurons by co-activating the ERK and AKT signalling pathways through NRP1. We also demonstrate that survival signalling relies on neuronal, but not endothelial, NRP1 expression and that it occurs independently of KDR, the main VEGF receptor in blood vessels. Therefore, VEGF164 provides survival signals directly to developing GnRH neurons, independently of its role in blood vessels. Finally, we show that the VEGF164-mediated neuronal survival and SEMA3A-mediated axon guidance cooperate to ensure that migrating GnRH neurons reach the brain. Thus, the loss of both neuropilin ligands leads to an almost complete failure to establish the GnRH neuron system. PMID:21828096

  1. Neuronal ensemble control of prosthetic devices by a human with tetraplegia

    NASA Astrophysics Data System (ADS)

    Hochberg, Leigh R.; Serruya, Mijail D.; Friehs, Gerhard M.; Mukand, Jon A.; Saleh, Maryam; Caplan, Abraham H.; Branner, Almut; Chen, David; Penn, Richard D.; Donoghue, John P.

    2006-07-01

    Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent. Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a `neural cursor' with which MN opened simulated e-mail and operated devices such as a television, even while conversing. Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity could provide a valuable new neurotechnology to restore independence for humans with paralysis.

  2. Autonomous development of vergence control driven by disparity energy neuron populations.

    PubMed

    Wang, Yiwen; Shi, Bertram E

    2010-03-01

    We present a simple optimization criterion that leads to autonomous development of a sensorimotor feedback loop driven by the neural representation of the depth in the mammalian visual cortex. Our test bed is an active stereo vision system where the vergence angle between the two eyes is controlled by the output of a population of disparity-selective neurons. By finding a policy that maximizes the total response across the neuron population, the system eventually tracks a target as it moves in depth. We characterized the tracking performance of the resulting policy using objects moving both sinusoidally and randomly in depth. Surprisingly, the system can even learn how to track based on stimuli it cannot track: even though the closed loop 3 dB tracking bandwidth of the system is 0.3 Hz, correct tracking policies are learned for input stimuli moving as fast as 0.75 Hz. PMID:19925282

  3. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Heng; Delikanli, Savas; Zeng, Hao; Ferkey, Denise M.; Pralle, Arnd

    2010-08-01

    Recently, optical stimulation has begun to unravel the neuronal processing that controls certain animal behaviours. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Here, we show an approach based on radio-frequency magnetic-field heating of nanoparticles to remotely activate temperature-sensitive cation channels in cells. Superparamagnetic ferrite nanoparticles were targeted to specific proteins on the plasma membrane of cells expressing TRPV1, and heated by a radio-frequency magnetic field. Using fluorophores as molecular thermometers, we show that the induced temperature increase is highly localized. Thermal activation of the channels triggers action potentials in cultured neurons without observable toxic effects. This approach can be adapted to stimulate other cell types and, moreover, may be used to remotely manipulate other cellular machinery for novel therapeutics.

  4. Opposing Dopaminergic and GABAergic Neurons Control the Duration and Persistence of Copulation in Drosophila

    PubMed Central

    Crickmore, Michael A.; Vosshall, Leslie B.

    2014-01-01

    SUMMARY Behavioral persistence is a major factor in determiningwhen and under which circumstances animals will terminate their current activity and transition into more profitable, appropriate, or urgent behavior. We show that, for the first 5 min of copulation in Drosophila, stressful stimuli do not interrupt mating, whereas 10 min later, even minor perturbations are sufficient to terminate copulation. This decline in persistence occurs as the probability of successful mating increases and is promoted by approximately eight sexually dimorphic, GABAergic interneurons of the male abdominal ganglion. When these interneurons were silenced, persistence increased and males copulated far longer than required for successful mating. When these interneurons were stimulated, persistence decreased and copulations were shortened. In contrast, dopaminergic neurons of the ventral nerve cord promote copulation persistence and extend copulation duration. Thus, copulation duration in Drosophila is a product of gradually declining persistence controlled by opposing neuronal populations using conserved neurotransmission systems. PMID:24209625

  5. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain

    PubMed Central

    Prakash, Nilima; Puelles, Eduardo; Freude, Kristine; Trümbach, Dietrich; Omodei, Daniela; Di Salvio, Michela; Sussel, Lori; Ericson, Johan; Sander, Maike; Simeone, Antonio; Wurst, Wolfgang

    2009-01-01

    Summary Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons. Nkx6-1 is expressed in ventral midbrain progenitors and acts as a fate determinant of the Brn3a+ (also known as Pou4f1) red nucleus neurons. These progenitors are partially dorsalized in the absence of Nkx6-1, and a fraction of their postmitotic offspring adopts an alternative cell fate, as revealed by the activation of Dbx1 and Otx2 in these cells. Nkx6-1 is also expressed in postmitotic Isl1+ oculomotor and trochlear neurons. Similar to hindbrain visceral (branchio-) motoneurons, Nkx6-1 controls the proper migration and axon outgrowth of these neurons by regulating the expression of at least three axon guidance/neuronal migration molecules. Based on these findings, we provide additional evidence that the developmental mechanism of the oculomotor and trochlear neurons exhibits more similarity with that of special visceral motoneurons than with that controlling the generation of somatic motoneurons located in the murine caudal hindbrain and spinal cord. PMID:19592574

  6. Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning

    PubMed Central

    Kulvicius, Tomas; Porr, Bernd; Wörgötter, Florentin

    2007-01-01

    Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks. PMID:17630828

  7. Model-based iterative learning control of Parkinsonian state in thalamic relay neuron

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Jiang; Li, Huiyan; Xue, Zhiqin; Deng, Bin; Wei, Xile

    2014-09-01

    Although the beneficial effects of chronic deep brain stimulation on Parkinson's disease motor symptoms are now largely confirmed, the underlying mechanisms behind deep brain stimulation remain unclear and under debate. Hence, the selection of stimulation parameters is full of challenges. Additionally, due to the complexity of neural system, together with omnipresent noises, the accurate model of thalamic relay neuron is unknown. Thus, the iterative learning control of the thalamic relay neuron's Parkinsonian state based on various variables is presented. Combining the iterative learning control with typical proportional-integral control algorithm, a novel and efficient control strategy is proposed, which does not require any particular knowledge on the detailed physiological characteristics of cortico-basal ganglia-thalamocortical loop and can automatically adjust the stimulation parameters. Simulation results demonstrate the feasibility of the proposed control strategy to restore the fidelity of thalamic relay in the Parkinsonian condition. Furthermore, through changing the important parameter—the maximum ionic conductance densities of low-threshold calcium current, the dominant characteristic of the proposed method which is independent of the accurate model can be further verified.

  8. Neuronal codes for the inhibitory control of impulsive actions in the rat infralimbic cortex.

    PubMed

    Tsutsui-Kimura, Iku; Ohmura, Yu; Izumi, Takeshi; Matsushima, Toshiya; Amita, Hidetoshi; Yamaguchi, Taku; Yoshida, Takayuki; Yoshioka, Mitsuhiro

    2016-01-01

    Poor impulse control is a debilitating condition observed in various psychiatric disorders and could be a risk factor for drug addiction, criminal involvement, and suicide. The rat infralimbic cortex (IL), located in the ventral portion of the medial prefrontal cortex, has been implicated in impulse control. To elucidate the neurophysiological basis of impulse control, we recorded single unit activity in the IL of a rat performing a 3-choiceserial reaction time task (3-CSRTT) and 2-choice task (2-CT), which are animal models for impulsivity. The inactivation of IL neuronal activity with an injection of muscimol (0.1 μg /side) disrupted impulse control in the 3-CSRTT. More than 60% (38/56) of isolated IL units were linked to impulse control, while approximately 30% of all units were linked to attentional function in the 3-CSRTT. To avoid confounding motor-related units with the impulse control-related units, we further conducted the 2-CT in which the animals' motor activities were restricted during recording window. More than 30% (14/44) of recorded IL units were linked to impulse control in the 2-CT. Several types of impulse control-related units were identified. Only 16% of all units were compatible with the results of the muscimol experiment, which showed a transient decline in the firing rate immediately before the release of behavioral inhibition. This is the first study to elucidate the neurophysiological basis of impulse control in the IL and to propose that IL neurons control impulsive actions in a more complex manner than previously considered. PMID:26341319

  9. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor

    PubMed Central

    Tomioka, Masahiro; Naito, Yasuki; Kuroyanagi, Hidehito; Iino, Yuichi

    2016-01-01

    Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. PMID:27198602

  10. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor.

    PubMed

    Tomioka, Masahiro; Naito, Yasuki; Kuroyanagi, Hidehito; Iino, Yuichi

    2016-01-01

    Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. PMID:27198602

  11. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation

    PubMed Central

    Linares, Anthony J; Lin, Chia-Ho; Damianov, Andrey; Adams, Katrina L; Novitch, Bennett G; Black, Douglas L

    2015-01-01

    The RNA-binding proteins PTBP1 and PTBP2 control programs of alternative splicing during neuronal development. PTBP2 was found to maintain embryonic splicing patterns of many synaptic and cytoskeletal proteins during differentiation of neuronal progenitor cells (NPCs) into early neurons. However, the role of the earlier PTBP1 program in embryonic stem cells (ESCs) and NPCs was not clear. We show that PTBP1 controls a program of neuronal gene expression that includes the transcription factor Pbx1. We identify exons specifically regulated by PTBP1 and not PTBP2 as mouse ESCs differentiate into NPCs. We find that PTBP1 represses Pbx1 exon 7 and the expression of the neuronal Pbx1a isoform in ESCs. Using CRISPR-Cas9 to delete regulatory elements for exon 7, we induce Pbx1a expression in ESCs, finding that this activates transcription of neuronal genes. Thus, PTBP1 controls the activity of Pbx1 to suppress its neuronal transcriptional program prior to induction of NPC development. DOI: http://dx.doi.org/10.7554/eLife.09268.001 PMID:26705333

  12. Paradoxical pharmacodynamic effect of atropine on parasympathetic control: a study by spectral analysis of heart rate fluctuations.

    PubMed

    Alcalay, M; Izraeli, S; Wallach-Kapon, R; Tochner, Z; Benjamini, Y; Akselrod, S

    1992-11-01

    The power spectrum of instantaneous heart rate fluctuations was used to determine the optimal doses of atropine that induce a maximal vagolytic or vagomimetic effect. In a crossover placebo controlled study, eight volunteers received increasing bolus doses of intravenous atropine (0.1 to 2.3 mg per subject) or placebo, and frequency bands of the power spectrum were integrated. During atropine administration a significant bimodal dose dependence was observed for the respiratory peak (0.2 to 0.4 Hz, p = 0.0006), the midfrequency band (0.09 to 0.15 Hz, p = 0.0035), and mean heart rate (p < 0.0001). Low doses (< 0.4 mg per subject) increased the respiratory and midfrequency band power, with maximal response at 0.2 mg per subject. Larger doses of atropine, 0.5 to 2.3 mg per subject, markedly reduced the power in all frequency bands in a dose-dependent way. The corresponding changes in mean heart rate were simultaneous, but in the opposite direction. We suggest that the respiratory peak of the power spectrum can be used to optimize drug effects on cardiac parasympathetic control. PMID:1424426

  13. PSD-95 and Calcineurin Control the Sensitivity of NMDA Receptors to Calpain Cleavage in Cortical Neurons

    PubMed Central

    Yuen, Eunice Y.; Ren, Yi; Yan, Zhen

    2010-01-01

    The N-methyl-D-aspartate receptor (NMDAR) is a Ca2+-permeable glutamate receptor mediating many neuronal functions under normal and pathological conditions. Ca2+-influx via NMDARs activates diverse intracellular targets, including Ca2+-dependent protease calpain. Biochemical studies suggest that NR2A and NR2B subunits of NMDARs are substrates of calpain. Our physiological data showed that calpain, activated by prolonged NMDA treatment (100 µM, 5 min) of cultured cortical neurons, irreversibly decreased the whole-cell currents mediated by extrasynaptic NMDARs. Animals exposed to transient forebrain ischemia, a condition that activates calpain, exhibited the reduced NMDAR current density and the lower full-length NR2A/B level in a calpain-dependent manner. Disruption of the association between NMDARs and the scaffolding protein PSD-95 facilitated the calpain regulation of synaptic NMDAR responses and NR2 cleavage in cortical slices, while inhibition of calcineurin activity blocked the calpain effect on NMDAR currents and NR2 cleavage. Calpain-cleaved NR2B subunits were removed from the cell surface. Moreover, cell viability assays showed that calpain, by targeting NMDARs, provided a negative feedback to dampen neuronal excitability in excitotoxic conditions. These data suggest that calpain activation suppresses NMDAR function via proteolytic cleavage of NR2 subunits in vitro and in vivo, and the susceptibility of NMDARs to calpain cleavage is controlled by PSD-95 and calcineurin. PMID:18445709

  14. Ap-let neurons--a peptidergic circuit potentially controlling ecdysial behavior in Drosophila.

    PubMed

    Park, Dongkook; Han, Mei; Kim, Young-Cho; Han, Kyung-An; Taghert, Paul H

    2004-05-01

    Here we describe a novel set of peptidergic neurons conserved throughout all developmental stages in the Drosophila central nervous system (CNS). We show that a small complement of 28 apterous-expressing cells (Ap-let neurons) in the ventral nerve cord (VNC) of Drosophila larvae co-express numerous gene products. The products include the neuroendocrine-specific bHLH regulator called Dimmed (Dimm), four neuropeptide biosynthetic enzymes (PC2, Fur1, PAL2, and PHM), and a specific dopamine receptor subtype (dDA1). For the PC2, Fur1, and PAL2 enzymes, and for the dDA1 receptor, this neuronal pattern represents the vast majority of their total expression in the VNC. In addition, while Dimm and PHM are present in the peritracheal Inka cells in larvae, pupae, and adults, Ap, PC2, Fur1, PAL2, and dDA1 are not. PC2, PAL2, and DA1 receptor expression were all controlled by both dimm and ap. Previous genetic analysis of animals deficient in PC2 revealed an abnormal larval ecdysis phenotype. Together, these data support the hypothesis that the small cohort of Ap-let interneurons regulates larval ecdysis behavior by secretion of an unidentified amidated peptide(s). This hypothesis further predicts that the production of the Ap-let neuropeptide(s) is dependent on each of four specific enzymes, and that a certain aspect(s) of its production and/or release is regulated by dopamine input. PMID:15081360

  15. A Method for High Fidelity Optogenetic Control of Individual Pyramidal Neurons In vivo

    PubMed Central

    Cooper, Donald C.

    2013-01-01

    Optogenetic methods have emerged as a powerful tool for elucidating neural circuit activity underlying a diverse set of behaviors across a broad range of species. Optogenetic tools of microbial origin consist of light-sensitive membrane proteins that are able to activate (e.g., channelrhodopsin-2, ChR2) or silence (e.g., halorhodopsin, NpHR) neural activity ingenetically-defined cell types over behaviorally-relevant timescales. We first demonstrate a simple approach for adeno-associated virus-mediated delivery of ChR2 and NpHR transgenes to the dorsal subiculum and prelimbic region of the prefrontal cortex in rat. Because ChR2 and NpHR are genetically targetable, we describe the use of this technology to control the electrical activity of specific populations of neurons (i.e., pyramidal neurons) embedded in heterogeneous tissue with high temporal precision. We describe herein the hardware, custom software user interface, and procedures that allow for simultaneous light delivery and electrical recording from transduced pyramidal neurons in an anesthetized in vivo preparation. These light-responsive tools provide the opportunity for identifying the causal contributions of different cell types to information processing and behavior. PMID:24022017

  16. The lanolin paradox.

    PubMed

    Wolf, R

    1996-01-01

    Several puzzling aspects of the use of lanolin are discussed as "lanolin paradoxes', in analogy with the 'paraben paradoxes'. Lanolin in topical therapeutic agents sensitizes a high proportion of patients, whereas the same lanolin is 'safe' in cosmetics so widely used by millions of individuals. Patients with an allergic contact dermatitis to lanolin in a medication applied to a stasis ulcer can nevertheless use lanolin-containing cosmetics and not experience a reaction. Lanolin-sensitive individuals often show false-negative patch test reactions to unaltered lanolin. Patch testing with 30% wool wax alcohols used in the standard patch test tray cannot be considered a reliable method for detecting and confirming lanolin allergies. There are too many false-positive and false-negative results using the standard patch test tray. PMID:8726630

  17. DREADDs in Drosophila: a pharmacogenetic approach for controlling behavior, neuronal signaling, and physiology in the fly.

    PubMed

    Becnel, Jaime; Johnson, Oralee; Majeed, Zana R; Tran, Vi; Yu, Bangning; Roth, Bryan L; Cooper, Robin L; Kerut, Edmund K; Nichols, Charles D

    2013-09-12

    We have translated a powerful genetic tool, designer receptors exclusively activated by designer drugs (DREADDs), from mammalian systems to Drosophila melanogaster to selectively, rapidly, reversibly, and dose-dependently control behaviors and physiological processes in the fly. DREADDs are muscarinic acetylcholine G protein-coupled receptors evolved for loss of affinity to acetylcholine and for the ability to be fully activated by an otherwise biologically inert chemical, clozapine-N-oxide. We demonstrate its ability to control a variety of behaviors and processes in larvae and adults, including heart rate, sensory processing, diurnal behavior, learning and memory, and courtship. The advantages of this particular technology include the dose-responsive control of behaviors, the lack of a need for specialized equipment, and the capacity to remotely control signaling in essentially all neuronal and nonneuronal fly tissues. PMID:24012754

  18. Kalman meets neuron: the emerging intersection of control theory with neuroscience.

    PubMed

    Schiff, Steven J

    2009-01-01

    Since the 1950s, we have developed mature theories of modern control theory and computational neuroscience with almost no interaction between these disciplines. With the advent of computationally efficient nonlinear Kalman filtering techniques, along with improved neuroscience models that provide increasingly accurate reconstruction of dynamics in a variety of important normal and disease states in the brain, the prospects for a synergistic interaction between these fields are now strong. I show recent examples of the use of nonlinear control theory for the assimilation and control of single neuron dynamics, the modulation of oscillatory wave dynamics in brain cortex, a control framework for Parkinsonian dynamics and seizures, and the use of optimized parameter model networks to assimilate complex network data - the 'consensus set'. PMID:19964302

  19. Kalman Meets Neuron: The Emerging Intersection of Control Theory with Neuroscience

    PubMed Central

    Schiff, Steven J.

    2013-01-01

    Since the 1950s, we have developed mature theories of modern control theory and computational neuroscience with almost no interaction between these disciplines. With the advent of computationally efficient nonlinear Kalman filtering techniques, along with improved neuroscience models that provide increasingly accurate reconstruction of dynamics in a variety of important normal and disease states in the brain, the prospects for a synergistic interaction between these fields are now strong. I show recent examples of the use of nonlinear control theory for the assimilation and control of single neuron dynamics, the modulation of oscillatory wave dynamics in brain cortex, a control framework for Parkinsonian dynamics and seizures, and the use of optimized parameter model networks to assimilate complex network data – the ‘consensus set’. PMID:19964302

  20. The Information Paradox

    NASA Astrophysics Data System (ADS)

    Amati, D.

    The incompatibility between gravity and quantum coherence represented by black holes should be solved by a consistent quantum theory that contains gravity as superstring theory. Despite many encouraging results in that sense, I question here the general feeling of a na"ive resolution of the paradox. And indicate non-trivial physical possibilities towards its solution that are suggested by string theory and may be further investigated in its context.

  1. The Bohr paradox

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-05-01

    In his book Niels Bohr's Times, the physicist Abraham Pais captures a paradox in his subject's legacy by quoting three conflicting assessments. Pais cites Max Born, of the first generation of quantum physics, and Werner Heisenberg, of the second, as saying that Bohr had a greater influence on physics and physicists than any other scientist. Yet Pais also reports a distinguished younger colleague asking with puzzlement and scepticism "What did Bohr really do?".

  2. Spike-timing-dependent plasticity in spiking neuron networks for robot navigation control

    NASA Astrophysics Data System (ADS)

    Arena, Paolo; Danieli, Fabio; Fortuna, Luigi; Frasca, Mattia; Patane, Luca

    2005-06-01

    In this paper a biologically-inspired network of spiking neurons is used for robot navigation control. The implemented scheme is able to process information coming from the robot contact sensors in order to avoid obstacles and on the basis of these actions to learn how to respond to stimuli coming from range finder sensors. The implemented network is therefore able of reinforcement learning through a mechanism based on operant conditioning. This learning takes place according to a plasticity law in the synapses, based on spike timing. Simulation results discussed in the paper show the suitability of the approach and interesting adaptive properties of the network.

  3. GABAergic actions on cholinergic laterodorsal tegmental neurons: implications for control of behavioral state.

    PubMed

    Kohlmeier, K A; Kristiansen, U

    2010-12-15

    Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated. In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored. Therefore, we studied the actions of GABA agonists and antagonists on cholinergic LDT cells by performing patch clamp recordings in mouse brain slices. Under conditions where detection of Cl(-) -mediated events was optimized, GABA induced gabazine (GZ)-sensitive inward currents in the majority of LDT neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for δ-subunit containing GABA(A) receptors, induced inward currents, suggesting the existence of extrasynaptic GABA(A) receptors. LDT cells also possess GABA(B) receptors as baclofen-activated a TTX- and low Ca(2+)-resistant outward current that was attenuated by the GABA(B) antagonists CGP 55845 and saclofen. The tertiapin sensitivity of baclofen-induced outward currents suggests that a G(IRK) mediated this effect. Further, outward currents were never additive with those induced by application of carbachol, suggesting that they were mediated by activation of GABA(B) receptors linked to the same G(IRK) activated in these cells by muscarinic receptor stimulation. Activation of GABA(B) receptors inhibited Ca(2+) increases induced by a depolarizing voltage step shown previously to activate VOCCs in cholinergic LDT neurons. Baclofen-mediated reductions in depolarization

  4. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice.

    PubMed

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R; Threlfell, Sarah; Dodson, Paul D; Magill, Peter J; Fernandes, Cathy; Cragg, Stephanie J; Ang, Siew-Lan

    2015-09-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  5. Neuronal Correlates of Cognitive Control during Gaming Revealed by Near-Infrared Spectroscopy.

    PubMed

    Witte, Matthias; Ninaus, Manuel; Kober, Silvia Erika; Neuper, Christa; Wood, Guilherme

    2015-01-01

    In everyday life we quickly build and maintain associations between stimuli and behavioral responses. This is governed by rules of varying complexity and past studies have identified an underlying fronto-parietal network involved in cognitive control processes. However, there is only limited knowledge about the neuronal activations during more natural settings like game playing. We thus assessed whether near-infrared spectroscopy recordings can reflect different demands on cognitive control during a simple game playing task. Sixteen healthy participants had to catch falling objects by pressing computer keys. These objects either fell randomly (RANDOM task), according to a known stimulus-response mapping applied by players (APPLY task) or according to a stimulus-response mapping that had to be learned (LEARN task). We found an increased change of oxygenated and deoxygenated hemoglobin during LEARN covering broad areas over right frontal, central and parietal cortex. Opposed to this, hemoglobin changes were less pronounced for RANDOM and APPLY. Along with the findings that fewer objects were caught during LEARN but stimulus-response mappings were successfully identified, we attribute the higher activations to an increased cognitive load when extracting an unknown mapping. This study therefore demonstrates a neuronal marker of cognitive control during gaming revealed by near-infrared spectroscopy recordings. PMID:26244781

  6. Neuronal Correlates of Cognitive Control during Gaming Revealed by Near-Infrared Spectroscopy

    PubMed Central

    Witte, Matthias; Ninaus, Manuel; Kober, Silvia Erika; Neuper, Christa; Wood, Guilherme

    2015-01-01

    In everyday life we quickly build and maintain associations between stimuli and behavioral responses. This is governed by rules of varying complexity and past studies have identified an underlying fronto-parietal network involved in cognitive control processes. However, there is only limited knowledge about the neuronal activations during more natural settings like game playing. We thus assessed whether near-infrared spectroscopy recordings can reflect different demands on cognitive control during a simple game playing task. Sixteen healthy participants had to catch falling objects by pressing computer keys. These objects either fell randomly (RANDOM task), according to a known stimulus-response mapping applied by players (APPLY task) or according to a stimulus-response mapping that had to be learned (LEARN task). We found an increased change of oxygenated and deoxygenated hemoglobin during LEARN covering broad areas over right frontal, central and parietal cortex. Opposed to this, hemoglobin changes were less pronounced for RANDOM and APPLY. Along with the findings that fewer objects were caught during LEARN but stimulus-response mappings were successfully identified, we attribute the higher activations to an increased cognitive load when extracting an unknown mapping. This study therefore demonstrates a neuronal marker of cognitive control during gaming revealed by near-infrared spectroscopy recordings. PMID:26244781

  7. Biomaterial Surface patterning of self assembled monolayers for controlling neuronal cell behavior

    PubMed Central

    Murugan, Ramalingam; Molnar, Peter; Rao, Koritala P.; Hickman, James J.

    2009-01-01

    Control of the position, growth and subsequent function of living cells is a fundamental problem in tissue and cellular engineering. The development of a generation of ‘smart’ biomaterial substrates requires strict control over the material’s surface properties, because the initial response of the cultured cells to the biomaterials mainly depends upon the surface characteristics of the engineered material. Since most of the cells in the body are arranged in distinct patterns during development, it would be beneficial if one could create patterned environments in-vitro for regulating cell behavior, for applications in vivo, in particular for CNS neurons. Accordingly, in this article, we provide design strategies and methodologies developed for nano- and micro-scale surface patterning and the subsequent control of cellular responses in-vitro. PMID:20174479

  8. Paradoxical effects of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) activator gingerol on NG115-401L neuronal cells: failure to augment ER Ca(2+) uptake and protect against ER stress-induced cell death.

    PubMed

    Zhang, Changfeng; Bose, Diptiman D; Thomas, David W

    2015-09-01

    Perturbation of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are thought to underlie a spectrum of defects encompassing major societal diseases such as diabetes and neurodegeneration. In this report we used the NG115-401L neuronal cell line to test the hypothesis that neuroprotection against ER stress may be conferred by pharmacological stimulation of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pumps. We report that the SERCA activator gingerol stimulates SR microsomal Ca(2+)-ATPase activity and restores enzymatic function in the presence of potent SERCA blockers. Yet, enzyme protection in isolated membranes does not extend to protection from ER stress in intact NG115-401L cells. Surprisingly, gingerol not only failed to protect cells from SERCA blocker-induced ER stress and cell death, the compound itself potently induced cell death. Also, we report that gingerol failed to augment ER Ca(2+) uptake, a result contradictory to what has been observed in muscle. Unexpectedly, gingerol discharged ER Ca(2+) stores and coupled robustly to Ca(2+) influx pathways. These observations suggest that gingerol is not acting as a traditional SERCA blocker as thapsigargin mediated ER Ca(2+) store depletion fails to stimulate Ca(2+) influx in the NG115-401L cell phenotype. Moreover, cell death induced by gingerol, in contrast to the classic SERCA inhibitors, is not accompanied by increases in reactive oxygen species production or enzymatic caspase activity. These results argue for a finer regulatory control on SERCA function with gingerol's actions revealing potentially novel routes of coupling altered pump regulation to the assembly of functional Ca(2+) influx units and activation of cell death pathways. PMID:26033206

  9. Comment on the extinct paradox

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1983-01-01

    The extinction paradox is a contradiction between geometrical optics results which predict that at high frequencies the scattering cross section of an object should equal its geometrical cross section and rigorous scattering theory which shows that at high frequencies the scattering cross section approaches twice the geometrical cross section of the object. Confusion about the reason for this paradox persists today even though the nature of the paradox was correctly identified many years ago by Brillouin. The resolution of the paradox is restated and illustrated with an example, and then the implications to the interpretation of scattering cross sections are identified.

  10. The paradox of Schrodinger's cat

    NASA Astrophysics Data System (ADS)

    Villars, C. N.

    1986-07-01

    Erwin Schrodinger first described the thought-experiment which has since become known as 'the paradox of Schrodinger's cat' 51 years ago. In recent years, popular accounts of quantum mechanics have tended to adopt one or other of the philosophically most extreme solutions to this paradox, i.e. the consciousness hypothesis or the many worlds interpretation. The author attempts to redress the balance by describing what he takes to be the orthodox solution to the paradox which explains the paradox, without recourse to such counterintuitive notions as a cat simultaneously dead and alive or a universe continually splitting into multiple worlds, as being due to a misapplication of the quantum formalism.

  11. Paradoxical Vocal Fold Movement (PVFM)

    MedlinePlus

    ... Careers Certification Publications Events Advocacy Continuing Education Practice Management Research Home / Information for the Public / Speech, Language and Swallowing / Disorders and Diseases Paradoxical Vocal Fold ...

  12. Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons

    PubMed Central

    Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.

    2015-01-01

    Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830

  13. Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons.

    PubMed

    Dagostin, André A; Lovell, Peter V; Hilscher, Markus M; Mello, Claudio V; Leão, Ricardo M

    2015-01-01

    Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830

  14. Neuronal BC RNAs cooperate with eIF4B to mediate activity-dependent translational control

    PubMed Central

    Eom, Taesun; Muslimov, Ilham A.; Tsokas, Panayiotis; Berardi, Valerio; Zhong, Jun; Sacktor, Todd C.

    2014-01-01

    In neurons, translational regulation of gene expression has been implicated in the activity-dependent management of synapto-dendritic protein repertoires. However, the fundamentals of stimulus-modulated translational control in neurons remain poorly understood. Here we describe a mechanism in which regulatory brain cytoplasmic (BC) RNAs cooperate with eukaryotic initiation factor 4B (eIF4B) to control translation in a manner that is responsive to neuronal activity. eIF4B is required for the translation of mRNAs with structured 5′ untranslated regions (UTRs), exemplified here by neuronal protein kinase Mζ (PKMζ) mRNA. Upon neuronal stimulation, synapto-dendritic eIF4B is dephosphorylated at serine 406 in a rapid process that is mediated by protein phosphatase 2A. Such dephosphorylation causes a significant decrease in the binding affinity between eIF4B and BC RNA translational repressors, enabling the factor to engage the 40S small ribosomal subunit for translation initiation. BC RNA translational control, mediated via eIF4B phosphorylation status, couples neuronal activity to translational output, and thus provides a mechanistic basis for long-term plastic changes in nerve cells. PMID:25332164

  15. K(ATP)-channel-dependent regulation of catecholaminergic neurons controls BAT sympathetic nerve activity and energy homeostasis.

    PubMed

    Tovar, Sulay; Paeger, Lars; Hess, Simon; Morgan, Donald A; Hausen, A Christine; Brönneke, Hella S; Hampel, Brigitte; Ackermann, P Justus; Evers, Nadine; Büning, Hildegard; Wunderlich, F Thomas; Rahmouni, Kamal; Kloppenburg, Peter; Brüning, Jens C

    2013-09-01

    Brown adipose tissue (BAT) is a critical regulator of glucose, lipid, and energy homeostasis, and its activity is tightly controlled by the sympathetic nervous system. However, the mechanisms underlying CNS-dependent control of BAT sympathetic nerve activity (SNA) are only partly understood. Here, we demonstrate that catecholaminergic neurons in the locus coeruleus (LC) adapt their firing frequency to extracellular glucose concentrations in a K(ATP)-channel-dependent manner. Inhibiting K(ATP)-channel-dependent control of neuronal activity via the expression of a variant K(ATP) channel in tyrosine-hydroxylase-expressing neurons and in neurons of the LC enhances diet-induced obesity in mice. Obesity results from decreased energy expenditure, lower steady-state BAT SNA, and an attenuated ability of centrally applied glucose to activate BAT SNA. This impairs the thermogenic transcriptional program of BAT. Collectively, our data reveal a role of K(ATP)-channel-dependent neuronal excitability in catecholaminergic neurons in maintaining thermogenic BAT sympathetic tone and energy homeostasis. PMID:24011078

  16. Zermelo, Boltzmann, and the recurrence paradox

    NASA Astrophysics Data System (ADS)

    Steckline, Vincent S.

    1983-10-01

    The papers exchanged by Ludwig Boltzmann and Ernst Zermelo concerning the recurrence paradox are summarized. The historical context of the paradox, Zermelo's proof of the paradox, his opinions of its consequences, Boltzmann's reply, and the ensuing discussion are described.

  17. Tectal microcircuit generating visual selection commands on gaze-controlling neurons

    PubMed Central

    Kardamakis, Andreas A.; Saitoh, Kazuya; Grillner, Sten

    2015-01-01

    The optic tectum (called superior colliculus in mammals) is critical for eye–head gaze shifts as we navigate in the terrain and need to adapt our movements to the visual scene. The neuronal mechanisms underlying the tectal contribution to stimulus selection and gaze reorientation remains, however, unclear at the microcircuit level. To analyze this complex—yet phylogenetically conserved—sensorimotor system, we developed a novel in vitro preparation in the lamprey that maintains the eye and midbrain intact and allows for whole-cell recordings from prelabeled tectal gaze-controlling cells in the deep layer, while visual stimuli are delivered. We found that receptive field activation of these cells provide monosynaptic retinal excitation followed by local GABAergic inhibition (feedforward). The entire remaining retina, on the other hand, elicits only inhibition (surround inhibition). If two stimuli are delivered simultaneously, one inside and one outside the receptive field, the former excitatory response is suppressed. When local inhibition is pharmacologically blocked, the suppression induced by competing stimuli is canceled. We suggest that this rivalry between visual areas across the tectal map is triggered through long-range inhibitory tectal connections. Selection commands conveyed via gaze-controlling neurons in the optic tectum are, thus, formed through synaptic integration of local retinotopic excitation and global tectal inhibition. We anticipate that this mechanism not only exists in lamprey but is also conserved throughout vertebrate evolution. PMID:25825743

  18. Tectal microcircuit generating visual selection commands on gaze-controlling neurons.

    PubMed

    Kardamakis, Andreas A; Saitoh, Kazuya; Grillner, Sten

    2015-04-14

    The optic tectum (called superior colliculus in mammals) is critical for eye-head gaze shifts as we navigate in the terrain and need to adapt our movements to the visual scene. The neuronal mechanisms underlying the tectal contribution to stimulus selection and gaze reorientation remains, however, unclear at the microcircuit level. To analyze this complex--yet phylogenetically conserved--sensorimotor system, we developed a novel in vitro preparation in the lamprey that maintains the eye and midbrain intact and allows for whole-cell recordings from prelabeled tectal gaze-controlling cells in the deep layer, while visual stimuli are delivered. We found that receptive field activation of these cells provide monosynaptic retinal excitation followed by local GABAergic inhibition (feedforward). The entire remaining retina, on the other hand, elicits only inhibition (surround inhibition). If two stimuli are delivered simultaneously, one inside and one outside the receptive field, the former excitatory response is suppressed. When local inhibition is pharmacologically blocked, the suppression induced by competing stimuli is canceled. We suggest that this rivalry between visual areas across the tectal map is triggered through long-range inhibitory tectal connections. Selection commands conveyed via gaze-controlling neurons in the optic tectum are, thus, formed through synaptic integration of local retinotopic excitation and global tectal inhibition. We anticipate that this mechanism not only exists in lamprey but is also conserved throughout vertebrate evolution. PMID:25825743

  19. Controlled and Impaired Mitochondrial Quality in Neurons: Molecular Physiology and Prospective Pharmacology.

    PubMed

    Matic, Ivana; Strobbe, Daniela; Frison, Michele; Campanella, Michelangelo

    2015-09-01

    Tuned mitochondrial physiology is fundamental for qualitative cellular function. This is particularly relevant for neurons, whose pathology is frequently associated with mitochondrial deficiencies. Defects in mitochondria are indeed key features in most neurodegenerative diseases such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). When mitochondrial coupling impairs, so does cell metabolism, trafficking and the signaling depending on the homeostasis of the mitochondrial network. Moreover, the quality control of mitochondria - via the process of mitochondrial autophagy - results biased in neurodegeneration stemming major interest on the molecular determinants of this process among neuroscientists. In this review, we highlight the most notable and acknowledged deficiencies of mitochondrial function and their relationship with diseases occurring in neurons and their transmission. The physiological aspects of mitochondrial biology in relation to bio-energy, dynamics and quality control will be discussed with the finality to form a comprehensive picture of the mitochondrial contribution to the pathophysiology of neurodegenerative syndromes. In this way we aim to set the scene to conceive novel strategies to better diagnose and target these debilitative conditions. PMID:25917207

  20. Transmyocardial Revascularization Ameliorates Ischemia by Attenuating Paradoxical Catecholamine-Induced Vasoconstriction

    PubMed Central

    Le, D. Elizabeth; Powers, Eric R.; Bin, Jian-Ping; Leong-Poi, Howard; Goodman, N. Craig; Kaul, Sanjiv

    2007-01-01

    The mechanism by which transmyocardial revascularization (TMR) offers clinical benefit is controversial. We hypothesized that TMR ameliorates ischemia by reversing paradoxical catecholamine-induced vasoconstriction. Chronic ischemic cardiomyopathy was created in 11 dogs by placing ameroid constrictors on the proximal coronary arteries and their major branches. Six weeks later, 35 channels were created percutaneously in the left circumflex artery (LCx) region with the left anterior descending artery (LAD) region serving as control. At rest, wall thickening (WT) and myocardial blood flow (MBF) did not change in the treated region, while they deteriorated in the control bed. Contractile and MBF reserve increased in the treated region but deteriorated in the control region. There was diminished 123I-metaiodobenzylguanidine uptake and significant reduction in noradrenergic nerves in the treated region compared to control region, with corresponding reduction in tissue tyrosine hydroxylase activity. We conclude that the absence of catecholamine-induced reduction in MBF reserve and contractile reserve in the TMR treated region with associated evidence of neuronal injury indicates that the relief of exercise-induced ischemia after TMR is most likely due to reversal of paradoxical catecholamine-induced vasoconstriction. These findings may have implications in selecting patients who would benefit from TMR. PMID:17386383

  1. A codimension-2 bifurcation controlling endogenous bursting activity and pulse-triggered responses of a neuron model.

    PubMed

    Barnett, William H; Cymbalyuk, Gennady S

    2014-01-01

    The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals-the duration of the burst and the duration of latency to spiking-are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of

  2. Transient paradoxical bronchospasm associated with inhalation of the LAMA AZD9164: analysis of two Phase I, randomised, double-blind, placebo-controlled studies

    PubMed Central

    2014-01-01

    Background AZD9164 has demonstrated potential as an inhaled, long-acting, muscarinic antagonist (LAMA) bronchodilator. However, in patients with COPD, but not in healthy subjects, a transient initial drop in FEV1 was observed following inhalation of nebulised doses of AZD9164 in citrate buffer. Two additional studies were conducted to further assess the safety and tolerability of multiple ascending doses of AZD9164 in 27 white and 18 Japanese healthy subjects and in 4 patients with COPD. In these studies, AZD9164 was inhaled via Turbuhaler™. Methods These were Phase I, randomised, double-blind, placebo-controlled, multiple ascending dose (MAD) studies conducted in Sweden and UK. Healthy subjects (mean age 25.9 yrs) and patients with COPD (mean age 66 yrs, mean post-bronchodilator FEV1 60.1% predicted normal value) were randomised 2:1 to active treatment (400, 1000 or 2800 μg delivered doses of AZD9164) or placebo. Results No safety or tolerability concerns were identified in the healthy subjects at doses up to and including 2800 μg and both studies confirmed the bronchodilator effect of AZD9164. However, the first 3 patients in the COPD cohort who received AZD9164 (1000 μg) experienced a transient fall in FEV1 5 to 15 minutes after inhalation of AZD9164 while the patient receiving placebo did not. The study safety review process then resulted in cessation of further activities on AZD9164. Retrospective analysis showed that two healthy subjects had also had transient falls in FEV1 shortly after inhalation of AZD9164 400 and 2800 μg respectively, although neither reported any related respiratory symptoms or other AEs. Conclusions These results show that transient paradoxical bronchoconstriction can occur in some healthy subjects, in addition to patients with COPD, following inhalation of AZD9164 and that the citrate buffer used in the nebulised formulation cannot have been the only cause of the drop in FEV1 in previous studies. As preclinical data do not

  3. The Easterlin paradox revisited.

    PubMed

    Frank, Robert H

    2012-12-01

    The traditional view that well-being depends on both absolute and relative income was challenged in a 1974 paper by Richard Easterlin (Does economic growth improve the human lot? In P. David and M. Reder (Eds.), Nations and households in economic growth: Essays in honor of Moses Abramovitz (pp. 89-125), New York: Academic Press). He noted that although individual well-being is strongly positively associated with income within any country at a given point in time, the average level of measured well-being for a country changes little over time, even in the face of substantial growth in average incomes. For decades, social scientists have struggled to explain this "Easterlin Paradox." In a 2008 paper, Betsey Stephenson and Justin Wolfers (Economic growth and subjective well-being: Reassessing the Easterlin Paradox, Brookings Papers on Economic Activity, Vol. 39, pp. 1-87) argued that the Easterlin Paradox was a statistical illusion. Using richer data sets that facilitate more precise estimates of the various links between income and well-being, they assert that average well-being in a country does, in fact, rise as average income rises over time, and that rich countries are happier than slightly poorer ones. They also suggest that the link between income and well-being may run through absolute income alone-that is, that individual well-being may be completely independent of relative income. In this article, I argue that there have always been good reasons to believe that well-being is positively linked to absolute income. I also argue, however, that there is no reason to believe that individual well-being is independent of relative income. PMID:23088778

  4. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    PubMed

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We

  5. An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state.

    PubMed

    Pedersen, Mikael Egebjerg; Snieckute, Goda; Kagias, Konstantinos; Nehammer, Camilla; Multhaupt, Hinke A B; Couchman, John R; Pocock, Roger

    2013-09-20

    An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan biosynthetic pathway: a chondroitin synthase (SQV-5; squashed vulva-5) and a uridine 5'-diphosphate-sugar transporter (SQV-7). Loss of mir-79 causes neurodevelopmental defects through SQV-5 and SQV-7 dysregulation in the epidermis. This results in a partial shutdown of heparan sulfate biosynthesis that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells. PMID:24052309

  6. Confronting Twin Paradox Acceleration

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  7. From Paradox to Reality

    NASA Astrophysics Data System (ADS)

    Rohrlich, Fritz

    1989-08-01

    Preface; Part I. At the Roof of the Endeavor: 1. Human limitations; 2. Theory and the role of mathematics; 3. Scientific objectivity; 4. The aim of scientific theory; Part II. The World of Relativity: 5. Space and time: from absolute to relative; 6. Imposed consistency: special relativity; 7. Gravitation as geometry: general relativity; 8. Revolutions without revolutions; Part III. The Quantum World: 9. The limits of the classical world; 10. Concepts of the quantum world; 11. From apparent paradox to a new reality; 12. The present state of the art; Epilogue; Notes; Glossary of technical terms; Name index; Subject index.

  8. The Floating Ball Paradox

    NASA Astrophysics Data System (ADS)

    Wente, Henry C.

    2008-11-01

    In capillary theory there are two kinds of surface tension. There is the surface tension at the interface between two immiscible fluids. Thomas Young [9] also allowed for there to be a surface tension associated with a liquid-solid interface. He proceeded to use a balance of forces argument to derive the well-known contact angle condition along a liquid-liquid-solid intersection. The validity of this argument has recently been called into question by R. Finn [6]. A floating ball experiment discussed in that paper leads to an apparent paradox. We address this issue.

  9. The Teacher's Paradox

    NASA Astrophysics Data System (ADS)

    Lilyquist, J. Gary

    1998-06-01

    New findings suggest that the way in which schools conduct their business is blocking our educational system from improving at a rate required to meet society's needs. A ground theory developed by exploring six organizational dimensions: external and internal environment cultures, leadership, strategy, structure, and results, verified the existence of the teacher's paradox. Implications suggest educational reformers must rethink approaches to school improvement by work within cultural boundaries. The forth coming book, "Are schools really like this?" presents "The Balance Alignment Model and Theory" to improve our schools using system thinking.

  10. Shank–cortactin interactions control actin dynamics to maintain flexibility of neuronal spines and synapses

    PubMed Central

    MacGillavry, Harold D.; Kerr, Justin M.; Kassner, Josh; Frost, Nicholas A.; Blanpied, Thomas A.

    2016-01-01

    The family of Shank scaffolding molecules (comprising Shank1, 2 and 3) are core components of the postsynaptic density (PSD) in neuronal synapses. Shanks link surface receptors to other scaffolding molecules within the PSD, as well as to the actin cytoskeleton. However, determining the function of Shank proteins in neurons has been complicated because the different Shank isoforms share a very high degree of sequence and domain homology. Therefore, to control Shank content while minimizing potential compensatory effects, a miRNA-based knockdown strategy was developed to reduce the expression of all synaptically targeted Shank isoforms simultaneously in rat hippocampal neurons. Using this approach, a strong (>75%) reduction in total Shank protein levels was achieved at individual dendritic spines, prompting an approximately 40% decrease in mushroom spine density. Furthermore, Shank knockdown reduced spine actin levels and increased sensitivity to the actin depolymerizing agent Latrunculin A. A SHANK2 mutant lacking the proline-rich cortactin-binding motif (SHANK2-ΔPRO) was unable to rescue these defects. Furthermore, Shank knockdown reduced cortactin levels in spines and increased the mobility of spine cortactin as measured by single-molecule tracking photoactivated localization microscopy, suggesting that Shank proteins recruit and stabilize cortactin at the synapse. Furthermore, it was found that Shank knockdown significantly reduced spontaneous remodelling of synapse morphology that could not be rescued by the SHANK2-ΔPRO mutant. It was concluded that Shank proteins are key intermediates between the synapse and the spine interior that, via cortactin, permit the actin cytoskeleton to dynamically regulate synapse morphology and function. PMID:26547831

  11. Intrinsic Innate Immunity Fails To Control Herpes Simplex Virus and Vesicular Stomatitis Virus Replication in Sensory Neurons and Fibroblasts

    PubMed Central

    Rosato, Pamela C.

    2014-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in the sensory neurons of the trigeminal ganglia (TG), wherein it retains the capacity to reactivate. The interferon (IFN)-driven antiviral response is critical for the control of HSV-1 acute replication. We therefore sought to further investigate this response in TG neurons cultured from adult mice deficient in a variety of IFN signaling components. Parallel experiments were also performed in fibroblasts isolated concurrently. We showed that HSV-1 replication was comparable in wild-type (WT) and IFN signaling-deficient neurons and fibroblasts. Unexpectedly, a similar pattern was observed for the IFN-sensitive vesicular stomatitis virus (VSV). Despite these findings, TG neurons responded to IFN-β pretreatment with STAT1 nuclear localization and restricted replication of both VSV and an HSV-1 strain deficient in γ34.5, while wild-type HSV-1 replication was unaffected. This was in contrast to fibroblasts in which all viruses were restricted by the addition of IFN-β. Taken together, these data show that adult TG neurons can mount an effective antiviral response only if provided with an exogenous source of IFN-β, and HSV-1 combats this response through γ34.5. These results further our understanding of the antiviral response of neurons and highlight the importance of paracrine IFN-β signaling in establishing an antiviral state. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a ubiquitous virus that establishes a lifelong latent infection in neurons. Reactivation from latency can cause cold sores, blindness, and death from encephalitis. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study, we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Using neurons isolated from mice, we found that the intrinsic capacity of neurons to restrict virus replication was unaffected by the presence

  12. A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC.

    PubMed

    Singhvi, Aakanksha; Liu, Bingqian; Friedman, Christine J; Fong, Jennifer; Lu, Yun; Huang, Xin-Yun; Shaham, Shai

    2016-05-01

    Neurons receive input from the outside world or from other neurons through neuronal receptive endings (NREs). Glia envelop NREs to create specialized microenvironments; however, glial functions at these sites are poorly understood. Here, we report a molecular mechanism by which glia control NRE shape and associated animal behavior. The C. elegans AMsh glial cell ensheathes the NREs of 12 neurons, including the thermosensory neuron AFD. KCC-3, a K/Cl transporter, localizes specifically to a glial microdomain surrounding AFD receptive ending microvilli, where it regulates K(+) and Cl(-) levels. We find that Cl(-) ions function as direct inhibitors of an NRE-localized receptor-guanylyl-cyclase, GCY-8, which synthesizes cyclic guanosine monophosphate (cGMP). High cGMP mediates the effects of glial KCC-3 on AFD shape by antagonizing the actin regulator WSP-1/NWASP. Components of this pathway are broadly expressed throughout the nervous system, suggesting that ionic regulation of the NRE microenvironment may be a conserved mechanism by which glia control neuron shape and function. PMID:27062922

  13. [Single and Network Neuron Activity of Subthalamic Nucleus at Impulsive and Delayed (Self-Control) Reactions in Choice Behavior].

    PubMed

    Sidorina, V V; Gerasimova, Yu A; Kuleshova, E P; Merzhanova, G Kh

    2015-01-01

    During our experiments on cats was investigated the subthalamic neuron activity at different types of behavior in case of reinforcement choice depending on its value and availability. In chronic experiences the multiunit activity in subthalamic nucleus (STN) and orbitofrontal cortex (FC) has been recorded. Multiunit activity was analyzed over frequency and network properties of spikes. It was shown, that STN neurons reaction to different reinforcements and conditional stimulus at short- or long-delay reactions was represented by increasing or decreasing of frequency of single neurons. However the same STN neu- rons responded with increasing of frequency of single neuron during expectation of mix-bread-meat and decreasing--during the meat expectation. It has been revealed, that the number of STN interneuron interactions was authentic more at impulsive behavior than at self-control choice of behavior. The number of interactions between FC and STN neurons within intervals of 0-30 Ms was authentic more at display impulsive than during self-control behavior. These results suppose that FC and STN neurons participate in integration of reinforcement estimation; and distinctions in a choice of behavior are defined by the local and distributed interneuron interactions of STN and FC. PMID:26601504

  14. The Paradox in Institutional Renewal.

    ERIC Educational Resources Information Center

    Cameron, Kim

    The renewal of institutions and maintenance of excellence in the uncertain future are discussed, based on research with 335 four-year universities and colleges. In examining the function of paradox in adaptation and renewal, it was found that individuals who can simultaneously focus on opposites, or paradoxes, are tolerant and flexible.…

  15. Mathematical background of Parrondo's paradox

    NASA Astrophysics Data System (ADS)

    Behrends, Ehrhard

    2004-05-01

    Parrondo's paradox states that there are losing gambling games which, when being combined stochastically or in a suitable deterministic way, give rise to winning games. Here we investigate the probabilistic background. We show how the properties of the equilibrium distributions of the Markov chains under consideration give rise to the paradoxical behavior, and we provide methods how to find the best a priori strategies.

  16. Barn and Pole Paradox: Revisited

    ERIC Educational Resources Information Center

    Cacioppo, Robert; Gangopadhyaya, Asim

    2012-01-01

    Paradoxes have played great instructive roles in many cultures. They provide an excellent paradigm for teaching concepts that require deep reflection. In this article, the authors present two different paradoxes related to the length contraction in special relativity and explain their resolution. They hope that these two Gedanken experiments and…

  17. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network

    NASA Astrophysics Data System (ADS)

    Fan, Denggui; Wang, Zhihui; Wang, Qingyun

    2016-07-01

    The effect of conventional deep brain stimulation (DBS) on debilitating symptoms of Parkinson's disease can be limited because it can only yield the spherical field. And, some side effects are clearly induced with influencing their adjacent ganglia. Recent experimental evidence for patients with Parkinson's disease has shown that a novel DBS electrode with 32 independent stimulation source contacts can effectively optimize the clinical therapy by enlarging the therapeutic windows, when it is applied on the subthalamic nucleus (STN). This is due to the selective activation in clusters of various stimulation contacts which can be steered directionally and accurately on the targeted regions of interest. In addition, because of the serious damage to the neural tissues, the charge-unbalanced stimulation is not typically indicated and the real DBS utilizes charge-balanced bi-phasic (CBBP) pulses. Inspired by this, we computationally investigate the optimal control of directional CBBP-DBS from the proposed parkinsonian neuronal network of basal ganglia-thalamocortical circuit. By appropriately tuning stimulation for different neuronal populations, it can be found that directional steering CBBP-DBS paradigms are superior to the spherical case in improving parkinsonian dynamical properties including the synchronization of neuronal populations and the reliability of thalamus relaying the information from cortex, which is in a good agreement with the physiological experiments. Furthermore, it can be found that directional steering stimulations can increase the optimal stimulation intensity of desynchronization by more than 1 mA compared to the spherical case. This is consistent with the experimental result with showing that there exists at least one steering direction that can allow increasing the threshold of side effects by 1 mA. In addition, we also simulate the local field potential (LFP) and dominant frequency (DF) of the STN neuronal population induced by the activation

  18. The Physiological Role of Arcuate Kisspeptin Neurons in the Control of Reproductive Function in Female Rats

    PubMed Central

    Beale, K.E.; Kinsey-Jones, J.S.; Gardiner, J.V.; Harrison, E.K.; Thompson, E.L.; Hu, M.H.; Sleeth, M.L.; Sam, A.H.; Greenwood, H.C.; McGavigan, A.K.; Dhillo, W.S.; Mora, J.M.; Li, X.F.; Franks, S.; Bloom, S.R.; O'Byrne, K.T.

    2014-01-01

    Kisspeptin plays a pivotal role in pubertal onset and reproductive function. In rodents, kisspeptin perikarya are located in 2 major populations: the anteroventral periventricular nucleus and the hypothalamic arcuate nucleus (ARC). These nuclei are believed to play functionally distinct roles in the control of reproduction. The anteroventral periventricular nucleus population is thought to be critical in the generation of the LH surge. However, the physiological role played by the ARC kisspeptin neurons remains to be fully elucidated. We used bilateral stereotactic injection of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC of adult female rats to investigate the physiological role of kisspeptin neurons in this nucleus. Female rats with kisspeptin knockdown in the ARC displayed a significantly reduced number of both regular and complete oestrous cycles and significantly longer cycles over the 100-day period of the study. Further, kisspeptin knockdown in the ARC resulted in a decrease in LH pulse frequency. These data suggest that maintenance of ARC-kisspeptin levels is essential for normal pulsatile LH release and oestrous cyclicity. PMID:24424033

  19. Ongoing Spontaneous Activity Controls Access to Consciousness: A Neuronal Model for Inattentional Blindness

    PubMed Central

    2005-01-01

    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden “ignition” of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of “inattentional blindness,” in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness. PMID:15819609

  20. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.

    PubMed

    Starkey, Michelle Louise; Bleul, Christiane; Zörner, Björn; Lindau, Nicolas Thomas; Mueggler, Thomas; Rudin, Markus; Schwab, Martin Ernst

    2012-11-01

    Whereas large injuries to the brain lead to considerable irreversible functional impairments, smaller strokes or traumatic lesions are often associated with good recovery. This recovery occurs spontaneously, and there is ample evidence from preclinical studies to suggest that adjacent undamaged areas (also known as peri-infarct regions) of the cortex 'take over' control of the disrupted functions. In rodents, sprouting of axons and dendrites has been observed in this region following stroke, while reduced inhibition from horizontal or callosal connections, or plastic changes in subcortical connections, could also occur. The exact mechanisms underlying functional recovery after small- to medium-sized strokes remain undetermined but are of utmost importance for understanding the human situation and for designing effective treatments and rehabilitation strategies. In the present study, we selectively destroyed large parts of the forelimb motor and premotor cortex of adult rats with an ischaemic injury. A behavioural test requiring highly skilled, cortically controlled forelimb movements showed that some animals recovered well from this lesion whereas others did not. To investigate the reasons behind these differences, we used anterograde and retrograde tracing techniques and intracortical microstimulation. Retrograde tracing from the cervical spinal cord showed a correlation between the number of cervically projecting corticospinal neurons present in the hindlimb sensory-motor cortex and good behavioural recovery. Anterograde tracing from the hindlimb sensory-motor cortex also showed a positive correlation between the degree of functional recovery and the sprouting of neurons from this region into the cervical spinal cord. Finally, intracortical microstimulation confirmed the positive correlation between rewiring of the hindlimb sensory-motor cortex and the degree of forelimb motor recovery. In conclusion, these experiments suggest that following stroke to the

  1. Event-based minimum-time control of oscillatory neuron models: phase randomization, maximal spike rate increase, and desynchronization.

    PubMed

    Danzl, Per; Hespanha, João; Moehlis, Jeff

    2009-12-01

    We present an event-based feedback control method for randomizing the asymptotic phase of oscillatory neurons. Phase randomization is achieved by driving the neuron's state to its phaseless set, a point at which its phase is undefined and is extremely sensitive to background noise. We consider the biologically relevant case of a fixed magnitude constraint on the stimulus signal, and show how the control objective can be accomplished in minimum time. The control synthesis problem is addressed using the minimum-time-optimal Hamilton-Jacobi-Bellman framework, which is quite general and can be applied to any spiking neuron model in the conductance-based Hodgkin-Huxley formalism. We also use this methodology to compute a feedback control protocol for optimal spike rate increase. This framework provides a straightforward means of visualizing isochrons, without actually calculating them in the traditional way. Finally, we present an extension of the phase randomizing control scheme that is applied at the population level, to a network of globally coupled neurons that are firing in synchrony. The applied control signal desynchronizes the population in a demand-controlled way. PMID:19911192

  2. Impaired Respiratory and Body Temperature Control Upon Acute Serotonergic Neuron Inhibition

    PubMed Central

    Ray, Russell; Corcoran, Andrea; Brust, Rachael; Kim, Jun Chul; Richerson, George B.; Nattie, Eugene; Dymecki, Susan M.

    2013-01-01

    Physiological homeostasis is essential for organism survival. Highly responsive neuronal networks are involved but constituent neurons are just beginning to be resolved. To query brain serotonergic neurons in homeostasis, we used a synthetic GPCR (Di)-based neuronal silencing tool, mouse RC∷FPDi, designed for cell type-specific, ligand (clozapine-N-oxide, CNO)-inducible and reversible suppression of action potential firing. In mice harboring Di-expressing serotonergic neurons, CNO administration by systemic injection attenuated the chemoreflex that normally increases respiration in response to tissue CO2 elevation and acidosis. At the cellular level, CNO suppressed firing rate increases evoked by CO2/acidosis. Body thermoregulation at room temperature was also disrupted following CNO triggering of Di; core temperatures plummeted, then recovered. This work establishes that serotonergic neurons regulate life-sustaining respiratory and thermoregulatory networks, and demonstrates a noninvasive tool for mapping neuron function. PMID:21798952

  3. Control of neuronal voltage-gated calcium ion channels from RNA to protein.

    PubMed

    Lipscombe, Diane; Allen, Summer E; Toro, Cecilia P

    2013-10-01

    Voltage-gated calcium ion (CaV) channels convert neuronal activity into rapid intracellular calcium signals to trigger a myriad of cellular responses. Their involvement in major neurological and psychiatric diseases, and importance as therapeutic targets, has propelled interest in subcellular-specific mechanisms that align CaV channel activity to specific tasks. Here, we highlight recent studies that delineate mechanisms controlling the expression of CaV channels at the level of RNA and protein. We discuss the roles of RNA editing and alternative pre-mRNA splicing in generating CaV channel isoforms with activities specific to the demands of individual cells; the roles of ubiquitination and accessory proteins in regulating CaV channel expression; and the specific binding partners that contribute to both pre- and postsynaptic CaV channel function. PMID:23907011

  4. Control of Neuronal Voltage-Gated Calcium Ion Channels From RNA to Protein

    PubMed Central

    Lipscombe, Diane; Allen, Summer E; Toro, Cecilia P.

    2013-01-01

    Voltage-gated calcium (CaV) ion channels convert neuronal activity into rapid intracellular calcium signals to trigger a myriad of cellular responses. Their involvement in major neurological and psychiatric diseases, and importance as therapeutic targets, has propelled interest in subcellular-specific mechanisms that align CaV channel activity to specific tasks. Here we highlight recent studies that delineate mechanisms controlling the expression of CaV channels at the level of RNA and protein. We discuss the roles of RNA editing and alternative pre-mRNA splicing in generating CaV channel isoforms with activities specific to the demands of individual cells; the roles of ubiquitination and accessory proteins in regulating CaV channel expression; and the specific binding partners which contribute to both pre- and post- synaptic CaV channel function. PMID:23907011

  5. Interactions between hypocretinergic and GABAergic systems in the control of activity of neurons in the cat pontine reticular formation.

    PubMed

    Xi, M; Fung, S J; Yamuy, J; Chase, M H

    2015-07-01

    Anatomical studies have demonstrated that hypocretinergic and GABAergic neurons innervate cells in the nucleus pontis oralis (NPO), a nucleus responsible for the generation of active (rapid eye movement (REM)) sleep (AS) and wakefulness (W). Behavioral and electrophysiological studies have shown that hypocretinergic and GABAergic processes in the NPO are involved in the generation of AS as well as W. An increase in hypocretin in the NPO is associated with both AS and W, whereas GABA levels in the NPO are elevated during W. We therefore examined the manner in which GABA modulates NPO neuronal responses to hypocretin. We hypothesized that interactions between the hypocretinergic and GABAergic systems in the NPO play an important role in determining the occurrence of AS or W. To determine the veracity of this hypothesis, we examined the effects of the juxtacellular application of hypocretin-1 and GABA on the activity of NPO neurons, which were recorded intracellularly, in chloralose-anesthetized cats. The juxtacellular application of hypocretin-1 significantly increased the mean amplitude of spontaneous EPSPs and the frequency of discharge of NPO neurons; in contrast, the juxtacellular microinjection of GABA produced the opposite effects, i.e., there was a significant reduction in the mean amplitude of spontaneous EPSPs and a decrease in the discharge of these cells. When hypocretin-1 and GABA were applied simultaneously, the inhibitory effect of GABA on the activity of NPO neurons was reduced or completely blocked. In addition, hypocretin-1 also blocked GABAergic inhibition of EPSPs evoked by stimulation of the laterodorsal tegmental nucleus. These data indicate that hypocretin and GABA function within the context of a neuronal gate that controls the activity of AS-on neurons. Therefore, we suggest that the occurrence of either AS or W depends upon interactions between hypocretinergic and GABAergic processes as well as inputs from other sites that project to AS

  6. A putative neuronal network controlling the activity of the leg motoneurons of the stick insect.

    PubMed

    Toth, Tibor I; Daun-Gruhn, Silvia

    2011-12-21

    It is widely accepted that the electrical activity of motoneurons that drive locomotion in the stick insect are controlled by two separate mechanisms: (i) the frequency of the activity through the central pattern generator, which provides the rhythm of movement during locomotion and (ii) the 'magnitude' through circuits distinct from the earlier one. In this study, we show a possible way of how this control mechanism might be implemented in the nervous system of the stick insect by means of a network model. To do this, we had to define the 'magnitude' of the neuronal activity more precisely as the average number of spikes per unit time. The model was constructed on the basis of relevant electrophysiological and morphological data. However, only their integration in the model led to the novel properties that enable the network quickly to adapt the motoneuronal activity to central commands or sensory signals by changing both the firing pattern and intensity of the motoneuron discharges. The network would thus act as the controlling network for each of the muscle pairs that move the individual joints in each of the legs. Our model may contribute to a better understanding of the mechanisms that underlie the fast adaptive control of locomotion in this, and possibly in other types of locomotor systems. PMID:22089647

  7. Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion.

    PubMed

    Wasserman, David I; Tan, Joel M J; Kim, Jun Chul; Yeomans, John S

    2016-07-01

    Opioids induce rewarding and locomotor effects by inhibiting rostromedial tegmental GABA neurons that express μ-opioid and nociceptin receptors. These GABA neurons then strongly inhibit dopamine neurons. Opioid-induced reward, locomotion and dopamine release also depend on pedunculopontine and laterodorsal tegmental cholinergic and glutamate neurons, many of which project to and activate ventral tegmental area dopamine neurons. Here we show that laterodorsal tegmental and pedunculopontine cholinergic neurons project to both rostromedial tegmental nucleus and ventral tegmental area, and that M4 muscarinic receptors are co-localized with μ-opioid receptors associated with rostromedial tegmental GABA neurons. To inhibit or excite rostromedial tegmental GABA neurons, we utilized adeno-associated viral vectors and DREADDs to express designed muscarinic receptors (M4D or M3D respectively) in GAD2::Cre mice. In M4D-expressing mice, clozapine-N-oxide increased morphine-induced, but not vehicle-induced, locomotion. In M3D-expressing mice, clozapine-N-oxide blocked morphine-induced, but not vehicle-induced, locomotion. We propose that cholinergic inhibition of rostromedial tegmental GABA neurons via M4 muscarinic receptors facilitates opioid inhibition of the same neurons. This model explains how mesopontine cholinergic systems and muscarinic receptors in the rostromedial tegmental nucleus and ventral tegmental area are important for dopamine-dependent and dopamine-independent opioid-induced rewards and locomotion. PMID:26990801

  8. The lunar apatite paradox.

    PubMed

    Boyce, J W; Tomlinson, S M; McCubbin, F M; Greenwood, J P; Treiman, A H

    2014-04-25

    Recent discoveries of water-rich lunar apatite are more consistent with the hydrous magmas of Earth than the otherwise volatile-depleted rocks of the Moon. Paradoxically, this requires H-rich minerals to form in rocks that are otherwise nearly anhydrous. We modeled existing data from the literature, finding that nominally anhydrous minerals do not sufficiently fractionate H from F and Cl to generate H-rich apatite. Hydrous apatites are explained as the products of apatite-induced low magmatic fluorine, which increases the H/F ratio in melt and apatite. Mare basalts may contain hydrogen-rich apatite, but lunar magmas were most likely poor in hydrogen, in agreement with the volatile depletion that is both observed in lunar rocks and required for canonical giant-impact models of the formation of the Moon. PMID:24652938

  9. Resveratrol: French Paradox Revisited

    PubMed Central

    Catalgol, Betul; Batirel, Saime; Taga, Yavuz; Ozer, Nesrin Kartal

    2012-01-01

    Resveratrol is a polyphenol that plays a potentially important role in many disorders and has been studied in different diseases. The research on this chemical started through the “French paradox,” which describes improved cardiovascular outcomes despite a high-fat diet in French people. Since then, resveratrol has been broadly studied and shown to have antioxidant, anti-inflammatory, anti-proliferative, and anti-angiogenic effects, with those on oxidative stress possibly being most important and underlying some of the others, but many signaling pathways are among the molecular targets of resveratrol. In concert they may be beneficial in many disorders, particularly in diseases where oxidative stress plays an important role. The main focus of this review will be the pathways affected by resveratrol. Based on these mechanistic considerations, the involvement of resveratrol especially in cardiovascular diseases, cancer, neurodegenerative diseases, and possibly in longevity will be is addressed. PMID:22822401

  10. Paradoxes of neutrino oscillations

    SciTech Connect

    Akhmedov, E. Kh.; Smirnov, A. Yu.

    2009-08-15

    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.