Science.gov

Sample records for neurons suppresses insulin

  1. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling

    PubMed Central

    Gu, Tingting; Zhao, Tao; Hewes, Randall S.

    2014-01-01

    Summary Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation. PMID:24357229

  2. SIRT2 regulates insulin sensitivity in insulin resistant neuronal cells.

    PubMed

    Arora, Amita; Dey, Chinmoy Sankar

    2016-06-10

    Insulin resistance in brain is well-associated with pathophysiology of deficits in whole-body energy metabolism, neurodegenerative diseases etc. Among the seven sirtuins, SIRT2 is the major deacetylase expressed in brain. Inhibition of SIRT2 confers neuroprotection in case of Parkinson's disease (PD) and Huntington's disease (HD). However, the role of this sirtuin in neuronal insulin resistance is not known. In this study, we report the role of SIRT2 in regulating insulin-sensitivity in neuronal cells in vitro. Using approaches like pharmacological inhibition of SIRT2, siRNA mediated SIRT2 knockdown and over-expression of wild-type and catalytically-mutated SIRT2, we observed that downregulation of SIRT2 ameliorated the reduced activity of AKT and increased insulin-stimulated glucose uptake in insulin resistant neuro-2a cells. The data was supported by over expression of catalytically-inactive SIRT2 in insulin-resistant human SH-SY5Y neuronal cells. Data highlights a crucial role of SIRT2 in regulation of neuronal insulin sensitivity under insulin resistant condition. PMID:27163642

  3. Suppression of Insulin Production and Secretion by a Decretin Hormone

    PubMed Central

    Alfa, Ronald W.; Park, Sangbin; Skelly, Kathleen-Rose; Poffenberger, Gregory; Jain, Nimit; Gu, Xueying; Kockel, Lutz; Wang, Jing; Liu, Yinghua; Powers, Alvin C.; Kim, Seung K.

    2015-01-01

    SUMMARY Decretins, hormones induced by fasting that suppress insulin production and secretion, have been postulated from classical human metabolic studies. From genetic screens, we identified Drosophila Limostatin (Lst), a peptide hormone that suppresses insulin secretion. Lst is induced by nutrient restriction in gut-associated endocrine cells. limostatin deficiency led to hyperinsulinemia, hypoglycemia and excess adiposity. A conserved 15-residue polypeptide encoded by limostatin suppressed secretion by insulin-producing cells. Targeted knockdown of CG9918, a Drosophila orthologue of Neuromedin U receptors (NMUR), in insulin-producing cells phenocopied limostatin deficiency, and attenuated insulin suppression by purified Lst, suggesting CG9918 encodes an Lst receptor. NMUR1 is expressed in islet β-cells, and purified NMU suppresses insulin secretion from human islets. A human mutant NMU variant that co-segregates with familial early-onset obesity and hyperinsulinemia fails to suppress insulin secretion. We propose Lst as an index member of an ancient hormone class called decretins, which suppress insulin output. PMID:25651184

  4. Suppression of insulin production and secretion by a decretin hormone.

    PubMed

    Alfa, Ronald W; Park, Sangbin; Skelly, Kathleen-Rose; Poffenberger, Gregory; Jain, Nimit; Gu, Xueying; Kockel, Lutz; Wang, Jing; Liu, Yinghua; Powers, Alvin C; Kim, Seung K

    2015-02-01

    Decretins, hormones induced by fasting that suppress insulin production and secretion, have been postulated from classical human metabolic studies. From genetic screens, we identified Drosophila Limostatin (Lst), a peptide hormone that suppresses insulin secretion. Lst is induced by nutrient restriction in gut-associated endocrine cells. limostatin deficiency led to hyperinsulinemia, hypoglycemia, and excess adiposity. A conserved 15-residue polypeptide encoded by limostatin suppressed secretion by insulin-producing cells. Targeted knockdown of CG9918, a Drosophila ortholog of Neuromedin U receptors (NMURs), in insulin-producing cells phenocopied limostatin deficiency and attenuated insulin suppression by purified Lst, suggesting CG9918 encodes an Lst receptor. NMUR1 is expressed in islet β cells, and purified NMU suppresses insulin secretion from human islets. A human mutant NMU variant that co-segregates with familial early-onset obesity and hyperinsulinemia fails to suppress insulin secretion. We propose Lst as an index member of an ancient hormone class called decretins, which suppress insulin output. PMID:25651184

  5. Histidine Augments the Suppression of Hepatic Glucose Production by Central Insulin Action

    PubMed Central

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-01-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes. PMID:23474485

  6. Can Insulin Production Suppress β Cell Growth?

    PubMed

    De Vas, Matias; Ferrer, Jorge

    2016-01-12

    While insulin has mitogenic effects in many cell types, its effects on β cells remain elusive. In this issue of Cell Metabolism, Szabat et al. (2015) genetically block insulin production in adult β cells and show that this leads to a relief of ER stress, AKT activation, and increased β cell proliferation. PMID:26771111

  7. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness

    PubMed Central

    Peng, Xiaoxiao; Giménez-Cassina, Alfredo; Petrus, Paul; Conrad, Marcus; Rydén, Mikael; Arnér, Elias S. J.

    2016-01-01

    Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1−/−) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation. PMID:27346647

  8. Importance of peripheral insulin levels for insulin-induced suppression of glucose production in depancreatized dogs.

    PubMed Central

    Giacca, A; Fisher, S J; Shi, Z Q; Gupta, R; Lickley, H L; Vranic, M

    1992-01-01

    It is generally believed that glucose production (GP) cannot be adequately suppressed in insulin-treated diabetes because the portal-peripheral insulin gradient is absent. To determine whether suppression of GP in diabetes depends on portal insulin levels, we performed 3-h glucose and specific activity clamps in moderately hyperglycemic (10 mM) depancreatized dogs, using three protocols: (a) 54 pmol.kg-1 bolus + 5.4 pmol.kg-1.min-1 portal insulin infusion (n = 7; peripheral insulin = 170 +/- 51 pM); (b) an equimolar peripheral infusion (n = 7; peripheral insulin = 294 +/- 28 pM, P < 0.001); and (c) a half-dose peripheral infusion (n = 7), which gave comparable (157 +/- 13 pM) insulinemia to that seen in protocol 1. Glucose production, use (GU) and cycling (GC) were measured using HPLC-purified 6-[3H]- and 2-[3H]glucose. Consistent with the higher peripheral insulinemia, peripheral infusion was more effective than equimolar portal infusion in increasing GU. Unexpectedly, it was also more potent in suppressing GP (73 +/- 7 vs. 55 +/- 7% suppression between 120 and 180 min, P < 0.001). At matched peripheral insulinemia (protocols 2 and 3), not only stimulation of GU, but also suppression of GP was the same (55 +/- 7 vs. 63 +/- 4%). In the diabetic dogs at 10 mM glucose, GC was threefold higher than normal but failed to decrease with insulin infusion by either route. Glycerol, alanine, FFA, and glucagon levels decreased proportionally to peripheral insulinemia. However, the decrease in glucagon was not significantly greater in protocol 2 than in 1 or 3. When we combined all protocols, we found a correlation between the decrements in glycerol and FFAs and the decrease in GP (r = 0.6, P < 0.01). In conclusion, when suprabasal insulin levels in the physiological postprandial range are provided to moderately hyperglycemic depancreatized dogs, suppression of GP appears to be more dependent on peripheral than portal insulin concentrations and may be mainly mediated by

  9. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    SciTech Connect

    Wang, Feng; Yang, Yong

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  10. Mitochondrial respiratory chain is involved in insulin-stimulated hydrogen peroxide production and plays an integral role in insulin receptor autophosphorylation in neurons

    PubMed Central

    Storozhevykh, Tatiana P; Senilova, Yana E; Persiyantseva, Nadezhda A; Pinelis, Vsevolod G; Pomytkin, Igor A

    2007-01-01

    Background Accumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction. The role of insulin-induced H2O2 in neuronal insulin receptor activation and the origin of insulin-induced H2O2 in neurons remain unclear. The aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in insulin receptor autophosphorylation in neurons. Results Insulin stimulation elicited rapid insulin receptor autophosphorylation accompanied by an increase in H2O2 release from cultured cerebellar granule neurons (CGN). N-acetylcysteine (NAC), a H2O2 scavenger, inhibited both insulin-stimulated H2O2 release and insulin-stimulated autophosphorylation of insulin receptor. Inhibitors of respiratory chain-mediated H2O2 production, malonate and carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), inhibited both insulin-stimulated H2O2 release from neurons and insulin-stimulated autophosphorylation of insulin receptor. Dicholine salt of succinic acid, a respiratory substrate, significantly enhanced the effect of suboptimal insulin concentration on the insulin receptor autophosphorylation in CGN. Conclusion Results of the present study suggest that insulin-induced H2O2 is required for the enhancement of insulin receptor autophosphorylation in neurons. The mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in the insulin receptor autophosphorylation in neurons. PMID:17919343

  11. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways

    PubMed Central

    Hasegawa, Emi; Yanagisawa, Masashi; Sakurai, Takeshi; Mieda, Michihiro

    2014-01-01

    The loss of orexin neurons in humans is associated with the sleep disorder narcolepsy, which is characterized by excessive daytime sleepiness and cataplexy. Mice lacking orexin peptides, orexin neurons, or orexin receptors recapitulate human narcolepsy phenotypes, further highlighting a critical role for orexin signaling in the maintenance of wakefulness. Despite the known role of orexin neurons in narcolepsy, the precise neural mechanisms downstream of these neurons remain unknown. We found that targeted restoration of orexin receptor expression in the dorsal raphe (DR) and in the locus coeruleus (LC) of mice lacking orexin receptors inhibited cataplexy-like episodes and pathological fragmentation of wakefulness (i.e., sleepiness), respectively. The suppression of cataplexy-like episodes correlated with the number of serotonergic neurons restored with orexin receptor expression in the DR, while the consolidation of fragmented wakefulness correlated with the number of noradrenergic neurons restored in the LC. Furthermore, pharmacogenetic activation of these neurons using designer receptor exclusively activated by designer drug (DREADD) technology ameliorated narcolepsy in mice lacking orexin neurons. These results suggest that DR serotonergic and LC noradrenergic neurons play differential roles in orexin neuron–dependent regulation of sleep/wakefulness and highlight a pharmacogenetic approach for the amelioration of narcolepsy. PMID:24382351

  12. Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels

    PubMed Central

    Qiu, Jian; Zhang, Chunguang; Borgquist, Amanda; Nestor, Casey C; Smith, Arik W.; Bosch, Martha A.; Ku, Stephen; Wagner, Edward J.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    SUMMARY Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin receptor and insulin receptor are coupled to activation of phosphatidylinositide3-kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that similar to leptin, purified insulin depolarized POMC, and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn2+, which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis. PMID:24703699

  13. Insulin Causes Hyperthermia by Direct Inhibition of Warm-Sensitive Neurons

    PubMed Central

    Sanchez-Alavez, Manuel; Tabarean, Iustin V.; Osborn, Olivia; Mitsukawa, Kayo; Schaefer, Jean; Dubins, Jeffrey; Holmberg, Kristina H.; Klein, Izabella; Klaus, Joe; Gomez, Luis F.; Kolb, Hartmuth; Secrest, James; Jochems, Jeanine; Myashiro, Kevin; Buckley, Peter; Hadcock, John R.; Eberwine, James; Conti, Bruno; Bartfai, Tamas

    2010-01-01

    OBJECTIVE Temperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT). RESEARCH DESIGN AND METHODS The effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[18F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor–positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. RESULTS Injection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor–expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3–kinase inhibitor. CONCLUSIONS Our findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus. PMID:19846801

  14. Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period

    PubMed Central

    Qiu, Xiaoliang; Dao, Hoangha; Wang, Mengjie; Heston, Amelia; Garcia, Kaitlyn M.; Sangal, Alisha; Dowling, Abigail R.; Faulkner, Latrice D.; Molitor, Scott C.; Elias, Carol F.; Hill, Jennifer W.

    2015-01-01

    Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice). Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of fertility. PMID

  15. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. PMID:27015310

  16. Nonexocytotic serotonin release tonically suppresses serotonergic neuron activity

    PubMed Central

    Montalbano, Alberto; Baccini, Gilda; Tatini, Francesca; Palmini, Rolando Berlinguer; Corradetti, Renato

    2015-01-01

    The firing activity of serotonergic neurons in raphe nuclei is regulated by negative feedback exerted by extracellular serotonin (5-HT)o acting through somatodendritic 5-HT1A autoreceptors. The steady-state [5-HT]o, sensed by 5-HT1A autoreceptors, is determined by the balance between the rates of 5-HT release and reuptake. Although it is well established that reuptake of 5-HTo is mediated by 5-HT transporters (SERT), the release mechanism has remained unclear. It is also unclear how selective 5-HT reuptake inhibitor (SSRI) antidepressants increase the [5-HT]o in raphe nuclei and suppress serotonergic neuron activity, thereby potentially diminishing their own therapeutic effect. Using an electrophysiological approach in a slice preparation, we show that, in the dorsal raphe nucleus (DRN), continuous nonexocytotic 5-HT release is responsible for suppression of phenylephrine-facilitated serotonergic neuron firing under basal conditions as well as for autoinhibition induced by SSRI application. By using 5-HT1A autoreceptor-activated G protein–gated inwardly rectifying potassium channels of patched serotonergic neurons as 5-HTo sensors, we show substantial nonexocytotic 5-HT release under conditions of abolished firing activity, Ca2+ influx, vesicular monoamine transporter 2–mediated vesicular accumulation of 5-HT, and SERT-mediated 5-HT transport. Our results reveal a cytosolic origin of 5-HTo in the DRN and suggest that 5-HTo may be supplied by simple diffusion across the plasma membrane, primarily from the dense network of neurites of serotonergic neurons surrounding the cell bodies. These findings indicate that the serotonergic system does not function as a sum of independently acting neurons but as a highly interdependent neuronal network, characterized by a shared neurotransmitter pool and the regulation of firing activity by an interneuronal, yet activity-independent, nonexocytotic mechanism. PMID:25712017

  17. Neuronal Sirt1 Deficiency Increases Insulin Sensitivity in Both Brain and Peripheral Tissues*

    PubMed Central

    Lu, Min; Sarruf, David A.; Li, Pingping; Osborn, Olivia; Sanchez-Alavez, Manuel; Talukdar, Saswata; Chen, Ai; Bandyopadhyay, Gautam; Xu, Jianfeng; Morinaga, Hidetaka; Dines, Kevin; Watkins, Steven; Kaiyala, Karl; Schwartz, Michael W.; Olefsky, Jerrold M.

    2013-01-01

    Sirt1 is a NAD+-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, emerging evidence suggests that neuronal Sirt1 activity plays a role in the central regulation of energy balance and glucose metabolism. To assess this idea, we generated Sirt1 neuron-specific knockout (SINKO) mice. On both standard chow and HFD, SINKO mice were more insulin sensitive than Sirt1f/f mice. Thus, SINKO mice had lower fasting insulin levels, improved glucose tolerance and insulin tolerance, and enhanced systemic insulin sensitivity during hyperinsulinemic euglycemic clamp studies. Hypothalamic insulin sensitivity of SINKO mice was also increased over controls, as assessed by hypothalamic activation of PI3K, phosphorylation of Akt and FoxO1 following systemic insulin injection. Intracerebroventricular injection of insulin led to a greater systemic effect to improve glucose tolerance and insulin sensitivity in SINKO mice compared with controls. In line with the in vivo results, insulin-induced AKT and FoxO1 phosphorylation were potentiated by inhibition of Sirt1 in a cultured hypothalamic cell line. Mechanistically, this effect was traced to a reduced effect of Sirt1 to directly deacetylate and repress IRS-1 function. The enhanced central insulin signaling in SINKO mice was accompanied by increased insulin receptor signal transduction in liver, muscle, and adipose tissue. In summary, we conclude that neuronal Sirt1 negatively regulates hypothalamic insulin signaling, leading to systemic insulin resistance. Interventions that reduce neuronal Sirt1 activity have the potential to improve systemic insulin action and limit weight gain on an obesigenic diet. PMID:23457303

  18. Segregation of acute leptin and insulin effects in distinct populations of arcuate POMC neurons

    PubMed Central

    Williams, Kevin W.; Margatho, Lisandra O.; Lee, Charlotte E.; Choi, Michelle; Lee, Syann; Scott, Michael M.; Elias, Carol F.; Elmquist, Joel K.

    2010-01-01

    Acute leptin administration results in a depolarization and concomitant increase in the firing rate of a subpopulation of arcuate POMC cells. This rapid activation of POMC cells has been implicated as a cellular correlate of leptin effects on energy balance. In contrast to leptin, insulin inhibits the activity of some POMC neurons. Several studies have described a “cross-talk” between leptin and insulin within the mediobasal hypothalamus via the intracellular enzyme, phosphoinositol-3-kinase (PI3K). Interestingly, both insulin and leptin regulate POMC cellular activity by activation of PI3K, however it is unclear if leptin and insulin effects are observed in similar or distinct populations of POMC cells. We therefore used dual label immunohistochemistry/in situ hybridization and whole-cell patch-clamp electrophysiology to map insulin and leptin responsive arcuate POMC neurons. Leptin-induced Fos activity within arcuate POMC neurons was localized separate from POMC neurons which express insulin receptor. Moreover, acute responses to leptin and insulin were largely segregated in distinct sub-populations of POMC cells. Collectively, these data suggest that cross-talk between leptin and insulin occurs within a network of cells rather than within individual POMC neurons. PMID:20164331

  19. Neuronal Networks during Burst Suppression as Revealed by Source Analysis

    PubMed Central

    Reinicke, Christine; Moeller, Friederike; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Pressler, Ronit; Deuschl, Günther; Stephani, Ulrich; Siniatchkin, Michael

    2015-01-01

    Introduction Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG. Material/Methods Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources. Results/Conclusion Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of

  20. P21-activated kinase 2 (PAK2) regulates glucose uptake and insulin sensitivity in neuronal cells.

    PubMed

    Varshney, Pallavi; Dey, Chinmoy Sankar

    2016-07-01

    P21-activated kinases (PAKs) are recently reported as important players of insulin signaling and glucose homeostasis in tissues like muscle, pancreas and liver. However, their role in neuronal insulin signaling is still unknown. Present study reports the involvement of PAK2 in neuronal insulin signaling, glucose uptake and insulin resistance. Irrespective of insulin sensitivity, insulin stimulation decreased PAK2 activity. PAK2 downregulation displayed marked enhancement of GLUT4 translocation with increase in glucose uptake whereas PAK2 over-expression showed its reduction. Treatment with Akti-1/2 and wortmannin suggested that Akt and PI3K are mediators of insulin effect on PAK2 and glucose uptake. Rac1 inhibition demonstrated decreased PAK2 activity while inhibition of PP2A resulted in increased PAK2 activity, with corresponding changes in glucose uptake. Taken together, present study demonstrates an inhibitory role of insulin signaling (via PI3K-Akt) and PP2A on PAK2 activity and establishes PAK2 as a Rac1-dependent negative regulator of neuronal glucose uptake and insulin sensitivity. PMID:27040307

  1. The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo

    PubMed Central

    Koren, Shlomit; DiPilato, Lisa M.; Emmett, Matthew J.; Shearin, Abigail L.; Chu, Qingwei; Monks, Bob; Birnbaum, Morris J.

    2015-01-01

    Aim/hypothesis The release of fatty acids from adipocytes, i.e. lipolysis, is maintained under tight control, primarily by the opposing actions of catecholamines and insulin. A widely accepted model is that insulin antagonises catecholamine-dependent lipolysis through phosphorylation and activation of cAMP phosphodiesterase 3B (PDE3B) by the serine-threonine protein kinase Akt (protein kinase B). Recently, this hypothesis has been challenged, as in cultured adipocytes insulin appears, under some conditions, to suppress lipolysis independently of Akt. Methods To address the requirement for Akt2, the predominant isoform expressed in classic insulin target tissues, in the suppression of fatty acid release in vivo, we assessed lipolysis in mice lacking Akt2. Results In the fed state and following an oral glucose challenge, Akt2 null mice were glucose intolerant and hyperinsulinaemic, but nonetheless exhibited normal serum NEFA and glycerol levels, suggestive of normal suppression of lipolysis. Furthermore, insulin partially inhibited lipolysis in Akt2 null mice during an insulin tolerance test (ITT) and hyperinsulinaemic–euglycaemic clamp, respectively. In support of these in vivo observations, insulin antagonised catecholamine-induced lipolysis in primary brown fat adipocytes from Akt2-deficient nice. Conclusion These data suggest that suppression of lipolysis by insulin in hyperinsulinaemic states can take place in the absence of Akt2. PMID:25740694

  2. Brain Insulin Receptor Causes Activity-Dependent Current Suppression in the Olfactory Bulb Through Multiple Phosphorylation of Kv1.3

    PubMed Central

    FADOOL, D. A.; TUCKER, K.; PHILLIPS, J. J.; SIMMEN, J. A.

    2015-01-01

    Insulin and insulin receptor (IR) kinase are found in abundance in discrete brain regions yet insulin signaling in the CNS is not understood. Because it is known that the highest brain insulin-binding affinities, insulin-receptor density, and IR kinase activity are localized to the olfactory bulb, we sought to explore the downstream substrates for IR kinase in this region of the brain to better elucidate the function of insulin signaling in the CNS. First, we demonstrate that IR is postnatally and developmentally expressed in specific lamina of the highly plastic olfactory bulb (OB). ELISA testing confirms that insulin is present in the developing and adult OB. Plasma insulin levels are elevated above that found in the OB, which perhaps suggests a differential insulin pool. Olfactory bulb insulin levels appear not to be static, however, but are elevated as much as 15-fold after a 72-h fasting period. Bath application of insulin to cultured OB neurons acutely induces outward current suppression as studied by the use of traditional whole-cell and single-channel patchclamp recording techniques. Modulation of OB neurons is restricted to current magnitude; IR kinase activation does not modulate current kinetics of inactivation or deactivation. Transient transfection of human embryonic kidney cells with cloned Kv1.3 ion channel, which carries a large proportion of the outward current in these neurons, revealed that current suppression was the result of multiple tyrosine phosphorylation of Kv1.3 channel. Y to F single-point mutations in the channel or deletion of the kinase domain in IR blocks insulininduced modulation and phosphorylation of Kv1.3. Neuromodulation of Kv1.3 current in OB neurons is activity dependent and is eliminated after 20 days of odor/sensory deprivation induced by unilateral naris occlusion at postnatal day 1. IR kinase but not Kv1.3 expression is downregulated in the OB ipsilateral to the occlusion, as demonstrated in cryosections of right (control

  3. Insulin signaling in the aging of healthy and proteotoxically stressed mechanosensory neurons

    PubMed Central

    Scerbak, Courtney; Vayndorf, Elena M.; Parker, J. Alex; Neri, Christian; Driscoll, Monica; Taylor, Barbara E.

    2014-01-01

    Insulin signaling is central to cellular metabolism and organismal aging. However, the role of insulin signaling in natural and proteotoxically stressed aging neurons has yet to be fully described. We studied aging of Caenorbaditis elegans mechanosensory neurons expressing a neurotoxic expanded polyglutamine transgene (polyQ128), or lacking this proteotoxicity stressor (polyQ0), under conditions in which the insulin signaling pathway was disrupted by RNA interference (RNAi). We describe specific changes in lifespan, mechanosensory neuronal morphologies, and mechansensory function following RNAi treatment targeting the insulin signaling pathway. Overall, we confirmed that transcription factor DAF-16 is neuroprotective in the proteotoxically stressed model, though not strikingly in the naturally aging model. Decreased insulin signaling through daf-2 RNAi improved mechanosensory function in both models and decreased protein aggregation load in polyQ128, yet showed opposing effects on accumulation of neuronal aberrations in both strains. Decreased daf-2 signaling slightly enhanced mechanosensation while greatly enhancing branching of the mechanosensory neuron axons and dendrites in polyQ0 animals, suggesting that branching is an adaptive response in natural aging. These effects in polyQ0 did not appear to involve DAF-16, suggesting the existence of a non-canonical DAF-2 pathway for the modulation of morphological adaptation. However, in polyQ128 animals, decreased daf-2 signaling significantly enhanced mechanosensation while decreasing neuronal aberrations. Unlike other interventions that reduce the strength of insulin signaling, daf-2 RNAi dramatically redistributed large polyQ128 aggregates to the cell body, away from neuronal processes. Our results suggest that insulin signaling strength can differentially affect specific neurons aging naturally or under proteotoxic stress. PMID:25101108

  4. Does adrenergic activity suppress insulin secretion during surgery? A clinical experiment with halothane anesthesia.

    PubMed Central

    Aärimaa, M; Syvälahti, E; Ovaska, J

    1978-01-01

    Peroperative inhibition of insulin release is widely attributed to increased alpha-adrenergic activity. To test this hypothesis serum insulin and glucose concentrations were measured at short intervals in 11 patients who underwent major surgery. Five patients were anesthetized with halothane and six with general anesthesia without halothane. The results were similar in both patient groups; halothane had no effect on insulin. This suggests that suppression of insulin under operations is probably not due to activation of the alpha-adrenergic receptors of the pancreatic beta-cells. The authors propose that suppression of insulin secretion during surgery may be caused by adrenaline, which, in competing for the glucose receptors, insensitizes the pancreatic beta-cells. PMID:202205

  5. ACUTE ETHANOL SUPPRESSES GLUTAMATERGIC NEUROTRANSMISSION THROUGH ENDOCANNABINOIDS IN HIPPOCAMPAL NEURONS

    PubMed Central

    Basavarajappa, Balapal S.; Ninan, Ipe; Arancio, Ottavio

    2008-01-01

    Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature postsynaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on presynaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of postsynaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory postsynaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities. PMID:18796007

  6. TonEBP suppresses adipogenesis and insulin sensitivity by blocking epigenetic transition of PPARγ2

    PubMed Central

    Ho Lee, Jun; Hee Lee, Hwan; Jin Ye, Byeong; Lee-Kwon, Whaseon; Youn Choi, Soo; Moo Kwon, Hyug

    2015-01-01

    TonEBP is a key transcription factor in cellular adaptation to hypertonic stress, and also in macrophage activation. Since TonEBP is involved in inflammatory diseases such as rheumatoid arthritis and atherosclerosis, we asked whether TonEBP played a role in adipogenesis and insulin resistance. Here we report that TonEBP suppresses adipogenesis and insulin signaling by inhibiting expression of the key transcription factor PPARγ2. TonEBP binds to the PPARγ2 promoter and blocks the epigenetic transition of the locus which is required for the activation of the promoter. When TonEBP expression is reduced, the epigenetic transition and PPARγ2 expression are markedly increased leading to enhanced adipogenesis and insulin response while inflammation is reduced. Thus, TonEBP is an independent determinant of adipose insulin sensitivity and inflammation. TonEBP is an attractive therapeutic target for insulin resistance in lieu of PPARγ agonists. PMID:26042523

  7. Acute selective ablation of rat insulin promoter-expressing (RIPHER) neurons defines their orexigenic nature

    PubMed Central

    Rother, Eva; Belgardt, Bengt F.; Tsaousidou, Eva; Hampel, Brigitte; Waisman, Ari; Myers, Martin G.; Brüning, Jens C.

    2012-01-01

    Rat insulin promoter (RIP)-expressing neurons in the hypothalamus control body weight and energy homeostasis. However, genetic approaches to study the role of these neurons have been limited by the fact that RIP expression is predominantly found in pancreatic β-cells, which impedes selective targeting of neurons. To define the function of hypothalamic RIP-expressing neurons, we set out to acutely and selectively eliminate them via diphtheria toxin-mediated ablation. Therefore, the diphtheria toxin receptor transgene was specifically expressed upon RIP-specific Cre recombination using a RIP-Cre line first described by Herrera (RIPHER-Cre) [Herrera PL (2000) Development 127:2317–2322]. Using proopiomelanocortin–expressing cells located in the arcuate nucleus of the hypothalamus and in the pituitary gland as a model, we established a unique protocol of intracerebroventricular application of diphtheria toxin to efficiently ablate hypothalamic cells with no concomitant effect on pituitary proopiomelanocortin–expressing corticotrophs in the mouse. Using this approach to ablate RIPHER neurons in the brain, but not in the pancreas, resulted in decreased food intake and loss of body weight and fat mass. In addition, ablation of RIPHER neurons caused increased c-Fos immunoreactivity of neurons in the paraventricular nucleus (PVN) of the hypothalamus. Moreover, transsynaptic tracing of RIPHER neurons revealed labeling of neurons located in the PVN and dorsomedial hypothalamic nucleus. Thus, our experiments indicate that RIPHER neurons inhibit anorexigenic neurons in the PVN, revealing a basic orexigenic nature of these cells. PMID:23064638

  8. Nitric Oxide Exerts Basal and Insulin-Dependent Anorexigenic Actions in POMC Hypothalamic Neurons.

    PubMed

    Wellhauser, Leigh; Chalmers, Jennifer A; Belsham, Denise D

    2016-04-01

    The arcuate nucleus of the hypothalamus represents a key center for the control of appetite and feeding through the regulation of 2 key neuronal populations, notably agouti-related peptide/neuropeptide Y and proopimelanocortin (POMC)/cocaine- and amphetamine-regulated transcript neurons. Altered regulation of these neuronal networks, in particular the dysfunction of POMC neurons upon high-fat consumption, is a major pathogenic mechanism involved in the development of obesity and type 2 diabetes mellitus. Efforts are underway to preserve the integrity or enhance the functionality of POMC neurons in order to prevent or treat these metabolic diseases. Here, we report for the first time that the nitric oxide (NO(-)) donor, sodium nitroprusside (SNP) mediates anorexigenic actions in both hypothalamic tissue and hypothalamic-derived cell models by mediating the up-regulation of POMC levels. SNP increased POMC mRNA in a dose-dependent manner and enhanced α-melanocortin-secreting hormone production and secretion in mHypoA-POMC/GFP-2 cells. SNP also enhanced insulin-driven POMC expression likely by inhibiting the deacetylase activity of sirtuin 1. Furthermore, SNP enhanced insulin-dependent POMC expression, likely by reducing the transcriptional repression of Foxo1 on the POMC gene. Prolonged SNP exposure prevented the development of insulin resistance. Taken together, the NO(-) donor SNP enhances the anorexigenic potential of POMC neurons by promoting its transcriptional expression independent and in cooperation with insulin. Thus, increasing cellular NO(-) levels represents a hormone-independent method of promoting anorexigenic output from the existing POMC neuronal populations and may be advantageous in the fight against these prevalent disorders. PMID:26930171

  9. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice lacking 5-HT 2C receptors displayed hepatic insulin resistance, a phenotype normalized by re-expression of 5-HT2CRs only in pro-opiomelanocortin (POMC) neurons. 5-HT2CR deficiency also abolished the anti-diabetic effects of meta-chlorophenylpiperazine (a 5-HT2CR agonist); these effects were re...

  10. Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production.

    PubMed

    Titchenell, Paul M; Quinn, William J; Lu, Mingjian; Chu, Qingwei; Lu, Wenyun; Li, Changhong; Chen, Helen; Monks, Bobby R; Chen, Julia; Rabinowitz, Joshua D; Birnbaum, Morris J

    2016-06-14

    During insulin-resistant states such as type II diabetes mellitus (T2DM), insulin fails to suppress hepatic glucose production (HGP) yet promotes lipid synthesis. This metabolic state has been termed "selective insulin resistance" to indicate a defect in one arm of the insulin-signaling cascade, potentially downstream of Akt. Here we demonstrate that Akt-dependent activation of mTORC1 and inhibition of Foxo1 are required and sufficient for de novo lipogenesis, suggesting that hepatic insulin signaling is likely to be intact in insulin-resistant states. Moreover, cell-nonautonomous suppression of HGP by insulin depends on a reduction of adipocyte lipolysis and serum FFAs but is independent of vagal efferents or glucagon signaling. These data are consistent with a model in which, during T2DM, intact liver insulin signaling drives enhanced lipogenesis while excess circulating FFAs become a dominant inducer of nonsuppressible HGP. PMID:27238637

  11. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    PubMed

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  12. Reduced melanocortin production causes sexual dysfunction in male mice with POMC neuronal insulin and leptin insensitivity.

    PubMed

    Faulkner, Latrice D; Dowling, Abigail R; Stuart, Ronald C; Nillni, Eduardo A; Hill, Jennifer W

    2015-04-01

    Proopiomelanocortin (POMC)-derived peptides like α-melanocyte-stimulating hormone (MSH) substantially improve hepatic insulin sensitivity and regulate energy expenditure. Melanocortinergic agents are also powerful inducers of sexual arousal that are being investigated for a possible therapeutic role in erectile dysfunction. It is currently unclear whether reduced melanocortin (MC) activity may contribute to the sexual dysfunction accompanying obesity and type 2 diabetes. Male rodents with leptin and insulin resistance targeted to POMC neurons (leptin receptor [LepR]/insulin receptor [IR]POMC mice) exhibit obesity, hyperinsulinemia, hyperglycemia, and systemic insulin resistance. In this study, we demonstrate that LepR/IRPOMC males are also subfertile due to dramatic alterations in sexual behavior. Remarkably, these reproductive changes are accompanied by decreased α-MSH production not present when a single receptor type is deleted. Unexpectedly, behavioral sensitivity to α-MSH and MC receptor expression are also reduced in LepR/IRPOMC males, a potential adaptation of the MC system to altered α-MSH production. Together, these results suggest that concurrent insulin and leptin resistance in POMC neurons in individuals with obesity or type 2 diabetes can reduce endogenous α-MSH levels and impair sexual function. PMID:25590244

  13. Reduced Melanocortin Production Causes Sexual Dysfunction in Male Mice With POMC Neuronal Insulin and Leptin Insensitivity

    PubMed Central

    Faulkner, Latrice D.; Dowling, Abigail R.; Stuart, Ronald C.; Nillni, Eduardo A.

    2015-01-01

    Proopiomelanocortin (POMC)-derived peptides like α-melanocyte-stimulating hormone (MSH) substantially improve hepatic insulin sensitivity and regulate energy expenditure. Melanocortinergic agents are also powerful inducers of sexual arousal that are being investigated for a possible therapeutic role in erectile dysfunction. It is currently unclear whether reduced melanocortin (MC) activity may contribute to the sexual dysfunction accompanying obesity and type 2 diabetes. Male rodents with leptin and insulin resistance targeted to POMC neurons (leptin receptor [LepR]/insulin receptor [IR]POMC mice) exhibit obesity, hyperinsulinemia, hyperglycemia, and systemic insulin resistance. In this study, we demonstrate that LepR/IRPOMC males are also subfertile due to dramatic alterations in sexual behavior. Remarkably, these reproductive changes are accompanied by decreased α-MSH production not present when a single receptor type is deleted. Unexpectedly, behavioral sensitivity to α-MSH and MC receptor expression are also reduced in LepR/IRPOMC males, a potential adaptation of the MC system to altered α-MSH production. Together, these results suggest that concurrent insulin and leptin resistance in POMC neurons in individuals with obesity or type 2 diabetes can reduce endogenous α-MSH levels and impair sexual function. PMID:25590244

  14. Suppressive Effect of Insulin on the Gene Expression and Plasma Concentrations of Mediators of Asthmatic Inflammation

    PubMed Central

    Ghanim, Husam; Abuaysheh, Sanaa; Batra, Manav; Kuhadiya, Nitesh D.; Patel, Reema; Makdissi, Antoine; Dhindsa, Sandeep; Chaudhuri, Ajay; Dandona, Paresh

    2015-01-01

    Background and Hypothesis. Following our recent demonstration that the chronic inflammatory and insulin resistant state of obesity is associated with an increase in the expression of mediators known to contribute to the pathogenesis of asthma and that weight loss after gastric bypass surgery results in the reduction of these genes, we have now hypothesized that insulin suppresses the cellular expression and plasma concentrations of these mediators. Methods. The expression of IL-4, LIGHT, LTBR, ADAM-33, and TSLP in MNC and plasma concentrations of LIGHT, TGF-β1, MMP-9, MCP-1, TSLP, and NOM in obese patients with T2DM were measured before, during, and after the infusion of a low dose (2 U/h) infusion of insulin for 4 hours. The patients were also infused with dextrose or saline for 4 hours on two separate visits and served as controls. Results. Following insulin infusion, the mRNA expression of IL-4, ADAM-33, LIGHT, and LTBR mRNA expression fell significantly (P < 0.05 for all). There was also a concomitant reduction in plasma NOM, LIGHT, TGF-β1, MCP-1, and MMP-9 concentrations. Conclusions. Insulin suppresses the expression of these genes and mediators related to asthma and may, therefore, have a potential role in the treatment of asthma. PMID:25642424

  15. Influence of Liver Triglycerides on Suppression of Glucose Production by Insulin in Men

    PubMed Central

    Szuszkiewicz-Garcia, Magdalene; Browning, Jeffrey D.; Baxter, Jeannie D.; Abate, Nicola; Malloy, Craig R.

    2015-01-01

    Context: The ability of insulin to suppress hepatic glucose production is impaired among subjects with increased intrahepatic triglycerides (IHTG). However, little is known about the roles of insulin on the supporting fluxes of glucose production among patients with fatty liver. Objective: To evaluate the effects of insulin on fluxes through the three potential sources of plasma glucose (glycerol, the citric acid cycle, and glycogen) among patients with fatty liver. Design, Settings, Participants, and Intervention: Nineteen men with a range of IHTG (∼0.5% to 23%) were studied after an overnight fast and during hyperinsulinemia using magnetic resonance spectroscopy and stable isotope tracers. Main Outcome Measures: IHTG, gluconeogenesis from glycerol, gluconeogenesis from the citric acid cycle, glycogenolysis, and 13C-labeled glucose produced from the citric acid cycle during hyperinsulinemia were measured. Results: Men with high IHTG had higher fluxes through all pathways contributing to glucose production during hyperinsulinemia, compared to men with low IHTG, but they had similar fluxes after the fast. Consequently, men with fatty liver had impaired insulin efficiency in suppressing total glucose production as well as fluxes through all three biochemical pathways contributing to glucose. The detection of glucose isotopomers with 13C arising from [U-13C3]propionate ingested during hyperinsulinemia demonstrated continuous gluconeogenesis from the citric acid cycle in all subjects. Conclusions: These findings challenge the concept that individual glucose production pathways are selectively dysregulated during hepatic insulin resistance. Overproduction of glucose during hyperinsulinemia in men with fatty liver results from inadequate suppression of all the supporting fluxes of glucose production in response to insulin. PMID:25250633

  16. A viral histone H4 suppresses insect insulin signal and delays host development.

    PubMed

    Kumar, Sunil; Gu, Xiaojun; Kim, Yonggyun

    2016-10-01

    Parasitization by an endoparasitoid wasp, Cotesia plutellae, alters host development of Plutella xylostella by extending larval period and preventing metamorphosis. Insulin signal plays a crucial role in mediating insect development and controlling blood sugar level in insects. In this study, three insulin-like peptide genes (PxILP1-3) were predicted from the genome of P. xylostella. However, only PxILP1 was confirmed to be expressed in P. xylostella. Starvation suppressed the expression level of PxILP1 and up-regulated plasma trehalose level. RNA interference against PxILP1 mimicked starvation effect and extended the larval period of P. xylostella. Parasitized larvae exhibited significantly lower levels of PxILP1 expression compared to nonparasitized larvae. Injection of wasp-symbiotic polydnavirus C. plutellae bracovirus (CpBV) also suppressed PxILP1 expression and extended the larval period. Injection of a viral segment (CpBV-S30) containing a viral histone H4 (CpBV-H4) also suppressed PxILP1 expression. Co-injection of CpBV-S30 and double-stranded RNA (dsCpBV-H4) specific to CpBV-H4 rescued the suppression of PxILP1 expression. Injection of CpBV-S30 significantly extended larval development. Co-injection of CpBV-S30 with dsCpBV-H4 rescued the delay of larval development. Injection of a bovine insulin to parasitized larvae prevented parasitoid development. These results indicate that parasitism of C. plutellae can down-regulate host insulin signaling with the help of parasitic factor CpBV-H4. PMID:27216029

  17. Effects of surround suppression on response adaptation of V1 neurons to visual stimuli

    PubMed Central

    LI, Peng; JIN, Cai-Hong; JIANG, San; LI, Miao-Miao; WANG, Zi-Lu; ZHU, Hui; CHEN, Cui-Yun; HUA, Tian-Miao

    2014-01-01

    The influence of intracortical inhibition on the response adaptation of visual cortical neurons remains in debate. To clarify this issue, in the present study the influence of surround suppression evoked through the local inhibitory interneurons on the adaptation effects of neurons in the primary visual cortex (V1) were observed. Moreover, the adaptations of V1 neurons to both the high-contrast visual stimuli presented in the classical receptive field (CRF) and to the costimulation presented in the CRF and the surrounding nonclassical receptive field (nCRF) were compared. The intensities of surround suppression were modulated with different sized grating stimuli. The results showed that the response adaptation of V1 neurons decreased significantly with the increase of surround suppression and this adaptation decrease was due to the reduction of the initial response of V1 neurons to visual stimuli. However, the plateau response during adaptation showed no significant changes. These findings indicate that the adaptation effects of V1 neurons may not be directly affected by surround suppression, but may be dynamically regulated by a negative feedback network and be finely adjusted by its initial spiking response to stimulus. This adaptive regulation is not only energy efficient for the central nervous system, but also beneficially acts to maintain the homeostasis of neuronal response to long-presenting visual signals. PMID:25297081

  18. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth

    PubMed Central

    Sun, Ye; Ju, Meihua; Lin, Zhiqiang; Fredrick, Thomas W.; Evans, Lucy P.; Tian, Katherine T.; Saba, Nicholas J.; Morss, Peyton C.; Pu, William T.; Chen, Jing; Stahl, Andreas; Joyal, Jean-Sébastien; Smith, Lois E. H.

    2015-01-01

    Neurons and glial cells in the retina contribute to neovascularization, or the formation of abnormal new blood vessels, in proliferative retinopathy, a condition that can lead to vision loss or blindness. We identified a mechanism by which suppressor of cytokine signaling 3 (SOCS3) in neurons and glial cells prevents neovascularization. We found that Socs3 expression was increased in the retinal ganglion cell and inner nuclear layers after oxygen-induced retinopathy. Mice with Socs3 deficiency in neuronal and glial cells had substantially reduced vaso-obliterated retinal areas and increased pathological retinal neovascularization in response to oxygen-induced retinopathy, suggesting that loss of neuronal/glial SOCS3 increased both retinal vascular regrowth and pathological neovascularization. Furthermore, retinal expression of Vegfa (which encodes vascular endothelial growth factor A) was higher in these mice than in Socs3 flox/flox controls, indicating that neuronal and glial Socs3 suppressed Vegfa expression during pathological conditions. Lack of neuronal and glial SOCS3 resulted in greater phosphorylation and activation of STAT3, which led to increased expression of its gene target Vegfa, and increased endothelial cell proliferation. In summary, SOCS3 in neurons and glial cells inhibited the STAT3-mediated secretion of VEGF from these cells, which suppresses endothelial cell activation, resulting in decreased endothelial cell proliferation and angiogenesis. These results suggest that neuronal and glial cell SOCS3 limits pathological retinal angiogenesis by suppressing VEGF signaling. PMID:26396267

  19. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network.

    PubMed

    Côté, Clémence D; Rasmussen, Brittany A; Duca, Frank A; Zadeh-Tahmasebi, Melika; Baur, Joseph A; Daljeet, Mira; Breen, Danna M; Filippi, Beatrice M; Lam, Tony K T

    2015-05-01

    Resveratrol improves insulin sensitivity and lowers hepatic glucose production (HGP) in rat models of obesity and diabetes, but the underlying mechanisms for these antidiabetic effects remain elusive. One process that is considered a key feature of resveratrol action is the activation of the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase sirtuin 1 (SIRT1) in various tissues. However, the low bioavailability of resveratrol raises questions about whether the antidiabetic effects of oral resveratrol can act directly on these tissues. We show here that acute intraduodenal infusion of resveratrol reversed a 3 d high fat diet (HFD)-induced reduction in duodenal-mucosal Sirt1 protein levels while also enhancing insulin sensitivity and lowering HGP. Further, we found that duodenum-specific knockdown of Sirt1 expression for 14 d was sufficient to induce hepatic insulin resistance in rats fed normal chow. We also found that the glucoregulatory role of duodenally acting resveratrol required activation of Sirt1 and AMP-activated protein kinase (Ampk) in this tissue to initiate a gut-brain-liver neuronal axis that improved hypothalamic insulin sensitivity and in turn, reduced HGP. In addition to the effects of duodenally acting resveratrol in an acute 3 d HFD-fed model of insulin resistance, we also found that short-term infusion of resveratrol into the duodenum lowered HGP in two other rat models of insulin resistance--a 28 d HFD-induced model of obesity and a nicotinamide (NA)-streptozotocin (STZ)-HFD-induced model of mild type 2 diabetes. Together, these studies highlight the therapeutic relevance of targeting duodenal SIRT1 to reverse insulin resistance and improve glucose homeostasis in obesity and diabetes. PMID:25849131

  20. The tyrphostin NT157 suppresses insulin receptor substrates and augments therapeutic response of prostate cancer.

    PubMed

    Ibuki, Naokazu; Ghaffari, Mazyar; Reuveni, Hadas; Pandey, Mitali; Fazli, Ladan; Azuma, Haruhito; Gleave, Martin E; Levitzki, Alexander; Cox, Michael E

    2014-12-01

    Insulin-like growth factor (IGF) signaling is associated with castrate-resistant prostate cancer (CRPC) progression. Insulin receptor substrates 1 and 2 (IRS1/2) mediate mitogenic and antiapoptotic signaling from IGF1 receptor (IGF1R), insulin receptor, and other oncoproteins. This study demonstrates that IRS1/2 expression is increased in prostate cancer, and persists in CRPC. Furthermore, this study assesses the anticancer activity of NT157, a small molecule tyrphostin targeting IRS proteins, using androgen-responsive (LNCaP) and -independent (PC3) prostate cancer cells in vitro and in vivo. NT157 treatment resulted in dose-dependent inhibition of IGF1R activation, suppression of IRS protein expression, inhibition of IGF1-induced AKT activation, but increased ERK activation in NT157-treated cells in vitro. These effects were correlated with decreased proliferation and increasing apoptosis of LNCaP cells and increasing G2-M arrest in PC3 cells. NT157 also suppressed androgen-responsive growth, delayed CRPC progression of LNCaP xenografts, and suppressed PC3 tumor growth alone and in combination with docetaxel. This study reports the first preclinical proof-of-principle data that this novel small molecule tyrosine kinase inhibitor suppresses IRS1/2 expression, delays CRPC progression, and suppresses growth of CRPC tumors in vitro and in vivo. Demonstration that IRS expression can be increased in response to a variety of stressors that may lead to resistance or reduced effect of the therapies indicate that NT157-mediated IRS1/2 downregulation is a novel therapeutic approach for management of advanced prostate cancer. PMID:25267499

  1. Linalool suppresses voltage-gated currents in sensory neurons and cerebellar Purkinje cells.

    PubMed

    Narusuye, K; Kawai, F; Matsuzaki, K; Miyachi, E

    2005-02-01

    Linalool is a major component of essential oils and possesses various biological effects in sensory or central nervous systems. To investigate the pharmacological and biophysical effects of linalool on voltage-gated currents in sensory neurons, we used the whole-cell patch clamp and the Ca(2+) imaging techniques. Under the voltage clamp, membrane depolarization generated time- and voltage-dependent current responses in newt olfactory receptor cells (ORCs). Linalool significantly and reversibly suppressed the voltage-gated currents in ORCs. The dose-suppression relation of linalool for the voltage-gated Na(+) current could be fitted by the Hill equation with a half-blocking concentration of 0.56 mM and a Hill coefficient of 1.2. To test whether linalool suppresses voltage-gated currents in ORCs specifically or suppresses currents in other neurons generally, we next examined the effects of linalool on voltage-gated currents in newt retinal neurons and rat cerebellar Purkinje cells. Linalool suppressed the voltage-gated currents not only in retinal horizontal cells and ganglion cells but also in Purkinje cells. Furthermore, bath application of linalool inhibited the KCl-induced [Ca(2+)](i) response of ORCs, suggesting that linalool suppresses Ca(2+) currents in ORCs. These results suggest that linalool non-selectively suppresses the voltage-gated currents in newt sensory neurons and rat cerebellar Purkinje cells. PMID:15365786

  2. NRSF causes cAMP-sensitive suppression of sodium current in cultured hippocampal neurons

    NASA Technical Reports Server (NTRS)

    Nadeau, H.; Lester, H. A.

    2002-01-01

    The neuron restrictive silencer factor (NRSF/REST) has been shown to bind to the promoters of many neuron-specific genes and is able to suppress transcription of Na(+) channels in PC12 cells, although its functional effect in terminally differentiated neurons is unknown. We constructed lentiviral vectors to express NRSF as a bicistronic message with green fluorescent protein (GFP) and followed infected hippocampal neurons in culture over a period of 1-2 wk. NRSF-expressing neurons showed a time-dependent suppression of Na(+) channel function as measured by whole cell electrophysiology. Suppression was reversed or prevented by the addition of membrane-permeable cAMP analogues and enhanced by cAMP antagonists but not affected by increasing protein expression with a viral enhancer. Secondary effects, including altered sensitivity to glutamate and GABA and reduced outward K(+) currents, were duplicated by culturing GFP-infected control neurons in TTX. The striking similarity of the phenotypes makes NRSF potentially useful as a genetic "silencer" and also suggests avenues of further exploration that may elucidate the transcription factor's in vivo role in neuronal plasticity.

  3. PPAR{gamma} transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons

    SciTech Connect

    Du, Jing; Zhang, Lang; Liu, Shubo; Zhang, Chi; Huang, Xiuqing; Li, Jian; Zhao, Nanming; Wang, Zhao

    2009-06-12

    Insulin-degrading enzyme (IDE) is a protease that has been demonstrated to play a key role in degrading both A{beta} and insulin and deficient in IDE function is associated with Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) pathology. However, little is known about the cellular and molecular regulation of IDE expression. Here we show IDE levels are markedly decreased in DM2 patients and positively correlated with the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) levels. Further studies show that PPAR{gamma} plays an important role in regulating IDE expression in rat primary neurons through binding to a functional peroxisome proliferator-response element (PPRE) in IDE promoter and promoting IDE gene transcription. Finally, we demonstrate that PPAR{gamma} participates in the insulin-induced IDE expression in neurons. These results suggest that PPAR{gamma} transcriptionally induces IDE expression which provides a novel mechanism for the use of PPAR{gamma} agonists in both DM2 and AD therapies.

  4. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.

    PubMed

    Wang, Lulu; Zhang, Bangling; Huang, Fang; Liu, Baolin; Xie, Yuan

    2016-07-01

    Curcumin is natural polyphenol with beneficial effects on lipid and glucose metabolism and this study aimed to investigate the effects of curcumin on lipolysis and hepatic insulin resistance. Endoplasmic reticulum (ER) stress and lipolysis signaling in adipose and FFA influx, lipid deposits, and glucose production in liver were examined. Palmitate challenge and high-fat diet feeding evoked ER stress-associated lipolysis with cAMP accumulation in adipose tissue. Curcumin treatment inhibited adipose tissue ER stress by dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α and reduced cAMP accumulation by preserving phosphodiesterase 3B induction. Knockdown of mitogen-activated protein kinase α1/2α with siRNAs diminished such effects of curcumin. As a result from downregulation of cAMP, curcumin blocked protein kinase (PK)A/hormone-sensitive lipase lipolysis signaling, and thereby reduced glycerol and FFA release from adipose tissue. Curcumin reduced FFA influx into the liver by blocking FFA trafficking, and then prevented diacylglycerol deposits and PKCε translocation in the liver, resultantly improving insulin action in the suppression of hepatic gluconeogenesis. Curcumin decreased adipose lipolysis by attenuating ER stress through the cAMP/PKA pathway, reduced FFA influx into the liver by blocking FFA trafficking, and thereby improved insulin sensitivity to inhibit hepatic glucose production. These findings suggested a novel pathway of curcumin to prevent lipid deposits and insulin resistance in liver by beneficial regulation of adipose function. PMID:27220352

  5. Active suppression of diabetes after oral administration of insulin is determined by antigen dosage.

    PubMed

    Bergerot, I; Fabien, N; Mayer, A; Thivolet, C

    1996-02-13

    We have previously demonstrated that feeding six-week-old female mice with 20 units of human insulin every 2 - 3 days for 15 or 30 days induced an active mechanism of suppression through the generation of regulatory T cells that reduced the number of successful diabetic transfers in irradiated NOD recipients. In the present study, we analyzed the effects of antigen dosage and the critical period of cell injection to obtain protection. The effects of the dose of insulin feeding were therefore compared during cotransfer experiments of 5 x 10(6) T cells from diabetic mice and 5 x 10(6) T cells from the spleen of mice receiving 10 units, 20 units, or 40 units of insulin or saline every 2 - 3 days for 15 days. Only T lymphocytes from mice fed with 20 units conferred active cellular protection during adoptive transfer with a significant delay in diabetes onset (p = 0.002). No significant difference was noticed during histological analysis of pancreatic glands, indicating tha insulitis was not prevented. However, mice receiving T lymphocytes from the 20 units of insulin-fed animals had a milder form of inflammation, with a significantly lower percentage of severely infiltrated islets. Injecting regulatory T cells 7 days and 14 days after iv injection of diabetogenic T cells did not modify the incidence curves of diabetes in the recipients, suggesting that cellular interactions and delay in cell trafficking were determinants. These results may have important clinical implications in humans. In conclusion, this study indicates the importance but also the limits of antigen therapy in type I diabetes. Antigen dosage is a critical element for active suppression. Such analysis is important to perform in humans before the initiation of a large-scale prevention trial in prediabetic individuals. PMID:8610991

  6. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity. PMID:26947072

  7. Sodium Salicylate Suppresses GABAergic Inhibitory Activity in Neurons of Rodent Dorsal Raphe Nucleus

    PubMed Central

    Jin, Yan; Luo, Bin; Su, Yan-Yan; Wang, Xin-Xing; Chen, Liang; Wang, Ming; Wang, Wei-Wen; Chen, Lin

    2015-01-01

    Sodium salicylate (NaSal), a tinnitus inducing agent, can activate serotonergic (5-HTergic) neurons in the dorsal raphe nucleus (DRN) and can increase serotonin (5-HT) level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain. PMID:25962147

  8. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  9. Resistance training enhances insulin suppression of endogenous glucose production in elderly women.

    PubMed

    Honka, Miikka-Juhani; Bucci, Marco; Andersson, Jonathan; Huovinen, Ville; Guzzardi, Maria Angela; Sandboge, Samuel; Savisto, Nina; Salonen, Minna K; Badeau, Robert M; Parkkola, Riitta; Kullberg, Joel; Iozzo, Patricia; Eriksson, Johan G; Nuutila, Pirjo

    2016-03-15

    An altered prenatal environment during maternal obesity predisposes offspring to insulin resistance, obesity, and their consequent comorbidities, type 2 diabetes and cardiovascular disease. Telomere shortening and frailty are additional risk factors for these conditions. The aim of this study was to evaluate the effects of resistance training on hepatic metabolism and ectopic fat accumulation. Thirty-five frail elderly women, whose mothers' body mass index (BMI) was known, participated in a 4-mo resistance training program. Endogenous glucose production (EGP) and hepatic and visceral fat glucose uptake were measured during euglycemic hyperinsulinemia with [(18)F]fluorodeoxyglucose and positron emission tomography. Ectopic fat was measured using magnetic resonance spectroscopy and imaging. We found that the training intervention reduced EGP during insulin stimulation [from 5.4 (interquartile range 3.0, 7.0) to 3.9 (-0.4, 6.1) μmol·kg body wt(-1)·min(-1), P = 0.042] in the whole study group. Importantly, the reduction was higher among those whose EGP was more insulin resistant at baseline (higher than the median) [-5.6 (7.1) vs. 0.1 (5.4) μmol·kg body wt(-1)·min(-1), P = 0.015]. Furthermore, the decrease in EGP was associated with telomere elongation (r = -0.620, P = 0.001). The resistance training intervention did not change either hepatic or visceral fat glucose uptake or the amounts of ectopic fat. Maternal obesity did not influence the studied measures. In conclusion, resistance training improves suppression of EGP in elderly women. The finding of improved insulin sensitivity of EGP with associated telomere lengthening implies that elderly women can reduce their risk for type 2 diabetes and cardiovascular disease with resistance training. PMID:26744506

  10. Metformin and Insulin Suppress Hepatic Gluconeogenesis by Inhibiting cAMP Signaling Through Phosphorylation of CREB Binding Protein (CBP)

    PubMed Central

    He, Ling; Sabet, Amin; Djedjos, Stephen; Miller, Ryan; Sun, Xiaojian; Hussain, Mehboob A.; Radovick, Sally; Wondisford, Fredric E.

    2009-01-01

    SUMMARY Insulin resistance and elevated glucagon levels result in non-suppressible hepatic glucose production and hyperglycemia in patients with type 2 diabetes. The CREB co-activator complex controls transcription of hepatic gluconeogenic enzyme genes. Here we show that both the antidiabetic agent metformin and insulin phosphorylate the transcriptional co-activator CBP at serine 436 via PKCι/λ. This event triggers the dissociation of the CREB-CBP-TORC2 transcription complex and reduces gluconeogenic enzyme gene expression. Mice carrying a germline mutation of this CBP phosphorylation site (S436A) demonstrate resistance to the hypoglycemic effect of both insulin and metformin. Obese, hyperglycemic mice display hepatic insulin resistance, but metformin is still effective in treating the hyperglycemia of these mice since it stimulates CBP phosphorylation by bypassing the block in insulin signaling. PMID:19450513

  11. Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in Drosophila.

    PubMed

    Liu, Yiting; Luo, Jiangnan; Carlsson, Mikael A; Nässel, Dick R

    2015-08-15

    Metabolic homeostasis and water balance is maintained by tight hormonal and neuronal regulation. In Drosophila, insulin-like peptides (DILPs) are key regulators of metabolism, and the neuropeptide leucokinin (LK) is a diuretic hormone that also modulates feeding. However, it is not known whether LK and DILPs act together to regulate feeding and water homeostasis. Because LK neurons express the insulin receptor (dInR), we tested functional links between DILP and LK signaling in feeding and water balance. Thus, we performed constitutive and conditional manipulations of activity in LK neurons and insulin-producing cells (IPCs) in adult flies and monitored food intake, responses to desiccation, and peptide expression levels. We also measured in vivo changes in LK and DILP levels in neurons in response to desiccation and drinking. Our data show that activated LK cells stimulate diuresis in vivo, and that LK and IPC signaling affect food intake in opposite directions. Overexpression of the dInR in LK neurons decreases the LK peptide levels, but only caused a subtle decrease in feeding, and had no effect on water balance. Next we demonstrated that LK neurons express the serotonin receptor 5-HT1B . Knockdown of this receptor in LK neurons diminished LK expression, increased desiccation resistance, and diminished food intake. Live calcium imaging indicates that serotonin inhibits spontaneous activity in abdominal LK neurons. Our results suggest that serotonin via 5-HT1B diminishes activity in the LK neurons and thereby modulates functions regulated by LK peptide, but the action of the dInR in these neurons remains less clear. PMID:25732325

  12. N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid β-induced neuronal oxidative damage in cortical neurons.

    PubMed

    Cho, Chang Hun; Kim, Eun-A; Kim, Jiae; Choi, Soo Young; Yang, Seung-Ju; Cho, Sung-Woo

    2016-06-01

    Recently, we have reported that N-adamantyl-4-methylthiazol-2-amine (KHG26693) successfully reduced the production of oxidative stress in streptozotocin-induced diabetic rats and lipopolysaccharide-induced BV-2 microglial cells by increasing their antioxidant capacity. However, antioxidative effects of KHG26693 against Aβ (Aβ)-induced oxidative stress have not yet been reported. In the present study, we further investigated the antioxidative function of KHG26693 in Aβ-mediated primary cultured cortical neurons. We showed here that KHG26693 attenuated Aβ-induced cytotoxicity, increase of Bax/Bcl-2 ratio, elevation of caspase-3 expression, and impairment of mitochondrial membrane potential in cultured primary cortical neurons. KHG26693 also decreases the Aβ-mediated formation of malondialdehyde, reactive oxygen species, and NO production by decreasing nitric oxide synthase (iNOS) and NADPH oxidase level. Moreover, KHG26693 suppress the Aβ-induced oxidative stress through a possible mechanism involving attenuation of GSH and antioxidant enzyme activities such as glutathione reductase and glutathione peroxidase (GPx). Finally, pretreatment of cortical neurons with KHG26693 significantly reduced the Aβ-induced protein oxidation and nitration. To our knowledge, this is the first report, showing that KHG26693 significantly attenuates Aβ-induced oxidative stress in primary cortical neurons, and may prove attractive strategies to reduce Aβ-induced neural cell death. PMID:27002191

  13. Mu suppression - A good measure of the human mirror neuron system?

    PubMed

    Hobson, Hannah M; Bishop, Dorothy V M

    2016-09-01

    Mu suppression has been proposed as a signature of the activity of the human mirror neuron system (MNS). However the mu frequency band (8-13 Hz) overlaps with the alpha frequency band, which is sensitive to attentional fluctuation, and thus mu suppression could potentially be confounded by changes in attentional engagement. The specific baseline against which mu suppression is assessed may be crucial, yet there is little consistency in how this is defined. We examined mu suppression in 61 typical adults, the largest mu suppression study so far conducted. We compared different methods of baselining, and examined activity at central and occipital electrodes, to both biological (hands) and non-biological (kaleidoscope) moving stimuli, to investigate the involvement of attention and alpha activity in mu suppression. We also examined changes in beta power, another candidate index of MNS engagement. We observed strong mu suppression restricted to central electrodes when participants performed hand movements, demonstrating that mu is indeed responsive to the activity of the motor cortex. However, when we looked for a similar signature of mu suppression to passively observed stimuli, the baselining method proved to be crucial. Selective suppression for biological versus non-biological stimuli was seen at central electrodes only when we used a within-trial baseline based on a static stimulus: this method greatly reduced trial-by-trial variation in the suppression measure compared with baselines based on blank trials presented in separate blocks. Even in this optimal condition, 16-21% of participants showed no mu suppression. Changes in beta power also did not match our predicted pattern for MNS engagement, and did not seem to offer a better measure than mu. Our conclusions are in contrast to those of a recent meta-analysis, which concluded that mu suppression is a valid means to examine mirror neuron activity. We argue that mu suppression can be used to index the human MNS

  14. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells.

    PubMed

    Zhou, Najing; Huang, Sha; Li, Li; Huang, Dongyang; Yan, Yunli; Du, Xiaona; Zhang, Hailin

    2016-10-01

    Membrane potential shift driven by electrical activity is critical in determining the cell fate of proliferation or differentiation. As such, the ion channels that underlie the membrane electrical activity play an important role in cell proliferation/differentiation. KV7/KCNQ potassium channels are critical in determining the resting membrane potentials in many neuronal cells. However, the role of these channels in cell differentiation is not well studied. In the present study, we used PC12 cells as well as primary cultured rat cortical neurons to study the role and mechanism of KV7/KCNQ in neuronal differentiation. NGF induced PC12 cell differentiation into neuron-like cells with growth of neurites showing typical growth cone-like extensions. The Kv7/KCNQ blocker XE991 promoted NGF-induced neurite outgrowth, whereas Kv7/KCNQ opener retigabine (RTG) inhibited outgrowth. M-type Kv7 channels are likely involved in regulating neurite growth because overexpression of KCNQ2/Q3 inhibited neurite growth whereas suppression of KCNQ2/Q3 with shRNA promoted neurite growth. Membrane depolarization possibly underpins enhanced neurite growth induced by the suppression of Kv7/KCNQ. Additionally, high extracellular K(+) likely induced membrane depolarization and also promoted neurite growth. Finally, T-type Ca(2+) channels may be involved in membrane-depolarization-induced neurite growth. This study provides a new perspective for understanding neuronal differentiation as well as KV7/KCNQ channel function. PMID:27450567

  15. Aβ25-35 Suppresses Mitochondrial Biogenesis in Primary Hippocampal Neurons.

    PubMed

    Dong, Weiguo; Wang, Feng; Guo, Wanqing; Zheng, Xuehua; Chen, Yue; Zhang, Wenguang; Shi, Hong

    2016-01-01

    Mitochondrial biogenesis is involved in the regulation of mitochondrial content, morphology, and function. Impaired mitochondrial biogenesis has been observed in Alzheimer's disease. Amyloid-β (Aβ) has been shown to cause mitochondrial dysfunction in cultured neurons, but its role in mitochondrial biogenesis in neurons remains poorly defined. AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) are key energy-sensing molecules regulating mitochondrial biogenesis. In addition, peroxisome proliferator-activated receptor-γ coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis, is a target for SIRT1 deacetylase activity. In this study, we investigated the effects of Aβ25-35 on mitochondrial biogenesis in cultured hippocampal neurons and the underlying mechanisms. In primary hippocampal neurons, we found that 24-h incubation with Aβ25-35 suppressed both phosphorylations of AMPK and SIRT1 expression and increased PGC-1α acetylation expression. In addition, Aβ25-35 also resulted in a decrease in mitochondrial DNA copy number, as well as decreases in the expression of mitochondrial biogenesis factors (PGC-1α, NRF 1, NRF 2, and Tfam). Taken together, these data show that Aβ25-35 suppresses mitochondrial biogenesis in hippocampal neurons. Aβ25-35-induced impairment of mitochondrial biogenesis may be associated with the inhibition of the AMPK-SIRT1-PGC-1α pathway. PMID:26055049

  16. Insulin

    MedlinePlus

    ... pump is connected to your body by a flexible tube that has a tip that sticks under your skin. A cartridge of insulin is put in the pump. The insulin flows through the tube into your body. The pump controls how much insulin goes into your body. The ...

  17. Lipopolysacharide Rapidly and Completely Suppresses AgRP Neuron-Mediated Food Intake in Male Mice.

    PubMed

    Liu, Yang; Huang, Ying; Liu, Tiemin; Wu, Hua; Cui, Huxing; Gautron, Laurent

    2016-06-01

    Although Agouti-related peptide (AgRP) neurons play a key role in the regulation of food intake, their contribution to the anorexia caused by proinflammatory insults has yet to be identified. Using a combination of neuroanatomical and pharmacogenetics experiments, this study sought to investigate the importance of AgRP neurons and downstream targets in the anorexia caused by the peripheral administration of a moderate dose of lipopolysaccharide (LPS) (100 μg/kg, ip). First, in the C57/Bl6 mouse, we demonstrated that LPS induced c-fos in select AgRP-innervated brain sites involved in feeding but not in any arcuate proopiomelanocortin neurons. Double immunohistochemistry further showed that LPS selectively induced c-Fos in a large subset of melanocortin 4 receptor-expressing neurons in the lateral parabrachial nucleus. Secondly, we used pharmacogenetics to stimulate the activity of AgRP neurons during the course of LPS-induced anorexia. In AgRP-Cre mice expressing the designer receptor hM3Dq-Gq only in AgRP neurons, the administration of the designer drug clozapine-N-oxide (CNO) induced robust food intake. Strikingly, CNO-mediated food intake was rapidly and completely blunted by the coadministration of LPS. Neuroanatomical experiments further indicated that LPS did not interfere with the ability of CNO to stimulate c-Fos in AgRP neurons. In summary, our findings combined together support the view that the stimulation of select AgRP-innervated brain sites and target neurons, rather than the inhibition of AgRP neurons themselves, is likely to contribute to the rapid suppression of food intake observed during acute bacterial endotoxemia. PMID:27111742

  18. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  19. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.

    PubMed

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  20. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP.

    PubMed

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1(-/-) mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1(-/-) mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  1. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP

    PubMed Central

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R.; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1−/− mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1−/− mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  2. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier

    PubMed Central

    Froud, Kristina E.; Wong, Ann Chi Yan; Cederholm, Jennie M. E.; Klugmann, Matthias; Sandow, Shaun L.; Julien, Jean-Pierre; Ryan, Allen F.; Housley, Gary D.

    2015-01-01

    The dynamic adjustment of hearing sensitivity and frequency selectivity is mediated by the medial olivocochlear efferent reflex, which suppresses the gain of the ‘cochlear amplifier' in each ear. Such efferent feedback is important for promoting discrimination of sounds in background noise, sound localization and protecting the cochleae from acoustic overstimulation. However, the sensory driver for the olivocochlear reflex is unknown. Here, we resolve this longstanding question using a mouse model null for the gene encoding the type III intermediate filament peripherin (Prph). Prph(−/−) mice lacked type II spiral ganglion neuron innervation of the outer hair cells, whereas innervation of the inner hair cells by type I spiral ganglion neurons was normal. Compared with Prph(+/+) controls, both contralateral and ipsilateral olivocochlear efferent-mediated suppression of the cochlear amplifier were absent in Prph(−/−) mice, demonstrating that outer hair cells and their type II afferents constitute the sensory drive for the olivocochlear efferent reflex. PMID:25965946

  3. Insulin Resistance, Defective Insulin-Mediated Fatty Acid Suppression, and Coronary Artery Calcification in Subjects With and Without Type 1 Diabetes

    PubMed Central

    Schauer, Irene E.; Snell-Bergeon, Janet K.; Bergman, Bryan C.; Maahs, David M.; Kretowski, Adam; Eckel, Robert H.; Rewers, Marian

    2011-01-01

    OBJECTIVE To assess insulin action on peripheral glucose utilization and nonesterified fatty acid (NEFA) suppression as a predictor of coronary artery calcification (CAC) in patients with type 1 diabetes and nondiabetic controls. RESEARCH DESIGN AND METHODS Insulin action was measured by a three-stage hyperinsulinemic-euglycemic clamp (4, 8, and 40 mU/m2/min) in 87 subjects from the Coronary Artery Calcification in Type 1 Diabetes cohort (40 diabetic, 47 nondiabetic; mean age 45 ± 8 years; 55% female). RESULTS Peripheral glucose utilization was lower in subjects with type 1 diabetes compared with nondiabetic controls: glucose infusion rate (mg/kg FFM/min) = 6.19 ± 0.72 vs. 12.71 ± 0.66, mean ± SE, P < 0.0001, after adjustment for age, sex, BMI, fasting glucose, and final clamp glucose and insulin. Insulin-induced NEFA suppression was also lower in type 1 diabetic compared with nondiabetic subjects: NEFA levels (μM) during 8 mU/m2/min insulin infusion = 370 ± 27 vs. 185 ± 25, P < 0.0001, after adjustment for age, sex, BMI, fasting glucose, and time point insulin. Lower glucose utilization and higher NEFA levels, correlated with CAC volume (r = −0.42, P < 0.0001 and r = 0.41, P < 0.0001, respectively) and predicted the presence of CAC (odds ratio [OR] = 0.45, 95% CI = 0.22–0.93, P = 0.03; OR = 2.4, 95% CI = 1.08–5.32, P = 0.032, respectively). Insulin resistance did not correlate with GHb or continuous glucose monitoring parameters. CONCLUSIONS Type 1 diabetic patients are insulin resistant compared with nondiabetic subjects, and the degree of resistance is not related to current glycemic control. Insulin resistance predicts the extent of coronary artery calcification and may contribute to the increased risk of cardiovascular disease in patients with type 1 diabetes as well as subjects without diabetes. PMID:20978091

  4. Prolactin regulates kisspeptin neurons in the arcuate nucleus to suppress LH secretion in female rats.

    PubMed

    Araujo-Lopes, Roberta; Crampton, Jessica R; Aquino, Nayara S S; Miranda, Roberta M; Kokay, Ilona C; Reis, Adelina M; Franci, Celso R; Grattan, David R; Szawka, Raphael E

    2014-03-01

    Prolactin (PRL) is known to suppress LH secretion. Kisspeptin neurons regulate LH secretion and express PRL receptors. We investigated whether PRL acts on kisspeptin neurons to suppress LH secretion in lactating (Lac) and virgin rats. Lac rats displayed high PRL secretion and reduced plasma LH and kisspeptin immunoreactivity in the arcuate nucleus (ARC). Bromocriptine-induced PRL blockade significantly increased ARC kisspeptin and plasma LH levels in Lac rats but did not restore them to the levels of non-Lac rats. Bromocriptine effects were prevented by the coadministration of ovine PRL (oPRL). Virgin ovariectomized (OVX) rats treated with either systemic or intracerebroventricular oPRL displayed reduction of kisspeptin expression in the ARC and plasma LH levels, and these effects were comparable with those of estradiol treatment in OVX rats. Conversely, estradiol-treated OVX rats displayed increased kisspeptin immunoreactivity in the anteroventral periventricular nucleus, whereas oPRL had no effect in this brain area. The expression of phosphorylated signal transducer and activator of transcription 5 was used to determine whether kisspeptin neurons in the ARC were responsive to PRL. Accordingly, intracerebroventricular oPRL induced expression of phosphorylated signal transducer and activator of transcription 5 in the great majority of ARC kisspeptin neurons in virgin and Lac rats. We provide here evidence that PRL acts on ARC neurons to inhibit kisspeptin expression in female rats. During lactation, PRL contributes to the inhibition of ARC kisspeptin. In OVX rats, high PRL levels suppress kisspeptin expression and reduce LH release. These findings suggest a pathway through which hyperprolactinemia may inhibit LH secretion and thereby cause infertility. PMID:24456164

  5. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease

    PubMed Central

    Bilbao, Daniel; Luciani, Luisa; Johannesson, Bjarki; Piszczek, Agnieszka; Rosenthal, Nadia

    2014-01-01

    The recent precipitous rise in autoimmune diseases is placing an increasing clinical and economic burden on health systems worldwide. Current therapies are only moderately efficacious, often coupled with adverse side effects. Here, we show that recombinant human insulin-like growth factor-1 (rhIGF-1) stimulates proliferation of both human and mouse regulatory T (Treg) cells in vitro and when delivered systemically via continuous minipump, it halts autoimmune disease progression in mouse models of type 1 diabetes (STZ and NOD) and multiple sclerosis (EAE) in vivo. rhIGF-1 administration increased Treg cells in affected tissues, maintaining their suppressive properties. Genetically, ablation of the IGF-1 receptor specifically on Treg cell populations abrogated the beneficial effects of rhIGF-1 administration on the progression of multiple sclerotic symptoms in the EAE model, establishing a direct effect of IGF-1 on Treg cell proliferation. These results establish systemically delivered rhIGF-1 as a specific, effective stimulator of Treg cell action, underscoring the clinical feasibility of manipulating natural tolerance mechanisms to suppress autoimmune disease. PMID:25339185

  6. Dysfunction of the Human Mirror Neuron System in Ideomotor Apraxia: Evidence from Mu Suppression.

    PubMed

    Frenkel-Toledo, Silvi; Liebermann, Dario G; Bentin, Shlomo; Soroker, Nachum

    2016-06-01

    Stroke patients with ideomotor apraxia (IMA) have difficulties controlling voluntary motor actions, as clearly seen when asked to imitate simple gestures performed by the examiner. Despite extensive research, the neurophysiological mechanisms underlying failure to imitate gestures in IMA remain controversial. The aim of the current study was to explore the relationship between imitation failure in IMA and mirror neuron system (MNS) functioning. Mirror neurons were found to play a crucial role in movement imitation and in imitation-based motor learning. Their recruitment during movement observation and execution is signaled in EEG recordings by suppression of the lower (8-10 Hz) mu range. We examined the modulation of EEG in this range in stroke patients with left (n = 21) and right (n = 15) hemisphere damage during observation of video clips showing different manual movements. IMA severity was assessed by the DeRenzi standardized diagnostic test. Results showed that failure to imitate observed manual movements correlated with diminished mu suppression in patients with damage to the right inferior parietal lobule and in patients with damage to the right inferior frontal gyrus pars opercularis-areas where major components of the human MNS are assumed to reside. Voxel-based lesion symptom mapping revealed a significant impact on imitation capacity for the left inferior and superior parietal lobules and the left post central gyrus. Both left and right hemisphere damages were associated with imitation failure typical of IMA, yet a clear demonstration of relationship to the MNS was obtained only in the right hemisphere damage group. Suppression of the 8-10 Hz range was stronger in central compared with occipital sites, pointing to a dominant implication of mu rather than alpha rhythms. However, the suppression correlated with De Renzi's apraxia test scores not only in central but also in occipital sites, suggesting a multifactorial mechanism for IMA, with a possible

  7. L-tryptophan suppresses rise in blood glucose and preserves insulin secretion in type-2 diabetes mellitus rats.

    PubMed

    Inubushi, Tomoko; Kamemura, Norio; Oda, Masataka; Sakurai, Jun; Nakaya, Yutaka; Harada, Nagakatsu; Suenaga, Midori; Matsunaga, Yoichi; Ishidoh, Kazumi; Katunuma, Nobuhiko

    2012-01-01

    Ample evidence indicates that a high-protein/low-carbohydrate diet increases glucose energy expenditure and is beneficial in patients with type-2 diabetes mellitus (T2DM). The present study was designed to investigate the effects of L-tryptophan in T2DM. Blood glucose was measured by the glucose dehydrogenase assay and serum insulin was measured with ELISA in both normal and hereditary T2DM rats after oral glucose administration with or without L-D-tryptophan and tryptamine. The effect of tryptophan on glucose absorption was examined in the small intestine of rats using the everted-sac method. Glucose incorporation in adipocytes was assayed with [(3)H]-2-deoxy-D-glucose using a liquid scintillation counter. Indirect computer-regulated respiratory gas-assay calorimetry was applied to assay energy expenditure in rats. L-Tryptophan suppressed both serum glucose and insulin levels after oral glucose administration and inhibited glucose absorption from the intestine. Tryptamine, but not L-tryptophan, enhanced insulin-stimulated [(3)H]-glucose incorporation into differentiated adipocytes. L-Tryptophan increased glucose-associated energy expenditure in rats in vivo. L-Tryptophan-rich chow consumed from a young age preserved the secretion of insulin and delayed the progression of T2DM in hereditary diabetic rats. The results suggested that L-tryptophan suppresses the elevation of blood glucose and lessens the burden associated with insulin secretion from β-cells. PMID:23419400

  8. Topography of subnuclei of the hypothalamic paraventricular nucleus in rats and sensitivity of their neurons to insulin defficiency

    SciTech Connect

    Goufman, E.I.

    1985-07-01

    This investigation was undertaken to study the reaction of paraventricular nuclei (PVN) subnuclei to insulin deficiency and to elevation of the blood glucose level under conditions of experimental alloxan diabetes. Experiments were carried out on 15 control and 15 experimental mature male Wistar rats. The state of the carbohydrate metabolism of the diabetic and control animals was judged by the blood glucose and radioimmune insulin levels. The results of these investigations show that both magnocellular and parvocellular neurons of PVN react to alloxan diabetes, which supports the hypothesis that PVN of the hypothalamus participates in the control of carbohydrate metabolism.

  9. Ephrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression

    PubMed Central

    Meier, Christin; Anastasiadou, Sofia; Knöll, Bernd

    2011-01-01

    During brain development, growth cones respond to attractive and repulsive axon guidance cues. How growth cones integrate guidance instructions is poorly understood. Here, we demonstrate a link between BDNF (brain derived neurotrophic factor), promoting axonal branching and ephrin-A5, mediating axonal repulsion via Eph receptor tyrosine kinase activation. BDNF enhanced growth cone filopodial dynamics and neurite branching of primary neurons. We show that ephrin-A5 antagonized this BDNF-evoked neuronal motility. BDNF increased ERK phosphorylation (P-ERK) and nuclear ERK entry. Ephrin-A5 suppressed BDNF-induced ERK activity and might sequester P-ERK in the cytoplasm. Neurotrophins are well established stimulators of a neuronal immediate early gene (IEG) response. This is confirmed in this study by e.g. c-fos, Egr1 and Arc upregulation upon BDNF application. This BDNF-evoked IEG response required the transcription factor SRF (serum response factor). Notably, ephrin-A5 suppressed a BDNF-evoked neuronal IEG response, suggesting a role of Eph receptors in modulating gene expression. In opposite to IEGs, long-term ephrin-A5 application induced cytoskeletal gene expression of tropomyosin and actinin. To uncover specific Eph receptors mediating ephrin-As impact on neurotrophin signaling, EphA7 deficient mice were analyzed. In EphA7 deficient neurons alterations in growth cone morphology were observed. However, ephrin-A5 still counteracted neurotrophin signaling suggesting that EphA7 is not required for ephrin and BDNF crosstalk. In sum, our data suggest an interaction of ephrin-As and neurotrophin signaling pathways converging at ERK signaling and nuclear gene activity. As ephrins are involved in development and function of many organs, such modulation of receptor tyrosine kinase signaling and gene expression by Ephs might not be limited to the nervous system. PMID:22022520

  10. Modulation of spontaneous and odorant-evoked activity of rat olfactory sensory neurons by two anorectic peptides, insulin and leptin.

    PubMed

    Savigner, Agnès; Duchamp-Viret, Patricia; Grosmaitre, Xavier; Chaput, Michel; Garcia, Samuel; Ma, Minghong; Palouzier-Paulignan, Brigitte

    2009-06-01

    In mammals, the sense of smell is modulated by the status of satiety, which is mainly signaled by blood-circulating peptide hormones. However, the underlying mechanisms linking olfaction and food intake are poorly understood. Here we investigated the effects of two anorectic peptides, insulin and leptin, on the functional properties of olfactory sensory neurons (OSNs). Using patch-clamp recordings, we analyzed the spontaneous activity of rat OSNs in an in vitro intact epithelium preparation. Bath perfusion of insulin and leptin significantly increased the spontaneous firing frequency in 91.7% (n = 24) and 75.0% (n = 24) of the cells, respectively. When the activity was electrically evoked, both peptides shortened the latency to the first action potential by approximately 25% and decreased the interspike intervals by approximately 13%. While insulin and leptin enhanced the electrical excitability of OSNs in the absence of odorants, they surprisingly reduced the odorant-induced activity in the olfactory epithelium. Insulin and leptin decreased the peak amplitudes of isoamyl acetate-induced electroolfactogram (EOG) signals to 46 and 38%, respectively. When measured in individual cells by patch-clamp recordings, insulin and leptin decreased odorant-induced transduction currents and receptor potentials. Therefore by increasing the spontaneous activity but reducing the odorant-induced activity of OSNs, an elevated insulin and leptin level (such as after a meal) may result in a decreased global signal-to-noise ratio in the olfactory epithelium, which matches the smell ability to the satiety status. PMID:19297511

  11. Modulation of Spontaneous and Odorant-Evoked Activity of Rat Olfactory Sensory Neurons by Two Anorectic Peptides, Insulin and Leptin

    PubMed Central

    Savigner, Agnès; Duchamp-Viret, Patricia; Grosmaitre, Xavier; Chaput, Michel; Garcia, Samuel; Ma, Minghong; Palouzier-Paulignan, Brigitte

    2009-01-01

    In mammals, the sense of smell is modulated by the status of satiety, which is mainly signaled by blood-circulating peptide hormones. However, the underlying mechanisms linking olfaction and food intake are poorly understood. Here we investigated the effects of two anorectic peptides, insulin and leptin, on the functional properties of olfactory sensory neurons (OSNs). Using patch-clamp recordings, we analyzed the spontaneous activity of rat OSNs in an in vitro intact epithelium preparation. Bath perfusion of insulin and leptin significantly increased the spontaneous firing frequency in 91.7% (n = 24) and 75.0% (n = 24) of the cells, respectively. When the activity was electrically evoked, both peptides shortened the latency to the first action potential by ∼25% and decreased the interspike intervals by ∼13%. While insulin and leptin enhanced the electrical excitability of OSNs in the absence of odorants, they surprisingly reduced the odorant-induced activity in the olfactory epithelium. Insulin and leptin decreased the peak amplitudes of isoamyl acetate-induced electroolfactogram (EOG) signals to 46 and 38%, respectively. When measured in individual cells by patch-clamp recordings, insulin and leptin decreased odorant-induced transduction currents and receptor potentials. Therefore by increasing the spontaneous activity but reducing the odorant-induced activity of OSNs, an elevated insulin and leptin level (such as after a meal) may result in a decreased global signal-to-noise ratio in the olfactory epithelium, which matches the smell ability to the satiety status. PMID:19297511

  12. PINK1 positively regulates HDAC3 to suppress dopaminergic neuronal cell death.

    PubMed

    Choi, Hyo-Kyoung; Choi, Youngsok; Kang, HeeBum; Lim, Eun-Jin; Park, Soo-Yeon; Lee, Hyun-Seob; Park, Ji-Min; Moon, Jisook; Kim, Yoon-Jung; Choi, Insup; Joe, Eun-Hye; Choi, Kyung-Chul; Yoon, Ho-Geun

    2015-02-15

    Deciphering the molecular basis of neuronal cell death is a central issue in the etiology of neurodegenerative diseases, such as Parkinson's and Alzheimer's. Dysregulation of p53 levels has been implicated in neuronal apoptosis. The role of histone deacetylase 3 (HDAC3) in suppressing p53-dependent apoptosis has been recently emphasized; however, the molecular basis of modulation of p53 function by HDAC3 remains unclear. Here we show that PTEN-induced putative kinase 1 (PINK1), which is linked to autosomal recessive early-onset familial Parkinson's disease, phosphorylates HDAC3 at Ser-424 to enhance its HDAC activity in a neural cell-specific manner. PINK1 prevents H2O2-induced C-terminal cleavage of HDAC3 via phosphorylation of HDAC3 at Ser-424, which is reversed by protein phosphatase 4c. PINK1-mediated phosphorylation of HDAC3 enhances its direct association with p53 and causes subsequent hypoacetylation of p53. Genetic deletion of PINK1 partly impaired the suppressive role of HDAC3 in regulating p53 acetylation and transcriptional activity. However, depletion of HDAC3 fully abolished the PINK1-mediated p53 inhibitory loop. Finally, ectopic expression of phosphomometic-HDAC3(S424E) substantially overcomes the defective action of PINK1 against oxidative stress in dopaminergic neuronal cells. Together, our results uncovered a mechanism by which PINK1-HDAC3 network mediates p53 inhibitory loop in response to oxidative stress-induced damage. PMID:25305081

  13. APP intracellular domain acts as a transcriptional regulator of miR-663 suppressing neuronal differentiation

    PubMed Central

    Shu, R; Wong, W; Ma, Q H; Yang, Z Z; Zhu, H; Liu, F J; Wang, P; Ma, J; Yan, S; Polo, J M; Bernard, C C A; Stanton, L W; Dawe, G S; Xiao, Z C

    2015-01-01

    Amyloid precursor protein (APP) is best known for its involvement in the pathogenesis of Alzheimer's disease. We have previously demonstrated that APP intracellular domain (AICD) regulates neurogenesis; however, the mechanisms underlying AICD-mediated regulation of neuronal differentiation are not yet fully characterized. Using genome-wide chromatin immunoprecipitation approaches, we found that AICD is specifically recruited to the regulatory regions of several microRNA genes, and acts as a transcriptional regulator for miR-663, miR-3648 and miR-3687 in human neural stem cells. Functional assays show that AICD negatively modulates neuronal differentiation through miR-663, a primate-specific microRNA. Microarray data further demonstrate that miR-663 suppresses the expression of multiple genes implicated in neurogenesis, including FBXL18 and CDK6. Our results indicate that AICD has a novel role in suppression of neuronal differentiation via transcriptional regulation of miR-663 in human neural stem cells. PMID:25695604

  14. The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). A mini-review.

    PubMed

    Hoyer, Siegfried

    2002-07-01

    Aging of the brain has been demonstrated to be the main risk factor for late-onset sporadic AD what is in contrast to early-onset familial AD in which mutations predominate the pathology. Aging of the brain was found to be associated with a multitude of aberrancies from normal in morphological, cellular and molecular terms. Recent findings provide clear evidence that the function of the neuronal insulin/insulin receptor signal transduction cascade is of pivotal significance to maintain normal cerebral blood flow and oxidative energy metabolism, work of the endoplasmatic reticulum/Golgi apparatus and the cell cycle in terminally differentiated neurons no longer in the cell cycle. It has become evident that normal metabolism of both amyloid precursor protein and tau-protein is part of interactive processes controlled by the neuronal I/IR signal transduction cascade. In normal brain aging, the function of this cascade starts to fail compared to normal resulting in adverse effects in CBF/oxidative energy metabolism, work of the endoplasmatic reticulum/Golgi apparatus and cell cycle. The aberrancies may not be drastic, but multifold and permanently existing, inclusive the metabolism of APP and tau-protein. The amount of intraneuronally formed betaA4 may increase, and tau-protein may become hyperphosphorylated. These processes as a whole may increase the vulnerability of the aging brain and may facilitate the generation of late-onset sporadic AD. PMID:12111436

  15. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors.

    PubMed

    Ster, Jeanne; Colomer, Claude; Monzo, Cécile; Duvoid-Guillou, Anne; Moos, Françoise; Alonso, Gérard; Hussy, Nicolas

    2005-03-01

    In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability. PMID:15745952

  16. The NuRD complex component p66 suppresses photoreceptor neuron regeneration in planarians

    PubMed Central

    Vásquez‐Doorman, Constanza

    2016-01-01

    Abstract Regeneration involves precise control of cell fate to produce an appropriate complement of tissues formed within a blastema. Several chromatin‐modifying complexes have been identified as required for regeneration in planarians, but it is unclear whether this class of molecules uniformly promotes the production of differentiated cells. We identify a function for p66, encoding a DNA‐binding protein component of the NuRD (nucleosome remodeling and deacetylase) complex, as well as the chromodomain helicase chd4, in suppressing production of photoreceptor neurons (PRNs) in planarians. This suppressive effect appeared restricted to PRNs because p66 inhibition did not influence numbers of eye pigment cup cells (PCCs) and decreased numbers of brain neurons and epidermal progenitors. PRNs from p66(RNAi) animals differentiated with some abnormalities but nonetheless produced arrestin+ projections to the brain. p66 inhibition produced excess ovo+otxA+ PRN progenitors without affecting numbers of ovo+otxA− PCC progenitors, and ovo and otxA were each required for the p66(RNAi) excess PRN phenotype. Together these results suggest that p66 acts through the NuRD complex to suppress PRN production by limiting expression of lineage‐specific transcription factors. PMID:27606067

  17. The NuRD complex component p66 suppresses photoreceptor neuron regeneration in planarians.

    PubMed

    Vásquez-Doorman, Constanza; Petersen, Christian P

    2016-06-01

    Regeneration involves precise control of cell fate to produce an appropriate complement of tissues formed within a blastema. Several chromatin-modifying complexes have been identified as required for regeneration in planarians, but it is unclear whether this class of molecules uniformly promotes the production of differentiated cells. We identify a function for p66, encoding a DNA-binding protein component of the NuRD (nucleosome remodeling and deacetylase) complex, as well as the chromodomain helicase chd4, in suppressing production of photoreceptor neurons (PRNs) in planarians. This suppressive effect appeared restricted to PRNs because p66 inhibition did not influence numbers of eye pigment cup cells (PCCs) and decreased numbers of brain neurons and epidermal progenitors. PRNs from p66(RNAi) animals differentiated with some abnormalities but nonetheless produced arrestin+ projections to the brain. p66 inhibition produced excess ovo+otxA+ PRN progenitors without affecting numbers of ovo+otxA- PCC progenitors, and ovo and otxA were each required for the p66(RNAi) excess PRN phenotype. Together these results suggest that p66 acts through the NuRD complex to suppress PRN production by limiting expression of lineage-specific transcription factors. PMID:27606067

  18. Slug, mammalian homologue gene of Drosophila escargot, promotes neuronal-differentiation through suppression of HEB/daughterless.

    PubMed

    Yang, Dong-Jin; Chung, Ji-Yun; Lee, Su-Jin; Park, So-Young; Pyo, Jung-Hoon; Ha, Nam-Chul; Yoo, Mi-Ae; Park, Bum-Joon

    2010-07-15

    At the neuron developmental stage, neuron-precursor cells can be differentiated into neuron or glia cells. However, precise molecular mechanism to determine the cell fate has not been clearly demonstrated. In this study, we reveal that Drosophila esgarcot and its mammalian homologue genes, Snail and Slug, play a key role in neuronal differentiation. In Drosophila model system, overexpression of Esg, like as Wingless, suppresses the bristle formation. In contrast, elimination of Esg though RNAi promotes double bristle phenotype. We can also observe the similar phenotype in Snail-overexpression system. In mammalian system, overexpression of Slug or Snail can induce neuronal differentiation. Esg and its mammalian homologue gene Slug directly interact with Daughtherless and its mammalian homologue HEB and eliminate them through siah-1 mediated protein degradation. Thus, overexpression of siah-1 can promote neuron cell differentiation, whereas si-siah-1 blocks the Slug-induced HEB suppression. In fact, Drosophila SINA, Siah-1 homologue, has been also known to be involved in bristle formation and Neuronal differentiation. In addition, it has been revealed that CK1 is involved in Esg or Snail stability and Neuronal differentiation. However, Snail is regulated only by CK1 but not by Siah. Considering the fact that Slug mutations have been found in human genetic disease, waardenberg syndrome, major symptoms of which is loss of hearing neuron and odd eye, our result implies that slug/Snail system is required for proper neuronal differentiation, like as Esg in Drosophila. PMID:20647756

  19. Nonerythropoietic Erythropoietin-Derived Peptide Suppresses Adipogenesis, Inflammation, Obesity and Insulin Resistance

    PubMed Central

    Liu, Yuqi; Luo, Bangwei; Shi, Rongchen; Wang, Jinsong; Liu, Zongwei; Liu, Wei; Wang, Shufeng; Zhang, Zhiren

    2015-01-01

    Erythropoietin (EPO) has been identified as being crucial for obesity modulation; however, its erythropoietic activity may limit its clinical application. EPO-derived Helix B-surface peptide (pHBSP) is nonerythrogenic but has been reported to retain other functions of EPO. The current study aimed to evaluate the effects and potential mechanisms of pHBSP in obesity modulation. We found that pHBSP suppressed adipogenesis, adipokine expression and peroxisome proliferator-activated receptor γ (PPARγ) levels during 3T3-L1 preadipocyte maturation through the EPO receptor (EPOR). In addition, also through EPOR, pHBSP attenuated macrophage inflammatory activation and promoted PPARγ expression. Furthermore, PPARγ deficiency partly ablated the anti-inflammatory activity of pHBSP in macrophages. Correspondingly, pHBSP administration to high-fat diet (HFD)-fed mice significantly improved obesity, insulin resistance (IR) and adipose tissue inflammation without stimulating hematopoiesis. Therefore, pHBSP can significantly protect against obesity and IR partly by inhibiting adipogenesis and inflammation. These findings have therapeutic implications for metabolic disorders, such as obesity and diabetes. PMID:26459940

  20. Suppression of IAPP fibrillation at anionic lipid membranes via IAPP-derived amyloid inhibitors and insulin.

    PubMed

    Sellin, Daniel; Yan, Li-Mei; Kapurniotu, Aphrodite; Winter, Roland

    2010-08-01

    Aggregation of human islet amyloid polypeptide (hIAPP) into cytotoxic beta-sheet oligomers and amyloid plaques is considered a key event in pancreatic beta-cell degeneration in type 2 diabetes (T2D). hIAPP is synthesized in the pancreatic beta-cells and it is stored, co-processed in the secretory granules, and co-secreted to the extracellular matrix together with insulin. In vivo, hIAPP aggregation may start and proceed at the water-cell membrane interface and anionic lipid membranes strongly enhance the process of hIAPP fibrillization which is causally linked to membrane disintegration and cell degeneration. In this study we explored the amyloidogenic propensity and conformational properties of hIAPP in the presence of negatively charged membrane (DOPC/DOPG phospholipid bilayers) surfaces upon addition of two recently designed potent hIAPP-derived inhibitors of hIAPP amyloidogenesis, the hexapeptide NF(N-Me)GA(N-Me)IL (NFGAIL-GI) and the 37-residue non-amyloidogenic hIAPP analog [(N-Me)G24, (N-Me)I26]-IAPP (IAPP-GI). For comparison, the effects of insulin, which is a natively occurring hIAPP aggregation inhibitor, rat IAPP (rIAPP), which is a natively non-amyloidogenic hIAPP analog, and the hIAPP amyloid core peptide hIAPP(22-27) or NFGAIL were also studied. The aim of our study was to test whether and how the above peptides which have been shown to completely block or suppress hIAPP amyloidogenesis in bulk solution in vitro would also affect these processes in the presence of lipid membranes. To this end, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was applied. We find that IAPP-GI, NFGAIL-GI, insulin, and rIAPP are potent inhibitors of hIAPP fibrillization. Importantly, our data also suggest that the hetero-complexes of IAPP-GI, rIAPP, and insulin with hIAPP although non-amyloidogenic per se are still able to adsorb at the lipid membrane. By contrast, in the presence of NFGAIL-GI, interaction of hIAPP with the lipid membrane is

  1. Blunted Suppression of Acyl-Ghrelin in Response to Fructose Ingestion in Obese Adolescents: the Role of Insulin Resistance

    PubMed Central

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert; Cline, Gary; Caprio, Sonia

    2015-01-01

    Objective Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared to glucose ingestion. We evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Methods Adolescents were divided into lean (n=14), obese insulin sensitive (n=12) (OIS), and obese insulin resistant (n=15) (OIR). In a double-blind, cross-over design, subjects drank 75g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Results Baseline acyl-ghrelin was highest in lean and lowest in OIR (p=0.02). After glucose ingestion acyl-ghrelin decreased similarly in lean and OIS, but appeared lower in OIR (vs lean p=0.03). Suppression differences were more pronounced after fructose (lean vs. OIS p=0.008, lean vs. OIR p<0.001). OIS became significantly hungrier after fructose (p=0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Conclusion Compared to lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. PMID:25645909

  2. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity

    PubMed Central

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W.; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis. PMID:26317499

  3. [Insulin combined with selenium inhibit p38MAPK/CBP pathway and suppresses cardiomyocyte apoptosis in rats with diabetic cardiomyopathy].

    PubMed

    Xu, Tianjiao; Liu, Yong; Deng, Yating; Meng, Jin; Li, Ping; Xu, Xiaoli; Zeng, Jurong

    2016-07-01

    Objective To investigate the effect of insulin in combination with selenium on p38-mitogen-activated protein kinase/CREB-binding protein (p38MAPK/CBP) pathway in rats with diabetic cardiomyopathy. Methods Fifty SD rats were randomly grouped into control group, diabetic cardiomyopathy (DCM) group, diabetic cardiomyopathy with insulin treatment (DCM-In) group, diabetic cardiomyopathy with selenium treatment (DCM-Se) group, and diabetic cardiomyopathy with insulin and selenium combination treatment (DCM-In-Se) group. Flow cytometry was used to analyze cell cycle. TUNEL staining was used to detect cardiomyocyte apoptosis. Western blotting was used to examine the levels of cyclin D1, cyclin E, Bax, Bcl-2, p38MAPK, p-p38MAPK, CBP and Ku70. Co-immunoprecipitation was used to examine the acetylation status of Ku70. Results Insulin in combination with selenium significantly inhibited cardiomyocyte apoptosis, increased Bcl-2 levels and decreased Bax, cyclin D1, cyclin E, p38MAPK, p-p38MAPK, CBP, Ku70 and acetylated Ku70 levels. Conclusion The combined treatment of insulin and selenium suppresses cardiomyocyte apoptosis by inhibiting p38MAPK/CBP pathway. PMID:27363274

  4. Suppression of bursting synchronization in clustered scale-free (rich-club) neuronal networks

    NASA Astrophysics Data System (ADS)

    Lameu, E. L.; Batista, C. A. S.; Batista, A. M.; Iarosz, K.; Viana, R. L.; Lopes, S. R.; Kurths, J.

    2012-12-01

    Functional brain networks are composed of cortical areas that are anatomically and functionally connected. One of the cortical networks for which more information is available in the literature is the cat cerebral cortex. Statistical analyses of the latter suggest that its structure can be described as a clustered network, in which each cluster is a scale-free network possessing highly connected hubs. Those hubs are, on their hand, connected together in a strong fashion ("rich-club" network). We have built a clustered scale-free network inspired in the cat cortex structure so as to study their dynamical properties. In this article, we focus on the synchronization of bursting activity of the cortical areas and how it can be suppressed by means of neuron deactivation through suitably applied light pulses. We show that it is possible to effectively suppress bursting synchronization by acting on a single, yet suitably chosen neuron, as long as it is highly connected, thanks to the "rich-club" structure of the network.

  5. Diapause Formation and Downregulation of Insulin-Like Signaling via DAF-16/FOXO Delays Axonal Degeneration and Neuronal Loss

    PubMed Central

    Calixto, Andrea; Jara, Juan S.; Court, Felipe A.

    2012-01-01

    Axonal degeneration is a key event in the pathogenesis of neurodegenerative conditions. We show here that mec-4d triggered axonal degeneration of Caenorhabditis elegans neurons and mammalian axons share mechanistical similarities, as both are rescued by inhibition of calcium increase, mitochondrial dysfunction, and NMNAT overexpression. We then explore whether reactive oxygen species (ROS) participate in axonal degeneration and neuronal demise. C. elegans dauers have enhanced anti-ROS systems, and dauer mec-4d worms are completely protected from axonal degeneration and neuronal loss. Mechanistically, downregulation of the Insulin/IGF-1-like signaling (IIS) pathway protects neurons from degenerating in a DAF-16/FOXO–dependent manner and is related to superoxide dismutase and catalase-increased expression. Caloric restriction and systemic antioxidant treatment, which decrease oxidative damage, protect C. elegans axons from mec-4d-mediated degeneration and delay Wallerian degeneration in mice. In summary, we show that the IIS pathway is essential in maintaining neuronal homeostasis under pro-degenerative stimuli and identify ROS as a key intermediate of neuronal degeneration in vivo. Since axonal degeneration represents an early pathological event in neurodegeneration, our work identifies potential targets for therapeutic intervention in several conditions characterized by axonal loss and functional impairment. PMID:23300463

  6. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons

    PubMed Central

    Giuffrida, Maria L.; Tomasello, Marianna F.; Pandini, Giuseppe; Caraci, Filippo; Battaglia, Giuseppe; Busceti, Carla; Di Pietro, Paola; Pappalardo, Giuseppe; Attanasio, Francesco; Chiechio, Santina; Bagnoli, Silvia; Nacmias, Benedetta; Sorbi, Sandro; Vigneri, Riccardo; Rizzarelli, Enrico; Nicoletti, Ferdinando; Copani, Agata

    2015-01-01

    ß-amyloid (Aß1−42) is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1−42self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer's disease (AD). However, Aß1−42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1−42 in neuronal function is largely unknown. We report that the monomer of Aß1−42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1−42 was added. These data suggest that Aß1−42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1−42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice. PMID:26300732

  7. Insulin Suppresses TNF-dependent Early Osteoarthritic Changes Associated with Obesity and Type 2 Diabetes

    PubMed Central

    Hamada, Daisuke; Maynard, Robert; Schott, Eric; Drinkwater, Christopher J.; Ketz, John P.; Kates, Stephen L.; Jonason, Jennifer H.; Hilton, Matthew J.; Zuscik, Michael J.; Mooney, Robert A.

    2015-01-01

    Objective Obesity is a chronic inflammatory state that is associated with insulin resistance and type 2 diabetes (T2D), as well as an increased risk for osteoarthritis (OA). To define the links between inflammation of obesity, insulin resistance, and OA, two hypotheses were tested: 1) TNF is critical in mediating these OA changes and 2) insulin has direct effects on the synovial joint that are compromised by insulin resistance. Methods Effects of TNF and insulin on catabolic gene expression were determined in fibroblast-like synoviocytes (FLSs) isolated from human osteoarthritic synovium. Synovial TNF expression and OA progression were examined in high fat-fed (HF) obese/T2D mice and TNF knockout mice. Insulin resistance was investigated in synovium from T2D patients. Results Insulin receptors (IR) were abundant in mouse and human synovial membrane. FLSs were insulin responsive with dose dependent phosphorylation of IR and Akt. While TNF markedly increased expression and release of MMP1, MMP13, and ADAMTS4 by FLSs, insulin selectively inhibited the effects by >50%. TNF expression and abundance were elevated in synovium from obese, T2D mice. In TNF knockout mice, increases in osteophyte formation and synovial hyperplasia associated with HF diet were blunted. Synovium from diabetic patients contained markedly more macrophages, TNF levels were elevated, and insulin-dependent phosphorylation of IR and Akt was blunted compared to non-diabetics. Conclusion TNF appears involved in mediating the advanced progression of OA seen in T2D. While insulin plays a protective, anti-inflammatory role in the synovium, insulin resistance of diabetes may impair this protective effect and promote OA. PMID:26713606

  8. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  9. Cdo suppresses canonical Wnt signalling via interaction with Lrp6 thereby promoting neuronal differentiation

    PubMed Central

    Jeong, Myong-Ho; Ho, Seok-Man; Vuong, Tuan Anh; Jo, Shin-Bum; Liu, Guizhong; Aaronson, Stuart A.; Leem, Young-Eun; Kang, Jong-Sun

    2015-01-01

    Canonical Wnt signalling regulates expansion of neural progenitors and functions as a dorsalizing signal in the developing forebrain. In contrast, the multifunctional co-receptor Cdo promotes neuronal differentiation and is important for the function of the ventralizing signal, Shh. Here we show that Cdo negatively regulates Wnt signalling during neurogenesis. Wnt signalling is enhanced in Cdo-deficient cells, leading to impaired neuronal differentiation. The ectodomains of Cdo and Lrp6 interact via the Ig2 repeat of Cdo and the LDLR repeats of Lrp6, and the Cdo Ig2 repeat is necessary for Cdo-dependent Wnt inhibition. Furthermore, the Cdo-deficient dorsal forebrain displays stronger Wnt signalling activity, increased cell proliferation and enhanced expression of the dorsal markers and Wnt targets, Pax6, Gli3, Axin2. Therefore, in addition to promoting ventral central nervous system cell fates with Shh, Cdo promotes neuronal differentiation by suppression of Wnt signalling and provides a direct link between two major dorsoventral morphogenetic signalling pathways. PMID:25406935

  10. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats.

    PubMed

    Takehana, Shiori; Sekiguchi, Kenta; Inoue, Maki; Kubota, Yoshiko; Ito, Yukihiko; Yui, Kei; Shimazu, Yoshihito; Takeda, Mamoru

    2016-01-01

    Although a modulatory role has been reported for the red wine polyphenol resveratrol on several types of ion channels and excitatory synaptic transmission in the nervous system, the acute effects of resveratrol in vivo, particularly on nociceptive transmission of the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous resveratrol administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from 18 SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was inhibited by resveratrol (0.5-2 mg/kg, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 10 min. These inhibitory effects were reversed after approximately 20 min. The relative magnitude of inhibition by resveratrol of SpVc WDR neuronal discharge frequency was significantly greater for noxious than non-noxious stimulation. These results suggest that, in the absence of inflammatory or neuropathic pain, acute intravenous resveratrol administration suppresses trigeminal sensory transmission, including nociception, and so resveratrol may be used as a complementary and alternative medicine therapeutic agent for the treatment of trigeminal nociceptive pain, including hyperalgesia. PMID:26608254

  11. Suppression of phosphatase and tensin homolog protects insulin-resistant cells from apoptosis.

    PubMed

    Wang, Di-Fei; Yang, Hui-Jing; Gu, Jian-Qiu; Cao, Yan-Li; Meng, Xin; Wang, Xiao-Li; Lin, Yi-Chen; Gao, Ming

    2015-08-01

    In the present study, a glucosamine-induced model of insulin-resistant skeletal muscle cells was established in order to investigate the effect of inhibition of phosphatase and tensin homolog (PTEN)/5'-adenosine monophosphate-activated protein kinase (AMPK) on these cells. The glucosamine-induced insulin-resistant skeletal muscle cells were produced and the rate of glucose uptake was measured using the glucose oxidase-peroxidase method. The expression levels of PTEN and phosphorylated PTEN (p-PTEN) were assessed using western blotting. Glucose transporter 4 (GLUT4) translocation was detected by immunofluorescence. Cell apoptosis was evaluated using flow cytometry. Following insulin stimulation, the rate of glucose uptake was significantly reduced in the cells with glucosamine-induced insulin-resistance in comparison with those in the control group. The expression and translocation of GLUT4 were reduced in the insulin-resistant muscle cells. By contrast, the expression of PTEN and p-PTEN as well as apoptosis were significantly increased. Following treatment with bisperoxopicolinatooxovanadate (BPV) or metformin in the insulin-resistant skeletal muscle cells, there was an increase in the rate of glucose uptake, an increase in GLUT4 expression and its translocation, a reduction in the expression of PTEN and p-PTEN, and a decrease in cell apoptosis compared with untreated insulin-resistant cells. Glucosamine may be used to produce an effective model of insulin-resistant skeletal muscle cells. Cells with glucosamine-induced insulin-resistance exhibited a reduced expression of GLUT4 and dysfunction in GLUT4 translocation, as well as increased activation of PTEN and increased cell apoptosis. Inhibition of PTEN or its upstream regulator, AMPK, protects glucosamine-induced insulin-resistant skeletal muscle cells from apoptosis. PMID:25962562

  12. ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity.

    PubMed

    Zhou, Xiaoshuang; Li, Rongshan; Liu, Xinyan; Wang, Lihua; Hui, Peng; Chan, Lawrence; Saha, Pradip K; Hu, Zhaoyong

    2016-01-01

    Irisin reportedly promotes the conversion of preadipocytes into "brown-like" adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been determined. In studying mice with muscle-specific constitutive ROCK1 activation (mCaROCK1), we found that irisin production was down-regulated and the mice developed obesity and insulin resistance. Therefore, we studied the effects of irisin deficiency on energy metabolism in mCaROCK1 mice. Constitutively activation of ROCK1 in muscle suppressed irisin expression in muscle resulting in a low level of irisin in circulation. Irisin deficiency reduced heat production and decreased the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and subcutaneous WAT. Moreover, mCaROCK1 mice also displayed impaired glucose tolerance. Notably, irisin replenishment in mCaROCK1 mice partially reversed insulin resistance and obesity and these changes were associated with increased expression of UCP1 and Pref-1 in subcutaneous WAT. These results demonstrate that irisin mediates muscle-adipose tissue communication and regulates energy and glucose homeostasis. Irisin administration can correct obesity and insulin resistance in mice. PMID:27411515

  13. ROCK1 reduces mitochondrial content and irisin production in muscle suppressing adipocyte browning and impairing insulin sensitivity

    PubMed Central

    Zhou, Xiaoshuang; Li, Rongshan; Liu, Xinyan; Wang, Lihua; Hui, Peng; Chan, Lawrence; Saha, Pradip K.; Hu, Zhaoyong

    2016-01-01

    Irisin reportedly promotes the conversion of preadipocytes into “brown-like” adipocytes within subcutaneous white adipose tissue (WAT) via a mechanism that stimulates UCP-1 expression. An increase in plasma irisin has been associated with improved obesity and insulin resistance in mice with type 2 diabetes. But whether a low level of irisin stimulates the development of obesity has not been determined. In studying mice with muscle-specific constitutive ROCK1 activation (mCaROCK1), we found that irisin production was down-regulated and the mice developed obesity and insulin resistance. Therefore, we studied the effects of irisin deficiency on energy metabolism in mCaROCK1 mice. Constitutively activation of ROCK1 in muscle suppressed irisin expression in muscle resulting in a low level of irisin in circulation. Irisin deficiency reduced heat production and decreased the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and subcutaneous WAT. Moreover, mCaROCK1 mice also displayed impaired glucose tolerance. Notably, irisin replenishment in mCaROCK1 mice partially reversed insulin resistance and obesity and these changes were associated with increased expression of UCP1 and Pref-1 in subcutaneous WAT. These results demonstrate that irisin mediates muscle-adipose tissue communication and regulates energy and glucose homeostasis. Irisin administration can correct obesity and insulin resistance in mice. PMID:27411515

  14. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling.

    PubMed

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L; Piroli, Gerardo G; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J; Koh, Ho-Jin

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. PMID:26801556

  15. Glucosamine induces REDD1 to suppress insulin action in retinal Müller cells.

    PubMed

    Moore, Joshua A; Miller, William P; Dennis, Michael D

    2016-05-01

    Resistance to insulin action is a key cause of diabetic complications, yet much remains unknown about the molecular mechanisms that contribute to the defect. Glucose-induced insulin resistance in peripheral tissues such as the retina is mediated in part by the hexosamine biosynthetic pathway (HBP). Glucosamine (GAM), a leading dietary supplement marketed to relieve the discomfort of osteoarthritis, is metabolized by the HBP, and in doing so bypasses the rate-limiting enzyme of the pathway. Thus, exogenous GAM consumption potentially exacerbates the resistance to insulin action observed with diabetes-induced hyperglycemia. In the present study, we evaluated the effect of GAM on insulin action in retinal Müller cells in culture. Addition of GAM to Müller cell culture repressed insulin-induced activation of the Akt/mTORC1 signaling pathway. However, the effect was not recapitulated by chemical inhibition to promote protein O-GlcNAcylation, nor was blockade of O-GlcNAcylation sufficient to prevent the effects of GAM. Instead, GAM induced ER stress and subsequent expression of the protein Regulated in DNA Damage and Development (REDD1), which was necessary for GAM to repress insulin-stimulated phosphorylation of Akt on Thr308. Overall, the findings support a model whereby GAM promotes ER stress in retinal Müller cells, resulting in elevated REDD1 expression and thus resistance to insulin action. PMID:26852666

  16. Intranasal Insulin Suppresses Food Intake via Enhancement of Brain Energy Levels in Humans

    PubMed Central

    Jauch-Chara, Kamila; Friedrich, Alexia; Rezmer, Magdalena; Melchert, Uwe H.; G. Scholand-Engler, Harald; Hallschmid, Manfred; Oltmanns, Kerstin M.

    2012-01-01

    Cerebral insulin exerts anorexic effects in humans and animals. The underlying mechanisms, however, are not clear. Because insulin physiologically facilitates glucose uptake by most tissues of the body and thereby fosters intracellular energy supply, we hypothesized that intranasal insulin reduces food consumption via enhancement of the neuroenergetic level. In a double-blind, placebo–controlled, within-subject comparison, 15 healthy men (BMI 22.2 ± 0.37 kg/m2) aged 22–28 years were intranasally administered insulin (40 IU) or placebo after an overnight fast. Cerebral energy metabolism was assessed by 31P magnetic resonance spectroscopy. At 100 min after spray administration, participants consumed ad libitum from a test buffet. Our data show that intranasal insulin increases brain energy (i.e., adenosine triphosphate and phosphocreatine levels). Cerebral energy content correlates inversely with subsequent calorie intake in the control condition. Moreover, the neuroenergetic rise upon insulin administration correlates with the consecutive reduction in free-choice calorie consumption. Brain energy levels may therefore constitute a predictive value for food intake. Given that the brain synchronizes food intake behavior in dependence of its current energetic status, a future challenge in obesity treatment may be to therapeutically influence cerebral energy homeostasis. Intranasal insulin, after optimizing its application schema, seems a promising option in this regard. PMID:22586589

  17. Galanin Activates G Protein Gated Inwardly Rectifying Potassium Channels and Suppresses Kisspeptin-10 Activation of GnRH Neurons.

    PubMed

    Constantin, Stephanie; Wray, Susan

    2016-08-01

    GnRH neurons are regulated by hypothalamic kisspeptin neurons. Recently, galanin was identified in a subpopulation of kisspeptin neurons. Although the literature thoroughly describes kisspeptin activation of GnRH neurons, little is known about the effects of galanin on GnRH neurons. This study investigated whether galanin could alter kisspeptin signaling to GnRH neurons. GnRH cells maintained in explants, known to display spontaneous calcium oscillations, and a long-lasting calcium response to kisspeptin-10 (kp-10), were used. First, transcripts for galanin receptors (GalRs) were examined. Only GalR1 was found in GnRH neurons. A series of experiments was then performed to determine the action of galanin on kp-10 activated GnRH neurons. Applied after kp-10 activation, galanin 1-16 (Gal1-16) rapidly suppressed kp-10 activation. Applied with kp-10, Gal1-16 prevented kp-10 activation until its removal. To determine the mechanism by which galanin inhibited kp-10 activation of GnRH neurons, Gal1-16 and galanin were applied to spontaneously active GnRH neurons. Both inhibited GnRH neuronal activity, independent of GnRH neuronal inputs. This inhibition was mimicked by a GalR1 agonist but not by GalR2 or GalR2/3 agonists. Although Gal1-16 inhibition relied on Gi/o signaling, it was independent of cAMP levels but sensitive to blockers of G protein-coupled inwardly rectifying potassium channels. A newly developed bioassay for GnRH detection showed Gal1-16 decreased the kp-10-evoked GnRH secretion below detection threshold. Together, this study shows that galanin is a potent regulator of GnRH neurons, possibly acting as a physiological break to kisspeptin excitation. PMID:27359210

  18. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We sho...

  19. Pretranslational Suppression of an Insulin-Responsive Glucose Transporter in Rats with Diabetes Mellitus

    NASA Astrophysics Data System (ADS)

    Garvey, W. Timothy; Huecksteadt, Thomas P.; Birnbaum, Morris J.

    1989-07-01

    A prominent feature of diabetes mellitus is the inability of insulin to appropriately increase the transport of glucose into target tissues. The contributions of different glucose transport proteins to insulin resistance in rats with streptozotocin-induced diabetes was evaluated. A glucose transporter messenger RNA and its cognate protein that are exclusively expressed in muscle and adipose tissue were specifically depleted in diabetic animals, and these effects were reversed after insulin therapy; a different glucose transporter and its messenger RNA that exhibit a less restricted tissue distribution were not specifically modulated in this way. Depletion of the muscle- and adipose-specific glucose transporter species correlates with and may account for the major portion of cellular insulin resistance in diabetes in these animals.

  20. Enhanced insulin secretion responsiveness and islet adrenergic desensitization after chronic norepinephrine suppression is discontinued in fetal sheep.

    PubMed

    Chen, Xiaochuan; Green, Alice S; Macko, Antoni R; Yates, Dustin T; Kelly, Amy C; Limesand, Sean W

    2014-01-01

    Intrauterine growth-restricted (IUGR) fetuses experience prolonged hypoxemia, hypoglycemia, and elevated norepinephrine (NE) concentrations, resulting in hypoinsulinemia and β-cell dysfunction. Previously, we showed that acute adrenergic blockade revealed enhanced insulin secretion responsiveness in the IUGR fetus. To determine whether chronic exposure to NE alone enhances β-cell responsiveness afterward, we continuously infused NE into fetal sheep for 7 days and, after terminating the infusion, evaluated glucose-stimulated insulin secretion (GSIS) and glucose-potentiated arginine-induced insulin secretion (GPAIS). During treatment, NE-infused fetuses had greater (P < 0.05) plasma NE concentrations and exhibited hyperglycemia (P < 0.01) and hypoinsulinemia (P < 0.01) compared with controls. GSIS during the NE infusion was also reduced (P < 0.05) compared with pretreatment values. GSIS and GPAIS were approximately fourfold greater (P < 0.01) in NE fetuses 3 h after the 7 days that NE infusion was discontinued compared with age-matched controls or pretreatment GSIS and GPAIS values of NE fetuses. In isolated pancreatic islets from NE fetuses, mRNA concentrations of adrenergic receptor isoforms (α1D, α2A, α2C, and β1), G protein subunit-αi-2, and uncoupling protein 2 were lower (P < 0.05) compared with controls, but β-cell regulatory genes were not different. Our findings indicate that chronic exposure to elevated NE persistently suppresses insulin secretion. After removal, NE fetuses demonstrated a compensatory enhancement in insulin secretion that was associated with adrenergic desensitization and greater stimulus-secretion coupling in pancreatic islets. PMID:24253046

  1. In preeclampsia, maternal third trimester subcutaneous adipocyte lipolysis is more resistant to suppression by insulin than in healthy pregnancy.

    PubMed

    Huda, Shahzya S; Forrest, Rachel; Paterson, Nicole; Jordan, Fiona; Sattar, Naveed; Freeman, Dilys J

    2014-05-01

    Obesity increases preeclampsia risk, and maternal dyslipidemia may result from exaggerated adipocyte lipolysis. We compared adipocyte function in preeclampsia with healthy pregnancy to establish whether there is increased lipolysis. Subcutaneous and visceral adipose tissue biopsies were collected at caesarean section from healthy (n=31) and preeclampsia (n=13) mothers. Lipolysis in response to isoproterenol (200 nmol/L) and insulin (10 nmol/L) was assessed. In healthy pregnancy, subcutaneous adipocytes had higher diameter than visceral adipocytes (P<0.001). Subcutaneous and visceral adipocyte mean diameter in preeclampsia was similar to that in healthy pregnant controls, but cell distribution was shifted toward smaller cell diameter in preeclampsia. Total lipolysis rates under all conditions were lower in healthy visceral than subcutaneous adipocytes but did not differ after normalization for cell diameter. Visceral adipocyte insulin sensitivity was lower than subcutaneous in healthy pregnancy and inversely correlated with plasma triglyceride (r=-0.50; P=0.004). Visceral adipose tissue had lower ADRB3, LPL, and leptin and higher insulin receptor messenger RNA expression than subcutaneous adipose tissue. There was no difference in subcutaneous adipocyte lipolysis rates between preeclampsia and healthy controls, but subcutaneous adipocytes had lower sensitivity to insulin in preeclampsia, independent of cell diameter (P<0.05). In preeclampsia, visceral adipose tissue had higher LPL messenger RNA expression than subcutaneous. In conclusion, in healthy pregnancy, the larger total mass of subcutaneous adipose tissue may release more fatty acids into the circulation than visceral adipose tissue. Reduced insulin suppression of subcutaneous adipocyte lipolysis may increase the burden of plasma fatty acids that the mother has to process in preeclampsia. PMID:24591340

  2. Suppression of Radixin and Moesin Alters Growth Cone Morphology, Motility, and Process Formation In Primary Cultured Neurons

    PubMed Central

    Paglini, Gabriela; Kunda, Patricia; Quiroga, Santiago; Kosik, Kenneth; Cáceres, Alfredo

    1998-01-01

    In this study we have examined the cellular functions of ERM proteins in developing neurons. The results obtained indicate that there is a high degree of spatial and temporal correlation between the expression and subcellular localization of radixin and moesin with the morphological development of neuritic growth cones. More importantly, we show that double suppression of radixin and moesin, but not of ezrin–radixin or ezrin–moesin, results in reduction of growth cone size, disappearance of radial striations, retraction of the growth cone lamellipodial veil, and disorganization of actin filaments that invade the central region of growth cones where they colocalize with microtubules. Neuritic tips from radixin–moesin suppressed neurons displayed high filopodial protrusive activity; however, its rate of advance is 8–10 times slower than the one of growth cones from control neurons. Radixin–moesin suppressed neurons have short neurites and failed to develop an axon-like neurite, a phenomenon that appears to be directly linked with the alterations in growth cone structure and motility. Taken collectively, our data suggest that by regulating key aspects of growth cone development and maintenance, radixin and moesin modulate neurite formation and the development of neuronal polarity. PMID:9786954

  3. Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy.

    PubMed

    Cain, Stuart M; Tyson, John R; Jones, Karen L; Snutch, Terrance P

    2015-06-01

    Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons. PMID:24953239

  4. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    SciTech Connect

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Takeyoshi, Masahiro; Imatanaka, Nobuya; Itahashi, Megu; Murakami, Tomoaki; Shibutani, Makoto

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues

  5. PINK1 alleviates palmitate induced insulin resistance in HepG2 cells by suppressing ROS mediated MAPK pathways.

    PubMed

    Cang, Xiaomin; Wang, Xiaohua; Liu, Pingli; Wu, Xue; Yan, Jin; Chen, Jinfeng; Wu, Gang; Jin, Yan; Xu, Feng; Su, Jianbin; Wan, Chunhua; Wang, Xueqin

    2016-09-01

    Oxidative stress is an important pathogenesis of insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). Studies have shown that knockdown of PTEN-induced putative kinase 1 (PINK1) causes oxidative stress and mitophagy. In db/db mice, PINK1 protein level is down-regulated. However, little is known regarding the mechanism by which PINK1 modulates IR in response to reactive oxygen species (ROS) induced stress. In our study, PINK1 expression decreased during palmitate (PA) induced IR in HepG2 cells and the hepatic tissues of high fat diet (HFD) fed mice. Additionally, free fatty acids (FFAs) could increase ROS and suppress insulin signaling pathway, which was indicated by reduced phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK-3β). In addition, insulin induced glucose uptake decreased and the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), two key gluconeogenic enzymes, was up-regulated after PA treatment. Intriguingly, PINK1 overexpression could lead to opposite results. Moreover, PA induced hepatic IR through C-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways, which were rescued by PINK1 overexpression. In summary, our results demonstrate that PINK1 promoted hepatic IR via JNK and ERK pathway in PA treated HepG2 cells, implying a novel molecular target for the therapy of diabetes. PMID:27423393

  6. Suppression of preoptic sleep-regulatory neuronal activity during corticotropin-releasing factor-induced sleep disturbance.

    PubMed

    Gvilia, Irma; Suntsova, Natalia; Kumar, Sunil; McGinty, Dennis; Szymusiak, Ronald

    2015-11-01

    Corticotropin releasing factor (CRF) is implicated in sleep and arousal regulation. Exogenous CRF causes sleep suppression that is associated with activation of at least two important arousal systems: pontine noradrenergic and hypothalamic orexin/hypocretin neurons. It is not known whether CRF also impacts sleep-promoting neuronal systems. We hypothesized that CRF-mediated changes in wake and sleep involve decreased activity of hypothalamic sleep-regulatory neurons localized in the preoptic area. To test this hypothesis, we examined the effects of intracerebroventricular administration of CRF on sleep-wake measures and c-Fos expression in GABAergic neurons in the median preoptic nucleus (MnPN) and ventrolateral preoptic area (VLPO) in different experimental conditions. Administration of CRF (0.1 nmol) during baseline rest phase led to delayed sleep onset and decreases in total amount and mean duration of non-rapid eye movement (NREM) sleep. Administration of CRF during acute sleep deprivation (SD) resulted in suppression of recovery sleep and decreased c-Fos expression in MnPN/VLPO GABAergic neurons. Compared with vehicle controls, intracerebroventricular CRF potentiated disturbances of both NREM and REM sleep in rats exposed to a species-specific psychological stressor, the dirty cage of a male conspecific. The number of MnPN/VLPO GABAergic neurons expressing c-Fos was reduced in the CRF-treated group of dirty cage-exposed rats. These findings confirm the involvement of CRF in wake-sleep cycle regulation and suggest that increased CRF signaling in the brain 1) negatively affects homeostatic responses to sleep loss, 2) exacerbates stress-induced disturbances of sleep, and 3) suppresses the activity of sleep-regulatory neurons of the MnPN and VLPO. PMID:26333784

  7. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    PubMed

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity. PMID:27207538

  8. Insulin Suppresses Endotoxin-Induced Oxidative, Nitrosative, and Inflammatory Stress in Humans

    PubMed Central

    Dandona, Paresh; Ghanim, Husam; Bandyopadhyay, Arindam; Korzeniewski, Kelly; Ling Sia, Chang; Dhindsa, Sandeep; Chaudhuri, Ajay

    2010-01-01

    OBJECTIVE To investigate whether insulin reduces the magnitude of oxidative, nitrosative, and inflammatory stress and tissue damage responses induced by endotoxin (lipopolysaccharide [LPS]). RESEARCH DESIGN AND METHODS Nine normal subjects were injected intravenously with 2 ng/kg LPS prepared from Escherichia coli. Ten others were infused with insulin (2 units/h) for 6 h in addition to the LPS injection along with 100 ml/h of 5% dextrose to maintain normoglycemia. RESULTS LPS injection induced a rapid increase in plasma concentrations of nitric oxide metabolites, nitrite and nitrate (NOM), and thiobarbituric acid–reacting substances (TBARS), an increase in reactive oxygen species (ROS) generation by polymorphonuclear leukocytes (PMNLs), and marked increases in plasma free fatty acids, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibition factor (MIF), C-reactive protein, resistin, visfatin, lipopolysaccharide binding protein (LBP), high mobility group-B1 (HMG-B1), and myoglobin concentrations. The coinfusion of insulin led to a total elimination of the increase in NOM, free fatty acids, and TBARS and a significant reduction in ROS generation by PMNLs and plasma MIF, visfatin, and myoglobin concentrations. Insulin did not affect TNF-α, MCP-1, IL-6, LBP, resistin, and HMG-B1 increases induced by the LPS. CONCLUSIONS Insulin reduces significantly several key mediators of oxidative, nitrosative, and inflammatory stress and tissue damage induced by LPS. These effects of insulin require further investigation for its potential use as anti-inflammatory therapy for endotoxemia. PMID:20699433

  9. Insulin Receptor Signaling in the GnRH Neuron Plays a Role in the Abnormal GnRH Pulsatility of Obese Female Mice

    PubMed Central

    DiVall, Sara A.; Herrera, Danny; Sklar, Bonnie; Wu, Sheng; Wondisford, Fredric; Radovick, Sally; Wolfe, Andrew

    2015-01-01

    Infertility associated with obesity is characterized by abnormal hormone release from reproductive tissues in the hypothalamus, pituitary, and ovary. These tissues maintain insulin sensitivity upon peripheral insulin resistance. Insulin receptor signaling may play a role in the dysregulation of gonadotropin-releasing hormone (GnRH) secretion in obesity, but the interdependence of hormone secretion in the reproductive axis and the multi-hormone and tissue dysfunction in obesity hinders investigations of putative contributing factors to the disrupted GnRH secretion. To determine the role of GnRH insulin receptor signaling in the dysregulation of GnRH secretion in obesity, we created murine models of diet-induced obesity (DIO) with and without intact insulin signaling in the GnRH neuron. Obese control female mice were infertile with higher luteinizing hormone levels and higher GnRH pulse amplitude and total pulsatile secretion compared to lean control mice. In contrast, DIO mice with a GnRH specific knockout of insulin receptor had improved fertility, luteinizing hormone levels approaching lean mice, and GnRH pulse amplitude and total secretion similar to lean mice. Pituitary responsiveness was similar between genotypes. These results suggest that in the obese state, insulin receptor signaling in GnRH neurons increases GnRH pulsatile secretion and consequent LH secretion, contributing to reproductive dysfunction. PMID:25780937

  10. Inhibition of Olfactory Receptor Neuron Input to Olfactory Bulb Glomeruli Mediated by Suppression of Presynaptic Calcium Influx

    PubMed Central

    Wachowiak, Matt; McGann, John P.; Heyward, Philip M.; Shao, Zuoyi; Puche, Adam C.; Shipley, Michael T.

    2005-01-01

    We investigated the cellular mechanism underlying presynaptic regulation of olfactory receptor neuron (ORN) input to the mouse olfactory bulb using optical-imaging techniques that selectively report activity in the ORN pre-synaptic terminal. First, we loaded ORNs with calcium-sensitive dye and imaged stimulus-evoked calcium influx in a slice preparation. Single olfactory nerve shocks evoked rapid fluorescence increases that were largely blocked by the N-type calcium channel blocker ω-conotoxin GVIA. Paired shocks revealed a long-lasting suppression of calcium influx with ~40% suppression at 400-ms interstimulus intervals and a recovery time constant of ~450 ms. Blocking activation of postsynaptic olfactory bulb neurons with APV/CNQX reduced this suppression. The GABAB receptor agonist baclofen inhibited calcium influx, whereas GABAB antagonists reduced paired-pulse suppression without affecting the response to the conditioning pulse. We also imaged transmitter release directly using a mouse line that expresses synaptopHluorin selectively in ORNs. We found that the relationship between calcium influx and transmitter release was superlinear and that paired-pulse suppression of transmitter release was reduced, but not eliminated, by APV/CNQX and GABAB antagonists. These results demonstrate that primary olfactory input to the CNS can be presynaptically regulated by GABAergic interneurons and show that one major intracellular pathway for this regulation is via the suppression of calcium influx through N-type calcium channels in the pre-synaptic terminal. This mechanism is unique among primary sensory afferents. PMID:15917320

  11. Insulin increases sympathetic nerve activity in part by suppression of tonic inhibitory neuropeptide Y inputs into the paraventricular nucleus in female rats.

    PubMed

    Cassaglia, Priscila A; Shi, Zhigang; Brooks, Virginia L

    2016-07-01

    Following binding to receptors in the arcuate nucleus (ArcN), insulin increases sympathetic nerve activity (SNA) and baroreflex control of SNA via a pathway that includes the paraventricular nucleus of the hypothalamus (PVN). Previous studies in males indicate that the sympathoexcitatory response is mediated by α-melanocyte stimulating hormone (α-MSH), which binds to PVN melanocortin type 3/4 receptors (MC3/4R). The present study was conducted in α-chloralose-anesthetized female rats to test the hypothesis that suppression of inhibitory neuropeptide Y (NPY) inputs to the PVN is also involved. In support of this, blockade of PVN NPY Y1 receptors with BIBO 3304 (NPY1x), ArcN insulin nanoinjections, and PVN NPY1x followed by ArcN insulin each increased lumbar SNA (LSNA) and its baroreflex regulation similarly. Moreover, prior PVN injections of NPY blocked the sympathoexcitatory effects of ArcN insulin. Finally, PVN nanoinjections of the MC3/4R inhibitor SHU9119 prevented both the acute (15 min) and longer, more slowly developing (60 min), increases in LSNA in response to ArcN insulin. In conclusion, in females, ArcN insulin increases LSNA, in part, by suppressing tonic PVN NPY inhibition, which unmasks excitatory α-MSH drive of LSNA. Moreover, the steadily increasing rise in LSNA induced by ArcN insulin is also dependent on PVN MC3/4R. PMID:27122366

  12. Mechanisms by Which 17β-Estradiol (E2) Suppress Neuronal cox-2 Gene Expression.

    PubMed

    Stacey, Winfred; Bhave, Shreyas; Uht, Rosalie M

    2016-01-01

    E2 attenuates inflammatory responses by suppressing expression of pro-inflammatory genes. Given that inflammation is increasingly being associated with neurodegenerative and psychiatric processes, we sought to elucidate mechanisms by which E2 down-regulates a component of an inflammatory response, cyclooxygenase- 2 (COX-2) expression. Although inflammatory processes in the brain are usually associated with microglia and astrocytes, we found that the COX-2 gene (cox-2) was expressed in a neuronal context, specifically in an amygdalar cell line (AR-5). Given that COX-2 has been reported to be in neurons in the brain, and that the amygdala is a site involved in neurodegenerative and neuropsychiatric processes, we investigated mechanisms by which E2 could down-regulate cox-2 expression in the AR-5 line. These cells express estrogen receptors alpha (ERα) and beta (ERβ), and as shown here cox-2. At the level of RNA, E2 and the ERβ selective ligand diarylpropionitrile (DPN) both attenuated gene expression, whereas the ERα selective ligand propyl pyrazole triol (PPT) had no effect. Neither ligand increased ERβ at the cox-2 promoter. Rather, DPN decreased promoter occupancy of NF-κB p65 and histone 4 (H4) acetylation. Treatment with the non-specific HDAC inhibitor Trichostatin A (TSA) counteracted DPN's repressive effects on cox-2 expression. In keeping with the TSA effect, E2 and DPN increased histone deacetylase one (HDAC1) and switch-independent 3A (Sin3A) promoter occupancy. Lastly, even though E2 increased CpG methylation, DPN did not. Taken together, the pharmacological data indicate that ERβ contributes to neuronal cox-2 expression, as measured by RNA levels. Furthermore, ER ligands lead to increased recruitment of HDAC1, Sin3A and a concomitant reduction of p65 occupancy and Ac-H4 levels. None of the events, however, are associated with a significant recruitment of ERβ at the promoter. Thus, ERβ directs recruitment to the cox-2 promoter, but does so in the

  13. Retinally-generated saccadic suppression of a locust looming-detector neuron: investigations using a robot locust.

    PubMed Central

    Santer, R. D.; Stafford, R.; Rind, F. C.

    2004-01-01

    A fundamental task performed by many visual systems is to distinguish apparent motion caused by eye movements from real motion occurring within the environment. During saccadic eye movements, this task is achieved by inhibitory signals of central and retinal origin that suppress the output of motion-detecting neurons. To investigate the retinally-generated component of this suppression, we used a computational model of a locust looming-detecting pathway that experiences saccadic suppression. This model received input from the camera of a mobile robot that performed simple saccade-like movements, allowing the model's response to simplified real stimuli to be tested. Retinally-generated saccadic suppression resulted from two inhibitory mechanisms within the looming-detector's input architecture. One mechanism fed inhibition forward through the network, inhibiting the looming-detector's initial response to movement. The second spread inhibition laterally within the network, suppressing the looming-detector's maintained response to movement. These mechanisms prevent a looming-detector model response to whole-field visual stimuli. In the locust, this mechanism of saccadic suppression may operate in addition to centrally-generated suppression. Because lateral inhibition is a common feature of early visual processing in many organisms, we discuss whether the mechanism of retinally-generated saccadic suppression found in the locust looming-detector model may also operate in these species. PMID:16849153

  14. NPY signaling inhibits extended amygdala CRF neurons to suppress binge alcohol drinking.

    PubMed

    Pleil, Kristen E; Rinker, Jennifer A; Lowery-Gionta, Emily G; Mazzone, Christopher M; McCall, Nora M; Kendra, Alexis M; Olson, David P; Lowell, Bradford B; Grant, Kathleen A; Thiele, Todd E; Kash, Thomas L

    2015-04-01

    Binge alcohol drinking is a tremendous public health problem because it leads to the development of numerous pathologies, including alcohol abuse and anxiety. It is thought to do so by hijacking brain systems that regulate stress and reward, including neuropeptide Y (NPY) and corticotropin-releasing factor (CRF). The central actions of NPY and CRF have opposing functions in the regulation of emotional and reward-seeking behaviors; thus, dysfunctional interactions between these peptidergic systems could be involved in the development of these pathologies. We used converging physiological, pharmacological and chemogenetic approaches to identify a precise neural mechanism in the bed nucleus of the stria terminalis (BNST), a limbic brain region involved in pathological reward and anxiety behaviors, underlying the interactions between NPY and CRF in the regulation of binge alcohol drinking in both mice and monkeys. We found that NPY Y1 receptor (Y1R) activation in the BNST suppressed binge alcohol drinking by enhancing inhibitory synaptic transmission specifically in CRF neurons via a previously unknown Gi-mediated, PKA-dependent postsynaptic mechanism. Furthermore, chronic alcohol drinking led to persistent alterations in Y1R function in the BNST of both mice and monkeys, highlighting the enduring, conserved nature of this effect across mammalian species. Together, these data provide both a cellular locus and signaling framework for the development of new therapeutics for treatment of neuropsychiatric diseases, including alcohol use disorders. PMID:25751534

  15. NPY Signaling Inhibits Extended Amygdala CRF Neurons to Suppress Binge Alcohol Drinking

    PubMed Central

    Pleil, Kristen E.; Rinker, Jennifer A.; Lowery-Gionta, Emily G.; Mazzone, Christopher M.; McCall, Nora M.; Kendra, Alexis M.; Olson, David P.; Lowell, Bradford B.; Grant, Kathleen A.; Thiele, Todd E.; Kash, Thomas L.

    2015-01-01

    Summary paragraph Binge alcohol drinking is a tremendous public health problem because it leads to the development of numerous pathologies including alcohol abuse, and anxiety1–4. It is thought to do so by hijacking brain systems that regulate stress and reward, including neuropeptide Y (NPY) and corticotropin–releasing factor (CRF). The central actions of NPY and CRF play opposing functional roles in the regulation of emotional and reward–seeking behaviors; therefore, dysfunctional interactions between these peptidergic systems could play a role in the development of these pathologies. Here, we used converging physiological, pharmacological, and chemogenetic approaches to identify a precise neural mechanism in the bed nucleus of the stria terminalis (BNST), a limbic brain region involved in pathological reward and anxiety behaviors, underlying the interactions between NPY and CRF in the regulation of binge alcohol drinking in both mice and monkeys. We found that NPY Y1 receptor (Y1R) activation in the BNST suppressed binge alcohol drinking by enhancing inhibitory synaptic transmission specifically in CRF neurons via a novel, Gi-mediated, PKA-dependent postsynaptic mechanism. Further, chronic alcohol drinking led to persistent alterations in Y1R function in the BNST of both mice and monkeys, highlighting the enduring, conserved nature of this effect across mammalian species. Together, these data provide both a cellular locus and signaling framework for the development of novel therapeutics for treatment of neuropsychiatric diseases, including alcohol use disorders. PMID:25751534

  16. Branched-chain amino acids suppress the cumulative recurrence of hepatocellular carcinoma under conditions of insulin-resistance

    PubMed Central

    YOSHIJI, HITOSHI; NOGUCHI, RYUICHI; NAMISAKI, TADASHI; MORIYA, KEI; KITADE, MITSUTERU; AIHARA, YOSUKE; DOUHARA, AKITOSHI; YAMAO, JUNICHI; FUJIMOTO, MASAO; TOYOHARA, MASAHISA; MITORO, AKIRA; SAWAI, MASAYOSHI; YOSHIDA, MOTOYUKI; MORIOKA, CHIE; UEJIMA, MASAKAZU; UEMURA, MASAHITO; FUKUI, HIROSHI

    2013-01-01

    Branched-chain amino acids (BCAAs) reportedly inhibit the incidence of hepatocellular carcinoma (HCC) in patients with liver cirrhosis and obesity that is frequently associated with insulin resistance (IR). We previously reported that BCAAs exert a chemopreventive effect against HCC under IR conditions in rats. The aim of the present study was to examine the effect of BCAAs on the cumulative recurrence of HCC under IR conditions in the clinical practice. BCAA granules (Livact®, 12 g/day) were administered for 60 months following the local curative therapy for HCC, and several indices were determined. Treatment with BCAAs markedly inhibited the cumulative recurrence of HCC in patients with a high IR index [homeostasis model assessment (HOMA)-IR >2.5], but not in patients with HOMA-IR of ≤2.5. BCAA also improved the HOMA-IR, and the inhibitory effect was observed regardless of the serum albumin (Alb) levels. Similarly, BCAA treatment revealed a marked suppressive effect in patients with high fasting insulin [immune reactive insulin (IRI) >15 U/ml], but not with IRI of ≤15. BCAA treatment did not result in differences in HCC recurrence in patients with high and low glucose levels [fasting blood sugar (FBS) >110 and ≤110, respectively]. Furthermore, serum levels of the soluble form of vascular endothelial growth factor receptor 2 (sVEGFR2) were significantly inhibited along with these clinical effects. Our findings indicate that the inhibitory effect of BCAAs was achieved, at least partly, by coordinated effects of anti-angiogenesis and IR improvement. Since BCAAs are widely and safely used in clinical practice to treat patients with chronic liver diseases, BCAAs may represent a new strategy for secondary chemoprevention for HCC patients with IR. Moreover, our findings suggest that sVEGFR2 may be a useful clinical predictive marker for BCAA treatment under IR conditions. PMID:23708326

  17. Branched-chain amino acids suppress the cumulative recurrence of hepatocellular carcinoma under conditions of insulin-resistance.

    PubMed

    Yoshiji, Hitoshi; Noguchi, Ryuichi; Namisaki, Tadashi; Moriya, Kei; Kitade, Mitsuteru; Aihara, Yosuke; Douhara, Akitoshi; Yamao, Junichi; Fujimoto, Masao; Toyohara, Masahisa; Mitoro, Akira; Sawai, Masayoshi; Yoshida, Motoyuki; Morioka, Chie; Uejima, Masakazu; Uemura, Masahito; Fukui, Hiroshi

    2013-08-01

    Branched-chain amino acids (BCAAs) reportedly inhibit the incidence of hepatocellular carcinoma (HCC) in patients with liver cirrhosis and obesity that is frequently associated with insulin resistance (IR). We previously reported that BCAAs exert a chemopreventive effect against HCC under IR conditions in rats. The aim of the present study was to examine the effect of BCAAs on the cumulative recurrence of HCC under IR conditions in the clinical practice. BCAA granules (Livact®, 12 g/day) were administered for 60 months following the local curative therapy for HCC, and several indices were determined. Treatment with BCAAs markedly inhibited the cumulative recurrence of HCC in patients with a high IR index [homeostasis model assessment (HOMA)-IR >2.5], but not in patients with HOMA-IR of ≤2.5. BCAA also improved the HOMA-IR, and the inhibitory effect was observed regardless of the serum albumin (Alb) levels. Similarly, BCAA treatment revealed a marked suppressive effect in patients with high fasting insulin [immune reactive insulin (IRI)>15 U/ml], but not with IRI of ≤15. BCAA treatment did not result in differences in HCC recurrence in patients with high and low glucose levels [fasting blood sugar (FBS)>110 and ≤110, respectively]. Furthermore, serum levels of the soluble form of vascular endothelial growth factor receptor 2 (sVEGFR2) were significantly inhibited along with these clinical effects. Our findings indicate that the inhibitory effect of BCAAs was achieved, at least partly, by coordinated effects of anti-angiogenesis and IR improvement. Since BCAAs are widely and safely used in clinical practice to treat patients with chronic liver diseases, BCAAs may represent a new strategy for secondary chemoprevention for HCC patients with IR. Moreover, our findings suggest that sVEGFR2 may be a useful clinical predictive marker for BCAA treatment under IR conditions. PMID:23708326

  18. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43.

    PubMed

    Kimura, Ikuo; Ozawa, Kentaro; Inoue, Daisuke; Imamura, Takeshi; Kimura, Kumi; Maeda, Takeshi; Terasawa, Kazuya; Kashihara, Daiji; Hirano, Kanako; Tani, Taeko; Takahashi, Tomoyuki; Miyauchi, Satoshi; Shioi, Go; Inoue, Hiroshi; Tsujimoto, Gozoh

    2013-01-01

    The gut microbiota affects nutrient acquisition and energy regulation of the host, and can influence the development of obesity, insulin resistance, and diabetes. During feeding, gut microbes produce short-chain fatty acids, which are important energy sources for the host. Here we show that the short-chain fatty acid receptor GPR43 links the metabolic activity of the gut microbiota with host body energy homoeostasis. We demonstrate that GPR43-deficient mice are obese on a normal diet, whereas mice overexpressing GPR43 specifically in adipose tissue remain lean even when fed a high-fat diet. Raised under germ-free conditions or after treatment with antibiotics, both types of mice have a normal phenotype. We further show that short-chain fatty acid-mediated activation of GPR43 suppresses insulin signalling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of unincorporated lipids and glucose in other tissues. These findings establish GPR43 as a sensor for excessive dietary energy, thereby controlling body energy utilization while maintaining metabolic homoeostasis. PMID:23652017

  19. Effect of transgenic human insulin-like growth factor-1 on spinal motor neurons following peripheral nerve injury

    PubMed Central

    GU, JIAXIANG; LIU, HONGJUN; ZHANG, NAICHEN; TIAN, HENG; PAN, JUNBO; ZHANG, WENZHONG; WANG, JINGCHENG

    2015-01-01

    The aim of the present study was to observe the protective effect of exogenous human insulin-like growth factor-1 (hIGF-1) on spinal motor neurons, following its local transfection into an area of peripheral nerve injury. A total of 90 male Wistar rats that had been established as sciatic nerve crush injury models were randomly divided into three groups: hIGF-1 treatment, sham-transfected control and blank control groups. The different phases of hIGF-1 expression were observed in the spinal cord via postoperative immunostaining and the apoptosis of motor neurons was observed using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method. Pathological changes of the motor neurons and Nissl bodies within cell bodies were observed via Marsland and Luxol fast blue double staining, while changes in the neuropil of the spinal cord anterior horn were investigated via ultrastructural observation. It was found that hIGF-1, locally transfected into an area of peripheral nerve injury, was expressed in the spinal anterior horn following axoplasmic transport; the peak hIGF-1 expression occurred approximately a week following transfection. The number of apoptotic spinal cord motor neurons observed in the hIGF-1 treatment group was fewer than that in the sham-transfected and blank control groups at days 7, 14 and 21 following transfection (P<0.01). Furthermore, the quantity of motor neuron cells in the anterior horn of the spinal cord in the hIGF-1 treatment group was higher compared with those in the sham-transfected and blank control groups at days 2, 7, 14 and 28 following transfection (P<0.01). The degenerative changes of Nissl bodies within the cytoplasm of the hIGF-1 treatment group were less severe compared with those of the sham-transfected and blank control groups. At day 56 following transfection, the spinal anterior horn neuropil ultrastructure in the hIGF-1 treatment group was generally normal, while the sham-transfected and blank control

  20. The antiallodynic action of pregabalin may depend on the suppression of spinal neuronal hyperexcitability in rats with spared nerve injury

    PubMed Central

    Ding, Lei; Cai, Jie; Guo, Xiang-Yang; Meng, Xiu-Li; Xing, Guo-Gang

    2014-01-01

    BACKGROUND: Pregabalin (PGB) is a novel antiepileptic drug and is also used as a first-line medication for the treatment of neuropathic pain. However, the mechanisms of its analgesic effects remain largely unknown. OBJECTIVES: To elucidate the mechanisms underlying the antiallodynic action of PGB in rats with neuropathic pain. METHODS: In a rat model of neuropathic pain induced by spared nerve injury, mechanical allodynia, as a behavioural sign of neuropathic pain, was assessed by measuring 50% paw withdrawal threshold with von Frey filaments. Activities of dorsal horn wide dynamic range (WDR) neurons were examined by extracellular electrophysiological recording in vivo. RESULTS: Spinal administration of PGB exerted a significant antiallodynic effect and a prominent inhibitory effect on the hypersensitivity of dorsal horn WDR neurons in rats with spared nerve injury. CONCLUSION: The antiallodynic action of PGB is likely dependent on the suppression of WDR neuron hyperexcitability in rats with neuropathic pain. PMID:24851240

  1. Insulin-Dependent Regulation of mTORC2-Akt-FoxO Suppresses TLR4 Signaling in Human Leukocytes: Relevance to Type 2 Diabetes.

    PubMed

    Zhang, Zhiyong; Amorosa, Louis F; Coyle, Susette M; Macor, Marie A; Birnbaum, Morris J; Lee, Leonard Y; Haimovich, Beatrice

    2016-08-01

    Leukocyte signaling in patients with systemic insulin resistance is largely unexplored. We recently discovered the presence of multiple Toll-like receptor 4 (TLR4) signaling intermediates in leukocytes from patients with type 2 diabetes or acute insulin resistance associated with cardiopulmonary bypass surgery. We extend this work to show that in addition to matrix metalloproteinase 9, hypoxia-inducible factor 1α, and cleaved AMPKα, patient leukocytes also express IRS-1 phosphorylated on Ser(312), Akt phosphorylated on Thr(308), and elevated TLR4 expression. Similar signaling intermediates were detected in leukocytes and neutrophils treated with lipopolysaccharide (LPS), a ligand of TLR4, in vitro. In contrast, insulin, but not LPS, induced mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt on Ser(473) and FoxO1/O3a on Thr(24/32) in leukocytes and neutrophils. Insulin suppressed LPS-induced responses in a dose- and time-dependent manner. AS1842856, a FoxO1 inhibitor, also suppressed TLR4 signaling. We propose that insulin is a homeostatic regulator of leukocyte responses to LPS/TLR4 and that the signaling intermediates expressed in leukocytes of patients with type 2 diabetes indicate TLR4 signaling dominance and deficient insulin signaling. The data suggest that insulin suppresses LPS/TLR4 signals in leukocytes through the mTORC2-Akt-FoxO signaling axis. Better understanding of leukocyte signaling in patients with type 2 diabetes may shed new light on disease causation and progression. PMID:27207509

  2. Paraoxon suppresses Ca(2+) spike and afterhyperpolarization in snail neurons: Relevance to the hyperexcitability induction.

    PubMed

    Vatanparast, Jafar; Janahmadi, Mahyar; Asgari, Ali Reza; Sepehri, Houri; Haeri-Rohani, Ali

    2006-04-14

    The effects of organophosphate (OP) paraoxon, active metabolite of parathion, were studied on the Ca(2+) and Ba(2+) spikes and on the excitability of the neuronal soma membranes of land snail (Caucasotachea atrolabiata). Paraoxon (0.3 muM) reversibly decreased the duration and amplitude of Ca(2+) and Ba(2+) spikes. It also reduced the duration and the amplitude of the afterhyperpolarization (AHP) that follows spikes, leading to a significant increase in the frequency of Ca(2+) spikes. Pretreatment with atropine and hexamethonium, selective blockers of muscarinic and nicotinic receptors, respectively, did not prevent the effects of paraoxon on Ca(2+) spikes. Intracellular injection of the calcium chelator BAPTA dramatically decreased the duration and amplitude of AHP and increased the duration and frequency of Ca(2+) spikes. In the presence of BAPTA, paraoxon decreased the duration of the Ca(2+) spikes without affecting their frequency. Apamin, a neurotoxin from bee venom, known to selectively block small conductance of calcium-activated potassium channels (SK), significantly decreased the duration and amplitude of the AHP, an effect that was associated with an increase in spike frequency. In the presence of apamin, bath application of paraoxon reduced the duration of Ca(2+) spike and AHP and increased the firing frequency of nerve cells. In summary, these data suggest that exposure to submicromolar concentration of paraoxon may directly affect membrane excitability. Suppression of Ca(2+) entry during the action potential would down regulate Ca(2+)-activated K(+) channels leading to a reduction of the AHP and an increase in cell firing. PMID:16566905

  3. Insulin-like growth factor-1 endues monocytes with immune suppressive ability to inhibit inflammation in the intestine

    PubMed Central

    Ge, Rong-Ti; Mo, Li-Hua; Wu, Ruijin; Liu, Jiang-Qi; Zhang, Huan-Ping; Liu, Zhigang; Liu, Zhanju; Yang, Ping-Chang

    2015-01-01

    The pathogenesis of some chronic inflammation such as inflammatory bowel disease is unclear. Insulin-like growth factor-1 (IGF1) has active immune regulatory capability. This study aims to investigate into the mechanism by which IGF1 modulates the monocyte (Mo) properties to inhibit immune inflammation in the intestine. In this study, the production of IGF1 by intestinal epithelial cells was evaluated by real time RT-PCR and Western blotting. Mos were analyzed by flow cytometry. A mouse colitis model was created with trinitrobenzene sulfonic acid. The results showed that mouse IECs produced IGF1, which could be up regulated by exposure to CpG-ODN (CpG-oligodeoxynueleotides) in the culture. Culture the CpG-ODN-primed IEC cells and Mos or exposure of Mos to IGF1 in the culture induced the Mos to express IL-10. The IGF1-primed Mos showed the immune suppressive effect on inhibiting the immune inflammation in the mouse colon. In conclusion, the IGF1-primed Mos are capable of suppressing immune inflammation in the intestine. PMID:25588622

  4. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    PubMed

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin

  5. Binocular Neurons in Parastriate Cortex: Interocular ‘Matching’ of Receptive Field Properties, Eye Dominance and Strength of Silent Suppression

    PubMed Central

    Wang, Chun; Dreher, Bogdan

    2014-01-01

    Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented ‘eye-origin specific’ segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision. PMID:24927276

  6. Translaminar Inhibitory Cells Recruited by Layer 6 Cortico-Thalamic Neurons Suppress Visual Cortex

    PubMed Central

    Bortone, Dante S.; Olsen, Shawn R.; Scanziani, Massimo

    2014-01-01

    Summary In layer 6 (L6), a principal output layer of the mammalian cerebral cortex, a population of excitatory neurons defined by the NTSR1-Cre mouse line inhibit cortical responses to visual stimuli. Here we show that of the two major types of excitatory neurons existing in L6, the NTSR1-Cre line selectively targets those whose axon innervate both cortex and thalamus and not those whose axons remain within the cortex. These cortico-thalamic neurons mediate widespread inhibition across all cortical layers by recruiting fast-spiking inhibitory neurons whose cell-body resides in deep cortical layers yet whose axons arborize throughout all layers. This study reveals a circuit by which L6 modulates cortical activity and identifies an inhibitory neuron able to regulate the strength of cortical responses throughout cortical depth. PMID:24656931

  7. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis.

    PubMed

    Liu, B; Lee, K-W; Anzo, M; Zhang, B; Zi, X; Tao, Y; Shiry, L; Pollak, M; Lin, S; Cohen, P

    2007-03-15

    Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein that induces apoptosis utilizing both insulin-like growth factor receptor (IGF)-dependent and -independent mechanisms. We investigated the effects of IGFBP-3 on tumor growth and angiogenesis utilizing a human CaP xenograft model in severe-combined immunodeficiency mice. A 16-day course of IGFBP-3 injections reduced tumor size and increased apoptosis and also led to a reduction in the number of vessels stained with CD31. In vitro, IGFBP-3 inhibited both vascular endothelial growth factor- and IGF-stimulated human umbilical vein endothelial cells vascular network formation in a matrigel assay. This action is primarily IGF independent as shown by studies utilizing the non-IGFBP-binding IGF-1 analog Long-R3. Additionally, we used a fibroblast growth factor-enriched matrigel-plug assay and chick allantoic membrane assays to show that IGFBP-3 has potent antiangiogenic actions in vivo. Finally, overexpression of IGFBP-3 or the non-IGF-binding GGG-IGFBP-3 mutant in Zebrafish embryos confirmed that both IGFBP-3 and the non-IGF-binding mutant inhibited vessel formation in vivo, indicating that the antiangiogenic effect of IGFBP-3 is an IGF-independent phenomenon. Together, these studies provide the first evidence that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis providing an additional mechanism by which it exerts its tumor suppressive effects and further supporting its development for clinical use in the therapy of patients with prostate cancer. PMID:16983336

  8. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes

    SciTech Connect

    Harrison, S.A.; Buxton, J.M.; Czech, M.P. )

    1991-09-01

    Previous studies indicated that the erythroid-type (GLUT1) glucose transporter isoform contributes to basal but not insulin-stimulated hexose transport in mouse 3T3-L1 adipocytes. In the present studies it was found that basal hexose uptake in 3T3-L1 adipocytes was about 50% lower than that in 3T3-L1 or CHO-K1 fibroblasts. Intrinsic catalytic activities of GLUT1 transporters in CHO-K1 and 3T3-L1 cells were compared by normalizing these hexose transport rates to GLUT1 content on the cell surface, as measured by two independent methods. Cell surface GLUT1 levels in 3T3-L1 fibroblasts and adipocytes were about 10- and 25-fold higher, respectively, than in CHO-K1 fibroblasts, as assessed with an anti-GLUT1 exofacial domain antiserum, delta. The large excess of cell surface GLUT1 transporters in 3T3-L1 adipocytes relative to CHO-K1 fibroblasts was confirmed by GLUT1 protein immunoblot analysis and by photoaffinity labeling (with 3-({sup 125}I)iodo-4-azidophenethylamido-7-O-succinyldeacetylforskolin) of glucose transporters in isolated plasma membranes. Thus, GLUT1 intrinsic activity is markedly reduced in 3T3-L1 fibroblasts compared with the CHO-K1 fibroblasts, and further reduction occurs upon differentiation to adipocytes. The authors conclude that a mechanism that markedly suppresses basal hexose transport catalyzed by GLUT1 is a major contributor to the dramatic insulin sensitivity of glucose uptake in 3T3-L1 adipocytes.

  9. Stress-induced nuclear translocation of CDK5 suppresses neuronal death by downregulating ERK activation via VRK3 phosphorylation.

    PubMed

    Song, Haengjin; Kim, Wanil; Choi, Jung-Hyun; Kim, Sung-Hoon; Lee, Dohyun; Park, Choon-Ho; Kim, Sangjune; Kim, Do-Yeon; Kim, Kyong-Tai

    2016-01-01

    Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The binding of vaccinia H1-related (VHR) phosphatase to phosphorylated VRK3 increased its affinity for phospho-ERK and subsequently downregulated ERK activation. Overexpression of VRK3 protected human neuroblastoma SH-SY5Y cells against hydrogen peroxide (H2O2)-induced apoptosis. However the CDK5 was unable to phosphorylate mutant VRK3, and thus the mutant forms of VRK3 could not attenuate apoptotic process. Suppression of CDK5 activity results in increase of ERK activation and elevation of proapoptotic protein Bak expression in mouse cortical neurons. Results from VRK3-deficient neurons were further confirmed the role of VRK3 phosphorylation in H2O2-evoked ERK regulation. Importantly, we showed an association between phospho-VRK3 levels and the progression of human Alzheimer's disease (AD) and Parkinson's disease (PD). Together our work reveals endogenous protective mechanism against oxidative stress-induced neuronal cell death and suggest VRK3 as a potential therapeutic target in neurodegenerative diseases. PMID:27346674

  10. Stress-induced nuclear translocation of CDK5 suppresses neuronal death by downregulating ERK activation via VRK3 phosphorylation

    PubMed Central

    Song, Haengjin; Kim, Wanil; Choi, Jung-Hyun; Kim, Sung-Hoon; Lee, Dohyun; Park, Choon-Ho; Kim, Sangjune; Kim, Do-Yeon; Kim, Kyong-Tai

    2016-01-01

    Although extracellular signal-related kinase 1/2 (ERK 1/2) activity is generally associated with cell survival, prolonged ERK activation induced by oxidative stress also mediates neuronal cell death. Here we report that oxidative stress-induced cyclin-dependent kinase 5 (CDK5) activation stimulates neuroprotective signaling via phosphorylation of vaccinia-related kinase 3 (VRK3) at Ser 108. The binding of vaccinia H1-related (VHR) phosphatase to phosphorylated VRK3 increased its affinity for phospho-ERK and subsequently downregulated ERK activation. Overexpression of VRK3 protected human neuroblastoma SH-SY5Y cells against hydrogen peroxide (H2O2)-induced apoptosis. However the CDK5 was unable to phosphorylate mutant VRK3, and thus the mutant forms of VRK3 could not attenuate apoptotic process. Suppression of CDK5 activity results in increase of ERK activation and elevation of proapoptotic protein Bak expression in mouse cortical neurons. Results from VRK3-deficient neurons were further confirmed the role of VRK3 phosphorylation in H2O2-evoked ERK regulation. Importantly, we showed an association between phospho-VRK3 levels and the progression of human Alzheimer’s disease (AD) and Parkinson’s disease (PD). Together our work reveals endogenous protective mechanism against oxidative stress-induced neuronal cell death and suggest VRK3 as a potential therapeutic target in neurodegenerative diseases. PMID:27346674

  11. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity.

    PubMed

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen M; Fischer, Andy J

    2015-11-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. PMID:26272753

  12. Sodium salicylate potentiates the GABAB-GIRK pathway to suppress rebound depolarization in neurons of the rat's medial geniculate body.

    PubMed

    Wang, Xin-Xing; Jin, Yan; Luo, Bin; Sun, Jing-Wu; Zhang, Jinsheng; Wang, Ming; Chen, Lin

    2016-02-01

    Rebound depolarization (RD) is a voltage response to the offset from pre-hyperpolarization of neuronal membrane potential, which manifests a particular form of the postsynaptic membrane potential response to inhibitory presynaptic inputs. We previously demonstrated that sodium salicylate (NaSal), a tinnitus inducer, can drastically suppress the RD in neurons of rat medial geniculate body (MGB) (Su et al, 2012; PLoS ONE 7, e46969). The purpose of the present study was to investigate the underlying cellular mechanism by using whole-cell patch-clamp recordings in rat MGB slices. NaSal (1.4 mM) had no effects on the current mediated by T-type Ca(2+) channels, indicating that it does not target these channels to suppress the RD. Instead, NaSal was shown to hyperpolarize the resting membrane potential to suppress the RD. NaSal had no effects on the current mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, indicating that it does not target these channels to hyperpolarize the resting membrane potential. NaSal induced an outward leak current that could be abolished by CGP55845, a GABAB receptor blocker, or respectively by Ba(2+) and Tertiapin-Q, blockers for G-protein-gated inwardly rectifying potassium (GIRK) channels, indicating that NaSal potentiates the GABAB-GIRK pathway to hyperpolarize the resting membrane potential. Our study demonstrates that NaSal targets GABAB receptors to alter functional behaviors of MGB neurons, which may be implicated in NaSal-induced tinnitus. PMID:26688177

  13. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    SciTech Connect

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  14. Decreases in mitochondrial reactive oxygen species initiate GABAA receptor-mediated electrical suppression in anoxia-tolerant turtle neurons

    PubMed Central

    Hogg, David W; Pamenter, Matthew E; Dukoff, David J; Buck, Leslie T

    2015-01-01

    Key points Anoxia induces hyper-excitability and cell death in mammalian brain but in the western painted turtle (Chrysemys picta bellii) enhanced GABA transmission prevents injury. The mechanism responsible for increased GABA transmission is unknown; however, reactive oxygen species (ROS) generated by mitochondria may play a role because this is an oxygen-sensitive process. In this study, we show that inhibition of mitochondrial ROS production is sufficient to initiate a redox-sensitive GABA signalling cascade that suppresses pyramidal neuron action potential frequency. These results further our understanding of the turtle's unique strategy for reducing ATP consumption during anoxia and highlights a natural mechanism in which to explore therapies to protect mammalian brain from low-oxygen insults (e.g. cerebral stroke). Abstract Anoxia induces hyper-excitability and cell death in mammalian brain but in the anoxia-tolerant western painted turtle (Chrysemys picta bellii) neuronal electrical activity is suppressed (i.e. spike arrest), adenosine triphosphate (ATP) consumption is reduced, and cell death does not occur. Electrical suppression is primarily the result of enhanced γ-aminobutyric acid (GABA) transmission; however, the underlying mechanism responsible for initiating oxygen-sensitive GABAergic spike arrest is unknown. In turtle cortical pyramidal neurons there are three types of GABAA receptor-mediated currents: spontaneous inhibitory postsynaptic currents (IPSCs), giant IPSCs and tonic currents. The aim of this study was to assess the effects of reactive oxygen species (ROS) scavenging on these three currents since ROS levels naturally decrease with anoxia and may serve as a redox signal to initiate spike arrest. We found that anoxia, pharmacological ROS scavenging, or inhibition of mitochondrial ROS generation enhanced all three types of GABA currents, with tonic currents comprising ∼50% of the total current. Application of hydrogen peroxide inhibited

  15. Spinal sympathetic neurons: possible sites of opiate-withdrawal suppression by clonidine.

    PubMed

    Franz, D N; Hare, D B; McCloskey, K L

    1982-03-26

    Morphine, methadone, meperidine, fentanyl, and clonidine rapidly depressed transmission through sympathetic preganglionic neurons in cats with the spinal cord transected. Naloxone promptly antagonized this effect of the opiates but not that of clonidine which was reversed by alpha 2-adrenergic receptor antagonists. The independent depression of preganglionic neurons by clonidine may contribute to the ability of this drug to depress the symptoms of opiate withdrawal that are characterized by sympathetic hyperactivity. PMID:6280276

  16. Suppressive Effects of Resveratrol Treatment on The Intrinsic Evoked Excitability of CA1 Pyramidal Neurons

    PubMed Central

    Meftahi, Gholamhossein; Ghotbedin, Zohreh; Eslamizade, Mohammad Javad; Hosseinmardi, Narges; Janahmadi, Mahyar

    2015-01-01

    Objective Resveratrol, a phytoalexin, has a wide range of desirable biological actions. Despite a growing body of evidence indicating that resveratrol induces changes in neu- ronal function, little effort, if any, has been made to investigate the cellular effect of res- veratrol treatment on intrinsic neuronal properties. Materials and Methods This experimental study was performed to examine the acute effects of resveratrol (100 µM) on the intrinsic evoked responses of rat Cornu Ammonis (CA1) pyramidal neurons in brain slices, using whole cell patch clamp re- cording under current clamp conditions. Results Findings showed that resveratrol treatment caused dramatic changes in evoked responses of pyramidal neurons. Its treatment induced a significant (P<0.05) increase in the after hyperpolarization amplitude of the first evoked action potential. Resveratrol-treated cells displayed a significantly broader action potential (AP) when compared with either control or vehicle-treated groups. In addition, the mean instantaneous firing frequency between the first two action potentials was significantly lower in resveratrol-treated neurons. It also caused a significant reduction in the time to maximum decay of AP. The rheobase current and the utilization time were both significantly greater following resveratrol treatment. Neurons exhibited a significantly depolarized voltage threshold when exposed to resveratrol. Conclusion Results provide direct electrophysiological evidence for the inhibitory effects of resveratrol on pyramidal neurons, at least in part, by reducing the evoked neural activity. PMID:26464825

  17. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways.

    PubMed

    Zhou, Jun; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-11-27

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. PMID:26474703

  18. Lovastatin suppresses the aberrant tau phosphorylation from FTDP-17 mutation and okadaic acid-induction in rat primary neurons.

    PubMed

    Li, R; Xu, D-E; Ma, T

    2015-05-21

    Statins are a class of cholesterol-lowering drugs and have been suggested therapeutic use for neurodegenerative diseases including Alzheimer's disease (AD). Our recent studies revealed a neuronal protective effect of lovastatin (LOV) from N-methyl-d-aspartic acid (NMDA) excitotoxicity. The neuroprotective mechanism of statins, however, is far unknown. Here we demonstrated that LOV suppressed the aberrant tau phosphorylation both from frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) mutation and okadaic acid (OA) induction in cultured rat primary neurons. The protective effect of LOV occurred at multiple pathological sites of tau protein, including Tyr181, Tyr231 Ser202/Tyr205, Tyr212/Ser214 and Ser396/Ser404. Further analysis revealed that the potential mechanism of the suppressive effect of LOV resulted from two aspects, activating OA-inhibited protein phosphatase 2A (PP2A) activity and attenuating OA-induced activity of tau kinases CDK5/P25 and CDK2/4, but not glycogen synthase kinase 3β (GSK3β). These findings give new insights into the molecular mechanism of LOV-mediated neuroprotective effect and provide experimental evidence for its therapeutic use in AD. PMID:25770969

  19. Suppression of voltage-gated Na(+) channels and neuronal excitability by imperatorin.

    PubMed

    Wu, King-Chuen; Chen, Yi-Hung; Cheng, Ka-Shun; Kuo, Yueh-Hsiung; Yang, Chin-Tsang; Wong, Kar-Lok; Tu, Yuan-Kun; Chan, Paul; Leung, Yuk-Man

    2013-12-01

    Imperatorin is a naturally occurring furocoumarin compound isolated from plants such as Angelica archangelica and Cnidium monnieri. It has multiple pharmacological effects including anticonvulsant effects. Here we determined the effects of imperatorin on voltage-gated Na(+) channels (VGSC) using whole-cell patch clamp techniques in differentiated neuronal NG108-15 cells. We showed that imperatorin inhibited VGSC; such inhibition did not show state-dependence. Imperatorin caused a left shift in the steady-state inactivation curve without affecting activation gating. The inhibition of VGSC by imperatorin displayed a mild frequency-dependence. Imperatorin was also shown to inhibit VGSC and action potential amplitude without affecting voltage-gated K(+) channels in rat hippocampal CA1 neurons. In conclusion, our results suggest that imperatorin dampens neuronal excitability by inhibiting VGSC. PMID:24113522

  20. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.

    PubMed

    Iwasaki, Yusaku; Maejima, Yuko; Suyama, Shigetomo; Yoshida, Masashi; Arai, Takeshi; Katsurada, Kenichi; Kumari, Parmila; Nakabayashi, Hajime; Kakei, Masafumi; Yada, Toshihiko

    2015-03-01

    Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity. PMID:25540101

  1. Forskolin Suppresses Delayed-Rectifier K+ Currents and Enhances Spike Frequency-Dependent Adaptation of Sympathetic Neurons

    PubMed Central

    Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels. PMID:25962132

  2. Fusion protein Isl1–Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs

    PubMed Central

    Lee, Seunghee; Cuvillier, James M.; Lee, Bora; Shen, Rongkun; Lee, Jae W.; Lee, Soo-Kyung

    2012-01-01

    Combinatorial transcription codes generate the myriad of cell types during development and thus likely provide crucial insights into directed differentiation of stem cells to a specific cell type. The LIM complex composed of Isl1 and Lhx3 directs the specification of spinal motor neurons (MNs) in embryos. Here, we report that Isl1–Lhx3, a LIM-complex mimicking fusion, induces a signature of MN transcriptome and concomitantly suppresses interneuron differentiation programs, thereby serving as a potent and specific inducer of MNs in stem cells. We show that an equimolar ratio of Isl1 and Lhx3 and the LIM domain of Lhx3 are crucial for generating MNs without up-regulating interneuron genes. These led us to design Isl1–Lhx3, which maintains the desirable 1:1 ratio of Isl1 and Lhx3 and the LIM domain of Lhx3. Isl1–Lhx3 drives MN differentiation with high specificity and efficiency in the spinal cord and embryonic stem cells, bypassing the need for sonic hedgehog (Shh). RNA-seq analysis revealed that Isl1–Lhx3 induces the expression of a battery of MN genes that control various functional aspects of MNs, while suppressing key interneuron genes. Our studies uncover a highly efficient method for directed MN generation and MN gene networks. Our results also demonstrate a general strategy of using embryonic transcription complexes for producing specific cell types from stem cells. PMID:22343290

  3. Fusion protein Isl1-Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs.

    PubMed

    Lee, Seunghee; Cuvillier, James M; Lee, Bora; Shen, Rongkun; Lee, Jae W; Lee, Soo-Kyung

    2012-02-28

    Combinatorial transcription codes generate the myriad of cell types during development and thus likely provide crucial insights into directed differentiation of stem cells to a specific cell type. The LIM complex composed of Isl1 and Lhx3 directs the specification of spinal motor neurons (MNs) in embryos. Here, we report that Isl1-Lhx3, a LIM-complex mimicking fusion, induces a signature of MN transcriptome and concomitantly suppresses interneuron differentiation programs, thereby serving as a potent and specific inducer of MNs in stem cells. We show that an equimolar ratio of Isl1 and Lhx3 and the LIM domain of Lhx3 are crucial for generating MNs without up-regulating interneuron genes. These led us to design Isl1-Lhx3, which maintains the desirable 1:1 ratio of Isl1 and Lhx3 and the LIM domain of Lhx3. Isl1-Lhx3 drives MN differentiation with high specificity and efficiency in the spinal cord and embryonic stem cells, bypassing the need for sonic hedgehog (Shh). RNA-seq analysis revealed that Isl1-Lhx3 induces the expression of a battery of MN genes that control various functional aspects of MNs, while suppressing key interneuron genes. Our studies uncover a highly efficient method for directed MN generation and MN gene networks. Our results also demonstrate a general strategy of using embryonic transcription complexes for producing specific cell types from stem cells. PMID:22343290

  4. Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway

    PubMed Central

    Bernis, María E.; Oksdath, Mariana; Dupraz, Sebastián; Nieto Guil, Alvaro; Fernández, Marisa M.; Malchiodi, Emilio L.; Rosso, Silvana B.; Quiroga, Santiago

    2013-01-01

    Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r) and the phosphatidylinositol 3 kinase (PI3k) pathway. Wingless-type family growth factors (Wnts) have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs) isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a) was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k, and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR) experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7. PMID:24298236

  5. Cannabinoids attenuate hippocampal gamma oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells

    PubMed Central

    Holderith, Noémi; Németh, Beáta; Papp, Orsolya I; Veres, Judit M; Nagy, Gergő A; Hájos, Norbert

    2011-01-01

    Abstract CB1 cannabinoid receptor (CB1R) activation by exogenous ligands can impair memory processes, which critically depend on synchronous neuronal activities that are temporarily structured by oscillations. In this study, we aimed to reveal the mechanisms underlying the cannabinoid-induced decrease in gamma oscillations. We first verified that cannabinoids (CP55,940 and WIN55,212-2) readily suppressed carbachol-induced gamma oscillations in the CA3 region of hippocampal slices via activation of CB1Rs. The cannabinoid-induced decrease in the peak power of oscillations was accompanied by reduced and less precise firing activity in CA3 pyramidal cells and fast spiking basket cells. By examining the cannabinoid sensitivity of synaptic inputs we found that the amplitude of evoked excitatory postsynaptic currents was significantly suppressed upon CB1R activation in both CA3 pyramidal cells and fast spiking basket cells. In contrast, evoked inhibitory postsynaptic currents in CA3 pyramidal cells were unaltered. Furthermore, we observed that a CB1R agonist-induced decrease in the oscillation power at the beginning of the drug application was accompanied primarily by the reduced discharge of fast spiking basket cells, while pyramidal cell firing was unaltered. This result implies that the dampening of cholinergically induced gamma oscillations in the hippocampus by cannabinoids can be explained by a reduced excitatory input predominantly onto fast spiking basket cells, which leads to a reduction in neuronal firing frequency and precision, and thus to smaller field potentials. In addition, we uncovered that the spontaneously occurring sharp wave-ripple activities in hippocampal slices could also be suppressed by CB1R activation suggesting that cannabinoids profoundly reduce the intrinsically generated oscillatory activities at distinct frequencies in CA3 networks by reducing synaptic neurotransmission. PMID:21859823

  6. The Nuclear Transcription Factor RAR Associates with Neuronal RNA Granules and Suppresses Translation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All-trans-retinoic acid stimulates dendritic growth in hippocampal neurons within minutes by activating mitogen-activated protein kinase and mTOR and increasing dendritic translation of calcium calmodulin-dependent protein kinase II alpha and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionat...

  7. GLP-2 receptor in POMC neurons suppresses feeding behavior and gastric motility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptides (GLP-1/2) are cosecreted from endocrine L cells in the gut and preproglucagonergic neurons in the brain. Peripheral GLP-2 action is essential for maintaining intestinal homeostasis, improving absorption efficiency and blood flow, promoting immune defense, and producing efficac...

  8. Transgenic Expression of ZBP1 in Neurons Suppresses Cocaine-Associated Conditioning

    ERIC Educational Resources Information Center

    Lapidus, Kyle A. B.; Nwokafor, Chiso; Scott, Daniel; Baroni, Timothy E.; Tenenbaum, Scott A.; Hiroi, Noboru; Singer, Robert H.; Czaplinski, Kevin

    2012-01-01

    To directly address whether regulating mRNA localization can influence animal behavior, we created transgenic mice that conditionally express Zipcode Binding Protein 1 (ZBP1) in a subset of neurons in the brain. ZBP1 is an RNA-binding protein that regulates the localization, as well as translation and stability of target mRNAs in the cytoplasm. We…

  9. MeHg Suppressed Neuronal Potency of Hippocampal NSCs Contributing to the Puberal Spatial Memory Deficits.

    PubMed

    Tian, Jianying; Luo, Yougen; Chen, Weiwei; Yang, Shengsen; Wang, Hao; Cui, Jing; Lu, Zhiyan; Lin, Yuanye; Bi, Yongyi

    2016-08-01

    Hippocampal neurogenesis-related structural damage, particularly that leading to defective adult cognitive function, is considered an important risk factor for neurodegenerative and psychiatric diseases. Normal differentiation of neurons and glial cells during development is crucial in neurogenesis, which is particularly sensitive to the environmental toxicant methylmercury (MeHg). However, the exact effects of MeHg on hippocampal neural stem cell (hNSC) differentiation during puberty remain unknown. This study investigates whether MeHg exposure induces changes in hippocampal neurogenesis and whether these changes underlie cognitive defects in puberty. A rat model of methylmercury chloride (MeHgCl) exposure (0.4 mg/kg/day, PND 5-PND 33, 28 days) was established, and the Morris water maze was used to assess cognitive function. Primary hNSCs from hippocampal tissues of E16-day Sprague-Dawley rats were purified, identified, and cloned. hNSC proliferation and differentiation and the growth and morphology of newly generated neurons were observed by MTT and immunofluorescence assays. MeHg exposure induced defects in spatial learning and memory accompanied by a decrease in number of doublecortin (DCX)-positive cells in the dentate gyrus (DG). DCX is a surrogate marker for newly generated neurons. Proliferation and differentiation of hNSCs significantly decreased in the MeHg-treated groups. MeHg attenuated microtubule-associated protein-2 (MAP-2) expression in neurons and enhanced the glial fibrillary acidic protein (GFAP)-positive cell differentiation of hNSCs, thereby inducing degenerative changes in a dose-dependent manner. Moreover, MeHg induced deficits in hippocampus-dependent spatial learning and memory during adolescence as a consequence of decreased generation of DG neurons. Our findings suggested that MeHg exposure could be a potential risk factor for psychiatric and neurodegenerative diseases. PMID:26743863

  10. Expression of nuclear Methyl-CpG binding protein 2 (Mecp2) is dependent on neuronal stimulation and application of Insulin-like growth factor 1.

    PubMed

    Tropea, Daniela; Mortimer, Niall; Bellini, Stefania; Molinos, Ines; Sanfeliu, Albert; Shovlin, Stephen; McAllister, Donna; Gill, Michael; Mitchell, Kevin; Corvin, Aiden

    2016-05-16

    Methyl-CpG binding protein 2 (MECP2) is a chromosome-binding protein that regulates the development and maintenance of brain circuits. Altered function of the protein product of MECP2 plays an important role in the etiology of many neurodevelopmental disorders. Mutations involving a loss of function are implicated in the etiology of Rett syndrome, intellectual disability, psychosis and severe encephalopathy. Conversely, MECP2 duplications have been identified in autism and intellectual disability. MECP2 action is dependent on neuronal function, as the DNA binding is modulated by activity, and it is phosphorylated in response to stimulation. Although MECP2 is considered a major risk factor for neurodevelopmental disorders, and it is a mediator of activity-dependent mechanisms, the expression levels in response to neuronal activity have never been measured. We studied the expression of Mecp2 protein and RNA in mice neuronal cultures in response to different stimulation conditions and in the presence of insulin-like growth factor1 (IGF1): a growth factor involved in brain development and plasticity. The stimulation protocols were selected according to their ability to induce different forms of synaptic plasticity: rapid depolarization, feed-forward plasticity (LTP, LTD) and feedback forms of plasticity (TTX, KCl). We find a significant reduction of Mecp2 protein nuclear expression in neurons in response to stimuli that induce a potentiation of neuronal response, suggesting that Mecp2 protein expression is modulated by neuronal activation. Application of IGF1 to the cultures induces an increase in the expression of Mecp2 transcript and nuclear Mecp2 protein in neurons. These results show that Mecp2 is responsive to neuronal stimulation and IGF1, and different stimuli have different effects on Mecp2 expression; this differential response may have downstream effects on functional mechanisms regulating brain development and plasticity. PMID:27080430

  11. Cholinergic Neurons Mediate CaMKII-Dependent Enhancement of Courtship Suppression

    ERIC Educational Resources Information Center

    Mehren, Jennifer E.; Griffith, Leslie C.

    2006-01-01

    In "Drosophila," calcium/calmodulin-dependent protein kinase II (CaMKII) activity is crucial in associative courtship conditioning for both memory formation and suppression of courtship during training with a mated female. We have previously shown that increasing levels of constitutively active CaMKII, but not calcium-dependent CaMKII, in a subset…

  12. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis

    PubMed Central

    Huntwork-Rodriguez, Sarah; Wang, Bei; Watkins, Trent; Ghosh, Arundhati Sengupta; Pozniak, Christine D.; Bustos, Daisy; Newton, Kim; Kirkpatrick, Donald S.

    2013-01-01

    Neurons are highly polarized cells that often project axons a considerable distance. To respond to axonal damage, neurons must transmit a retrograde signal to the nucleus to enable a transcriptional stress response. Here we describe a mechanism by which this signal is propagated through injury-induced stabilization of dual leucine zipper-bearing kinase (DLK/MAP3K12). After neuronal insult, specific sites throughout the length of DLK underwent phosphorylation by c-Jun N-terminal kinases (JNKs), which have been shown to be downstream targets of DLK pathway activity. These phosphorylation events resulted in increased DLK abundance via reduction of DLK ubiquitination, which was mediated by the E3 ubiquitin ligase PHR1 and the de-ubiquitinating enzyme USP9X. Abundance of DLK in turn controlled the levels of downstream JNK signaling and apoptosis. Through this feedback mechanism, the ubiquitin–proteasome system is able to provide an additional layer of regulation of retrograde stress signaling to generate a global cellular response to localized external insults. PMID:23979718

  13. The ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) attenuates insulin resistance through suppressing GLUT-2 in rat liver.

    PubMed

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-05-01

    This study investigates the effect of the ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) on insulin resistance induced by high-fructose diet (HFD) in rats. Male Sprague Dawley rats were fed 60% HFD for 12 weeks and HMB (320 mg·kg(-1)·day(-1), orally) for 4 weeks. HFD significantly increased fasting insulin, fasting glucose, glycosylated hemoglobin (HBA1C), liver glycogen content, and homeostasis model assessment of insulin resistance (HOMA-IR) index, while it decreased glucose and insulin tolerance. Furthermore, HFD significantly increased serum triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and very low density lipoprotein cholesterol (VLDL-C) levels, while it significantly decreased high density lipoprotein cholesterol (HDL-C). Moreover, HFD significantly increased mRNA expression of glucose transporter type-2 (GLUT-2), the mammalian target of rapamycin (mTOR), and sterol regulatory element-binding protein-1c (SREBP-1c) but decreased peroxisome proliferator-activated receptor-alpha (PPAR-α) in liver. Aortic relaxation to acetylcholine (ACh) was impaired and histopathology showed severe hepatic steatosis. HMB significantly increased insulin tolerance and decreased fasting insulin, HOMA-IR, HBA1C, hepatic glycogen content, serum TG, LDL-C, and VLDL-C. Additionally, HMB enhanced ACh-induced relaxation, ameliorated hepatic steatosis, and decreased mRNA expression of GLUT-2. In conclusion, HMB may attenuate insulin resistance and hepatic steatosis through inhibiting GLUT-2 in liver. PMID:26871756

  14. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway

    PubMed Central

    Wang, May-Yun; Yan, Hai; Shi, Zhiqing; Evans, Matthew R.; Yu, Xinxin; Lee, Young; Chen, Shiuhwei; Williams, Annie; Philippe, Jacques; Roth, Michael G.; Unger, Roger H.

    2015-01-01

    Insulin monotherapy can neither maintain normoglycemia in type 1 diabetes (T1D) nor prevent the long-term damage indicated by elevated glycation products in blood, such as glycated hemoglobin (HbA1c). Here we find that hyperglycemia, when unaccompanied by an acute increase in insulin, enhances itself by paradoxically stimulating hyperglucagonemia. Raising glucose from 5 to 25 mM without insulin enhanced glucagon secretion ∼two- to fivefold in InR1-G9 α cells and ∼18-fold in perfused pancreata from insulin-deficient rats with T1D. Mice with T1D receiving insulin treatment paradoxically exhibited threefold higher plasma glucagon during hyperglycemic surges than during normoglycemic intervals. Blockade of glucagon action with mAb Ac, a glucagon receptor (GCGR) antagonizing antibody, maintained glucose below 100 mg/dL and HbA1c levels below 4% in insulin-deficient mice with T1D. In rodents with T1D, hyperglycemia stimulates glucagon secretion, up-regulating phosphoenolpyruvate carboxykinase and enhancing hyperglycemia. GCGR antagonism in mice with T1D normalizes glucose and HbA1c, even without insulin. PMID:25675519

  15. Metformin Alleviated Aβ-Induced Apoptosis via the Suppression of JNK MAPK Signaling Pathway in Cultured Hippocampal Neurons

    PubMed Central

    Chen, Bin; Teng, Ying; Zhang, Xingguang; Lv, Xiaofeng

    2016-01-01

    Both diabetes and hyperinsulinemia are confirmed risk factors for Alzheimer's disease. Some researchers proposed that antidiabetic drugs may be used as disease-modifying therapies, such as metformin and thiazolidinediones, although more evidence was poorly supported. The aim of the current study is to investigate the role of metformin in Aβ-induced cytotoxicity and explore the underlying mechanisms. First, the experimental results show that metformin salvaged the neurons exposed to Aβ in a concentration-dependent manner with MTT and LDH assay. Further, the phosphorylation levels of JNK, ERK1/2, and p38 MAPK were measured with western blot analysis. It was investigated that Aβ increased phospho-JNK significantly but had no effect on phospho-p38 MAPK and phospho-ERK1/2. Metformin decreased hyperphosphorylated JNK induced by Aβ; however, the protection of metformin against Aβ was blocked when anisomycin, the activator of JNK, was added to the medium, indicating that metformin performed its protection against Aβ in a JNK-dependent way. In addition, it was observed that metformin protected the neurons via the suppression of apoptosis. Taken together, our findings demonstrate that metformin may have a positive effect on Aβ-induced cytotoxicity, which provides a preclinical strategy against AD for elders with diabetes. PMID:27403417

  16. Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer's disease

    PubMed Central

    Wang, Yan; Cai, Biao; Shao, Jing; Wang, Ting-ting; Cai, Run-ze; Ma, Chang-ju; Han, Tao; Du, Jun

    2016-01-01

    Genistein is effective against amyloid-β toxicity, but the underlying mechanisms are unclear. We hypothesized that genistein may protect neurons by inhibiting the mitochondrial apoptotic pathway, and thereby play a role in the prevention of Alzheimer’s disease. A rat model of Alzheimer’s disease was established by intraperitoneal injection of D-galactose and intracerebral injection of amyloid-β peptide (25–35). In the genistein treatment groups, a 7-day pretreatment with genistein (10, 30, 90 mg/kg) was given prior to establishing Alzheimer’s disease model, for 49 consecutive days. Terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated a reduction in apoptosis in the hippocampus of rats treated with genistein. Western blot analysis showed that expression levels of capase-3, Bax and cytochrome c were decreased compared with the model group. Furthermore, immunohistochemical staining revealed reductions in cytochrome c and Bax immunoreactivity in these rats. Morris water maze revealed a substantial shortening of escape latency by genistein in Alzheimer’s disease rats. These findings suggest that genistein decreases neuronal loss in the hippocampus, and improves learning and memory ability. The neuroprotective effects of genistein are associated with the inhibition of the mitochondrial apoptotic pathway, as shown by its ability to reduce levels of caspase-3, Bax and cytochrome c.

  17. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans.

    PubMed Central

    Hartman, M L; Clayton, P E; Johnson, M L; Celniker, A; Perlman, A J; Alberti, K G; Thorner, M O

    1993-01-01

    To determine if insulin-like growth factor I (IGF-I) inhibits pulsatile growth hormone (GH) secretion in man, recombinant human IGF-I (rhIGF-I) was infused for 6 h at 10 micrograms.kg-1.h-1 during a euglycemic clamp in 10 normal men who were fasted for 32 h to enhance GH secretion. Saline alone was infused during an otherwise identical second admission as a control. As a result of rhIGF-I infusion, total and free IGF-I concentrations increased three- and fourfold, respectively. Mean GH concentrations fell from 6.3 +/- 1.6 to 0.59 +/- 0.07 micrograms/liter after 120 min. GH secretion rates, calculated by a deconvolution algorithm, decreased with a t 1/2 of 16.6 min and remained suppressed thereafter. Suppression of GH secretion rates occurred within 60 min when total and free IGF-I concentrations were 1.6-fold and 2-fold above baseline levels, respectively, and while glucose infusion rates were < 1 mumol.kg-1.min-1. During saline infusion, GH secretion rates remained elevated. Infusion of rhIGF-I decreased the mass of GH secreted per pulse by 84% (P < 0.01) and the number of detectable GH secretory pulses by 32% (P < 0.05). Plasma insulin and glucagon decreased to nearly undetectable levels after 60 min of rhIGF-I. Serum free fatty acids, beta-hydroxybutyrate, and acetoacetate were unaffected during the first 3 h of rhIGF-I but decreased thereafter to 52, 32, and 50% of levels observed during saline. We conclude that fasting-enhanced GH secretion is rapidly suppressed by a low-dose euglycemic infusion of rhIGF-I. This effect of rhIGF-I is likely mediated through IGF-I receptors independently of its insulin-like metabolic actions. PMID:8514857

  18. Selective suppression of the slow-inactivating potassium currents by nootropics in molluscan neurons.

    PubMed

    Bukanova, Julia V; Solntseva, Elena I; Skrebitsky, Vladimir G

    2002-09-01

    The role of the voltage-gated K+ channels in the effect of some nootropics was investigated. Earlier, the multiple effect of high concentrations of two nootropics, piracetam and its peptide analogue GVS-111 [Seredenin et al. (1995), US Patent No. 5,439,930], on Ca2+ and K+ currents of molluscan neurons was shown [Solntseva et al. (1997), General Pharmacology 29, 85-89]. In the present work, we describe the selective effect of low concentrations of these nootropics as well as vinpocetine on certain types of K+ current. The experiments were performed on isolated neurons of the land snail Helix pomatia using a two-microelectrode voltage-clamp method. The inward voltage-gated Ca2+ current (ICa) and three subtypes of the outward voltage-gated K+ current were recorded: Ca2+-dependent K+ current (IK(Ca)), delayed rectifying current (IKD), and fast-inactivating K+ current (IA). It has been found that I Ca was not changed in the presence of 30 microM vinpocetine, 100 microM piracetam or 10 nM GVS-111, while slow-inactivating, TEA-sensitive IK(Ca) and IKD were inhibited (IK(Ca) more strongly than IKD). In contrast, the fast-inactivating, 4-AP-sensitive K+ current (IA) was not diminished by low concentrations of piracetam and GVS-111, while vinpocetine even augmented it. A possible role of slow-inactivating subtypes of the K+ channels in the development of different forms of dementia is discussed. PMID:12366875

  19. Suppressive response of confections containing the extractive from leaves of Morus Alba on postprandial blood glucose and insulin in healthy human subjects

    PubMed Central

    Nakamura, Mariko; Nakamura, Sadako; Oku, Tsuneyuki

    2009-01-01

    Background The first aim of this study was to clarify the effective ratio of extractive from leaves of Morus Alba (ELM) to sucrose so as to apply this knowledge to the preparation of confections that could effectively suppress the elevation of postprandial blood glucose and insulin. The second aim was to identify the efficacy of confections prepared with the optimally effective ratio determined from the first study, using healthy human subjects. Methods Ten healthy females (22.3 years, BMI 21.4 kg/m2) participated in this within-subject, repeated measures study. For the first aim of this study, the test solutions containing 30 g of sucrose and 1.2 or 3.0 g of ELM were repeatedly and randomly given to each subject. To identify the practically suppressive effects on postprandial blood glucose and insulin, some confections with added ELM were prepared as follows: Mizu-yokan, 30 g of sucrose with the addition of 1.5 or 3.0 g ELM; Daifuku-mochi, 9.0 g of starch in addition to 30 g of sucrose and 1.5 or 3.0 g ELM; Chiffon-cake, 24 g of sucrose, starch, and 3.0 or 6.0 g of ELM, and were ingested by each subject. Blood and end-expiration were collected at selected periods after test food ingestion. Results When 30 g of sucrose with 1.2 or 3.0 g of ELM were ingested by subjects, the elevations of postprandial blood glucose and insulin were effectively suppressed (p < 0.01), and the most effective ratio of ELM to sucrose was evaluated to be 1:10. AUC (area under the curve) of breath hydrogen excretion for 6 h after the ingestion of an added 3 g of ELM significantly increased (p < 0.01). When AUCs-3h of incremental blood glucose of confections without ELM was 100, that of Mizu-yokan and Daifuku-mochi with the ratio (1:10) of ELM to sucrose was decreased to 53.4 and 58.2, respectively. Chiffon-cake added one-fourth ELM was 29.0. Conclusion ELM-containing confections for which the ratio of ELM and sucrose is one-tenth effectively suppress the postprandial blood glucose and

  20. Prolactin regulation of kisspeptin neurones in the mouse brain and its role in the lactation-induced suppression of kisspeptin expression.

    PubMed

    Brown, R S E; Herbison, A E; Grattan, D R

    2014-12-01

    Hyperprolactinaemia is a major cause of infertility in both males and females, although the mechanism by which prolactin inhibits the reproductive axis is not clear. The aim of the present study was to test the hypothesis that elevated prolactin causes suppression of kisspeptin expression in the hypothalamus, resulting in reduced release of gonadotrophin-releasing hormone (GnRH) and consequent infertility. In oestrogen-treated ovariectomised mice, chronic prolactin-treatment prevented the rise in luteinising hormone (LH) seen in vehicle-treated mice. Kiss1 mRNA was significantly suppressed in both the rostral periventricular region of the third ventricle (RP3V) and arcuate nucleus after prolactin treatment. Exogenous prolactin treatment induced phosphorylated signal transducer and activator of transcription 5 (pSTAT5) in kisspeptin neurones, and suppression of endogenous prolactin using bromocriptine reduced levels of pSTAT5 in kisspeptin neurones, suggesting that prolactin acts directly on kisspeptin neurones. By contrast, fewer than 1% of GnRH neurones expressed pSTAT5 in either dioestrous or lactating mice. As reported previously, there was significant suppression of kisspeptin mRNA and protein in the RP3V on day 7 of lactation, although not in the arcuate nucleus. Bromocriptine treatment significantly increased Kiss1 mRNA expression in the RP3V, although not to dioestrous levels. Unilateral thelectomy, aiming to eliminate sensory inputs from nipples on one side of the body, failed to alter the reduction in the number of kisspeptin neurones observed in the RP3V. These data demonstrate that chronic prolactin administration suppressed serum LH, and reduced Kiss1 mRNA levels in both the RP3V and arcuate nucleus, consistent with the hypothesis that prolactin-induced suppression of kisspeptin secretion might mediate the inhibitory effects of prolactin on GnRH secretion. During lactation, however, the suppression of Kiss1 mRNA in the RP3V was only partially reversed

  1. Suppression of the Insulin Receptors in Adult Schistosoma japonicum Impacts on Parasite Growth and Development: Further Evidence of Vaccine Potential

    PubMed Central

    You, Hong; Gobert, Geoffrey N.; Cai, Pengfei; Mou, Rong; Nawaratna, Sujeevi; Fang, Guofu; Villinger, Francois; McManus, Donald P.

    2015-01-01

    To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines. PMID:25961574

  2. Suppression of the Insulin Receptors in Adult Schistosoma japonicum Impacts on Parasite Growth and Development: Further Evidence of Vaccine Potential.

    PubMed

    You, Hong; Gobert, Geoffrey N; Cai, Pengfei; Mou, Rong; Nawaratna, Sujeevi; Fang, Guofu; Villinger, Francois; McManus, Donald P

    2015-05-01

    To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines. PMID:25961574

  3. Optogenetic Activation of Adenosine A2A Receptor Signaling in the Dorsomedial Striatopallidal Neurons Suppresses Goal-Directed Behavior.

    PubMed

    Li, Yan; He, Yan; Chen, Mozi; Pu, Zhilan; Chen, Li; Li, Ping; Li, Bo; Li, Haiyan; Huang, Zhi-Li; Li, Zhihui; Chen, Jiang-Fan

    2016-03-01

    The striatum has an essential role in neural control of instrumental behaviors by reinforcement learning. Adenosine A(2A) receptors (A(2A)Rs) are highly enriched in the striatopallidal neurons and are implicated in instrumental behavior control. However, the temporal importance of the A(2A)R signaling in relation to the reward and specific contributions of the striatopallidal A(2A)Rs in the dorsolateral striatum (DLS) and the dorsomedial striatum (DMS) to the control of instrumental learning are not defined. Here, we addressed temporal relationship and sufficiency of transient activation of optoA(2A)R signaling precisely at the time of the reward to the control of instrumental learning, using our newly developed rhodopsin-A2AR chimeras (optoA(2A)R). We demonstrated that transient light activation of optoA(2A)R signaling in the striatopallidal neurons in 'time-locked' manner with the reward delivery (but not random optoA(2A)R activation) was sufficient to change the animal's sensitivity to outcome devaluation without affecting the acquisition or extinction phases of instrumental learning. We further demonstrated that optogenetic activation of striatopallidal A(2A)R signaling in the DMS suppressed goal-directed behaviors, as focally genetic knockdown of striatopallidal A(2A)Rs in the DMS enhanced goal-directed behavior by the devaluation test. By contrast, optogenetic activation or focal AAV-Cre-mediated knockdown of striatopallidal A(2A)R in the DLS had relatively limited effects on instrumental learning. Thus, the striatopallidal A(2A)R signaling in the DMS exerts inhibitory and predominant control of goal-directed behavior by acting precisely at the time of reward, and may represent a therapeutic target to reverse abnormal habit formation that is associated with compulsive obsessive disorder and drug addiction. PMID:26216520

  4. Insulin resistance and insulin sensitizers.

    PubMed

    Stumvoll, M; Häring, H

    2001-01-01

    Insulin resistance is a key factor in the pathogenesis of type 2 diabetes mellitus and a co-factor in the development of dyslipidaemia, hypertension and atherosclerosis. The causes of insulin resistance include factors such as obesity and physical inactivity, and there may also be genetic factors. The mechanism of obesity-related insulin resistance involves the release of factors from adipocytes which exert a negative effect on glucose metabolism: free fatty acids, tumour necrosis factor-alpha and the recently discovered hormone, resistin. The two resulting abnormalities observed consistently in glucose-intolerant states are impaired suppression of endogenous glucose production, and impaired stimulation of glucose uptake. Among the genetic factors, a polymorphism (Pro12Ala) in the peroxisome proliferator-activated receptor (PPAR) gamma is associated with a reduced risk of type 2 diabetes mellitus and increased insulin sensitivity, primarily that of lipolysis. On the other hand, the association with insulin resistance of a common polymorphism (Gly972Arg) in the insulin receptor substrate 1, long believed to be a plausible candidate gene, is weak at best. This polymorphism may instead be associated with reduced insulin secretion, which, in view of the recent recognition of the insulin signalling system in beta-cells, results in the development of a novel pathogenic concept. Finally, fine-mapping and positional cloning of the susceptibility locus on chromosome 2 resulted in the identification of a polymorphism (UCSNP-43 G/A) in the calpain-10 gene. In non-diabetic Pima Indians, this polymorphism was associated with insulin resistance of glucose disposal. The pharmacological treatment of insulin resistance has recently acquired a novel class of agents: the thiazolidinediones. They act through regulation of PPARgamma-dependent genes and probably interfere favourably with factors released from adipocytes which mediate obesity-associated insulin resistance. PMID:11684868

  5. Volatile anesthetics suppress glucose-stimulated insulin secretion in MIN6 cells by inhibiting glucose-induced activation of hypoxia-inducible factor 1

    PubMed Central

    Suzuki, Kengo; Sato, Yoshifumi; Kai, Shinichi; Nishi, Kenichiro; Adachi, Takehiko; Matsuo, Yoshiyuki

    2015-01-01

    Proper glycemic control is one of the most important goals in perioperative patient management. Insulin secretion from pancreatic β-cells in response to an increased blood glucose concentration plays the most critical role in glycemic control. Several animal and human studies have indicated that volatile anesthetics impair glucose-stimulated insulin secretion (GSIS). A convincing GSIS model has been established, in which the activity of ATP-dependent potassium channels (KATP) under the control of intracellular ATP plays a critical role. We previously reported that pimonidazole adduct formation and stabilization of hypoxia-inducible factor-1α (HIF-1α) were detected in response to glucose stimulation and that MIN6 cells overexpressing HIF-1α were resistant to glucose-induced hypoxia. Genetic ablation of HIF-1α or HIF-1β significantly inhibited GSIS in mice. Moreover, we previously reported that volatile anesthetics suppressed hypoxia-induced HIF activation in vitro and in vivo.To examine the direct effect of volatile anesthetics on GSIS, we used the MIN6 cell line, derived from mouse pancreatic β-cells. We performed a series of experiments to examine the effects of volatile anesthetics (sevoflurane and isoflurane) on GSIS and demonstrated that these compounds inhibited the glucose-induced ATP increase, which is dependent on intracellular hypoxia-induced HIF-1 activity, and suppressed GSIS at a clinically relevant dose in these cells. PMID:26713247

  6. Brimonidine suppresses loss of retinal neurons and visual function in a murine model of optic neuritis.

    PubMed

    Guo, Xiaoli; Namekata, Kazuhiko; Kimura, Atsuko; Noro, Takahiko; Azuchi, Yuriko; Semba, Kentaro; Harada, Chikako; Yoshida, Hiroshi; Mitamura, Yoshinori; Harada, Takayuki

    2015-04-10

    Optic neuritis is inflammation of the optic nerve and is strongly associated with multiple sclerosis (MS), an inflammatory demyelinating syndrome of the central nervous system. It leads to retinal ganglion cell (RGC) death and can cause severe vision loss. Brimonidine (BMD) is a selective α2-adrenergic receptor agonist that is used clinically for the treatment of glaucoma. BMD lowers intraocular pressure, but recent evidence suggests that its therapeutic efficacy may also mediate through mechanisms independent of modulation of intraocular pressure. In this study, we examined the effects of topical administration of BMD on retinal degeneration during optic neuritis in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. EAE was induced with MOG35-55 in C57BL/6J mice and BMD eyedrops were applied daily. In the EAE retina, the number of RGCs was significantly decreased and this effect was suppressed with BMD treatment. Consistent with histological analyses, the visual impairment observed in EAE mice was inhibited with BMD treatment, indicating the functional significance of the neuroprotective effect of BMD. Furthermore, BMD increased the expression level of basic fibroblast growth factor in the EAE retina, particularly in Müller glial cells and RGCs. Our findings suggest that topical administration of BMD may be available for RGC protection during optic neuritis, as well as for glaucoma. PMID:25736951

  7. Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation.

    PubMed

    Chang, Wen-Chang; Wu, Shinn-Chih; Xu, Kun-Di; Liao, Bo-Chieh; Wu, Jia-Feng; Cheng, An-Sheng

    2015-01-01

    Recently, several types of foods and drinks, including coffee, cream, and cake, have been found to result in high methylglyoxal (MG) levels in the plasma, thus causing both nutritional and health concerns. MG can be metabolized by phase-II enzymes in liver through the positive regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2). In this study, we investigated the ability of scopoletin (SP) to protect against MG-induced hyperglycemia and insulin resistance. Recently, SP was shown to be a peroxisome proliferator-activated receptor-γ activator to elevate insulin sensitivity. We investigated the effects of oral administration of SP on the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats to understand the potential mechanism of scopoletin for diabetes protection. Our results suggested that SP activated Nrf2 by Ser40 phosphorylation, resulting in the metabolism of MG into d-lactic acid and the inhibition of AGEs generation, which reduced the accumulation of AGEs in the livers of MG-induced rats. In this manner, SP improved the results of the oral glucose tolerance test and dyslipidemia. Moreover, SP also increased the plasma translocation of glucose transporter-2 and promoted Akt phosphorylation caused by insulin treatment in MG-treated FL83B hepatocytes. In contrast, SP effectively suppressed protein tyrosine phosphatase 1B (PTP1B) expression, thereby alleviating insulin resistance. These findings suggest that SP acts as an anti-glycation and anti-diabetic agent, and thus has therapeutic potential for the prevention of diabetes. PMID:25671364

  8. Brain Insulin-Like Growth Factor-I Directs the Transition from Stem Cells to Mature Neurons During Postnatal/Adult Hippocampal Neurogenesis.

    PubMed

    Nieto-Estévez, Vanesa; Oueslati-Morales, Carlos O; Li, Lingling; Pickel, James; Morales, Aixa V; Vicario-Abejón, Carlos

    2016-08-01

    The specific actions of insulin-like growth factor-I (IGF-I) and the role of brain-derived IGF-I during hippocampal neurogenesis have not been fully defined. To address the influence of IGF-I on the stages of hippocampal neurogenesis, we studied a postnatal/adult global Igf-I knockout (KO) mice (Igf-I(-/-) ) and a nervous system Igf-I conditional KO (Igf-I(Δ/Δ) ). In both KO mice we found an accumulation of Tbr2(+) -intermediate neuronal progenitors, some of which were displaced in the outer granule cell layer (GCL) and the molecular layer (ML) of the dentate gyrus (DG). Similarly, more ectopic Ki67(+) - cycling cells were detected. Thus, the GCL was disorganized with significant numbers of Prox1(+) -granule neurons outside this layer and altered morphology of radial glial cells (RGCs). Dividing progenitors were also generated in greater numbers in clonal hippocampal stem cell (HPSC) cultures from the KO mice. Indeed, higher levels of Hes5 and Ngn2, transcription factors that maintain the stem and progenitor cell state, were expressed in both HPSCs and the GCL-ML from the Igf-I(Δ/Δ) mice. To determine the impact of Igf-I deletion on neuronal generation in vivo, progenitors in Igf-I(-/-) and Igf-I(+/+) mice were labeled with a GFP-expressing vector. This revealed that in the Igf-I(-/-) mice more GFP(+) -immature neurons were formed and they had less complex dendritic trees. These findings indicate that local IGF-I plays critical roles during postnatal/adult hippocampal neurogenesis, regulating the transition from HPSCs and progenitors to mature granule neurons in a cell stage-dependent manner. Stem Cells 2016;34:2194-2209. PMID:27144663

  9. Cichoric Acid Reverses Insulin Resistance and Suppresses Inflammatory Responses in the Glucosamine-Induced HepG2 Cells.

    PubMed

    Zhu, Di; Wang, Yutang; Du, Qingwei; Liu, Zhigang; Liu, Xuebo

    2015-12-30

    Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects. PMID:26592089

  10. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lep{sup ob/ob} mice

    SciTech Connect

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro; and others

    2009-09-25

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic {beta}-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep{sup ob/ob}/HSL{sup -/-}) and explored the role of HSL in pancreatic {beta}-cells in the setting of obesity. Lep{sup ob/ob}/HSL{sup -/-} developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep{sup ob/ob}/HSL{sup +/+} in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep{sup +/+} background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep{sup ob/ob} islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep{sup ob/ob} mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  11. Mechanisms of cinnamon extract-induced suppression of the overproduction of apolipoprotein B48-containing lipoproteins in insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic dyslipidemia is a common feature of insulin resistant states and is associated with aberrant metabolism of apoB-containing lipoprotein particles produced by not only the liver but also the small intestine. We have reported previously that an aqueous extract from cinnamon (CE) improves high...

  12. GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons

    PubMed Central

    Gu, Xinglong; Mao, Xia; Lussier, Marc P.; Hutchison, Mary Anne; Zhou, Liang; Hamra, F. Kent; Roche, Katherine W.; Lu, Wei

    2016-01-01

    Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs. PMID:26932439

  13. Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability of spiking in a Hodgkin-Huxley neuron model.

    PubMed

    Bashkirtseva, Irina; Neiman, Alexander B; Ryashko, Lev

    2015-05-01

    We study the stochastic dynamics of a Hodgkin-Huxley neuron model in a regime of coexistent stable equilibrium and a limit cycle. In this regime, noise may suppress periodic firing by switching the neuron randomly to a quiescent state. We show that at a critical value of the injected current, the mean firing rate depends weakly on noise intensity, while the neuron exhibits giant variability of the interspike intervals and spike count. To reveal the dynamical origin of this noise-induced effect, we develop the stochastic sensitivity analysis and use the Mahalanobis metric for this four-dimensional stochastic dynamical system. We show that the critical point of giant variability corresponds to the matching of the Mahalanobis distances from attractors (stable equilibrium and limit cycle) to a three-dimensional surface separating their basins of attraction. PMID:26066242

  14. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression.

    PubMed

    Cline, Brandon H; Costa-Nunes, Joao P; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I; Bukhman, Yury V; Kubatiev, Aslan; Steinbusch, Harry W M; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  15. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression

    PubMed Central

    Cline, Brandon H.; Costa-Nunes, Joao P.; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I.; Bukhman, Yury V.; Kubatiev, Aslan; Steinbusch, Harry W. M.; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  16. Signaling from Glia and Cholinergic Neurons Controls Nutrient-Dependent Production of an Insulin-like Peptide for Drosophila Body Growth.

    PubMed

    Okamoto, Naoki; Nishimura, Takashi

    2015-11-01

    The insulin-like peptide (ILP) family plays key biological roles in the control of body growth. Although the functions of ILPs are well understood, the mechanisms by which organisms sense their nutrient status and thereby control ILP production remain largely unknown. Here, we show that signaling relay and feedback mechanisms control the nutrient-dependent expression of Drosophila ILP5 (Dilp5). The expression of dilp5 in brain insulin-producing cells (IPCs) is negatively regulated by the transcription factor FoxO. Glia-derived Dilp6 remotely regulates the FoxO activity in IPCs, primarily through Jeb secreted by cholinergic neurons. Dilp6 production by surface glia is amplified by cellular response to circulating Dilps derived from IPCs, in concert with amino acid signals. The induction of dilp5 is critical for sustaining body growth under restricted food conditions. These results provide a molecular framework that explains how the production of an endocrine hormone in a specific tissue is coordinated with environmental conditions. PMID:26555050

  17. Rice (Oryza sativa japonica) Albumin Suppresses the Elevation of Blood Glucose and Plasma Insulin Levels after Oral Glucose Loading.

    PubMed

    Ina, Shigenobu; Ninomiya, Kazumi; Mogi, Takashi; Hase, Ayumu; Ando, Toshiki; Matsukaze, Narumi; Ogihara, Jun; Akao, Makoto; Kumagai, Hitoshi; Kumagai, Hitomi

    2016-06-22

    The suppressive effect of rice albumin (RA) of 16 kDa on elevation of blood glucose level after oral loading of starch or glucose and its possible mechanism were examined. RA suppressed the increase in blood glucose levels in both the oral starch tolerance test and the oral glucose tolerance test. The blood glucose concentrations 15 min after the oral administration of starch were 144 ± 6 mg/dL for control group and 127 ± 4 mg/dL for RA 200 mg/kg BW group, while those after the oral administration of glucose were 157 ± 7 mg/dL for control group and 137 ± 4 mg/dL for RA 200 mg/kg BW group. However, in the intraperitoneal glucose tolerance test, no significant differences in blood glucose level were observed between RA and the control groups, indicating that RA suppresses the glucose absorption from the small intestine. However, RA did not inhibit the activity of mammalian α-amylase. RA was hydrolyzed to an indigestible high-molecular-weight peptide (HMP) of 14 kDa and low-molecular-weight peptides by pepsin and pancreatin. Furthermore, RA suppressed the glucose diffusion rate through a semipermeable membrane like dietary fibers in vitro. Therefore, the indigestible HMP may adsorb glucose and suppress its absorption from the small intestine. PMID:27228466

  18. NPY-Induced Phase Shifts of PER2::LUC Rhythms are Mediated by Long-Term Suppression of Neuronal Excitability in a Phase-Specific Manner

    PubMed Central

    Besing, Rachel C.; Hablitz, Lauren M.; Paul, Jodi R.; Johnson, Russell L.; Prosser, Rebecca A.; Gamble, Karen L.

    2013-01-01

    Endogenous circadian rhythms are entrained to the 24-h light/dark cycle by both light and nonphotic stimuli. During the day, nonphotic stimuli, such as novel-wheel induced exercise, produce large phase advances. Neuropeptide Y (NPY) release from the thalamus onto suprachiasmatic nucleus (SCN) neurons at least partially mediates this nonphotic signal. We examined the hypothesis that NPY-induced phase advances are accompanied by suppression of PER2 and are mediated by long-term depression of neuronal excitability in a phase-specific manner. First, we found that NPY-induced phase advances in PER2::LUC SCN cultures are largest when NPY (2.35 µM) is given in the early part of the day (circadian time [CT] 0–6). In addition, PER2::LUC levels in NPY-treated (compared to vehicle-treated) samples were suppressed beginning 6–7 h after treatment. Similar NPY application to organotypic Per1::GFP SCN cultures resulted in long-term suppression of spike rate of GFP+ cells when slices were treated with NPY during the early or middle of the day (zeitgeber time [ZT] 2 or 6), but not during the late day (ZT 10). Furthermore, 1-h bath application of NPY to acute SCN brain slices decreased general neuronal activity measured through extracellular recordings. Finally, NPY-induced phase advances of PER2::LUC rhythms were blocked by latent depolarization with 34.5 mM [K+] 3 h after NPY application. These results suggest that NPY-induced phase advances may be mediated by long-term depression of neuronal excitability. This model is consistent with findings in other brain regions that NPY-induced persistent hyperpolarization underlies mechanisms of energy homeostasis, anxiety-related behavior, and thalamocortical synchronous firing. PMID:22324550

  19. Olive leaf extract suppresses messenger RNA expression of proinflammatory cytokines and enhances insulin receptor substrate 1 expression in the rats with streptozotocin and high-fat diet-induced diabetes.

    PubMed

    Liu, Ya-Nan; Jung, Ji-Hye; Park, Hyunjin; Kim, HyunSook

    2014-05-01

    Type 2 diabetes, characterized by hyperglycemia and hyperlipidemia, is a metabolic disease resulting from defects in both insulin secretion and insulin resistance. Recently, olive leaf has been reported as an anti-inflammatory, antioxidant, and antidiabetic agent. This study sought to investigate whether olive leaf extract can improve the insulin resistance and inflammation response in rats with type 2 diabetes induced by high-fat diet and streptozotocin. After administering olive leaf extract for 8 weeks (200 and 400 mg/kg body weight), rats given the higher dose showed significantly lower blood glucose, serum total cholesterol, and triglyceride levels compared with those of diabetic control rats (P < .05). Results of oral glucose tolerance tests, homeostasis model assessment of insulin resistance, and messenger RNA (mRNA) expression of tumor necrosis factor α and interleukin (IL) 6 in the liver show significantly decreased glucose level in rats given either dose of olive leaf extract (P < .05). Both olive leaf extract-treated groups showed significantly increased insulin receptor substrate 1 expression (P < .05). Tumor necrosis factor α, IL-6 and IL-1β mRNA expressions in epididymis adipose tissue were significantly lower in rats that received higher dose of olive leaf extract (P < .05). Lymphocyte infiltration was not observed in these rats. The results suggest that olive leaf extract may attenuate insulin resistance by suppressing mRNA expression of proinflammatory cytokines and elevating of insulin receptor substrate 1 expression. PMID:24916559

  20. The stressed female brain: neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress.

    PubMed

    Maeng, Lisa Y; Shors, Tracey J

    2013-01-01

    Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD), indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA) is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC) during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL) and infralimbic (IL) subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. About 24 h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similarly to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful life

  1. Prepubertal Exposure to Arsenic(III) Suppresses Circulating Insulin-like Growth Factor-1 (IGF-1) Delaying Sexual Maturation in Female Rats

    PubMed Central

    Reilly, Michael P.; Saca, James C.; Hamilton, Alina; Solano, Rene F.; Rivera, Jesse R.; Whitehouse-Innis, Wendy; Parsons, Jason G.; Dearth, Robert K.

    2013-01-01

    Arsenic (As) is a prevalent environmental toxin; readily accessible for human consumption and has been identified as an endocrine disruptor. However, it is not known what impact As has on female sexual maturation. Therefore, in the present study, we investigated the effects of prepubertal exposure on mammary gland development and pubertal onset in female rats. Results showed that prepubertal exposure to 10mg/kg of arsenite (As(III)) delayed vaginal opening (VO) and prepubertal mammary gland maturation. We determined that As accumulates in the liver, disrupts hepatocyte function and suppresses serum levels of the puberty related hormone insulin-like growth factor 1 (IGF-1) in prepubertal animals. Overall, this is the first study to show that prepubertal exposure to As(III) acts peripherally to suppresses circulating levels of IGF-1 resulting in delayed sexual maturation. Furthermore, this study identifies a critical window of increased susceptibility to As(III) that may have a lasting impact on female reproductive function. PMID:24090629

  2. Modulation of the central melanocortin system by leptin, insulin, and serotonin: co-ordinated actions in a dispersed neuronal network

    PubMed Central

    Williams, Kevin W.; Scott, Michael M.; Elmquist, Joel K.

    2011-01-01

    Over the past century, prevalent models of energy and glucose homeostasis have been developed from a better understanding of the neural circuits underlying obesity and diabetes. From the early hypothalamic lesion reports to the more recent pharmacological and molecular/genetic studies, the hypothalamic melanocortin system has been shown to play a critical role in the regulation of metabolism. This review attempts to highlight contributions to our current understanding of how numerous neuromodulators (leptin, insulin, and serotonin) integrate with the central melanocortin system to coordinate alterations in energy and glucose balance. PMID:21211525

  3. FDP-E induces adipocyte inflammation and suppresses insulin-stimulated glucose disposal: effect of inflammation and obesity on fibrinogen Bβ mRNA.

    PubMed

    Kang, Minsung; Vaughan, Roger A; Paton, Chad M

    2015-12-01

    Obesity is associated with increased fibrinogen production and fibrin formation, which produces fibrin degradation products (FDP-E and FDP-D). Fibrin and FDPs both contribute to inflammation, which would be expected to suppress glucose uptake and insulin signaling in adipose tissue, yet the effect of FDP-E and FDP-D on adipocyte function and glucose disposal is completely unknown. We tested the effects of FDPs on inflammation in 3T3-L1 adipocytes and primary macrophages and adipocyte glucose uptake in vitro. High-fat-fed mice increased hepatic fibrinogen mRNA expression ninefold over chow-fed mice, with concomitant increases in plasma fibrinogen protein levels. Obese mice also displayed increased fibrinogen content of epididymal fat pads. We treated cultured 3T3-L1 adipocytes and primary macrophages with FDP-E, FDP-D, or fibrinogen degradation products (FgnDP-E). FDP-D and FgnDP-E had no effect on inflammation or glucose uptake. Cytokine mRNA expression in RAW264.7 macrophage-like cells and 3T3-L1 adipocytes treated with FDP-E induced inflammation with maximal effects at 100 nM and 6 h. Insulin-stimulated 2-deoxy-d-[(3)H]glucose uptake was reduced by 71% in adipocytes treated with FDP-E. FDP-E, but not FDP-D or FgnDP-E, induces inflammation in macrophages and adipocytes and decreases glucose uptake in vitro. FDP-E may contribute toward obesity-associated acute inflammation and glucose intolerance, although its chronic role in obesity remains to be elucidated. PMID:26447203

  4. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.

    PubMed

    Bao, Li; Avshalumov, Marat V; Rice, Margaret E

    2005-10-26

    Mitochondrial dysfunction is a potential causal factor in Parkinson's disease. We show here that acute exposure to the mitochondrial complex I inhibitor rotenone (30-100 nM; 30 min) causes concentration-dependent suppression of single-pulse evoked dopamine (DA) release monitored in real time with carbon-fiber microelectrodes in guinea pig striatal slices, with no effect on DA content. Suppression of DA release was prevented by the sulfonylurea glibenclamide, implicating ATP-sensitive K+ (KATP) channels; however, tissue ATP was unaltered. Because KATP channels can be activated by hydrogen peroxide (H2O2), as well as by low ATP, we examined the involvement of rotenone-enhanced H2O2 generation. Confirming an essential role for H2O2, the inhibition of DA release by rotenone was prevented by catalase, a peroxide-scavenging enzyme. Striatal H2O2 generation during rotenone exposure was examined in individual medium spiny neurons using fluorescence imaging with dichlorofluorescein (DCF). An increase in intracellular H2O2 levels followed a similar time course to that of DA release suppression and was accompanied by cell membrane depolarization, decreased input resistance, and increased excitability. Extracellular catalase markedly attenuated the increase in DCF fluorescence and prevented rotenone-induced effects on membrane properties; membrane changes were also largely prevented by flufenamic acid, a blocker of transient receptor potential (TRP) channels. Thus, partial mitochondrial inhibition can cause functional DA denervation via H2O2 and KATP channels, without DA or ATP depletion. Furthermore, amplified H2O2 levels and TRP channel activation in striatal spiny neurons indicate potential sources of damage in these cells. Overall, these novel factors could contribute to parkinsonian motor deficits and neuronal degeneration caused by mitochondrial dysfunction. PMID:16251452

  5. Suppression of spikes during posttetanic hyperpolarization in auditory neurons: the role of temperature, I(h) currents, and the Na(+)-K(+)-ATPase pump.

    PubMed

    Kim, Jun Hee; von Gersdorff, Henrique

    2012-10-01

    In vivo recordings from postsynaptic neurons in the medial nucleus of the trapezoid body (MNTB), an auditory brain stem nucleus, show that acoustic stimulation produces a burst of spikes followed by a period of hyperpolarization and suppressed spiking activity. The underlying mechanism for this hyperpolarization and reduced spiking is unknown. Furthermore, the mechanisms that control excitability and resting membrane potential are not fully determined for these MNTB neurons. In this study we investigated the excitability of principal neurons from the MNTB after high-frequency afferent fiber stimulation, using whole cell recordings from postnatal day 15-17 rat brain stem slices. We found that Na(+)-K(+)-ATPase activity mediates a progressive hyperpolarization during a prolonged tetanic train and a posttetanic hyperpolarization (PTH) at the end of the train, when postsynaptic action potentials failed to fire. Raising the temperature to more physiological levels (from 22 to 35°C) depolarized the resting membrane potential of both presynaptic and postsynaptic cells and decreased the latency of action potential firing during PTH. Higher temperatures also reduced the presynaptic calyx action potential failure rates by 50% during presynaptic PTH, thus increasing the safety-factor for presynaptic spiking. The effect of temperature on hyperpolarization-activated cation current (I(h)) is reflected in the resting potential at both pre- and postsynaptic neurons. We thus propose that temperature-sensitive Na(+)-K(+)-ATPase activity and I(h) contribute to set the resting membrane potential and produce a brief period of suppressed spiking (or action potential failures) after a prolonged high-frequency afferent tetanus. PMID:22786951

  6. PPAR-γ Ameliorates Neuronal Apoptosis and Ischemic Brain Injury via Suppressing NF-κB-Driven p22phox Transcription.

    PubMed

    Wu, Jui-Sheng; Tsai, Hsin-Da; Cheung, Wai-Mui; Hsu, Chung Y; Lin, Teng-Nan

    2016-08-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor, protects neurons against ischemic stroke insult by reducing oxidative stress. NADPH oxidase (NOX) activation, a major driving force in ROS generation in the setting of reoxygenation/reperfusion, constitutes an important pathogenetic mechanism of ischemic brain damage. In the present study, both transient in vitro oxygen-glucose deprivation and in vivo middle cerebral artery (MCA) occlusion-reperfusion experimental paradigms of ischemic neuronal death were used to investigate the interaction between PPAR-γ and NOX. With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15-deoxy-∆(12,14)-PGJ2 (15d-PGJ2), via selectively attenuating p22phox expression, inhibited NOX activation and the subsequent ROS generation and neuronal death in a PPAR-γ-dependent manner. Secondly, results of promoter analyses and subcellular localization studies further revealed that PPAR-γ, via inhibiting hypoxia-induced NF-κB nuclear translocation, indirectly suppressed NF-κB-driven p22phox transcription. Noteworthily, postischemic p22phox siRNA treatment not only reduced infarct volumes but also improved functional outcome. In summary, we report a novel transrepression mechanism involving PPAR-γ downregulation of p22phox expression to suppress the subsequent NOX activation, ischemic neuronal death, and brain infarct. Identification of a PPAR-γ → NF-κB → p22phox neuroprotective signaling cascade opens a new avenue for protecting the brain against ischemic insult. PMID:26108185

  7. Electrophysiological activity of the C-peptide of the Locusta insulin-related peptide. Effect on the membrane conductance of Locusta neurones in vitro.

    PubMed

    Bermudez, I; Beadle, D J; Trifilieff, E; Luu, B; Hietter, H

    1991-11-18

    The C-peptide of Locusta insulin-related peptide, which is a 50 residue peptide originally isolated from the corpora cardiaca of the insect Locusta migratoria and to which we refer as 5-kDa peptide, has been synthesised chemically by the solid-phase method, using a BOC strategy. Since this peptide contains in its sequence a potential monobasic cleavage site, we also synthesised its 1-38 residue-related fragment, named 4-kDa peptide, although we have no hints of its natural occurrence in the corpora cardiaca. Electrophysiological studies have shown that both the 5-kDa and 4-kDa peptides depolarise the membrane and increase the membrane conductance of neurones freshly isolated from the thoracic ganglia of Locusta. Under voltage-clamp conditions, the current underlying these effects was inwardly directed and could be resolved into 2 components. One component, I(5-kDa)1, activated at potentials more hyperpolarised than -50 mV, peaked at about -75 mV and was blocked by the potassium channel blockers cesium and rubidium. The second component, I(5-kDa)2 was activated at potentials more depolarised than -50 mV, increased with depolarisation and was not blocked by cesium and rubidium. The effects of the 5-kDa and 4-kDa peptides on the membrane potential and membrane conductance of Locusta neurones suggest that these peptides may have a physiological role in the central nervous system of insects. PMID:1959647

  8. Suppression of Ischemia-Induced Hippocampal Pyramidal Neuron Death by Hyaluronan Tetrasaccharide through Inhibition of Toll-Like Receptor 2 Signaling Pathway.

    PubMed

    Sunabori, Takehiko; Koike, Masato; Asari, Akira; Oonuki, Yoji; Uchiyama, Yasuo

    2016-08-01

    Toll-like receptors (TLRs) are one of the main contributors that induce inflammation under tissue injury and infection. Because excessive inflammation can aggravate disease states, it is important to control inflammation at a moderate level. Herein, we show that hyaluronan (HA) oligomer, HA tetrasaccharide (HA4), could suppress the expression of proinflammatory cytokine IL-1β when stimulated with both TLR2- and TLR4-specific agonists in primary hippocampal neurons. To understand the effect of HA4 against ischemic insult, we performed hypoxic-ischemic (H/I) brain injury against neonatal mice. HA4 treatment significantly prevented hippocampal pyramidal cell death even 7 days after H/I injury, compared with the control mice. Although TLR2 and TLR4 are known as receptors for HA and also act as a receptor for inducing inflammation, only TLR2-deficient mice showed tolerance against H/I injury. Moreover, HA4 administration suppressed gliosis by inhibiting the activation of NF-κB, the downstream target of TLR2, which led to the suppression of IL-1β expression. Taken together, our data suggest that the neuroprotective effect of HA4 relies on antagonizing the TLR2/NF-κB pathway to reduce inflammation through suppressing the expression of proinflammatory cytokines after neonatal H/I brain injury. PMID:27301359

  9. A Physically-Modified Saline Suppresses Neuronal Apoptosis, Attenuates Tau Phosphorylation and Protects Memory in an Animal Model of Alzheimer's Disease

    PubMed Central

    Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Alzheimer's disease (AD), the leading cause of dementia in the aging population, is characterized by the presence of neuritic plaques, neurofibrillary tangles and extensive neuronal apoptosis. Neuritic plaques are mainly composed of aggregates of amyloid-β (Aβ) protein while neurofibrillary tangles are composed of the hyperphosphorylated tau protein. Despite intense investigations, no effective therapy is currently available to halt the progression of this disease. Here, we have undertaken a novel approach to attenuate apoptosis and tau phosphorylation in cultured neuronal cells and in a transgenic animal model of AD. RNS60 is a 0.9% saline solution containing oxygenated nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. In our experiments, fibrillar Aβ1-42, but not the reverse peptide Aβ42-1, induced apoptosis and cell death in human SHSY5Y neuronal cells. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), attenuated Aβ(1–42)-induced cell death. RNS60 inhibited neuronal cell death via activation of the type 1A phosphatidylinositol-3 (PI-3) kinase – Akt – BAD pathway. Furthermore, RNS60 also decreased Aβ(1–42)-induced tau phosphorylation via (PI-3 kinase – Akt)-mediated inhibition of GSK-3β. Similarly, RNS60 treatment suppressed neuronal apoptosis, attenuated Tau phosphorylation, inhibited glial activation, and reduced the burden of Aβ in the hippocampus and protected memory and learning in 5XFAD transgenic mouse model of AD. Therefore, RNS60 may be a promising pharmaceutical candidate in halting or delaying the progression of AD. PMID:25089827

  10. Tanshinol suppresses inflammatory factors in a rat model of vascular dementia and protects LPS-treated neurons via the MST1-FOXO3 signaling pathway.

    PubMed

    Yang, Yishu; Wang, Lili; Wu, Yan; Su, Dongmei; Wang, Ning; Wang, Jiedong; Shi, Cuige; Lv, Liping; Zhang, Shucheng

    2016-09-01

    Neuroinflammation plays an important role in vascular dementia(VD). Our previous work showed that mammalian Ste20-like kinase 1 (MST1) and the gene for a downstream transcription factor, FOXO3, play major roles in lipopolysaccharide (LPS)-induced apoptosis in hippocampal neurons. The neurotoxic effects of LPS are derived from its ability to cause an inflammatory response. We also previously showed that Tanshinol (TSL) provides neuro-protection in a rat model of VD. The present study further explores the effects of TSL on the neuroinflammatory aspects of VD and investigates whether TSL affects the MST1-FOXO3signaling pathway. VD was induced in rats using transient bilateral coronary artery occlusion. Interleukin(IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels were measured using enzyme-linked immunoabsorbent assay kits. Cell apoptosis was assessed by Hoechst 33342 staining. Protein and mRNA levels were evaluated by western blotting and quantitative polymerase chain reaction, respectively. TSL improved working memory and significantly inhibited plasma and hippocampal protein levels of IL-1β, IL-6, and TNF-α in a rat model of VD. LPS induced apoptosis in hippocampal neurons and increasedMST1 and p-FOXO3 protein expression, whereas MST1 siRNA transfection almost completely reversed LPS-induced neuronal apoptosis, indicating that LPS-induced cytotoxicity in hippocampal neurons is associated with MST1. TSL protected against LPS-induced cell apoptosis and suppressed IL-1β, IL-6, and TNF-α mRNA and protein expression as well as MST1 and p-FOXO3 protein expression in neurons. The present study provided novel mechanisms by which TSL exerts its neuroprotective activity and indicates that TSL may be a potential neuro-protective agent in VD. PMID:27317635

  11. A physically-modified saline suppresses neuronal apoptosis, attenuates tau phosphorylation and protects memory in an animal model of Alzheimer's disease.

    PubMed

    Modi, Khushbu K; Jana, Arundhati; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Alzheimer's disease (AD), the leading cause of dementia in the aging population, is characterized by the presence of neuritic plaques, neurofibrillary tangles and extensive neuronal apoptosis. Neuritic plaques are mainly composed of aggregates of amyloid-β (Aβ) protein while neurofibrillary tangles are composed of the hyperphosphorylated tau protein. Despite intense investigations, no effective therapy is currently available to halt the progression of this disease. Here, we have undertaken a novel approach to attenuate apoptosis and tau phosphorylation in cultured neuronal cells and in a transgenic animal model of AD. RNS60 is a 0.9% saline solution containing oxygenated nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. In our experiments, fibrillar Aβ1-42, but not the reverse peptide Aβ42-1, induced apoptosis and cell death in human SHSY5Y neuronal cells. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), attenuated Aβ(1-42)-induced cell death. RNS60 inhibited neuronal cell death via activation of the type 1A phosphatidylinositol-3 (PI-3) kinase-Akt-BAD pathway. Furthermore, RNS60 also decreased Aβ(1-42)-induced tau phosphorylation via (PI-3 kinase-Akt)-mediated inhibition of GSK-3β. Similarly, RNS60 treatment suppressed neuronal apoptosis, attenuated Tau phosphorylation, inhibited glial activation, and reduced the burden of Aβ in the hippocampus and protected memory and learning in 5XFAD transgenic mouse model of AD. Therefore, RNS60 may be a promising pharmaceutical candidate in halting or delaying the progression of AD. PMID:25089827

  12. Mechanisms of cinnamon extract-induced suppression of the intestinal overproduction of apolipoprotein B48-containing lipoproteins in insulin resistant high-fructose fed animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported previously that cinnamon extract (CE) prevents high-fructose (HF) feeding-induced whole-body insulin resistance by enhancing insulin signaling in skeletal muscle. In this study, we investigated whether intestinal apolipoprotein overproduction is inhibited by CE in this insulin-resis...

  13. Nymphaea rubra ameliorates TNF-α-induced insulin resistance via suppression of c-Jun NH2-terminal kinase and nuclear factor-κB in the rat skeletal muscle cells.

    PubMed

    Gautam, Sudeep; Rahuja, Neha; Ishrat, Nayab; Asthana, R K; Mishra, D K; Maurya, Rakesh; Jain, Swatantra Kumar; Srivastava, Arvind Kumar

    2014-12-01

    In this work, we demonstrated insulin signaling and the anti-inflammatory effects by the chloroform fraction of ethanolic extract of Nymphaea rubra flowers in TNF-α-induced insulin resistance in the rat skeletal muscle cell line (L6 myotubes) to dissect out its anti-hyperglycemic mechanism. N. rubra enhances the GLUT4-mediated glucose transport in a dose dependent manner and also increases the tyrosine phosphorylation of both IR-β and IRS-1, and the IRS-1 associated PI-3 kinase activity in TNF-α-treated L6 myotubes. Moreover, N. rubra decreases Ser(307) phosphorylation of IRS-1 by the suppression of JNK and NF-κB activation. In conclusion, N. rubra reverses the insulin resistance by the inhibition of c-Jun NH2-Terminal Kinase and Nuclear-κB. PMID:25234391

  14. Inhibition of cellular proliferation by the Wilms' tumor suppressor WT1 is associated with suppression of insulin-like growth factor I receptor gene expression.

    PubMed Central

    Werner, H; Shen-Orr, Z; Rauscher, F J; Morris, J F; Roberts, C T; LeRoith, D

    1995-01-01

    We have investigated the regulation of the insulin-like growth factor I receptor (IGF-I-R) gene promoter by the Wilms' tumor suppressor WT1 in intact cells. The levels of endogenous IGF-I-R mRNA and the activity of IGF-I-R gene promoter fragments in luciferase reporter constructs were found to be significantly higher in G401 cells (a Wilms' tumor-derived cell line lacking detectable WT1 mRNA) than in 293 cells (a human embryonic kidney cell line which expresses significant levels of WT1 mRNA). To study whether WT1 could suppress the expression of the endogenous IGF-I-R gene, WT1-negative G401 cells were stably transfected with a WT1 expression vector. Expression of WT1 mRNA in G401 cells resulted in a significant decrease in the rate of cellular proliferation, which was associated with a reduction in the levels of IGF-I-R mRNA, promoter activity, and ligand binding and with a reduction in IGF-I-stimulated cellular proliferation, thymidine incorporation, and anchorage-independent growth. These data suggest that a major aspect of the action of the WT1 tumor suppressor is the repression of IGF-I-R gene expression. PMID:7791758

  15. Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation.

    PubMed

    Mayer, Christopher M; Belsham, Denise D

    2010-01-01

    Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR. PMID:19887566

  16. Suppression of ATP-induced excitability in rat small-diameter trigeminal ganglion neurons by activation of GABAB receptor.

    PubMed

    Takeda, Mamoru; Ikeda, Mizuho; Takahashi, Masayuki; Kanazawa, Takuya; Nasu, Masanori; Matsumoto, Shigeji

    2013-09-01

    The aim of the present study was to investigate whether a GABAB receptor agonist could modulate ATP-activated neuronal excitability of nociceptive TRG neurons using perforated whole-cell patch-clamp and immunohistochemical techniques. Immunohistochemical analysis revealed that 86% of P2X3 receptor-immunoreactive, small-diameter TRG neurons co-expressed GABAB receptor. Under voltage-clamp conditions (Vh=-60mV), application of ATP activated the inward current in acutely isolated rat TRG neurons in a dose-dependent manner (10-50 μM) and this current could be blocked by pyridoxal-phosphate-6-azophenyl-27,47-disulfonic acid (PPADS) (10 μM), a selective P2 purinoreceptor antagonist. The peak amplitude of ATP-activated currents was significantly inhibited after application of GABAB receptor agonist, baclofen (10-50 μM), in a concentration-dependent and reversible manner. The baclofen-induced inhibition of ATP-activated current was abolished by co-application of 3-amino-2 (4-chlorophenyl)-2hydroxypropysufonic acid) saclofen, a GABAB receptor antagonist (50 μM). Under current-clamp conditions, application of 20 μM ATP significantly depolarized the membrane potential resulting in increased mean action potential frequencies, and these ATP-induced effects were significantly inhibited by baclofen and these effects were antagonized by co-application of saclofen. Together, the results suggested that GABAB receptor activation could inhibit the ATP-induced excitability of small-diameter TRG neurons activated through the P2X3 receptor. Thus, the interaction between P2X3 and GABAB receptors of small-diameter TRG neuronal cell bodies is a potential therapeutic target for the treatment of trigeminal nociception. PMID:24004472

  17. Cocaine-induced suppression of saccharin intake and morphine modulation of Ca²⁺ channel currents in sensory neurons of OPRM1 A118G mice.

    PubMed

    Freet, Christopher S; Ballard, Sarah M; Alexander, Danielle N; Cox, Taylor A; Imperio, Caesar G; Anosike, Nnaemeka; Carter, Alyssa B; Mahmoud, Saifeldin; Ruiz-Velasco, Victor; Grigson, Patricia S

    2015-02-01

    Several studies have shown that human carriers of the single nucleotide polymorphism of the μ-opioid receptor, OPRM1 A118G, exhibit greater drug and alcohol use, increased sensitivity to pain, and reduced sensitivity to the antinociceptive effects of opiates. In the present study, we employed a 'humanized' mouse model containing the wild-type (118AA) or variant (118GG) allele to examine behavior in our model of drug-induced suppression of a natural reward cue and to compare the morphine pharmacological profile in acutely isolated sensory neurons. Compared with 118AA mice, our results demonstrate that homozygous 118GG mice exhibit greater avoidance of the cocaine-paired saccharin cue, a behavior linked to an aversive withdrawal-like state. Electrophysiological recordings confirmed the reduced modulation of Ca(2+) channels by morphine in trigeminal ganglion (TG) neurons from 118GG mice compared to the 118AA control cells. However, repeated cocaine exposure in 118GG mice led to a leftward shift of the morphine concentration-response relationship when compared with 118GG control mice, while a rightward shift was observed in 118AA mice. These results suggest that cocaine exposure of mice carrying the 118G allele leads to a heightened sensitivity of the reward system and a blunted modulation of Ca(2+) channels by morphine in sensory neurons. PMID:25449401

  18. Cocaine-induced suppression of saccharin intake and morphine modulation of Ca2+ channel currents in sensory neurons of OPRM1 A118G mice

    PubMed Central

    Freet, Christopher S.; Ballard, Sarah M.; Alexander, Danielle N.; Cox, Taylor A.; Imperio, Caesar G.; Anosike, Nnaemeka; Carter, Alyssa B.; Mahmoud, Saifeldin; Ruiz-Velasco, Victor; Grigson, Patricia S.

    2014-01-01

    Several studies have shown that human carriers of the single nucleotide polymorphism of the µ-opioid receptor, OPRM1 A118G, exhibit greater drug and alcohol use, increased sensitivity to pain, and reduced sensitivity to the antinociceptive effects of opiates. In the present study, we employed a ‘humanized’ mouse model containing the wild-type (118AA) or variant (118GG) allele to examine behavior in our model of drug-induced suppression of a natural reward cue and to compare the morphine pharmacological profile in acutely isolated sensory neurons. Compared with 118AA mice, our results demonstrate that homozygous 118GG mice exhibit greater avoidance of the cocaine-paired saccharin cue, a behavior linked to an aversive withdrawal-like state. Electrophysiological recordings confirmed the reduced modulation of Ca2+ channels by morphine in trigeminal ganglion (TG) neurons from 118GG mice compared to the 118AA control cells. However, repeated cocaine exposure in 118GG mice led to a leftward shift of the morphine concentration-response relationship when compared with 118GG control mice, while a rightward shift was observed in 118AA mice. These results suggest that cocaine exposure of mice carrying the 118G allele leads to a heightened sensitivity of the reward system and a blunted modulation of Ca2+ channels by morphine in sensory neurons. PMID:25449401

  19. Prior activation of inositol 1,4,5-trisphosphate receptors suppresses the subsequent induction of long-term potentiation in hippocampal CA1 neurons.

    PubMed

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-05-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population spike by the delivery of high-frequency stimulation (HFS, a tetanus of 100 pulses at 100 Hz) to the Schaffer collateral-commissural pathway to CA1 neuron synapses was suppressed when group I metabotropic glutamate receptors (mGluRs) were activated prior to the delivery of HFS. LTP induction was also suppressed when CA1 synapses were preconditioned 60 min before HFS by LFS of 1000 pulses at 1 Hz and this effect was inhibited when the test stimulation delivered at 0.05 Hz was either halted or applied in the presence of an antagonist ofN-methyl-d-aspartate receptors, group I mGluRs, or IP3Rs during a 20-min period from 20 to 40 min after the end of LFS. Furthermore, blockade of group I mGluRs or IP3Rs immediately before the delivery of HFS overcame the effects of the preconditioning LFS on LTP induction. These results suggest that, in CA1 neurons, after a preconditioning LFS, activation of group I mGluRs caused by the test stimulation results in IP3Rs activation that leads to a failure of LTP induction. PMID:27084928

  20. β-Amyloid Oligomers Induce Phosphorylation of Tau and Inactivation of Insulin Receptor Substrate via c-Jun N-Terminal Kinase Signaling: Suppression by Omega-3 Fatty Acids and Curcumin

    PubMed Central

    Ma, Qiu-Lan; Yang, Fusheng; Rosario, Emily R.; Ubeda, Oliver J.; Beech, Walter; Gant, Dana J.; Chen, Ping Ping; Hudspeth, Beverly; Chen, Cory; Zhao, Yongle; Vinters, Harry V.; Frautschy, Sally A.

    2009-01-01

    Both insulin resistance (type II diabetes) and β-amyloid (Aβ) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Aβ oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Aβ oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Aβ oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD. PMID:19605645

  1. Butylphthalide Suppresses Neuronal Cells Apoptosis and Inhibits JNK-Caspase3 Signaling Pathway After Brain Ischemia /Reperfusion in Rats.

    PubMed

    Wen, Xiang-Ru; Tang, Man; Qi, Da-Shi; Huang, Xiao-Jing; Liu, Hong-Zhi; Zhang, Fang; Wu, Jian; Wang, Yi-Wen; Zhang, Xun-Bao; Guo, Ji-Qiang; Wang, Shu-Ling; Liu, Yong; Wang, Yu-Lan; Song, Yuan-Jian

    2016-10-01

    Although Butylphthalide (BP) has protective effects that reduce ischemia-induced brain damage and neuronal cell death, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of BP against ischemic brain injury induced by cerebral I/R through inhibition of the c-Jun N-terminal kinase (JNK)-Caspase3 signaling pathway. BP in distilled non-genetically modified Soybean oil was administered intragastrically three times a day at a dosage of 15 mg/(kg day) beginning at 20 min after I/R in Sprague-Dawley rats. Immunohistochemical staining and Western blotting were performed to examine the expression of related proteins, and TUNEL-staining was used to detect the percentage of neuronal apoptosis in the hippocampal CA1 region. The results showed that BP could significantly protect neurons against cerebral I/R-induced damage. Furthermore, the expression of p-JNK, p-Bcl2, p-c-Jun, FasL, and cleaved-caspase3 was also decreased in the rats treated with BP. In summary, our results imply that BP could remarkably improve the survival of CA1 pyramidal neurons in I/R-induced brain injury and inhibit the JNK-Caspase3 signaling pathway. PMID:27015680

  2. The molecular mechanism of endoplasmic reticulum stress-induced apoptosis in PC-12 neuronal cells: the protective effect of insulin-like growth factor I.

    PubMed

    Zou, Cheng-Gang; Cao, Xiu-Zhen; Zhao, Yue-Shui; Gao, Shun-Yu; Li, Shu-De; Liu, Xian-Yong; Zhang, Yan; Zhang, Ke-Qin

    2009-01-01

    Endoplasmic reticulum (ER) stress has been implicated in several neurodegenerative diseases. Although CCAAT/enhancer-binding protein homologous protein (CHOP) has been shown to play a critical role in ER stress, the precise apoptosis cascade downstream of CHOP is unknown. In this report, we investigated the mechanism of ER stress-mediated apoptosis as well as the action of IGF-I in PC-12 neuronal cells. Our results demonstrated that tribbles-related protein 3 (TRB3), which is a target gene of CHOP, was responsible for tunicamycin (an ER stress inducer)-induced apoptosis. TRB3 could promote dephosphorylation of Akt in PC-12 cells. IGF-I inhibited ER stress-induced apoptosis by restoring the phosphorylation level of Akt. Both wortmannin (a phosphatidylinositide 3-kinase inhibitor) and SB 212090 (a p38 MAPK inhibitor) suppressed the protective effect of IGF-I on ER stress-induced apoptosis. Interestingly, IGF-I attenuated ER stress-mediated expression of TRB3 but not CHOP. This action of IGF-I was abolished by SB 212090 but not by wortmannin. Immunoprecipitation analysis revealed that IGF-I promoted the phosphorylation of CHOP by activating p38 MAPK, probably leading to a decrease in the transcriptional activity of CHOP. The dephosphorylation of Akt resulted in increased expression of a proapoptotic protein, p53 up-regulated modulator of apoptosis (PUMA), in a forkhead box O3a-dependent manner. Knockdown of PUMA by short hairpin RNA attenuated ER stress-mediated apoptosis. Thus, our current study indicates that both TRB3 and PUMA are critical molecules in ER stress-induced apoptosis. IGF-I effectively protects PC-12 neuronal cells against ER stress-induced apoptosis through the phosphatidylinositide 3-kinase/Akt and p38 MAPK pathways. PMID:18801901

  3. Regulation of Blood Pressure, Appetite, and Glucose by Leptin After Inactivation of Insulin Receptor Substrate 2 Signaling in the Entire Brain or in Proopiomelanocortin Neurons.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Freeman, Nathan J; Alsheik, Ammar J; Adi, Ahmad; Hall, John E

    2016-02-01

    Insulin receptor substrate 2 (IRS2) is one of the 3 major leptin receptor signaling pathways, but its role in mediating the chronic effects of leptin on blood pressure, food intake, and glucose regulation is unclear. We tested whether genetic inactivation of IRS2 in the entire brain (IRS2/Nestin-cre mice) or specifically in proopiomelanocortin (POMC) neurons (IRS2/POMC-cre mice) attenuates the chronic cardiovascular, metabolic, and antidiabetic effects of leptin. Mice were instrumented with telemetry probes for measurement of blood pressure and heart rate and with venous catheters for intravenous infusions. After a 5-day control period, mice received leptin infusion (2 μg/kg per minute) for 7 days. Compared with control IRS2(flox/flox) mice, IRS2/POMC-cre mice had similar body weight and food intake (33±1 versus 35±1 g and 3.6±0.5 versus 3.8±0.2 g per day) but higher mean arterial pressure (MAP) and heart rate (110±2 versus 102±2 mm Hg and 641±9 versus 616±5 bpm). IRS2/Nestin-cre mice were heavier (38±2 g), slightly hyperphagic (4.5±1.0 g per day), and had higher MAP and heart rate (108±2 mm Hg and 659±9 bpm) compared with control mice. Leptin infusion gradually increased MAP despite decreasing food intake by 31% in IRS2(flox/flox) and in Nestin-cre control mice. In contrast, leptin infusion did not change MAP in IRS2/Nestin-cre or IRS2/POMC-cre mice. The anorexic and antidiabetic effects of leptin, however, were similar in all 3 groups. These results indicate that IRS2 signaling in the central nervous system, and particularly in POMC neurons, is essential for the chronic actions of leptin to raise MAP but not for its anorexic or antidiabetic effects. PMID:26628674

  4. 17beta-estradiol potently suppresses cAMP-induced insulin-like growth factor-I gene activation in primary rat osteoblast cultures

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Shu, H.; Casinghino, S.; Crothers, K.; Rotwein, P.; Centrella, M.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) is a key factor in bone remodeling. In osteoblasts, IGF-I synthesis is enhanced by parathyroid hormone and prostaglandin E2 (PGE2) through cAMP-activated protein kinase. In rats, estrogen loss after ovariectomy leads to a rise in serum IGF-I and an increase in bone remodeling, both of which are reversed by estrogen treatment. To examine estrogen-dependent regulation of IGF-I expression at the molecular level, primary fetal rat osteoblasts were co-transfected with the estrogen receptor (hER, to ensure active ER expression), and luciferase reporter plasmids controlled by promoter 1 of the rat IGF-I gene (IGF-I P1), used exclusively in these cells. As reported, 1 microM PGE2 increased IGF-I P1 activity by 5-fold. 17beta-Estradiol alone had no effect, but dose-dependently suppressed the stimulatory effect of PGE2 by up to 90% (ED50 approximately 0.1 nM). This occurred within 3 h, persisted for at least 16 h, required ER, and appeared specific, since 17alpha-estradiol was 100-300-fold less effective. By contrast, 17beta-estradiol stimulated estrogen response element (ERE)-dependent reporter expression by up to 10-fold. 17beta-Estradiol also suppressed an IGF-I P1 construct retaining only minimal promoter sequence required for cAMP-dependent gene activation, but did not affect the 60-fold increase in cAMP induced by PGE2. There is no consensus ERE in rat IGF-I P1, suggesting novel downstream interactions in the cAMP pathway that normally enhances IGF-I expression in skeletal cells. To explore this, nuclear extract from osteoblasts expressing hER were examined by electrophoretic mobility shift assay using the atypical cAMP response element in IGF-I P1. Estrogen alone did not cause DNA-protein binding, while PGE2 induced a characteristic gel shift complex. Co-treatment with both hormones caused a gel shift greatly diminished in intensity, consistent with their combined effects on IGF-I promoter activity. Nonetheless, hER did not bind

  5. Trans-Fatty Acids Aggravate Obesity, Insulin Resistance and Hepatic Steatosis in C57BL/6 Mice, Possibly by Suppressing the IRS1 Dependent Pathway.

    PubMed

    Zhao, Xiaona; Shen, Cheng; Zhu, Hong; Wang, Cong; Liu, Xiangwei; Sun, Xiaolei; Han, Shasha; Wang, Peng; Dong, Zhen; Ma, Xin; Hu, Kai; Sun, Aijun; Ge, Junbo

    2016-01-01

    Trans-fatty acid consumption has been reported as a risk factor for metabolic disorders and targeted organ damages. Nonetheless, little is known about the roles and mechanisms of trans-fatty acids in obesity, insulin resistance (IR) and hepatic steatosis. Adult C57BL/6 male mice were fed with four different diets for 20 weeks: normal diet (ND), high fat diet (HFD), low trans-fatty acids diet (LTD) and high trans-fatty acid diet (HTD). The diet-induced metabolic disorders were assessed by evaluating body weight, glucose tolerance test, hepatic steatosis and plasma lipid profiles post 20-week diet. Histological (H&E, Oil-Red-O) staining and western blot analysis were employed to assess liver steatosis and potential signaling pathways. After 20-weeks of diet, the body weights of the four groups were 29.61 ± 1.89 g (ND), 39.04 ± 4.27 g (HFD), 34.09 ± 2.62 g (LTD) and 43.78 ± 4.27 g (HTD) (p < 0.05), respectively. HFD intake significantly impaired glucose tolerance, which was impaired further in the mice consuming the HTD diet. The effect was further exacerbated by HTD diet. Moreover, the HTD group exhibited significantly more severe liver steatosis compared with HFD group possibly through regulating adipose triglyceride lipase. The group consuming the HTD also exhibited significantly reduced levels of IRS1, phosphor-PKC and phosphor-AKT. These results support our hypothesis that consumption of a diet high in trans-fatty acids induces higher rates of obesity, IR and hepatic steatosis in male C57BL/6 mice, possibly by suppressing the IRS1dependent pathway. PMID:27248994

  6. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury

    PubMed Central

    YAO, JUNCHAO; ZHENG, KEBIN; ZHANG, XIANG

    2015-01-01

    Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity in adults and children worldwide. Recent studies have demonstrated that both apoptosis and autophagy participate in TBI-induced neuronal cell death and functional loss. The peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist rosiglitazone (RSG) is a well-known anti-inflammatory, which carries out its effects via the activation of PPAR-γ. Previous studies have suggested that RSG may exert neuroprotective effects in animal models of both chronic and acute brain injury; however, whether RSG is involved in autophagic neuronal death following TBI remains to be elucidated. The present study aimed to determine whether RSG carries out its neuroprotective properties via the attenuation of neuronal apoptosis and autophagy, following TBI in a rat model. Furthermore, the role of RSG was investigated with regards to the modulation of inflammation and glutamate excitotoxicity, and the impact of RSG on functional recovery following TBI was determined. The rats were subjected to controlled cortical impact injury, prior to being randomly divided into three groups: A sham-operated group, a TBI group, and an RSG treatment group. The RSG treatment group was intraperitoneally treated with 2 mg/kg RSG immediately after TBI. The results of the present study demonstrated that RSG treatment following TBI significantly reduced neuronal apoptosis and autophagy, and increased functional recovery. These effects were correlated with a decrease in the protein expression levels of tumor necrosis factor α and interleukin-6. However, no significant changes were observed in the protein expression levels of glutamate transporter-1 in the brain cortex. The results of the present study provide in vivo evidence that RSG may exert neuroprotective effects via the inhibition of neuronal apoptosis and autophagy following experimental TBI in rats, and the mechanism underlying these effects may be associated

  7. Methylmercury causes neuronal cell death through the suppression of the TrkA pathway: In vitro and in vivo effects of TrkA pathway activators

    SciTech Connect

    Fujimura, Masatake; Usuki, Fusako

    2015-02-01

    Methylmercury (MeHg) is an environmental toxin which induces cell death specific for the nervous systems. Here we show that MeHg causes neuronal cell death through the suppression of the tropomyosin receptor kinase A (TrkA) pathway, and that compounds activating the TrkA pathway prevent MeHg-induced nerve damage in vitro and in vivo. We first investigated the mechanism of MeHg-induced neurotoxicity in differentiating neurons using PC12 cells. Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. Further, MeHg-induced apoptosis was preceded by inhibition of neurite extension, as determined by ELISA analyses of the neurite-specific protein neurofilament triplet H protein (NF-H). To determine the mechanism of MeHg-induced apoptosis, we evaluated the effects of MeHg on the TrkA pathway, which is known to regulate neuronal differentiation and viability. Western blot analysis demonstrated that, like the TrkA phosphorylation inhibitor K252a, MeHg inhibited phosphorylation of TrkA and its downstream effectors. Furthermore, GM1 ganglioside and its analog MCC-257, which enhance TrkA phosphorylation, overcame the effect of MeHg in neurons, supporting the involvement of the TrkA pathway in MeHg-induced nerve damage. Finally, we demonstrated that MCC-257 rescued the clinical sign and pathological changes in MeHg-exposed rats. These findings indicate that MeHg-induced apoptosis in neuron is triggered by inhibition of the TrkA pathway, and that GM1 ganglioside and MCC-257 effectively prevent MeHg-induced nerve damage. - Highlights: • Exposure to 100 nM MeHg for 1 day induced apoptosis in differentiating PC12 cells. • Inhibition of neurite extension was involved in MeHg-induced apoptosis. • Like the TrkA phosphorylation inhibitor, MeHg inhibited phosphorylation of TrkA. • GM1 ganglioside and its analog effectively prevented MeHg-induced nerve damage.

  8. Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum.

    PubMed

    Phillips, Jonathan E; Gomer, Richard H

    2015-02-01

    Neuronal ceroid lipofuscinosis (NCL) is the most common childhood-onset neurodegenerative disease. NCL is inevitably fatal, and there is currently no treatment available. Children with NCL show a progressive decline in movement, vision and mental abilities, and an accumulation of autofluorescent deposits in neurons and other cell types. Late-infantile NCL is caused by mutations in the lysosomal protease tripeptidyl peptidase 1 (TPP1). TPP1 cleaves tripeptides from the N-terminus of proteins in vitro, but little is known about the physiological function of TPP1. TPP1 shows wide conservation in vertebrates but it is not found in Drosophila, Caenorhabditis elegans or Saccharomyces cerevisiae. Here, we characterize ddTpp1, a TPP1 ortholog present in the social amoeba Dictyostelium discoideum. Lysates from cells lacking ddTpp1 show a reduced but not abolished ability to cleave a TPP1 substrate, suggesting that other Dictyostelium enzymes can perform this cleavage. ddTpp1 and human TPP1 localize to the lysosome in Dictyostelium, indicating conserved function and trafficking. Cells that lack ddTpp1 show precocious multicellular development and a reduced ability to form spores during development. When cultured in autophagy-stimulating conditions, cells lacking ddTpp1 rapidly decrease in size and are less viable than wild-type cells, suggesting that one function of ddTpp1 could be to limit autophagy. Cells that lack ddTpp1 exhibit strongly impaired development in the presence of the lysosome-perturbing drug chloroquine, and this phenotype can be suppressed through a secondary mutation in the gene that we name suppressor of tpp1(-) A (stpA), which encodes a protein with some similarity to mammalian oxysterol-binding proteins (OSBPs). Taken together, these results suggest that targeting specific proteins could be a viable way to suppress the effects of loss of TPP1 function. PMID:25540127

  9. Partial genetic suppression of a loss-of-function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum

    PubMed Central

    Phillips, Jonathan E.; Gomer, Richard H.

    2015-01-01

    Neuronal ceroid lipofuscinosis (NCL) is the most common childhood-onset neurodegenerative disease. NCL is inevitably fatal, and there is currently no treatment available. Children with NCL show a progressive decline in movement, vision and mental abilities, and an accumulation of autofluorescent deposits in neurons and other cell types. Late-infantile NCL is caused by mutations in the lysosomal protease tripeptidyl peptidase 1 (TPP1). TPP1 cleaves tripeptides from the N-terminus of proteins in vitro, but little is known about the physiological function of TPP1. TPP1 shows wide conservation in vertebrates but it is not found in Drosophila, Caenorhabditis elegans or Saccharomyces cerevisiae. Here, we characterize ddTpp1, a TPP1 ortholog present in the social amoeba Dictyostelium discoideum. Lysates from cells lacking ddTpp1 show a reduced but not abolished ability to cleave a TPP1 substrate, suggesting that other Dictyostelium enzymes can perform this cleavage. ddTpp1 and human TPP1 localize to the lysosome in Dictyostelium, indicating conserved function and trafficking. Cells that lack ddTpp1 show precocious multicellular development and a reduced ability to form spores during development. When cultured in autophagy-stimulating conditions, cells lacking ddTpp1 rapidly decrease in size and are less viable than wild-type cells, suggesting that one function of ddTpp1 could be to limit autophagy. Cells that lack ddTpp1 exhibit strongly impaired development in the presence of the lysosome-perturbing drug chloroquine, and this phenotype can be suppressed through a secondary mutation in the gene that we name suppressor of tpp1− A (stpA), which encodes a protein with some similarity to mammalian oxysterol-binding proteins (OSBPs). Taken together, these results suggest that targeting specific proteins could be a viable way to suppress the effects of loss of TPP1 function. PMID:25540127

  10. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ

    PubMed Central

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-01-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)-induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP-1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity. PMID:27431935

  11. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus

    NASA Astrophysics Data System (ADS)

    Offutt, Sarah J.; Ryan, Kellie J.; Konop, Alexander E.; Lim, Hubert H.

    2014-12-01

    Objective. The inferior colliculus (IC) is the primary processing center of auditory information in the midbrain and is one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is through deep brain stimulation via the auditory midbrain implant (AMI), which is designed for hearing restoration and is already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity within the IC. Previous studies have suggested modulatory projections from the dorsal cortex of the IC (ICD) to the central nucleus of the IC (ICC), though the functional properties of these projections need to be determined. Approach. In this study, we investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the ICC in ketamine-anesthetized guinea pigs. Main Results. We observed ICD stimulation induces both suppressive and facilitatory changes across ICC that can occur immediately during stimulation and remain after stimulation. Additionally, ICD stimulation paired with broadband noise stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially when stimulating in more rostral and medial ICD locations. Significance. These findings demonstrate that ICD stimulation can induce specific types of plastic changes in ICC activity, which may be relevant for treating tinnitus. By using the AMI with electrode sites positioned with the ICD and the ICC, the modulatory effects of ICD stimulation can be tested directly in tinnitus patients.

  12. Prolyl isomerase Pin1 and protein kinase HIPK2 cooperate to promote cortical neurogenesis by suppressing Groucho/TLE:Hes1-mediated inhibition of neuronal differentiation.

    PubMed

    Ciarapica, R; Methot, L; Tang, Y; Lo, R; Dali, R; Buscarlet, M; Locatelli, F; del Sal, G; Rota, R; Stifani, S

    2014-02-01

    The Groucho/transducin-like Enhancer of split 1 (Gro/TLE1):Hes1 transcriptional repression complex acts in cerebral cortical neural progenitor cells to inhibit neuronal differentiation. The molecular mechanisms that regulate the anti-neurogenic function of the Gro/TLE1:Hes1 complex during cortical neurogenesis remain to be defined. Here we show that prolyl isomerase Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) and homeodomain-interacting protein kinase 2 (HIPK2) are expressed in cortical neural progenitor cells and form a complex that interacts with the Gro/TLE1:Hes1 complex. This association depends on the enzymatic activities of both HIPK2 and Pin1, as well as on the association of Gro/TLE1 with Hes1, but is independent of the previously described Hes1-activated phosphorylation of Gro/TLE1. Interaction with the Pin1:HIPK2 complex results in Gro/TLE1 hyperphosphorylation and weakens both the transcriptional repression activity and the anti-neurogenic function of the Gro/TLE1:Hes1 complex. These results provide evidence that HIPK2 and Pin1 work together to promote cortical neurogenesis, at least in part, by suppressing Gro/TLE1:Hes1-mediated inhibition of neuronal differentiation. PMID:24270405

  13. Suppression of neuronal excitability by the secretion of the lamprey (Lampetra japonica) provides a mechanism for its evolutionary stability.

    PubMed

    Chi, Shaopeng; Xiao, Rong; Li, Qingwei; Zhou, Liwei; He, Rongqiao; Qi, Zhi

    2009-07-01

    Lampreys are one of the most primitive vertebrates still living today. They attach themselves to the body surface of the host fish through their sucker-like mouths and suck blood of the host for days. Recent fossil evidence has indicated that morphology of lampreys in the late Devonian period, over 360 million years ago, already possessed the present day major characteristics, suggesting the evolutionary stability of a highly specialized parasitic feeding habit. Obviously, nociceptive responses and hemostasis of the host are two major barriers to long-term feeding of the parasitic lamprey. It has been found, to counteract hemostasis of the host, that paired buccal glands of lampreys secrete antihemostatic compounds to prevent blood of the host from coagulation. However, it is not known how lampreys make the host lose nociceptive responses. Here, we prepared components of the crude extract from the buccal glands of the lampreys (Lampetra japonica). Then, we show that crude extract and one of its purified components reduce the firing frequency of neuronal action potentials probably through inhibiting the voltage-dependent Na(+) channels. As the voltage-gated Na(+) channels are highly conserved throughout evolution, we argue that the secretion of the lampreys could exert the similar effect on the Na(+) channels of their host fish as well. Therefore, together with its antihemostatic effect, the secretion due to its inhibitory effect on neuronal excitability might provide a mechanism for the parasitic lampreys to keep their evolutionary stability. PMID:19198874

  14. Valeriana officinalis Extracts Ameliorate Neuronal Damage by Suppressing Lipid Peroxidation in the Gerbil Hippocampus Following Transient Cerebral Ischemia.

    PubMed

    Yoo, Dae Young; Jung, Hyo Young; Nam, Sung Min; Kim, Jong Whi; Choi, Jung Hoon; Kwak, Youn-Gil; Yoo, Miyoung; Lee, Sanghee; Yoon, Yeo Sung; Hwang, In Koo

    2015-06-01

    As a medicinal plant, the roots of Valeriana officinalis have been used as a sedative and tranquilizer. In the present study, we evaluated the neuroprotective effects of valerian root extracts (VE) on the hippocampal CA1 region of gerbils after 5 min of transient cerebral ischemia. Gerbils were administered VE orally once a day for 3 weeks, subjected to ischemia/reperfusion injury, and continued on VE for 3 weeks. The administration of 100 mg/kg VE (VE100 group) significantly reduced the ischemia-induced spontaneous motor hyperactivity 1 day after ischemia/reperfusion. Four days after ischemia/reperfusion, animals treated with VE showed abundant cresyl violet-positive neurons in the hippocampal CA1 region when compared to the vehicle or 25 mg/kg VE-treated groups. In addition, the VE treatment markedly decreased microglial activation in the hippocampal CA1 region 4 days after ischemia. Compared to the other groups, the VE100 group showed the lowest level of lipid peroxidation during the first 24 h after ischemia/reperfusion. In summary, the findings in this study suggest that pretreatment with VE has protective effects against ischemic injury in the hippocampal pyramidal neurons by decreasing microglial activation and lipid peroxidation. PMID:25785762

  15. Insulin-containing lipogenic stimuli suppress mast cell degranulation potential and up-regulate lipid body biogenesis and eicosanoid secretion in a PPARγ-independent manner

    PubMed Central

    Greineisen, William E.; Shimoda, Lori M. N.; Maaetoft-Udsen, Kristina; Turner, Helen

    2012-01-01

    Lipid bodies are most studied in adipocytes, where the lipogenic action of insulin initiates their formation. Here, we test the hypothesis that insulin may regulate lipid body content in mast cells and hence, modify their proinflammatory potential. Our data show that insulin causes lipid body accumulation in RBL2H3 and BMMCs. Lipid body accumulation in mast cells is associated with enhanced levels of leukotriene-synthesizing enzymes (LTC4S and 5-LO). Increased basal and antigen-stimulated release of LTC4 is observed in insulin-treated mast cells. Concomitantly, the insulin-containing lipogenic stimulus induces a phenotypic change in mast cells, where this enhancement in leukotriene levels is accompanied by a marked down-regulation in secretory granule content and release in response to stimulus. Mast cells exposed to insulin exhibit altered scatter and fluorescence properties, accumulating in a SSCloFSChi population that exhibits decreased BS staining and degranulation responses and is enriched in NR-positive lipid bodies and eicosanoid synthesis enzymes. Lipid body accumulation in mast cells is mechanistically distinct from the process in adipocytes; for example, it is independent of PPARγ up-regulation and does not involve significant accumulation of conjugated glycerides. Thus, chronic exposure to metabolic stimuli, such as insulin, may be a determinant of the proinflammatory potential of the mast cell. PMID:22706316

  16. Insulin-containing lipogenic stimuli suppress mast cell degranulation potential and up-regulate lipid body biogenesis and eicosanoid secretion in a PPARγ-independent manner.

    PubMed

    Greineisen, William E; Shimoda, Lori M N; Maaetoft-Udsen, Kristina; Turner, Helen

    2012-09-01

    Lipid bodies are most studied in adipocytes, where the lipogenic action of insulin initiates their formation. Here, we test the hypothesis that insulin may regulate lipid body content in mast cells and hence, modify their proinflammatory potential. Our data show that insulin causes lipid body accumulation in RBL2H3 and BMMCs. Lipid body accumulation in mast cells is associated with enhanced levels of leukotriene-synthesizing enzymes (LTC4S and 5-LO). Increased basal and antigen-stimulated release of LTC4 is observed in insulin-treated mast cells. Concomitantly, the insulin-containing lipogenic stimulus induces a phenotypic change in mast cells, where this enhancement in leukotriene levels is accompanied by a marked down-regulation in secretory granule content and release in response to stimulus. Mast cells exposed to insulin exhibit altered scatter and fluorescence properties, accumulating in a SSC(lo)FSC(hi) population that exhibits decreased BS staining and degranulation responses and is enriched in NR-positive lipid bodies and eicosanoid synthesis enzymes. Lipid body accumulation in mast cells is mechanistically distinct from the process in adipocytes; for example, it is independent of PPARγ up-regulation and does not involve significant accumulation of conjugated glycerides. Thus, chronic exposure to metabolic stimuli, such as insulin, may be a determinant of the proinflammatory potential of the mast cell. PMID:22706316

  17. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  18. The novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy.

    PubMed

    Miller, Jake N; Kovács, Attila D; Pearce, David A

    2015-01-01

    The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of autosomal recessive neurodegenerative disorders in children characterized by the progressive onset of seizures, blindness, motor and cognitive decline and premature death. Patients with mutations in CLN1 primarily manifest with infantile NCL (INCL or Haltia-Santavuori disease), which is second only to congenital NCL for its age of onset and devastating progression. CLN1 encodes a lysosomal enzyme, palmitoyl-protein thioesterase 1 (PPT1). Nonsense mutations in CLN1 account for 52.3% of all disease causing alleles in infantile NCL, the most common of which worldwide is the p.R151X mutation. Previously, we have shown how nonsense-mediated decay is involved in the degradation of CLN1 mRNA transcripts containing the p.R151X mutation in human lymphoblast cell lines. We have also shown how the read-through drugs gentamicin and ataluren (PTC124) increase CLN1 (PPT1) enzyme activity. Here, we provide the initial characterization of the novel Cln1(R151X) mouse model of infantile neuronal ceroid lipofuscinosis that we have generated. This nonsense mutation model recapitulates the molecular, histological and behavioral phenotypes of the human disease. Cln1(R151X) mice showed a significant decrease in Cln1 mRNA level and PPT1 enzyme activity, accumulation of autofluorescent storage material, astrocytosis and microglial activation in the brain. Behavioral characterization of Cln1(R151X) mice at 3 and 5 months of age revealed significant motor deficits as measured by the vertical pole and rotarod tests. We also show how the read-through compound ataluren (PTC124) increases PPT1 enzyme activity and protein level in Cln1(R151X) mice in a proof-of-principle study. PMID:25205113

  19. Loss of collapsin response mediator protein 4 suppresses dopaminergic neuron death in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease.

    PubMed

    Tonouchi, Aine; Nagai, Jun; Togashi, Kentaro; Goshima, Yoshio; Ohshima, Toshio

    2016-06-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Several lines of evidence suggest that neurodegeneration in PD is accelerated by a vicious cycle in which apoptosis in dopaminergic neurons triggers the activation of microglia and harmful inflammatory processes that further amplify neuronal death. Recently, we demonstrated that the deletion of collapsin response mediator protein 4 (CRMP4) suppresses inflammatory responses and cell death in a mouse model of spinal cord injury, leading to improved functional recovery. We thus hypothesized that Crmp4-/- mice may have limited inflammatory responses and a decrease in the loss of SNc dopaminergic neurons in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. We observed CRMP4 expression in neurons, astrocytes, and microglia/macrophages following the injection of 25 mg/kg MPTP. We compared the number of dopaminergic neurons and the inflammatory response in SNc between Crmp4+/+ and Crmp4-/- mice after MPTP injection. Limited loss of SNc dopaminergic neurons and decreased activations of microglia and astrocytes were observed in Crmp4-/- mice. These results suggest that CRMP4 is a novel therapeutic target in the treatment of PD patients. We demonstrated that genetic CRMP4 deletion delays a vicious cycle of inflammation and neurodegeneration in a Parkinson's disease mouse model. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) injection to wild-type mice induces collapsin response mediator protein 4 (CRMP4) up-regulation in neurons, astrocytes, and microglia. CRMP4-deficient mice show reduced inflammation and suppressed dopaminergic neuronal death after MPTP injection. These findings suggest that CRMP4 deletion may be a new therapeutic strategy against Parkinson's diseases. PMID:26991935

  20. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer

    PubMed Central

    Guo, S T; Jiang, C C; Wang, G P; Li, Y P; Wang, C Y; Guo, X Y; Yang, R H; Feng, Y; Wang, F H; Tseng, H-Y; Thorne, R F; Jin, L; Zhang, X D

    2013-01-01

    Past studies have shown that amplified insulin-like growth factor 1 (IGF1)/IGF1 receptor (IGF1-R) signalling has an important role in colorectal cancer (CRC) development, progression and resistance to treatment. In this report, we demonstrate that downregulation of microRNA-497 (miR-497) as a result of DNA copy number reduction is involved in upregulation of IGF1-R in CRC cells. MiR-497 and miR-195 of the miR-15/16/195/424/497 family that share the same 3′ untranslated region (3′UTR) binding seed sequence and are predicted to target IGF1-R were concurrently downregulated in the majority of CRC tissues relative to paired adjacent normal mucosa. However, only overexpression of miR-497 led to suppression of the IGF1-R 3′UTR activity and downregulation of the endogenous IGF1-R protein in CRC cells. This was associated with inhibition of cell survival, proliferation and invasion, and increased sensitivity to apoptosis induced by various stimuli including the chemotherapeutic drugs cisplatin and 5-fluorouracil, and the death ligand tumour necrosis factor-related apoptosis-inducing ligand. The biological effect of miR-497 on CRC cells was largely mediated by inhibition of phosphatidylinositol 3-kinase/Akt signalling, as overexpression of an active form of Akt reversed its impact on cell survival and proliferation, recapitulating the effect of overexpression of IGF1-R. Downregulation of miR-497 and miR-195 appeared to associate with copy number loss of a segment of chromosome 17p13.1, where these miRs are located at proximity. Similarly to miR-195, the members of the same miR family, miR-424 that was upregulated, and miR-15a, miR-15b and miR-16 that were unaltered in expression in CRC tissues compared with paired adjacent normal mucosa, did not appear to have a role in regulating the expression of IGF1-R. Taken together, these results identify downregulation of miR-497 as an important mechanism of upregulation of IGF1-R in CRC cells that contributes to malignancy of

  1. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    SciTech Connect

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  2. Functional properties of Claramine: a novel PTP1B inhibitor and insulin-mimetic compound.

    PubMed

    Qin, Zhaohong; Pandey, Nihar R; Zhou, Xun; Stewart, Chloe A; Hari, Aswin; Huang, Hua; Stewart, Alexandre F R; Brunel, Jean Michel; Chen, Hsiao-Huei

    2015-02-27

    Protein tyrosine phosphatase 1B (PTP1B) inhibits insulin signaling, interfering with its control of glucose homeostasis and metabolism. PTP1B activity is elevated in obesity and type 2 diabetes and is a major cause of insulin resistance. Trodusquemine (MSI-1436) is a "first-in-class" highly selective inhibitor of PTP1B that can cross the blood-brain barrier to suppress feeding and promote insulin sensitivity and glycemic control. Trodusquemine is a naturally occurring cholestane that can be purified from the liver of the dogfish shark, Squalus acanthias, but it can also be manufactured synthetically by a fairly laborious process that requires several weeks. Here, we tested a novel easily and rapidly (2 days) synthesized polyaminosteroid derivative (Claramine) containing a spermino group similar to Trodusquemine for its ability to inhibit PTP1B. Like Trodusquemine, Claramine displayed selective inhibition of PTP1B but not its closest related phosphatase TC-PTP. In cultured neuronal cells, Claramine and Trodusquemine both activated key components of insulin signaling, with increased phosphorylation of insulin receptor-β (IRβ), Akt and GSK3β. Intraperitoneal administration of Claramine or Trodusquemine effectively restored glycemic control in diabetic mice as determined by glucose and insulin tolerance tests. A single intraperitoneal dose of Claramine, like an equivalent dose of Trodusquemine, suppressed feeding and caused weight loss without increasing energy expenditure. In summary, Claramine is an alternative more easily manufactured compound for the treatment of type II diabetes. PMID:25623533

  3. Lipoic acid improves neuronal insulin signalling and rescues cognitive function regulating VGlut1 expression in high-fat-fed rats: Implications for Alzheimer's disease.

    PubMed

    Rodriguez-Perdigon, Manuel; Solas, Maite; Moreno-Aliaga, Maria Jesús; Ramirez, Maria Javier

    2016-04-01

    The concept of central insulin resistance and dysfunctional insulin signalling in sporadic Alzheimer's disease (AD) is now widely accepted and diabetes is recognized as one of the main risk factors for developing AD. Moreover, some lines of evidence indicated that VGlut1 is impaired in frontal regions of AD patients and this impairment is correlated with the progression of cognitive decline in AD. The present work hypothesizes that ketosis associated to insulin resistance could interfere with the normal activity of VGlut1 and its role in the release of glutamate in the hippocampus, which might ultimately lead to cognitive deficits. High fat diet (HFD) rats showed memory impairments and both peripheral (as shown by increased fasting plasma insulin levels and HOMA index) and hippocampal (as shown by decreased activation of insulin receptor, IRS-1 and pAkt) insulin pathway alterations, accompanied by increased ketone bodies production. All these effects were counteracted by α-lipoic acid (LA) administration. VGlut1 levels were significantly decreased in the hippocampus of HFD rats, and this decrease was reversed by LA. Altogether, the present results suggest that HFD induced alterations in central insulin signalling could switch metabolism to produce ketone bodies, which in turn, in the hippocampus, might lead to a decreased expression of VGlut1, and therefore to a decreased release of glutamate and hence, to the glutamatergic deficit described in AD. The ability of LA treatment to prevent the alterations in insulin signalling in this model of HFD might represent a possible new therapeutic target for the treatment of AD. PMID:26769360

  4. [Endogenous hyperlactatemia and insulin secretion].

    PubMed

    Ribes, G; Valette, G; Lignon, F; Loubatières-Mariani, M M

    1978-01-01

    In the normal anesthetized dog, the endogenous hyperlactatemia induced either by intense muscular work or by a high dose of phenformin (20 mg/kg subtucaneously) is followed by an increase in the pancreaticoduodenal insulin output. A previous perfusion of sodium dichloroacetate (50 mg/kg. h) opposes the hyperlactatemia, and reduces or suppresses the increase in insulin output. PMID:150887

  5. Insulin Neuroprotection and the Mechanisms

    PubMed Central

    Yu, Li-Yun; Pei, Yu

    2015-01-01

    Objective: To analyze the mechanism of neuroprotection of insulin and which blood glucose range was benefit for insulin exerting neuroprotective action. Data Sources: The study is based on the data from PubMed. Study Selection: Articles were selected with the search terms “insulin”, “blood glucose”, “neuroprotection”, “brain”, “glycogen”, “cerebral ischemia”, “neuronal necrosis”, “glutamate”, “γ-aminobutyric acid”. Results: Insulin has neuroprotection. The mechanisms include the regulation of neurotransmitter, promoting glycogen synthesis, and inhibition of neuronal necrosis and apoptosis. Insulin could play its role in neuroprotection by avoiding hypoglycemia and hyperglycemia. Conclusions: Intermittent and long-term infusion insulin may be a benefit for patients with ischemic brain damage at blood glucose 6–9 mmol/L. PMID:25836621

  6. Suppression of Parkin enhances nigrostriatal and motor neuron lesion in mice over-expressing human-mutated tau protein.

    PubMed

    Menéndez, J; Rodríguez-Navarro, J A; Solano, R M; Casarejos, M J; Rodal, I; Guerrero, R; Sánchez, M P; Avila, J; Mena, M A; de Yébenes, J G

    2006-07-01

    Abnormal deposition of protein tau takes place in the brain of patients with several neurodegenerative diseases. Few of these patients present frontotemporal dementia with parkinsonism and amyotrophy (FTDPA-17), an autosomal dominant tauopathy related to mutations of the gene that codes for protein tau, localized in chromosome 17. The great majority of patients with tauopathies such as Alzheimer's disease, sporadic frontotemporal dementia or progressive supranuclear palsy do not show a Mendelian pattern of inheritance. We have occasionally seen tauopathies in patients with parkin mutations and, therefore, hypothesized that the protein tau interacts with parkin. We have tested that hypothesis in mice with combined genetic modifications of tau (over-expression of human tau with three mutations known to produce FTDPA-17) and parkin (deleted) proteins. Homozygote parkin null or over-expressing mutated-human tau mice have subtle behavioral and molecular abnormalities but do not express a clinical phenotype of neurodegenerative disease. Mice with combined homozygous mutations of these two genes show progressively abnormal walking already noticeable at 3 months of age, loss of dopamine and dopamine markers in striatum, nuclear tau immunoreactive deposits in motor neurons of the spinal cord, abnormal expression of glial markers and enhanced levels of pro-apoptotic proteins; findings that were absent or less pronounced in homozygote animals with deletions of parkin or over-expression of tau. The double transgenic mice do not express normal mechanisms of adaptation to stress such as increased levels of GSH and Hsp-70. In addition, they have reduced levels of CHIP-Hsc70, a complex known to attenuate aggregation of tau and to enhance ubiquitination of phosphorylated tau. We have found high levels of phosphorylated tau in parkin-/-+tau(VLW) mice and a relative decrease of the inactivated pSer9 to total GSK-3 levels. Our data reveal that there are interactions between tau and

  7. Insulin exerts neuroprotective effects via Akt/Bcl-2 signaling pathways in differentiated SH-SY5Y cells.

    PubMed

    Ramalingam, Mahesh; Kim, Sung-Jin

    2015-02-01

    In the present study, the changes in the cell viability at different concentrations of hydrogen peroxide (H2O2) for 3 h used to establish a model of oxidative stress. Further assays with 200 μM H2O2 induces significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), reactive oxygen species (ROS) and calcium ion (Ca(2+)) in neuronal cells, but insulin can effectively diminish the oxidative damages. Moreover, cells treated with insulin increased the H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of Akt, Bcl-2, Bax, IRβ, IGF-1Rβ, IRS-1 and IRS-2 showed that insulin treatment had a protective effect on H2O2-induced oxidative stress in RA-differentiated SH-SY5Y neuroblastoma cells. PMID:24849496

  8. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-{beta}- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    SciTech Connect

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R. . E-mail: wdayton@umn.edu

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-{beta} superfamily members myostatin and TGF-{beta}{sub 1} have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-{beta}{sub 1} or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-{beta}{sub 1} and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-{beta}{sub 1} or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-{beta} and myostatin to suppress proliferation of PEMC.

  9. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-beta- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures.

    PubMed

    Kamanga-Sollo, E; Pampusch, M S; White, M E; Hathaway, M R; Dayton, W R

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-beta superfamily members myostatin and TGF-beta1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-beta1 or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-beta1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-beta1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-beta1 or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-beta1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-beta and myostatin to suppress proliferation of PEMC. PMID:16214131

  10. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ.

    PubMed

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-09-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)‑induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d‑PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP‑1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity. PMID:27431935

  11. Neuromedin U receptor 1 expression in the rat endocrine pancreas and evidence suggesting neuromedin U suppressive effect on insulin secretion from isolated rat pancreatic islets.

    PubMed

    Kaczmarek, Przemyslaw; Malendowicz, Ludwik K; Pruszynska-Oszmalek, Ewa; Wojciechowicz, Tatiana; Szczepankiewicz, Dawid; Szkudelski, Tomasz; Nowak, Krzysztof W

    2006-11-01

    Neuromedin U (NmU) is a regulatory peptide found in significant concentrations in both the brain and gut of the rat and is named according to its ability to powerfully contract the uterus. Two types of NmU receptors were recently identified and subsequent studies evidenced NmU involvement in the regulation of energy homeostasis. Such a role of neuromedin U suggests that a polypeptide may also be involved in the regulation of adipoinsular axis function. Therefore in the present study we examined the expression of NmU receptors in pancreatic islets using RT-PCR and Western blotting analysis. We also investigated the role of NmU in regulation of insulin secretion in vitro using isolated pancreatic islets. We have confirmed that NmUR1 but not NmUR2 is specifically expressed in isolated rat pancreatic islets. In all tested doses (1, 10, 100 nmol/l) NmU dose- dependently decreased insulin output by isolated pancreatic islets. These inhibitory effects of NmU on insulin secretion may suggest the involvement of NmU in regulating the pancreatic branch of adipoinsular axis function. Thus, NmU can be included in that group of anorectic peptides, which are also involved in the regulation of insulin secretion. PMID:17016626

  12. Plasmodium falciparum suppresses the host immune response by inducing the synthesis of insulin-like peptides (ILPs) in the mosquito Anopheles stephensi.

    PubMed

    Pietri, Jose E; Pietri, Eduardo J; Potts, Rashaun; Riehle, Michael A; Luckhart, Shirley

    2015-11-01

    The insulin-like peptides (ILPs) and their respective signaling and regulatory pathways are highly conserved across phyla. In invertebrates, ILPs regulate diverse physiological processes, including metabolism, reproduction, behavior, and immunity. We previously reported that blood feeding alone induced minimal changes in ILP expression in Anopheles stephensi. However, ingestion of a blood meal containing human insulin or Plasmodium falciparum, which can mimic insulin signaling, leads to significant increases in ILP expression in the head and midgut, suggesting a potential role for AsILPs in the regulation of P. falciparum sporogonic development. Here, we show that soluble P. falciparum products, but not LPS or zymosan, directly induced AsILP expression in immortalized A. stephensi cells in vitro. Further, AsILP expression is dependent on signaling by the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) and phosphatidylinositol 3'-kinase (PI3K)/Akt branches of the insulin/insulin-like growth factor signaling (IIS) pathway. Inhibition of P. falciparum-induced ILPs in vivo decreased parasite development through kinetically distinct effects on mosquito innate immune responses. Specifically, knockdown of AsILP4 induced early expression of immune effector genes (1-6 h after infection), a pattern associated with significantly reduced parasite abundance prior to invasion of the midgut epithelium. In contrast, knockdown of AsILP3 increased later expression of the same genes (24 h after infection), a pattern that was associated with significantly reduced oocyst development. These data suggest that P. falciparum parasites alter the expression of mosquito AsILPs to dampen the immune response and facilitate their development in the mosquito vector. PMID:26165161

  13. A novel benzenediamine derivative FC98 reduces insulin resistance in high fat diet-induced obese mice by suppression of metaflammation.

    PubMed

    Chen, Changmai; Zhang, Wei; Shi, Hengfei; Zhuo, Yujie; Yang, Guang; Zhang, Aihua; Hou, Yayi; Xiang Tan, Ren; Li, Erguang

    2015-08-15

    Chronic low-grade metabolic inflammation (metaflammation) is a hallmark of metabolic diseases. The aim of this study was to determine the effectiveness of a newly identified benzenediamine derivative (FC98, PubChem CID: 14989837) against metaflammation and insulin resistance using a high fat diet-induced obesity (DIO) murine model. LPS and free fatty acids (FFAs)-induced gene expression and signaling was determined in cell culture systems. Inflammasome activation was determined by measuring IL-1β release with ELISA. The in vivo activity was assayed in C57BL/6J mice fed with a high fat diet (HFD) by measuring body weight gains, glucose tolerance and insulin sensitivity. The effect was also evaluated by H&E and IHC staining, by measuring gene expression and cytokine production, and by analysis of F4/80(+)CD11b(+) macrophage infiltration. FC98 exhibited anti-inflammatory activity against LPS- and FFAs-induced IL-1β, IL-6, and TNF-α gene expression and JNK and p38 activation. The IC50 for FC98 to inhibit NO production was determined at 6.8μM. FC98 also dose-dependently inhibited IL-1β secretion. In DIO mice, FC98 at 10 and 20mg/kg significantly improved metabolic parameters, including body weight, fat mass, glucose disposal and insulin sensitivity. The reduction in adipocyte area, F4/80(+)CD11b(+) macrophage infiltration, proinflammatory gene expression, along with JNK activation, was also significant in those groups. Additionally, FC98-treated animals had increased AKT phosphorylation in response to insulin stimulation. FC98 inhibits metaflammation and ameliorates insulin resistance mainly by inhibiting signaling pathways of proinflammatory response in DIO animals. This study highlights the significance of targeting metaflammation for obesity-attributive metabolic syndrome. PMID:26086863

  14. Chronic oral administration of minocycline to sheep with ovine CLN6 neuronal ceroid lipofuscinosis maintains pharmacological concentrations in the brain but does not suppress neuroinflammation or disease progression

    PubMed Central

    2013-01-01

    Background The neuronal ceroid lipofuscinoses (NCLs; or Batten disease) are fatal inherited human neurodegenerative diseases affecting an estimated 1:12,500 live births worldwide. They are caused by mutations in at least 11 different genes. Currently, there are no effective treatments. Progress into understanding pathogenesis and possible therapies depends on studying animal models. The most studied animals are the CLN6 South Hampshire sheep, in which the course of neuropathology closely follows that in affected children. Neurodegeneration, a hallmark of the disease, has been linked to neuroinflammation and is consequent to it. Activation of astrocytes and microglia begins prenatally, starting from specific foci associated with the later development of progressive cortical atrophy and the development of clinical symptoms, including the occipital cortex and blindness. Both neurodegeneration and neuroinflammation generalize and become more severe with increasing age and increasing clinical severity. The purpose of this study was to determine if chronic administration of an anti-inflammatory drug, minocycline, from an early age would halt or reverse the development of disease. Method Minocycline, a tetracycline family antibiotic with activity against neuroinflammation, was tested by chronic oral administration of 25 mg minocycline/kg/day to presymptomatic lambs affected with CLN6 NCL at 3 months of age to 14 months of age, when clinical symptoms are obvious, to determine if this would suppress neuroinflammation or disease progression. Results Minocycline was absorbed without significant rumen biotransformation to maintain pharmacological concentrations of 1 μM in plasma and 400 nM in cerebrospinal fluid, but these did not result in inhibition of microglial activation or astrocytosis and did not change the neuronal loss or clinical course of the disease. Conclusion Oral administration is an effective route for drug delivery to the central nervous system in large

  15. The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma.

    PubMed

    Kurmasheva, Raushan T; Dudkin, Lorina; Billups, Catherine; Debelenko, Larisa V; Morton, Christopher L; Houghton, Peter J

    2009-10-01

    Signaling through the type 1 insulin-like growth factor receptor (IGF-1R) occurs in many human cancers, including childhood sarcomas. As a consequence, targeting the IGF-1R has become a focus for cancer drug development. We examined the antitumor activity of CP-751,871, a human antibody that blocks IGF-1R ligand binding, alone and in combination with rapamycin against sarcoma cell lines in vitro and xenograft models in vivo. In Ewing sarcoma (EWS) cell lines, CP751,871 inhibited growth poorly (<50%), but prevented rapamycin-induced hyperphosphorylation of AKT(Ser473) and induced greater than additive apoptosis. Rapamycin treatment also increased secretion of IGF-1 resulting in phosphorylation of IGF-1R (Tyr1131) that was blocked by CP751,871. In vivo CP-751,871, rapamycin, or the combination were evaluated against EWS, osteosarcoma, and rhabdomyosarcoma xenografts. CP751871 induced significant growth inhibition [EFS(T/C) >2] in four models. Rapamycin induced significant growth inhibition [EFS(T/C) >2] in nine models. Although neither agent given alone caused tumor regressions, in combination, these agents had greater than additive activity against 5 of 13 xenografts and induced complete remissions in one model each of rhabdomyosarcoma and EWS, and in three of four osteosarcoma models. CP751,871 caused complete IGF-1R down-regulation, suppression of AKT phosphorylation, and dramatically suppressed tumor-derived vascular endothelial growth factor (VEGF) in some sarcoma xenografts. Rapamycin treatment did not markedly suppress VEGF in tumors and synergized only in tumor lines where VEGF was dramatically inhibited by CP751,871. These data suggest a model in which blockade of IGF-1R suppresses tumor-derived VEGF to a level where rapamycin can effectively suppress the response in vascular endothelial cells. PMID:19789339

  16. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  17. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease

    PubMed Central

    Chen, Sujuan; Ye, Yangjing; Guo, Min; Ren, Qian; Liu, Lei; Zhang, Hai; Xu, Chong; Zhou, Qian; Huang, Shile; Chen, Long

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons. Dysregulation of mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of PD. However, the underlying mechanism is incompletely elucidated. Here, we show that PD mimetics (6-hydroxydopamine, N-methyl-4-phenylpyridine or rotenone) suppressed phosphorylation of mTOR, S6K1 and 4E-BP1, reduced cell viability, and activated caspase-3 and PARP in PC12 cells and primary neurons. Overexpression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 in PC12 cells partially prevented cell death in response to the PD toxins, revealing that mTOR-mediated S6K1 and 4E-BP1 pathways due to the PD toxins were inhibited, leading to neuronal cell death. Furthermore, we found that the inhibition of mTOR signaling contributing to neuronal cell death was attributed to suppression of Akt and activation of AMPK. This is supported by the findings that ectopic expression of constitutively active Akt or dominant negative AMPKα, or inhibition of AMPKα with compound C partially attenuated inhibition of phosphorylation of mTOR, S6K1 and 4E-BP1, activation of caspase-3, and neuronal cell death triggered by the PD toxins. The results indicate that PD stresses activate AMPK and inactivate Akt, causing neuronal cell death via inhibiting mTOR-mediated S6K1 and 4E-BP1 pathways. Our findings suggest that proper co-manipulation of AMPK/Akt/mTOR signaling may be a potential strategy for prevention and treatment of PD. PMID:24726895

  18. Awake Intranasal Insulin Delivery Modifies Protein Complexes and Alters Memory, Anxiety, and Olfactory Behaviors

    PubMed Central

    Marks, D.R.; Tucker, K.; Cavallin, M.A.; Mast, T.G.; Fadool, D.A.

    2009-01-01

    The role of insulin pathways in olfaction is of significant interest with the widespread pathology of Diabetes mellitus and its associated metabolic and neuronal co-morbidities. The insulin receptor kinase (IR) is expressed at high levels in the olfactory bulb (OB), where it suppresses a dominant Shaker ion channel (Kv1.3) via tyrosine phosphorylation of critical N- and C-terminal residues. We optimized a seven day intranasal insulin delivery (IND) in awake mice to ascertain the biochemical and behavioral effects of insulin to this brain region, given that nasal sprays for insulin have been marketed notwithstanding our knowledge of the role of Kv1.3 in olfaction, metabolism, and axon targeting. IND evoked robust phosphorylation of Kv1.3, as well as increased channel protein-protein interactions with IR and post-synaptic density 95. IND-treated mice had an increased short- and long-term object memory recognition, increased anxiolytic behavior, and an increased odor-discrimination using an odor habituation protocol but only moderate change in odor threshold using a two-choice paradigm. Unlike Kv1.3 gene-targeted deletion that alters metabolism, adiposity, and axonal targeting to defined olfactory glomeruli, suppression of Kv1.3 via IND had no effect on body weight nor the size and number of M72 glomeruli or the route of its sensory axon projections. There was no evidence of altered expression of sensory neurons in the epithelium. In mice made pre-diabetic via diet-induced obesity, IND was no longer effective in increasing long-term object memory recognition nor increasing anxiolytic behavior, suggesting state dependency or a degree of insulin resistance related to these behaviors. PMID:19458242

  19. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight

    PubMed Central

    Borer, Katarina T

    2014-01-01

    A re-examination of the mechanism controlling eating, locomotion, and metabolism prompts formulation of a new explanatory model containing five features: a coordinating joint role of the (1) autonomic nervous system (ANS); (2) the suprachiasmatic (SCN) master clock in counterbalancing parasympathetic digestive and absorptive functions and feeding with sympathetic locomotor and thermogenic energy expenditure within a circadian framework; (3) interaction of the ANS/SCN command with brain substrates of reward encompassing dopaminergic projections to ventral striatum and limbic and cortical forebrain. These drive the nonhomeostatic feeding and locomotor motivated behaviors in interaction with circulating ghrelin and lateral hypothalamic neurons signaling through melanin concentrating hormone and orexin-hypocretin peptides; (4) counterregulation of insulin by leptin of both gastric and adipose tissue origin through: potentiation by leptin of cholecystokinin-mediated satiation, inhibition of insulin secretion, suppression of insulin lipogenesis by leptin lipolysis, and modulation of peripheral tissue and brain sensitivity to insulin action. Thus weight-loss induced hypoleptimia raises insulin sensitivity and promotes its parasympathetic anabolic actions while obesity-induced hyperleptinemia supresses insulin lipogenic action; and (5) inhibition by leptin of bone mineral accrual suggesting that leptin may contribute to the maintenance of stability of skeletal, lean-body, as well as adipose tissue masses. PMID:25317239

  20. Expression patterns of T-type Cav3.2 channel and insulin-like growth factor-1 receptor in dorsal root ganglion neurons of mice after sciatic nerve axotomy.

    PubMed

    Lin, Si-Fang; Yu, Xiao-Lu; Liu, Xiao-Ya; Wang, Bing; Li, Cheng-Hui; Sun, Yan-Gang; Liu, Xing-Jun

    2016-10-19

    Substantial evidence indicates that T-type Cav3.2 channel and insulin-like growth factor-1 (IGF-1) contribute to pain hypersensitivity within primary sensory nerves. A recent study suggested that activation of IGF-1 receptor (IGF-1R) could increase Cav3.2 channel currents and further contribute to inflammatory pain sensitivity. However, the expression patterns of Cav3.2 and IGF-1R and their colocalization in dorsal root ganglion (DRG) in chronic neuropathic pain condition remain unknown. In this study, we explored expression patterns of Cav3.2, IGF-1R and their colocalization, and whether phenotypic switch occurs in a subpopulation of Cav3.2 or IGF-1R neurons in mouse DRGs after sciatic nerve axotomy with immunofluorescence, real-time reverse transcription-PCR, and western blot assays. We found that expressions of Cav3.2 and IGF-1R, and their colocalization were not increased in DRGs of mice following axotomy. In addition, Cav3.2 or IGF-1R subpopulation neurons did not acquire significant switch in expression phenotype after sciatic nerve axotomy. Our findings argue for an upregulation of Cav3.2 and IGF-1R expression in lumbar DRGs post-sciatic nerve axotomy and provided an insight for understanding the functions of peripheral afferent Cav3.2 channel and IGF-1/IGF-1R signaling in chronic neuropathic pain. PMID:27571431

  1. Insulin secretion impairment in Sirt6 knockout pancreatic β cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway.

    PubMed

    Song, Mi-Young; Wang, Jie; Ka, Sun-O; Bae, Eun Ju; Park, Byung-Hyun

    2016-01-01

    Sirtuin 6 (Sirt6), a chromatin associated class III deacetylase, controls whole-body energy homeostasis and has a critical role in glucose-stimulated insulin secretion (GSIS) in pancreatic β cells. However, its underlying molecular mechanism remains poorly understood. To gain further insights, we studied the pathway by which Sirt6 regulates GSIS utilizing mice lacking Sirt6 in their β cells (βS6KO). Further, we overexpressed wild type or deacetylase-inactive mutant Sirt6 in isolated islets as well as in MIN6 cells. We confirmed that βS6KO mice developed glucose intolerance with severely impaired GSIS. Gene expression analysis of knockout islets and overexpression studies demonstrated that Sirt6 deacetylates forkhead box protein O1 (FoxO1) to trigger its nuclear export and releases its transcriptional repression of key glucose sensing genes such as Pdx1 and Glut2. Ectopic overexpression of Sirt6 in knockout islets resulted in rescue of the defective insulin secretion and restoration of the expression of Pdx1 and Glut2. These results show that Sirt6 in pancreatic β cells deacetylates FoxO1 and subsequently increases the expression of Pdx1 and Glut2 to maintain the glucose-sensing ability of pancreatic β cells and systemic glucose tolerance. PMID:27457971

  2. Insulin secretion impairment in Sirt6 knockout pancreatic β cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway

    PubMed Central

    Song, Mi-Young; Wang, Jie; Ka, Sun-O; Bae, Eun Ju; Park, Byung-Hyun

    2016-01-01

    Sirtuin 6 (Sirt6), a chromatin associated class III deacetylase, controls whole-body energy homeostasis and has a critical role in glucose-stimulated insulin secretion (GSIS) in pancreatic β cells. However, its underlying molecular mechanism remains poorly understood. To gain further insights, we studied the pathway by which Sirt6 regulates GSIS utilizing mice lacking Sirt6 in their β cells (βS6KO). Further, we overexpressed wild type or deacetylase-inactive mutant Sirt6 in isolated islets as well as in MIN6 cells. We confirmed that βS6KO mice developed glucose intolerance with severely impaired GSIS. Gene expression analysis of knockout islets and overexpression studies demonstrated that Sirt6 deacetylates forkhead box protein O1 (FoxO1) to trigger its nuclear export and releases its transcriptional repression of key glucose sensing genes such as Pdx1 and Glut2. Ectopic overexpression of Sirt6 in knockout islets resulted in rescue of the defective insulin secretion and restoration of the expression of Pdx1 and Glut2. These results show that Sirt6 in pancreatic β cells deacetylates FoxO1 and subsequently increases the expression of Pdx1 and Glut2 to maintain the glucose-sensing ability of pancreatic β cells and systemic glucose tolerance. PMID:27457971

  3. Suppression of Epithelial-to-Mesenchymal Transitioning Enhances Ex Vivo Reprogramming of Human Exocrine Pancreatic Tissue Toward Functional Insulin-Producing β-Like Cells

    PubMed Central

    Lima, Maria João; Muir, Kenneth R.; Docherty, Hilary M.; Drummond, Robert; McGowan, Neil W.A.; Forbes, Shareen; Heremans, Yves; Houbracken, Isabelle; Ross, James A.; Forbes, Stuart J.; Ravassard, Philippe; Heimberg, Harry; Casey, John; Docherty, Kevin

    2013-01-01

    Because of the lack of tissue available for islet transplantation, new sources of β-cells have been sought for the treatment of type 1 diabetes. The aim of this study was to determine whether the human exocrine-enriched fraction from the islet isolation procedure could be reprogrammed to provide additional islet tissue for transplantation. The exocrine-enriched cells rapidly dedifferentiated in culture and grew as a mesenchymal monolayer. Genetic lineage tracing confirmed that these mesenchymal cells arose, in part, through a process of epithelial-to-mesenchymal transitioning (EMT). A protocol was developed whereby transduction of these mesenchymal cells with adenoviruses containing Pdx1, Ngn3, MafA, and Pax4 generated a population of cells that were enriched in glucagon-secreting α-like cells. Transdifferentiation or reprogramming toward insulin-secreting β-cells was enhanced, however, when using unpassaged cells in combination with inhibition of EMT by inclusion of Rho-associated kinase (ROCK) and transforming growth factor-β1 inhibitors. Resultant cells were able to secrete insulin in response to glucose and on transplantation were able to normalize blood glucose levels in streptozotocin diabetic NOD/SCID mice. In conclusion, reprogramming of human exocrine-enriched tissue can be best achieved using fresh material under conditions whereby EMT is inhibited, rather than allowing the culture to expand as a mesenchymal monolayer. PMID:23610058

  4. Oral Insulin

    PubMed Central

    2010-01-01

    Oral insulin is an exciting area of research and development in the field of diabetology. This brief review covers the various approaches used in the development of oral insulin, and highlights some of the recent data related to novel oral insulin preparation. PMID:21059246

  5. Metastasis suppressor 1 regulates neurite outgrowth in primary neuron cultures.

    PubMed

    Yu, Juan; Lin, Shuyun; Wang, Mei; Liang, Lijun; Zou, Zijiao; Zhou, Xinfeng; Wang, Meichi; Chen, Ping; Wang, Ying

    2016-10-01

    Metastasis suppressor 1 (MTSS1) or missing in metastasis (MIM) is an actin- and membrane-binding protein with tumor suppressor functions. MTSS1 is important for cell morphology, motility, metastasis. The role of MTSS1 in cell morphology has been widely investigated in non-neuronal tissues; however the role of MTSS1 in neurite outgrowth remains unclear. Here we investigated the effect of MTSS1 on neurite outgrowth in primary cerebellar granule and hippocampal neurons of mouse. We found that overexpression of MTSS1 in cerebellar granule neurons significantly enhanced dendrite elaboration but inhibited axon elongation. This phenotype was significantly reduced by deletion of the Wiskott-Aldrich homology 2 (WH2) motif and point mutation in the insulin receptor substrate p53 (IRSp53) and MIM/MTSS1 homology (IMD) domain. Furthermore, inhibition of Rac1 activity or blocking of phosphatidyl inositol phosphates (PIPs) signaling decreased the effect of MTSS1 markedly. In accordance with the over-expression data, knockdown of MTSS1 in cerebellar granule neurons could increase the axon length but decrease the dendrite length and the number of dendrites. In addition, MTSS1 knock down in embryonic hippocampal neurons suppressed neurite branching and reduced dendrite length. Our findings have demonstrated that MTSS1 modulates neuronal morphology, possibly through a Rac1-PIPs signaling pathway. PMID:27401056

  6. Estrogen Receptor Beta and 2-arachidonoylglycerol Mediate the Suppressive Effects of Estradiol on Frequency of Postsynaptic Currents in Gonadotropin-Releasing Hormone Neurons of Metestrous Mice: An Acute Slice Electrophysiological Study

    PubMed Central

    Bálint, Flóra; Liposits, Zsolt; Farkas, Imre

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are controlled by 17β-estradiol (E2) contributing to the steroid feedback regulation of the reproductive axis. In rodents, E2 exerts a negative feedback effect upon GnRH neurons throughout the estrus-diestrus phase of the ovarian cycle. The present study was undertaken to reveal the role of estrogen receptor subtypes in the mediation of the E2 signal and elucidate the downstream molecular machinery of suppression. The effect of E2 administration at low physiological concentration (10 pM) on GnRH neurons in acute brain slices obtained from metestrous GnRH-green fluorescent protein (GFP) mice was studied under paradigms of blocking or activating estrogen receptor subtypes and interfering with retrograde 2-arachidonoylglycerol (2-AG) signaling. Whole-cell patch clamp recordings revealed that E2 significantly diminished the frequency of spontaneous postsynaptic currents (sPSCs) in GnRH neurons (49.62 ± 7.6%) which effect was abolished by application of the estrogen receptor (ER) α/β blocker Faslodex (1 μM). Pretreatment of the brain slices with cannabinoid receptor type 1 (CB1) inverse agonist AM251 (1 μM) and intracellularly applied endocannabinoid synthesis blocker THL (10 μM) significantly attenuated the effect of E2 on the sPSCs. E2 remained effective in the presence of tetrodotoxin (TTX) indicating a direct action of E2 on GnRH cells. The ERβ specific agonist DPN (10 pM) also significantly decreased the frequency of miniature postsynaptic currents (mPSCs) in GnRH neurons. In addition, the suppressive effect of E2 was completely blocked by the selective ERβ antagonist PHTPP (1 μM) indicating that ERβ is required for the observed rapid effect of the E2. In contrast, the ERα agonist PPT (10 pM) or the membrane-associated G protein-coupled estrogen receptor (GPR30) agonist G1 (10 pM) had no significant effect on the frequency of mPSCs in these neurons. AM251 and tetrahydrolipstatin (THL) significantly abolished

  7. Synthesis, characterization and evaluation of the suppression of insulin resistance in Type-II diabetes mellitus animals by treatment with metal complex

    PubMed Central

    Phanse, Mohini A.; Patil, Manohar J.; Abbulu, Konde

    2015-01-01

    The present study is characterized toward thespesone isolation from Thespesia populnea (Malvaceae). Subsequently it was modified and characterized to study its effect on diabetes related symptoms. The complex is administered to diabetes induced mice with the doses of 5, 10 and 20 mg/kg, p.o. and the effect of complex on the level of body weight, lipid profile and blood glucose was studied after 22 days. The results have indicated that diabetic mice show a significant (p < 0.01) decrease in the level of serum triglyceride, plasma glucose and increase in body weight. Hence the present investigation reveals that newly synthesized complex is useful in the management of Type-II diabetes mellitus because of its ability to reduce insulin resistance. PMID:27081369

  8. Suppression of Wnt1-induced mammary tumor growth and lower serum insulin in offspring exposed to maternal blueberry diet suggest early dietary influence on developmental programming

    PubMed Central

    Simmen, Rosalia C.M.

    2013-01-01

    Despite the well-accepted notion that early maternal influences persist beyond fetal life and may underlie many adult diseases, the risks imposed by the maternal environment on breast cancer development and underlying biological mechanisms remain poorly understood. In this study, we investigated whether early exposure to blueberry (BB) via maternal diet alters oncogene Wnt1-induced mammary tumorigenesis in offspring. Wnt1-transgenic female mice were exposed to maternal Casein (CAS, control) or blueberry-supplemented (CAS + 3%BB) diets throughout pregnancy and lactation. Offspring were weaned to CAS and mammary tumor development was followed until age 8 months. Tumor incidence and latency were similar for both groups; however, tumor weight at killing and tumor volume within 2 weeks of initial detection were lower (by 50 and 60%, respectively) in offspring of BB- versus control-fed dams. Dietary BB exposure beginning at weaning did not alter mammary tumor parameters. Tumors from maternal BB-exposed offspring showed higher tumor suppressor (Pten and Cdh1) and lower proproliferative (Ccnd1), anti-apoptotic (Bcl2) and proangiogenic (Figf, Flt1 and Ephb4) transcript levels, and displayed attenuated microvessel density. Expression of Pten and Cdh1 genes was also higher in mammary tissues of maternal BB-exposed offspring. Mammary tissues and tumors of maternal BB-exposed offspring showed increased chromatin-modifying enzyme Dnmt1 and Ezh2 transcript levels. Body weight, serum insulin and serum leptin/adiponectin ratio were lower for maternal BB-exposed than control tumor-bearing offspring. Tumor weights and serum insulin were positively correlated. Results suggest that dietary influences on the maternal environment contribute to key developmental programs in the mammary gland to modify breast cancer outcome in adult progeny. PMID:23144318

  9. The Neuronal Kinesin UNC-104/KIF1A Is a Key Regulator of Synaptic Aging and Insulin Signaling-Regulated Memory.

    PubMed

    Li, Ling-Bo; Lei, Haoyun; Arey, Rachel N; Li, Pengpeng; Liu, Jianfeng; Murphy, Coleen T; Xu, X Z Shawn; Shen, Kang

    2016-03-01

    Aging is the greatest risk factor for a number of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Furthermore, normal aging is associated with a decline in sensory, motor, and cognitive functions. Emerging evidence suggests that synapse alterations, rather than neuronal cell death, are the causes of neuronal dysfunctions in normal aging and in early stages of neurodegenerative diseases. However, little is known about the mechanisms underlying age-related synaptic decline. Here, we uncover a surprising role of the anterograde molecular motor UNC-104/KIF1A as a key regulator of neural circuit deterioration in aging C. elegans. Through analyses of synapse protein localization, synaptic transmission, and animal behaviors, we find that reduced function of UNC-104 accelerates motor circuit dysfunction with age, whereas upregulation of UNC-104 significantly improves motor function at advanced ages and also mildly extends lifespan. In addition, UNC-104-overexpressing animals outperform wild-type controls in associative learning and memory tests. Further genetic analyses suggest that UNC-104 functions downstream of the DAF-2-signaling pathway and is regulated by the FOXO transcription factor DAF-16, which contributes to the effects of DAF-2 in neuronal aging. Together, our cellular, electrophysiological, and behavioral analyses highlight the importance of axonal transport in the maintenance of synaptic structural integrity and function during aging and raise the possibility of targeting kinesins to slow age-related neural circuit dysfunction. PMID:26877087

  10. The ERα-PI3K Cascade in Proopiomelanocortin Progenitor Neurons Regulates Feeding and Glucose Balance in Female Mice.

    PubMed

    Zhu, Liangru; Xu, Pingwen; Cao, Xuehong; Yang, Yongjie; Hinton, Antentor Othrell; Xia, Yan; Saito, Kenji; Yan, Xiaofeng; Zou, Fang; Ding, Hongfang; Wang, Chunmei; Yan, Chunling; Saha, Pradip; Khan, Sohaib A; Zhao, Jean; Fukuda, Makoto; Tong, Qingchun; Clegg, Deborah J; Chan, Lawrence; Xu, Yong

    2015-12-01

    Estrogens act upon estrogen receptor (ER)α to inhibit feeding and improve glucose homeostasis in female animals. However, the intracellular signals that mediate these estrogenic actions remain unknown. Here, we report that anorexigenic effects of estrogens are blunted in female mice that lack ERα specifically in proopiomelanocortin (POMC) progenitor neurons. These mutant mice also develop insulin resistance and are insensitive to the glucose-regulatory effects of estrogens. Moreover, we showed that propyl pyrazole triol (an ERα agonist) stimulates the phosphatidyl inositol 3-kinase (PI3K) pathway specifically in POMC progenitor neurons, and that blockade of PI3K attenuates propyl pyrazole triol-induced activation of POMC neurons. Finally, we show that effects of estrogens to inhibit food intake and to improve insulin sensitivity are significantly attenuated in female mice with PI3K genetically inhibited in POMC progenitor neurons. Together, our results indicate that an ERα-PI3K cascade in POMC progenitor neurons mediates estrogenic actions to suppress food intake and improve insulin sensitivity. PMID:26375425