Science.gov

Sample records for neurotransmitter transporters focus

  1. Focus on: neurotransmitter systems.

    PubMed

    Valenzuela, C Fernando; Puglia, Michael P; Zucca, Stefano

    2011-01-01

    Neurotransmitter systems have been long recognized as important targets of the developmental actions of alcohol (i.e., ethanol). Short- and long-term effects of ethanol on amino acid (e.g., γ-aminobutyric acid and glutamate) and biogenic amine (e.g., serotonin and dopamine) neurotransmitters have been demonstrated in animal models of fetal alcohol spectrum disorders (FASD). Researchers have detected ethanol effects after exposure during developmental periods equivalent to the first, second, and third trimesters of human pregnancy. Results support the recommendation that pregnant women should abstain from drinking-even small quantities-as effects of ethanol on neurotransmitter systems have been detected at low levels of exposure. Recent studies have elucidated new mechanisms and/or consequences of the actions of ethanol on amino acid and biogenic amine neuro-transmitter systems. Alterations in these neurotransmitter systems could, in part, be responsible for many of the conditions associated with FASD, including (1) learning, memory, and attention deficits; (2) motor coordination impairments; (3) abnormal responsiveness to stress; and (4) increased susceptibility to neuropsychiatric disorders, such as substance abuse and depression, and also neurological disorders, such as epilepsy and sudden infant death syndrome. However, future research is needed to conclusively establish a causal relationship between these conditions and developmental dysfunctions in neurotransmitter systems. PMID:23580048

  2. Unfaithful neurotransmitter transporters: Focus on serotonin uptake and implications for antidepressant efficacy

    PubMed Central

    Daws, Lynette C.

    2009-01-01

    Biogenic amine transporters for serotonin, norepinephrine and dopamine (SERT, NET and DAT respectively), are the key players terminating transmission of these amines in the central nervous system by their high-affinity uptake. They are also major targets for many antidepressant drugs. Interestingly however, drugs targeted to a specific transporter do not appear to be as clinically efficacious as those that block two or all three of these transporters. A growing body of literature, reviewed here, supports the idea that promiscuity among these transporters (the uptake of multiple amines in addition to their “native” transmitter) may account for improved therapeutic effects of dual and triple uptake blockers. However, even these drugs do not provide effective treatment outcomes for all individuals. An emerging literature suggests that “non-traditional” transporters such as organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT) may contribute to the less than hoped for efficacy of currently prescribed uptake inhibitors. OCT and PMAT are capable of clearing biogenic amines from extracellular fluid and may serve to buffer the effects of frontline antidepressants, such as selective serotonin reuptake inhibitors. In addition, polymorphisms that occur in the genes encoding the transporters can lead to variation in transporter expression and function (e.g. the serotonin transporter linked polymorphic region; 5-HTTLPR) and can have profound effects on treatment outcome. This may be accounted for, in part, by compensatory adaptations in other transporters. This review synthesizes the existing literature, focusing on serotonin to illustrate and revive a model for the rationale design of improved antidepressants. PMID:19022290

  3. Neurotransmitters

    NASA Video Gallery

    Our nerve cells (neurons) communicate with each other using little chemical messengers called neurotransmitters. These neurotransmitters are transferred from one neuron to the next within a space c...

  4. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy?

    PubMed Central

    Van Liefferinge, Joeri; Massie, Ann; Portelli, Jeanelle; Di Giovanni, Giuseppe; Smolders, Ilse

    2013-01-01

    The vesicular neurotransmitter transporters (VNTs) are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3), the vesicular excitatory amino acid transporter (VEAT), the vesicular nucleotide transporter (VNUT), vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT) and the vesicular γ-aminobutyric acid (GABA) transporter (VGAT) in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE) and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies. PMID:24009559

  5. Expression of Neurotransmitter Transporters for Structural and Biochemical Studies

    PubMed Central

    Elbaz, Yael; Danieli, Tsafi; Kanner, Baruch I.; Schuldiner, Shimon

    2010-01-01

    Neurotransmitter transporters play essential roles in the process of neurotransmission. Vesicular neurotransmitter transporters mediate storage inside secretory vesicles in a process that involves the exchange of lumenal H+ for cytoplasmic transmitter. Retrieval of the neurotransmitter from the synaptic cleft catalyzed by sodium-coupled transporters is critical for the termination of the synaptic actions of the released neurotransmitter. Our current understanding of the mechanism of these transporters is based on functional and biochemical characterization but is lacking high-resolution structural information. Very few structures of membrane transport systems from mammalian origin have been solved to atomic resolution, mainly because of the difficulty in obtaining large amounts of purified protein. Development of high yield heterologous expression systems suitable for mammalian neurotransmitter transporters is essential to enable the production of purified protein for structural studies. Such a system makes possible also the production of mutants that can be used in biochemical and biophysical studies. We describe here a screen for the expression of the vesicular monoamine transporter 2 (VMAT2) in cell-free and baculovirus expression systems and discuss the expression of VMAT2 in other systems as well (bacterial, yeast and mammalian cell lines). After screening and optimization, we achieved high yield (2–2.5 mg/liter) expression of functional VMAT2 in insect cells. The system was also used for the expression of three additional plasma membrane neurotransmitter transporters. All were functional and expressed to high levels. Our results demonstrate the advantages of the baculovirus expression system for the expression of mammalian neurotransmitter transporters in a functional state. PMID:20566324

  6. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    PubMed

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT. PMID:23878376

  7. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters.

    PubMed

    Bermingham, Daniel P; Blakely, Randy D

    2016-10-01

    Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies. PMID:27591044

  8. Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era.

    PubMed

    Omote, Hiroshi; Miyaji, Takaaki; Hiasa, Miki; Juge, Narinobu; Moriyama, Yoshinori

    2016-01-01

    Vesicular neurotransmitter transporters are responsible for the accumulation of neurotransmitters in secretory vesicles and play essential roles in chemical transmission. The SLC17 family contributes to sequestration of anionic neurotransmitters such as glutamate, aspartate, and nucleotides. Identification and subsequent cellular and molecular biological studies of SLC17 transporters unveiled the principles underlying the actions of these transporters. Recent progress in reconstitution methods in combination with postgenomic approaches has advanced studies on neurotransmitter transporters. This review summarizes the molecular properties of SLC17-type transporters and recent findings regarding the novel SLC18 transporter. PMID:26514205

  9. SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine ☆

    PubMed Central

    Lawal, Hakeem O.; Krantz, David E.

    2012-01-01

    The exocytotic release of neurotransmitters requires active transport into synaptic vesicles and other types of secretory vesicles. Members of the SLC18 family perform this function for acetylcholine (SLC18A3, the vesicular acetylcholine transporter or VAChT) and monoamines such as dopamine and serotonin (SLC18A1 and 2, the vesicular monoamine transporters VMAT1 and 2, respectively). To date, no specific diseases have been attributed to a mutation in an SLC18 family member; however, polymorphisms in SLC18A1 and SLC18A2 may confer risk for some neuropsychiatric disorders. Additional members of this family include SLC18A4, expressed in insects, and SLC18B1, the function of which is not known. SLC18 is part of the Drug:H+ Antiporter-1 Family (DHA1, TCID 2.A.1.2) within the Major Facilitator Superfamily (MFS, TCID 2.A.1). PMID:23506877

  10. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    SciTech Connect

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  11. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters.

    PubMed

    Singh, Satinder K; Yamashita, Atsuko; Gouaux, Eric

    2007-08-23

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 A above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of

  12. Characterization of bacterial drug antiporters homologous to mammalian neurotransmitter transporters.

    PubMed

    Vardy, Eyal; Steiner-Mordoch, Sonia; Schuldiner, Shimon

    2005-11-01

    Multidrug transporters are ubiquitous proteins, and, based on amino acid sequence similarities, they have been classified into several families. Here we characterize a cluster of archaeal and bacterial proteins from the major facilitator superfamily (MFS). One member of this family, the vesicular monoamine transporter (VMAT) was previously shown to remove both neurotransmitters and toxic compounds from the cytoplasm, thereby conferring resistance to their effects. A BLAST search of the available microbial genomes against the VMAT sequence yielded sequences of novel putative multidrug transporters. The new sequences along with VMAT form a distinct cluster within the dendrogram of the MFS, drug-proton antiporters. A comparison with other proteins in the family suggests the existence of a potential ion pair in the membrane domain. Three of these genes, from Mycobacterium smegmatis, Corynebacterium glutamicum, and Halobacterium salinarum, were cloned and functionally expressed in Escherichia coli. The proteins conferred resistance to fluoroquinolones and chloramphenicol (at concentrations two to four times greater than that of the control). Measurement of antibiotic accumulation in cells revealed proton motive force-dependent transport of those compounds. PMID:16237035

  13. Drosophila melanogaster as a genetic model system to study neurotransmitter transporters

    PubMed Central

    Martin, Ciara A.; Krantz, David E.

    2014-01-01

    The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use. PMID:24704795

  14. Neurotransmitter Transporter-Like: A Male Germline-specific SLC6 Transporter Required for Drosophila Spermiogenesis

    PubMed Central

    Chatterjee, Nabanita; Rollins, Janet; Mahowald, Anthony P.; Bazinet, Christopher

    2011-01-01

    The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl), is expressed only in the male germline. Mobilization of a transposon inserted near the 3′ end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism. PMID:21298005

  15. Functional mechanisms of neurotransmitter transporters regulated by lipid-protein interactions of their terminal loops

    PubMed Central

    Khelashvili, George; Weinstein, Harel

    2015-01-01

    The physiological functions of neurotransmitter:sodium symporters (NSS) in reuptake of neurotransmitters from the synapse into the presynaptic nerve have been shown to be complemented by their involvement, together with non-plasma membrane neurotransmitter transporters, in the reverse transport of substrate (efflux) in response to psychostimulants. Recent experimental evidence implicates highly anionic phosphatidylinositol 4,5-biphosphate (PIP2) lipids in such functions of the serotonin (SERT) and dopamine (DAT) transporters. Thus, for both SERT and DAT, neurotransmitter efflux has been shown to be strongly regulated by the presence of PIP2 lipids in the plasma membrane, and the electrostatic interaction of the N-terminal region of DAT with the negatively charged PIP2 lipids. We examine the experimentally established phenotypes in a structural context obtained from computational modeling based on recent crystallographic data. The results are shown to set the stage for a mechanistic understanding of physiological actions of neurotransmitter transporters in the NSS family of membrane proteins. PMID:25847498

  16. Functional mechanisms of neurotransmitter transporters regulated by lipid-protein interactions of their terminal loops.

    PubMed

    Khelashvili, George; Weinstein, Harel

    2015-09-01

    The physiological functions of neurotransmitter:sodium symporters (NSS) in reuptake of neurotransmitters from the synapse into the presynaptic nerve have been shown to be complemented by their involvement, together with non-plasma membrane neurotransmitter transporters, in the reverse transport of substrate (efflux) in response to psychostimulants. Recent experimental evidence implicates highly anionic phosphatidylinositol 4,5-biphosphate (PIP(2)) lipids in such functions of the serotonin (SERT) and dopamine (DAT) transporters. Thus, for both SERT and DAT, neurotransmitter efflux has been shown to be strongly regulated by the presence of PIP(2) lipids in the plasma membrane, and the electrostatic interaction of the N-terminal region of DAT with the negatively charged PIP(2) lipids. We examine the experimentally established phenotypes in a structural context obtained from computational modeling based on recent crystallographic data. The results are shown to set the stage for a mechanistic understanding of physiological actions of neurotransmitter transporters in the NSS family of membrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:25847498

  17. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters.

    PubMed

    Münster-Wandowski, Agnieszka; Zander, Johannes-Friedrich; Richter, Karin; Ahnert-Hilger, Gudrun

    2016-01-01

    The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH(+) driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters. PMID:26909036

  18. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters

    PubMed Central

    Münster-Wandowski, Agnieszka; Zander, Johannes-Friedrich; Richter, Karin; Ahnert-Hilger, Gudrun

    2016-01-01

    The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH+ driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters. PMID:26909036

  19. Neurotransmitter and psychostimulant recognition by the dopamine transporter

    PubMed Central

    Wang, Kevin H.; Penmatsa, Aravind; Gouaux, Eric

    2015-01-01

    Na+/Cl−-coupled biogenic amine transporters are the primary targets of therapeutic and abused drugs, ranging from antidepressants to the psychostimulants cocaine and amphetamines, and to their cognate substrates. Here we determine x-ray crystal structures of the Drosophila melanogaster dopamine transporter (dDAT) bound to its substrate dopamine (DA), a substrate analogue 3,4-dichlorophenethylamine, the psychostimulants D-amphetamine, methamphetamine, or to cocaine and cocaine analogues. All ligands bind to the central binding site, located approximately halfway across the membrane bilayer, in close proximity to bound sodium and chloride ions. The central binding site recognizes three chemically distinct classes of ligands via conformational changes that accommodate varying sizes and shapes, thus illustrating molecular principles that distinguish substrates from inhibitors in biogenic amine transporters. PMID:25970245

  20. Calixarene-Mediated Liquid Membrane Transport of Choline Conjugates 2: Transport of Drug-Choline Conjugates and Neurotransmitters

    PubMed Central

    Adhikari, Birendra Babu; Roshandel, Sahar; Fujii, Ayu

    2015-01-01

    Lower rim carboxylic acid calix[n]arenes and upper rim phosphonic acid functionalized calix[4]arenes effect selective transport of distinct molecular payloads through a liquid membrane. The secret to this success lies in the attachment of a receptor-complementary handle. We find that the trimethylammonium ethylene group present in choline is a general handle for the transport of drug and drug-like species. Furthermore, neurotransmitters possessing ionizable amine termini are also transported. Some limitations to this strategy have been uncovered as payloads become increasingly lipophilic. These developments reveal new approaches to synthetic receptor-mediated selective small molecule transport in vesicular and cellular systems. PMID:26161035

  1. Common Drugs Inhibit Human Organic Cation Transporter 1 (OCT1)-Mediated Neurotransmitter Uptake

    PubMed Central

    Boxberger, Kelli H.; Hagenbuch, Bruno

    2014-01-01

    The human organic cation transporter 1 (OCT1) is a polyspecific transporter involved in the uptake of positively charged and neutral small molecules in the liver. To date, few endogenous compounds have been identified as OCT1 substrates; more importantly, the effect of drugs on endogenous substrate transport has not been examined. In this study, we established monoamine neurotransmitters as substrates for OCT1, specifically characterizing serotonin transport in human embryonic kidney 293 cells. Kinetic analysis yielded a Km of 197 micomolar and a Vmax of 561 pmol/mg protein/minute for serotonin. Furthermore, we demonstrated that serotonin uptake was inhibited by diphenhydramine, fluoxetine, imatinib, and verapamil, with IC50 values in the low micromolar range. These results were recapitulated in primary human hepatocytes, suggesting that OCT1 plays a significant role in hepatic elimination of serotonin and that xenobiotics may alter the elimination of endogenous compounds as a result of interactions at the transporter level. PMID:24688079

  2. Auxin Immunolocalization Implicates Vesicular Neurotransmitter-Like Mode of Polar Auxin Transport in Root Apices

    PubMed Central

    Schlicht, Markus; Strnad, Miroslav; Scanlon, Michael J; Mancuso, Stefano; Hochholdinger, Frank; Palme, Klaus; Volkmann, Dieter; Menzel, Diedrik

    2006-01-01

    Immunolocalization of auxin using a new specific antibody revealed, besides the expected diffuse cytoplasmic signal, enrichments of auxin at end-poles (cross-walls), within endosomes and within nuclei of those root apex cells which accumulate abundant F-actin at their end-poles. In Brefeldin A (BFA) treated roots, a strong auxin signal was scored within BFA-induced compartments of cells having abundant actin and auxin at their end-poles, as well as within adjacent endosomes, but not in other root cells. Importantly, several types of polar auxin transport (PAT) inhibitors exert similar inhibitory effects on endocytosis, vesicle recycling, and on the enrichments of F-actin at the end-poles. These findings indicate that auxin is transported across F-actin-enriched end-poles (synapses) via neurotransmitter-like secretion. This new concept finds genetic support from the semaphore1, rum1 and rum1/lrt1 mutants of maize which are impaired in PAT, endocytosis and vesicle recycling, as well as in recruitment of F-actin and auxin to the auxin transporting end-poles. Although PIN1 localizes abundantly to the end-poles, and they also fail to support the formation of in these mutants affected in PAT, auxin and F-actin are depleted from their end-poles which also fail to support formation of the large BFA-induced compartments. PMID:19521492

  3. Signal focusing through active transport

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  4. Accelerated Molecular Dynamics and Protein Conformational Change: A Theoretical and Practical Guide Using a Membrane Embedded Model Neurotransmitter Transporter

    PubMed Central

    Gedeon, Patrick C.; Thomas, James R.; Madura, Jeffry D.

    2015-01-01

    Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis. PMID:25330967

  5. Nanosensors for neurotransmitters.

    PubMed

    Polo, Elena; Kruss, Sebastian

    2016-04-01

    Neurotransmitters are an important class of messenger molecules. They govern chemical communication between cells for example in the brain. The spatiotemporal propagation of these chemical signals is a crucial part of communication between cells. Thus, the spatial aspect of neurotransmitter release is equally important as the mere time-resolved measurement of these substances. In conclusion, without tools that provide the necessary spatiotemporal resolution, chemical signaling via neurotransmitters cannot be studied in greater detail. In this review article we provide a critical overview about sensors/probes that are able to monitor neurotransmitters. Our focus are sensing concepts that provide or could in the future provide the spatiotemporal resolution that is necessary to 'image' dynamic changes of neurotransmitter concentrations around cells. These requirements set the bar for the type of sensors we discuss. The sensor must be small enough (if possible on the nanoscale) to provide the envisioned spatial resolution and it should allow parallel (spatial) detection. In this article we discuss both optical and electrochemical concepts that meet these criteria. We cover techniques that are based on fluorescent building blocks such as nanomaterials, proteins and organic dyes. Additionally, we review electrochemical array techniques and assess limitations and possible future directions. PMID:26586160

  6. Reduced expression of the vesicular acetylcholine transporter and neurotransmitter content affects synaptic vesicle distribution and shape in mouse neuromuscular junction.

    PubMed

    Rodrigues, Hermann A; Fonseca, Matheus de C; Camargo, Wallace L; Lima, Patrícia M A; Martinelli, Patrícia M; Naves, Lígia A; Prado, Vânia F; Prado, Marco A M; Guatimosim, Cristina

    2013-01-01

    In vertebrates, nerve muscle communication is mediated by the release of the neurotransmitter acetylcholine packed inside synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). Here we used a mouse model (VAChT KD(HOM)) with 70% reduction in the expression of VAChT to investigate the morphological and functional consequences of a decreased acetylcholine uptake and release in neuromuscular synapses. Upon hypertonic stimulation, VAChT KD(HOM) mice presented a reduction in the amplitude and frequency of miniature endplate potentials, FM 1-43 staining intensity, total number of synaptic vesicles and altered distribution of vesicles within the synaptic terminal. In contrast, under electrical stimulation or no stimulation, VAChT KD(HOM) neuromuscular junctions did not differ from WT on total number of vesicles but showed altered distribution. Additionally, motor nerve terminals in VAChT KD(HOM) exhibited small and flattened synaptic vesicles similar to that observed in WT mice treated with vesamicol that blocks acetylcholine uptake. Based on these results, we propose that decreased VAChT levels affect synaptic vesicle biogenesis and distribution whereas a lower ACh content affects vesicles shape. PMID:24260111

  7. Azidobupramine, an Antidepressant-Derived Bifunctional Neurotransmitter Transporter Ligand Allowing Covalent Labeling and Attachment of Fluorophores

    PubMed Central

    Werner, Anna M.; Cuboni, Serena; Rudolf, Georg C.; Höfner, Georg; Wanner, Klaus T.; Sieber, Stephan A.; Schmidt, Ulrike; Holsboer, Florian; Rein, Theo; Hausch, Felix

    2016-01-01

    The aim of this study was to design, synthesize and validate a multifunctional antidepressant probe that is modified at two distinct positions. The purpose of these modifications was to allow covalent linkage of the probe to interaction partners, and decoration of probe-target complexes with fluorescent reporter molecules. The strategy for the design of such a probe (i.e., azidobupramine) was guided by the need for the introduction of additional functional groups, conveying the required properties while keeping the additional moieties as small as possible. This should minimize the risk of changing antidepressant-like properties of the new probe azidobupramine. To control for this, we evaluated the binding parameters of azidobupramine to known target sites such as the transporters for serotonin (SERT), norepinephrine (NET), and dopamine (DAT). The binding affinities of azidobupramine to SERT, NET, and DAT were in the range of structurally related and clinically active antidepressants. Furthermore, we successfully visualized azidobupramine-SERT complexes not only in SERT-enriched protein material but also in living cells stably overexpressing SERT. To our knowledge, azidobupramine is the first structural analogue of a tricyclic antidepressant that can be covalently linked to target structures and further attached to reporter molecules while preserving antidepressant-like properties and avoiding radioactive isotopes. PMID:26863431

  8. Azidobupramine, an Antidepressant-Derived Bifunctional Neurotransmitter Transporter Ligand Allowing Covalent Labeling and Attachment of Fluorophores.

    PubMed

    Kirmeier, Thomas; Gopalakrishnan, Ranganath; Gormanns, Vanessa; Werner, Anna M; Cuboni, Serena; Rudolf, Georg C; Höfner, Georg; Wanner, Klaus T; Sieber, Stephan A; Schmidt, Ulrike; Holsboer, Florian; Rein, Theo; Hausch, Felix

    2016-01-01

    The aim of this study was to design, synthesize and validate a multifunctional antidepressant probe that is modified at two distinct positions. The purpose of these modifications was to allow covalent linkage of the probe to interaction partners, and decoration of probe-target complexes with fluorescent reporter molecules. The strategy for the design of such a probe (i.e., azidobupramine) was guided by the need for the introduction of additional functional groups, conveying the required properties while keeping the additional moieties as small as possible. This should minimize the risk of changing antidepressant-like properties of the new probe azidobupramine. To control for this, we evaluated the binding parameters of azidobupramine to known target sites such as the transporters for serotonin (SERT), norepinephrine (NET), and dopamine (DAT). The binding affinities of azidobupramine to SERT, NET, and DAT were in the range of structurally related and clinically active antidepressants. Furthermore, we successfully visualized azidobupramine-SERT complexes not only in SERT-enriched protein material but also in living cells stably overexpressing SERT. To our knowledge, azidobupramine is the first structural analogue of a tricyclic antidepressant that can be covalently linked to target structures and further attached to reporter molecules while preserving antidepressant-like properties and avoiding radioactive isotopes. PMID:26863431

  9. Quantitative profiling of neurotransmitter abnormalities in the hippocampus of rats treated with lipopolysaccharide: Focusing on kynurenine pathway and implications for depression.

    PubMed

    Guo, Yujin; Cai, Hualin; Chen, Lei; Liang, Donglou; Yang, Ranyao; Dang, Ruili; Jiang, Pei

    2016-06-15

    Peripheral administration of lipopolysaccharide (LPS) can induce the rodents to a depression-like state accompanied with remarkable changes of neurotransmitter systems. In this study, the effect of an intraperitoneal LPS injection (3mg/kg) on the concentrations of neurotransmitters was investigated by in vivo microdialysis in rat hippocampus. To further explore dysregulation pattern of the neurotransmitters following continuous inflammatory process, we then analyzed the neurotransmitters in the hippocampus of rats after 2-week LPS exposure (500μg/kg every other day). Acute treatment of LPS quickly enhanced glutamate release and increased the extracellular levels of dopamine, serotonin and their metabolites. Elevated glutamate status was also found in the chronic inflamed hippocampus, whereas dopamine and serotonin was decreased following prolonged LPS exposure. Interestingly, both acute and chronic treatment of LPS significantly elevated hippocampal kynurenine concentrations and altered the balance between the serotonin and kynurenine branches of tryptophan metabolism-increasing kynurenine/tryptophan ratio, but decreasing serotonin/tryptophan ratio. Additionally, kynurenic acid, the endogenous NMDA receptor antagonist, and the ratio of kynurenic acid/kynurenine were significantly decreased by acute treatment of LPS, which may further strengthen NMDA receptor activation. Since that NMDA activation can exacerbate inflammatory and neurodegenerative process, the enhanced glutamate release and dysregulated kynurenine pathway might constitute a vicious cycle playing a pivotal role in the neuropsychiatric disorders associated with inflammation, such as depression. PMID:27235347

  10. HPLC Neurotransmitter Analysis.

    PubMed

    Holm, Thomas Hellesøe; Isaksen, Toke Jost; Lykke-Hartmann, Karin

    2016-01-01

    High performance liquid chromatography (HPLC) is a powerful tool to measure neurotransmitter levels in specific tissue samples and dialysates from patients and animals. In this chapter, we list the current protocols used to measure neurotransmitters in the form of biogenic amines from murine brain samples. PMID:26695044

  11. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release.

    PubMed

    Finberg, John P M

    2014-08-01

    Inhibitors of monoamine oxidase (MAO) were initially used in medicine following the discovery of their antidepressant action. Subsequently their ability to potentiate the effects of an indirectly-acting sympathomimetic amine such as tyramine was discovered, leading to their limitation in clinical use, except for cases of treatment-resistant depression. More recently, the understanding that: a) potentiation of indirectly-acting sympathomimetic amines is caused by inhibitors of MAO-A but not by inhibitors of MAO-B, and b) that reversible inhibitors of MAO-A cause minimal tyramine potentiation, has led to their re-introduction to clinical use for treatment of depression (reversible MAO-A inhibitors and new dose form MAO-B inhibitor) and treatment of Parkinson's disease (MAO-B inhibitors). The profound neuroprotective properties of propargyl-based inhibitors of MAO-B in preclinical experiments have drawn attention to the possibility of employing these drugs for their neuroprotective effect in neurodegenerative diseases, and have raised the question of the involvement of the MAO-mediated reaction as a source of reactive free radicals. Despite the long-standing history of MAO inhibitors in medicine, the way in which they affect neuronal release of monoamine neurotransmitters is still poorly understood. In recent years, the detailed chemical structure of MAO-B and MAO-A has become available, providing new possibilities for synthesis of mechanism-based inhibitors. This review describes the latest advances in understanding the way in which MAO inhibitors affect the release of the monoamine neurotransmitters dopamine, noradrenaline and serotonin (5-HT) in the CNS, with an accent on the importance of these effects for the clinical actions of the drugs. PMID:24607445

  12. Neurotransmitters in hiccups.

    PubMed

    Nausheen, Fauzia; Mohsin, Hina; Lakhan, Shaheen E

    2016-01-01

    Hiccups are the sudden involuntary contractions of the diaphragm and intercostal muscles. They are generally benign and self-limited, however, in some cases they are chronic and debilitating. There are approximately 4000 admissions for hiccups each year in the United States. The hiccup reflex arc is composed of three components: (1) an afferent limb including the phrenic, vagus, and sympathetic nerves, (2) the central processing unit in the midbrain, and (3) the efferent limb carrying motor fibers to the diaphragm and intercostal muscles. Hiccups may be idiopathic, organic, psychogenic, or medication-induced. Data obtained largely from case studies of hiccups either induced by or treated with medications have led to hypotheses on the neurotransmitters involved. The central neurotransmitters implicated in hiccups include GABA, dopamine, and serotonin, while the peripheral neurotransmitters are epinephrine, norepinephrine, acetylcholine, and histamine. Further studies are needed to characterize the nature of neurotransmitters at each anatomical level of the reflex arc to better target hiccups pharmacologically. PMID:27588250

  13. Electrochemical Analysis of Neurotransmitters

    NASA Astrophysics Data System (ADS)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  14. Electrochemical Analysis of Neurotransmitters

    PubMed Central

    Bucher, Elizabeth S.; Wightman, R. Mark

    2016-01-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements. PMID:25939038

  15. First photoswitchable neurotransmitter transporter inhibitor: light-induced control of γ-aminobutyric acid transporter 1 (GAT1) activity in mouse brain.

    PubMed

    Quandt, Gabriele; Höfner, Georg; Pabel, Jörg; Dine, Julien; Eder, Matthias; Wanner, Klaus T

    2014-08-14

    Inhibition of mGAT1, the most abundant GABA transporter in the brain, enhances GABA signaling and alleviates symptoms of CNS disorders such as epilepsy assumed to be associated with low GABA levels. We have now developed a potent and subtype selective photoswitchable inhibitor of this transporter, which for the first time extends the photoswitch concept for the light-induced control of ligand affinity to active membrane transporters. The new inhibitor exhibited reduced activity upon irradiation with light, as demonstrated in GABA uptake assays and electrophysiological experiments with brain slices, and might be used as a tool compound for deepening the understanding of mGAT1 function in brain. PMID:25025595

  16. The relative importance of transport phenomena in recycling isoelectric focusing.

    PubMed

    Burgaud, C; Clifton, M J; Sanchez, V

    1992-03-01

    The various transport phenomena involved in recycling isoelectric focusing are analyzed for their contributions to band spreading so as to find ways of improving the resolution of this liquid-phase protein purification method. A numerical model is proposed that takes into account diffusion, electroosmosis and electrophoretic migration as a function of pH. The electrohydrodynamic effects have so far been neglected in these calculations. The results of these calculations are compared with experimental measurements performed in different chamber geometries, with a variety of proteins and under different operating conditions, always chosen to avoid flow instabilities. This comparison shows that the resolution of this process is greatly impaired if the electroosmotic slip velocity at the wall is not suppressed. PMID:1592042

  17. Transverse centroid oscillations in solenoidially focused beam transport lattices

    SciTech Connect

    Lund, Steven M.; Wootton, Christopher J.; Lee, Edward P.

    2008-08-01

    Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable"alignment functions" and"bending functions" that efficiently describe the characteristics of the centroid oscillations induced by mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on properties of the ideal lattice in the absence of errors and steering and have associated expansion amplitudes set by the misalignments and steering fields. Applications of this formulation are presented for statistical analysis of centroid deviations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.

  18. Transverse Centroid Oscillations in Solenoidially Focused Beam Transport Lattices

    SciTech Connect

    Lund, S M; Wootton, C J; Lee, E P

    2008-08-01

    Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable 'alignment functions' and 'bending functions' that efficiently describe the characteristics of the centroid oscillations induced by mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on properties of the ideal lattice in the absence of errors and steering and have associated expansion amplitudes set by the misalignments and steering fields. Applications of this formulation are presented for statistical analysis of centroid deviations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.

  19. Homeostatic control of presynaptic neurotransmitter release.

    PubMed

    Davis, Graeme W; Müller, Martin

    2015-01-01

    It is well established that the active properties of nerve and muscle cells are stabilized by homeostatic signaling systems. In organisms ranging from Drosophila to humans, neurons restore baseline function in the continued presence of destabilizing perturbations by rebalancing ion channel expression, modifying neurotransmitter receptor surface expression and trafficking, and modulating neurotransmitter release. This review focuses on the homeostatic modulation of presynaptic neurotransmitter release, termed presynaptic homeostasis. First, we highlight criteria that can be used to define a process as being under homeostatic control. Next, we review the remarkable conservation of presynaptic homeostasis at the Drosophila, mouse, and human neuromuscular junctions and emerging parallels at synaptic connections in the mammalian central nervous system. We then highlight recent progress identifying cellular and molecular mechanisms. We conclude by reviewing emerging parallels between the mechanisms of homeostatic signaling and genetic links to neurological disease. PMID:25386989

  20. The Role of Transporters in the Toxicity of Chemotherapeutic Drugs: Focus on Transporters for Organic Cations.

    PubMed

    Hucke, Anna; Ciarimboli, Giuliano

    2016-07-01

    The introduction of chemotherapy in the treatment of cancer is one of the most important achievements of modern medicine, even allowing the cure of some lethal diseases such as testicular cancer and other malignant neoplasms. The number and type of chemotherapeutic agents available have steadily increased and have developed until the introduction of targeted tumor therapy. It is now evident that transporters play an important role for determining toxicity of chemotherapeutic drugs not only against target but also against nontarget cells. This is of special importance for intracellularly active hydrophilic drugs, which cannot freely penetrate the plasma membrane. Because many important chemotherapeutic agents are substrates of transporters for organic cations, this review discusses the known interaction of these substances with these transporters. A particular focus is given to the role of transporters for organic cations in the development of side effects of chemotherapy with platinum derivatives and in the efficacy of recently developed tyrosine kinase inhibitors to specifically target cancer cells. It is evident that specific inhibition of uptake transporters may be a possible strategy to protect against undesired side effects of platinum derivatives without compromising their antitumor efficacy. These transporters are also important for efficient targeting of tyrosine kinase inhibitors to cancer cells. However, in order to achieve the aims of protecting from undesired toxicities and improving the specificity of uptake by tumor cells, an exact knowledge of transporter expression, function, regulation under normal and pathologic conditions, and of genetically and epigenetically regulation is mandatory. PMID:27385173

  1. Solenoidal Fields for Ion Beam Transport and Focusing

    SciTech Connect

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some numerical

  2. Neurotransmitter Switching? No Surprise

    PubMed Central

    Spitzer, Nicholas C.

    2015-01-01

    Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed. PMID:26050033

  3. Phosphate Import in Plants: Focus on the PHT1 Transporters

    PubMed Central

    Nussaume, Laurent; Kanno, Satomi; Javot, Hélène; Marin, Elena; Pochon, Nathalie; Ayadi, Amal; Nakanishi, Tomoko M.; Thibaud, Marie-Christine

    2011-01-01

    The main source of phosphorus for plants is inorganic phosphate (Pi), which is characterized by its poor availability and low mobility. Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery of PHT1 transporters in 1996, various studies have revealed that their function is controlled by a highly complex network of regulation. This review will summarize the current state of research on plant PHT1 multigenic families, including physiological, biochemical, molecular, cellular, and genetics studies. PMID:22645553

  4. Microsphere-chain waveguides: Focusing and transport properties

    SciTech Connect

    Allen, Kenneth W. Astratov, Vasily N.; Darafsheh, Arash; Abolmaali, Farzaneh; Mojaverian, Neda; Limberopoulos, Nicholaos I.; Lupu, Anatole

    2014-07-14

    It is shown that the focusing properties of polystyrene microsphere-chain waveguides (MCWs) formed by sufficiently large spheres (D ≥ 20λ, where D is the sphere diameter and λ is the wavelength of light) scale with the sphere diameter as predicted by geometrical optics. However, this scaling behavior does not hold for mesoscale MCWs with D ≤ 10λ resulting in a periodical focusing with gradually reducing beam waists and in extremely small propagation losses. The observed effects are related to properties of nanojet-induced and periodically focused modes in such structures. The results can be used for developing focusing microprobes, laser scalpels, and polarization filters.

  5. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    PubMed Central

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  6. Neurotransmitters of the suprachiasmatic nuclei

    PubMed Central

    Reghunandanan, Vallath; Reghunandanan, Rajalaxmy

    2006-01-01

    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working. PMID:16480518

  7. Cosmic Ray Transport with Magnetic Focusing and the ``Telegraph'' model

    NASA Astrophysics Data System (ADS)

    Sagdeev, Roald; Malkov, Mikhail

    2015-11-01

    Cosmic rays (CR), scattered by MHD waves, must propagate diffusively. However, because some of the particles diffuse unrealistically fast, an alternative CR transport model based on the ``telegraph'' equation was put forward. Though, its derivations often lack rigor and transparency leading to inconsistent results. We apply the Chapman-Enskog method to the CR transport. No ``telegraph'' ∂2 f / ∂t2 term emerges in a proper t >> 1 asymptotic expansion. Nevertheless, this term may be converted from the ∂4 f / ∂z4 term of that expansion. However, both the telegraph and hyperdiffusive terms are important only for a short relaxation period associated with the initial CR anisotropy/inhomogeneity. Then, the system evolves diffusively in both cases. The term conversion is possible only after this relaxation period. During this period, the telegraph solution is argued to be unphysical. Unlike the hyperdiffusion correction, it is not uniformly valid and introduces implausible singular components to the solution. These dominate the solution during the relaxation period. Because they are shown not to be inherent in the underlying scattering problem, the telegraph term is involuntarily acquired in an asymptotic reduction. Supported by NASA ATP-program under the grant NNX14AH36G.

  8. Electrochemical nanoprobes for the chemical detection of neurotransmitters

    PubMed Central

    Colombo, Michelle L.

    2015-01-01

    Neurotransmitters, acting as chemical messengers, play an important role in neurotransmission, which governs many functional aspects of nervous system activity. Electrochemical probes have proven a very useful technique to study neurotransmission, especially to quantify and qualify neurotransmitters. With the emerging interests in probing neurotransmission at the level of single cells, single vesicles, as well as single synapses, probes that enable detection of neurotransmitters at the nanometer scale become vitally important. Electrochemical nanoprobes have been successfully employed in nanometer spatial resolution imaging of single nanopores of Si membrane and single Au nanoparticles, providing both topographical and chemical information, thus holding great promise for nanometer spatial study of neurotransmission. Here we present the current state of electrochemical nanoprobes for chemical detection of neurotransmitters, focusing on two types of nanoelectrodes, i.e. carbon nanoelectrode and nano-ITIES pipet electrode. PMID:26327927

  9. Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction.

    PubMed

    Zhou, Quan; Yu, Lu-Shan; Zeng, Su

    2014-08-01

    Drug transporters and drug metabolism enzymes govern drug absorption, distribution, metabolism and elimination. Many literature works presenting important aspects related to stereochemistry of drug metabolism are available. However, there is very little literature on stereoselectivity of chiral drug transport and enantiomer-transporter interaction. In recent years, the experimental research within this field showed good momentum. Herein, an up-to-date review on this topic was presented. Breast Cancer Resistance Protein (BCRP), Multidrug Resistance Proteins (MRP), P-glycoprotein (P-gp), Organic Anion Transporters (OATs), Organic Anion Transporting Polypeptides (OATPs), Organic Cation Transporters (OCTs), Peptide Transport Proteins (PepTs), Human Proton-Coupled Folate Transporter (PCFT) and Multidrug and Toxic Extrusion Proteins (MATEs), have been reported to exhibit either positive or negative enantio-selective substrate recognition. The approaches utilized to study chirality in enantiomer-transporter interaction include inhibition experiments of specific transporters in cell models (e.g. Caco-2 cells), transport study using drug resistance cell lines or transgenic cell lines expressing transporters in wild type or variant, the use of transporter knockout mice, pharmacokinetics association of single nucleotide polymorphism in transporters, pharmacokinetic interaction study of racemate in the presence of specific transporter inhibitor or inducer, molecule cellular membrane affinity chromatography and pharmacophore modeling. Enantiomer-enantiomer interactions exist in chiral transport. The strength and/or enantiomeric preference of stereoselectivity may be species or tissue-specific, concentration-dependent and transporter family member-dependent. Modulation of specific drug transporter by pure enantiomers might exhibit opposite stereoselectivity. Further studies with integrated approaches will open up new horizons in stereochemistry of pharmacokinetics. PMID:24796860

  10. Stable two-plane focusing for emittance-dominated sheet-beam transport

    NASA Astrophysics Data System (ADS)

    Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.

    2005-06-01

    Two-plane focusing of sheet electron beams will be an essential technology for an emerging class of high-power, 100 to 300 GHz rf sources [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172]. In these devices, the beam has a unique asymmetry in which the transport is emittance dominated in the sheet’s thin dimension and space-charge dominated in the sheet’s wide dimension. Previous work has studied the stability of the transport of beams in the emittance-dominated regime for both wiggler and periodic permanent magnet (PPM) configurations with single-plane focusing, and has found that bigger envelope scalloping occurs for equilibrium transport, as compared to space-charge dominated beams [Carlsten et al., this issue, Phys. Rev. ST Accel. Beams 8, 062001 (2005), PRABFM, 1098-4402]. In this paper, we describe the differences in transport stability when two-plane focusing is included. Two-plane wiggler focusing degrades the transport stability slightly, whereas two-plane PPM focusing greatly compromises the transport. On the other hand, single-plane PPM focusing can be augmented with external quadrupole fields to provide weak focusing in the sheet’s wide dimension, which has stability comparable to two-plane wiggler transport.

  11. The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype.

    PubMed

    Robinson, M B

    1998-12-01

    The acidic amino acids, glutamate and aspartate, are the predominant excitatory neurotransmitters in the mammalian CNS. Under many pathologic conditions, these excitatory amino acids (EAAs) accumulate in the extracellular fluid in CNS and the resultant excessive activation of EAA receptors contributes to brain injury through a process known as 'excitotoxicity'. Unlike many other neurotransmitters, there is no evidence for extracellular metabolism of EAAs, rather, they are cleared by Na+-dependent transport mechanisms. Therefore, this transport process is important for ensuring crisp synaptic signaling as well as limiting the excitotoxic potential of EAAs. With the cloning of five distinct EAA transporters, a variety of tools were developed to characterize individual transporter subtypes, including specific antibodies, expression systems, and probes to delete/knock-down expression of each subtype. These tools are beginning to provide fundamental information that has the potential to impact our understanding of EAA physiology and pathophysiology. For example, biophysical studies of the cloned transporters have led to the observation that some subtypes function as ligand-gated ion channels as well as transporters. With these reagents, it has also been possible to explore the relative contributions of each transporter to the clearance of extracellular EAAs and to begin to examine the regulation of specific transporter subtypes. In this review, an overview of the properties of the transporter subtypes will be presented. The evidence which suggests that the transporter, GLT1/EAAT2, may be sufficient to explain a large percentage of forebrain transport will be critically reviewed. Finally, the studies of regulation of GLT-1 in vitro and in vivo will be described. PMID:10098717

  12. Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter SLC16A2 (MCT8).

    PubMed

    Rodrigues, Tiago B; Ceballos, Ainhoa; Grijota-Martínez, Carmen; Nuñez, Barbara; Refetoff, Samuel; Cerdán, Sebastian; Morte, Beatriz; Bernal, Juan

    2013-01-01

    Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-(13)C) glucose and brain extracts prepared and analyzed by (13)C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood. PMID:24098341

  13. Transport mechanism of a glutamate transporter homologue GltPh.

    PubMed

    Ji, Yurui; Postis, Vincent L G; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-06-15

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  14. Transport mechanism of a glutamate transporter homologue GltPh

    PubMed Central

    Ji, Yurui; Postis, Vincent L.G.; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  15. Dynamic neurotransmitter interactions measured with PET

    SciTech Connect

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  16. PVD9902, a porcine vas deferens epithelial cell line that exhibits neurotransmitter-stimulated anion secretion and expresses numerous HCO3(-) transporters.

    PubMed

    Carlin, Ryan W; Sedlacek, Roger L; Quesnell, Rebecca R; Pierucci-Alves, Fernando; Grieger, David M; Schultz, Bruce D

    2006-06-01

    Epithelial ion transport disorders, including cystic fibrosis, adversely affect male reproductive function by nonobstructive mechanisms and by obstruction of the distal duct. Continuous cell lines that could be used to define ion transport mechanisms in this tissue are not readily available. In the present study, porcine vas deferens epithelial cells were isolated by standard techniques, and the cells spontaneously immortalized to form a porcine vas deferens epithelial cell line that we have titled PVD9902. Cells were maintained in continuous culture for >4 yr and 200 passages in a typical growth medium. Frozen stocks were generated, and thawed cells exhibited growth characteristics indistinguishable from their nonfrozen counterparts. Molecular and immunocytochemical studies confirmed the origin and epithelial nature of these cells. When seeded on permeable supports, PVD9902 cells grew as electrically tight (>6,000 ohms x cm2), confluent monolayers that responded to forskolin with an increase in short-circuit current (I(sc); 8 +/- 1 microA/cm2) that required Cl-, HCO3(-), and Na+, and was partially sensitive to bumetanide. mRNA was expressed for a number of anion transporters, including CFTR, electrogenic Na+-HCO3(-) cotransporter 1b (NBCe1b), downregulated in adenoma, pendrin, and Cl-/formate exchanger. Both forskolin and isoproterenol caused an increase in cellular cAMP levels. In addition, PVD9902 cell monolayers responded to physiological (i.e., adenosine, norepinephrine) and pharmacological [i.e., 5'-(N-ethylcarboxamido)adenosine, isoproterenol] agonists with increases in I(sc). Unlike their freshly isolated counterparts, however, PVD9902 cells did not respond to glucocorticoid exposure with an increase in amiloride-sensitive I(sc). RT-PCR analysis revealed the presence of both glucocorticoid and mineralocorticoid receptor mRNA as well as mRNA for the alpha- and gamma-subunits of the epithelia Na+ channels (alpha- and gamma-ENaC), but not beta

  17. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B; Ma, Qian; Malloy, Craig R; Pascual, Juan M

    2013-01-01

    It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-13C3]heptanoate was examined in the normal mouse brain and in G1D by 13C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in 13C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and 13C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism. PMID:23072752

  18. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain.

    PubMed

    Marin-Valencia, Isaac; Good, Levi B; Ma, Qian; Malloy, Craig R; Pascual, Juan M

    2013-02-01

    It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-(13)C(3)]heptanoate was examined in the normal mouse brain and in G1D by (13)C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in (13)C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and (13)C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism. PMID:23072752

  19. Neurotransmitter Co-release: Mechanism and Physiological Role

    PubMed Central

    Hnasko, Thomas S.; Edwards, Robert H.

    2014-01-01

    Neurotransmitter identity is a defining feature of all neurons because it constrains the type of information they convey, but it has become clear that many neurons in fact release multiple transmitters. Although the physiological role for co-release has remained poorly understood, the vesicular uptake of one transmitter can regulate filling with the other by influencing expression of the H+ electrochemical driving force. In addition, the sorting of vesicular neurotransmitter transporters and other synaptic vesicle proteins into different vesicle pools suggests the potential for distinct modes of release. Co-release thus serves multiple roles in synaptic transmission. PMID:22054239

  20. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    SciTech Connect

    Tauschwitz, T.; Yu, S.S.; Eylon, S.; Reginato, L.; Leemans, W.; Rasmussen, J.O.; Bangerter, R.O.

    1995-04-01

    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used.

  1. Time-coded neurotransmitter release at excitatory and inhibitory synapses.

    PubMed

    Rodrigues, Serafim; Desroches, Mathieu; Krupa, Martin; Cortes, Jesus M; Sejnowski, Terrence J; Ali, Afia B

    2016-02-23

    Communication between neurons at chemical synapses is regulated by hundreds of different proteins that control the release of neurotransmitter that is packaged in vesicles, transported to an active zone, and released when an input spike occurs. Neurotransmitter can also be released asynchronously, that is, after a delay following the spike, or spontaneously in the absence of a stimulus. The mechanisms underlying asynchronous and spontaneous neurotransmitter release remain elusive. Here, we describe a model of the exocytotic cycle of vesicles at excitatory and inhibitory synapses that accounts for all modes of vesicle release as well as short-term synaptic plasticity (STSP). For asynchronous release, the model predicts a delayed inertial protein unbinding associated with the SNARE complex assembly immediately after vesicle priming. Experiments are proposed to test the model's molecular predictions for differential exocytosis. The simplicity of the model will also facilitate large-scale simulations of neural circuits. PMID:26858411

  2. Time-coded neurotransmitter release at excitatory and inhibitory synapses

    PubMed Central

    Rodrigues, Serafim; Desroches, Mathieu; Krupa, Martin; Cortes, Jesus M.; Sejnowski, Terrence J.; Ali, Afia B.

    2016-01-01

    Communication between neurons at chemical synapses is regulated by hundreds of different proteins that control the release of neurotransmitter that is packaged in vesicles, transported to an active zone, and released when an input spike occurs. Neurotransmitter can also be released asynchronously, that is, after a delay following the spike, or spontaneously in the absence of a stimulus. The mechanisms underlying asynchronous and spontaneous neurotransmitter release remain elusive. Here, we describe a model of the exocytotic cycle of vesicles at excitatory and inhibitory synapses that accounts for all modes of vesicle release as well as short-term synaptic plasticity (STSP). For asynchronous release, the model predicts a delayed inertial protein unbinding associated with the SNARE complex assembly immediately after vesicle priming. Experiments are proposed to test the model’s molecular predictions for differential exocytosis. The simplicity of the model will also facilitate large-scale simulations of neural circuits. PMID:26858411

  3. Genetics of monoamine neurotransmitter disorders

    PubMed Central

    2015-01-01

    The monoamine neurotransmitter disorders are a heterogeneous group of inherited neurological disorders involving defects in the metabolism of dopamine, norepinephrine, epinephrine and serotonin. The inheritance of these disorders is mostly autosomal recessive. The neurological symptoms are primarily attributable to cerebral deficiency of dopamine, serotonin or both. The clinical presentations were highly variable and substantial overlaps exist. Evidently, laboratory investigations are crucial for accurate diagnosis. Measurement of neurotransmitter metabolites in cerebral spinal fluid (CSF) is the key to delineate the metabolic defects. Adjuvant investigations including plasma phenylalanine, urine pterins, urine 3-O-methyldopa (3-OMD) and serum prolactin are also helpful to establish the diagnosis. Genetic analyses are pivotally important to confirm the diagnosis which allows specific treatments, proper genetic counselling, prognosis prediction, assessment of recurrent risk in the family as well as prenatal diagnosis. Early diagnosis with appropriate treatment is associated with remarkable response and favourable clinical outcome in several disorders in this group. PMID:26835371

  4. Genetics of monoamine neurotransmitter disorders.

    PubMed

    Siu, Wai-Kwan

    2015-04-01

    The monoamine neurotransmitter disorders are a heterogeneous group of inherited neurological disorders involving defects in the metabolism of dopamine, norepinephrine, epinephrine and serotonin. The inheritance of these disorders is mostly autosomal recessive. The neurological symptoms are primarily attributable to cerebral deficiency of dopamine, serotonin or both. The clinical presentations were highly variable and substantial overlaps exist. Evidently, laboratory investigations are crucial for accurate diagnosis. Measurement of neurotransmitter metabolites in cerebral spinal fluid (CSF) is the key to delineate the metabolic defects. Adjuvant investigations including plasma phenylalanine, urine pterins, urine 3-O-methyldopa (3-OMD) and serum prolactin are also helpful to establish the diagnosis. Genetic analyses are pivotally important to confirm the diagnosis which allows specific treatments, proper genetic counselling, prognosis prediction, assessment of recurrent risk in the family as well as prenatal diagnosis. Early diagnosis with appropriate treatment is associated with remarkable response and favourable clinical outcome in several disorders in this group. PMID:26835371

  5. Focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Lee, M. A.; Klecker, B.; Ipavich, F. M.

    1992-01-01

    Evidence is presented for focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection. This evidence was obtained with the University of Maryland/Max-Planck-Institute experiment on the ISEE-3 spacecraft during the decay phase of the June 6, 1979, solar particle event. During the early portion of the decay phase of this event, interplanetary magnetic field lines were apparently draped around a coronal mass ejection, leading to a small focusing length on the western flank where ISEE 3 was located. A period of very slow decrease of particle intensity was observed, along with large sunward anisotropy in the solar wind frame, which is inconsistent with predictions of the standard Fokker-Planck equation models for diffusive transport. It was found possible to fit the observations, assuming that focused transport dominates and that the particle pitch angle scattering is isotropic.

  6. Inherited disorders of brain neurotransmitters: pathogenesis and diagnostic approach.

    PubMed

    Szymańska, Krystyna; Kuśmierska, Katarzyna; Demkow, Urszula

    2015-01-01

    Neurotransmitters (NTs) play a central role in the efficient communication between neurons necessary for normal functioning of the nervous system. NTs can be divided into two groups: small molecule NTs and larger neuropeptide NTs. Inherited disorders of NTs result from a primary disturbance of NTs metabolism or transport. This group of disorders requires sophisticated diagnostic procedures. In this review we discuss disturbances in the metabolism of tetrahydrobiopterin, biogenic amines, γ-aminobutyric acid, foliate, pyridoxine-dependent enzymes, and also the glycine-dependent encephalopathy. We point to pathologic alterations of proteins involved in synaptic neurotransmission that may cause neurological and psychiatric symptoms. We postulate that synaptic receptors and transporter proteins for neurotransmitters should be investigated in unresolved cases. Patients with inherited neurotransmitters disorders present various clinical presentations such as mental retardation, refractory seizures, pyramidal and extrapyramidal syndromes, impaired locomotor patterns, and progressive encephalopathy. Every patient with suspected inherited neurotransmitter disorder should undergo a structured interview and a careful examination including neurological, biochemical, and imaging. PMID:25310959

  7. Transport of Helium Pickup Ions within the Focusing Cone: Reconciling STEREO Observations with IBEX

    NASA Astrophysics Data System (ADS)

    Quinn, P. R.; Schwadron, N. A.; Möbius, E.

    2016-06-01

    Recent observations of the pickup helium focusing cone by STEREO/Plasma and Suprathermal Ion Composition indicate an inflow longitude of the interstellar wind that differs from the observations of IBEX by 1\\buildrel{\\circ}\\over{.} 8+/- 2\\buildrel{\\circ}\\over{.} 4. It has been under debate whether the transport of helium pickup ions with an anisotropic velocity distribution is the cause of this difference. If so, the roughly field-aligned pickup ion streaming relative to the solar wind should create a shift in the pickup ion density relative to the focusing cone. A large pickup ion streaming depends on the size of the mean free path. Therefore, the observed longitudinal shift in the pickup ion density relative to the neutral focusing cone may carry fundamental information about the mean free path experienced by pickup ions inside 1 au. We test this hypothesis using the Energetic Particle Radiation Environment Module (EPREM) model by simulating the transport of helium pickup ions within the focusing cone finding a mean free path of {λ }\\parallel =0.19+0.29(-0.19) au. We calculate the average azimuthal velocity of pickup ions and find that the anisotropic distribution reaches ˜8% of the solar wind speed. Lastly, we isolate transport effects within EPREM, finding that pitch-angle scattering, adiabatic focusing, perpendicular diffusion, and particle drift contribute to shifting the focusing cone 20.00%, 69.43%, 10.56%, and \\lt 0.01 % , respectively. Thus we show with the EPREM model that the transport of pickup ions does indeed shift the peak of the focusing cone relative to the progenitor neutral atoms and this shift provides fundamental information on the scattering of pickup ions inside 1 au.

  8. Transport of Helium Pickup Ions within the Focusing Cone: Reconciling STEREO Observations with IBEX

    NASA Astrophysics Data System (ADS)

    Quinn, P. R.; Schwadron, N. A.; Möbius, E.

    2016-06-01

    Recent observations of the pickup helium focusing cone by STEREO/Plasma and Suprathermal Ion Composition indicate an inflow longitude of the interstellar wind that differs from the observations of IBEX by 1\\buildrel{\\circ}\\over{.} 8+/- 2\\buildrel{\\circ}\\over{.} 4. It has been under debate whether the transport of helium pickup ions with an anisotropic velocity distribution is the cause of this difference. If so, the roughly field-aligned pickup ion streaming relative to the solar wind should create a shift in the pickup ion density relative to the focusing cone. A large pickup ion streaming depends on the size of the mean free path. Therefore, the observed longitudinal shift in the pickup ion density relative to the neutral focusing cone may carry fundamental information about the mean free path experienced by pickup ions inside 1 au. We test this hypothesis using the Energetic Particle Radiation Environment Module (EPREM) model by simulating the transport of helium pickup ions within the focusing cone finding a mean free path of {λ }\\parallel =0.19+0.29(-0.19) au. We calculate the average azimuthal velocity of pickup ions and find that the anisotropic distribution reaches ∼8% of the solar wind speed. Lastly, we isolate transport effects within EPREM, finding that pitch-angle scattering, adiabatic focusing, perpendicular diffusion, and particle drift contribute to shifting the focusing cone 20.00%, 69.43%, 10.56%, and \\lt 0.01 % , respectively. Thus we show with the EPREM model that the transport of pickup ions does indeed shift the peak of the focusing cone relative to the progenitor neutral atoms and this shift provides fundamental information on the scattering of pickup ions inside 1 au.

  9. Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing

    SciTech Connect

    Carlsten, B.E.

    1997-02-01

    The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport.

  10. Complications during intrahospital transport of critically ill patients: Focus on risk identification and prevention

    PubMed Central

    Knight, Patrick H; Maheshwari, Neelabh; Hussain, Jafar; Scholl, Michael; Hughes, Michael; Papadimos, Thomas J; Guo, Weidun Alan; Cipolla, James; Stawicki, Stanislaw P; Latchana, Nicholas

    2015-01-01

    Intrahospital transportation of critically ill patients is associated with significant complications. In order to reduce overall risk to the patient, such transports should well organized, efficient, and accompanied by the proper monitoring, equipment, and personnel. Protocols and guidelines for patient transfers should be utilized universally across all healthcare facilities. Care delivered during transport and at the site of diagnostic testing or procedure should be equivalent to the level of care provided in the originating environment. Here we review the most common problems encountered during transport in the hospital setting, including various associated adverse outcomes. Our objective is to make medical practitioners, nurses, and ancillary health care personnel more aware of the potential for various complications that may occur during patient movement from the intensive care unit to other locations within a healthcare facility, focusing on risk reduction and preventive strategies. PMID:26807395

  11. Electrokinetically-Driven Transport of DNA through Focused Ion Beam Milled Nanofluidic Channels

    PubMed Central

    Menard, Laurent D.; Ramsey, J. Michael

    2013-01-01

    The electrophoretically-driven transport of double-stranded λ-phage DNA through focused ion beam (FIB) milled nanochannels is described. Nanochannels were fabricated having critical dimensions (width and depth) corresponding to 0.5×, 1×, and 2× the DNA persistence length – or 25 nm, 50 nm, and 100 nm, respectively. The threshold field strength required to drive transport, the threading mobility, and the transport mobility were measured as a function of nanochannel size. As the nanochannel dimensions decreased, the entropic barrier to translocation increased and transport became more constrained. Equilibrium models of confinement provide a framework in which to understand the observed trends, although the dynamic nature of the experiments resulted in significant deviations from theory. It was also demonstrated that the use of dynamic wall coatings for the purpose of electroosmotic flow suppression can have a significant impact on transport dynamics that may obfuscate entropic contributions. The non-intermittent DNA transport through the FIB milled nanochannels demonstrates that they are well suited for use in nanofluidic devices. We expect that an understanding of the dynamic transport properties reported here will facilitate the incorporation of FIB-milled nanochannels in devices for single molecule and ensemble analyses. PMID:23234458

  12. Making a semi-convex Focus area in a Focus+Glue+Context map, considering map visibility and transport access points

    NASA Astrophysics Data System (ADS)

    Hirako, Y.; Yamamoto, D.; Takahashi, N.

    2016-04-01

    We previously implemented the Focus+Glue+Context map system EMMA that provides local detailed data in Focus, global context data in Context, and connection data between both in the same view. Introducing the Glue area between Focus and Context makes it possible to provide uniform scaling for the two latter areas. This paper enhances EMMA through the implementation of a Focus creation function that considers transportation access points, such as stations and bus stops. The enhanced EMMA searches a route from the current location to the transportation access point, and allows users to identify the spatial relationship between the various locations in a small-scale Context, and view the route from the current location to the transportation access points in a large-scale Focus. However, if Focus is too large because of unnecessary areas used to identify the route, some parts of Context might be hidden by Focus. The proposed system solves this problem by implementing the following functions: (1) it searches stations that are adjacent to the current location and makes a semiconvex Focus that includes the current location and those stations in order for Focus to include really necessary areas. (2) It reduces Focus distortion by setting a fixed point as the center of the Focus area. (3) It smoothens the Focus shape in order to improve visibility in the Glue area. We developed a prototype of the proposed system that implements these functions.

  13. Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices.

    PubMed

    Schollmeier, M; Becker, S; Geissel, M; Flippo, K A; Blazević, A; Gaillard, S A; Gautier, D C; Grüner, F; Harres, K; Kimmel, M; Nürnberg, F; Rambo, P; Schramm, U; Schreiber, J; Schütrumpf, J; Schwarz, J; Tahir, N A; Atherton, B; Habs, D; Hegelich, B M; Roth, M

    2008-08-01

    This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) microm full width at half maximum 50 cm behind the source. It decouples the relativistic laser-proton acceleration from the beam transport, paving the way to optimize both separately. The collimation and the subsequent energy selection obtained are perfectly applicable for upcoming high-energy, high-repetition rate laser systems. PMID:18764401

  14. Nanojunctions in conducting polypyrrole single nanowire made by focused electron beam: Charge transport characteristics

    SciTech Connect

    Koo, Min Ho; Hong, Young Ki; Park, Dong Hyuk; Jo, Seong Gi; Joo, Jinsoo

    2011-07-15

    A focused electron (E)-beam with various doses was irradiated on the intended positions of conducting polypyrrole (PPy) single nanowire (NW) to fabricate nanojunctions. The current-voltage characteristics and their temperature dependence of the PPy single NW with nanojunctions were measured and analyzed. By increasing the E-beam dose and the number of nanojunctions, the current level of the single NW was dramatically decreased, and the conductance gap became more severe as the temperature decreased. The charge transport behavior varied from three-dimensional variable range hopping to fluctuation induced tunneling models, depending on the dose of focused E-beam. From micro-Raman spectra, the focused E-beam irradiation induced the de-doped states and conformational modification of polymer chains in the nanojunctions. The results suggest that the nanojunctions made by focused E-beam acted as a quasi-potential barrier for charge conduction in the conducting PPy single NW.

  15. Hypoxia. 3. Hypoxia and neurotransmitter synthesis

    PubMed Central

    2011-01-01

    Central and peripheral neurons as well as neuroendocrine cells express a variety of neurotransmitters/modulators that play critical roles in regulation of physiological systems. The synthesis of several neurotransmitters/modulators is regulated by O2-requiring rate-limiting enzymes. Consequently, hypoxia resulting from perturbations in O2 homeostasis can affect neuronal functions by altering neurotransmitter synthesis. Two broad categories of hypoxia are frequently encountered: continuous hypoxia (CH) and intermittent hypoxia (IH). CH is often seen during high altitude sojourns, whereas IH is experienced in sleep-disordered breathing with recurrent apneas (i.e., brief, repetitive cessations of breathing). This article presents what is currently known on the effects of both forms of hypoxia on neurotransmitter levels and neurotransmitter synthesizing enzymes in the central and peripheral nervous systems. PMID:21270298

  16. Stable transport and side-focusing of sheet electron beams in periodically cusped magnetic field configurations

    SciTech Connect

    Anderson, J.; Basten, M.A.; Rauth, L.; Booske, J.H.; Joe, J.; Scharer, J.E.

    1995-12-31

    Sheet electron beams and configurations with multiple electron beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single narrow RF interaction circuit. Possible microwave device applications using sheet electron beams include sheet-beam klystrons, grating TWT`s, and planar FELs. Historically, implementation of sheet beams in microwave devices has been discouraged by their susceptibility to the diocotron instability in solenoidal focusing systems. However, recent theoretical and numerical studies have shown that stable transport of sheet beams is possible in periodically cusped magnetic (PCM) fields. The use of an offset-pole PCM configuration has been shown analytically to provide side-fields for 2-D focusing of the beam, and this has been recently verified with PIC code simulations. The authors present further theoretical studies of sheet and multi-beam transport and discuss experimental measurements of an offset-pole PCM array which is currently being constructed.

  17. Ferrographic tracking of bacterial transport in the field at the Narrow Channel focus area, Oyster, VA

    SciTech Connect

    Johnson, William P.; Zhang, Pengfei; Fuller, Mark E.; Scheibe, Timothy D. ); Mailloux, Brian J.; Onstott, Tullis C.; Deflaun, Mary F.; Hubbard, Susan; Radtke, Jon; Kovacic, William P.; Holben, William

    2001-01-01

    The first results from an innovative bacterial tracking technique, ferrographic capture, applied to bacterial transport in groundwater are reported in this paper. Ferrographic capture was used to analyze samples during an October 1999 bacterial injection experiment at the Narrow Channel Focus Area of the South Oyster Site, VA. Data obtained using this method showed that the timing of bacterial breakthrough was controlled by physical (hydraulic conductivity) heterogeneity in the vertical dimension, as opposed to variation in sediment surface or aqueous chemical properties. Ferrographic tracking yielded results that compared well with results from other tracking techniques over a concentration range of eight orders of magnitude, and provided a low detection limit relative to most other bacterial tracking techniques. The low detection limit of this method allowed observation of transport of an adhesion-deficient bacterium over distances greater than 20 m in the fine sand aquifer under lying this site.

  18. Tentative design of beam focusing for the AHF linac and transport systems

    SciTech Connect

    Swain, G.R.

    1989-01-01

    Proposals for an advanced hadron facility include building afterburner linacs for LAMPF. A first afterburner, Add-on Linac number 1, is proposed to accelerate the beam from 0.8 to 1.6 GeV. The output beam would then be fed to a compressor ring and to another afterburner, Add-on Linac number 2. We make a rough estimate of the transverse focusing strength needed in these linacs, and consider the transport line from the end of the LAMPF 805-MHz linac to the start of Add-on Linac number 1. A rebuncher is needed in this transport line for proper acceptance of the beam into the add-on linac. 2 refs., 4 figs.

  19. Influence of target requirements on the production, acceleration, transport, and focusing of ion beams

    SciTech Connect

    Bangerter, R.O.; Mark, J.W.K.; Meeker, D.J.; Judd, D.L.

    1981-01-01

    We have calculated the energy gain of ion-driven fusion targets as a function of input energy, ion range, and focal spot radius. For heavy-ion drivers a given target gain, together with final-lens properties, determines a 6-D phase space volume which must exceed that occupied by the ion beam. Because of Liouville's theorem and the inevitability of some phase space dilutions, the beams's 6-D volume will increase between the ion source and the target. This imposes important requirements on accelerators and on transport and focusing systems.

  20. Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification.

    PubMed

    Borodinsky, Laura N; Belgacem, Yesser H

    2016-04-01

    Morphogenetic proteins are responsible for patterning the embryonic nervous system by enabling cell proliferation that will populate all the neural structures and by specifying neural progenitors that imprint different identities in differentiating neurons. The adoption of specific neurotransmitter phenotypes is crucial for the progression of neuronal differentiation, enabling neurons to connect with each other and with target tissues. Preliminary neurotransmitter specification originates from morphogen-driven neural progenitor specification through the combinatorial expression of transcription factors according to morphogen concentration gradients, which progressively restrict the identity that born neurons adopt. However, neurotransmitter phenotype is not immutable, instead trophic factors released from target tissues and environmental stimuli change expression of neurotransmitter-synthesizing enzymes and specific vesicular transporters modifying neuronal neurotransmitter identity. Here we review studies identifying the mechanisms of catecholaminergic, GABAergic, glutamatergic, cholinergic and serotonergic early specification and of the plasticity of these neurotransmitter phenotypes during development and in the adult nervous system. The emergence of spontaneous electrical activity in developing neurons recruits morphogenetic proteins in the process of neurotransmitter phenotype plasticity, which ultimately equips the nervous system and the whole organism with adaptability for optimal performance in a changing environment. PMID:26686293

  1. Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins

    PubMed Central

    Reboul, Emmanuelle

    2013-01-01

    Vitamin A deficiency is a public health problem in most developing countries, especially in children and pregnant women. It is thus a priority in health policy to improve preformed vitamin A and/or provitamin A carotenoid status in these individuals. A more accurate understanding of the molecular mechanisms of intestinal vitamin A absorption is a key step in this direction. It was long thought that β-carotene (the main provitamin A carotenoid in human diet), and thus all carotenoids, were absorbed by a passive diffusion process, and that preformed vitamin A (retinol) absorption occurred via an unidentified energy-dependent transporter. The discovery of proteins able to facilitate carotenoid uptake and secretion by the enterocyte during the past decade has challenged established assumptions, and the elucidation of the mechanisms of retinol intestinal absorption is in progress. After an overview of vitamin A and carotenoid fate during gastro-duodenal digestion, our focus will be directed to the putative or identified proteins participating in the intestinal membrane and cellular transport of vitamin A and carotenoids across the enterocyte (i.e., Scavenger Receptors or Cellular Retinol Binding Proteins, among others). Further progress in the identification of the proteins involved in intestinal transport of vitamin A and carotenoids across the enterocyte is of major importance for optimizing their bioavailability. PMID:24036530

  2. Neurotransmitters couple brain activity to subventricular zone neurogenesis

    PubMed Central

    Young, Stephanie Z.; Taylor, M. Morgan; Bordey, Angélique

    2011-01-01

    Adult neurogenesis occurs in two privileged microenvironments, the hippocampal subgranular zone of the dentate gyrus and the subventricular zone (SVZ) along the lateral ventricle. This review focuses on accumulating evidence suggesting that the activity of specific brain regions or bodily states influences SVZ cell proliferation and neurogenesis. Neuromodulators such as dopamine and serotonin have been shown to have long-range effects through neuronal projections into the SVZ. Local GABA and glutamate signaling have demonstrated effects on SVZ proliferation and neurogenesis, but an extra-niche source of these neurotransmitters remains to be explored and options will be discussed. There is also accumulating evidence that diseases and bodily states such as Alzheimer's disease, seizures, sleep, and pregnancy influence SVZ cell proliferation. With such complex behavior and environmentally-driven factors that control subregion-specific activity, it will become necessary to account for overlapping roles of multiple neurotransmitter systems on neurogenesis when developing cell therapies or drug treatments. PMID:21395856

  3. Neurotransmitters and Novelty: A Systematic Review.

    PubMed

    Rangel-Gomez, Mauricio; Meeter, Martijn

    2016-01-01

    Our brains are highly responsive to novelty. However, how novelty is processed in the brain, and what neurotransmitter systems play a role therein, remains elusive. Here, we systematically review studies on human participants that have looked at the neuromodulatory basis of novelty detection and processing. While theoretical models and studies on nonhuman animals have pointed to a role of the dopaminergic, cholinergic, noradrenergic and serotonergic systems, the human literature has focused almost exclusively on the first two. Dopamine was found to affect electrophysiological responses to novelty early in time after stimulus presentation, but evidence on its effects on later processing was found to be contradictory: While neuropharmacological studies mostly yielded null effects, gene studies did point to an important role for dopamine. Acetylcholine seems to dampen novelty signals in the medial temporal lobe, but boost them in frontal cortex. Findings on 5-HT (serotonin) were found to be mostly contradictory. Two large gaps were identified in the literature. First, few studies have looked at neuromodulatory influences on behavioral effects of novelty. Second, no study has looked at the involvement of the noradrenergic system in novelty processing. PMID:26601905

  4. Microfluidic Systems for Studying Neurotransmitters and Neurotransmission

    PubMed Central

    Croushore, Callie A.; Sweedler, Jonathan V.

    2013-01-01

    Neurotransmitters and neuromodulators are molecules within the nervous system that play key roles in cell-to-cell communication. Upon stimulation, neurons release these signaling molecules, which then act at local or distant locations to elicit a physiological response. Ranging from small molecules, such as diatomic gases and amino acids, to larger peptides, these chemical messengers are involved in many functional processes including growth, reproduction, memory and behavior. Understanding signaling molecules and the conditions that govern their release in healthy or damaged networks promises to deliver insights into neural network formation and function. Microfluidic devices can provide optimal cell culture conditions, reduced volume systems, and precise control over the chemical and physical nature of the extracellular environment, making them well-suited for studying neurotransmission and other forms of cell-to-cell signaling. Here we review selected microfluidic approaches that are suitable for monitoring cell-to-cell signaling molecules. We highlight devices that improve in vivo sample collection as well as compartmentalized devices designed to isolate individual neurons or co-cultures in vitro, including a focus on systems used for studying neural injury and regeneration, and devices that allow selective chemical stimulations and the characterization of released molecules. PMID:23474943

  5. Central neurotransmitter disturbances underlying developmental neurotoxicological effects.

    PubMed

    Mirmiran, M; Swaab, D F

    1986-01-01

    Transmission of information among neurons is of a chemical nature. The activity of the neurotransmitter in the brain is regulated by the spontaneous activity of neurotransmitter cell body and the sensitivity of both pre- and post-synaptic receptors. Neurotransmitters are present at very early stages of brain development; they do not only mediate the behavioral-physiological responses of the immature animal, but have trophic effects on the maturation of target neurons as well. Many centrally acting drugs which are frequently used also during pregnancy for the treatment of depression, hypertension, epilepsy, asthma, insomnia, hyperkinetism and other neurological and psychiatric disorders act directly on brain neurotransmitters (in particular monoamines) and behavioral states. Chronic administration of drugs acting on monoamines (such as clonidine, imipramine, alpha-methyl-Dopa, reserpine, monoamine oxidase inhibitors, diazepam) disturb the spontaneous activity and behavioral state dependency of the monoaminergic cells, influences neurotransmitter turnover and change the sensitivity of both pre- and post-synaptic receptors. Sensory deprivation during a critical period of development is known to produce permanent effect on the brain; e.g., monocular deprivation during a particular period of development in a kitten leads to a rewiring of the connectivity in the visual system in the adult cat. Disturbances in neurotransmitter activity during early life will induce a comparable reorganization of the chemical structure of the adult brain. PMID:2878401

  6. Role of the substrate in the electrical transport characteristics of focused ion beam fabricated nanogap electrode

    NASA Astrophysics Data System (ADS)

    Rajput, Nitul S.; Singh, Abhishek K.; Verma, H. C.

    2012-07-01

    Precise metallic nanogap structure is fabricated on a glass substrate by using a 30 keV focused Ga ion beam. While investigating the I-V behavior of the nanogap structure, tunneling through the substrate has been found to play a vital role in the electrical transportation process. Substrate breakdown occurs at a certain applied voltage and a metal vapor state is initiated through intense heat generation at the nanogap region. The experimental observation confirms the role of the substrate in the explosion process. Metallic spherical particles are formed during cooling/condensation of the metal vapors or splashing of the liquid droplets showing a wide distribution of size from few tens of nanometers to few microns.

  7. Sodium glucose transporter protein 2 inhibitors: focusing on the kidney to treat type 2 diabetes

    PubMed Central

    Peene, Bernard

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is increasing worldwide. Treatment of T2DM continues to present challenges, with a significant proportion of patients failing to achieve and maintain glycemic targets. Despite the availability of many oral antidiabetic agents, therapeutic efficacy is also offset by side effects such as weight gain and hypoglycemia. Therefore, the search for novel therapeutic agents with an improved benefit–risk profile continues. In the following review we focus on a novel class of oral antidiabetic drugs, the sodium glucose transporter protein 2 (SGLT2) inhibitors, which have unique characteristics. SGLT2 inhibitors focus on the kidney as a therapeutic target, where they inhibit the reabsorption of glucose in the proximal tubule, causing an increase in urinary glucose excretion. Doing this, they reduce plasma glucose independently of the β-cell function of the pancreas. SGLT2 inhibitors are effective at lowering hemoglobin A1c, but also induce weight loss and reduce blood pressure, with a low risk of hypoglycemia. In general, the SGLT2 inhibitors are well tolerated, with the most frequent adverse events being mild urinal and genital infections. Since their primary site of effect is the kidney, these drugs are less effective in patients with impaired kidney function but evidence is emerging that these drugs may also have a protective effect against diabetic nephropathy. This review focuses on the most extensively studied SGLT2 inhibitors dapagliflozin, canagliflozin and empagliflozin. Dapagliflozin and canagliflozin have already been approved for marketing by the US Food and Drug Administration. The European Medicines Agency has accepted all three drugs for marketing. PMID:25419452

  8. Sodium glucose transporter protein 2 inhibitors: focusing on the kidney to treat type 2 diabetes.

    PubMed

    Peene, Bernard; Benhalima, Katrien

    2014-10-01

    Type 2 diabetes mellitus (T2DM) is increasing worldwide. Treatment of T2DM continues to present challenges, with a significant proportion of patients failing to achieve and maintain glycemic targets. Despite the availability of many oral antidiabetic agents, therapeutic efficacy is also offset by side effects such as weight gain and hypoglycemia. Therefore, the search for novel therapeutic agents with an improved benefit-risk profile continues. In the following review we focus on a novel class of oral antidiabetic drugs, the sodium glucose transporter protein 2 (SGLT2) inhibitors, which have unique characteristics. SGLT2 inhibitors focus on the kidney as a therapeutic target, where they inhibit the reabsorption of glucose in the proximal tubule, causing an increase in urinary glucose excretion. Doing this, they reduce plasma glucose independently of the β-cell function of the pancreas. SGLT2 inhibitors are effective at lowering hemoglobin A1c, but also induce weight loss and reduce blood pressure, with a low risk of hypoglycemia. In general, the SGLT2 inhibitors are well tolerated, with the most frequent adverse events being mild urinal and genital infections. Since their primary site of effect is the kidney, these drugs are less effective in patients with impaired kidney function but evidence is emerging that these drugs may also have a protective effect against diabetic nephropathy. This review focuses on the most extensively studied SGLT2 inhibitors dapagliflozin, canagliflozin and empagliflozin. Dapagliflozin and canagliflozin have already been approved for marketing by the US Food and Drug Administration. The European Medicines Agency has accepted all three drugs for marketing. PMID:25419452

  9. Neurotransmitter properties of the newborn human retina

    SciTech Connect

    Hollyfield, J.G.; Frederick, J.M.; Rayborn, M.E.

    1983-07-01

    Human retinal tissue from a newborn was examined autoradiographically for the presence of high-affinity uptake and localization of the following putative neurotransmitters: dopamine, glycine, GABA, aspartate, and glutamate. In addition, the dopamine content of this newborn retina was measured by high pressure liquid chromatography. Our study reveals that specific uptake mechanisms for /sup 3/H-glycine, /sup 3/H-dopamine, and /sup 3/H-GABA are present at birth. However, the number and distribution of cells labeled with each of these /sup 3/H-transmitters are not identical to those observed in adult human retinas. Furthermore, the amount of endogenous dopamine in the newborn retina is approximately 1/20 the adult level. Photoreceptor-specific uptake of /sup 3/H-glutamate and /sup 3/H-aspartate are not observed. These findings indicate that, while some neurotransmitter-specific properties are present at birth, significant maturation of neurotransmitter systems occurs postnatally.

  10. Magnetic field-induced control of transport in multiterminal focusing quantum billiards

    NASA Astrophysics Data System (ADS)

    Morfonios, C.; Buchholz, D.; Schmelcher, P.

    2011-05-01

    By exploring the four-terminal transmission of a semielliptic open quantum billiard in dependence of its geometry and an applied magnetic field, it is shown that a controllable switching of currents between the four terminals can be obtained. Depending on the eccentricity of the semiellipse and the width and placement of the leads, high transmittivity at zero magnetic field is reached either through states guided along the curved boundary or focused onto the straight boundary of the billiard. For small eccentricity, attachment of leads at the ellipse foci can yield optimized corresponding transmission, while departures from this behavior demonstrate the inapplicability of solely classical considerations in the deep quantum regime. The geometrically determined transmission is altered by the phase-modulating and deflecting effect of the magnetic field, which switches the pairs of leads connected by high transmittivity. It is shown that the elliptic boundary is responsible for these very special transport properties. At higher field strengths edge states form and the multiterminal transmission coefficients are determined by the topology of the billiard. The combination of magnetotransport with geometrically optimized transmission behavior leads to an efficient control of the current through the multiterminal structure.

  11. LeuT-Desipramine Structure Reveals How Antidepressants Block Neurotransmitter Reuptake

    SciTech Connect

    Zhou,Z.; Zhen, J.; Karpowich, N.; Goetz, R.; Law, C.; Reith, M.; Wang, D.

    2007-01-01

    Tricyclic antidepressants exert their pharmacological effect -- inhibiting the reuptake of serotonin, norepinephrine, and dopamine -- by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.

  12. Quadrupole Strong Focusing for Transport of Space-Charge Dominated Electron Beams in Traveling-Wave Tubes

    NASA Astrophysics Data System (ADS)

    Nichols, Kimberley E. L.

    Analysis of quadrupole focusing lattices for high-frequency TWT's is presented. This work is motivated by recent work performed at the Naval Research Laboratory (NRL) which demonstrated an advantageous case for strong focusing employing a Halbach quadrupole lattice. Using realistic Permanent Magnet Quadruple (PMQ) field cancellation, the advantage of using PMQ to transport higher current densities than Permanent Periodic Magnet (PPM) lattices disappears, while other advantages for employing quadrupole focusing remain. This dissertation gives a comprehensive analysis of the applicability of PMQ focusing in vacuum electronic devices.

  13. Detection and Quantification of Neurotransmitters in Dialysates

    PubMed Central

    Zapata, Agustin; Chefer, Vladimir I.; Shippenberg, Toni S.; Denoroy, Luc

    2010-01-01

    Sensitive analytical methods are needed for the separation and quantification of neurotransmitters obtained in microdialysate studies. This unit describes methods that permit quantification of nanomolar concentrations of monoamines and their metabolites (high-pressure liquid chromatography electrochemical detection), acetylcholine (HPLC-coupled to an enzyme reactor), and amino acids (HPLC-fluorescence detection; capillary electrophoresis with laser-induced fluorescence detection). PMID:19575473

  14. Surface enhanced Raman spectroscopy of neurotransmitters

    NASA Astrophysics Data System (ADS)

    McGlashen, Michael L.; Davis, Kevin L.; Morris, Michael D.

    1989-10-01

    The surface-enhanced Raman spectra (SERS) of neurotransmitters in biological matrices and synthetic solutions are described. The effects of protein adsorption on cathecholamine SERS intensity are discussed. Techniques for obtaining dopamine SERS spectra in cerebrospinal fluid and rat brain dialysate are demonstrated. Preliminary SERS of histamine and tel-methylhistamine are presented.

  15. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    SciTech Connect

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  16. Modeling the glutamate–glutamine neurotransmitter cycle

    PubMed Central

    Shen, Jun

    2012-01-01

    Glutamate is the principal excitatory neurotransmitter in brain. Although it is rapidly synthesized from glucose in neural tissues the biochemical processes for replenishing the neurotransmitter glutamate after glutamate release involve the glutamate–glutamine cycle. Numerous in vivo 13C magnetic resonance spectroscopy (MRS) experiments since 1994 by different laboratories have consistently concluded: (1) the glutamate–glutamine cycle is a major metabolic pathway with a flux rate substantially greater than those suggested by early studies of cell cultures and brain slices; (2) the glutamate–glutamine cycle is coupled to a large portion of the total energy demand of brain function. The dual roles of glutamate as the principal neurotransmitter in the CNS and as a key metabolite linking carbon and nitrogen metabolism make it possible to probe glutamate neurotransmitter cycling using MRS by measuring the labeling kinetics of glutamate and glutamine. At the same time, comparing to non-amino acid neurotransmitters, the added complexity makes it more challenging to quantitatively separate neurotransmission events from metabolism. Over the past few years our understanding of the neuronal-astroglial two-compartment metabolic model of the glutamate–glutamine cycle has been greatly advanced. In particular, the importance of isotopic dilution of glutamine in determining the glutamate–glutamine cycling rate using [1−13C] or [1,6-13C2] glucose has been demonstrated and reproduced by different laboratories. In this article, recent developments in the two-compartment modeling of the glutamate–glutamine cycle are reviewed. In particular, the effects of isotopic dilution of glutamine on various labeling strategies for determining the glutamate–glutamine cycling rate are analyzed. Experimental strategies for measuring the glutamate–glutamine cycling flux that are insensitive to isotopic dilution of glutamine are also suggested. PMID:23372548

  17. Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same

    DOEpatents

    Jacobson, Stephen C.; Ramsey, J. Michael

    2000-01-01

    A microfabricated device and method for electrokinetic transport of a liquid phase biological or chemical material is described. In accordance with one aspect of the present invention there is provided a microchip that is adapted for the simultaneous spatial confinement of electrokinetically driven fluidic material streams on a substrate. The apparatus includes a focusing chamber formed in a surface of the substrate and in fluid communication with two sample fluid channels and three focusing fluid channels. The device further includes electromotive means operatively connected to the sources of the sample fluid and the source of focusing fluid for electrokinetically driving the respective streams of the sample and focusing fluids through the respective channels into the focusing chamber such that the focusing fluid streams spatially confine the first and second sample fluid streams within the focusing chamber. In accordance with another aspect of this invention, there is provided a cytometry method for analyzing microscopic particles in a fluid medium on a microchip by utilizing the focusing function of the microchip. In the disclosed cytometry process the width of the fluid stream is narrowed in the focusing chamber. The microscopic particles in the focused sample fluid are then detected and/or measured using light scattering or other techniques.

  18. Temperature dependence of electrical properties of mixture of exogenous neurotransmitters dopamine and epinephrine

    NASA Astrophysics Data System (ADS)

    Patki, Mugdha; Patil, Vidya

    2016-05-01

    Neurotransmitters are chemical messengers that support the communication between the neurons. In vitro study of exogenous neurotransmitters Dopamine and Epinephrine and their mixture, carried out to learn about their electrical properties being dielectric constant and conductivity amongst others. Dielectric constant and conductivity of the selected neurotransmitters are found to increase with temperature. As a result, the time constant of the system increases with temperature. This change leads to increase in the time taken by the synapse to transport the action potential. The correlation between physical properties of exogenous neurotransmitters and psychological and physiological behaviour of human being may be understood with the help of current study. The response time of Epinephrine is in microseconds whereas response time of Dopamine is in milliseconds. The response time for both the neurotransmitters and their mixture is found to be increasing with temperature indicating the symptoms such as depression, apathy, chronic fatigue and low physical energy with no desire to exercise the body, which are observed during the fever.

  19. Neurotransmitters drive combinatorial multistate postsynaptic density networks.

    PubMed

    Coba, Marcelo P; Pocklington, Andrew J; Collins, Mark O; Kopanitsa, Maksym V; Uren, Rachel T; Swamy, Sajani; Croning, Mike D R; Choudhary, Jyoti S; Grant, Seth G N

    2009-01-01

    The mammalian postsynaptic density (PSD) comprises a complex collection of approximately 1100 proteins. Despite extensive knowledge of individual proteins, the overall organization of the PSD is poorly understood. Here, we define maps of molecular circuitry within the PSD based on phosphorylation of postsynaptic proteins. Activation of a single neurotransmitter receptor, the N-methyl-D-aspartate receptor (NMDAR), changed the phosphorylation status of 127 proteins. Stimulation of ionotropic and metabotropic glutamate receptors and dopamine receptors activated overlapping networks with distinct combinatorial phosphorylation signatures. Using peptide array technology, we identified specific phosphorylation motifs and switching mechanisms responsible for the integration of neurotransmitter receptor pathways and their coordination of multiple substrates in these networks. These combinatorial networks confer high information-processing capacity and functional diversity on synapses, and their elucidation may provide new insights into disease mechanisms and new opportunities for drug discovery. PMID:19401593

  20. Microfluidic platform for neurotransmitter sensing based on cyclic voltammetry and dielectrophoresis for in vitro experiments.

    PubMed

    Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine

    2015-08-01

    This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation. PMID:26736720

  1. EFFECTS OF NON-ISOTROPIC SCATTERING, MAGNETIC HELICITY, AND ADIABATIC FOCUSING ON DIFFUSIVE TRANSPORT OF SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Litvinenko, Yuri E.

    2012-06-10

    Transport of solar energetic particles in interplanetary space is analyzed. A new systematic derivation of the diffusion approximation is given, which incorporates the effects of non-isotropic scattering, magnetic helicity, and adiabatic focusing in a non-uniform large-scale magnetic field. The derivation is based on a system of stochastic differential equations, equivalent to the Fokker-Planck equation, and the new method is a generalization of the Smoluchowski approximation in the theory of the Brownian motion. Simple, physically transparent expressions for the transport coefficients are derived. Different results of earlier treatments of the problem are related to the assumptions regarding the evolving particle distribution.

  2. Pupil Transportation Cost Control Opportunities. Public Affairs Focus, Issue Number 26.

    ERIC Educational Resources Information Center

    Ponessa, Joan M.

    The New Jersey State government could reduce pupil transportation aid payments to local school districts by between $35 million and $50 million by eliminating support for questionable expenditures and by using the funding formula adopted in the Quality Education Act of 1990. This report describes how these dollar savings can be achieved. The major…

  3. Neurotransmitter release from bradykinin-stimulated PC12 cells. Stimulation of cytosolic calcium and neurotransmitter release.

    PubMed Central

    Appell, K C; Barefoot, D S

    1989-01-01

    The effect of bradykinin on intracellular free Ca2+ and neurotransmitter secretion was investigated in the rat pheochromocytoma cell line PC12. Bradykinin was shown to induce a rapid, but transient, increase in intracellular free Ca2+ which could be separated into an intracellular Ca2+ release component and an extracellular Ca2+ influx component. The bradykinin-induced stimulation of intracellular free Ca2+ displayed a similar time course, concentration dependencies and extracellular Ca2+ dependence as that found for neurotransmitter release, indicating an association between intracellular free Ca2+ levels and neurotransmitter secretion. The selective BK1-receptor antagonist des-Arg9,[Leu8]BK (where BK is bradykinin) did not significantly affect the stimulation of intracellular free Ca2+ or neurotransmitter release. In contrast, these effects of bradykinin were effectively blocked by the selective BK2-receptor antagonist [Thi5,8,D-Phe7]BK, and mimicked by the BK2 partial agonist [D-Phe7]BK in a concentration-dependent manner. The stimulation of intracellular free Ca2+ and neurotransmitter release induced by bradykinin was shown not to involve voltage-sensitive Ca2+ channels, since calcium antagonists had no effect on either response at concentrations which effectively inhibit depolarization-induced responses. These results indicate that bradykinin, acting through the interaction with the BK2 receptor, stimulates an increase in intracellular free Ca2+ leading to neurotransmitter secretion. Furthermore, bradykinin-induced responses involve the release of intracellular Ca2+ and the influx of extracellular Ca2+ that is not associated with the activation of voltage-sensitive Ca2+ channels. PMID:2574973

  4. THE ROLE OF CROSS-SHOCK POTENTIAL ON PICKUP ION SHOCK ACCELERATION IN THE FRAMEWORK OF FOCUSED TRANSPORT THEORY

    SciTech Connect

    Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.

    2013-10-20

    The focused transport theory is appropriate to describe the injection and acceleration of low-energy particles at shocks as an extension of diffusive shock acceleration (DSA). In this investigation, we aim to characterize the role of cross-shock potential (CSP) originated in the charge separation across the shock ramp on pickup ion (PUI) acceleration at various types of shocks with a focused transport model. The simulation results of energy spectrum and spatial density distribution for the cases with and without CSP added in the model are compared. With sufficient acceleration time, the focused transport acceleration finally falls into the DSA regime with the power-law spectral index equal to the solution of the DSA theory. The CSP can affect the shape of the spectrum segment at lower energies, but it does not change the spectral index of the final power-law spectrum at high energies. It is found that the CSP controls the injection efficiency which is the fraction of PUIs reaching the DSA regime. A stronger CSP jump results in a dramatically improved injection efficiency. Our simulation results also show that the injection efficiency of PUIs is mass-dependent, which is lower for species with a higher mass. In addition, the CSP is able to enhance the particle reflection upstream to produce a stronger intensity spike at the shock front. We conclude that the CSP is a non-negligible factor that affects the dynamics of PUIs at shocks.

  5. Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila.

    PubMed

    Chaturvedi, Ratna; Reddig, Keith; Li, Hong-Sheng

    2014-02-18

    Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions. PMID:24550312

  6. Pharmacology of neurotransmitter release: measuring exocytosis.

    PubMed

    Khvotchev, Mikhail; Kavalali, Ege T

    2008-01-01

    Neurotransmission in the nervous system is initiated at presynaptic terminals by fusion of synaptic vesicles with the plasma membrane and subsequent exocytic release of chemical transmitters. Currently, there are multiple methods to detect neurotransmitter release from nerve terminals, each with their own particular advantages and disadvantages. For instance, most commonly employed methods monitor actions of released chemical substances on postsynaptic receptors or artificial substrates such as carbon fibers. These methods are closest to the physiological setting because they have a rapid time resolution and they measure the action of the endogenous neurotransmitters rather than the signals emitted by exogenous probes. However, postsynaptic receptors only indirectly report neurotransmitter release in a form modified by the properties of receptors themselves, which are often nonlinear detectors of released substances. Alternatively, released chemical substances can be detected biochemically, albeit on a time scale slower than electrophysiological methods. In addition, in certain preparations, where presynaptic terminals are accessible to whole cell recording electrodes, fusion of vesicles with the plasma membrane can be monitored using capacitance measurements. In the last decade, in addition to electrophysiological and biochemical methods, several fluorescence imaging modalities have been introduced which report synaptic vesicle fusion, endocytosis, and recycling. These methods either take advantage of styryl dyes that can be loaded into recycling vesicles or exogenous expression of synaptic vesicle proteins tagged with a pH-sensitive GFP variant at regions facing the vesicle lumen. In this chapter, we will provide an overview of these methods with particular emphasis on their relative strengths and weaknesses and discuss the types of information one can obtain from them. PMID:18064410

  7. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. PMID:22352478

  8. Out-of-focus effects on microscale schlieren measurements of mass transport in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Tuan; Sun, Chen-li

    2016-08-01

    The microscale schlieren technique provides a means for a non-invasive, full-field measurement for mixing microfluidics with excellent sensitivity and resolution. Nevertheless, an out-of-focus effect due to microscopic optics may lead to undesirable errors in quantifying the gradient information at high degrees of magnification. If the channel in the microfluidic device under study is too deep, light deflection caused by inhomogeneity located far from the focal plane may contributes little to the intensity change on the image plane. To address this issue, we propose the use of a weighting function that approximates a Gaussian profile with an optical-system-dependable width. We assume that the resultant intensity change is proportional to a weighted sum of the gradient across the channel depth and acquire micro-schlieren images of fluid mixing in a T-junction microchannel at various positions along the optical axis. For each objective, the width of the weighting function is then determined iteratively by curve fitting the ratio of changes in grayscale readouts for out-of-focus and focus micro-schlieren images. The standard deviation in the Gaussian distribution facilitates the quantification of the out-of-focus effect. In addition, we measure the sensitivities of a microscale schlieren system equipped with different objectives and compare the values to the model. Despite its better resolution, we find that an objective with higher magnification suffers from a more severe out-of-focus effect and a loss of sensitivity. Equations are proposed for estimations of the standard deviation and the sensitivity of microscale schlieren measurements. The outcome will facilitate the selection of proper microchannel depths for various microscale schlieren systems or vice versa, thus improving the precision of micro-schlieren measurements in microfluidic devices.

  9. Inhibition of neurotransmitter and hormone transport into secretory vesicles by 2-(4-phenylpiperidino)cyclohexanol and 2-bromo-alpha-ergocryptine: both compounds act as uncouplers and dissipate the electrochemical gradient of protons.

    PubMed

    Moriyama, Y; Amakatsu, K; Yamada, H; Park, M Y; Futai, M

    1991-10-01

    2-(4-Phenylpiperidino)cyclohexanol (AH-5183) and 2-bromo-alpha-ergocryptine, known inhibitors of the transport of acetylcholine and L-glutamate, respectively, into synaptic vesicles, inhibited the ATP-dependent uptake of dopamine in parallel with the dissipation of the electrochemical gradient of protons in chromaffin granule membrane vesicles. These compounds induced the release of accumulated dopamine from the vesicles. They also inhibited the ATP-dependent formation of the electrochemical gradient of protons in liposomes reconstituted with chromaffin H(+)-ATPase without affecting the activities for ATP hydrolysis, and ATP-dependent uptakes of dopamine, gamma-aminobutyrate, and glutamate into synaptic vesicles. These results indicated that 2-(4-phenylpiperidino)cyclohexanol and 2-bromo-alpha-ergocryptine acted as uncouplers in the secretory vesicles. PMID:1680315

  10. Evolution of NOx emissions in Europe with focus on road transport control measures

    NASA Astrophysics Data System (ADS)

    Vestreng, V.; Ntziachristos, L.; Semb, A.; Reis, S.; Isaksen, I. S. A.; Tarrasón, L.

    2009-02-01

    European emission trends of nitrogen oxides since 1880 and up to present are presented here and are linked to the evolution of road transport emissions. Road transport has been the dominating source of NOx emissions since 1970, and contributes with 40% to the total emissions in 2005. Five trend regimes have been identified between 1880 and 2005. The first regime (1880-1950) is determined by a slow increase in fuel consumption all over Europe. The second regime (1950-1980) is characterized by a continued steep upward trend in liquid fuel use and by the introduction of the first regulations on road traffic emissions. Reduction in fuel consumption determines the emission trends in the third regime (1980-1990) that is also characterized by important differences between Eastern and Western Europe. Emissions from road traffic continue to grow in Western Europe in this period, and it is argued here that the reason for this continued NOx emission increase is related to early inefficient regulations for NOx in the transport sector. The fourth regime (1990-2000) involves a turning point for road traffic emissions, with a general decrease of emissions in Europe during that decade. It is in this period that we can identify the first emission reductions due to technological abatement in Western Europe. In the fifth regime (2000-2005), the economic recovery in Eastern Europe imposes increased emission from road traffic in this area. Western European emissions are on the other hand decoupled from the fuel consumption, and continue to decrease. The implementation of strict measures to control NOx emissions is demonstrated here to be a main reason for the continued Western European emission reductions. The results indicate that even though the effectiveness of European standards is hampered by a slow vehicle turnover, loopholes in the type-approval testing, and an increase in diesel consumption, the effect of such technical abatement measures is traceable in the evolution of

  11. Evolution of NOx emissions in Europe with focus on road transport control measures

    NASA Astrophysics Data System (ADS)

    Vestreng, V.; Ntziachristos, L.; Semb, A.; Reis, S.; Isaksen, I. S. A.; Tarrasón, L.

    2008-06-01

    European emission trends of nitrogen oxides since 1880 and up to present are presented here and are linked to the evolution of road transport emissions. Road transport has been the dominating source of NOx emissions since 1970, and contributes with 40% to the total emissions in 2005. Five trend regimes have been identified between 1880 and 2005. The first regime (1880-1950) is determined by a slow increase in fuel consumption all over Europe. The second regime (1950-1980) is characterized by a continued steep upward trend in liquid fuel use and by the introduction of the first regulations on road traffic emissions. Reduction in fuel consumption determines the emission trends in the third regime (1980-1990) that is also characterized by important differences between Eastern and Western Europe. Emissions from road traffic continue to grow in Western Europe in this period, and it is argued here that the reason for this continued NOx emission increase is related to early inefficient regulations for NOx in the transport sector. The fourth regime (1990-2000) involves a turning point for road traffic emissions, with a general decrease of emissions in Europe during that decade. It is in this period that we can identify the first emission reductions due to technological abatement in Western Europe. In the fifth regime (2000-2005), the economic recovery in Eastern Europe imposes increased emission from road traffic in this area. Western European emissions are on the other hand decoupled from the fuel consumption, and continue to decrease. The implementation of strict measures to control NOx emissions is demonstrated here to be a main reason for the continued Western European emission reductions. The results indicate that even though the effectiveness of European standards is hampered by a slow vehicle turnover, loopholes in the type-approval testing, and an increase in diesel consumption, the effect of such technical abatement measures is traceable in the evolution of

  12. Cosmic Ray Transport with Magnetic Focusing and the “Telegraph" Model

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Sagdeev, R. Z.

    2015-08-01

    Cosmic rays (CR), constrained by scattering on magnetic irregularities, are believed to propagate diffusively. However, a well-known defect of diffusive approximation, whereby some of the particles propagate unrealistically fast, has directed interest toward an alternative CR transport model based on the “telegraph” equation. Though, its derivations often lack rigor and transparency leading to inconsistent results. We apply the classic Chapman-Enskog method to the CR transport problem. We show that no “telegraph” (second order time derivative) term emerges in any order of a proper asymptotic expansion with systematically eliminated short timescales. Nevertheless, this term may formally be converted from the fourth order hyper-diffusive term of the expansion. However, both the telegraph and hyperdiffusive terms may only be important for a short relaxation period associated with either strong pitch-angle anisotropy or spatial inhomogeneity of the initial CR distribution. Beyond this period the system evolves diffusively in both cases. The term conversion, that makes the telegraph and Chapman-Enskog approaches reasonably equivalent, is possible only after this relaxation period. During this period, the telegraph solution is argued to be unphysical. Unlike the hyperdiffusion correction, it is not uniformly valid and introduces implausible singular components to the solution. These dominate the solution during the relaxation period. Because they are shown not to be inherent in the underlying scattering problem, we argue that the telegraph term is involuntarily acquired in an asymptotic reduction of the problem.

  13. Neurotransmitter signaling in the pathophysiology of microglia

    PubMed Central

    Domercq, María; Vázquez-Villoldo, Nuria; Matute, Carlos

    2013-01-01

    Microglial cells are the resident immune cells of the central nervous system. In the resting state, microglia are highly dynamic and control the environment by rapidly extending and retracting motile processes. Microglia are closely associated with astrocytes and neurons, particularly at the synapses, and more recent data indicate that neurotransmission plays a role in regulating the morphology and function of surveying/resting microglia, as they are endowed with receptors for most known neurotransmitters. In particular, microglia express receptors for ATP and glutamate, which regulate microglial motility. After local damage, the release of ATP induces microgliosis and activated microglial cells migrate to the site of injury, proliferate, and phagocytose cells, and cellular compartments. However, excessive activation of microglia could contribute to the progression of chronic neurodegenerative diseases, though the underlying mechanisms are still unclear. Microglia have the capacity to release a large number of substances that can be detrimental to the surrounding neurons, including glutamate, ATP, and reactive oxygen species. However, how altered neurotransmission following acute insults or chronic neurodegenerative conditions modulates microglial functions is still poorly understood. This review summarizes the relevant data regarding the role of neurotransmitter receptors in microglial physiology and pathology. PMID:23626522

  14. Integrated Carbon Nanostructures for Detection of Neurotransmitters.

    PubMed

    Sainio, Sami; Palomäki, Tommi; Tujunen, Noora; Protopopova, Vera; Koehne, Jessica; Kordas, Krisztian; Koskinen, Jari; Meyyappan, M; Laurila, Tomi

    2015-10-01

    Carbon-based materials, such as diamond-like carbon (DLC), carbon nanofibers (CNFs), and carbon nanotubes (CNTs), are inherently interesting for neurotransmitter detection due to their good biocompatibility, low cost and relatively simple synthesis. In this paper, we report on new carbon-hybrid materials, where either CNTs or CNFs are directly grown on top of tetrahedral amorphous carbon (ta-C). We show that these hybrid materials have electrochemical properties that not only combine the best characteristics of the individual "building blocks" but their synergy makes the electrode performance superior compared to conventional carbon based electrodes. By combining ta-C with CNTs, we were able to realize electrode materials that show wide and stable water window, almost reversible electron transfer properties and high sensitivity and selectivity for detecting dopamine in the presence of ascorbic acid. Furthermore, the sensitivity of ta-C + CNF hybrids towards dopamine as well as glutamate has been found excellent paving the road for actual in vivo measurements. The wide and stable water window of these sensors enables detection of other neurotransmitters besides DA as well as capability of withstanding higher potentials without suffering from oxygen and hydrogen evolution. PMID:26093378

  15. Analysis of drug effects on neurotransmitter release

    SciTech Connect

    Rowell, P.; Garner, A.

    1986-03-05

    The release of neurotransmitter is routinely studied in a superfusion system in which serial samples are collected and the effects of drugs or other treatments on the amount of material in the superfusate is determined. With frequent sampling interval, this procedure provides a mechanism for dynamically characterizing the release process itself. Using automated data collection in conjunction with polyexponential computer analysis, the equation which describes the release process in each experiment is determined. Analysis of the data during the nontreated phase of the experiment allows an internal control to be used for accurately assessing any changes in neurotransmitter release which may occur during a subsequent treatment phase. The use of internal controls greatly improves the signal to noise ratio and allows determinations of very low concentrations of drugs on small amounts of tissue to be made. In this presentation, the effects of 10 ..mu..M nicotine on /sup 3/H-dopamine release in rat nucleus accumbens is described. The time course, potency and efficacy of the drug treatment is characterized using this system. Determinations of the exponential order of the release as well as the rate constants allow one to study the mechanism of the release process. A description of /sup 3/H-dopamine release in normal as well as Ca/sup + +/-free medium is presented.

  16. Neurotransmitters and Neuropeptides: New Players in the Control of Islet of Langerhans' Cell Mass and Function.

    PubMed

    Di Cairano, Eliana S; Moretti, Stefania; Marciani, Paola; Sacchi, Vellea Franca; Castagna, Michela; Davalli, Alberto; Folli, Franco; Perego, Carla

    2016-04-01

    Islets of Langerhans control whole body glucose homeostasis, as they respond, releasing hormones, to changes in nutrient concentrations in the blood stream. The regulation of hormone secretion has been the focus of attention for a long time because it is related to many metabolic disorders, including diabetes mellitus. Endocrine cells of the islet use a sophisticate system of endocrine, paracrine and autocrine signals to synchronize their activities. These signals provide a fast and accurate control not only for hormone release but also for cell differentiation and survival, key aspects in islet physiology and pathology. Among the different categories of paracrine/autocrine signals, this review highlights the role of neurotransmitters and neuropeptides. In a manner similar to neurons, endocrine cells synthesize, accumulate, release neurotransmitters in the islet milieu, and possess receptors able to decode these signals. In this review, we provide a comprehensive description of neurotransmitter/neuropetide signaling pathways present within the islet. Then, we focus on evidence supporting the concept that neurotransmitters/neuropeptides and their receptors are interesting new targets to preserve β-cell function and mass. A greater understanding of how this network of signals works in physiological and pathological conditions would advance our knowledge of islet biology and physiology and uncover potentially new areas of pharmacological intervention. J. Cell. Physiol. 231: 756-767, 2016. © 2015 Wiley Periodicals, Inc. PMID:26332080

  17. Overland flow and sediment transport in an agricultural lowland catchments: a focus on tile drain export

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Grangeon, Thomas; Cerdan, Olivier; Manière, Louis; Salvador Blanes, Sébastien; Foucher, Anthony; Chapalain, Marion; Evrard, Olivier; Le Gall, Marion

    2016-04-01

    Rural landscapes have been extensively modified by human activities in Western Europe since the beginning of the 20th century in order to intensify agricultural production. Cultivated areas often expanded at the expense of grassland and wetlands located in lowland areas (de Groot et al., 2002). Therefore, large modifications were made to the agricultural landscapes: stream redesign, land consolidation, removal of hedges, and installation of tile drainage networks to drain the hydromorphic soils. These changes modified sediment processes and resulted in large morphological alterations (e.g. channel bed incision, deposition of fine sediment, channel bank erosion). Accordingly, these alterations threaten water quality and prevent to meet the requirements of the European directives. Improving water quality requires a clear understanding of the hydrosedimentary dynamics in these lowland cultivated catchments. However, few studies were conducted in drained environments. To fill this research gap, a pilot study was started in cultivated catchment of the Loire River basin, France, where tile drain densities are very high (> 1.5 km/km²). Six hydro-sedimentary monitoring stations were installed in the Louroux catchment (24 km²). One of them was specifically dedicated to measuring water/sediment fluxes from tile drains. Water level and turbidity were continuously monitored and sediments were sampled during floods and low stage periods. Samples were measured for particle size distribution, and sediment tracing studies are currently being developed to quantify the contribution of potential sources (e.g. surface vs subsurface, lithologies) to river sediment. Hydro-sedimentary fluxes were quantified and modelled for some selected events. The catchment hydrosedimentary fluxes and their properties were shown to be impacted by tile drain sediment transport, especially regarding particle size distribution, with the dominant export of very fine particles (< 2 μm) from tile drains

  18. Intense electron-beam transport in the ion-focused regime through the collision-dominated regime

    SciTech Connect

    Sanford, T.W.L.; Poukey, J.W.; Welch, D.R.; Mock, R.C.

    1993-12-31

    This paper reviews the transport of the 19-MeV, 700-kA, 25-ns Hermes-III electron beam in long gas cells filled with N{sub 2} gas spanning six decades in pressure from 10{sup 3} to {approximately}10{sup 3} Torr. We show through measurements and theoretical analyses that the beam has two windows of stable transport: a low-pressure window (between {approximately}1 and {approximately}100 mTorr) that is dominated by propagation in the semi-collisionless IFR (ion-focused regime), and a high-pressure window (between {approximately}1 and {approximately}100 Torr) that is dominated by propagation in the resistive CDR (collision-dominated regime). In the CDR, 79{plus_minus}1.5% of the beam energy is transported over 11 m at 20 Torr. In the IFR, we show that intense radiation fields with controllable rise times and pulse widths can be generated on axis at a bremsstrahlung target. In summary, the measurements and analyses presented here provide a quantitative description of the Hermes-III beam transport over six decades in pressure.

  19. Modeling climate change impacts on maize growth with the focus on plant internal water transport

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Biernath, Christian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2015-04-01

    Based on climate change experiments in chambers and on field measurements, the scientific community expects regional and global changes of crop biomass production and yields. In central Europe one major aspect of climate change is the shift of precipitation towards winter months and the increase of extreme events, e.g. heat stress and heavy precipitation, during the main growing season in summer. To understand water uptake, water use, and transpiration rates by plants numerous crop models were developed. We tested the ability of two existing canopy models (CERES-Maize and SPASS) embedded in the model environment Expert-N5.0 to simulate the water balance, water use efficiency and crop growth. Additionally, sap flow was measured using heat-ratio measurement devices at the stem base of individual plants. The models were tested against data on soil water contents, as well as on evaporation and transpiration rates of Maize plants, which were grown on lysimeters at Helmholtz Zentrum München and in the field at the research station Scheyern, Germany, in summer 2013 and 2014. We present the simulation results and discuss observed shortcomings of the models. CERES-Maize and SPASS could simulate the measured dynamics of xylem sap flow. However, these models oversimplify plant water transport, and thus, cannot explain the underlying mechanisms. Therefore, to overcome these shortcomings, we additionally propose a new model, which is based on two coupled 1-D Richards equations, describing explicitly the plant and soil water transport. This model, which has previously successfully been applied to simulate water flux of 94 individual beech trees of an old-grown forest, will lead to a more mechanistic representation of the soil-plant-water-flow-continuum. This xylem water flux model was now implemented into the crop model SPASS and adjusted to simulate water flux of single maize plants. The modified version is presented and explained. Basic model input requirements are the plant

  20. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    SciTech Connect

    Das, Kallol Johnson, Harley T.; Freund, Jonathan B.

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  1. Marine Toxins Potently Affecting Neurotransmitter Release

    NASA Astrophysics Data System (ADS)

    Meunier, Frédéric A.; Mattei, César; Molgó, Jordi

    Synapses are specialised structures where interneuronal communication takes place. Not only brain function is absolutely dependent on synaptic activity, but also most of our organs are intimately controlled by synaptic activity. Synapses re therefore an ideal target to act upon and poisonous species have evolved fascinating neurotoxins capable of shutting down neuronal communication by blocking or activating essential components of the synapse. By hijacking key proteins of the communication machinery, neurotoxins are therefore extremely valuable tools that have, in turn, greatly helped our understanding of synaptic biology. Moreover, analysis and understanding of the molecular strategy used by certain neurotoxins has allowed the design of entirely new classes of drugs acting on specific targets with high selectivity and efficacy. This chapter will discuss the different classes of marine neurotoxins, their effects on neurotransmitter release and how they act to incapacitate key steps in the process leading to synaptic vesicle fusion.

  2. The microwave spectrum of neurotransmitter serotonin.

    PubMed

    Cabezas, Carlos; Varela, Marcelino; Peña, Isabel; López, Juan C; Alonso, José L

    2012-10-21

    A laser ablation device in combination with a molecular beam Fourier-transform microwave spectrometer has allowed the observation of the rotational spectrum of serotonin for the first time. Three conformers of the neurotransmitter have been detected and characterized in the 4-10 GHz frequency range. The complicated hyperfine structure arising from the presence of two (14)N nuclei has been fully resolved for all conformers and used for their identification. Nuclear quadrupole coupling constants of the nitrogen atom of the side chain have been used to determine the orientation of the amino group probing the existence of N-Hπ interactions involving the amino group and the pyrrole unit in the Gauche-Phenyl conformer (GPh) or the phenyl unit in the Gauche-Pyrrole (GPy) ones. PMID:22965174

  3. Imaging neurotransmitter release kinetics in living cells

    SciTech Connect

    Tan, Weihong; Yeung, E.S.; Haydon, P.G.

    1996-12-31

    A new UV-laser based optical microscope and CCD detection system has been developed to image neurotransmitter in living biological cells. We demonstrate the detection of serotonin that has been taken up into and released from individual living glial cells (astrocytes) based on its native fluorescence. The detection methodology has high sensitivity, low limit of detection and does not require coupling to fluorescence dyes. We have studied serotonin uptake kinetics and its release dynamics in single glial cells. Different regions of a glial cell have taken up different amounts of serotonin with a variety of kinetics. Similarly, different serotonin release mechanisms have been observed in different astrocyte cell regions. The temporal resolution of this detection system is as fast as 50 ms, and the spatial resolution is diffraction limited. We will also report on single enzyme molecule reaction studies and single metal ion detection based on CCD imaging of pL reaction vials formed by micromachining on fused silica.

  4. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans

    PubMed Central

    Rothman, Douglas L.; De Feyter, Henk M.; de Graaf, Robin A.; Mason, Graeme F.; Behar, Kevin L.

    2011-01-01

    In the last 25 years 13C MRS has been established as the only non invasive method for measuring glutamate neurotransmission and cell specific neuroenergetics. Although technically and experimentally challenging 13C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, energy cost of brain function, the high neuronal activity in the resting brain state, and how neuroenergetics and neurotransmitter cycling are altered in neurological and psychiatric disease. In this paper the current state of 13C MRS as it is applied to study neuroenergetics and neurotransmitter cycling in humans is reviewed. The focus is predominantly on recent findings in humans regarding metabolic pathways, applications to clinical research, and the technical status of the method. Results from in vivo 13C MRS studies in animals are discussed from the standpoint of validation of MRS measurements of neuroenergetics and neurotransmitter cycling and where they have helped identify key questions to address in human research. Controversies concerning the relation of neuroenergetics and neurotransmitter cycling and factors impacting accurate determination of fluxes through mathematical modeling are addressed. We further touch upon different 13C labeled substrates used to study brain metabolism, before reviewing a number of human brain diseases studied using 13C MRS. Future technological developments are discussed that will help to overcome limitations of 13C MRS with special attention on recent developments in hyperpolarized 13C MRS. PMID:21882281

  5. Simulation of Energetic Particle Transport and Acceleration at Shock Waves in a Focused Transport Model: Implications for Mixed Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Kartavykh, Y. Y.; Dröge, W.; Gedalin, M.

    2016-03-01

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.

  6. Computational Studies of Glutamate Transporters

    PubMed Central

    Setiadi, Jeffry; Heinzelmann, Germano; Kuyucak, Serdar

    2015-01-01

    Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review. PMID:26569328

  7. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    ERIC Educational Resources Information Center

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  8. Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition

    SciTech Connect

    Porrati, F.; Huth, M.; Kaempken, B.; Terfort, A.

    2013-02-07

    CoSi-C binary alloys have been fabricated by focused electron beam-induced deposition by the simultaneous use of dicobaltoctacarbonyl, Co{sub 2}(CO){sub 8}, and neopentasilane, Si{sub 5}H{sub 12}, as precursor gases. By varying the relative flux of the precursors, alloys with variable chemical composition are obtained, as shown by energy dispersive x-ray analysis. Room temperature electrical resistivity measurements strongly indicate the formation of cobalt silicide and cobalt disilicide nanoclusters embedded in a carbonaceous matrix. Temperature-dependent electrical conductivity measurements show that the transport properties are governed by electron tunneling between neighboring CoSi or CoSi{sub 2} nanoclusters. In particular, by varying the metal content of the alloy, the electrical conductivity can be finely tuned from the insulating regime into the quasi-metallic tunneling coupling regime.

  9. Interstellar Pickup Ion Acceleration in the Turbulent Magnetic Field at the Solar Wind Termination Shock Using a Focused Transport Approach

    NASA Astrophysics Data System (ADS)

    Ye, Junye; le Roux, Jakobus A.; Arthur, Aaron D.

    2016-08-01

    We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q-Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape (q-value) and the standard deviation (σ-value) of the q-Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.

  10. Microfabrication of biosensors for neurotransmitter analysis

    NASA Astrophysics Data System (ADS)

    Tan, Weihong; Cordek, Julia; Liu, Xiaojing; Gross, Brooks; Liesenfeld, Bernd

    1999-06-01

    We have developed ultrasensitive biosensors for the analysis of neurotransmitters such as glutamate, GABA and lactate. These sensors have micrometer to submicrometer sizes. They are based on biomolecule immobilization on optical fiber probe surfaces. The miniaturized fiber probes are fabricated by either pulling or etching conventional optical fibers. For example, surface immobilized glutamate dehydrogenase (GDH) is being used for glutamate analysis. GDH has been directly immobilized onto an optical fiber probe surface through a new optical fiber sensor fabrication technique using covalent binding mechanisms. None of the direct or indirect physical confinement methods, such as mechanical confinement, gel trapping or membrane immobilization, has been used for the sensor preparation. An optical fiber surface is initially activated by silanization, which adds amine groups (-NH2) to the surface. We then affix functional groups -CHO to the optical fiber surface by employing a bifunctional cross-linking agent, glutaraldehyde. The amino acids of GDH enzyme molecules (or other biomolecules) readily attach to these free -CHO groups on the fiber surface. The sensor is able to detect its substrate, glutamate, by monitoring the fluorescence of reduced nicotinamide adenine dinucleotide (NADH), a product of the reaction between nicotinamide adenine dinucleotide (NAD+) and glutamate. Similar procedures and principle have been used for the development of lactate and GABA sensors. Our biomolecule based biosensors have been applied to the study of single living cell neurophysiological responses.

  11. Neurotransmitter signaling in postnatal neurogenesis: the first leg

    PubMed Central

    Platel, Jean-Claude; Stamboulian, Séverine; Nguyen, Ivy; Bordey, Angélique

    2010-01-01

    Like the liver or other peripheral organs, two regions of the adult brain possess the ability of self-renewal through a process called neurogenesis. This raises tremendous hope for repairing the damaged brain and has stimulated research on identifying signals controlling neurogenesis. Neurogenesis involves several stages from fate determination to synaptic integration via proliferation, migration, and maturation. While fate determination primarily depends on a genetic signature, other stages are controlled by the interplay between genes and micro-environmental signals. Here, we propose that neurotransmitters are master regulators of the different stages of neurogenesis. In favor of this idea, a description of selective neurotransmitter signaling and their functions in the largest neurogenic zone, the subventricular zone (SVZ), is provided. In particular, we emphasize the interactions between neuroblasts and astrocyte-like cells that release gamma-aminobutyric acid (GABA) and glutamate, respectively. However, we also raise several limitations to our knowledge on neurotransmitters in neurogenesis. The function of neurotransmitters in vivo remains largely unexplored. Neurotransmitter signaling has been viewed as uniform which dramatically contrasts with the cellular and molecular mosaic nature of the SVZ. How neurotransmitters are integrated with other well-conserved molecules, such as sonic hedgehog, is poorly understood. In an effort to reconcile these differences, we discuss how specificity of neurotransmitter functions can be provided through their multitude of receptors and intracellular pathways in different cell types, and their possible interactions with sonic hedgehog. PMID:20188124

  12. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    SciTech Connect

    Le Roux, J. A.; Webb, G. M.

    2012-02-10

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  13. Four-dimensional multi-site photolysis of caged neurotransmitters

    PubMed Central

    Go, Mary Ann; To, Minh-Son; Stricker, Christian; Redman, Stephen; Bachor, Hans-A.; Stuart, Greg J.; Daria, Vincent R.

    2013-01-01

    Neurons receive thousands of synaptic inputs that are distributed in space and time. The systematic study of how neurons process these inputs requires a technique to stimulate multiple yet highly targeted points of interest along the neuron's dendritic tree. Three-dimensional multi-focal patterns produced via holographic projection combined with two-photon photolysis of caged compounds can provide for highly localized release of neurotransmitters within each diffraction-limited focus, and in this way emulate simultaneous synaptic inputs to the neuron. However, this technique so far cannot achieve time-dependent stimulation patterns due to fundamental limitations of the hologram-encoding device and other factors that affect the consistency of controlled synaptic stimulation. Here, we report an advanced technique that enables the design and application of arbitrary spatio-temporal photostimulation patterns that resemble physiological synaptic inputs. By combining holographic projection with a programmable high-speed light-switching array, we have overcome temporal limitations with holographic projection, allowing us to mimic distributed activation of synaptic inputs leading to action potential generation. Our experiments uniquely demonstrate multi-site two-photon glutamate uncaging in three dimensions with submillisecond temporal resolution. Implementing this approach opens up new prospects for studying neuronal synaptic integration in four dimensions. PMID:24348330

  14. Diffusion cannot govern the discharge of neurotransmitter in fast synapses.

    PubMed Central

    Khanin, R; Parnas, H; Segel, L

    1994-01-01

    In the present work we show that diffusion cannot provide the observed fast discharge of neurotransmitter from a synaptic vesicle during neurotransmitter release, mainly because it is not sufficiently rapid nor is it sufficiently temperature-dependent. Modeling the discharge from the vesicle into the cleft as a continuous point source, we have determined that discharge should occur in 50-75 microseconds, to provide the observed high concentrations of transmitter at the critical zone. Images FIGURE 5 PMID:7811953

  15. A Phenomenological Synapse Model for Asynchronous Neurotransmitter Release

    PubMed Central

    Wang, Tao; Yin, Luping; Zou, Xiaolong; Shu, Yousheng; Rasch, Malte J.; Wu, Si

    2016-01-01

    Neurons communicate with each other via synapses. Action potentials cause release of neurotransmitters at the axon terminal. Typically, this neurotransmitter release is tightly time-locked to the arrival of an action potential and is thus called synchronous release. However, neurotransmitter release is stochastic and the rate of release of small quanta of neurotransmitters can be considerably elevated even long after the ceasing of spiking activity, leading to asynchronous release of neurotransmitters. Such asynchronous release varies for tissue and neuron types and has been shown recently to be pronounced in fast-spiking neurons. Notably, it was found that asynchronous release is enhanced in human epileptic tissue implicating a possibly important role in generating abnormal neural activity. Current neural network models for simulating and studying neural activity virtually only consider synchronous release and ignore asynchronous transmitter release. Here, we develop a phenomenological model for asynchronous neurotransmitter release, which, on one hand, captures the fundamental features of the asynchronous release process, and, on the other hand, is simple enough to be incorporated in large-size network simulations. Our proposed model is based on the well-known equations for short-term dynamical synaptic interactions and includes an additional stochastic term for modeling asynchronous release. We use experimental data obtained from inhibitory fast-spiking synapses of human epileptic tissue to fit the model parameters, and demonstrate that our model reproduces the characteristics of realistic asynchronous transmitter release. PMID:26834617

  16. Radiotracers for PET and SPECT studies of neurotransmitter systems

    SciTech Connect

    Fowler, J.S.

    1991-01-01

    The study of neurotransmitter systems is one of the major thrusts in emission tomography today. The current generation of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) radiotracers examines neurotransmitter properties from a number of different perspectives including their pre and post synaptic sites and the activity of the enzymes which regulate their concentration. Although the dopamine system has been the most extensively investigated, other neurotransmitter systems including the acetylcholine muscarine, serotonin, benzodiazepine, opiate, NMDA and others are also under intensive development. Enzymes involved in the synthesis and regulation of neurotransmitter concentration, for example monoamine oxidase and amino acid decarboxylase has also been probed in vivo. Medical applications range from the study of normal function and the characterization of neurotransmitter activity in neurological and psychiatric diseases and in heart disease and cancer to the study of the binding of therapeutic drugs and substances of abuse. This chapter will provide an overview of the current generation of radiotracers for PET and SPECT studies of neurotransmitter systems including radiotracer design, synthesis localization mechanisms and applications in emission tomography. 60 refs., 1 tab.

  17. Two-relaxation-times Lattice Boltzmann schemes for solute transport in unsaturated water flow, with a focus on stability

    NASA Astrophysics Data System (ADS)

    Hammou, H.; Ginzburg, I.; Boulerhcha, M.

    2011-06-01

    We develop two-relaxation-times Lattice Boltzmann schemes (TRT) with two relaxation functions Λ±(r→,t) for solving highly non-linear equations for groundwater modeling in d-dimensions, namely, the Richards equation for water content distribution θ(r→,t) in unsaturated flow and the associated transport equation for solute concentration C(r→,t), advected by the local Darcian water flux. The method is verified against the analytical solutions and the HYDRUS code where the TRT schemes behave more robustly for small diffusion coefficients and sharp infiltration profiles. The focus is on the stability and efficiency of two transport schemes. The first scheme conventionally prescribes C for diffusive flux equilibrium variable while conserving θC. The second scheme prescribes θC for both variables, expecting to retain the stable parameter areas and velocity amplitudes recently predicted by linear von Neumann stability analysis. We show that the first scheme reduces the stable diffusion range, e.g. from Λ-/ d to θΛ-/ d for simplest velocity sets, but it also modifies the linearized numerical diffusion, from - Λ-UαUβ to - θΛ-UαUβ, giving rise to possible enhancement of stable velocity U2, max by a factor 1/ θ. This analysis indicates that the first scheme is most efficient for infiltration into dry soil. When the product Λ+Λ- is kept constant, we find a good agreement between the attainable velocity and our predictions providing that Λ- does not exceed ≈5. Otherwise, approaching two opposite stability limits, Λ+ → 0 when Λ- → ∞ , the stable velocity amplitude drastically falls for the two transport TRT schemes. At the same time, their BGK submodels Λ+ = Λ- may keep the optimal stability for diffusion-dominant problems but their boundary and bulk approximations are completely destroyed. The analysis presented here may serve as a starting point for construction of the suitable equilibrium transformations, based on the analytical stability

  18. Biophysical Approaches to the Study of LeuT, a Prokaryotic Homolog of Neurotransmitter Sodium Symporters

    PubMed Central

    Singh, Satinder K.; Pal, Aritra

    2016-01-01

    Ion-coupled secondary transport is utilized by multiple integral membrane proteins as a means of achieving the thermodynamically unfavorable translocation of solute molecules across the lipid bilayer. The chemical nature of these molecules is diverse and includes sugars, amino acids, neurotransmitters, and other ions. LeuT is a sodium-coupled, nonpolar amino acid symporter and eubacterial member of the solute carrier 6 (SLC6) family of Na+/Cl−-dependent neurotransmitter transporters. Eukaryotic counterparts encompass the clinically and pharmacologically significant transporters for γ-aminobutyric acid (GABA), glycine, serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), and norepinephrine (NE). Since the crystal structure of LeuT was first solved in 2005, subsequent crystallographic, binding, flux, and spectroscopic studies, complemented with homology modeling and molecular dynamic simulations, have allowed this protein to emerge as a remarkable mechanistic paradigm for both the SLC6 class as well as several other sequence-unrelated SLCs whose members possess astonishingly similar architectures. Despite yielding groundbreaking conceptual advances, this vast treasure trove of data has also been the source of contentious hypotheses. This chapter will present a historical scientific overview of SLC6s; recount how the initial and subsequent LeuT structures were solved, describing the insights they each provided; detail the accompanying functional techniques, emphasizing how they either supported or refuted the static crystallographic data; and assemble these individual findings into a mechanism of transport and inhibition. PMID:25950965

  19. Biophysical Approaches to the Study of LeuT, a Prokaryotic Homolog of Neurotransmitter Sodium Symporters.

    PubMed

    Singh, Satinder K; Pal, Aritra

    2015-01-01

    Ion-coupled secondary transport is utilized by multiple integral membrane proteins as a means of achieving the thermodynamically unfavorable translocation of solute molecules across the lipid bilayer. The chemical nature of these molecules is diverse and includes sugars, amino acids, neurotransmitters, and other ions. LeuT is a sodium-coupled, nonpolar amino acid symporter and eubacterial member of the solute carrier 6 (SLC6) family of Na(+)/Cl(-)-dependent neurotransmitter transporters. Eukaryotic counterparts encompass the clinically and pharmacologically significant transporters for γ-aminobutyric acid (GABA), glycine, serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), and norepinephrine (NE). Since the crystal structure of LeuT was first solved in 2005, subsequent crystallographic, binding, flux, and spectroscopic studies, complemented with homology modeling and molecular dynamic simulations, have allowed this protein to emerge as a remarkable mechanistic paradigm for both the SLC6 class as well as several other sequence-unrelated SLCs whose members possess astonishingly similar architectures. Despite yielding groundbreaking conceptual advances, this vast treasure trove of data has also been the source of contentious hypotheses. This chapter will present a historical scientific overview of SLC6s; recount how the initial and subsequent LeuT structures were solved, describing the insights they each provided; detail the accompanying functional techniques, emphasizing how they either supported or refuted the static crystallographic data; and assemble these individual findings into a mechanism of transport and inhibition. PMID:25950965

  20. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  1. Advances in the pharmacological treatment of Parkinson's disease: targeting neurotransmitter systems.

    PubMed

    Brichta, Lars; Greengard, Paul; Flajolet, Marc

    2013-09-01

    For several decades, the dopamine precursor levodopa has been the primary therapy for Parkinson's disease (PD). However, not all of the motor and non-motor features of PD can be attributed solely to dopaminergic dysfunction. Recent clinical and preclinical advances provide a basis for the identification of additional innovative therapeutic options to improve the management of the disease. Novel pharmacological strategies must be optimized for PD by: (i) targeting disturbances of the serotonergic, noradrenergic, glutamatergic, GABAergic, and cholinergic systems in addition to the dopaminergic system, and (ii) characterizing alterations in the levels of neurotransmitter receptors and transporters that are associated with the various manifestations of the disease. PMID:23876424

  2. A 109 neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Kaushik, T. C.; Gupta, Satish C.

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 108 neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.

  3. The mechanisms and functions of spontaneous neurotransmitter release.

    PubMed

    Kavalali, Ege T

    2015-01-01

    Fast synaptic communication in the brain requires synchronous vesicle fusion that is evoked by action potential-induced Ca(2+) influx. However, synaptic terminals also release neurotransmitters by spontaneous vesicle fusion, which is independent of presynaptic action potentials. A functional role for spontaneous neurotransmitter release events in the regulation of synaptic plasticity and homeostasis, as well as the regulation of certain behaviours, has been reported. In addition, there is evidence that the presynaptic mechanisms underlying spontaneous release of neurotransmitters and their postsynaptic targets are segregated from those of evoked neurotransmission. These findings challenge current assumptions about neuronal signalling and neurotransmission, as they indicate that spontaneous neurotransmission has an autonomous role in interneuronal communication that is distinct from that of evoked release. PMID:25524119

  4. Leukemia Inhibitory Factor Induces Neurotransmitter Switching in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Bamber, Bruce A.; Masters, Brian A.; Hoyle, Gary W.; Brinster, Ralph L.; Palmiter, Richard D.

    1994-08-01

    Leukemia inhibitory factor (LIF) is a cytokine growth factor that induces rat sympathetic neurons to switch their neurotransmitter phenotype from noradrenergic to cholinergic in vitro. To test whether LIF can influence neuronal differentiation in vivo, we generated transgenic mice that expressed LIF in pancreatic islets under the control of the insulin promoter and evaluated the neurotransmitter phenotype of the pancreatic sympathetic innervation. We also used the insulin promoter to coexpress nerve growth factor in the islets, which greatly increased the density of sympathetic innervation and facilitated analysis of the effects of LIF. Our data demonstrate that tyrosine hydroxylase and catecholamines declined and choline acetyltransferase increased in response to LIF. We conclude that LIF can induce neurotransmitter switching of sympathetic neurons in vivo.

  5. Distinct domains of Complexin I differentially regulate neurotransmitter release

    PubMed Central

    Xue, Mingshan; Reim, Kerstin; Chen, Xiaocheng; Chao, Hsiao-Tuan; Deng, Hui; Rizo, Josep; Brose, Nils; Rosenmund, Christian

    2016-01-01

    Complexins constitute a family of four synaptic high-affinity SNARE complex binding proteins. They positively regulate a late, post-priming step in Ca2+-triggered synchronous neurotransmitter release, but the underlying molecular mechanisms are unclear. We show here that SNARE complex binding of Complexin I via its central α-helix is necessary but unexpectedly not sufficient for its key function in promoting neurotransmitter release. An accessory α-helix N-terminal of the SNARE complex binding region plays an inhibitory role in fast synaptic exocytosis, while its N-terminally adjacent sequences facilitate Ca2+-triggered release even in the absence of the Ca2+ sensor Synaptotagmin 1. Our results indicate that distinct functional domains of Complexins differentially regulate synaptic exocytosis, and that via the interplay between these domains Complexins play a crucial role in fine-tuning Ca2+-triggered fast neurotransmitter release. PMID:17828276

  6. Infrared photodissociation spectroscopy of protonated neurotransmitters in the gas phase

    NASA Astrophysics Data System (ADS)

    MacLeod, N. A.; Simons, J. P.

    2007-03-01

    Protonated neurotransmitters have been produced in the gas phase via a novel photochemical scheme: complexes of the species of interest, 1-phenylethylamine, 2-amino-1-phenylethanol and the diastereo-isomers, ephedrine and pseudoephedrine, with a suitable proton donor, phenol (or indole), are produced in a supersonic expansion and ionized by resonant two photon ionization of the donor. Efficient proton transfer generates the protonated neurotransmitters, complexed to a phenoxy radical. Absorption of infrared radiation, and subsequent evaporation of the phenoxy tag, coupled with time of flight mass spectrometry, provides vibrational spectra of the protonated (and also hydrated) complexes for comparison with the results of quantum chemical computation. Comparison with the conformational structures of the neutral neurotransmitters (established previously) reveals the effect of protonation on their structure. The photochemical proton transfer strategy allows spectra to be recorded from individual laser shots and their quality compares favourably with that obtained using electro-spray or matrix assisted laser desorption ion sources.

  7. THE PURINERGIC NEUROTRANSMITTER REVISITED: A SINGLE SUBSTANCE OR MULTIPLE PLAYERS?

    PubMed Central

    Mutafova-Yambolieva, Violeta N.; Durnin, Leonie

    2014-01-01

    The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5′-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD+, ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout. PMID:24887688

  8. Benzodiazepine receptor and neurotransmitter studies in the brain of suicides

    SciTech Connect

    Manchon, M.; Kopp, N.; Rouzioux, J.J.; Lecestre, D.; Deluermoz, S.; Miachon, S.

    1987-12-14

    The characteristics of benzodiazepine binding sites were studied on frozen sections of hippocampus of 7 suicides and 5 controls subjects, using biochemical and autoradiographic techniques. /sup 3/H flunitrazepam was used as ligand, clonazepam and CL 218,872 as displacing agents. Some neurotransmitters or their derivatives were evaluated quantitatively in parallel in the hippocampal tissue by liquid chromatography. The authors observed mainly an increase in the Ki of CL 218,872 subtype I binding sites in suicides, and an increase in % of type I binding sites. Among neurotransmitters, only norepinephrine differed significantly between controls and suicides. 36 references, 3 figures, 1 table.

  9. The methylation, neurotransmitter, and antioxidant connections between folate and depression.

    PubMed

    Miller, Alan L

    2008-09-01

    Depression is common - one-fourth of the U.S. population will have a depressive episode sometime in life. Folate deficiency is also relatively common in depressed people, with approximately one-third of depressed individuals having an outright deficiency. Folate is a water-soluble B-vitamin necessary for the proper biosynthesis of the monoamine neurotransmitters serotonin, epinephrine, and dopamine. The active metabolite of folate, 5-methyltetrahydrofolate (5-MTHF, L-methylfolate), participates in re-methylation of the amino acid metabolite homocysteine, creating methionine. S-adenosylmethionine (SAMe), the downstream metabolite of methionine, is involved in numerous biochemical methyl donation reactions, including reactions forming monoamine neurotransmitters. Without the participation of 5-MTHF in this process, SAMe and neurotransmitter levels decrease in the cerebrospinal fluid, contributing to the disease process of depression. SAMe supplementation was shown to improve depressive symptoms. 5-MTHF also appears to stabilize, enhance production of, or possibly act as a substitute for, tetrahydrobiopterin (BH4), an essential cofactor in monoamine neurotransmitter biosynthesis. There are few intervention studies of folic acid or 5-MTHF as a stand-alone treatment for depression related to folate deficiency; however, the studies that have been conducted are promising. Depressed individuals with low serum folate also tend to not respond well to selective serotonin reuptake inhibitor (SSRI) antidepressant drugs. Correcting the insufficiency by dosing folate along with the SSRI results in a significantly better antidepressant response. PMID:18950248

  10. Gaseous neurotransmitters and their role in anapyrexia

    PubMed Central

    Branco, Luiz G.S.; Carnio, Evelin C.; Pittman, Quentin J.

    2013-01-01

    Mammals keep their body temperature (Tb) relatively constant despite important changes in their metabolic rate. However, in some particular situations it may be beneficial to increase or to decrease Tb, in a relatively more significantly way. For instance, under hypoxic conditions, a regulated drop in Tb (anapyrexia) takes place which has been reported to be crucial for survival in a number of different species. This review highlights major advances in the research about nitric oxide and carbon monoxide (where data are relatively less abundant), before focusing on the role played by the gaseous neuromediators in thermoregulation, under the conditions of euthermia and anapyrexia. Available data are consistent with the notion that both NO and CO, acting in the CNS (intracerebroventricular approach), do participate in thermoregulation, NO decreasing Tb and CO increasing it. However further studies are required before definitive conclusions can be made, as to their physiological mechanisms of action. PMID:20515766

  11. The influence of magnetised electron transport on thermal self-focusing and channelling of nanosecond laser beams

    NASA Astrophysics Data System (ADS)

    Read, Martin; Kingham, Robert; Bissell, John

    2016-05-01

    The propagation of a nanosecond IR laser pulse through an under-dense (0.01 — 0.1ncr) magnetised laser-plasma is considered. The interplay between magnetised transport, B-field evolution and plasma hydrodynamics in the presence of a dynamically evolving beam are investigated by means of a paraxial wave solving module coupled to CTC, a 2D MHD code including Braginskii electron transport and IMPACT, a 2D implicit Vlasov-Fokker-Planck (VFP) code with magnetic fields. Magnetic fields have previously been shown to improve density channel formation for plasma waveguides however fluid simulations presented here indicate that Nernst advection can result in the rapid cavitation of magnetic field in the laser-heated region resulting in beam defocusing. Kinetic simulations indicate that strong non-local transport is present leading to the fluid code overestimating heat-flow and magnetic field advection and resulting in the recovery of beam channelling for the conditions considered.

  12. Construction of Cell-based Neurotransmitter Fluorescent Engineered Reporters (CNiFERs) for Optical Detection of Neurotransmitters In Vivo.

    PubMed

    Lacin, Emre; Muller, Arnaud; Fernando, Marian; Kleinfeld, David; Slesinger, Paul A

    2016-01-01

    Cell-based neurotransmitter fluorescent engineered reporters (CNiFERs) provide a new tool for neuroscientists to optically detect the release of neurotransmitters in the brain in vivo. A specific CNiFER is created from a human embryonic kidney cell that stably expresses a specific G protein-coupled receptor, which couples to Gq/11 G proteins, and a FRET-based Ca(2+)-detector, TN-XXL. Activation of the receptor leads to an increase in the FRET signal. CNiFERs have nM sensitivity and a temporal response of seconds because a CNiFER clone utilizes the native receptor for a particular neurotransmitter, e.g., D2R for dopamine. CNiFERs are directly implanted into the brain, enabling them to sense neurotransmitter release with a spatial resolution of less than one hundred µm, making them ideal to measure volume transmission in vivo. CNiFERs can also be used to screen other drugs for potential cross-reactivity in vivo. We recently expanded the family of CNiFERs to include GPCRs that couple to Gi/o G proteins. CNiFERs are available for detecting acetylcholine (ACh), dopamine (DA) and norepinephrine (NE). Given that any GPCR can be used to create a novel CNiFER and that there are approximately 800 GPCRs in the human genome, we describe here the general procedure to design, realize, and test any type of CNiFER. PMID:27214050

  13. Focus on Energy: A School Transportation Handbook. Proceedings of the Midwest School Transportation Fleet Management Seminar (Lansing, Michigan, November 28-29, 1979).

    ERIC Educational Resources Information Center

    Michigan State Dept. of Commerce, Lansing.

    Presented are proceedings and supplementary reports of the Midwest School Transportation Fleet Management Seminar, which was held in Lansing, Michigan, November 28-29, 1979. Among the school bus energy management topics discussed are energy feasibility studies, the use of programmed information systems, energy conservation strategies, and…

  14. Overview of transport and MHD stability study: focusing on the impact of magnetic field topology in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ida, K.; Nagaoka, K.; Inagaki, S.; Kasahara, H.; Evans, T.; Yoshinuma, M.; Kamiya, K.; Ohdach, S.; Osakabe, M.; Kobayashi, M.; Sudo, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kawamura, G.; Kato, D.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohno, N.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yokoyama, M.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, C.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tsuchiya, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; T., Ii; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Kobayashi, T.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Shimizu, A.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.; Collaborators

    2015-10-01

    The progress in the understanding of the physics and the concurrent parameter extension in the large helical device since the last IAEA-FEC, in 2012 (Kaneko O et al 2013 Nucl. Fusion 53 095024), is reviewed. Plasma with high ion and electron temperatures (Ti(0) ˜ Te(0) ˜ 6 keV) with simultaneous ion and electron internal transport barriers is obtained by controlling recycling and heating deposition. A sign flip of the nondiffusive term of impurity/momentum transport (residual stress and convection flow) is observed, which is associated with the formation of a transport barrier. The impact of the topology of three-dimensional magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum, particle/impurity transport and magnetohydrodynamic stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1 × 1019 m-3 and with high electron and ion temperatures (Ti(0) ˜ Te(0) ˜ 2 keV), resulting in 3.36 GJ of input energy, is achieved.

  15. Glycine transporter2 inhibitors: Getting the balance right.

    PubMed

    Vandenberg, Robert J; Mostyn, Shannon N; Carland, Jane E; Ryan, Renae M

    2016-09-01

    Neurotransmitter transporters are targets for a wide range of therapeutically useful drugs. This is because they have the capacity to selectively manipulate the dynamics of neurotransmitter concentrations and thereby enhance or diminish signalling through particular brain pathways. High affinity glycine transporters (GlyTs) regulate extracellular concentrations of glycine and provide novel therapeutic targets for neurological disorders. PMID:26723543

  16. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior

    PubMed Central

    Huang, Fei; Wang, Tingting; Lan, Yunyi; Yang, Li; Pan, Weihong; Zhu, Yonghui; Lv, Boyang; Wei, Yuting; Shi, Hailian; Wu, Hui; Zhang, Beibei; Wang, Jie; Duan, Xiaofeng; Hu, Zhibi; Wu, Xiaojun

    2015-01-01

    Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency affects a specific subset of neurotransmitters and results in an unique behavioral phenotype. The FXR knockout mice showed less depressive-like and anxiety-related behavior, but increased motor activity. They had impaired memory and reduced motor coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum concentrations of many bile acids, including taurodehydrocholic acid, taurocholic acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid, tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic acid, tauro-β-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken together, the results from studies with FXR knockout mice suggest that FXR contributes to the homeostasis of multiple neurotransmitter systems in different brain regions and modulates neurobehavior. The effect appears to be at least partially mediated by bile acids that are known to cross the blood-brain barrier (BBB) inducing potential neurotoxicity. PMID:25870546

  17. Wnt signalling tunes neurotransmitter release by directly targeting Synaptotagmin-1

    PubMed Central

    Ciani, Lorenza; Marzo, Aude; Boyle, Kieran; Stamatakou, Eleanna; Lopes, Douglas M.; Anane, Derek; McLeod, Faye; Rosso, Silvana B.; Gibb, Alasdair; Salinas, Patricia C.

    2015-01-01

    The functional assembly of the synaptic release machinery is well understood; however, how signalling factors modulate this process remains unknown. Recent studies suggest that Wnts play a role in presynaptic function. To examine the mechanisms involved, we investigated the interaction of release machinery proteins with Dishevelled-1 (Dvl1), a scaffold protein that determines the cellular locale of Wnt action. Here we show that Dvl1 directly interacts with Synaptotagmin-1 (Syt-1) and indirectly with the SNARE proteins SNAP25 and Syntaxin (Stx-1). Importantly, the interaction of Dvl1 with Syt-1, which is regulated by Wnts, modulates neurotransmitter release. Moreover, presynaptic terminals from Wnt signalling-deficient mice exhibit reduced release probability and are unable to sustain high-frequency release. Consistently, the readily releasable pool size and formation of SNARE complexes are reduced. Our studies demonstrate that Wnt signalling tunes neurotransmitter release and identify Syt-1 as a target for modulation by secreted signalling proteins. PMID:26400647

  18. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release.

    PubMed

    Kaeser, Pascal S; Regehr, Wade G

    2014-01-01

    Most neuronal communication relies upon the synchronous release of neurotransmitters, which occurs through synaptic vesicle exocytosis triggered by action potential invasion of a presynaptic bouton. However, neurotransmitters are also released asynchronously with a longer, variable delay following an action potential or spontaneously in the absence of action potentials. A compelling body of research has identified roles and mechanisms for synchronous release, but asynchronous release and spontaneous release are less well understood. In this review, we analyze how the mechanisms of the three release modes overlap and what molecular pathways underlie asynchronous and spontaneous release. We conclude that the modes of release have key fusion processes in common but may differ in the source of and necessity for Ca(2+) to trigger release and in the identity of the Ca(2+) sensor for release. PMID:24274737

  19. Molecular Mechanisms for Synchronous, Asynchronous, and Spontaneous Neurotransmitter Release

    PubMed Central

    Kaeser, Pascal S.; Regehr, Wade G.

    2015-01-01

    Most neuronal communication relies upon the synchronous release of neurotransmitters, which occurs through synaptic vesicle exocytosis triggered by action potential invasion of a presynaptic bouton. However, neurotransmitters are also released asynchronously with a longer, variable delay following an action potential or spontaneously in the absence of action potentials. A compelling body of research has identified roles and mechanisms for synchronous release, but asynchronous release and spontaneous release are less well understood. In this review, we analyze how the mechanisms of the three release modes overlap and what molecular pathways underlie asynchronous and spontaneous release. We conclude that the modes of release have key fusion processes in common but may differ in the source of and necessity for Ca2+ to trigger release and in the identity of the Ca2+ sensor for release. PMID:24274737

  20. Imaging Mass Spectrometric Analysis of Neurotransmitters: A Review

    PubMed Central

    Romero-Perez, Gustavo A.; Takei, Shiro; Yao, Ikuko

    2014-01-01

    Imaging mass spectrometry (IMS) is a toolbox of versatile techniques that enable us to investigate analytes in samples at molecular level. In recent years, IMS, and especially matrix-assisted laser desorption/ionisation (MALDI), has been used to visualise a wide range of metabolites in biological samples. Simultaneous visualisation of the spatial distribution of metabolites in a single sample with little tissue disruption can be considered as one important advantage of MALDI over other techniques. However, several technical hurdles including low concentrations and rapid degradation rates of small molecule metabolites, matrix interference of signals and poor ionisation, need to be addressed before MALDI can be considered as a reliable tool for the analysis of metabolites such as neurotransmitters in brain tissues from different sources including humans. In the present review we will briefly describe current MALDI IMS techniques used to study neurotransmitters and discuss their current status, challenges, as well as future prospects. PMID:26819893

  1. Neurotransmitter imaging in living cells based on native fluorescence detection

    SciTech Connect

    Tan, W.; Yeung, E.S. |; Parpura, V.; Haydon, P.G.

    1995-08-01

    A UV laser-based optical microscope and CCD detection system with high sensitivity has been developed to image neurotransmitters in living cells. We demonstrate the detection of serotonin that has been taken up into individual living glial cells (astrocytes) based on its native fluorescence. We found that the fluorescence intensity of astrocytes increased by up to 10 times after serotonin uptake. The temporal resolution of this detection system at 10{sup -4} M serotonin is as fast as 50 ms, and the spatial resolution is diffraction limited. This UV laser microscope imaging system shows promise for studies of spatial-temporal dynamics of neurotransmitter levels in living neurons and glia. 19 refs., 5 figs., 1 tab.

  2. Extremely Low Frequency Magnetic Field Modulates the Level of Neurotransmitters

    PubMed Central

    Chung, Yoon Hee; Lee, Young Joo; Lee, Ho Sung; Chung, Su Jin; Lim, Cheol Hee; Oh, Keon Woong; Sohn, Uy Dong

    2015-01-01

    This study was aimed to observe that extremely low frequency magnetic field (ELF-MF) may be relevant to changes of major neurotransmitters in rat brain. After the exposure to ELF-MF (60 Hz, 2.0 mT) for 2 or 5 days, we measured the levels of biogenic amines and their metabolites, amino acid neurotransmitters and nitric oxide (NO) in the cortex, striatum, thalamus, cerebellum and hippocampus. The exposure of ELF-MF for 2 or 5 days produced significant differences in norepinephrine and vanillyl mandelic acid in the striatum, thalamus, cerebellum and hippocampus. Significant increases in the levels of serotonin and 5-hydroxyindoleacetic acid were also observed in the striatum, thalamus or hippocampus. ELF-MF significantly increased the concentration of dopamine in the thalamus. ELF-MF tended to increase the levels of amino acid neurotransmitters such as glutamine, glycine and γ -aminobutyric acid in the striatum and thalamus, whereas it decreased the levels in the cortex, cerebellum and hippocampus. ELF-MF significantly increased NO concentration in the striatum, thalamus and hippocampus. The present study has demonstrated that exposure to ELF-MFs may evoke the changes in the levels of biogenic amines, amino acid and NO in the brain although the extent and property vary with the brain areas. However, the mechanisms remain further to be characterized. PMID:25605992

  3. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    PubMed Central

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  4. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    NASA Astrophysics Data System (ADS)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-06-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  5. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions.

    PubMed

    Stanford, Michael G; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R; Mandrus, David G; Duscher, Gerd; Rondinone, Adam J; Ivanov, Ilia N; Ward, T Zac; Rack, Philip D

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  6. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions

    DOE PAGESBeta

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam Justin; Ivanov, Ilia N.; Ward, Thomas Zac; Rack, Philip D.; Pudasaini, Pushpa Raj; et al

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuningmore » the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  7. Identification of Selective Inhibitors of the Plasmodium falciparum Hexose Transporter PfHT by Screening Focused Libraries of Anti-Malarial Compounds

    PubMed Central

    Johnson, Alex; Elya, Carolyn; Anderson, Johanna; Clark, Julie; Connelly, Michele; Yang, Lei; Min, Jaeki; Sato, Yuko; Guy, R. Kiplin; Landfear, Scott M.

    2015-01-01

    Development of resistance against current antimalarial drugs necessitates the search for novel drugs that interact with different targets and have distinct mechanisms of action. Malaria parasites depend upon high levels of glucose uptake followed by inefficient metabolic utilization via the glycolytic pathway, and the Plasmodium falciparum hexose transporter PfHT, which mediates uptake of glucose, has thus been recognized as a promising drug target. This transporter is highly divergent from mammalian hexose transporters, and it appears to be a permease that is essential for parasite viability in intra-erythrocytic, mosquito, and liver stages of the parasite life cycle. An assay was developed that is appropriate for high throughput screening against PfHT based upon heterologous expression of PfHT in Leishmania mexicana parasites that are null mutants for their endogenous hexose transporters. Screening of two focused libraries of antimalarial compounds identified two such compounds that are high potency selective inhibitors of PfHT compared to human GLUT1. Additionally, 7 other compounds were identified that are lower potency and lower specificity PfHT inhibitors but might nonetheless serve as starting points for identification of analogs with more selective properties. These results further support the potential of PfHT as a novel drug target. PMID:25894322

  8. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum.

    PubMed

    Pereira, Daniela B; Schmitz, Yvonne; Mészáros, József; Merchant, Paolomi; Hu, Gang; Li, Shu; Henke, Adam; Lizardi-Ortiz, José E; Karpowicz, Richard J; Morgenstern, Travis J; Sonders, Mark S; Kanter, Ellen; Rodriguez, Pamela C; Mosharov, Eugene V; Sames, Dalibor; Sulzer, David

    2016-04-01

    Neurotransmission at dopaminergic synapses has been studied with techniques that provide high temporal resolution, but cannot resolve individual synapses. To elucidate the spatial dynamics and heterogeneity of individual dopamine boutons, we developed fluorescent false neurotransmitter 200 (FFN200), a vesicular monoamine transporter 2 (VMAT2) substrate that selectively traces monoamine exocytosis in both neuronal cell culture and brain tissue. By monitoring electrically evoked Ca(2+) transients with GCaMP3 and FFN200 release simultaneously, we found that only a small fraction of dopamine boutons that exhibited Ca(2+) influx engaged in exocytosis, a result confirmed with activity-dependent loading of the endocytic probe FM1-43. Thus, only a low fraction of striatal dopamine axonal sites with uptake-competent VMAT2 vesicles are capable of transmitter release. This is consistent with the presence of functionally 'silent' dopamine vesicle clusters and represents, to the best of our knowledge, the first report suggestive of presynaptically silent neuromodulatory synapses. PMID:26900925

  9. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters.

    PubMed

    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian

    2013-08-01

    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1-40) and Aβ(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1-40) and Aβ(1-42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions. PMID:23747840

  10. [Neurotransmitter disorders in children--special reference to Segawa disease].

    PubMed

    Segawa, Masaya

    2011-09-01

    Aminergic neurotransmitter disorders occurring in childhood include metabolic disorders of pteridine and tyrosine hydroxylase (TH). Pteridine metabolic disorders cause a deficiency of serotonin (5-HT) and dopamine (DA) and TH disorder causes a deficiency of noradrenaline (NA) and DA in the terminals of each aminergic neuron. The activities of TH or DA in the terminals are marked in early childhood, and then they show an exponential age-dependent decrement and achieve stationary or minimal levels in the twenties. As observed in Segawa disease, TH or DA activities in these disorders follow this age-related decrease with levels around 20% of normal, and patients develop symptoms age-dependently, with onset in childhood, progression by the late teens, and a stationary period after the twenties, but this does not cause morphological changes. These phenomena may occur with other neurotransmitters. So replacement therapies are effective irrespective of the clinical course. However, early-onset cases in infancy or early childhood showing a marked decrement of 5-HT or NA activities show postural hypotonia and failed locomotion. These cause failure in atonia restriction in the REM stage and induce dysfunction of the pedunculopontine nucleus, and, consequently induce dysfunction or failure in the development of DA neurons in the sutbstantia nigra and ventrotegmental area. These relate to failure in the development of higher cortical functions. Thus, assessing of ages at onset and activities of antigravity muscles and locomotion in infancy is cardinal for the treatment the neurotransmitter disorders occurring in infancy and early childhood. PARK2 with deficiency of DA in the substantia nigra leads to dystonia in the teens and Parkinson disease after 20 years, although these respond to 1-Dopa favorably but induce D2 receptor upregulation and intractable dyskinesia. A decrease of DA in the perikaryon leads to symptoms after 10 years and causes dysfunction of the target

  11. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  12. Neurotransmitters in the Gas Phase: La-Mb Studies

    NASA Astrophysics Data System (ADS)

    Cabezas, C.; Mata, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    LA-MB-FTMW spectroscopy combines laser ablation with Fourier transform microwave spectroscopy in supersonic jets overcoming the problems of thermal decomposition associated with conventional heating methods. We present here the results on LA-MB-FTMW studies of some neurotransmitters. Six conformers of dopamine, four of adrenaline, five of noradrenaline and three conformers of serotonin have been characterized in the gas phase. The rotational and nuclear quadrupole coupling constants extracted from the analysis of the rotational spectrum are directly compared with those predicted by ab initio methods to achieve the conclusive identification of different conformers and the experimental characterization of the intramolecular forces at play which control conformational preferences.

  13. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  14. Re-examining how complexin inhibits neurotransmitter release

    PubMed Central

    Trimbuch, Thorsten; Xu, Junjie; Flaherty, David; Tomchick, Diana R; Rizo, Josep; Rosenmund, Christian

    2014-01-01

    Complexins play activating and inhibitory functions in neurotransmitter release. The complexin accessory helix inhibits release and was proposed to insert into SNARE complexes to prevent their full assembly. This model was supported by ‘superclamp’ and ‘poor-clamp’ mutations that enhanced or decreased the complexin-I inhibitory activity in cell–cell fusion assays, and by the crystal structure of a superclamp mutant bound to a synaptobrevin-truncated SNARE complex. NMR studies now show that the complexin-I accessory helix does not insert into synaptobrevin-truncated SNARE complexes in solution, and electrophysiological data reveal that superclamp mutants have slightly stimulatory or no effects on neurotransmitter release, whereas a poor-clamp mutant inhibits release. Importantly, increasing or decreasing the negative charge of the complexin-I accessory helix inhibits or stimulates release, respectively. These results suggest a new model whereby the complexin accessory helix inhibits release through electrostatic (and perhaps steric) repulsion enabled by its location between the vesicle and plasma membranes. DOI: http://dx.doi.org/10.7554/eLife.02391.001 PMID:24842998

  15. Cytokine Targets in the Brain: Impact on Neurotransmitters and Neurocircuits

    PubMed Central

    Miller, Andrew H.; Haroon, Ebrahim; Raison, Charles L.; Felger, Jennifer C.

    2014-01-01

    Increasing attention has been paid to the role of inflammation in a host of illnesses including neuropsychiatric disorders such as depression and anxiety. Activation of the inflammatory response leads to release of inflammatory cytokines and mobilization of immune cells both of which have been shown to access the brain and alter behavior. The mechanisms of the effects of inflammation on the brain have become an area of intensive study. Data indicate that cytokines and their signaling pathways including p38 mitogen activated protein kinase have significant effects on the metabolism of multiple neurotransmitters such as serotonin, dopamine and glutamate through impact on their synthesis, release and reuptake. Cytokines also activate the kynurenine pathway which not only depletes tryptophan, the primary amino acid precursor of serotonin, but also generates neuroactive metabolites that can significantly influence the regulation of dopamine and glutamate. Through their effects on neurotransmitter systems, cytokines impact neurocircuits in the brain including the basal ganglia and anterior cingulate cortex, leading to significant changes in motor activity and motivation as well as anxiety, arousal and alarm. In the context of environmental challenge from the microbial world, these effects of inflammatory cytokines on the brain represent an orchestrated suite of behavioral and immune responses that subserve evolutionary priorities to shunt metabolic resources away from environmental exploration to fighting infection and wound healing, while also maintaining vigilance against attack, injury and further pathogen exposure. Chronic activation of this innate behavioral and immune response may lead to depression and anxiety disorders in vulnerable individuals. PMID:23468190

  16. Developmental profiles of neurotransmitter receptors in respiratory motor nuclei

    PubMed Central

    Kubin, Leszek; Volgin, Denys V.

    2008-01-01

    We discuss the time course of postnatal development of selected neurotransmitter receptors in motoneurons that innervate respiratory pump and accessory respiratory muscles, with emphasis on other than classic respiratory signals as important regulatory factors. Functions of those brainstem motoneurons that innervate the pharynx and larynx change more dramatically during early postnatal development than those of spinal respiratory motoneurons. Possibly in relation to this difference, the time course of postnatal expression of distinct receptors for serotonin differ between the hypoglossal (XII) and phrenic motoneurons. In rats, distinct developmental patterns include a decline or increase that extends over the first 3−4 postnatal weeks, a rapid increase during the first two weeks, or a transient decline on postnatal days 11−14. The latter period coincides with major changes in many transmitters in brainstem respiratory regions that may be related to a brain-wide reconfiguration of sensorymotor processing resulting from eye and ear opening and beginning of a switch from suckling to mature forms of food seeking and processing. Such rapid neurochemical changes may impart increased vulnerability on the respiratory system. We also consider rapid eye movement sleep as a state during which some brain functions may revert to conditions typical of perinatal period. In addition to normal developmental processes, changes in the expression or function of neurotransmitter receptors may occur in respiratory motoneurons in response to injury, perinatal stress, or disease conditions that increase the load on respiratory muscles or alter the normal levels and patterns of oxygen delivery. PMID:18514591

  17. A CMOS Amperometric System for Multi-Neurotransmitter Detection.

    PubMed

    Massicotte, Genevieve; Carrara, Sandro; Di Micheli, Giovanni; Sawan, Mohamad

    2016-06-01

    In vivo multi-target and selective concentration monitoring of neurotransmitters can help to unravel the brain chemical complex signaling interplay. This paper presents a dedicated integrated potentiostat transducer circuit and its selective electrode interface. A custom 2-electrode time-based potentiostat circuit was fabricated with 0.13 μm CMOS technology and provides a wide dynamic input current range of 20 pA to 600 nA with 56 μ W, for a minimum sampling frequency of 1.25 kHz. A multi-working electrode chip is functionalized with carbon nanotubes (CNT)-based chemical coatings that offer high sensitivity and selectivity towards electroactive dopamine and non-electroactive glutamate. The prototype was experimentally tested with different concentrations levels of both neurotransmitter types, and results were similar to measurements with a commercially available potentiostat. This paper validates the functionality of the proposed biosensor, and demonstrates its potential for the selective detection of a large number of neurochemicals. PMID:26761882

  18. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin

    2012-10-01

    In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.

  19. Substrate-induced unlocking of the inner gate determines the catalytic efficiency of a neurotransmitter:sodium symporter.

    PubMed

    Billesbølle, Christian B; Krüger, Mie B; Shi, Lei; Quick, Matthias; Li, Zheng; Stolzenberg, Sebastian; Kniazeff, Julie; Gotfryd, Kamil; Mortensen, Jonas S; Javitch, Jonathan A; Weinstein, Harel; Loland, Claus J; Gether, Ulrik

    2015-10-30

    Neurotransmitter:sodium symporters (NSSs) mediate reuptake of neurotransmitters from the synaptic cleft and are targets for several therapeutics and psychostimulants. The prokaryotic NSS homologue, LeuT, represents a principal structural model for Na(+)-coupled transport catalyzed by these proteins. Here, we used site-directed fluorescence quenching spectroscopy to identify in LeuT a substrate-induced conformational rearrangement at the inner gate conceivably leading to formation of a structural intermediate preceding transition to the inward-open conformation. The substrate-induced, Na(+)-dependent change required an intact primary substrate-binding site and involved increased water exposure of the cytoplasmic end of transmembrane segment 5. The findings were supported by simulations predicting disruption of an intracellular interaction network leading to a discrete rotation of transmembrane segment 5 and the adjacent intracellular loop 2. The magnitude of the spectroscopic response correlated inversely with the transport rate for different substrates, suggesting that stability of the intermediate represents an unrecognized rate-limiting barrier in the NSS transport mechanism. PMID:26363074

  20. A novel key-lock mechanism for inactivating amino acid neurotransmitters during transit across extracellular space.

    PubMed

    Baslow, Morris H

    2010-01-01

    There are two kinds of neurotransmissions that occur in brain. One is neuron to neuron at synapses, and the other is neuron to glia via extracellular fluid (ECF), both of which are important for maintenance of proper neuronal functioning. For neuron to neuron communications, several potent amino acid neurotransmitters are used within the confines of synaptic space. However, their presence at elevated concentrations in extra-synaptic space could be detrimental to well organized neuronal functioning. The significance of the synthesis and release of N-acetylaspartylglutamate (NAAG) by neurons has long been a puzzle since glutamate (Glu) itself is the "key" that can interact with all Glu receptors on membranes of all cells. Nonetheless, neurons synthesize this acetylated dipeptide, which cannot be catabolized by neurons, and release it to ECF where its specific physiological target is the Glu metabotropic receptor 3 on the surface of astrocytes. Since Glu is excitotoxic at elevated concentrations, it is proposed that formation and release of NAAG by neurons allows large quantities of Glu to be transported in ECF without the risk of injurious excitotoxic effects. The metabolic mechanism used by neurons is a key-lock system to detoxify Glu during its intercellular transit. This is accomplished by first synthesizing N-acetylaspartate (NAA), and then joining this molecule via a peptide bond to Glu. In this paper, a hypothesis is presented that neurons synthesize a variety of relatively nontoxic peptides and peptide derivatives, including NAA, NAAG, homocarnosine (gamma-aminobutyrylhistidine) and carnosine (beta-alanylhistidine) from potent excitatory and inhibitory amino acids for the purpose of releasing them to ECF to function as cell-specific neuron-to-glia neurotransmitters. PMID:19151913

  1. [Glutamatergic neurotransmitter system in regulation of the gastrointestinal tract motor activity].

    PubMed

    Alekseeva, E V; Popova, T S; Sal'nikov, P S

    2015-01-01

    The review include actual facts, demonstrating high probability of glutamatergic neurotransmitter system role in the regulation of the gastrointestinal tract motor activity. These facts suggest significant role of the glutamatergic neurotransmitter system dysfunction in forming motor activity disorders of the digestive tract, including in patients in critical condition. The analysis is based on results of multiple experimental and clinical researches of glutamic acid and other components of the glutamatergic neurotransmitter system in central nervous system and autonomic nervous system (with the accent on the enteral nervous system) in normal conditions and with functioning changes of the glutamatergic neurotransmitter system in case of inflammation, hupoxia, stress and in critical condition. PMID:26852608

  2. The importance of glutamate, glycine, and {gamma}-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    SciTech Connect

    Fitsanakis, Vanessa A.; Aschner, Michael . E-mail: michael.aschner@vanderbilt.edu

    2005-05-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and {gamma}-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb.

  3. The Fluorescence Methods to Study Neurotransmitters (Biomediators) in Plant Cells.

    PubMed

    Roshchina, Victoria V

    2016-05-01

    Fluorescence as a parameter for analysis of intracellular binding and localization of neurotransmitters also named biomediators (acetylcholine and biogenic amines such as catecholamines, serotonin, histamine) as well as their receptors in plant cells has been estimated basing on several world publications and own experiments of the author. The subjects of the consideration were 1. application of reagents forming fluorescent products (for catecholamines - glyoxylic acid, for histamine - formaldehyde or ortho-phthalic aldehyde) to show the presence and binding of the compounds in cells, 2. binding of their fluorescent agonists and antagonists with cell, 3. effects of the compounds, their agonists and antagonists on autofluorescence, 4. action of external factors on the accumulation of the compounds in cells. How neurotransmitters can bind to certain cellular compartments has been shown on intact individual cells (vegetative microspores, pollens, secretory cells) and isolated organelles. The staining with reagents on biogenic amines leads to the appearance blue or blue-green emission on the surface and excretions of intact cells as well in some DNA-containing organelles within cells. The difference between autofluorescence and histochemically induced fluorescence may reflect the occurrence and amount of biogenic amines in the cells studied. Ozone and salinity as external factors can regulate the emission of intact cells related to biogenic amines. After the treatment of isolated cellular organelles with glyoxylic acid blue emission with maximum 460-475 nm was seen in nuclei and chloroplasts (in control variants in this spectral region the noticeable emission was absent) and very expressive fluorescence (more than twenty times as compared to control) in the vacuoles. After exposure to ortho-phthalic aldehyde blue emission was more noticeable in nuclei and chloroplasts. Fluorescent agonists (muscarine, 6,7-diOHATN, BODIPY-dopamine or BODIPY-5HT) or antagonists (d

  4. Orquestic regulation of neurotransmitters on reward-seeking behavior

    PubMed Central

    2014-01-01

    The ventral tegmental area is strongly associated with the reward system. Dopamine is released in areas such as the nucleus accumbens and prefrontal cortex as a result of rewarding experiences such as food, sex, and neutral stimuli that become associated with them. Electrical stimulation of the ventral tegmental area or its output pathways can itself serve as a potent reward. Different drugs that increase dopamine levels are intrinsically rewarding. Although the dopaminergic system represent the cornerstone of the reward system, other neurotransmitters such as endogenous opioids, glutamate, γ-Aminobutyric acid, acetylcholine, serotonin, adenosine, endocannabinoids, orexins, galanin and histamine all affect this mesolimbic dopaminergic system. Consequently, genetic variations of neurotransmission are thought influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. Here, we discuss current evidence on the orquestic regulation of different neurotranmitters on reward-seeking behavior and its potential effect on drug addiction. PMID:25061480

  5. Clinical Neuroanatomy and Neurotransmitter-Mediated Regulation of Penile Erection

    PubMed Central

    Jo, Hyun Woo; Kwon, Hyunseob

    2014-01-01

    Erectile dysfunction (ED) has an adverse impact on men's quality of life. Penile erection, which is regulated by nerves that are innervated into the erectile tissue, can be affected by functional or anatomical trauma of the perineal region, including specific structures of the penis, causing ED. Penile erection is neurologically controlled by the autonomic nervous system. Therefore, it is of utmost importance to understand the neurogenic structure of the erectile tissue and the types of neurotransmitters involved in the penile erection process. Here, we highlight the basic clinical anatomy and erectile function of the penis. Understanding the clinical connotation of the relationship between penile erectile structure and function may provide fresh insights for identifying the main mechanisms involved in ED and help develop surgical techniques for the treatment of ED. PMID:24987557

  6. Teaching medical students basic neurotransmitter pharmacology using primary research resources.

    PubMed

    Halliday, Amy C; Devonshire, Ian M; Greenfield, Susan A; Dommett, Eleanor J

    2010-12-01

    Teaching pharmacology to medical students has long been seen as a challenge, and one to which a number of innovative approaches have been taken. In this article, we describe and evaluate the use of primary research articles in teaching second-year medical students both in terms of the information learned and the use of the papers themselves. We designed a seminar where small groups of students worked on different neurotransmitters before contributing information to a plenary session. Student feedback suggested that when the information was largely novel, students learned considerably more. Crucially, this improvement in knowledge was seen even when they had not directly studied a particular transmitter in their work groups, suggesting a shared learning experience. Moreover, the majority of students reported that using primary research papers was easy and useful, with over half stating that they would use them in future study. PMID:21098388

  7. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors

    PubMed Central

    Nguyen, Cuong M.; Kota, Pavan Kumar; Nguyen, Minh Q.; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J.-C.

    2015-01-01

    In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations. PMID:26404311

  8. Mimicking subsecond neurotransmitter dynamics with femtosecond laser stimulated nanosystems

    NASA Astrophysics Data System (ADS)

    Nakano, Takashi; Chin, Catherine; Myint, David Mo Aung; Tan, Eng Wui; Hale, Peter John; Krishna M., Bala Murali; Reynolds, John N. J.; Wickens, Jeff; Dani, Keshav M.

    2014-06-01

    Existing nanoscale chemical delivery systems target diseased cells over long, sustained periods of time, typically through one-time, destructive triggering. Future directions lie in the development of fast and robust techniques capable of reproducing the pulsatile chemical activity of living organisms, thereby allowing us to mimic biofunctionality. Here, we demonstrate that by applying programmed femtosecond laser pulses to robust, nanoscale liposome structures containing dopamine, we achieve sub-second, controlled release of dopamine - a key neurotransmitter of the central nervous system - thereby replicating its release profile in the brain. The fast delivery system provides a powerful new interface with neural circuits, and to the larger range of biological functions that operate on this short timescale.

  9. Identification of catecholamine neurotransmitters using fluorescence sensor array.

    PubMed

    Ghasemi, Forough; Hormozi-Nezhad, M Reza; Mahmoudi, Morteza

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and l-DOPA) and their mixtures in the concentration range of 0.25-30 μmol L(-1). Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. PMID:27026604

  10. Wireless multichannel integrated potentiostat for distributed neurotransmitter sensing.

    PubMed

    Murari, Kartikeya; Sauer, Christian; Stanacevic, Milutin; Cauwenberghs, Gert; Thakor, Nitish

    2005-01-01

    Sensing neurotransmitters is critical in studying neural pathways and neurological disorders. An integrated device is presented which incorporates a potentiostat and a power harvesting and telemetry module. The potentiostat features 16 channels with multiple scales from microamperes to picoamperes. The wireless module is able to harvest power through inductively coupled coils and uses the same link to transmit data to and from the potentiostat. An integrated prototype is fabricated in CMOS technology, and experimentally characterized. Test results show RF powering introduces noise levels of 0.42% and 0.18% on potentiostat current scales of 500pA and 4nA respectively. Real-time multi-channel acquisition of dopamine concentration in vitro is performed with carbon fiber sensors. PMID:17281973

  11. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors.

    PubMed

    Nguyen, Cuong M; Kota, Pavan Kumar; Nguyen, Minh Q; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J-C

    2015-01-01

    In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations. PMID:26404311

  12. Quantitative in silico Analysis of Neurotransmitter Pathways Under Steady State Conditions

    PubMed Central

    Calvetti, Daniela; Somersalo, Erkki

    2013-01-01

    The modeling of glutamate/GABA-glutamine cycling in the brain tissue involving astrocytes, glutamatergic and GABAergic neurons leads to a complex compartmentalized metabolic network that comprises neurotransmitter synthesis, shuttling, and degradation. Without advanced computational tools, it is difficult to quantitatively track possible scenarios and identify viable ones. In this article, we follow a sampling-based computational paradigm to analyze the biochemical network in a multi-compartment system modeling astrocytes, glutamatergic, and GABAergic neurons, and address some questions about the details of transmitter cycling, with particular emphasis on the ammonia shuttling between astrocytes and neurons, and the synthesis of transmitter GABA. More specifically, we consider the joint action of the alanine-lactate shuttle, the branched chain amino acid shuttle, and the glutamine-glutamate cycle, as well as the role of glutamate dehydrogenase (GDH) activity. When imposing a minimal amount of bound constraints on reaction and transport fluxes, a preferred stoichiometric steady state equilibrium requires an unrealistically high reductive GDH activity in neurons, indicating the need for additional bound constants which were included in subsequent computer simulations. The statistical flux balance analysis also suggests a stoichiometrically viable role for leucine transport as an alternative to glutamine for replenishing the glutamate pool in neurons. PMID:24115944

  13. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles.

    PubMed

    Aubrey, Karin R

    2016-09-01

    In mammals, fast inhibitory neurotransmission is carried out by two amino acid transmitters, γ-aminobutyric acid (GABA) and glycine. The higher brain uses only GABA, but in the spinal cord and brain stem both GABA and glycine act as inhibitory signals. In some cases GABA and glycine are co-released from the same neuron where they are co-packaged into synaptic vesicles by a shared vesicular inhibitory amino acid transporter, VIAAT (also called vGAT). The vesicular content of all other classical neurotransmitters (eg. glutamate, monoamines, acetylcholine) is determined by the presence of a specialized vesicular transporter. Because VIAAT is non-specific, the phenotype of inhibitory synaptic vesicles is instead predicted to be dependent on the relative concentration of GABA and glycine in the cytosol of the presynaptic terminal. This predicts that changes in GABA or glycine supply should be reflected in vesicle transmitter content but as yet, the mechanisms that control GABA versus glycine uptake into synaptic vesicles and their potential for modulation are not clearly understood. This review summarizes the most relevant experimental data that examines the link between GABA and glycine accumulation in the presynaptic cytosol and the inhibitory vesicle phenotype. The accumulated evidence challenges the hypothesis that vesicular phenotype is determined simply by the competition of inhibitory transmitter for VIAAT and instead suggest that the GABA/glycine balance in vesicles is dynamically regulated. PMID:27296116

  14. RECENT DEVELOPMENTS IN ELECTROCHEMICAL SENSORS FOR THE DETECTION OF NEUROTRANSMITTERS FOR APPLICATIONS IN BIOMEDICINE

    PubMed Central

    Özel, Rıfat Emrah; Hayat, Akhtar; Andreescu, Silvana

    2015-01-01

    Neurotransmitters are important biological molecules that are essential to many neurophysiological processes including memory, cognition, and behavioral states. The development of analytical methodologies to accurately detect neurotransmitters is of great importance in neurological and biological research. Specifically designed microelectrodes or microbiosensors have demonstrated potential for rapid, real-time measurements with high spatial resolution. Such devices can facilitate study of the role and mechanism of action of neurotransmitters and can find potential uses in biomedicine. This paper reviews the current status and recent advances in the development and application of electrochemical sensors for the detection of small-molecule neurotransmitters. Measurement challenges and opportunities of electroanalytical methods to advance study and understanding of neurotransmitters in various biological models and disease conditions are discussed. PMID:26973348

  15. Proton MR spectroscopy-detectable major neurotransmitters of the brain: biology and possible clinical applications.

    PubMed

    Agarwal, N; Renshaw, P F

    2012-04-01

    Neurotransmitters are chemical substances that, by definition, allow communication between neurons and permit most neuronal-glial interactions in the CNS. Approximately 80% of all neurons use glutamate, and almost all interneurons use GABA. A third neurotransmitter, NAAG, modulates glutamatergic neurotransmission. Concentration changes in these molecules due to defective synthetic machinery, receptor expression, or errors in their degradation and metabolism are accepted causes of several neurologic disorders. Knowledge of changes in neurotransmitter concentrations in the brain can add useful information in making a diagnosis, helping to pick the right drug of treatment, and monitoring patient response to drugs in a more objective manner. Recent advances in (1)H-MR spectroscopy hold promise in providing a more reliable in vivo detection of these neurotransmitters. In this article, we summarize the essential biology of 3 major neurotransmitters: glutamate, GABA, and NAAG. Finally we illustrate possible applications of (1)H-MR spectroscopy in neuroscience research. PMID:22207303

  16. A Focused Transport Approach to SEP acceleration at a Fast Parallel Shock in the Corona Including Self-excitation of Alfvén Waves

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.

    2012-12-01

    It has been argued that the acceleration of SEPS at a quasi-parallel CME-driven shock to GeV energies in the corona only occurs if strong wave-excitation by SEPs ahead of the shock reduces the parallel mean free path upstream, thus boosting the rate of diffusive shock acceleration. To investigate this issue, we modeled SEP acceleration at a fast parallel traveling shock in the corona with an existing time-dependent focused transport model. The model has been expanded recently to also feature time-dependent self-excitation and damping of Alfvén waves by SEP anisotropies ahead of the shock based on standard quasi-linear theory. Alfvén wave propagation near the traveling shock is modeled based on standard theory for wave transport in a slowly varying non-uniform plasma medium. Preliminary results will be shown to illustrate the increase in wave power driven by SEP anisotropies upstream, the effect of the shock wave in shortening the wave length and increasing the wave amplitude of Alfvén waves, and the associated acceleration of SEPs by 1st order Fermi acceleration to high energies. The role of the acceleration of the cross-shock solar wind flow, which was found to create a downstream population of shock pre-heated particles which forms an additional source for injection into 1st order Fermi acceleration, will be discussed in terms of how it affects self-excitation of Alfvén waves and the formation of high-energy SEPs by 1st order Fermi acceleration.

  17. Intranasal exposure to manganese disrupts neurotransmitter release from glutamatergic synapses in the central nervous system in vivo

    PubMed Central

    Moberly, Andrew H.; Czarnecki, Lindsey A.; Pottackal, Joseph; Rubinstein, Tom; Turkel, Daniel J.; Kass, Marley D.; McGann, John P.

    2012-01-01

    Chronic exposure to aerosolized manganese induces a neurological disorder that includes extrapyramidal motor symptoms and cognitive impairment. Inhaled manganese can bypass the blood-brain barrier and reach the central nervous system by transport down the olfactory nerve to the brain’s olfactory bulb. However, the mechanism by which Mn disrupts neural function remains unclear. Here we used optical imaging techniques to visualize exocytosis in olfactory nerve terminals in vivo in the mouse olfactory bulb. Acute Mn exposure via intranasal instillation of 2–200 μg MnCl2 solution caused a dose-dependent reduction in odorant-evoked neurotransmitter release, with significant effects at as little as 2 μg MnCl2 and a 90% reduction compared to vehicle controls with a 200 μg exposure. This reduction was also observed in response to direct electrical stimulation of the olfactory nerve layer in the olfactory bulb, demonstrating that Mn’s action is occurring centrally, not peripherally. This is the first direct evidence that Mn intoxication can disrupt neurotransmitter release, and is consistent with previous work suggesting that chronic Mn exposure limits amphetamine-induced dopamine increases in the basal ganglia despite normal levels of dopamine synthesis (Guilarte et al., J Neurochem 2008). The commonality of Mn’s action between glutamatergic neurons in the olfactory bulb and dopaminergic neurons in the basal ganglia suggests that a disruption of neurotransmitter release may be a general consequence wherever Mn accumulates in the brain and could underlie its pleiotropic effects. PMID:22542936

  18. Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters*

    PubMed Central

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J.; Javitch, Jonathan A.; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-01-01

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Thus, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function. PMID:25869126

  19. Natural polyphenols: Influence on membrane transporters

    PubMed Central

    Hussain, Saad Abdulrahman; Sulaiman, Amal Ajaweed; Alhaddad, Hasan; Alhadidi, Qasim

    2016-01-01

    Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. PMID:27069731

  20. Iron uptake and transport across physiological barriers.

    PubMed

    Duck, Kari A; Connor, James R

    2016-08-01

    Iron is an essential element for human development. It is a major requirement for cellular processes such as oxygen transport, energy metabolism, neurotransmitter synthesis, and myelin synthesis. Despite its crucial role in these processes, iron in the ferric form can also produce toxic reactive oxygen species. The duality of iron's function highlights the importance of maintaining a strict balance of iron levels in the body. As a result, organisms have developed elegant mechanisms of iron uptake, transport, and storage. This review will focus on the mechanisms that have evolved at physiological barriers, such as the intestine, the placenta, and the blood-brain barrier (BBB), where iron must be transported. Much has been written about the processes for iron transport across the intestine and the placenta, but less is known about iron transport mechanisms at the BBB. In this review, we compare the established pathways at the intestine and the placenta as well as describe what is currently known about iron transport at the BBB and how brain iron uptake correlates with processes at these other physiological barriers. PMID:27457588

  1. Natural polyphenols: Influence on membrane transporters.

    PubMed

    Hussain, Saad Abdulrahman; Sulaiman, Amal Ajaweed; Alhaddad, Hasan; Alhadidi, Qasim

    2016-01-01

    Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. PMID:27069731

  2. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas

    PubMed Central

    2013-01-01

    This review focuses on recent advances in our understanding of the mechanisms and regulation of water-soluble vitamin (WSV) transport in the large intestine and pancreas, two important organs of the digestive system that have only recently received their fair share of attention. WSV, a group of structurally unrelated compounds, are essential for normal cell function and development and, thus, for overall health and survival of the organism. Humans cannot synthesize WSV endogenously; rather, WSV are obtained from exogenous sources via intestinal absorption. The intestine is exposed to two sources of WSV: a dietary source and a bacterial source (i.e., WSV generated by the large intestinal microbiota). Contribution of the latter source to human nutrition/health has been a subject of debate and doubt, mostly based on the absence of specialized systems for efficient uptake of WSV in the large intestine. However, recent studies utilizing a variety of human and animal colon preparations clearly demonstrate that such systems do exist in the large intestine. This has provided strong support for the idea that the microbiota-generated WSV are of nutritional value to the host, and especially to the nutritional needs of the local colonocytes and their health. In the pancreas, WSV are essential for normal metabolic activities of all its cell types and for its exocrine and endocrine functions. Significant progress has also been made in understanding the mechanisms involved in the uptake of WSV and the effect of chronic alcohol exposure on the uptake processes. PMID:23989008

  3. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas.

    PubMed

    Said, Hamid M

    2013-11-01

    This review focuses on recent advances in our understanding of the mechanisms and regulation of water-soluble vitamin (WSV) transport in the large intestine and pancreas, two important organs of the digestive system that have only recently received their fair share of attention. WSV, a group of structurally unrelated compounds, are essential for normal cell function and development and, thus, for overall health and survival of the organism. Humans cannot synthesize WSV endogenously; rather, WSV are obtained from exogenous sources via intestinal absorption. The intestine is exposed to two sources of WSV: a dietary source and a bacterial source (i.e., WSV generated by the large intestinal microbiota). Contribution of the latter source to human nutrition/health has been a subject of debate and doubt, mostly based on the absence of specialized systems for efficient uptake of WSV in the large intestine. However, recent studies utilizing a variety of human and animal colon preparations clearly demonstrate that such systems do exist in the large intestine. This has provided strong support for the idea that the microbiota-generated WSV are of nutritional value to the host, and especially to the nutritional needs of the local colonocytes and their health. In the pancreas, WSV are essential for normal metabolic activities of all its cell types and for its exocrine and endocrine functions. Significant progress has also been made in understanding the mechanisms involved in the uptake of WSV and the effect of chronic alcohol exposure on the uptake processes. PMID:23989008

  4. Effects of neurotransmitters on calcium efflux from cultured glioma cells

    SciTech Connect

    Lazarewicz, J.W.; Kanje, M.

    1981-01-01

    The effects of various neurotransmitters and cyclic nucleotides on 45Ca2+ efflux in cultured human glioma cells were investigated. Glutamate and glycine, but not GABA, stimulated 45Ca2+ release from the cells. Stimulation of beta-adrenergic receptors but not alpha-adrenergic receptors also increased 45Ca2+ efflux. Cholinergic receptor stimulation by carbachol had the same effect. The stimulatory effect of carbachol was abolished in the presence of either atropine or hexamethonium. C-AMP and c-GMP increased the 45Ca2+ efflux, suggesting that these agents are involved in the transmitter-stimulated release of 45Ca2+ from the cell. Kinetic analysis of the efflux revealed four calcium compartments. The carbachol-stimulated efflux represented a net release of calcium and could be ascribed to the slowest compartment. The physiological role of the transmitter-stimulated calcium release is discussed in terms of calcium-regulated stimulus-response coupling in glial-neural interaction during excitation.

  5. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.

    PubMed

    Zestos, Alexander G; Jacobs, Christopher B; Trikantzopoulos, Elefterios; Ross, Ashley E; Venton, B Jill

    2014-09-01

    Carbon nanotube (CNT)-based microelectrodes have been investigated as alternatives to carbon-fiber microelectrodes for the detection of neurotransmitters because they are sensitive, exhibit fast electron transfer kinetics, and are more resistant to surface fouling. Wet spinning CNTs into fibers using a coagulating polymer produces a thin, uniform fiber that can be fabricated into an electrode. CNT fibers formed in poly(vinyl alcohol) (PVA) have been used as microelectrodes to detect dopamine, serotonin, and hydrogen peroxide. In this study, we characterize microelectrodes with CNT fibers made in polyethylenimine (PEI), which have much higher conductivity than PVA-CNT fibers. PEI-CNT fibers have lower overpotentials and higher sensitivities than PVA-CNT fiber microelectrodes, with a limit of detection of 5 nM for dopamine. The currents for dopamine were adsorption controlled at PEI-CNT fiber microelectrodes, independent of scan repetition frequency, and stable for over 10 h. PEI-CNT fiber microelectrodes were resistant to surface fouling by serotonin and the metabolite interferant 5-hydroxyindoleacetic acid (5-HIAA). No change in sensitivity was observed for detection of serotonin after 30 flow injection experiments or after 2 h in 5-HIAA for PEI-CNT electrodes. The antifouling properties were maintained in brain slices when serotonin was exogenously applied multiple times or after bathing the slice in 5-HIAA. Thus, PEI-CNT fiber electrodes could be useful for the in vivo monitoring of neurochemicals. PMID:25117550

  6. Potential Antidepressant Role of Neurotransmitter CART: Implications for Mental Disorders

    PubMed Central

    Mao, Peizhong

    2011-01-01

    Depression is one of the most prevalent and debilitating public health concerns. Although no single cause of depression has been identified, it appears that interaction among genetic, epigenetic, biochemical, environmental, and psychosocial factors may explain its etiology. Further, only a fraction of depressed patients show full remission while using current antidepressants. Therefore, identifying common pathways of the disorder and using that knowledge to develop more effective pharmacological treatments are two primary targets of research in this field. Brain-enriched neurotransmitter CART (cocaine- and amphetamine-regulated transcript) has multiple functions related to emotions. It is a potential neurotrophic factor and is involved in the regulation of hypothalamic-pituitary-adrenal axis and stress response as well as in energy homeostasis. CART is also highly expressed in limbic system, which is considered to have an important role in regulating mood. Notably, adolescents carrying a missense mutation in the CART gene exhibit increased depression and anxiety. Hence, CART peptide may be a novel promising antidepressant agent. In this paper, we summarize recent progress in depression and CART. In particular, we emphasize a new antidepressant function for CART. PMID:21785720

  7. Fast neurotransmitter release regulated by the endocytic scaffold intersectin.

    PubMed

    Sakaba, Takeshi; Kononenko, Natalia L; Bacetic, Jelena; Pechstein, Arndt; Schmoranzer, Jan; Yao, Lijun; Barth, Holger; Shupliakov, Oleg; Kobler, Oliver; Aktories, Klaus; Haucke, Volker

    2013-05-14

    Sustained fast neurotransmission requires the rapid replenishment of release-ready synaptic vesicles (SVs) at presynaptic active zones. Although the machineries for exocytic fusion and for subsequent endocytic membrane retrieval have been well characterized, little is known about the mechanisms underlying the rapid recruitment of SVs to release sites. Here we show that the Down syndrome-associated endocytic scaffold protein intersectin 1 is a crucial factor for the recruitment of release-ready SVs. Genetic deletion of intersectin 1 expression or acute interference with intersectin function inhibited the replenishment of release-ready vesicles, resulting in short-term depression, without significantly affecting the rate of endocytic membrane retrieval. Acute perturbation experiments suggest that intersectin-mediated vesicle replenishment involves the association of intersectin with the fissioning enzyme dynamin and with the actin regulatory GTPase CDC42. Our data indicate a role for the endocytic scaffold intersectin in fast neurotransmitter release, which may be of prime importance for information processing in the brain. PMID:23633571

  8. Benefits of Neuronal Preferential Systemic Gene Therapy for Neurotransmitter Deficiency.

    PubMed

    Lee, Ni-Chung; Muramatsu, Shin-Ichi; Chien, Yin-Hsiu; Liu, Wen-Shin; Wang, Wei-Hua; Cheng, Chia-Hao; Hu, Meng-Kai; Chen, Pin-Wen; Tzen, Kai-Yuan; Byrne, Barry J; Hwu, Wuh-Liang

    2015-10-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive disease that impairs synthesis of dopamine and serotonin. Children with AADC deficiency exhibit severe motor, behavioral, and autonomic dysfunctions. We previously generated an IVS6+4A>T knock-in mouse model of AADC deficiency (Ddc(KI) mice) and showed that gene therapy at the neonatal stage can rescue this phenotype. In the present study, we extended this treatment to systemic therapy on young mice. After intraperitoneal injection of AADC viral vectors into 7-day-old Ddc(KI) mice, the treated mice exhibited improvements in weight gain, survival, motor function, autonomic function, and behavior. The yfAAV9/3-Syn-I-mAADC-treated mice showed greater neuronal transduction and higher brain dopamine levels than AAV9-CMV-hAADC-treated mice, whereas AAV9-CMV-hAADC-treated mice exhibited hyperactivity. Therefore, neurotransmitter-deficient animals can be rescued at a young age using systemic gene therapy, although a vector for preferential neuronal expression may be necessary to avoid hyperactivity caused by this treatment. PMID:26137853

  9. REM Sleep at its Core - Circuits, Neurotransmitters, and Pathophysiology.

    PubMed

    Fraigne, Jimmy J; Torontali, Zoltan A; Snow, Matthew B; Peever, John H

    2015-01-01

    Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD. PMID:26074874

  10. Fiber-optic evanescent wave biosensor of catecholamine neurotransmitter

    NASA Astrophysics Data System (ADS)

    Zhu, Yexiang; Ran, Yong; Xu, Shunqing

    2001-09-01

    Using quartz fiber-immobilized laccase, detection of catecholamine neurotransmitter is described in this work. Laccase is immobilized on the fiber-optic by means of 3- aminopropyltriethoxysilane/glutaraldehyde method. The oxidation products of adrenalin catalyzed by laccade would absorb the fiber-optic evanescent wave according to the products' concentration. The optimal detection range of this fiber-optic biosensor is between 50-250ng/ml. The minimum detection limit is 10ng/ml. The analysis can provide results in only two minutes to detect one sample. Finally, the specificity of the biosensor is high. The special interference of other substrates of laccase such as o- phyenylenediamine (OPD) and benzenediol can be removed by controlling the pH of the reaction buffer. When the OPD concentration is 100ng/ml, the relative error is only 6.3 percent. On the other hand, the non-special interference is removed by employing double-channel differential method.

  11. Does chronic nicotine alter neurotransmitter receptors involved in Parkinson's disease

    SciTech Connect

    Reilly, M.A.; Lapin, E.P.; Lajtha, A.; Maker, H.S.

    1986-03-05

    Cigarette smokers are fewer in number among Parkinson's Disease (PD) patients than among groups of persons who do not have PD. Several hypotheses have been proposed to explain this observation. One which must be tested is the possibility that some pharmacologic agent present in cigarette smoke may interact with some central nervous system component involved in PD. To this end, they have investigated the effect of chronic nicotine administration on receptors for some of the neurotransmitters that are affected in PD. Rats were injected for six weeks with saline or nicotine 0.8 mg/kg S.C., then killed and brains removed and dissected. The binding of (/sup 3/H)-ketanserin to serotonin receptors in frontal cortex and of (/sup 3/H)-domperidone to dopamine receptors in caudate was not affected. However, the binding of (/sup 3/H)-domperidone in nucleus accumbens was altered: the K/sub d/ increased from 0.16 +/- 0.02 nM to 0.61 +/- 0.07 nM, and the B/sub max/ increased from 507 +/- 47 fmol/mg protein to 910 +/- 43 fmol/mg (p < 0.001 for both comparisons). These values are based on three ligand concentrations. Additional studies are in progress to substantiate the data. It is concluded that chronic nicotine administration may alter dopamine receptors in nucleus accumbens.

  12. Endogenous opioid peptides as neurotransmitters in the rat hippocampus

    SciTech Connect

    Neumaier, J.F.

    1989-01-01

    The role of endogenous opioid peptides as neurotransmitters in the rat hippocampus was investigated by using extracellular recording and radioligand binding techniques in the hippocampal slice preparation. Synaptic conductances from endogenously released opioid peptides have been difficult to detect. This problem was approach by designing a novel assay of opioid peptide release, in which release was detected by measuring binding competition between endogenous opioids and added radioligand. Membrane depolarization displaced ({sup 3}H)-diprenorphine binding in a transient, calcium-dependent, and peptidase-sensitive manner. Autoradiographic localization of the sites of ({sup 3}H)-diprenorphine binding displacement showed that significant opioid peptide release and receptor occupancy occurred in each major subregion of the hippocampal slices. This assay method can not be used to define optimal electrical stimulation conditions for releasing endogenous opioids. The binding displacement method was extended to the study of the sigma receptor. Depolarization of hippocampal slices was found to reduce the binding of the sigma-selective radioligand ({sup 3}H)-ditolylguanidine in a transient and calcium-dependent manner with no apparent direct effects on sigma receptor affinity.

  13. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish

    PubMed Central

    deCarvalho, Tagide N.; Subedi, Abhignya; Rock, Jason; Harfe, Brian D.; Thisse, Christine; Thisse, Bernard; Halpern, Marnie E.; Hong, Elim

    2014-01-01

    The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. While many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions. PMID:24753112

  14. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    SciTech Connect

    Eells, J.T.; Dubocovich, M.L.

    1988-08-01

    The effects of the synthetic pyrethroid insecticide fenvalerate ((R,S)-alpha-cyano-3-phenoxybenzyl(R,S)-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of (/sup 3/H)dopamine and (/sup 3/H)acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of (/sup 3/H)dopamine and (/sup 3/H)acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of (/sup 3/H)norepinephrine or (/sup 3/H)acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions.

  15. Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters

    PubMed Central

    2015-01-01

    Carbon nanotube (CNT)-based microelectrodes have been investigated as alternatives to carbon-fiber microelectrodes for the detection of neurotransmitters because they are sensitive, exhibit fast electron transfer kinetics, and are more resistant to surface fouling. Wet spinning CNTs into fibers using a coagulating polymer produces a thin, uniform fiber that can be fabricated into an electrode. CNT fibers formed in poly(vinyl alcohol) (PVA) have been used as microelectrodes to detect dopamine, serotonin, and hydrogen peroxide. In this study, we characterize microelectrodes with CNT fibers made in polyethylenimine (PEI), which have much higher conductivity than PVA-CNT fibers. PEI-CNT fibers have lower overpotentials and higher sensitivities than PVA-CNT fiber microelectrodes, with a limit of detection of 5 nM for dopamine. The currents for dopamine were adsorption controlled at PEI-CNT fiber microelectrodes, independent of scan repetition frequency, and stable for over 10 h. PEI-CNT fiber microelectrodes were resistant to surface fouling by serotonin and the metabolite interferant 5-hydroxyindoleacetic acid (5-HIAA). No change in sensitivity was observed for detection of serotonin after 30 flow injection experiments or after 2 h in 5-HIAA for PEI-CNT electrodes. The antifouling properties were maintained in brain slices when serotonin was exogenously applied multiple times or after bathing the slice in 5-HIAA. Thus, PEI-CNT fiber electrodes could be useful for the in vivo monitoring of neurochemicals. PMID:25117550

  16. REM Sleep at its Core – Circuits, Neurotransmitters, and Pathophysiology

    PubMed Central

    Fraigne, Jimmy J.; Torontali, Zoltan A.; Snow, Matthew B.; Peever, John H.

    2015-01-01

    Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD. PMID:26074874

  17. Changes in Neurotransmitter Profiles during Early Zebrafish (Danio rerio) Development and after Pesticide Exposure.

    PubMed

    Tufi, Sara; Leonards, Pim; Lamoree, Marja; de Boer, Jacob; Legler, Juliette; Legradi, Jessica

    2016-03-15

    During early development, neurotransmitters are important stimulants for the development of the central nervous system. Although the development of different neuronal cell types during early zebrafish (Danio rerio) development is well-studied, little is known of the levels of neurotransmitters, their precursors and metabolites during development, and how these levels are affected by exposure to environmental contaminants. A method based on hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry has been applied for the first time to zebrafish embryos and larvae to study five neurotransmitter systems in parallel, including the dopaminergic-andrenergic, glutaminergic-GABAnergic, serotoninergic, histaminergic, and cholinergic systems. Our method enables the quantification of neurotransmitters and their precursors and metabolites in whole zebrafish from the period of zygote to free-swimming larvae 6 days postfertilization (dpf). We observed a developmental stage-dependent pattern with clear differences between the first 2 days of development and the following days. Whereas the neurotransmitter levels steadily increased, the precursors showed a peak at 3 dpf. After exposure to several pesticides, significant differences in concentrations of neurotransmitters and precursors were observed. Our study revealed new insights about neurotransmitter systems during early zebrafish development and showed the usefulness of our approach for environmental neurotoxicity studies. PMID:26866575

  18. A conjugate composed of nerve growth factor coupled to a non-toxic derivative of Clostridium botulinum neurotoxin type A can inhibit neurotransmitter release in vitro.

    PubMed

    Chaddock, J A; Purkiss, J R; Duggan, M J; Quinn, C P; Shone, C C; Foster, K A

    2000-01-01

    Nerve growth factor (NGF) receptor binding, internalisation and transportation of NGF has been identified as a potential route of delivery for other molecules. A derivative of Clostridium botulinum neurotoxin type A (LHN) that retains catalytic activity but has significantly reduced cell-binding capability has been prepared and chemically coupled to NGF. Intact clostridial neurotoxins potently inhibit neurotransmitter release at the neuromuscular junction by proteolysis of specific components of the vesicle docking/fusion complex. Here we report that the NGF-LHN/A conjugate, when applied to PC12 cells, significantly inhibited neurotransmitter release and cleaved the type A toxin substrate. This work represents the successful use of NGF as a targeting moiety for the delivery of a neurotoxin fragment. PMID:11019785

  19. A biochemical approach to study sub-second endogenous release of diverse neurotransmitters from central nerve terminals.

    PubMed

    Leenders, A G Miriam; Hengst, Pieter; Lopes da Silva, Fernando H; Ghijsen, Wim E J M

    2002-01-15

    Exocytosis in central nerve terminals is rapidly triggered by the influx of calcium through high voltage sensitive Ca2+ -channels. Mainly due to their small size, studies in which neurotransmitter release from these terminals was determined at the sub-second time-scale are still rather limited. Here we describe the use of a pneumatic rapid mixing device, allowing application of short (> or = 50 ms) K+ -depolarizing pulses to purified nerve terminals, synaptosomes, to trigger endogenous release of different transmitter types. A consistent, Ca2+ -dependent exocytotic release of the amino acid transmitters, glutamate and GABA, from synaptosomes purified from rat and mouse brain was observed after 100 ms depolarization. For determination of amino acid release after longer depolarizations (> 100 ms), transporter blockers had to be added to prevent clearance of the vesicularly released transmitters. Ca2+ -dependent release of the neuropeptide cholecystokinin occured only after 250 ms depolarization. In addition, the time-courses of amino acid and cholecystokinin release were clearly different. The fast Ca2+ -dependent release of all transmitters was selectively and strongly inhibited by the P/Q-type Ca2+ -channel blocker omega-Agatoxin IVA. In conclusion, this approach allows direct measurement of Ca2+ -dependent release of diverse endogenous neurotransmitters from central nerve terminals upon depolarization pulses at a physiologically relevant, sub-second, time scale. PMID:11741718

  20. Effects of low dose endosulfan exposure on brain neurotransmitter levels in the African clawed frog Xenopus laevis.

    PubMed

    Preud'homme, Valérie; Milla, Sylvain; Gillardin, Virginie; De Pauw, Edwin; Denoël, Mathieu; Kestemont, Patrick

    2015-02-01

    Understanding the impact of pesticides in amphibians is of growing concern to assess the causes of their decline. Among pesticides, endosulfan belongs to one of the potential sources of danger because of its wide use and known effects, particularly neurotoxic, on a variety of organisms. However, the effect of endosulfan was not yet evaluated on amphibians at levels encompassing simultaneously brain neurotransmitters and behavioural endpoints. In this context, tadpoles of the African clawed frog Xenopus laevis were submitted to four treatments during 27 d: one control, one ethanol control, and two low environmental concentrations of endosulfan (0.1 and 1 μg L(-1)). Endosulfan induced a significant increase of brain serotonin level at both concentrations and a significant increase of brain dopamine and GABA levels at the lower exposure but acetylcholinesterase activity was not modified by the treatment. The gene coding for the GABA transporter 1 was up-regulated in endosulfan contaminated tadpoles while the expression of other genes coding for the neurotransmitter receptors or for the enzymes involved in their metabolic pathways was not significantly modified by endosulfan exposure. Endosulfan also affected foraging, and locomotion in links with the results of the physiological assays, but no effects were seen on growth. These results show that low environmental concentrations of endosulfan can induce adverse responses in X. laevis tadpoles. At a broader perspective, this suggests that more research using and linking multiple markers should be used to understand the complex mode of action of pollutants. PMID:25192837

  1. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum

    PubMed Central

    Pereira, Daniela B.; Schmitz, Yvonne; Mészáros, József; Merchant, Paolomi; Hu, Gang; Li, Shu; Henke, Adam; Lizardi-Ortiz, José E.; Karpowicz, Richard J.; Morgenstern, Travis J.; Sonders, Mark S.; Kanter, Ellen; Rodriguez, Pamela C.; Mosharov, Eugene V.; Sames, Dalibor; Sulzer, David

    2016-01-01

    Neurotransmission at dopaminergic synapses has been studied with techniques that provide high temporal resolution but cannot resolve individual synapses. To elucidate the spatial dynamics and heterogeneity of individual dopamine boutons, we developed fluorescent false neurotransmitter 200 (FFN200), a vesicular monoamine transporter 2 (VMAT2) substrate that is the first probe to selectively trace monoamine exocytosis in both neuronal cell culture and brain tissue. By monitoring electrically-evoked Ca2+ transients with GCaMP3 and FFN200 release simultaneously, we find that only a small fraction of dopamine boutons that exhibit Ca2+ influx engage in exocytosis, a result confirmed with activity-dependent loading of the endocytic probe FM 1-43. Thus, only a low fraction of striatal dopamine axonal sites with uptake-competent VMAT2 vesicles are capable of transmitter release. This is consistent with the presence of functionally “silent” dopamine vesicle clusters and represents a first report suggestive of presynaptically silent neuromodulatory synapses. PMID:26900925

  2. L-glutamic acid: a neurotransmitter candidate for cone photoreceptors in human and rat retinas.

    PubMed Central

    Brandon, C; Lam, D M

    1983-01-01

    We have combined immunocytochemical localization of L-aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1; glutamic-oxaloacetic transaminase) with autoradiographic localization of high-affinity uptake sites for L-glutamate or L-aspartate to identify the neurotransmitters of mammalian photoreceptors. In both human and rat retinas, high aspartate aminotransferase immunoreactivity is found in cones but not in rods; certain putative bipolar and amacrine cells are also heavily stained. In the human retina, and perhaps also in the rat retina, cones possess a high-affinity uptake mechanism for L-glutamate but not L-aspartate, whereas rods and Müller (glial) cells take up both L-glutamate and L-aspartate. Taken together, our results indicate that (i) L-glutamate is much more likely than L-aspartate to be the transmitter for human cones, and possibly for cones of other mammalian species as well, and (ii) major differences exist between mammalian cones and rods in the transport and metabolism or utilization of L-aspartate and L-glutamate. Images PMID:6136039

  3. Dopamine in the auditory brainstem and midbrain: co-localization with amino acid neurotransmitters and gene expression following cochlear trauma

    PubMed Central

    Fyk-Kolodziej, Bozena E.; Shimano, Takashi; Gafoor, Dana; Mirza, Najab; Griffith, Ronald D.; Gong, Tzy-Wen; Holt, Avril Genene

    2015-01-01

    Dopamine (DA) modulates the effects of amino acid neurotransmitters (AANs), including GABA and glutamate, in motor, visual, olfactory, and reward systems (Hnasko et al., 2010; Stuber et al., 2010; Hnasko and Edwards, 2012). The results suggest that DA may play a similar modulatory role in the auditory pathways. Previous studies have shown that deafness results in decreased GABA release, changes in excitatory neurotransmitter levels, and increased spontaneous neuronal activity within brainstem regions related to auditory function. Modulation of the expression and localization of tyrosine hydroxylase (TH; the rate limiting enzyme in the production of DA) in the IC following cochlear trauma has been previously reported (Tong et al., 2005). In the current study the possibility of co-localization of TH with AANs was examined. Changes in the gene expression of TH were compared with changes in the gene expression of markers for AANs in the cochlear nucleus (CN) and inferior colliculus (IC) to determine whether those deafness related changes occur concurrently. The results indicate that bilateral cochlear ablation significantly reduced TH gene expression in the CN after 2 months while in the IC the reduction in TH was observed at both 3 days and 2 months following ablation. Furthermore, in the CN, glycine transporter 2 (GLYT2) and the GABA transporter (GABAtp) were also significantly reduced only after 2 months. However, in the IC, DA receptor 1 (DRDA1), vesicular glutamate transporters 2 and 3 (VGLUT2, VGLUT3), GABAtp and GAD67 were reduced in expression both at the 3 days and 2 months time points. A close relationship between the distribution of TH and several of the AANs was determined in both the CN and the IC. In addition, GLYT2 and VGLUT3 each co-localized with TH within IC somata and dendrites. Therefore, the results of the current study suggest that DA is spatially well positioned to influence the effects of AANs on auditory neurons. PMID:26257610

  4. A 10(9) neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit.

    PubMed

    Niranjan, Ram; Rout, R K; Srivastava, R; Kaushik, T C; Gupta, Satish C

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 10(8) neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head. PMID:27036774

  5. [Analysis of synaptic neurotransmitter release mechanisms using bacterial toxins].

    PubMed

    Doussau, F; Humeau, Y; Vitiello, F; Popoff, M R; Poulain, B

    1999-01-01

    Several bacterial toxins are powerful and highly specific tools for studying basic mechanisms involved in cell biology. Whereas the clostridial neurotoxins are widely used by neurobiologists, many other toxins (i.e. toxins acting on small G-proteins or actin) are still overlooked. Botulinum neurotoxins (BoNT, serotypes A-G) and tetanus neurotoxin (TeNT), known under the generic term of clostridial neurotoxins, are characterized by their unique ability to selectively block neurotransmitter release. These proteins are formed of a light (Mr approximately 50) and a heavy (Mr approximately 100) chain which are disulfide linked. The cellular action of BoNT and TeNT involves several steps: heavy chain-mediated binding to the nerve ending membrane, endocytosis, and translocation of the light chain (their catalytic moiety) into the cytosol. The light chains each cleaves one of three, highly conserved, proteins (VAMP/synaptobrevin, syntaxin, and SNAP-25 also termed SNAREs) implicated in fusion of synaptic vesicles with plasma membrane at the release site. Hence, when these neurotoxins are applied extracellularly, they can be used as specific tools to inhibit evoked and spontaneous transmitter release from certain neurones whereas, when the membrane limiting steps are bypassed by the mean of intracellular applications, BoNTs orTeNT can be used to affect regulated secretion in various cell types. Several members of the Rho GTPase family have been involved in intracellular trafficking of synaptic vesicles and secretory organelles. As they are natural targets for several bacterial exoenzymes or cytotoxins, their role in neurotransmitter release can be probed by examining the action of these toxins on neurotransmission. Such toxins include: i) the non permeant C3 exoenzymes from C. botulinum or C. limosum which ADP-ribosylate and thereby inactivate Rho, ii) exoenzyme S from Pseudomonas aeruginosa which ADP-ribosylates different members of the Ras, Rab, Ral and Rap families, iii

  6. Functional differences between neurotransmitter binding sites of muscle acetylcholine receptors

    PubMed Central

    Nayak, Tapan K.; Bruhova, Iva; Chakraborty, Srirupa; Gupta, Shaweta; Zheng, Wenjun; Auerbach, Anthony

    2014-01-01

    A muscle acetylcholine receptor (AChR) has two neurotransmitter binding sites located in the extracellular domain, at αδ and either αε (adult) or αγ (fetal) subunit interfaces. We used single-channel electrophysiology to measure the effects of mutations of five conserved aromatic residues at each site with regard to their contribution to the difference in free energy of agonist binding to active versus resting receptors (ΔGB1). The two binding sites behave independently in both adult and fetal AChRs. For four different agonists, including ACh and choline, ΔGB1 is ∼−2 kcal/mol more favorable at αγ compared with at αε and αδ. Only three of the aromatics contribute significantly to ΔGB1 at the adult sites (αY190, αY198, and αW149), but all five do so at αγ (as well as αY93 and γW55). γW55 makes a particularly large contribution only at αγ that is coupled energetically to those contributions of some of the α-subunit aromatics. The hydroxyl and benzene groups of loop C residues αY190 and αY198 behave similarly with regard to ΔGB1 at all three kinds of site. ACh binding energies estimated from molecular dynamics simulations are consistent with experimental values from electrophysiology and suggest that the αγ site is more compact, better organized, and less dynamic than αε and αδ. We speculate that the different sensitivities of the fetal αγ site versus the adult αε and αδ sites to choline and ACh are important for the proper maturation and function of the neuromuscular synapse. PMID:25422413

  7. Early toxic effect of 6-hydroxydopamine on extracellular concentrations of neurotransmitters in the rat striatum: an in vivo microdialysis study.

    PubMed

    Tobón-Velasco, Julio César; Silva-Adaya, Daniela; Carmona-Aparicio, Liliana; García, Esperanza; Galván-Arzate, Sonia; Santamaría, Abel

    2010-12-01

    The early effects of 6-OHDA as a Parkinsonian model in rodents are relevant since pharmacological and toxicological points of view, as they can explain the acute and chronic deleterious events occurring in the striatum. In this study, we focused our attention on the neurochemical and motor dysfunction produced after a pulse infusion of 6-OHDA, paying special attention to the capacity of this molecule to induce neurotransmitter release and behavioural alterations. Extracellular levels of dopamine, serotonin, norepinephrine, glutamate, glutamine, aspartate, glycine and GABA were all assessed in striatal dialysates in freely moving rats immediately after exposed to a single pulse of 6-OHDA in dorsal striatum, and major behavioural markers of motor alterations were simultaneously explored. Enhanced release of dopamine, serotonin and norepinephrine was found immediately after 6-OHDA pulse. Delayed glutamate and glycine release were detected and a biphasic effect on GABA was observed. Mostly serotonin and dopamine outflow, followed by glutamate, correlated with wet dog shakes and other behavioural qualitative alterations. Early dopamine release, accompanied by other neurotransmitters, can generate an excitatory environment affecting the striatal neurons with immediate consequences for behavioural performance. In turn, these changes might be accounting for later features of toxicity described in this model. PMID:20643160

  8. Residual free calcium is not responsible for facilitation of neurotransmitter release.

    PubMed Central

    Blundon, J A; Wright, S N; Brodwick, M S; Bittner, G D

    1993-01-01

    An increase in internal free calcium ([Ca2+]i) in the presynaptic terminal is often assumed to directly produce facilitation of neurotransmitter release. Using a Ca(2+)-activated potassium conductance as a bioassay for free [Ca2+]i in the presynaptic terminal of the crayfish (Procambarus clarkii) opener neuromuscular junction, we now demonstrate that free [Ca2+]i has a decay time constant (tau) of 1-4 msec, whereas facilitation of neurotransmitter release has a decay tau of 7-43 msec. In addition, facilitation of neurotransmitter release can be markedly different at times when free [Ca2+]i values and presynaptic membrane voltages are equal. We conclude that free [Ca2+]i in the presynaptic terminal is not directly responsible for facilitation of neurotransmitter release. Our data suggest that facilitation results from bound Ca2+ or some long-lived consequence of bound Ca2+. PMID:8105475

  9. Neurotransmitter-based strategies for the treatment of cognitive dysfunction in Down syndrome.

    PubMed

    Das, Devsmita; Phillips, Cristy; Hsieh, Wayne; Sumanth, Krithika; Dang, Van; Salehi, Ahmad

    2014-10-01

    Down syndrome (DS) is a multisystem disorder affecting the cardiovascular, respiratory, gastrointestinal, neurological, hematopoietic, and musculoskeletal systems and is characterized by significant cognitive disability and a possible common pathogenic mechanism with Alzheimer's disease. During the last decade, numerous studies have supported the notion that the triplication of specific genes on human chromosome 21 plays a significant role in cognitive dysfunction in DS. Here we reviewed studies in trisomic mouse models and humans, including children and adults with DS. In order to identify groups of genes that contribute to cognitive disability in DS, multiple mouse models of DS with segmental trisomy have been generated. Over-expression of these particular genes in DS can lead to dysfunction of several neurotransmitter systems. Therapeutic strategies for DS have either focused on normalizing the expression of triplicated genes with important roles in DS or restoring the function of these systems. Indeed, our extensive review of studies on the pathogenesis of DS suggests that one plausible strategy for the treatment of cognitive dysfunction is to target the cholinergic, serotonergic, GABA-ergic, glutamatergic, and norepinephrinergic system. However, a fundamental strategy for treatment of cognitive dysfunction in DS would include reducing to normal levels the expression of specific triplicated genes in affected systems before the onset of neurodegeneration. PMID:24842803

  10. Single Molecule Imaging of Conformational Dynamics in Sodium-Coupled Transporters

    ERIC Educational Resources Information Center

    Terry, Daniel S.

    2013-01-01

    Neurotransmitter:sodium symporter (NSS) proteins remove neurotransmitters released into the synapse through a transport process driven by the physiological sodium ion (Na[superscript +]) gradient. NSSs for dopamine, noradrenaline, and serotonin are targeted by the psychostimulants cocaine and amphetamines, as well as by antidepressants. The…

  11. Role of organic cation transporters (OCTs) in the brain.

    PubMed

    Couroussé, Thomas; Gautron, Sophie

    2015-02-01

    Organic cation transporters (OCTs) are polyspecific facilitated diffusion transporters that contribute to the absorption and clearance of various physiological compounds and xenobiotics in mammals, by mediating their vectorial transport in kidney, liver or placenta cells. Unexpectedly, a corpus of studies within the last decade has revealed that these transporters also fulfill important functions within the brain. The high-affinity monoamine reuptake transporters (SERT, NET and DAT) exert a crucial role in the control of aminergic transmission by ensuring the rapid clearance of the released transmitters from the synaptic cleft and their recycling into the nerve endings. Substantiated evidence indicate that OCTs may serve in the brain as a compensatory clearance system in case of monoamine spillover after high-affinity transporter blockade by antidepressants or psychostimulants, and in areas of lower high-affinity transporter density at distance from the aminergic varicosities. In spite of similar anatomical profiles, the two brain OCTs, OCT2 and OCT3, show subtle differences in their distribution in the brain and their functional properties. These transporters contribute to shape a variety of central functions related to mood such as anxiety, response to stress and antidepressant efficacy, but are also implicated in other processes like osmoregulation and neurotoxicity. In this review, we discuss the recent knowledge and emerging concepts on the role of OCTs in the uptake of aminergic neurotransmitters in the brain and in these various physiological functions, focusing on the implications for mental health. PMID:25251364

  12. Single molecule imaging of conformational dynamics in sodium-coupled transporters

    NASA Astrophysics Data System (ADS)

    Terry, Daniel S.

    Neurotransmitter:sodium symporter (NSS) proteins remove neurotransmitters released into the synapse through a transport process driven by the physiological sodium ion (Na+) gradient. NSSs for dopamine, noradrenaline, and serotonin are targeted by the psychostimulants cocaine and amphetamines, as well as by antidepressants. The crystal structure of LeuT, a prokaryotic NSS homologue, revealed the NSS molecular architecture and has been the basis for extensive structural, biochemical, and computational investigations of the mechanism of transporter proteins with a LeuT-like fold. In this dissertation, the conformational states sampled by LeuT are explored using single-molecule fluorescence resonance energy transfer imaging methods, with special focus on the motions of transmembrane helix 1a that lead to inward release of substrate. We also explored how dynamics are modulated by substrate, Na+, and protons to produce efficient transport. These advances represent a first of a kind study of the dynamics of an integral membrane protein at a truly single-molecule scale. Advances in instrumentation, analysis tools, and organic fluorophores were all required to achieve these goals, and such advances are also described. While these experiments were performed with detergent-solubilized protein, preliminary work suggests that imaging of LeuT in proteoliposomes is feasible and a fluorescence sensor assay could be used to simultaneously detect conformational dynamics and transport function.

  13. Visions of tomorrow: a focus on national space transportation issues; Proceedings of the Twenty-fifth Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987

    SciTech Connect

    Soffen, G.A.

    1987-01-01

    The present conference on U.S. space transportation systems development discusses opportunities for aerospace students in prospective military, civil, industrial, and scientific programs, current strategic conceptualization and program planning for future U.S. space transportation, the DOD space transportation plan, NASA space transportation plans, medium launch vehicle and commercial space launch services, the capabilities and availability of foreign launch vehicles, and the role of commercial space launch systems. Also discussed are available upper stage systems, future space transportation needs for space science and applications, the trajectory analysis of a low lift/drag-aeroassisted orbit transfer vehicle, possible replacements for the Space Shuttle, LEO to GEO with combined electric/beamed-microwave power from earth, the National Aerospace Plane, laser propulsion to earth orbit, and a performance analysis for a laser-powered SSTO vehicle.

  14. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review.

    PubMed

    Ribeiro, José A; Fernandes, Paula M V; Pereira, Carlos M; Silva, F

    2016-11-01

    This work describes the state of the art of electrochemical devices for the detection of an important class of neurotransmitters: the catecholamines. This class of biogenic amines includes dopamine, noradrenaline (also called norepinephrine) and adrenaline (also called epinephrine). Researchers have focused on the role of catecholamine molecules within the human body because they are involved in many important biological functions and are commonly associated with several diseases, such as Alzheimer's and Parkinson. Furthermore, the release of catecholamines as a consequence of induced stimulus is an important indicator of reward-related behaviors, such as food, drink, sex and drug addiction. Thus, the development of simple, fast and sensitive electroanalytical methodologies for the determination of catecholamines is currently needed in clinical and biomedical fields, as they have the potential to serve as clinically relevant biomarkers for specific disease states or to monitor treatment efficacy. Currently, three main strategies have used by researchers to detect catecholamine molecules, namely: the use electrochemical materials in combination with, for example, HPLC or FIA, the incorporation of new materials/layers on the sensor surfaces (Tables 1-7) and in vivo detection, manly by using FSCV at CFMEs (Section 10). The developed methodologies were able not only to accurately detect catecholamines at relevant concentration levels, but to do so in the presence of co-existing interferences in samples detected (ascorbate, for example). This review examines the progress made in electrochemical sensors for the selective detection of catecholamines in the last 15 years, with special focus on highly innovative features introduced by nanotechnology. As the literature in rather extensive, we try to simplify this work by summarizing and grouping electrochemical sensors according to the manner their substrates were chemically modified. We also discuss the current and future

  15. The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles.

    PubMed

    Zhang, Lili; Bai, Ru; Liu, Ying; Meng, Li; Li, Bai; Wang, Liming; Xu, Ligeng; Le Guyader, Laurent; Chen, Chunying

    2012-08-01

    Increasing production and application of metallic nanomaterials are likely to result in the release of these particles into the environment. These released nanoparticles may enter into the lungs and the central nervous system (CNS) directly through inhalation, which therefore poses a potential risk to human health. Herein, we focus on the systemic toxicity and potential influence on the neurotransmitter secretion of intranasally instilled copper nanoparticles (23.5 nm) at three different doses. Copper nanoparticle-exposed mice exhibit pathological lesions at different degrees in certain tissues and especially in lung tissue as revealed by histopathology and transmission electron microscopy (TEM) observations. Inductively-coupled plasma mass spectrometry (ICP-MS) results show that the liver, lung and olfactory bulb are the main tissues in which the copper concentrations increased significantly after exposure to a higher level of Cu nanoparticles (40 mg/kg of body weight). The secretion levels of various neurotransmitters changed as well in some brain regions, especially in the olfactory bulb. Our results indicate that the intranasally instilled copper nanoparticles not only cause the lesions where the copper accumulates, but also affect the neurotransmitter levels in the brain. PMID:21657985

  16. Brain Functional Effects of Psychopharmacological Treatments in Schizophrenia: A Network-based Functional Perspective Beyond Neurotransmitter Systems

    PubMed Central

    De Rossi, Pietro; Chiapponi, Chiara; Spalletta, Gianfranco

    2015-01-01

    Psychopharmacological treatments for schizophrenia have always been a matter of debate and a very important issue in public health given the chronic, relapsing and disabling nature of the disorder. A thorough understanding of the pros and cons of currently available pharmacological treatments for schizophrenia is critical to better capture the features of treatment-refractory clinical pictures and plan the developing of new treatment strategies. This review focuses on brain functional changes induced by antipsychotic drugs as assessed by modern functional neuroimaging techniques (i.e. fMRI, PET, SPECT, MRI spectroscopy). The most important papers on this topic are reviewed in order to draw an ideal map of the main functional changes occurring in the brain during antipsychotic treatment. This supports the hypothesis that a network-based perspective and a functional connectivity approach are needed to fill the currently existing gap of knowledge in the field of psychotropic drugs and their mechanisms of action beyond neurotransmitter systems. PMID:26412063

  17. Brain Functional Effects of Psychopharmacological Treatments in Schizophrenia: A Network-based Functional Perspective Beyond Neurotransmitter Systems.

    PubMed

    De Rossi, Pietro; Chiapponi, Chiara; Spalletta, Gianfranco

    2015-01-01

    Psychopharmacological treatments for schizophrenia have always been a matter of debate and a very important issue in public health given the chronic, relapsing and disabling nature of the disorder. A thorough understanding of the pros and cons of currently available pharmacological treatments for schizophrenia is critical to better capture the features of treatment-refractory clinical pictures and plan the developing of new treatment strategies. This review focuses on brain functional changes induced by antipsychotic drugs as assessed by modern functional neuroimaging techniques (i.e. fMRI, PET, SPECT, MRI spectroscopy). The most important papers on this topic are reviewed in order to draw an ideal map of the main functional changes occurring in the brain during antipsychotic treatment. This supports the hypothesis that a network-based perspective and a functional connectivity approach are needed to fill the currently existing gap of knowledge in the field of psychotropic drugs and their mechanisms of action beyond neurotransmitter systems. PMID:26412063

  18. APP+, a fluorescent analogue of the neurotoxin MPP+, is a marker of catecholamine neurons in brain tissue, but not a fluorescent false neurotransmitter.

    PubMed

    Karpowicz, Richard J; Dunn, Matthew; Sulzer, David; Sames, Dalibor

    2013-05-15

    We have previously introduced fluorescent false neurotransmitters (FFNs) as optical reporters that enable visualization of individual dopaminergic presynaptic terminals and their activity in the brain. In this context, we examined the fluorescent pyridinium dye 4-(4-dimethylamino)phenyl-1-methylpyridinium (APP+), a fluorescent analogue of the dopaminergic neurotoxin MPP+, in acute mouse brain tissue. APP+ is a substrate for the dopamine transporter (DAT), norepinephrine transporter (NET), and serotonin transporter (SERT), and as such represented a candidate for the development of new FFN probes. Here we report that APP+ labels cell bodies of catecholaminergic neurons in the midbrain in a DAT- and NET-dependent manner, as well as fine dopaminergic axonal processes in the dorsal striatum. APP+ destaining from presynaptic terminals in the dorsal striatum was also examined under the conditions inducing depolarization and exocytotic neurotransmitter release. Application of KCl led to a small but significant degree of destaining (approximately 15% compared to control), which stands in contrast to a nearly complete destaining of the new generation FFN agent, FFN102. Electrical stimulation of brain slices at 10 Hz afforded no significant change in the APP+ signal. These results indicate that the majority of the APP+ signal in axonal processes originates from labeled organelles including mitochondria, whereas only a minor component of the APP+ signal represents the releasable synaptic vesicular pool. These results also show that APP+ may serve as a useful probe for identifying catecholaminergic innervations in the brain, although it is a poor candidate for the development of FFNs. PMID:23647019

  19. Frontal cortex and hippocampus neurotransmitter receptor complex level parallels spatial memory performance in the radial arm maze.

    PubMed

    Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Miklosi, András G; Sialana, Fernando J; Subramaniyan, Saraswathi; Aher, Yogesh D; Gröger, Marion; Höger, Harald; Bennett, Keiryn L; Lubec, Gert

    2015-08-01

    Several neurotransmitter receptors have been proposed to be involved in memory formation. However, information on receptor complexes (RCs) in the radial arm maze (RAM) is missing. It was therefore the aim of this study to determine major neurotransmitter RCs levels that are modulated by RAM training because receptors are known to work in homo-or heteromeric assemblies. Immediate early gene Arc expression was determined by immunohistochemistry to show if prefrontal cortices (PFC) and hippocampi were activated following RAM training as these regions are known to be mainly implicated in spatial memory. Twelve rats per group, trained and untrained in the twelve arm RAM were used, frontal cortices and hippocampi were taken, RCs in membrane protein were quantified by blue-native PAGE immunoblotting. RCs components were characterised by co-immunoprecipitation followed by mass spectrometrical analysis and by the use of the proximity ligation assay. Arc expression was significantly higher in PFC of trained as compared to untrained rats whereas it was comparable in hippocampi. Frontal cortical levels of RCs containing AMPA receptors GluA1, GluA2, NMDA receptors GluN1 and GluN2A, dopamine receptor D1, acetylcholine nicotinic receptor alpha 7 (nAChR-α7) and hippocampal levels of RCs containing D1, GluN1, GluN2B and nAChR-α7 were increased in the trained group; phosphorylated dopamine transporter levels were decreased in the trained group. D1 and GluN1 receptors were shown to be in the same complex. Taken together, distinct RCs were paralleling performance in the RAM which is relevant for interpretation of previous and design of future work on RCs in memory studies. PMID:25930220

  20. High harmonics focusing undulator

    SciTech Connect

    Varfolomeev, A.A.; Hairetdinov, A.H.; Smirnov, A.V.; Khlebnikov, A.S.

    1995-12-31

    It was shown in our previous work that there exist a possibility to enhance significantly the {open_quote}natural{close_quote} focusing properties of the hybrid undulator. Here we analyze the actual undulator configurations which could provide such field structure. Numerical simulations using 2D code PANDIRA were carried out and the enhanced focusing properties of the undulator were demonstrated. The obtained results provide the solution for the beam transport in a very long (short wavelength) undulator schemes.

  1. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    PubMed Central

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  2. Convergent Pathways for Steroid Hormone-and Neurotransmitter-Induced Rat Sexual Behavior

    NASA Astrophysics Data System (ADS)

    Mani, S. K.; Allen, J. M. C.; Clark, J. H.; Blaustein, J. D.; O'Malley, B. W.

    1994-08-01

    Estrogen and progesterone modulate gene expression in rodents by activation of intracellular receptors in the hypothalamus, which regulate neuronal networks that control female sexual behavior. However, the neurotransmitter dopamine has been shown to activate certain steroid receptors in a ligand-independent manner. A dopamine receptor stimulant and a D_1 receptor agonist, but not a D_2 receptor agonist, mimicked the effects of progesterone in facilitating sexual behavior in female rats. The facilitatory effect of the neurotransmitter was blocked by progesterone receptor antagonists, a D_1 receptor antagonist, or antisense oligonucleotides to the progesterone receptor. The results suggest that in rodents neurotransmitters may regulate in vivo gene expression and behavior by means of cross-talk with steroid receptors in the brain.

  3. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  4. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes.

    PubMed

    Shawahna, Ramzi; Decleves, Xavier; Scherrmann, Jean-Michel

    2013-01-01

    The penetration of drugs into the human brain through the blood-brain barrier (BBB) is a major obstacle limiting the development of successful neuropharmaceuticals. This restricted permeability is due to the delicate intercellular junctions, efflux transporters and metabolizing enzymes present at the BBB. The pharmaceutical industry and academic research relies heavily on permeability studies conducted in animals and in vitro models of the BBB. This text reviews the available animal and in vitro BBB models with special emphasis on the situation in freshly isolated human brain microvessels and the unique tightness between brain endothelial cells, drug transport pathways and metabolic capacity. We first outline the delicate structure of the intercellular junctions and the particular interaction between the brain endothelial cells and other components of the neurovascular unit. We then examine the differences in transporters and metabolizing enzymes between species and in vitro systems and those found in isolated brain microvessels. Finally, we review the possibilities of benchmarking in vitro models of the BBB in terms of gene and protein expression. PMID:23215812

  5. Modulation of midbrain dopamine neurotransmission by serotonin, a versatile interaction between neurotransmitters and significance for antipsychotic drug action.

    PubMed

    Olijslagers, J E; Werkman, T R; McCreary, A C; Kruse, C G; Wadman, W J

    2006-01-01

    Schizophrenia has been associated with a dysfunction of brain dopamine (DA). This, so called, DA hypothesis has been refined as new insights into the pathophysiology of schizophrenia have emerged. Currently, dysfunction of prefrontocortical glutamatergic and GABAergic projections and dysfunction of serotonin (5-HT) systems are also thought to play a role in the pathophysiology of schizophrenia. Refinements of the DA hypothesis have lead to the emergence of new pharmacological targets for antipsychotic drug development. It was shown that effective antipsychotic drugs with a low liability for inducing extra-pyramidal side-effects have affinities for a range of neurotransmitter receptors in addition to DA receptors, suggesting that a combination of neurotransmitter receptor affinities may be favorable for treatment outcome.This review focuses on the interaction between DA and 5-HT, as most antipsychotics display affinity for 5-HT receptors. We will discuss DA/5-HT interactions at the level of receptors and G protein-coupled potassium channels and consequences for induction of depolarization blockade with specific attention to DA neurons in the ventral tegmental area (VTA) and the substantia nigra zona compacta (SN), neurons implicated in treatment efficacy and the side-effects of schizophrenia, respectively. Moreover, it has been reported that electrophysiological interactions between DA and 5-HT show subtle, but important, differences between the SN and the VTA which could explain (in part) the effectiveness and lower propensity to induce side-effects of the newer atypical antipsychotic drugs. In that respect the functional implications of DA/5-HT interactions for schizophrenia will be discussed. PMID:18615139

  6. Focus on quantum efficiency

    NASA Astrophysics Data System (ADS)

    Buchleitner, Andreas; Burghardt, Irene; Cheng, Yuan-Chung; Scholes, Gregory D.; Schwarz, Ulrich T.; Weber-Bargioni, Alexander; Wellens, Thomas

    2014-10-01

    Technologies which convert light into energy, and vice versa, rely on complex, microscopic transport processes in the condensed phase, which obey the laws of quantum mechanics, but hitherto lack systematic analysis and modeling. Given our much improved understanding of multicomponent, disordered, highly structured, open quantum systems, this ‘focus on’ collection collects cutting-edge research on theoretical and experimental aspects of quantum transport in truly complex systems as defined, e.g., by the macromolecular functional complexes at the heart of photosynthesis, by organic quantum wires, or even photovoltaic devices. To what extent microscopic quantum coherence effects can (be made to) impact on macroscopic transport behavior is an equally challenging and controversial question, and this ‘focus on’ collection provides a setting for the present state of affairs, as well as for the ‘quantum opportunities’ on the horizon.

  7. GABA Not Only a Neurotransmitter: Osmotic Regulation by GABAAR Signaling

    PubMed Central

    Cesetti, Tiziana; Ciccolini, Francesca; Li, Yuting

    2012-01-01

    Mature macroglia and almost all neural progenitor types express γ-aminobutyric (GABA) A receptors (GABAARs), whose activation by ambient or synaptic GABA, leads to influx or efflux of chloride (Cl−) depending on its electro-chemical gradient (ECl). Since the flux of Cl− is indissolubly associated to that of osmotically obliged water, GABAARs regulate water movements by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signaling could affect the movement of water by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. We will here review recent observations indicating that in neural cells GABAAR-mediated osmotic regulation affects the cellular volume thereby activating multiple intracellular signaling mechanisms important for cell proliferation, maturation, and survival. In addition, we will discuss evidence that the osmotic regulation exerted by GABA may contribute to brain water homeostasis in physiological and in pathological conditions causing brain edema, in which the GABAergic transmission is often altered. PMID:22319472

  8. Water-transporting proteins.

    PubMed

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity. PMID:20091162

  9. Probes for the dopamine transporter: new leads toward a cocaine-abuse therapeutic--A focus on analogues of benztropine and rimcazole.

    PubMed

    Newman, Amy Hauck; Kulkarni, Santosh

    2002-09-01

    In an attempt to discover a cocaine-abuse pharmacotherapeutic, extensive investigation has been directed toward elucidating the molecular mechanisms underlying the reinforcing effects of this psychostimulant drug. The results of these studies have been consistent with the inhibition of dopamine uptake, at the dopamine transporter (DAT), which results in a rapid and excessive accumulation of extracellular dopamine in the synapse as being the mechanism primarily responsible for the locomotor stimulant actions of cocaine. Nevertheless, investigation of the serotonin (SERT) and norepinephrine (NET) transporters, as well as other receptor systems, with which cocaine either directly or indirectly interacts, has suggested that the DAT is not solely responsible for the reinforcing effects of cocaine. In an attempt to further elucidate the roles of these systems in the reinforcing effects of cocaine, selective molecular probes, in the form of drug molecules, have been designed, synthesized, and characterized. Many of these compounds bind potently and selectively to the DAT, block dopamine reuptake, and are behaviorally cocaine-like in animal models of psychostimulant abuse. However, there have been exceptions noted in several classes of dopamine uptake inhibitors that demonstrate behavioral profiles that are distinctive from cocaine. Structure-activity relationships between chemically diverse dopamine uptake inhibitors have suggested that different binding interactions, at the molecular level on the DAT, as well as divergent actions at the other monoamine transporters may be related to the differing pharmacological actions of these compounds, in vivo. These studies suggest that novel dopamine uptake inhibitors, which are structurally and pharmacologically distinct from cocaine, may be developed as potential cocaine-abuse therapeutics. PMID:12210554

  10. Clinical significance of high-density lipoproteins and the development of atherosclerosis: focus on the role of the adenosine triphosphate-binding cassette protein A1 transporter.

    PubMed

    Brewer, H Bryan; Santamarina-Fojo, Silvia

    2003-08-21

    Low levels of high-density lipoprotein (HDL) cholesterol constitute a risk factor for coronary artery disease, and there is evidence that increasing HDL cholesterol levels reduces cardiovascular risk. The phenotype of low HDL cholesterol with or without elevated triglycerides is at least as common in patients hospitalized for cardiovascular disease as is hypercholesterolemia, and it is characteristic of diabetes and the metabolic syndrome, conditions associated with increased cardiovascular risk. Recent studies have elucidated mechanisms by which HDL acts to reduce cardiovascular risk, bolstering the rationale for targeting of HDL in lipid-modifying therapy. In particular, HDL (1) carries excess cholesterol from peripheral cells to the liver for removal in the process termed reverse cholesterol transport, (2) reduces oxidative modification of low-density lipoproteins (LDL), and (3) inhibits cytokine-induced expression of cellular adhesion molecules on endothelial cells. Studies of the newly described adenosine triphosphate-binding cassette protein A1 (ABCA1) transporter have established a crucial role for this transporter in modulating the levels of plasma HDL and intracellular cholesterol in the liver as well as in peripheral cells. Elevated levels of intracellular cholesterol stimulate the liver X receptor pathway, enhancing the expression of ABCA1, which increases intracellular trafficking of excess cholesterol to the cell surface for interaction with lipid-poor apolipoprotein A-I to form nascent HDL. Nascent HDL facilitates the removal of additional excess cellular cholesterol, which is esterified by lecithin-cholesterol acyltransferase with conversion of the nascent HDL to mature spherical HDL. Overexpression of ABCA1 in mice on a regular chow or Western diet results in a marked increase in plasma HDL, increased LDL, and increased transport of cholesterol to the liver. On a high cholesterol/cholate diet, transgenic mice overexpressing ABCA1 have increased HDL

  11. Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport

    PubMed Central

    Molino, Yves; Jabès, Françoise; Lacassagne, Emmanuelle; Gaudin, Nicolas; Khrestchatisky, Michel

    2014-01-01

    The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods

  12. Setting-up an in vitro model of rat blood-brain barrier (BBB): a focus on BBB impermeability and receptor-mediated transport.

    PubMed

    Molino, Yves; Jabès, Françoise; Lacassagne, Emmanuelle; Gaudin, Nicolas; Khrestchatisky, Michel

    2014-01-01

    The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm x cm(2) on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10(-3) cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance

  13. Newer putative central neurotransmitters: roles in thermoregulation. Hypothalamic substances in the control of body temperature: general characteristics

    SciTech Connect

    Blatteis, C.M.

    1981-11-01

    Although it has been demonstrated that their central, exogenous application induces thermal responses, it is not yet established whether various substances found in the hypothalami of many species function as neurotransmitters in central thermoregulatory pathways. Available data concerning their presence, synthesis, release, possible binding sites, and inactivation are reviewed in the light of established criteria for determining a neurotransmitter role for such substances.

  14. Tyrosine 402 phosphorylation of Pyk2 is involved in ionomycin-induced neurotransmitter release.

    PubMed

    Zhang, Zhao; Zhang, Yun; Mou, Zheng; Chu, Shifeng; Chen, Xiaoyu; He, Wenbin; Guo, Xiaofeng; Yuan, Yuhe; Takahashi, Masami; Chen, Naihong

    2014-01-01

    Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca²⁺ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402. PMID:24718602

  15. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  16. Subunit Composition of Neurotransmitter Receptors in the Immature and in the Epileptic Brain

    PubMed Central

    Sánchez Fernández, Iván; Loddenkemper, Tobias

    2014-01-01

    Neuronal activity is critical for synaptogenesis and the development of neuronal networks. In the immature brain excitation predominates over inhibition facilitating the development of normal brain circuits, but also rendering it more susceptible to seizures. In this paper, we review the evolution of the subunit composition of neurotransmitter receptors during development, how it promotes excitation in the immature brain, and how this subunit composition of neurotransmission receptors may be also present in the epileptic brain. During normal brain development, excitatory glutamate receptors peak in function and gamma-aminobutiric acid (GABA) receptors are mainly excitatory rather than inhibitory. A growing body of evidence from animal models of epilepsy and status epilepticus has demonstrated that the brain exposed to repeated seizures presents a subunit composition of neurotransmitter receptors that mirrors that of the immature brain and promotes further seizures and epileptogenesis. Studies performed in samples from the epileptic human brain have also found a subunit composition pattern of neurotransmitter receptors similar to the one found in the immature brain. These findings provide a solid rationale for tailoring antiepileptic treatments to the specific subunit composition of neurotransmitter receptors and they provide potential targets for the development of antiepileptogenic treatments. PMID:25295256

  17. Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters

    PubMed Central

    Pilowsky, Paul M.; Lung, Mandy S. Y.; Spirovski, Darko; McMullan, Simon

    2009-01-01

    Central neurons in the brainstem and spinal cord are essential for the maintenance of sympathetic tone, the integration of responses to the activation of reflexes and central commands, and the generation of an appropriate respiratory motor output. Here, we will discuss work that aims to understand the role that metabotropic neurotransmitter systems play in central cardiorespiratory mechanisms. It is well known that blockade of glutamatergic, gamma-aminobutyric acidergic and glycinergic pathways causes major or even complete disruption of cardiorespiratory systems, whereas antagonism of other neurotransmitter systems barely affects circulation or ventilation. Despite the lack of an ‘all-or-none’ role for metabotropic neurotransmitters, they are nevertheless significant in modulating the effects of central command and peripheral adaptive reflexes. Finally, we propose that a likely explanation for the plethora of neurotransmitters and their receptors on cardiorespiratory neurons is to enable differential regulation of outputs in response to reflex inputs, while at the same time maintaining a tonic level of sympathetic activity that supports those organs that significantly autoregulate their blood supply, such as the heart, brain, retina and kidney. Such an explanation of the data now available enables the generation of many new testable hypotheses. PMID:19651655

  18. Molecular physiology of vesicular glutamate transporters in the digestive system

    PubMed Central

    Li, Tao; Ghishan, Fayez K.; Bai, Liqun

    2005-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Packaging and storage of glutamate into glutamatergic neuronal vesicles require ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. Three vesicular glutamate transporters (VGLUT1-3) have been recently identified from neuronal tissue where they play a key role to maintain the vesicular glutamate level. Recently, it has been demonstrated that glutamate signaling is also functional in peripheral neuronal and non-neuronal tissues, and occurs in sites of pituitary, adrenal, pineal glands, bone, GI tract, pancreas, skin, and testis. The glutamate receptors and VGLUTs in digestive system have been found in both neuronal and endocrinal cells. The glutamate signaling in the digestive system may have significant relevance to diabetes and GI tract motility disorders. This review will focus on the most recent update of molecular physiology of digestive VGLUTs. PMID:15793854

  19. Tsunami focusing

    NASA Astrophysics Data System (ADS)

    Spillane, M. C.; Titov, V. V.; Moore, C. W.; Aydin, B.; Kanoglu, U.; Synolakis, C. E.

    2010-12-01

    Tsunamis are long waves generated by impulsive disturbances of the seafloor or coastal topography caused by earthquakes, submarine/subaerial mass failures. They evolve substantially through three dimensional - 2 spatial+1 temporal - spreading as the initial surface deformation propagates. This is referred to as its directivity and focusing. A directivity function was first defined by Ben-Menahem (1961, Bull. Seismol. Soc. Am. 51, 401-435) using the source length and the rupture velocity. Okal (2003, Pure Appl. Geophys. 160, 2189-2221) discussed the details of the analysis of Ben-Menahem (1961) and demonstrated the distinct difference between the directivity patterns of landslide and earthquake generated tsunamis. Marchuk and Titov (1989, Proc. IUGG/IOC International Tsunami Symposium, July 31 - August 3, 1989, Novosibirsk, USSR. p.11-17) described the process of tsunami focusing for a rectangular initial deformation combining positive and negative surface displacements. They showed the existence of a focusing point where abnormal tsunami wave height can be registered. Here, first, we describe and quantify numerically tsunami focusing processes for a combined positive and negative - N-wave type - strip source representing the 17 July 1998 Papua New Guinea and 17 July 2006 Java events. Specifically, considering field observations and tsunami focusing, we propose a source mechanism for the 17 July 2006 Java event. Then, we introduce a new analytical solution for a strip source propagating over a flat bottom using the linear shallow-water wave equation. The analytical solution of Carrier and Yeh (2005, Computer Modeling In Engineering & Sciences, 10(2), 113-121) appears to have two drawbacks. One, the solution involves singular complete elliptic integral of the first kind which results in a self-similar approximate solution for the far-field at large times. Two, only the propagation of Gaussian shaped finite-crest wave profiles can be modeled. Our solution is not only

  20. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ

    PubMed Central

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides/neurotransmitters

  1. Neurotransmitter receptor density changes in Pitx3ak mice--a model relevant to Parkinson's disease.

    PubMed

    Cremer, J N; Amunts, K; Graw, J; Piel, M; Rösch, F; Zilles, K

    2015-01-29

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by alterations of nigrostriatal dopaminergic neurotransmission. Compared to the wealth of data on the impairment of the dopamine system, relatively limited evidence is available concerning the role of major non-dopaminergic neurotransmitter systems in PD. Therefore, we comprehensively investigated the density and distribution of neurotransmitter receptors for glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine in brains of homozygous aphakia mice being characterized by mutations affecting the Pitx3 gene. This genetic model exhibits crucial hallmarks of PD on the neuropathological, symptomatic and pharmacological level. Quantitative receptor autoradiography was used to characterize 19 different receptor binding sites in eleven brain regions in order to understand receptor changes on a systemic level. We demonstrated striking differential changes of neurotransmitter receptor densities for numerous receptor types and brain regions, respectively. Most prominent, a strong up-regulation of GABA receptors and associated benzodiazepine binding sites in different brain regions and concomitant down-regulations of striatal nicotinic acetylcholine and serotonergic receptor densities were found. Furthermore, the densities of glutamatergic kainate, muscarinic acetylcholine, adrenergic α1 and dopaminergic D2/D3 receptors were differentially altered. These results present novel insights into the expression of neurotransmitter receptors in Pitx3(ak) mice supporting findings on PD pathology in patients and indicating on the possible underlying mechanisms. The data suggest Pitx3(ak) mice as an appropriate new model to investigate the role of neurotransmitter receptors in PD. Our study highlights the relevance of non-dopaminergic systems in PD and for the understanding of its molecular pathology. PMID:25451278

  2. Transverse field focused system

    DOEpatents

    Anderson, Oscar A.

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  3. Pharmacogenomics in psychiatry: the relevance of receptor and transporter polymorphisms

    PubMed Central

    Reynolds, Gavin P; McGowan, Olga O; Dalton, Caroline F

    2014-01-01

    The treatment of severe mental illness, and of psychiatric disorders in general, is limited in its efficacy and tolerability. There appear to be substantial interindividual differences in response to psychiatric drug treatments that are generally far greater than the differences between individual drugs; likewise, the occurrence of adverse effects also varies profoundly between individuals. These differences are thought to reflect, at least in part, genetic variability. The action of psychiatric drugs primarily involves effects on synaptic neurotransmission; the genes for neurotransmitter receptors and transporters have provided strong candidates in pharmacogenetic research in psychiatry. This paper reviews some aspects of the pharmacogenetics of neurotransmitter receptors and transporters in the treatment of psychiatric disorders. A focus on serotonin, catecholamines and amino acid transmitter systems reflects the direction of research efforts, while relevant results from some genome-wide association studies are also presented. There are many inconsistencies, particularly between candidate gene and genome-wide association studies. However, some consistency is seen in candidate gene studies supporting established pharmacological mechanisms of antipsychotic and antidepressant response with associations of functional genetic polymorphisms in, respectively, the dopamine D2 receptor and serotonin transporter and receptors. More recently identified effects of genes related to amino acid neurotransmission on the outcome of treatment of schizophrenia, bipolar illness or depression reflect the growing understanding of the roles of glutamate and γ-aminobutyric acid dysfunction in severe mental illness. A complete understanding of psychiatric pharmacogenomics will also need to take into account epigenetic factors, such as DNA methylation, that influence individual responses to drugs. PMID:24354796

  4. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    SciTech Connect

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  5. Transport dynamics in a glutamate transporter homologue

    PubMed Central

    Akyuz, Nurunisa; Altman, Roger B.; Blanchard, Scott C.; Boudker, Olga

    2013-01-01

    Summary Glutamate transporters are integral membrane proteins that catalyze neurotransmitter uptake from the synaptic cleft into the cytoplasm of glial cells and neurons1. Their mechanism involves transitions between extracellular- (outward-) and intracellular- (inward-) facing conformations, whereby substrate binding sites become accessible to the opposite sides of the membrane2. This process has been proposed to entail trans-membrane movements of three discrete transport domains within a trimeric scaffold3. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging4, we have directly observed large-scale transport domain movements in a bacterial homologue of glutamate transporters for the first time. We find that individual transport domains alternate between periods of quiescence and periods of rapid transitions, reminiscent of bursting patterns first recorded in single ion channels using patch-clamp methods5,6. We suggest that the switch to the dynamic mode in glutamate transporters is due to separation of the transport domain from the trimeric scaffold, which precedes domain movements across the bilayer. This spontaneous dislodging of the substrate-loaded transport domain is approximately 100-fold slower than subsequent trans-membrane movements and may be rate determining in the transport cycle. PMID:23792560

  6. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    PubMed

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  7. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks

    PubMed Central

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G. J.; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as “papilionoid legume-specific” were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  8. Electrophoretic Focusing

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    2001-01-01

    Electrophoretic focusing is a new method of continuous flow electrophoresis that introduces precision flow control to achieve high resolution separations. The electric field is applied perpendicular to an incoming sample lamina and buffer but also perpendicular to the broad faces of the thin rectangular chamber. A uniform fluid cross-flow then enters and exits the separation chamber through the same broad faces which are porous. A balance is achieved by adjusting either the electric field or the cross-flow so the desired sample fraction with its specific migration velocity encounters an opposing flow of the same velocity. Applying an electric field transverse to the incoming sample lamina and opposing this field with a carefully configured buffer flow, a sample constituent can be selected and focused into a narrow stream for subsequent analysis. Monotonically changing either electric field or buffer cross-flow will yield a scan of all constituents of the sample. Stopping the scan increases the collection time for minor constituents to improve their analysis. Using the high voltage gradients and/or cross-flow to rapidly deflect extraneous sample through the porous screens and into either of the side (purge) chambers, the selected sample is focused in the center plane of the separation chamber and collected without contact or interaction with the separation chamber walls. Results will be presented on the separation of a range of materials including dyes, proteins, and monodisperse polystyrene latexes. Sources of sample dispersion inherent in other electrokinetic techniques will be shown to be negligible for a variety of sample concentrations, buffer properties and operating conditions.

  9. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    SciTech Connect

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; Stanford, M. G.; Lewis, B. B.; Rack, P. D.

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhanced Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.

  10. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGESBeta

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; Stanford, M. G.; Lewis, B. B.; Rack, P. D.

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  11. Pulsed laser-assisted focused electron-beam-induced etching of titanium with XeF2: enhanced reaction rate and precursor transport.

    PubMed

    Noh, J H; Fowlkes, J D; Timilsina, R; Stanford, M G; Lewis, B B; Rack, P D

    2015-02-25

    In order to enhance the etch rate of electron-beam-induced etching, we introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. The evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. The increased etch rate is attributed to photothermally enhanced Ti-F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone. PMID:25629708

  12. Microstructural analysis and Transport Properties of MoO and MoC nanostructures prepared by focused electron beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Makise, Kazumasa; Mitsuishi, Kazutaka; Shimojo, Masayuki; Shinozaki, Bunju

    2014-07-01

    By electron-beam-induced deposition, we have succeeded in the direct fabrication of nanowires of molybdenum oxide (MoOx) and molybdenum carbide (MoC) on a SiO2 substrate set in a scanning electron microscope. In order to prepare MoOx specimens of high purity, a precursor gas of molybdenum hexacarbonyl [Mo(CO)6] is used, mixed with oxygen gas. On the other hand, MoC is grown by mixing H2O gas with the precursor gas. The electrical transport properties of the nanowires are investigated by the DC four-terminal method. A highly resistive MoOx nanowire prepared from an as-deposited specimen by annealing in air shows nonlinear current-voltage characteristics and a high photoconductivity. The resistivity ρ of an as-deposited amorphous MoC (a-MoC) nanowire takes its maximum at a temperature T ~ 10 K and decreases to ~ 0 with decreasing temperature. This behavior of ρ(T) indicates the possible occurrence of superconductivity in a-MoC nanowires. The characteristic of ρ(T) below the superconducting transition temperature Tc ~ 4 K can be well explained by the quantum phase-slip model with a coherence length ξ(0) ~ 8 nm at T = 0.

  13. Microstructural analysis and Transport Properties of MoO and MoC nanostructures prepared by focused electron beam-induced deposition

    PubMed Central

    Makise, Kazumasa; Mitsuishi, Kazutaka; Shimojo, Masayuki; Shinozaki, Bunju

    2014-01-01

    By electron-beam-induced deposition, we have succeeded in the direct fabrication of nanowires of molybdenum oxide (MoOx) and molybdenum carbide (MoC) on a SiO2 substrate set in a scanning electron microscope. In order to prepare MoOx specimens of high purity, a precursor gas of molybdenum hexacarbonyl [Mo(CO)6] is used, mixed with oxygen gas. On the other hand, MoC is grown by mixing H2O gas with the precursor gas. The electrical transport properties of the nanowires are investigated by the DC four-terminal method. A highly resistive MoOx nanowire prepared from an as-deposited specimen by annealing in air shows nonlinear current-voltage characteristics and a high photoconductivity. The resistivity ρ of an as-deposited amorphous MoC (a-MoC) nanowire takes its maximum at a temperature T ≈ 10 K and decreases to ≈ 0 with decreasing temperature. This behavior of ρ(T) indicates the possible occurrence of superconductivity in a-MoC nanowires. The characteristic of ρ(T) below the superconducting transition temperature Tc ≈ 4 K can be well explained by the quantum phase-slip model with a coherence length ξ(0) ≈ 8 nm at T = 0. PMID:25033894

  14. The Role of Regulatory Transporters in Neuropathic Pain.

    PubMed

    Yousuf, Muhammad Saad; Kerr, Bradley J

    2016-01-01

    Neuropathic pain arises from an injury or disease of the somatosensory nervous system rather than stimulation of pain receptors. As a result, the fine balance between excitation and inhibition is perturbed leading to hyperalgesia and allodynia. Various neuropathic pain models provide considerable evidence that changes in the glutamatergic, GABAergic, and monoaminergic systems. Neurotransmitter reuptake transporter proteins have the potential to change the temporal and spatial profile of various neurotransmitters throughout the nervous system. This, in turn, can affect the downstream effects of these neurotransmitters and hence modulate pain. This chapter explores various reuptake transporter systems and implicates their role in pain processing. Understanding the transporter systems will enhance drug discovery targeting different facets of neuropathic pain. PMID:26920015

  15. Monoamine transporters: insights from molecular dynamics simulations

    PubMed Central

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  16. New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells.

    PubMed

    Roshchina, Victoria V

    2016-01-01

    The evolutionary perspective on the universal roles of compounds known as neurotransmitters may help in the analysis of relations between all organisms in biocenosis-from microorganisms to plant and animals. This phenomenon, significant for chemosignaling and cellular endocrinology, has been important in human health and the ability to cause disease or immunity, because the "living environment" influences every organism in a biocenosis relationship (microorganism-microorganism, microorganism-plant, microorganism-animal, plant-animal, plant-plant and animal-animal). Non-nervous functions of neurotransmitters (rather "biomediators" on a cellular level) are considered in this review and ample consideration is given to similarities and differences that unite, as well as distinguish, taxonomical kingdoms. PMID:26589213

  17. Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle touch receptor

    PubMed Central

    Maksimovic, Srdjan; Baba, Yoshichika; Lumpkin, Ellen A.

    2013-01-01

    Merkel cells are an enigmatic group of rare cells found in the skin of vertebrates. Most make contacts with somatosensory afferents to form Merkel cell-neurite complexes, which are gentle-touch receptors that initiate slowly adapting type I responses. The function of Merkel cells within the complex remains debated despite decades of research. Numerous anatomical studies demonstrate that Merkel cells form synaptic-like contacts with sensory afferent terminals. Moreover, recent molecular analysis reveals that Merkel cells express dozens of presynaptic molecules that are essential for synaptic vesicle release in neurons. Merkel cells also produce a host of neuro-active substances that can act as fast excitatory neurotransmitters or neuromodulators. Here, we review the major neurotransmitters found in Merkel cells and discuss these findings in relation to the potential function of Merkel cells in touch reception. PMID:23530998

  18. Quantification of Amino Acid Neurotransmitters in Cerebrospinal Fluid of Patients with Neurocysticercosis

    PubMed Central

    Camargo, José Augusto; Bertolucci, Paulo Henrique Ferreira

    2015-01-01

    Background : Neurocysticercosis is a parasitic disease that affects the central nervous system. Its main clinical manifestations are epileptic seizures. The objective of this study was to investigate the correlation between neurotransmitter concentrations in cerebrospinal fluid (CSF) and the different evolutive forms of neurocysticercosis with or without seizures. Methods : Neurotransmitter concentrations (Aspartate, Glutamate, GABA, Glutamine, Glycine, Taurine) were determined in CSF samples from 42 patients with neurocysticercosis divided into patients with the active cystic form (n = 24, 12 with and 12 without seizures) and patients with calcified form (n = 18, 12 with and 6 without seizures), and a control group consisting of 59 healthy subjects. Results : Alterations in amino acid concentration were observed in all patients with neurocysticercosis. Conclusion : We conclude that disturbances in amino acid metabolism accompany the presentation of neurocysticercosis. Replacement of the terms inactive cyst by reactive inactive cyst and calcification by reactive calcification is suggested. PMID:26157521

  19. Analysis of Neurotransmitter Tissue Content of Drosophila melanogaster in Different Life Stages

    PubMed Central

    2015-01-01

    Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly brains using capillary electrophoresis coupled to fast-scan cyclic voltammetry. Tyramine and octopamine content varied between life stages, with almost no octopamine being present in the pupa, while tyramine levels in the pupa were very high. Adult females had significantly higher dopamine content than males, but no other neurotransmitters were dependent on sex in the adult. Understanding the tissue content of different life stages will be beneficial for future work comparing the effects of diseases on tissue content throughout development. PMID:25437353

  20. Laser R2PI spectroscopic and mass spectrometric studies of chiral neurotransmitters

    NASA Astrophysics Data System (ADS)

    Giardini, A.; Marotta, V.; Paladini, A.; Piccirillo, S.; Rondino, F.; Satta, M.; Speranza, M.

    2007-07-01

    One color, mass selected resonant two-photon ionization (1cR2PI) spectra of supersonically expanded bare neurotransmitter, (1 S,2 S)-(+)- N-methyl pseudoephedrine (MPE), and its complexes with chiral and achiral molecules have been investigated. The excitation spectrum of bare MPE has been analyzed and discussed on the basis of theoretical predictions at the B3LYP/6-31G** level of theory. The results allowed to get information on the possible conformers of MPE molecule and on the intermolecular forces on its cluster formed with a variety of solvent molecules, including chiral alcohols, lactates and water. Further information on intermolecular interactions have been obtained with ESI-CID-MS 2 technique, applied to chiral biomolecules linked through a metal ion to the neurotransmitter. The experimental results are compared with theoretical predictions.

  1. Identification of neurotransmitters and co-localization of transmitters in brainstem respiratory neurons

    PubMed Central

    R.L., Stornetta

    2008-01-01

    Identifying the major ionotropic neurotransmitter in a respiratory neuron is of critical importance in determining how the neuron fits into the respiratory system, whether in producing or modifying respiratory drive and rhythm. There are now several groups of respiratory neurons whose major neurotransmitters have been identified and in some of these cases, more than one transmitter have been identified in particular neurons. This review will describe the physiologically identified neurons in major respiratory areas that have been phenotyped for major ionotropic transmitters as well as those where more than one transmitter has been identified. Although the purpose of the additional transmitter has not been elucidated for any of the respiratory neurons, some examples from other systems will be discussed. PMID:18722563

  2. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    NASA Astrophysics Data System (ADS)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  3. X-ray structure of dopamine transporter elucidates antidepressant mechanism.

    PubMed

    Penmatsa, Aravind; Wang, Kevin H; Gouaux, Eric

    2013-11-01

    Antidepressants targeting Na(+)/Cl(-)-coupled neurotransmitter uptake define a key therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors, and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels, has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between transmembrane helices 1, 3, 6 and 8, blocking the transporter from binding substrate and from isomerizing to an inward-facing conformation. Although the overall structure of the dopamine transporter is similar to that of its prokaryotic relative LeuT, there are multiple distinctions, including a kink in transmembrane helix 12 halfway across the membrane bilayer, a latch-like carboxy-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by transmembrane helices 1a, 5 and 7. Taken together, the dopamine transporter structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and elucidates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of the mechanism and regulation of neurotransmitter uptake at chemical synapses. PMID:24037379

  4. A capillary-PDMS hybrid chip for separations-based sensing of neurotransmitters in vivo.

    PubMed

    Cellar, Nicholas A; Kennedy, Robert T

    2006-09-01

    A chip fabricated by multilayer soft lithography of poly(dimethylsiloxane) was created for separations-based sensing of neurotransmitters in vivo. The chip incorporated a pneumatically actuated peristaltic pump and valving system to combine low-flow push-pull perfusion sampling, on-line derivatization, and flow-gated injection onto an embedded fused-silica capillary for high speed separation of amine neurotransmitters from the brain of living animals. Six 160 microm wide by 10 microm high control channels, actuated with an overlapping 60 degrees pulse sequence, simultaneously drove sample and buffers through fluidic channels of the same dimensions. Tunable sampling flow rates of 40 to 130 nL min(-1) and separation buffer flow rates of 380 to 850 nL min(-1) were achieved with actuation frequencies between 3 and 10 Hz. On-line sampling of amine neurotransmitters with separation efficiencies in excess of 250,000 plates, detection limits of approximately 40 nM, and relative standard deviations of 4% for glutamate and aspartate were achieved in vitro. Electropherograms with resolution of gamma-aminobutyric acid, glutamine, taurine, serine, glycine, o-phosphorylethanolamine, glutamate, and aspartate could be collected every 30 s for over 4 h in vivo. It was also shown that pharmacological agents could be delivered and subsequent changes in neurotransmitter profile could be measured when delivering either 70 mM K+ artificial cerebrospinal fluid or 200 microM l-trans-pyrrolidine-2,4-dicarboxilic acid with the chip. These results demonstrate the ability of this chip to sample and monitor chemicals in the complex environment of the central nervous system with high selectivity and sensitivity over extended periods. PMID:16929400

  5. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    PubMed

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients. PMID:26088878

  6. Fast liquid chromatography separation and multiple-reaction monitoring mass spectrometric detection of neurotransmitters.

    PubMed

    Hammad, Loubna A; Neely, Matthew; Bridge, Bob; Mechref, Yehia

    2009-07-01

    We describe here the fast LC-MS/MS separation of a mixture of neurotransmitters consisting of dopamine, epinephrine, norepinephrine, 3,4-dihydroxybenzylamine (DHBA), salsolinol, serotonin, and gamma-aminobutyric acid (GABA). The new UltiMate 3000 Rapid Separation system (RSLC) was successfully coupled to the 4000 QTRAP mass spectrometer operating in multiple-reaction monitoring (MRM) mode. The separation was attained using a 100 mm length, 2.2 microm particle size Acclaim column at a flow rate of 0.5 mL/min. The column back pressure was 350 bar, while the total run time including column re-equilibration was 5.2 min. The peak resolution was minimally affected by the fast separation. The RSLC-MRM separation was found to have a precision range based on peak area for 50 replicate runs of 2-5% CV for all analytes, and the reproducibility of the retention time for all analytes was found to range from 0-2% CV. The described method represents an almost seven times shorter analysis time of neurotransmitters using LC/MRM which is very useful in screening large quantities of biological samples for various neurotransmitters. PMID:19569096

  7. Modulation of monoamine neurotransmitters in fighting fish Betta splendens exposed to waterborne phytoestrogens.

    PubMed

    Clotfelter, Ethan D; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2010-12-01

    Endogenous estrogens are known to affect the activity of monoamine neurotransmitters in vertebrate animals, but the effects of exogenous estrogens on neurotransmitters are relatively poorly understood. We exposed sexually mature male fighting fish Betta splendens to environmentally relevant and pharmacological doses of three phytoestrogens that are potential endocrine disruptors in wild fish populations: genistein, equol, and β-sitosterol. We also exposed fish to two doses of the endogenous estrogen 17β-estradiol, which we selected as a positive control because phytoestrogens are putative estrogen mimics. Our results were variable, but the effects were generally modest. Genistein increased dopamine levels in the forebrains of B. splendens at both environmentally relevant and pharmacological doses. The environmentally relevant dose of equol increased dopamine levels in B. splendens forebrains, and the pharmacological dose decreased norepinephrine (forebrain), dopamine (hindbrain), and serotonin (forebrain) levels. The environmentally relevant dose of β-sitosterol decreased norepinephrine and dopamine in the forebrain and hindbrain, respectively. Our results suggest that sources of environmental phytoestrogens, such as runoff or effluent from agricultural fields, wood pulp mills, and sewage treatment plants, have the potential to modulate neurotransmitter activity in free-living fishes in a way that could interfere with normal behavioral processes. PMID:20012186

  8. The molecular basis of memory. Part 3: tagging with “emotive” neurotransmitters

    PubMed Central

    Marx, Gerard; Gilon, Chaim

    2014-01-01

    Many neurons of all animals that exhibit memory (snails, worms, flies, vertebrae) present arborized shapes with many varicosities and boutons. These neurons, release neurotransmitters and contain ionotropic receptors that produce and sense electrical signals (ephaptic transmission). The extended shapes maximize neural contact with the surrounding neutrix [defined as: neural extracellular matrix (nECM) + diffusible (neurometals and neurotransmitters)] as well as with other neurons. We propose a tripartite mechanism of animal memory based on the dynamic interactions of splayed neurons with the “neutrix.” Their interactions form cognitive units of information (cuinfo), metal-centered complexes within the nECM around the neuron. Emotive content is provided by NTs, which embody molecular links between physiologic (body) responses and psychic feelings. We propose that neurotransmitters form mixed complexes with cuinfo used for tagging emotive memory. Thus, NTs provide encoding option not available to a Turing, binary-based, device. The neurons employ combinatorially diverse options, with >10 NMs and >90 NTs for encoding (“flavoring”) cuinfo with emotive tags. The neural network efficiently encodes, decodes and consolidates related (entangled) sets of cuinfo into a coherent pattern, the basis for emotionally imbued memory, critical for determining a behavioral choice aimed at survival. The tripartite mechanism with tagging of NTs permits of a causal connection between physiology and psychology. PMID:24778616

  9. Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants.

    PubMed

    Steketee, Jeffery D

    2003-03-01

    The mesocorticolimbic dopamine system, which arises in the ventral tegmental area and innervates the nucleus accumbens, among numerous other regions, has been implicated in processes associated with drug addiction, including behavioral sensitization. Behavioral sensitization is the enhanced motor-stimulant response that occurs with repeated exposure to psychostimulants. The medial prefrontal cortex (mPFC), defined as the cortical region that has a reciprocal innervation with the mediodorsal nucleus of the thalamus, is also a terminal region of the mesocorticolimbic dopamine system. The mPFC contains pyramidal glutamatergic neurons that serve as the primary output of this region. These pyramidal neurons are modulated by numerous neurotransmitter systems, including gamma-aminobutyric acidergic interneurons and dopaminergic, noradrenergic, serotonergic, glutamatergic, cholinergic and peptidergic afferents. Changes in interactions between these various neurotransmitter systems in the mPFC may lead to alterations in behavioral responses. For example, recent studies have demonstrated a role for decreased mPFC dopaminergic transmission in the development of psychostimulant-induced behavioral sensitization. The present review will discuss the anatomical organization of the mPFC including descriptions of innervation patterns and receptor localization of the various neurotransmitter systems of this region. Data supporting or suggesting a role for each of these mPFC transmitter systems in the development of behavioral sensitization to cocaine and amphetamine will be presented. Finally a model of the mPFC that may be useful in directing future research efforts on the cortical mechanisms involved in the development of sensitization will be proposed. PMID:12663081

  10. Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Tufi, Sara; Lamoree, Marja; de Boer, Jacob; Leonards, Pim

    2015-05-22

    Neurotransmitters are endogenous metabolites that allow the signal transmission across neuronal synapses. Their biological role is crucial for many physiological functions and their levels can be changed by several diseases. Because of their high polarity, hydrophilic interaction liquid chromatography (HILIC) is a promising tool for neurotransmitter analysis. Due to the large number of HILIC stationary phases available, an evaluation of the column performances and retention behaviors has been performed on five different commercial HILIC packing materials (silica, amino, amide and two zwitterionic stationary phases). Several parameters like the linear correlation between retention and the distribution coefficient (logD), the separation factor k and the column resolution Rs have been investigated and the column performances have been visualized with a heat map and hierarchical clustering analysis. An optimized and validated HILIC-MS/MS method based on the ZIC-cHILIC column is proposed for the simultaneous detection and quantification of twenty compounds consisting of neurotransmitters, precursors and metabolites: 3-methoxytyramine (3-MT), 5-hydroxyindoleacetic acid (5-HIAA), 5-hydroxy-L-tripthophan, acetylcholine, choline, L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine, epinephrine, γ-aminobutyric acid (GABA), glutamate, glutamine, histamine, histidine, L-tryptophan, L-tyrosine, norepinephrine, normetanephrine, phenylalanine, serotonin and tyramine. The method was applied to neuronal metabolite profiling of the central nervous system of the freshwater snail Lymnaea stagnalis. This method is suitable to explore neuronal metabolism and its alteration in different biological matrices. PMID:25869798

  11. Altered levels of brain neurotransmitter from new born rabbits with intrauterine restriction.

    PubMed

    Hernández-Andrade, E; Cortés-Camberos, A J; Díaz, N F; Flores-Herrera, H; García-López, G; González-Jiménez, M; Santamaría, A; Molina-Hernández, A

    2015-01-01

    Fetal intrauterine growth restriction generates chronic hypoxia due to placental insufficiency. Despite the hemodynamic process of blood flow, redistributions are taking place in key organs such as the fetal brain during intrauterine growth restriction, in order to maintain oxygen and nutrients supply. The risk of short- and long-term neurological effects are still present in hypoxic offspring. Most studies previously reported the effect of hypoxia on the levels of a single neurotransmitter, making it difficult to have a better understanding of the relationship among neurotransmitter levels and the defects reported in products that suffer intrauterine growth restriction, such as motor development, coordination and execution of movement, and the learning-memory process. The aim of this study was to evaluate the levels of gamma-aminobutyric acid, glutamate, dopamine and serotonin in three structures of the brain related to the above-mentioned function such as the cerebral cortex, the striatum, and the hippocampus in the chronic hypoxic newborn rabbit model. Our results showed a significant increase in glutamate and dopamine levels in all studied brain structures and a significant decrease in gamma-aminobutyric acid levels but only in the striatum, suggesting that the imbalance on the levels of several neurotransmitters could be involved in new born brain damage due to perinatal hypoxia. PMID:25304540

  12. Acute effects of a bicyclophosphate neuroconvulsant on monoamine neurotransmitter and metabolite levels in the rat brain.

    PubMed

    Lindsey, J W; Jung, A E; Narayanan, T K; Ritchie, G D

    1998-07-10

    Naive male Sprague-Dawley rats were injected intraperitoneally (i.p.) with the bicyclophosphate convulsant trimethylolpropane phosphate (TMPP) at dose levels from 0.2 to 0.6 mg/kg. Rats were observed for convulsive activity, and were sacrificed 15 min posttreatment. Levels of the monoamine neurotransmitters norepinephrine (NE), epinephrine (EPI), dopamine (DA), and serotonin (5-HT) and the major metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were assayed in forebrain, midbrain, hindbrain, cerebellum and brainstem regions. Neurotransmitter and metabolite levels were compared between control rats and rats that did and did not experience seizures. TMPP administration induced significant decreases in levels of measured neurotransmitters that varied as a function of brain region, dose, and expression of the seizure activity. These results show that tonic or tonic-clonic seizures induced by TMPP administration (0.6 mg/kg) are reliably associated with regional decreases in serotonin, dopamine, and norepinephrine. Convulsive activity resulting from lower dose administrations (0.2-0.4 mg/kg) of TMPP result only in decreased regional levels of serotonin. PMID:9650574

  13. The molecular basis of memory. Part 3: tagging with "emotive" neurotransmitters.

    PubMed

    Marx, Gerard; Gilon, Chaim

    2014-01-01

    Many neurons of all animals that exhibit memory (snails, worms, flies, vertebrae) present arborized shapes with many varicosities and boutons. These neurons, release neurotransmitters and contain ionotropic receptors that produce and sense electrical signals (ephaptic transmission). The extended shapes maximize neural contact with the surrounding neutrix [defined as: neural extracellular matrix (nECM) + diffusible (neurometals and neurotransmitters)] as well as with other neurons. We propose a tripartite mechanism of animal memory based on the dynamic interactions of splayed neurons with the "neutrix." Their interactions form cognitive units of information (cuinfo), metal-centered complexes within the nECM around the neuron. Emotive content is provided by NTs, which embody molecular links between physiologic (body) responses and psychic feelings. We propose that neurotransmitters form mixed complexes with cuinfo used for tagging emotive memory. Thus, NTs provide encoding option not available to a Turing, binary-based, device. The neurons employ combinatorially diverse options, with >10 NMs and >90 NTs for encoding ("flavoring") cuinfo with emotive tags. The neural network efficiently encodes, decodes and consolidates related (entangled) sets of cuinfo into a coherent pattern, the basis for emotionally imbued memory, critical for determining a behavioral choice aimed at survival. The tripartite mechanism with tagging of NTs permits of a causal connection between physiology and psychology. PMID:24778616

  14. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    PubMed Central

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  15. Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function

    NASA Astrophysics Data System (ADS)

    Simon, Daniel T.; Kurup, Sindhulakshmi; Larsson, Karin C.; Hori, Ryusuke; Tybrandt, Klas; Goiny, Michel; Jager, Edwin W. H.; Berggren, Magnus; Canlon, Barbara; Richter-Dahlfors, Agneta

    2009-09-01

    Significant advances have been made in the understanding of the pathophysiology, molecular targets and therapies for the treatment of a variety of nervous-system disorders. Particular therapies involve electrical sensing and stimulation of neural activity, and significant effort has therefore been devoted to the refinement of neural electrodes. However, direct electrical interfacing suffers from some inherent problems, such as the inability to discriminate amongst cell types. Thus, there is a need for novel devices to specifically interface nerve cells. Here, we demonstrate an organic electronic device capable of precisely delivering neurotransmitters in vitro and in vivo. In converting electronic addressing into delivery of neurotransmitters, the device mimics the nerve synapse. Using the peripheral auditory system, we show that out of a diverse population of cells, the device can selectively stimulate nerve cells responding to a specific neurotransmitter. This is achieved by precise electronic control of electrophoretic migration through a polymer film. This mechanism provides several sought-after features for regulation of cell signalling: exact dosage determination through electrochemical relationships, minimally disruptive delivery due to lack of fluid flow, and on-off switching. This technology has great potential as a therapeutic platform and could help accelerate the development of therapeutic strategies for nervous-system disorders.

  16. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  17. Neurotransmitter and their metabolite concentrations in different areas of the HPRT knockout mouse brain.

    PubMed

    Tschirner, Sarah K; Gutzki, Frank; Schneider, Erich H; Seifert, Roland; Kaever, Volkhard

    2016-06-15

    Lesch-Nyhan syndrome (LNS) is characterized by uric acid overproduction and severe neurobehavioral symptoms, such as recurrent self-mutilative behavior. To learn more about the pathophysiology of the disease, we quantified neurotransmitters and their metabolites in the cerebral hemisphere, cerebellum and the medulla oblongata of HPRT knockout mice, an animal model for LNS, in comparison to the corresponding wild-type. Our analyses included l-glutamate, 4-aminobutanoic acid (GABA), acetylcholine, serotonin, 5-hydroxyindoleacetic acid (5-HIAA), norepinephrine, l-normetanephrine, epinephrine and l-metanephrine and were conducted via high performance liquid chromatography (HPLC) coupled to tandem mass spectrometry (MS/MS). Among these neurotransmitter systems, we did not find any abnormalities in the HPRT knockout mouse brains. On one side, this might indicate that HPRT deficiency most severely affects dopamine signaling, while brain functioning based on other neurotransmitters is more or less spared. On the other hand, our findings may reflect a compensating mechanism for impaired purine salvage that protects the brain in HPRT-deficient mice but not in LNS patients. PMID:27206901

  18. SLC1 Glutamate Transporters

    PubMed Central

    Grewer, Christof; Gameiro, Armanda; Rauen, Thomas

    2014-01-01

    The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 (SLC1) family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na+ ions and the countertransport of one K+ in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure-function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions. PMID:24240778

  19. Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra.

    PubMed

    Aumann, Tim D

    2016-04-01

    The ability of neurons to change the amount or type of neurotransmitter they use, or 'neurotransmitter plasticity', is an emerging new form of adult brain plasticity. For example, it has recently been shown that neurons in the adult rat hypothalamus up- or down-regulate dopamine (DA) neurotransmission in response to the amount of light the animal receives (photoperiod), and that this in turn affects anxiety- and depressive-like behaviors (Dulcis et al., 2013). In this Chapter I consolidate recent evidence from my laboratory suggesting neurons in the adult mouse substantia nigra pars compacta (SNc) also undergo DA neurotransmitter plasticity in response to persistent changes in their electrical activity, including that driven by the mouse's environment or behavior. Specifically, we have shown that the amounts of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) gene promoter activity, TH mRNA and TH protein in SNc neurons increases or decreases after ∼20h of altered electrical activity. Also, infusion of ion-channel agonists or antagonists into the midbrain for 2 weeks results in ∼10% (∼500 neurons) more or fewer TH immunoreactive (TH+) SNc neurons, with no change in the total number of SNc neurons (TH+ and TH-). Targeting ion-channels mediating cell-autonomous pacemaker activity in, or synaptic input and afferent pathways to, SNc neurons are equally effective in this regard. In addition, exposing mice to different environments (sex pairing or environment enrichment) for 1-2 weeks induces ∼10% more or fewer TH+ SNc (and ventral tegmental area or VTA) neurons and this is abolished by concurrent blockade of synaptic transmission in midbrain. Although further research is required to establish SNc (and VTA) DA neurotransmitter plasticity, and to determine whether it alters brain function and behavior, it is an exciting prospect because: (1) It may play important roles in movement, motor learning, reward, motivation, memory and cognition; and (2

  20. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6)

    PubMed Central

    Boudko, Dmitri Y.

    2012-01-01

    Two protein families that represent major components of essential amino acid transport in insects have been identified. They are annotated as the SLC6 and SLC7 families of transporters according to phylogenetic proximity to characterized amino acid transporters (HUGO nomenclature). Members of these families have been identified as important apical and basolateral parts of transepithelial essential amino acid absorption in the metazoan alimentary canal. Synergistically, they play critical physiological roles as essential substrate providers to diverse metabolic processes, including generic protein synthesis. This review briefly clarifies the requirements for amino acid transport and a variety of amino acid transport mechanisms, including the aforementioned families. Further it focuses on the large group of Nutrient Amino acid Transporters (NATs), which comprise a recently identified subfamily of the Neurotransmitter Sodium Symporter family (NSS or SLC6). The first insect NAT, cloned from the caterpillar gut, has a broad substrate spectrum similar to mammalian B0 transporters. Several new NAT-SLC6 members have been characterized in an effort to explore mechanisms for the essential amino acid absorption in model dipteran insects. The identification and functional characterization of new B0-like and narrow specificity transporters of essential amino acids in fruit fly and mosquitoes leads to a fundamentally important insight: that NATs evolved and act together as the integrated active core of a transport network that mediates active alimentary absorption and systemic distribution of essential amino acids. This role of NATs is projected from the most primitive prokaryotes to the most complex metazoan organisms, and represents an interesting platform for unraveling the molecular evolution of amino acid transport and modeling amino acid transport disorders. The comparative study of NATs elucidates important adaptive differences between essential amino acid transportomes

  1. Self-esteem in remitted patients with mood disorders is not associated with the dopamine receptor D4 and the serotonin transporter genes.

    PubMed

    Serretti, A; Macciardi, F; Di Bella, D; Catalano, M; Smeraldi, E

    1998-08-17

    Disturbances of the dopaminergic and serotoninergic neurotransmitter systems have been implicated in the pathogenesis of depressive symptoms. Associations have been reported between markers of the two neurotransmitter systems and the presence of illness or severity of depressive episodes, but no attention has been focused on the periods of remission. The present report focuses on a possible association of self-esteem in remitted mood disorder patients with the functional polymorphism located in the upstream regulatory region of the serotonin transporter gene (5-HTTLPR) and the dopamine receptor D4 (DRD4). Inpatients (N=162) affected by bipolar (n=103) and unipolar (n=59) disorder (DSM III-R) were assessed by the Self-Esteem Scale (SES, Rosenberg, 1965) and were typed for DRD4 and 5-HTTLPR (n=58 subjects) variants at the third exon using polymerase chain reaction (PCR) techniques. Neither DRD4 nor 5-HTTLPR variants were associated with SES scores, and consideration of possible stratification effects such as sex and psychiatric diagnosis did not reveal any association either. The serotonin transporter and dopamine receptor D4 genes do not, therefore, influence self-esteem in remitted mood disorder subjects. PMID:9754692

  2. An update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function.

    PubMed

    Cifuentes Castro, Victor Hugo; López Valenzuela, Carmen Lucía; Salazar Sánchez, Juan Carlos; Peña, Kenia Pardo; López Pérez, Silvia J; Ibarra, Jorge Ortega; Villagrán, Alberto Morales

    2014-12-01

    To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution. PMID:25977677

  3. An Update of the Classical and Novel Methods Used for Measuring Fast Neurotransmitters During Normal and Brain Altered Function

    PubMed Central

    Cifuentes Castro, Victor Hugo; López Valenzuela, Carmen Lucía; Salazar Sánchez, Juan Carlos; Peña, Kenia Pardo; López Pérez, Silvia J.; Ibarra, Jorge Ortega; Villagrán, Alberto Morales

    2014-01-01

    To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution. PMID:25977677

  4. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  5. Effects of colistin on amino acid neurotransmitters and blood-brain barrier in the mouse brain.

    PubMed

    Wang, Jian; Yi, Meishuang; Chen, Xueping; Muhammad, Ishfaq; Liu, Fangping; Li, Rui; Li, Jian; Li, Jichang

    2016-01-01

    Neurotoxicity is one of the major potential side effects of colistin therapy. However, the mechanistic aspects of colistin-induced neurotoxicity remain largely unknown. The objective of this study was to examine the effects of colistin on the blood-brain barrier (BBB) and amino acid neurotransmitters in the cerebral cortex of mouse. Mice were divided into four groups (n=5) and were administrated intravenously with 15mg/kg/day of colistin sulfate for 1, 3 and 7days successively while the control group was administrated intravenously with saline solution. The permeability and ultrastructure of the BBB were detected using the Evans blue (EB) dye and transmission electron microscopy (TEM), and the expression of Claudin-5 were determined by real-time PCR examination and western blotting. The brain uptake of colistin was measured by high-performance liquid chromatography (HPLC). The effects of colistin on amino acid neurotransmitters and their receptors were also examined by HPLC and real-time PCR. The results of EB extravasation, TEM and expression of Claudin-5 showed that colistin treatment did not affect the BBB integrity. In addition, multiple doses of colistin could induce accumulation of this compound in the brain parenchyma although there was poor brain uptake of colistin. Moreover, colistin exposure significantly increased the contents of glutamate (Glu) and gamma aminobutyric acid (GABA), and enhanced the mRNA expression levels of gamma aminobutyric acid type A receptor (GABAAR), gamma aminobutyric acid type B receptor (GABABR), N-methyl-d-aspartate 1 receptor (NR1), N-methyl-d-aspartate 2A receptor (NR2A) and N-methyl-d-aspartate 2B receptor (NR2B) in the cerebral cortex. Our data demonstrate that colistin is able to accumulate in the mouse brain and elevate the levels of amino acid neurotransmitters. These findings may be associated with colistin-induced neurotoxicity. PMID:27018023

  6. Correlation of 3-Mercaptopropionic Acid Induced Seizures and Changes in Striatal Neurotransmitters Monitored by Microdialysis

    PubMed Central

    Crick, Eric W.; Osorio, Ivan; Frei, Mark; Mayer, Andrew P.; Lunte, Craig E.

    2014-01-01

    Objectives The goal of this study was to use a status epilepticus steady-state chemical model in rats using the convulsant, 3-mercaptopropionic acid (3-MPA), and to compare the changes in striatal neurotransmission on a slow (5 minute) and fast (60 second) timescale. In vivo microdialysis was combined with electrophysiological methods in order to provide a complete evaluation of the dynamics of the results obtained. Objective To compare the effects of a steady-state chemical model pof status epilepticus on striatal amino-acid and amine neurotransmitters contents, as measured via in vivo microdialysis combined with electrophysiological methods. Measurements were performed on samples collected every 60 seconds and every 5 minutes. “Fast” (60s) and “slow” (5 min.) sampling timescales were selected, to gain more insight into the dynamics of GABA synthesis inhibition and of its effects on other neurotransmitters and on cortical electrical activity. Methods 3-MPA was administered in the form of an intra-venous load(60 mg/kg) followed by a constant infusion (50 mg/kg/min) for min. Microdialysis samples were collected from the striatum at intervals of 5 minutes and 60 seconds and analyzed for biogenic amine and amino acid neurotransmitters. ECoG activity was monitored via screws placed over the cortex. Results In the 5 minute samples, glutamate (Glu) increased and γ-aminobutyric acid (GABA) decreased monotonically while changes in dopamine (DA) concentration were bimodal. In the sixty second samples, Glu changes were bimodal, a feature that was not apparent with the five minute samples. ECoG activity was indicative of status epilepticus. Conclusions This study describes the combination of in vivo microdialysis with electrophysiology to monitor the effect of 3-MPA on neurotransmission in the brain. This led to a better understanding of the chemical changes in the striatum due to the applied 3-MPA chemical model of status epilepticus. PMID:24462767

  7. Secondary neurotransmitter deficiencies in epilepsy caused by voltage-gated sodium channelopathies: A potential treatment target?

    PubMed

    Horvath, Gabriella A; Demos, Michelle; Shyr, Casper; Matthews, Allison; Zhang, Linhua; Race, Simone; Stockler-Ipsiroglu, Sylvia; Van Allen, Margot I; Mancarci, Ogan; Toker, Lilah; Pavlidis, Paul; Ross, Colin J; Wasserman, Wyeth W; Trump, Natalie; Heales, Simon; Pope, Simon; Cross, J Helen; van Karnebeek, Clara D M

    2016-01-01

    We describe neurotransmitter abnormalities in two patients with drug-resistant epilepsy resulting from deleterious de novo mutations in sodium channel genes. Whole exome sequencing identified a de novo SCN2A splice-site mutation (c.2379+1G>A, p.Glu717Gly.fs*30) resulting in deletion of exon 14, in a 10-year old male with early onset global developmental delay, intermittent ataxia, autism, hypotonia, epileptic encephalopathy and cerebral/cerebellar atrophy. In the cerebrospinal fluid both homovanillic acid and 5-hydroxyindoleacetic acid were significantly decreased; extensive biochemical and genetic investigations ruled out primary neurotransmitter deficiencies and other known inborn errors of metabolism. In an 8-year old female with an early onset intractable epileptic encephalopathy, developmental regression, and progressive cerebellar atrophy, a previously unreported de novo missense mutation was identified in SCN8A (c.5615G>A; p.Arg1872Gln), affecting a highly conserved residue located in the C-terminal of the Nav1.6 protein. Aside from decreased homovanillic acid and 5-hydroxyindoleacetic acid, 5-methyltetrahydrofolate was also found to be low. We hypothesize that these channelopathies cause abnormal synaptic mono-amine metabolite secretion/uptake via impaired vesicular release and imbalance in electrochemical ion gradients, which in turn aggravate the seizures. Treatment with oral 5-hydroxytryptophan, l-Dopa/Carbidopa, and a dopa agonist resulted in mild improvement of seizure control in the male case, most likely via dopamine and serotonin receptor activated signal transduction and modulation of glutamatergic, GABA-ergic and glycinergic neurotransmission. Neurotransmitter analysis in other sodium channelopathy patients will help validate our findings, potentially yielding novel treatment opportunities. PMID:26647175

  8. Toluene induces rapid and reversible rise of hippocampal glutamate and taurine neurotransmitter levels in mice.

    PubMed

    Win-Shwe, Tin-Tin; Mitsushima, D; Nakajima, D; Ahmed, S; Yamamoto, S; Tsukahara, S; Kakeyama, M; Goto, S; Fujimaki, H

    2007-01-10

    Toluene, a widely used aromatic organic solvent, has been well characterized as a neurotoxic chemical. Although the neurobehavioral effects of toluene have been studied substantially, the mechanisms involved are not clearly understood. Hippocampus, which is one of the limbic areas of brain associated with neuronal plasticity, and learning and memory functions, may be a principal target of toluene. In the present study, to establish a mouse model for investigating the effects of acute toluene exposure on the amino acid neurotransmitter levels in the hippocampus, in vivo microdialysis study was performed in freely moving mice after a single intraperitoneal administration of toluene (150 and 300 mg/kg). Amino acid neurotransmitters in microdialysates were measured by a high performance liquid chromatography system. The extracellular levels of glutamate and taurine were rapidly and reversibly increased within 30 min after the toluene administration in a dose-dependent manner and returned to the basal level by 1h. Conversely, the extracellular level of glycine and GABA were stable, and no significant change was observed after the toluene administration. To further investigate the brain toluene level in the hippocampus of toluene-administered mice, we used a solid-phase microextraction (SPME) method and examined the time course changes of toluene in the hippocampus of living mice. The brain toluene level reached the peak at 30 min after injection and returned to the basal level after 2h. In the present study, we observed the relationship between brain toluene levels and amino acid neurotransmitter glutamate and taurine levels in the hippocampus. Therefore, we suggest that toluene may mediate its action through the glutamatergic and taurinergic neurotransmission in the hippocampus of freely moving mice. PMID:17145141

  9. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis

    NASA Astrophysics Data System (ADS)

    Inayat, Samsoon; Rountree, Corey M.; Troy, John B.; Saggere, Laxman

    2015-02-01

    Objective. No cure currently exists for photoreceptor degenerative diseases, which cause partial or total blindness in millions of people worldwide. Electrical retinal prostheses have been developed by several groups with the goal of restoring vision lost to these diseases, but electrical stimulation has limitations. It excites both somas and axons, activating retinal pathways nonphysiologically, and limits spatial resolution because of current spread. Chemical stimulation of retinal ganglion cells (RGCs) using the neurotransmitter glutamate has been suggested as an alternative to electrical stimulation with some significant advantages. However, sufficient scientific data to support developing a chemical-based retinal prosthesis is lacking. The goal of this study was to investigate the feasibility of a neurotransmitter-based retinal prosthesis and determine therapeutic stimulation parameters. Approach. We injected controlled amounts of glutamate into rat retinas from the epiretinal side ex vivo via micropipettes using a pressure injection system and recorded RGC responses with a multielectrode array. Responsive units were identified using a spike rate threshold of 3 Hz. Main results. We recorded both somal and axonal units and demonstrated successful glutamatergic stimulation across different RGC subtypes. Analyses show that exogenous glutamate acts on RGC synapses similar to endogenous glutamate and, unlike electrical prostheses, stimulates only RGC somata. The spatial spread of glutamate stimulation was ˜ 290 μm from the injection site, comparable to current electrical prostheses. Further, the glutamate injections produced spatially differential responses in OFF, ON, and ON-OFF RGC subtypes, suggesting that differential stimulation of the OFF and ON systems may be possible. A temporal resolution of 3.2 Hz was obtained, which is a rate suitable for spatial vision. Significance. We provide strong support for the feasibility of an epiretinal neurotransmitter

  10. High dose sapropterin dihydrochloride therapy improves monoamine neurotransmitter turnover in murine phenylketonuria (PKU).

    PubMed

    Winn, Shelley R; Scherer, Tanja; Thöny, Beat; Harding, Cary O

    2016-01-01

    Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism. PMID:26653793

  11. Exploration of inclusion complexes of neurotransmitters with β-cyclodextrin by physicochemical techniques

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Saha, Subhadeep; Kundu, Mitali; Saha, Binoy Chandra; Barman, Siti

    2016-07-01

    Molecular assemblies of β-cyclodextrin with few of the most important neurotransmitters, viz., dopamine hydrochloride, tyramine hydrochloride and (±)-epinephrine hydrochloride in aqueous medium have been explored by reliable spectroscopic and physicochemical techniques as potential drug delivery systems. Job plots confirm the 1:1 host-guest inclusion complexes, while surface tension and conductivity studies illustrate the inclusion process. The inclusion complexes were characterized by 1H NMR spectroscopy and association constants have been calculated by using Benesi-Hildebrand method. Thermodynamic parameters for the formation of inclusion complexes have been derived by van't Hoff equation, which demonstrate that the overall inclusion processes are thermodynamically favorable.

  12. In Vivo Assessment of Neurotransmitters and Modulators with Magnetic Resonance Spectroscopy: Application to Schizophrenia

    PubMed Central

    Wijtenburg, S. Andrea; Yang, Shaolin; Fischer, Bernard A.; Rowland, Laura M.

    2015-01-01

    In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy (1H-MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3Tesla or higher, and summarizes the neurochemical findings in schizophrenia. Overall, 1H-MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases. PMID:25614132

  13. Statistical Mechanics Model for the Interaction between the Neurotransmitter γ-Aminobutyric acid and GABAA Receptors

    NASA Astrophysics Data System (ADS)

    Zafar, Sufi; Saxena, Nina C.; Conrad, Kevin A.; Hussain, Arif

    2004-07-01

    Interactions between the neurotransmitter γ-aminobutyric acid (GABA) and GABAA receptor ion channels play an important role in the central nervous system. A statistical mechanics model is proposed for the interaction between GABA and GABAA receptors. The model provides good fits to the electrophysiology data as well as an estimation of receptor activation energies, and predicts the temperature dependence consistent with measurements. In addition, the model provides insights into single channel conductance measurements. This model is also applicable to other ligand-gated ion channels with similar pentameric structures.

  14. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    NASA Astrophysics Data System (ADS)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  15. Individual synaptic vesicles from the electroplaque of Torpedo californica, a classic cholinergic synapse, also contain transporters for glutamate and ATP

    PubMed Central

    Li, Huinan; Harlow, Mark L.

    2014-01-01

    Abstract The type of neurotransmitter secreted by a neuron is a product of the vesicular transporters present on its synaptic vesicle membranes and the available transmitters in the local cytosolic environment where the synaptic vesicles reside. Synaptic vesicles isolated from electroplaques of the marine ray, Torpedo californica, have served as model vesicles for cholinergic neurotransmission. Many lines of evidence support the idea that in addition to acetylcholine, additional neurotransmitters and/or neuromodulators are also released from cholinergic synapses. We identified the types of vesicular neurotransmitter transporters present at the electroplaque using immunoblot and immunofluoresence techniques with antibodies against the vesicle acetylcholine transporter (VAChT), the vesicular glutamate transporters (VGLUT1, 2, and 3), and the vesicular nucleotide transporter (VNUT). We found that VAChT, VNUT, VGLUT 1 and 2, but not 3 were present by immunoblot, and confirmed that the antibodies were specific to proteins of the axons and terminals of the electroplaque. We used a single‐vesicle imaging technique to determine whether these neurotransmitter transporters were present on the same or different populations of synaptic vesicles. We found that greater than 85% of vesicles that labeled for VAChT colabeled with VGLUT1 or VGLUT2, and approximately 70% colabeled with VNUT. Based upon confidence intervals, at least 52% of cholinergic vesicles isolated are likely to contain all four transporters. The presence of multiple types of neurotransmitter transporters – and potentially neurotransmitters – in individual synaptic vesicles raises fundamental questions about the role of cotransmitter release and neurotransmitter synergy at cholinergic synapses. PMID:24744885

  16. Theoretical study of electron transfer process between fullerenes and neurotransmitters; acetylcholine, dopamine, serotonin and epinephrine in nanostructures [neurotransmitters].C n complexes.

    PubMed

    Taherpour, Avat Arman; Rizehbandi, Mohammad; Jahanian, Fatemeh; Naghibi, Ehsan; Mahdizadeh, Nosrat-Allah

    2016-01-01

    Neurotransmitters are the compounds which allow the transmission of signals from one neuron to the next across synapses. They are the brain chemicals that communicate information throughout brain and body. Fullerenes are a family of carbonallotropes, molecules composed entirely of carbon, that take the forms of spheres, ellipsoids, and cylinders. Various empty carbon fullerenes (Cn) with different carbon atoms have been obtained and investigated. Topological indices have been successfully used to construct effective and useful mathematical methods to establish clear relationships between structural data and the physical properties of these materials. In this study, the number of carbon atoms in the fullerenes was used as an index to establish a relationship between the structures of neurotransmitters (NTs) acetylcholine (AC) 1, dopamine (DP) 2, serotonin (SE) 3, and epinephrine (EP) 4 as the well-known redox systems and fullerenes C n (n = 60, 70, 76, 82, and 86) which create [NT].Cn; A-1 to A-5 up to D-1 to D-5. The relationship between the number of carbon atoms and the free energy of electron transfer (ΔG et(n); n = 1-4) is assessed using the Rehm-Weller equation for A-1 to A-5 up to D-1 to D-5 supramolecular [NT].Cn complexes. The calculations are presented for the four reduction potentials ( (Red.) E 1 to (Red.) E 4 ) of fullerenes C n . The results were used to calculate the four free energy values of electron transfer (ΔG et(1) to ΔG et(4)) of the supramolecular complexes A-1 to A-8 up to D-1 to D-8 for fullerenes C60 to C120. The first to fourth free activation energy values of electron transfer and the maximum wavelength of the electron transfers, ΔG (#) et(n) and λ et (n = 1-4), respectively, were also calculated in this study for A-1 to A-8 up to D-1 to D-8 in accordance with the Marcus theory. PMID:26855678

  17. A pilot integrative genomics study of GABA and glutamate neurotransmitter systems in suicide, suicidal behavior, and major depressive disorder.

    PubMed

    Yin, Honglei; Pantazatos, Spiro P; Galfalvy, Hanga; Huang, Yung-Yu; Rosoklija, Gorazd B; Dwork, Andrew J; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A; Mann, Joseph John

    2016-04-01

    Gamma-amino butyric acid (GABA) and glutamate are the major inhibitory and excitatory neurotransmitters in the mammalian central nervous system, respectively, and have been associated with suicidal behavior and major depressive disorder (MDD). We examined the relationship between genotype, brain transcriptome, and MDD/suicide for 24 genes involved in GABAergic and glutamatergic signaling. In part 1 of the study, 119 candidate SNPs in 24 genes (4 transporters, 4 enzymes, and 16 receptors) were tested for associations with MDD and suicidal behavior in 276 live participants (86 nonfatal suicide attempters with MDD and 190 non-attempters of whom 70% had MDD) and 209 postmortem cases (121 suicide deaths of whom 62% had MDD and 88 sudden death from other causes of whom 11% had MDD) using logistic regression adjusting for sex and age. In part 2, RNA-seq was used to assay isoform-level expression in dorsolateral prefrontal cortex of 59 postmortem samples (21 with MDD and suicide, 9 MDD without suicide, and 29 sudden death non-suicides and no psychiatric illness) using robust regression adjusting for sex, age, and RIN score. In part 3, SNPs with subthreshold (uncorrected) significance levels below 0.05 for an association with suicidal behavior and/or MDD in part 1 were tested for eQTL effects in prefrontal cortex using the Brain eQTL Almanac (www.braineac.org). No SNPs or transcripts were significant after adjustment for multiple comparisons. However, a protein coding transcript (ENST00000414552) of the GABA A receptor, gamma 2 (GABRG2) had lower brain expression postmortem in suicide (P = 0.01) and evidence for association with suicide death (P = 0.03) in a SNP that may be an eQTL in prefrontal cortex (rs424740, P = 0.02). These preliminary results implicate GABRG2 in suicide and warrant further investigation and replication in larger samples. © 2016 Wiley Periodicals, Inc. PMID:26892569

  18. Presynaptic effects of d-tubocurarine on neurotransmitter release at the neuromuscular junction of the frog.

    PubMed Central

    Matzner, H; Parnas, H; Parnas, I

    1988-01-01

    1. Presynaptic effects of d-tubocurarine on neurotransmitter release were examined at the frog neuromuscular junction, using intracellular and extracellular recording techniques. 2. d-Tubocurarine in concentrations of 10(-7)-10(-6) M decreased the quantal content (m) measured by the coefficient of variation and failure methods. 3. d-Tubocurarine produced a shift to the right of the curve relating log quantal content to log [Ca2+]o without changing the slope. 4. The duration of twin-impulse facilitation was not affected by 5 x 10(-7) M-d-tubocurarine. Early facilitation was higher in d-tubocurarine. 5. d-Tubocurarine altered the synaptic delay histogram. The peak of the histogram was shifted to longer delays. Prolongation of the minimal delay was seen in most but not all experiments. 6. These results suggest that d-tubocurarine inhibits release of neurotransmitter by affecting a stage in the process of release, which occurs after the entry of Ca2+ ions. PMID:2899171

  19. Synthesis on accumulation of putative neurotransmitters by cultured neural crest cells

    SciTech Connect

    Maxwell, G.D.; Sietz, P.D.; Rafford, C.E.

    1982-07-01

    The events mediating the differentiation of embryonic neural crest cells into several types of neurons are incompletely understood. In order to probe one aspect of this differentiation, we have examined the capacity of cultured quail trunk neural crest cells to synthesize, from radioactive precursors, and store several putative neurotransmitter compounds. These neural crest cultures develop the capacity to synthesize and accumulate acetylcholine and the catecholamines norepinephrine and dopamine. In contrast, detectable but relatively little synthesis and accumulation of 5-hydroxytryptamine gamma-aminobutyric acid, or octopamine from the appropriate radiolabeled precursors were observed. The capacity for synthesis and accumulation of radiolabeled acetylcholine and catecholamines is very low or absent at 2 days in vitro. Between 3 and 7 days in vitro, there is a marked rise in both catecholamine and acetylcholine accumulation in the cultures. These findings suggest that, under the particular conditions used in these experiments, the development of neurotransmitter biosynthesis in trunk neural crest cells ijs restricted and resembles, at least partially, the pattern observed in vivo. The development of this capacity to synthesize and store radiolabeled acetylcholine and catecholamines from the appropriate radioactive precursors coincides closely with the development of the activities of the synthetic enzymes choline acetyltransferase and dopamine beta-hydroxylase reported by others.

  20. An in vivo biosensor for neurotransmitter release and in situ receptor activity

    PubMed Central

    Mank, Marco; Muller, Arnaud; Taylor, Palmer; Griesbeck, Oliver; Kleinfeld, David

    2013-01-01

    Tools from molecular biology, in combination with in vivo optical imaging techniques, provide new mechanisms to noninvasively observe brain processing. Current approaches primarily probe cell-based variables, such as cytosolic calcium or membrane potential, but not cell-to-cell signaling. Here we introduce CNiFERs, cell-based neurotransmitter fluorescent engineered reporters, to address this challenge and monitor in situ neurotransmitter receptor activation. CNiFERs are cultured cells that are engineered to express a chosen metabotropic receptor, make use of the Gq protein-coupled receptor cascade to transform receptor activity into a rise in cytosolic [Ca2+], and report [Ca2+] with a genetically encoded fluorescent Ca2+ sensor. The initial realization of CNiFERs detects acetylcholine release via activation of M1 muscarinic receptors. Chronic implantation of M1-CNiFERs in frontal cortex of the adult rat is used to elucidate the muscarinic action of the atypical neuroleptics clozapine and olanzapine. We show that these drugs potently inhibit in situ muscarinic receptor activity. PMID:20010818

  1. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle

    PubMed Central

    Südhof, Thomas C.

    2013-01-01

    During an action potential, Ca2+ entering a presynaptic terminal triggers synaptic vesicle exocytosis and neurotransmitter release in less than a millisecond. How does Ca2+ stimulate release so rapidly and precisely? Work over the last decades revealed that Ca2+-binding to synaptotagmin triggers release by stimulating synaptotagmin-binding to a core machinery composed of SNARE and SM proteins that mediates membrane fusion during exocytosis. Complexin adaptor proteins assist synaptotagmin by activating and clamping this core fusion machinery. Synaptic vesicles containing synaptotagmin are positioned at the active zone, the site of vesicle fusion, by a protein complex containing RIM proteins. RIM proteins simultaneously activate docking and priming of synaptic vesicles and recruit Ca2+-channels to active zones, thereby connecting in a single complex primed synaptic vesicles to Ca2+-channels. This architecture allows direct flow of Ca2+-ions from Ca2+-channels to synaptotagmin, which then triggers fusion, thus mediating tight millisecond coupling of an action potential to neurotransmitter release. PMID:24183019

  2. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    NASA Astrophysics Data System (ADS)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-10-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.

  3. Brainstem amino acid neurotransmitters and ventilatory response to hypoxia in piglets.

    PubMed

    Hehre, Dorothy A; Devia, Carlos J; Bancalari, Eduardo; Suguihara, Cleide

    2008-01-01

    The ventilatory response to hypoxia is influenced by the balance between inhibitory (GABA, glycine, and taurine) and excitatory (glutamate and aspartate) brainstem amino acid (AA) neurotransmitters. To assess the effects of AA in the nucleus tractus solitarius (NTS) on the ventilatory response to hypoxia at 1 and 2 wk of age, inhibitory and excitatory AA were sampled by microdialysis in unanesthetized and chronically instrumented piglets. Microdialysis samples from the NTS area were collected at 5-min intervals and minute ventilation (VE), arterial blood pressure (ABP), and arterial blood gases (ABG) were measured while the animals were in quiet sleep. A biphasic ventilatory response to hypoxia was observed in wk 1 and 2, but the decrease in VE at 10 and 15 min was more marked in wk 1. This was associated with an increase in inhibitory AA during hypoxia in wk 1. Excitatory AA levels were elevated during hypoxia in wk 1 and 2. Changes in ABP, pH, and ABG during hypoxia were not different between weeks. These data suggest that the larger depression in the ventilatory response to hypoxia observed in younger piglets is mediated by predominance of the inhibitory AA neurotransmitters, GABA, glycine, and taurine, in the NTS. PMID:18043517

  4. Competing Insertion and External Binding Motifs in Hydrated Neurotransmitters: Infrared Spectra of Protonated Phenylethylamine Monohydrate.

    PubMed

    Bouchet, Aude; Schütz, Markus; Dopfer, Otto

    2016-01-18

    Hydration has a drastic impact on the structure and function of flexible biomolecules, such as aromatic ethylamino neurotransmitters. The structure of monohydrated protonated phenylethylamine (H(+) PEA-H2 O) is investigated by infrared photodissociation (IRPD) spectroscopy of cold cluster ions by using rare-gas (Rg=Ne and Ar) tagging and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. Monohydration of this prototypical neurotransmitter gives an insight into the first step of the formation of its solvation shell, especially regarding the competition between intra- and intermolecular interactions. The spectra of Rg-tagged H(+) PEA-H2 O reveal the presence of a stable insertion structure in which the water molecule is located between the positively charged ammonium group and the phenyl ring of H(+) PEA, acting both as a hydrogen bond acceptor (NH(+) ⋅⋅⋅O) and donor (OH⋅⋅⋅π). Two other nearly equivalent isomers, in which water is externally H bonded to one of the free NH groups, are also identified. The balance between insertion and external hydration strongly depends on temperature. PMID:26584245

  5. Novel microfabricated device to measure hormone/neurotransmitter release with millisecond temporal resolution

    NASA Astrophysics Data System (ADS)

    Gillis, Kevin D.; Chen, Peng; Xu, Bai; Tokranova, Natalya; Feng, Xiaojun; Castracane, James

    2002-06-01

    We are developing a novel readout for secretion of hormones and neurotransmitter on micro/nanofabricated chips. Traditional biochemical assays of signaling molecules secreted from cells are slow, cumbersome and have at best, a temporal resolution of several seconds. On the other hand, electrochemical measurement of hormone or transmitter secretion can obtain millisecond temporal resolution if the diffusion distance between the release site on the cell and the working electrode is within 1 micron. Carbon fiber microelectrodes can have millisecond time resolution, but can only measure release form a small fraction of the cell surface. We have fabricated arrays of Au electrodes in wells micromachined on the surface of silicon microchips. Each well/microelectrode roughly conforms to the shape of a single cell in order to capture release forma large fraction of the surface area of each cell with minimal diffusional delays. This paper will present details of the microfabrication process flow as well a initial results demonstrating millisecond-resolution measurement of catecholamine secretion form adrenal chromaffin cells. Our goal for this project is to develop enabling technology for massively parallel systems on a chip such as cell-based biosensors to detect neurotoxins and high-throughput assays of drugs that affect neurotransmitter release.

  6. From progenitors to integrated neurons: role of neurotransmitters in adult olfactory neurogenesis.

    PubMed

    Bovetti, Serena; Gribaudo, Simona; Puche, Adam C; De Marchis, Silvia; Fasolo, Aldo

    2011-12-01

    Adult neurogenesis is due to the persistence of pools of constitutive stem cells able to give rise to a progeny of proliferating progenitors. In rodents, adult neurogenic niches have been found in the subventricular zone (SVZ) along the lateral ventricles and in the subgranular zone of the dentate gyrus in the hippocampus. SVZ progenitors undergo a unique process of tangential migration from the lateral ventricle to the olfactory bulb (OB) where they differentiate mainly into GABAergic interneurons in the granule and glomerular layers. SVZ progenitor proliferation, migration and differentiation into fully integrated neurons, are strictly related processes regulated by complex interactions between cell intrinsic and extrinsic influences. Numerous observations demonstrate that neurotrasmitters are involved in all steps of the adult neurogenic process, but the understanding of their role is hampered by their intricate mechanism of action and by the highly complex network in which neurotransmitters work. By considering the three main steps of olfactory adult neurogenesis (proliferation, migration and integration), this review will discuss recent advances in the study of neurotransmitters, highlighting the regulatory mechanisms upstream and downstream their action. PMID:21641990

  7. Neuron-glia signaling in developing retina mediated by neurotransmitter spillover

    PubMed Central

    Rosa, Juliana M; Bos, Rémi; Sack, Georgeann S; Fortuny, Cécile; Agarwal, Amit; Bergles, Dwight E; Flannery, John G; Feller, Marla B

    2015-01-01

    Neuron-glia interactions play a critical role in the maturation of neural circuits; however, little is known about the pathways that mediate their communication in the developing CNS. We investigated neuron-glia signaling in the developing retina, where we demonstrate that retinal waves reliably induce calcium transients in Müller glial cells (MCs). During cholinergic waves, MC calcium transients were blocked by muscarinic acetylcholine receptor antagonists, whereas during glutamatergic waves, MC calcium transients were inhibited by ionotropic glutamate receptor antagonists, indicating that the responsiveness of MCs changes to match the neurotransmitter used to support retinal waves. Using an optical glutamate sensor we show that the decline in MC calcium transients is caused by a reduction in the amount of glutamate reaching MCs. Together, these studies indicate that neurons and MCs exhibit correlated activity during a critical period of retinal maturation that is enabled by neurotransmitter spillover from retinal synapses. DOI: http://dx.doi.org/10.7554/eLife.09590.001 PMID:26274565

  8. Non-Cell-Autonomous Mechanism of Activity-Dependent Neurotransmitter Switching

    PubMed Central

    Guemez-Gamboa, Alicia; Xu, Lin; Meng, Da; Spitzer, Nicholas C.

    2014-01-01

    SUMMARY Activity-dependent neurotransmitter switching engages genetic programs regulating transmitter synthesis but the mechanism by which activity is transduced is unknown. We suppressed activity in single neurons in the embryonic spinal cord to determine whether glutamate-GABA switching is cell-autonomous. Transmitter respecification did not occur, suggesting that it is homeostatically regulated by the level of activity in surrounding neurons. Graded increase in the number of silenced neurons in cultures led to graded decrease in the number of neurons expressing GABA, supporting non-cell-autonomous transmitter switching. We found that BDNF is expressed in the spinal cord during the period of transmitter respecification and that spike activity causes release of BDNF. Activation of TrkB receptors triggers a signaling cascade involving JNK-mediated activation of cJun that regulates tlx3, a glutamate/GABA selector gene, accounting for calcium-spike-BDNF-dependent transmitter switching. Our findings identify a molecular mechanism for activity-dependent respecification of neurotransmitter phenotype in developing spinal neurons. PMID:24908484

  9. Probing interactions of neurotransmitters with twin tailed anionic surfactant: A detailed physicochemical study.

    PubMed

    Kaur, Rajwinder; Sanan, Reshu; Mahajan, Rakesh Kumar

    2016-05-01

    Keeping in view the role of neurotransmitters (NTs) in central nervous system diseases and in controlling various physiological processes, present study is aimed to study the binding of neurotransmitters (NTs) such as norepinephrine hydrochloride (NE) and serotonin hydrochloride (5-HT) with twin tailed surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Spectroscopic and electrochemical measurements combined with microcalorimetric measurements were used to characterize the interactions between AOT and NTs. Meteoric modifications to emission profile and absorption spectra of NTs upon addition of AOT are indicative of the binding of NTs with AOT. Distinct interactional states such as formation of ion-pairs, induced and regular micelles with adsorbed NTs molecules have been observed in different concentration regimes of AOT. The formation of ion-pairs from oppositely charged NTs and AOT is confirmed by the reduced absorbance, quenched fluorescence intensity and decrease in peak current (ipa) as well as shifts in peak potential (Epa) values. The stoichiometry and formation of the NTs-AOT complexes has been judged and the extent of interactions is quantitatively discussed in terms of binding constant (K) and free energy of binding (ΔG°). The enthalpy (ΔH°mic) and free energy of micellization (ΔG°mic) for AOT in presence and absence of NTs are determined from the enthalpy curves. PMID:26866888

  10. A multichannel native fluorescence detection system for capillary electrophoretic analysis of neurotransmitters in single neurons.

    PubMed

    Lapainis, T; Scanlan, C; Rubakhin, S S; Sweedler, J V

    2007-01-01

    A laser-induced native fluorescence detection system optimized for analysis of indolamines and catecholamines by capillary electrophoresis is described. A hollow-cathode metal vapor laser emitting at 224 nm is used for fluorescence excitation, and the emitted fluorescence is spectrally distributed by a series of dichroic beam-splitters into three wavelength channels: 250-310 nm, 310-400 nm, and >400 nm. A separate photomultiplier tube is used for detection of the fluorescence in each of the three wavelength ranges. The instrument provides more information than a single-channel system, without the complexity associated with a spectrograph/charge-coupled device-based detector. With this instrument, analytes can be separated and identified not only on the basis of their electrophoretic migration time but also on the basis of their multichannel signature, which consists of the ratios of relative fluorescence intensities detected in each wavelength channel. The 224-nm excitation channel resulted in a detection limit of 40 nmol L-1 for dopamine. The utility of this instrument for single-cell analysis was demonstrated by the detection and identification of the neurotransmitters in serotonergic LPeD1 and dopaminergic RPeD1 neurons, isolated from the central nervous system of the well-established neurobiological model Lymnaea stagnalis. Not only can this system detect neurotransmitters in these individual neurons with S/N>50, but analyte identity is confirmed on the basis of spectral characteristics. PMID:17047942

  11. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

    NASA Astrophysics Data System (ADS)

    Nilsson, Göran E.; Dixson, Danielle L.; Domenici, Paolo; McCormick, Mark I.; Sørensen, Christina; Watson, Sue-Ann; Munday, Philip L.

    2012-03-01

    Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3- and Cl- levels.

  12. Vesicular release of neurotransmitters: converting amperometric measurements into size, dynamics and energetics of initial fusion pores.

    PubMed

    Oleinick, Alexander; Lemaître, Frédéric; Collignon, Manon Guille; Svir, Irina; Amatore, Christian

    2013-01-01

    Amperometric currents displaying a pre-spike feature (PSF) may be treated so as to lead to precise information about initial fusion pores, viz., about the crucial event initiating neurotransmitter vesicular release in neurons and medullary glands. However, amperometric data alone are not self-sufficient, so their full exploitation requires external calibration to solve the inverse problem. For this purpose we resorted to patch-clamp measurements published in the literature on chromaffin cells. Reported pore radii were thus used to evaluate the diffusion rate of neurotransmitter cations in the partially altered matrix located near the fusion pore entrance. This allowed an independent determination of each initial fusion pore radius giving rise to a single PSF event. The statistical distribution of the radii thus obtained provided for the first time an experimental access to the potential energy well governing the thermodynamics of such systems. The shape of the corresponding potential energy well strongly suggested that, after their creation, initial fusion pores are essentially controlled by the usual physicochemical laws describing pores formed in bilayer lipidic biological membranes, i.e., they have an essentially lipidic nature. PMID:24466657

  13. Functional associations among G protein-coupled neurotransmitter receptors in the human brain

    PubMed Central

    2014-01-01

    Background The activity of neurons is controlled by groups of neurotransmitter receptors rather than by individual receptors. Experimental studies have investigated some receptor interactions, but currently little information is available about transcriptional associations among receptors at the whole-brain level. Results A total of 4950 correlations between 100 G protein-coupled neurotransmitter receptors were examined across 169 brain regions in the human brain using expression data published in the Allen Human Brain Atlas. A large number of highly significant correlations were found, many of which have not been investigated in hypothesis-driven studies. The highest positive and negative correlations of each receptor are reported, which can facilitate the construction of receptor sets likely to be affected by altered transcription of one receptor (such sets always exist, but their members are difficult to predict). A graph analysis isolated two large receptor communities, within each of which receptor mRNA levels were strongly cross-correlated. Conclusions The presented systematic analysis shows that the mRNA levels of many G protein-coupled receptors are interdependent. This finding is not unexpected, since the brain is a highly integrated complex system. However, the analysis also revealed two novel properties of global brain structure. First, receptor correlations are described by a simple statistical distribution, which suggests that receptor interactions may be guided by qualitatively similar processes. Second, receptors appear to form two large functional communities, which might be differentially affected in brain disorders. PMID:24438157

  14. Immunohistochemical profile of various neurotransmitters, neurotrophins and MIB-1 in cholesteatomas of the petrous bone.

    PubMed

    Artico, Marco; Bronzetti, Elena; Lo Vasco, Vincenza Rita; Ionta, Brunella; Alicino, Valentina; D'Ambrosio, Anna; Magliulo, Giuseppe

    2008-01-01

    Compared to the normal epidermal epithelium, cholesteatomas have altered growth properties characterized by the excessive growth of keratinocytes leading to mucosal destruction. Either congenital or acquired, these lesions, which grow in the middle ear space, the petrous apex or the mastoid of temporal bones, are mostly considered benign skin tumoral lesions. However, many questions remain concerning their pathophysiology. Numerous studies have been proposed to identify those cholesteatoma lesions at risk of recurrence, a possible event that may cause hearing loss. We examined patients with petrous apex or mastoid cholesteatoma in order to analyze the expression of various neurotransmitters, neurotrophins and their receptors and the Ki-67 antigen for identification of a possible relationship between clinical outcome and histopathological behaviour in terms of the proliferative activity of cholesteatomas. Expression of the analyzed molecules was studied using immunohistochemical methods in seven adult patients with petrous apex cholesteatoma who underwent surgical removal of the lesion. Our results, in accordance with published data, confirm that Molecular Immunology Borstel-1 (MIB-1) and certain neurotransmitters could be useful in the prognostic evaluation of the risk of recurrence of aggressive forms of cholesteatoma. PMID:21479416

  15. The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae.

    PubMed

    Hillyer, Julián F; Estévez-Lao, Tania Y; Mirzai, Homa E

    2015-10-01

    Serotonin and glutamate are neurotransmitters that in insects are involved in diverse physiological processes. Both serotonin and glutamate have been shown to modulate the physiology of the dorsal vessel of some insects, yet until the present study, their activity in mosquitoes remained unknown. To test whether serotonin or glutamate regulate dorsal vessel physiology in the African malaria mosquito, Anopheles gambiae, live mosquitoes were restrained, and a video of the contracting heart (the abdominal portion of the dorsal vessel) was acquired. These adult female mosquitoes were then injected with various amounts of serotonin, glutamate, or a control vehicle solution, and additional videos were acquired at 2 and 10 min post-treatment. Comparison of the videos taken before and after treatment revealed that serotonin accelerates the frequency of heart contractions, with the cardioacceleration being significantly more pronounced when the wave-like contractions of cardiac muscle propagate in the anterograde direction (toward the head). Comparison of the videos taken before and after treatment with glutamate revealed that this molecule is also cardioacceleratory. However, unlike serotonin, the activity of glutamate does not depend on whether the contractions propagate in the anterograde or the retrograde (toward the posterior of the abdomen) directions. Serotonin or glutamate induces a minor change or no change in the percentage of contractions and the percentage of the time that the heart contracts in the anterograde or the retrograde directions. In summary, this study shows that the neurotransmitters serotonin and glutamate increase the heart contraction rate of mosquitoes. PMID:26099947

  16. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    PubMed

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-01-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc. PMID:27584556

  17. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons

    PubMed Central

    Kwon, Seok-Kyu; Sando, Richard; Maximov, Anton; Polleux, Franck

    2016-01-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance. PMID:27429220

  18. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization.

    PubMed

    Bergman, Hilde-Marléne; Lundin, Erik; Andersson, Malin; Lanekoff, Ingela

    2016-06-01

    Small molecule neurotransmitters are essential for the function of the nervous system, and neurotransmitter imbalances are often connected to neurological disorders. The ability to quantify such imbalances is important to provide insights into the biochemical mechanisms underlying the disorder. This proof-of-principle study presents online quantification of small molecule neurotransmitters, specifically acetylcholine, γ-aminobutyric acid (GABA) and glutamate, in rat brain tissue sections using nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging. By incorporating deuterated internal standards in the nano-DESI solvent we show identification, accurate mapping, and quantification of these small neurotransmitters in rat brain tissue without introducing any additional sample preparation steps. We find that GABA is about twice as abundant in the medial septum-diagonal band complex (MSDB) as in the cortex, while glutamate is about twice as abundant in the cortex as compared to the MSDB. The study shows that nano-DESI is well suited for imaging of small molecule neurotransmitters in health and disease. PMID:26859000

  19. Impact of Synaptic Neurotransmitter Concentration Time Course on the Kinetics and Pharmacological Modulation of Inhibitory Synaptic Currents

    PubMed Central

    Barberis, Andrea; Petrini, Enrica Maria; Mozrzymas, Jerzy W.

    2011-01-01

    The time course of synaptic currents is a crucial determinant of rapid signaling between neurons. Traditionally, the mechanisms underlying the shape of synaptic signals are classified as pre- and post-synaptic. Over the last two decades, an extensive body of evidence indicated that synaptic signals are critically shaped by the neurotransmitter time course which encompasses several phenomena including pre- and post-synaptic ones. The agonist transient depends on neurotransmitter release mechanisms, diffusion within the synaptic cleft, spill-over to the extra-synaptic space, uptake, and binding to post-synaptic receptors. Most estimates indicate that the neurotransmitter transient is very brief, lasting between one hundred up to several hundreds of microseconds, implying that post-synaptic activation is characterized by a high degree of non-equilibrium. Moreover, pharmacological studies provide evidence that the kinetics of agonist transient plays a crucial role in setting the susceptibility of synaptic currents to modulation by a variety of compounds of physiological or clinical relevance. More recently, the role of the neurotransmitter time course has been emphasized by studies carried out on brain slice models that revealed a striking, cell-dependent variability of synaptic agonist waveforms ranging from rapid pulses to slow volume transmission. In the present paper we review the advances on studies addressing the impact of synaptic neurotransmitter transient on kinetics and pharmacological modulation of synaptic currents at inhibitory synapses. PMID:21734864

  20. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    PubMed

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance. PMID:27429220

  1. Organic anion transporter (Slc22a) family members as mediators of toxicity

    SciTech Connect

    Sweet, Douglas H. . E-mail: sweetd@musc.edu

    2005-05-01

    Exposure of the body to toxic organic anions is unavoidable and occurs from both intentional and unintentional sources. Many hormones, neurotransmitters, and waste products of cellular metabolism, or their metabolites, are organic anions. The same is true for a wide variety of medications, herbicides, pesticides, plant and animal toxins, and industrial chemicals and solvents. Rapid and efficient elimination of these substances is often the body's best defense for limiting both systemic exposure and the duration of their pharmacological or toxicological effects. For organic anions, active transepithelial transport across the renal proximal tubule followed by elimination via the urine is a major pathway in this detoxification process. Accordingly, a large number of organic anion transport proteins belonging to several different gene families have been identified and found to be expressed in the proximal nephron. The function of these transporters, in combination with the high volume of renal blood flow, predisposes the kidney to increased toxic susceptibility. Understanding how the kidney mediates the transport of organic anions is integral to achieving desired therapeutic outcomes in response to drug interactions and chemical exposures, to understanding the progression of some disease states, and to predicting the influence of genetic variation upon these processes. This review will focus on the organic anion transporter (OAT) family and discuss the known members, their mechanisms of action, subcellular localization, and current evidence implicating their function as a determinant of the toxicity of certain endogenous and xenobiotic agents.

  2. A continuous plasma final focus

    SciTech Connect

    Whittum, D.H.

    1990-02-01

    Scaling laws are set down for a plasma cell used for transport, focusing and current neutralization of fine, intense, relativistic electron beams. It is found that there exists a minimum beam spot size, {sigma}{sub min} {approximately} {epsilon}{sub n}(I{sub A}/{gamma}I){sup 1/2}, in such a focusing system. Propagation issues, including channel formation, synchrotron radiation, beam ionization and instabilities, are discussed. Three numerical examples are considered. 38 refs., 2 figs., 1 tab.

  3. The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction.

    PubMed

    Liu, Yun; Sugiura, Yoshie; Lin, Weichun

    2011-04-01

    Synaptobrevin (Syb)/vesicle-associated membrane protein (VAMP) is a small, integral membrane protein of synaptic vesicles. Two homologous isoforms of synaptobrevin, Syb1/VAMP1 and Syb2/VAMP2, exhibit distinct but partially overlapping patterns of expression in adult mammalian neurons: Syb1 is predominantly expressed in the spinal cord, especially in motor neurons and motor nerve terminals of the neuromuscular junction (NMJ), whereas Syb2 is primarily expressed in central synapses in the brain. Whereas many studies have focused on the function of Syb2 in the brain, few studies have examined the role of Syb1. Here we report that Syb1 plays a critical role in neuromuscular synaptic transmission. A null mutation of Syb1 resulting from a spontaneous, nonsense mutation in mice significantly impairs the function, but not the structure, of the NMJ. In particular, both spontaneous and evoked synaptic activities in Syb1 mutant mice are reduced significantly relative to control mice. Short-term synaptic plasticity in Syb1-deficient NMJs is markedly altered: paired-pulse facilitation is significantly enhanced, suggesting a reduction in the initial release probability of synaptic vesicles. Furthermore, Syb1-deficient NMJs display a pronounced asynchrony in neurotransmitter release. These impairments are not due to an alteration of the size of the readily releasable pool of vesicles, but are attributable to reduced sensitivity and cooperativity to calcium (Ca2+) due to the absence of Syb1. Our findings demonstrate that Syb1 plays an essential, non-redundant role in Ca2+-triggered vesicle exocytosis at the mouse NMJ. PMID:21282288

  4. Evaluation of Tetrahydrobiopterin Therapy with Large Neutral Amino Acid Supplementation in Phenylketonuria: Effects on Potential Peripheral Biomarkers, Melatonin and Dopamine, for Brain Monoamine Neurotransmitters

    PubMed Central

    Yano, Shoji; Moseley, Kathryn; Fu, Xiaowei; Azen, Colleen

    2016-01-01

    Background Phenylketonuria (PKU) is due to a defective hepatic enzyme, phenylalanine (Phe) hydroxylase. Transport of the precursor amino acids from blood into the brain for serotonin and dopamine synthesis is reported to be inhibited by high blood Phe concentrations. Deficiencies of serotonin and dopamine are involved in neurocognitive dysfunction in PKU. Objective (1) To evaluate the effects of sapropterin (BH4) and concurrent use of large neutral amino acids (LNAA) on the peripheral biomarkers, melatonin and dopamine with the hypothesis they reflect brain serotonin and dopamine metabolism. (2) To evaluate synergistic effects with BH4 and LNAA. (3) To determine the effects of blood Phe concentrations on the peripheral biomarkers concentrations. Methods Nine adults with PKU completed our study consisting of four 4-week phases: (1) LNAA supplementation, (2) Washout, (3) BH4 therapy, and (4) LNAA with BH4 therapy. An overnight protocol measured plasma amino acids, serum melatonin, and 6-sulfatoxymelatonin and dopamine in first void urine after each phase. Results (1) Three out of nine subjects responded to BH4. A significant increase of serum melatonin levels was observed in BH4 responders with decreased blood Phe concentration. No significant change in melatonin, dopamine or Phe levels was observed with BH4 in the subjects as a whole. (2) Synergistic effects with BH4 and LNAA were observed in serum melatonin in BH4 responders. (3) The relationship between serum melatonin and Phe showed a significant negative slope (p = 0.0005) with a trend toward differing slopes among individual subjects (p = 0.066). There was also a negative association overall between blood Phe and urine 6-sulfatoxymelatonin and dopamine (P = 0.040 and 0.047). Conclusion Blood Phe concentrations affected peripheral monoamine neurotransmitter biomarker concentrations differently in each individual with PKU. Melatonin levels increased with BH4 therapy only when blood Phe decreased. Monitoring

  5. SLC Transporters as Therapeutic Targets: Emerging Opportunities

    PubMed Central

    Lin, Lawrence; Yee, Sook Wah; Kim, Richard B.; Giacomini, Kathleen M.

    2015-01-01

    Solute carrier (SLC) transporters — a family of more than 300 membrane-bound proteins that facilitate the transport of a wide array of substrates across biological membranes — have important roles in physiological processes ranging from the cellular uptake of nutrients to the absorption of drugs and other xenobiotics. Several classes of marketed drugs target well-known SLC transporters, such as neurotransmitter transporters, and human genetic studies have provided powerful insight into the roles of more-recently characterized SLC transporters in both rare and common diseases, indicating a wealth of new therapeutic opportunities. This Review summarizes knowledge on the roles of SLC transporters in human disease, describes strategies to target such transporters, and highlights current and investigational drugs that modulate SLC transporters, as well as promising drug targets. PMID:26111766

  6. Impaired learning of predators and lower prey survival under elevated CO2 : a consequence of neurotransmitter interference.

    PubMed

    Chivers, Douglas P; McCormick, Mark I; Nilsson, Göran E; Munday, Philip L; Watson, Sue-Ann; Meekan, Mark G; Mitchell, Matthew D; Corkill, Katherine C; Ferrari, Maud C O

    2014-02-01

    Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near-future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA-A receptor - a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2 , as a result of impaired learning, could have a major influence on population recruitment. PMID:23765546

  7. Transport Mechanism of a Bacterial Homologue of Glutamate Transporters

    SciTech Connect

    Reyes, N.; Ginter, C; Boudker, O

    2009-01-01

    Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from Pyrococcus horikoshii, GltPh, which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt{sub Ph} in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt{sub Ph} and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.

  8. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    NASA Astrophysics Data System (ADS)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  9. Aquatic contaminants alter genes involved in neurotransmitter synthesis and gonadotropin release in largemouth bass.

    PubMed

    Martyniuk, Christopher J; Sanchez, Brian C; Szabo, Nancy J; Denslow, Nancy D; Sepúlveda, Maria S

    2009-10-19

    Many aquatic contaminants potentially affect the central nervous system, however the underlying mechanisms of how toxicants alter normal brain function are not well understood. The objectives of this study were to compare the effects of emerging and prevalent environmental contaminants on the expression of brain transcripts with a role in neurotransmitter synthesis and reproduction. Adult male largemouth bass (Micropterus salmoides) were injected once for a 96 h duration with control (water or oil) or with one of two doses of a single chemical to achieve the following body burdens (microg/g): atrazine (0.3 and 3.0), toxaphene (10 and 100), cadmium (CdCl(2)) (0.000067 and 0.00067), polychlorinated biphenyl (PCB) 126 (0.25 and 2.5), and phenanthrene (5 and 50). Partial largemouth bass gene segments were cloned for enzymes involved in neurotransmitter (glutamic acid decarboxylase 65, GAD65; tyrosine hydroxylase) and estrogen (brain aromatase; CYP19b) synthesis for real-time PCR assays. In addition, neuropeptides regulating feeding (neuropeptide Y) and reproduction (chicken GnRH-II, cGnRH-II; salmon GnRH, sGnRH) were also investigated. Of the chemicals tested, only cadmium, PCB 126, and phenanthrene showed any significant effects on the genes tested, while atrazine and toxaphene did not. Cadmium (0.000067 microg/g) significantly increased cGnRH-II mRNA while PCB 126 (0.25 microg/g) decreased GAD65 mRNA. Phenanthrene decreased GAD65 and tyrosine hydroxylase mRNA levels at the highest dose (50 microg/g) but increased cGnRH-II mRNA at the lowest dose (5 microg/g). CYP19b, NPY, and sGnRH mRNA levels were unaffected by any of the treatments. A hierarchical clustering dendrogram grouped PCB 126 and phenanthrene more closely than other chemicals with respect to the genes tested. This study demonstrates that brain transcripts important for neurotransmitter synthesis neuroendocrine function are potential targets for emerging and prevalent aquatic contaminants. PMID:19781795

  10. Cerebrospinal fluid as a reflector of central cholinergic and amino acid neurotransmitter activity in cerebellar ataxia.

    PubMed

    Manyam, B V; Giacobini, E; Ferraro, T N; Hare, T A

    1990-11-01

    Cerebrospinal fluid (CSF) amino acid neurotransmitters, related compounds, and their precursors, choline levels, and acetylcholinesterase activity were measured in the CSF of patients with cerebellar ataxia during a randomized, double-blind, crossover, placebo-controlled clinical trial of physostigmine salicylate. The CSF gamma-aminobutyric acid, methionine, and choline levels, adjusted for age, were significantly lower in patients with cerebellar ataxia compared with controls. Physostigmine selectively reduced the level of CSF isoleucine and elevated the levels of phosphoethanolamine. No change occurred in CSF acetylcholinesterase activity and in the levels of plasma amino compounds in patients with cerebellar ataxia when compared with controls. Median ataxia scores did not statistically differ between placebo and physostigmine nor did functional improvement occur in any of the patients. PMID:1978660

  11. PRRT2 Is a Key Component of the Ca2+-Dependent Neurotransmitter Release Machinery

    PubMed Central

    Valente, Pierluigi; Castroflorio, Enrico; Rossi, Pia; Fadda, Manuela; Sterlini, Bruno; Cervigni, Romina Ines; Prestigio, Cosimo; Giovedì, Silvia; Onofri, Franco; Mura, Elisa; Guarnieri, Fabrizia C.; Marte, Antonella; Orlando, Marta; Zara, Federico; Fassio, Anna; Valtorta, Flavia; Baldelli, Pietro; Corradi, Anna; Benfenati, Fabio

    2016-01-01

    Summary Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca2+ sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca2+-sensing machinery and that it plays an important role in the final steps of neurotransmitter release. PMID:27052163

  12. PRRT2 Is a Key Component of the Ca(2+)-Dependent Neurotransmitter Release Machinery.

    PubMed

    Valente, Pierluigi; Castroflorio, Enrico; Rossi, Pia; Fadda, Manuela; Sterlini, Bruno; Cervigni, Romina Ines; Prestigio, Cosimo; Giovedì, Silvia; Onofri, Franco; Mura, Elisa; Guarnieri, Fabrizia C; Marte, Antonella; Orlando, Marta; Zara, Federico; Fassio, Anna; Valtorta, Flavia; Baldelli, Pietro; Corradi, Anna; Benfenati, Fabio

    2016-04-01

    Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca(2+) sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca(2+)-sensing machinery and that it plays an important role in the final steps of neurotransmitter release. PMID:27052163

  13. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine

    PubMed Central

    Williams, Brianna B.; Van Benschoten, Andrew H.; Cimermancic, Peter; Donia, Mohamed S.; Zimmermann, Michael; Taketani, Mao; Ishihara, Atsushi; Kashyap, Purna C.; Fraser, James S.; Fischbach, Michael A.

    2014-01-01

    Summary Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrates that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior. PMID:25263219

  14. Activation of Progestin Receptors in Female Reproductive Behavior: Interactions with Neurotransmitters

    PubMed Central

    Mani, Shaila; Portillo, Wendy

    2010-01-01

    The steroid hormone, progesterone (P), modulates neuroendocrine functions in the central nervous system resulting in alterations in physiology and reproductive behavior in female mammals. A wide body of evidence indicates that these neural effects of P are predominantly mediated via their intracellular progestin receptors (PRs) functioning as “ligand-dependent” transcription factors in the steroid-sensitive neurons regulating genes and genomic networks. In addition to P, intracellular PRs can be activated by neurotransmitters, growth factors and cyclic nucleotides in a ligand-independent manner via crosstalk and convergence of pathways. Furthermore, recent studies indicate that rapid signaling events associated with membrane PRs and/or extra-nuclear, cytoplasmic PRs converge with classical PR activated pathways in neuroendocrine regulation of female reproductive behavior. The molecular mechanisms, by which multiple signaling pathways converge on PRs to modulate PR-dependent female reproductive behavior, are discussed in this review. PMID:20116396

  15. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin.

    PubMed

    Renström, E; Ding, W G; Bokvist, K; Rorsman, P

    1996-09-01

    Neurotransmitters and hormones such as somatostatin, galanin, and adrenalin reduce insulin secretion. Their inhibitory action involves direct interference with the exocytotic machinery. We have examined the molecular processes underlying this effect using high resolution measurements of cell capacitance. Suppression of exocytosis was maximal at concentrations that did not cause complete inhibition of glucose-stimulated electrical activity. This action was dependent on activation of G proteins but was not associated with inhibition of the voltage-dependent Ca2+ currents or adenylate cyclase activity. The molecular processes initiated by the agonists culminate in the activation of the Ca(2+)-dependent protein phosphatase calcineurin, and suppression of the activity of this enzyme abolishes their action on exocytosis. We propose that mechanisms similar to those we report here may contribute to adrenergic and peptidergic inhibition of secretion in other neuroendocrine cells and in nerve terminals. PMID:8816714

  16. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release.

    PubMed

    Liu, Karen S Y; Siebert, Matthias; Mertel, Sara; Knoche, Elena; Wegener, Stephanie; Wichmann, Carolin; Matkovic, Tanja; Muhammad, Karzan; Depner, Harald; Mettke, Christoph; Bückers, Johanna; Hell, Stefan W; Müller, Martin; Davis, Graeme W; Schmitz, Dietmar; Sigrist, Stephan J

    2011-12-16

    The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)-binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca(2+) channel field. In drbp mutants, Ca(2+) channel clustering and Ca(2+) influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca(2+) channels, and the SV fusion machinery. PMID:22174254

  17. The estimation of neurotransmitter release probability in feedforward neuronal network based on adaptive synchronization

    NASA Astrophysics Data System (ADS)

    Xue, Ming; Wang, Jiang; Jia, Chenhui; Yu, Haitao; Deng, Bin; Wei, Xile; Che, Yanqiu

    2013-03-01

    In this paper, we proposed a new approach to estimate unknown parameters and topology of a neuronal network based on the adaptive synchronization control scheme. A virtual neuronal network is constructed as an observer to track the membrane potential of the corresponding neurons in the original network. When they achieve synchronization, the unknown parameters and topology of the original network are obtained. The method is applied to estimate the real-time status of the connection in the feedforward network and the neurotransmitter release probability of unreliable synapses is obtained by statistic computation. Numerical simulations are also performed to demonstrate the effectiveness of the proposed adaptive controller. The obtained results may have important implications in system identification in neural science.

  18. Activities of autonomic neurotransmitters in Meibomian gland tissues are associated with menopausal dry eye★

    PubMed Central

    Li, Lianxiang; Jin, Dongling; Gao, Jinsheng; Wang, Liguang; Liu, Xianjun; Wang, Jingzhang; Xu, Zhongxin

    2012-01-01

    The secretory activities of meibomian glands are regulated by the autonomic nervous system. The change in density and activity of autonomic nerves in meibomian glands during menopause play an important role in the pathogenesis of dry eye. In view of this, we established a dry eye rat model by removing the bilateral ovaries. We used neuropeptide Y and vasoactive intestinal polypeptide as markers of autonomic neurotransmitters. Our results showed that the concentration of estradiol in serum significantly decreased, the density of neuropeptide Y immunoreactivity in nerve fibers significantly increased, the density of vasoactive intestinal polypeptide immunoreactivity in nerve fibers significantly decreased, and the ratio of vasoactive intestinal polypeptide/neuropeptide Y positive staining significantly decreased. These results suggest that a decrease in ovary activity may lead to autonomic nervous system dysfunction, thereby affecting the secretory activity of the meibomian gland, which participates in sexual hormone imbalance-induced dry eye. PMID:25317125

  19. VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing.

    PubMed

    Stanacevic, M; Murari, K; Rege, A; Cauwenberghs, G; Thakor, N V

    2007-03-01

    A 16-channel current-measuring very large-scale integration (VLSI) sensor array system for highly sensitive electrochemical detection of electroactive neurotransmiters like dopamine and nitric-oxide is presented. Each channel embeds a current integrating potentiostat within a switched-capacitor first-order single-bit delta-sigma modulator implementing an incremental analog-to-digital converter. The duty-cycle modulation of current feedback in the delta-sigma loop together with variable oversampling ratio provide a programmable digital range selection of the input current spanning over six orders of magnitude from picoamperes to microamperes. The array offers 100-fA input current sensitivity at 3.4-muW power consumption per channel. The operation of the 3 mm times3 mm chip fabricated in 0.5-mum CMOS technology is demonstrated with real-time multichannel acquisition of neurotransmitter concentration. PMID:23851522

  20. Activity-dependent changes in partial VAMP complexes during neurotransmitter release.

    PubMed

    Hua, S Y; Charlton, M P

    1999-12-01

    The temporal sequence of SNARE protein interactions that cause exocytosis is unknown. Blockade of synaptic neurotransmitter release through cleavage of VAMP/synaptobrevin by tetanus toxin light chain (TeNT-LC) was accelerated by nerve stimulation. Botulinum/B neurotoxin light chain (BoNT/B-LC), which cleaves VAMP at the same site as TeNT-LC, did not require stimulation. Because TeNT-LC requires the N-terminal coil domain of VAMP for binding but BoNT/B-LC requires the C-terminal coil domain, it seems that, before nerve activity, the N-terminal domain is shielded in a protein complex, but the C-terminal domain is exposed. This N-terminal complex lasts until nerve activity occurs and may serve to cock synaptic vesicles for immediate exocytosis upon Ca2+ entry. PMID:10570484

  1. The neurotransmitter N-acetylaspartylglutamate in models of pain, ALS, diabetic neuropathy, CNS injury and schizophrenia.

    PubMed

    Neale, Joseph H; Olszewski, Rafal T; Gehl, Laura M; Wroblewska, Barbara; Bzdega, Tomasz

    2005-09-01

    N-Acetylaspartylglutamate (NAAG) is the most abundant and widely distributed peptide transmitter in the mammalian nervous system. NAAG activates the metabotropic glutamate mGlu(3) receptor at presynaptic sites, inhibiting the release of neurotransmitters, including glutamate, and activates mGlu(3) receptors on glial cells, stimulating the release of neuroprotective growth factors from these cells. Elevated levels of glutamate released from neurons are associated with the pathology of stroke, traumatic nervous system injury, amyotrophic lateral sclerosis, inflammatory and neuropathic pain, diabetic neuropathy and the schizophrenia-like symptoms elicited by phencyclidine. NAAG is inactivated by specific peptidases following its synaptic release. Novel compounds that inhibit these enzymes prolong the activity of synaptically released NAAG and have significant therapeutic efficacy in animal models of these diverse clinical conditions. In this review, we summarize recent studies in these animal models and discuss the mechanisms by which NAAG peptidase inhibitors achieve these effects. PMID:16055199

  2. Dynamic complex optical fields for optical manipulation, 3D microscopy, and photostimulation of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Daria, Vincent R.; Stricker, Christian; Bekkers, John; Redman, Steve; Bachor, Hans

    2010-08-01

    We demonstrate a multi-functional system capable of multiple-site two-photon excitation of photo-sensitive compounds as well as transfer of optical mechanical properties on an array of mesoscopic particles. We use holographic projection of a single Ti:Sapphire laser operating in femtosecond pulse mode to show that the projected three-dimensional light patterns have sufficient spatiotemporal photon density for multi-site two-photon excitation of biological fluorescent markers and caged neurotransmitters. Using the same laser operating in continuous-wave mode, we can use the same light patterns for non-invasive transfer of both linear and orbital angular momentum on a variety of mesoscopic particles. The system also incorporates high-speed scanning using acousto-optic modulators to rapidly render 3D images of neuron samples via two-photon microscopy.

  3. Effects of dietary amino acids, carbohydrates, and choline on neurotransmitter synthesis

    NASA Technical Reports Server (NTRS)

    Wurtman, Richard J.

    1988-01-01

    The ability of a meal to increase or decrease brain neurotransmitter synthesis has been studied. It is concluded that brain serotonin synthesis is directly controlled by the proportions of carbohydrate to protein in meals and snacks that increase or decrease brain tryptophan levels, thereby changing the substrate saturation of tryptophan hydroxylase and the rate of serotonin synthesis. The ability of serotoninergic neurons to have their output coupled to dietary macronutrients enables them to function as sensors of peripheral metabolism, and to subserve an important role in the control of appetite. The robust and selective responses of catecholaminergic and cholinergic neurons to supplemental tyrosine and choline suggest that these compounds may become useful as a new type of drug for treating deseases or conditions in which adequate quantities of the transmitter would otherwise be unavailable.

  4. Microelectronics-Based Biosensors Dedicated to the Detection of Neurotransmitters: A Review

    PubMed Central

    Mirzaei, Maryam; Sawan, Mohamad

    2014-01-01

    Dysregulation of neurotransmitters (NTs) in the human body are related to diseases such as Parkinson's and Alzheimer's. The mechanisms of several neurological disorders, such as epilepsy, have been linked to NTs. Because the number of diagnosed cases is increasing, the diagnosis and treatment of such diseases are important. To detect biomolecules including NTs, microtechnology, micro and nanoelectronics have become popular in the form of the miniaturization of medical and clinical devices. They offer high-performance features in terms of sensitivity, as well as low-background noise. In this paper, we review various devices and circuit techniques used for monitoring NTs in vitro and in vivo and compare various methods described in recent publications. PMID:25264957

  5. Interleukin-6 inhibits neurotransmitter release and the spread of excitation in the rat cerebral cortex.

    PubMed

    D'Arcangelo, G; Tancredi, V; Onofri, F; D'Antuono, M; Giovedì, S; Benfenati, F

    2000-04-01

    Cytokines are extracellular mediators that have been reported to affect neurotransmitter release and synaptic plasticity phenomena when applied in vitro. Most of these effects occur rapidly after the application of the cytokines and are presumably mediated through the activation of protein phosphorylation processes. While many cytokines have an inflammatory action, interleukin-6 (IL-6) has been found to have a neuroprotective effect against ischaemia lesions and glutamate excitotoxicity, and to increase neuronal survival in a variety of experimental conditions. In this paper, the functional effects of IL-6 on the spread of excitation visualized by dark-field/infrared videomicroscopy in rat cortical slices and on glutamate release from cortical synaptosomes were analysed and correlated with the activation of the STAT3, mitogen-activated protein kinase ERK (MAPK/ERK) and stress-activated protein kinase/cJun NH2-terminal kinase (SAPK/JNK) pathways. We have found that IL-6 depresses the spread of excitation and evoked glutamate release in the cerebral cortex, and that these effects are accompanied by a stimulation of STAT3 tyrosine phosphorylation, an inhibition of MAPK/ERK activity, a decreased phosphorylation of the presynaptic MAPK/ERK substrate synapsin I and no detectable effects on SAPK/JNK. The effects of IL-6 were effectively counteracted by treatment of the cortical slices with the tyrosine kinase inhibitor lavendustin A. The inhibitory effects of IL-6 on glutamate release and on the spread of excitation in the rat cerebral cortex indicate that the protective effect of IL-6 on neuronal survival could be mediated by a downregulation of neuronal activity, release of excitatory neurotransmitters and MAPK/ERK activity. PMID:10762353

  6. The inhibitory neurotransmitter GABA evokes long-lasting Ca(2+) oscillations in cortical astrocytes.

    PubMed

    Mariotti, Letizia; Losi, Gabriele; Sessolo, Michele; Marcon, Iacopo; Carmignoto, Giorgio

    2016-03-01

    Studies over the last decade provided evidence that in a dynamic interaction with neurons glial cell astrocytes contribut to fundamental phenomena in the brain. Most of the knowledge on this derives, however, from studies monitoring the astrocyte Ca(2+) response to glutamate. Whether astrocytes can similarly respond to other neurotransmitters, including the inhibitory neurotransmitter GABA, is relatively unexplored. By using confocal and two photon laser-scanning microscopy the astrocyte response to GABA in the mouse somatosensory and temporal cortex was studied. In slices from developing (P15-20) and adult (P30-60) mice, it was found that in a subpopulation of astrocytes GABA evoked somatic Ca(2+) oscillations. This response was mediated by GABAB receptors and involved both Gi/o protein and inositol 1,4,5-trisphosphate (IP3 ) signalling pathways. In vivo experiments from young adult mice, revealed that also cortical astrocytes in the living brain exibit GABAB receptor-mediated Ca(2+) elevations. At all astrocytic processes tested, local GABA or Baclofen brief applications induced long-lasting Ca(2+) oscillations, suggesting that all astrocytes have the potential to respond to GABA. Finally, in patch-clamp recordings it was found that Ca(2+) oscillations induced by Baclofen evoked astrocytic glutamate release and slow inward currents (SICs) in pyramidal cells from wild type but not IP3 R2(-/-) mice, in which astrocytic GABAB receptor-mediated Ca(2+) elevations are impaired. These data suggest that cortical astrocytes in the mouse brain can sense the activity of GABAergic interneurons and through their specific recruitment contribut to the distinct role played on the cortical network by the different subsets of GABAergic interneurons. PMID:26496414

  7. Onchocerca volvulus-neurotransmitter tyramine is a biomarker for river blindness.

    PubMed

    Globisch, Daniel; Moreno, Amira Y; Hixon, Mark S; Nunes, Ashlee A K; Denery, Judith R; Specht, Sabine; Hoerauf, Achim; Janda, Kim D

    2013-03-12

    Onchocerciasis, also known as "river blindness", is a neglected tropical disease infecting millions of people mainly in Africa and the Middle East but also in South America and Central America. Disease infectivity initiates from the filarial parasitic nematode Onchocerca volvulus, which is transmitted by the blackfly vector Simulium sp. carrying infectious third-stage larvae. Ivermectin has controlled transmission of microfilariae, with an African Program elimination target date of 2025. However, there is currently no point-of-care diagnostic that can distinguish the burden of infection--including active and/or past infection--and enable the elimination program to be effectively monitored. Here, we describe how liquid chromatography-MS-based urine metabolome analysis can be exploited for the identification of a unique biomarker, N-acetyltyramine-O,β-glucuronide (NATOG), a neurotransmitter-derived secretion metabolite from O. volvulus. The regulation of this tyramine neurotransmitter was found to be linked to patient disease infection, including the controversial antibiotic doxycycline treatment that has been shown to both sterilize and kill adult female worms. Further clues to its regulation have been elucidated through biosynthetic pathway determination within the nematode and its human host. Our results demonstrate that NATOG tracks O. volvulus metabolism in both worms and humans, and thus can be considered a host-specific biomarker for onchocerciasis progression. Liquid chromatography-MS-based urine metabolome analysis discovery of NATOG not only has broad implications for a noninvasive host-specific onchocerciasis diagnostic but provides a basis for the metabolome mining of other neglected tropical diseases for the discovery of distinct biomarkers and monitoring of disease progression. PMID:23440222

  8. Evidence for a neurotransmitter function of acetylcholine in rabbit superior colliculus.

    PubMed

    Wichmann, T; Illing, R B; Starke, K

    1987-12-01

    Acetylcholinesterase staining and studies on the uptake of [3H]choline into the subsequent efflux of tritium from collicular slices were carried out in order to provide evidence for a neurotransmitter function of acetylcholine in rabbit superior colliculus. Acetylcholinesterase staining was dense and homogeneous in superficial layers whereas the staining was arranged in patches with slightly higher density caudally than rostrally in the intermediate layers. The accumulation of tritium in slices incubated with [3H]choline depended on time, temperature and concentration, and was inhibited by hemicholinium-3. Accumulation was slightly higher in caudal than in rostral slices. Electrical stimulation enhanced tritium outflow from slices preincubated with [3H]choline. Tetrodotoxin and a low calcium medium inhibited the evoked overflow whereas hemicholinium-3 caused an enhancement. Oxotremorine decreased the evoked overflow; atropine prevented this effect. The opioids [D-Ala2, MePhe4, Glycol5]enkephalin, [D-Ala2, D-Leu5]enkephalin and ethylketocyclazocine caused an inhibition. The effects of the latter two agonists were antagonized by naloxone. The GABAB-receptor-agonist (-)-baclofen decreased the evoked overflow at lower concentrations than GABA, whereas the GABAA-receptor-agonist muscimol was ineffective. Serotonin produced an inhibition which was prevented by metitepin, alpha- and beta-adrenoceptor as well as dopamine-receptor ligands caused no change. It is concluded that in the rabbit superior colliculus the pattern of acetylcholinesterase staining is comparable, but not identical to the distribution in other species. The accumulation of [3H]choline, as well as the tetrodotoxin-sensitive and calcium-dependent overflow of tritium upon electrical stimulation (reflecting presumably release of [3H]acetylcholine) indicate that acetylcholine has a neurotransmitter function in this tissue. The release of [3H]acetylcholine was modulated by various transmitter substances and

  9. Beneficial effects of lycopene against haloperidol induced orofacial dyskinesia in rats: Possible neurotransmitters and neuroinflammation modulation.

    PubMed

    Datta, Swati; Jamwal, Sumit; Deshmukh, Rahul; Kumar, Puneet

    2016-01-15

    Tardive Dyskinesia is a severe side effect of chronic neuroleptic treatment consisting of abnormal involuntary movements, characterized by orofacial dyskinesia. The study was designed to investigate the protective effect of lycopene against haloperidol induced orofacial dyskinesia possibly by neurochemical and neuroinflammatory modulation in rats. Rats were administered with haloperidol (1mg/kg, i.p for 21 days) to induce orofacial dyskinesia. Lycopene (5 and 10mg/kg, p.o) was given daily 1hour before haloperidol treatment for 21 days. Behavioral observations (vacuous chewing movements, tongue protrusions, facial jerking, rotarod activity, grip strength, narrow beam walking) were assessed on 0th, 7th(,) 14th(,) 21st day after haloperidol treatment. On 22nd day, animals were killed and striatum was excised for estimation of biochemical parameters (malondialdehyde, nitrite and endogenous enzyme (GSH), pro-inflammatory cytokines [Tumor necrosis factor, Interleukin 1β, Interleukin 6] and neurotransmitters level (dopamine, serotonin, nor epinephrine, 5-Hydroxyindole acetic acid (5-HIAA), Homovanillic acid, 3,4- dihydroxyphenylacetic acid. Haloperidol treatment for 21 days impaired muscle co-ordination, motor activity and grip strength with an increased in orofacial dyskinetic movements. Further free radical generation increases MDA and nitrite levels, decreasing GSH levels in striatum. Neuroinflammatory markers were significantly increased with decrease in neurotransmitters levels. Lycopene (5 and 10mg/kg, p.o) treatment along with haloperidol significantly attenuated impairment in behavioral, biochemical, neurochemical and neuroinflammatory markers. Results of the present study attributed the therapeutic potential of lycopene in the treatment (prevented or delayed) of typical antipsychotic induced orofacial dyskinesia. PMID:26712377

  10. [Effects of Kaixin San formulas on behavioristics and central monoamine neurotransmitters of chronic stress rats].

    PubMed

    Liu, Wan-wan; Xu, Lu; Dong, Xian-zhe; Tan, Xiao; Wang, Shi; Zhu, Wei-yu; Liu, Ping

    2015-06-01

    The efficacy of Chinese herbal formula in treating depression has been proved in many studies. In this study, six different Kaixin San formulas were compared to investigate their effects on central monoamine neurotransmitters of chronic stress rats and against depression based on their different components in plasma, in order to discuss the efficacy-comparability relationship and the possible efficacy mechanism. The classic isolation method and the chronic unpredictable mild stress (CUMS) depression model were combined to investigate the changes in contents in hippocampus and monoamine neurotransmitters (NE, DA, 5-HT) and the components of some formulas in plasma with HPLC and UPLC-Q-TOF-MSE methods. As a result, Dingzhi Xiaowan recorded in Essential Recipes for Emergent Use Worth A Thousand significantly increased the behavioral scores, NE and 5-HT contents in hippocampus and NE, DA and 5-HT contents in cortex, with the best anti-depressant effect. Dingzhi Xiaowan recorded in Complete Records of Ancient and Modern Medical Works showed a notable increase in sucrose preference and open field score in model rats, NE content in hippocampus and NE, DA and 5-HT contents in cortex, with a certain anti anti-depressant effect. Kaixin San recorded in Ishinpo showed remarkable rise in weight of model rats. NE content in hippocampus and DA content in cortex. Puxin Decoction recorded in A Supplement to Recipes Worth A Thousand Gold showed 5-HT content in hippocampus and DA content in cortex. Kaixin San recorded in Yimenfang only showed DA content in cortex. Kaixin Wan recorded in Essential Recipes for Emergent Use Worth A Thousand did not mention the antidepressant effect. According to the results, the formulas' different anti-depressant effects may be related to the different plasma components. PMID:26552177

  11. Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests

    PubMed Central

    Xiao, Ning; Venton, B. Jill

    2012-01-01

    Carbon nanotube (CNT) modification of microelectrodes can result in increased sensitivity without compromising time response. However, dip coating CNTs is not very reproducible and the CNTs tend to lay flat on the electrode surface which limits access to the electroactive sites on the ends. In this study, aligned CNT forests were formed using a chemical self-assembly method, which resulted in more exposed CNT ends to the analyte. Shortened, carboxylic acid functionalized single-walled CNTs were assembled from a DMF suspension onto a carbon-fiber disk microelectrode modified with a thin iron hydroxide-decorated Nafion film. The modified electrodes were highly sensitive, with 36-fold higher oxidation currents for dopamine using fast-scan cyclic voltammetry than bare electrodes and 34-fold more current than electrodes dipped in CNTs. The limit of detection for dopamine was 17 ± 3 nM at a 10 Hz repetition rate and 65 ± 7 nM at 90 Hz. The LOD at 90 Hz was the same as a bare electrode at 10 Hz, allowing a 9-fold increase in temporal resolution without a decrease in sensitivity. Similar increases were observed for other cationic catecholamine neurotransmitters and the increases in current were greater than for anionic interferents such as ascorbic acid and 3,4-dihydroxyphenylacetic acid (DOPAC). The CNT forest electrodes had high sensitivity at 90 Hz repetition rate when stimulated dopamine release was measured in Drosophila. The sensitivity, temporal resolution, and spatial resolution of these CNT forest modified disk electrodes facilitate enhanced electrochemical measurements of neurotransmitters release in vivo. PMID:22823497

  12. Expression of neurotransmitters and neurotrophins in neurogenic inflammation of the rat retina.

    PubMed

    Bronzetti, Elena; Artico, M; Kovacs, I; Felici, L M; Magliulo, G; Vignone, D; D'Ambrosio, A; Forte, F; Di Liddo, R; Feher, J

    2007-01-01

    Antidromic stimulation of the rat trigeminal ganglion triggers the release of substance P (SP) and calcitonin gene-related peptide (CGRP) from sensory nerve terminals of the capsaicin sensitive C-fibers. These pro-inflammatory neuropeptides produce a marked hyperemia in the anterior segment of the eye, accompanied by increased intraocular pressure, breakdown of the blood-aqueous barrier and myosis. To assess the effects of neurogenic inflammation on the retina, specifically on the immunostaining of neurotransmitters and neurotrophins, as well as on the expression of neurotrophin receptors in the retina. RT-PCR was also accomplished in control and stimulated animals to confirm the immunohistochemical results. In the electrically stimulated eyes, immunostaining for SP, CGRP, VIP and nNOS demonstrated a marked increase in the RPE/POS (Retinal Pigment Epithelium/Photoreceptor Outer Segments), in the inner and outer granular layers and in the ganglion cells in comparison to the control eyes. CGRP and SP were found increased in stimulated animals and this result has been confirmed by RT- PCR. Changes in neurotrophin immunostaining and in receptor expression were also observed after electric stimulation of trigeminal ganglia. Decrease of BDNF and NT4 in the outer and inner layers and in ganglion cells was particularly marked. In stimulated rat retinas immunostaining and RT-PCR showed a NGF expression increase. Neurotrophin receptors remained substantially unchanged. These studies demonstrated, for the first time, that antidromic stimulation of the trigeminal ganglion and subsequent neurogenic inflammation affect immunostaining of retinal cell neurotransmitter/neuropeptides and neurotrophins as well as the expression of neurotrophin receptors. PMID:18162454

  13. The appearance and development of neurotransmitter sensitivity in Xenopus embryonic spinal neurones in vitro.

    PubMed Central

    Bixby, J L; Spitzer, N C

    1984-01-01

    We have determined the time of onset and examined some of the properties of neurotransmitter sensitivity in Xenopus spinal neurones developing in dissociated cell culture. These cells are initially insensitive, but acquire responses to several agonists over a period of 6 h. Nearly one-third of the neurones were depolarized by gamma-aminobutyric acid (GABA) or by both GABA and glycine; these cells were not affected by glutamate. The reversal potential of the ionophoretic GABA response is -35 mV. These neurones are likely to be Rohon-Beard neurones. Roughly two-thirds of the neurones were depolarized by glutamate and hyperpolarized by GABA and by glycine. The reversal potential of the ionophoretic GABA response is -58 mV. These neurones are likely to include motoneurones. A quantitative measure of the sensitivity to a given GABA dose was obtained at early and intermediate stages of development. The mean 'sensitivity index' (ionophoretic sensitivity/input resistance) for both classes of neurones in vitro was initially the same as that seen in Rohon-Beard neurones in vivo. This sensitivity index did not increase with time in culture to attain the value at intermediate stages in vivo. The development of chemosensitivity in Rohon-Beard-like neurones in these cultures resembles that of Rohon-Beard neurones in the spinal cord with respect to the time of onset of responses to GABA, the reversal potential, pharmacology and desensitization of these responses, and the spectrum of agonists to which they are sensitive. It differs in the absence of a developmental increase in sensitivity to GABA. The development of chemosensitivity in motoneurone-like neurones in these cultures parallels that of Rohon-Beard-like neurones, with respect to the time of onset and level of sensitivity, as well as susceptibility to pharmacological blockers. Several features of normal neurotransmitter sensitivity, like features of the action potential, differentiate in culture in the absence of normal

  14. Familial orthostatic tachycardia due to norepinephrine transporter deficiency

    NASA Technical Reports Server (NTRS)

    Robertson, D.; Flattem, N.; Tellioglu, T.; Carson, R.; Garland, E.; Shannon, J. R.; Jordan, J.; Jacob, G.; Blakely, R. D.; Biaggioni, I.

    2001-01-01

    Orthostatic intolerance (OI) or postural tachycardia syndrome (POTS) is a syndrome primarily affecting young females, and is characterized by lightheadedness, palpitations, fatigue, altered mentation, and syncope primarily occurring with upright posture and being relieved by lying down. There is typically tachycardia and raised plasma norepinephrine levels on upright posture, but little or no orthostatic hypotension. The pathophysiology of OI is believed to be very heterogeneous. Most studies of the syndrome have focused on abnormalities in norepinephrine release. Here the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to the pathophysiology in some patients with OI was tested. In a proband with significant orthostatic symptoms and tachycardia, disproportionately elevated plasma norepinephrine with standing, impaired systemic, and local clearance of infused tritiated norepinephrine, impaired tyramine responsiveness, and a dissociation between stimulated plasma norepinephrine and DHPG elevation were found. Studies of NET gene structure in the proband revealed a coding mutation that converts a highly conserved transmembrane domain Ala residue to Pro. Analysis of the protein produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in activity relative to normal. NE, DHPG/NE, and heart rate correlated with the mutant allele in this family. CONCLUSION: These results represent the first identification of a specific genetic defect in OI and the first disease linked to a coding alteration in a Na+/Cl(-)-dependent neurotransmitter transporter. Identification of this mechanism may facilitate our understanding of genetic causes of OI and lead to the development of more effective therapeutic modalities.

  15. Cloning of the cocaine-sensitive bovine dopamine transporter

    SciTech Connect

    Usdin, T.B.; Chen, C.; Brownstein, M.J.; Hoffman, B.J. ); Mezey, E. )

    1991-12-15

    A cDNA encoding the dopamine transporter from bovine brain substantia nigra was identified on the basis of its structural homology to other, recently cloned, neurotransmitter transporters. The sequence of the 693-amino acid protein is quite similar to those of the rat {gamma}-aminobutyric acid, human norepinephrine, and rat serotonin transporters. Dopamine transporter mRNA was detected by in situ hybridization in the substantia nigra but not in the locus coeruleus, raphe, caudate, or other brain areas. ({sup 3}H)Dopamine accumulation in tissue culture cells transfected with the cDNA was inhibited by amphetamine, cocaine, and specific inhibitors of dopamine transports, including GBR12909.

  16. Mammalian ion-coupled solute transporters.

    PubMed Central

    Hediger, M A; Kanai, Y; You, G; Nussberger, S

    1995-01-01

    Active transport of solutes into and out of cells proceeds via specialized transporters that utilize diverse energy-coupling mechanisms. Ion-coupled transporters link uphill solute transport to downhill electrochemical ion gradients. In mammals, these transporters are coupled to the co-transport of H+, Na+, Cl- and/or to the countertransport of K+ or OH-. By contrast, ATP-dependent transporters are directly energized by the hydrolysis of ATP. The development of expression cloning approaches to select cDNA clones solely based on their capacity to induce transport function in Xenopus oocytes has led to the cloning of several ion-coupled transporter cDNAs and revealed new insights into structural designs, energy-coupling mechanisms and physiological relevance of the transporter proteins. Different types of mammalian ion-coupled transporters are illustrated by discussing transporters isolated in our own laboratory such as the Na+/glucose co-transporters SGLT1 and SGLT2, the H(+)-coupled oligopeptide transporters PepT1 and PepT2, and the Na(+)- and K(+)-dependent neuronal and epithelial high affinity glutamate transporter EAAC1. Most mammalian ion-coupled organic solute transporters studied so far can be grouped into the following transporter families: (1) the predominantly Na(+)-coupled transporter family which includes the Na+/glucose co-transporters SGLT1, SGLT2, SGLT3 (SAAT-pSGLT2) and the inositol transporter SMIT, (2) the Na(+)- and Cl(-)-coupled transporter family which includes the neurotransmitter transporters of gamma-amino-butyric acid (GABA), serotonin, dopamine, norepinephrine, glycine and proline as well as transporters of beta-amino acids, (3) the Na(+)- and K(+)-dependent glutamate/neurotransmitter family which includes the high affinity glutamate transporters EAAC1, GLT-1, GLAST, EAAT4 and the neutral amino acid transporters ASCT1 and SATT1 reminiscent of system ASC and (4) the H(+)-coupled oligopeptide transporter family which includes the intestinal H

  17. A Preliminary Study of Gene Polymorphisms Involved in the Neurotransmitters Metabolism of a Homogeneous Spanish Autistic Group

    ERIC Educational Resources Information Center

    Calahorro, Fernando; Alejandre, Encarna; Anaya, Nuria; Guijarro, Teresa; Sanz, Yolanza; Romero, Auxiliadora; Tienda, Pilar; Burgos, Rafael; Gay, Eudoxia; Sanchez, Vicente; Ruiz-Rubio, Manuel

    2009-01-01

    Twin studies have shown a strong genetic component for autism. Neurotransmitters, such as serotonin and catecholamines, have been suggested to play a role in the disease since they have an essential function in synaptogenesis and brain development. In this preliminary study, polymorphism of genes implicated in the serotonergic and dopaminergic…

  18. Derivatization for the simultaneous LC/MS quantification of multiple neurotransmitters in extracellular fluid from rat brain microdialysis.

    PubMed

    Zhang, Minli; Fang, Chengwei; Smagin, Gennady

    2014-11-01

    Quantification of amino acid based neurotransmitters in extracellular fluids, such as those in the neuron synapse, presents a challenge to the analytical chemistry because of the absence of UV- or fluorescence-detectable functional groups and the low sensitivity in mass spectrometric detection. This report describes a novel use of the succinimide reagent, N-α-Boc-l-tryptophan hydroxysuccinimide ester (Boc-TRP), for the pre-column derivatization to simultaneously quantify multiple neurotransmitters in the rat brain microdialysis samples. The Boc-TRP derivatization was rapid and quantitative in phosphate the buffer (pH 7.4) at room temperature. The derivatized neurotransmitters were suitable for rapid LC/MS quantification with less than 3-min chromatographic separation. The Boc-group in the derivatized product generated unique fragmentation patterns in the triple quadrupole mass spectrometric analysis under Multiple Reaction Monitoring mode and significantly increased the specificity and sensitivity. The derivatization and rapid LC/MS quantification method developed in this study showed a linear dynamic range from single digit nM to 1000nM with coefficient greater than 0.990. At the LOQ, the accuracy ranged from 95 to 108% and the precision (CV%) was less than 20%. Since there was no concentration and reconstitution in the sample workup process, this derivatization approach simplified the neurotransmitter quantification of the brain microdialysis samples. PMID:25200427

  19. Coupled ion Binding and Structural Transitions Along the Transport Cycle of Glutamate Transporters

    SciTech Connect

    Verdon, Gregory; Oh, SeCheol; Serio, Ryan N.; Boudker, Olga

    2014-05-19

    Membrane transporters that clear the neurotransmitter glutamate from synapses are driven by symport of sodium ions and counter-transport of a potassium ion. Previous crystal structures of a homologous archaeal sodium and aspartate symporter showed that a dedicated transport domain carries the substrate and ions across the membrane. We report new crystal structures of this homologue in ligand-free and ions-only bound outward- and inward-facing conformations. We then show that after ligand release, the apo transport domain adopts a compact and occluded conformation that can traverse the membrane, completing the transport cycle. Sodium binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. Moreover, we describe a new cation-binding site ideally suited to bind a counter-transported ion. We suggest that potassium binding at this site stabilizes the translocation-competent conformation of the unloaded transport domain in mammalian homologues.

  20. The association between the serotonin and dopamine neurotransmitters and personality traits.

    PubMed

    Delvecchio, G; Bellani, M; Altamura, A C; Brambilla, P

    2016-04-01

    Evidence from previous studies has reported that complex traits, including psychiatric disorders, are moderately to highly heritable. Moreover, it has also been shown that specific personality traits may increase the risk to develop mental illnesses. Therefore the focus of the research shifted towards the identification of the biological mechanisms underpinning these traits by exploring the effects of a constellation of genetic polymorphisms in healthy subjects. Indeed, studying the effect of genetic variants in normal personality provides a unique means for identifying candidate genes which may increase the risk for psychiatric disorders. In this review, we discuss the impact of two of the most frequently studied genetic polymorphisms on personality in healthy subjects, the 5-HTT polymorphism of the serotonin transporter and the DRD2/DRD4 polymorphisms of the D2/D4 dopamine's receptors. The main aims are: (a) to highlight that the study of candidate genes provides a fruitful ground for the identification of the biological underpinnings of personality without, though, reaching a general consensus about the strength of this relationship; and (b) to outline that the research in personality genetics should be expanded to provide a clearer picture of the heritability of personality traits. PMID:26750396

  1. EDITORIAL: Focus on Graphene

    NASA Astrophysics Data System (ADS)

    Peres, N. M. R.; Ribeiro, Ricardo M.

    2009-09-01

    Graphene physics is currently one of the most active research areas in condensed matter physics. Countless theoretical and experimental studies have already been performed, targeting electronic, magnetic, thermal, optical, structural and vibrational properties. Also, studies that modify pristine graphene, aiming at finding new physics and possible new applications, have been considered. These include patterning nanoribbons and quantum dots, exposing graphene's surface to different chemical species, studying multilayer systems, and inducing strain and curvature (modifying in this way graphene's electronic properties). This focus issue includes many of the latest developments on graphene research. Focus on Graphene Contents Electronic properties of graphene and graphene nanoribbons with 'pseudo-Rashba' spin-orbit coupling Tobias Stauber and John Schliemann Strained graphene: tight-binding and density functional calculations R M Ribeiro, Vitor M Pereira, N M R Peres, P R Briddon and A H Castro Neto The effect of sublattice symmetry breaking on the electronic properties of doped graphene A Qaiumzadeh and R Asgari Interfaces within graphene nanoribbons J Wurm, M Wimmer, I Adagideli, K Richter and H U Baranger Weak localization and transport gap in graphene antidot lattices J Eroms and D Weiss Electronic properties of graphene antidot lattices J A Fürst, J G Pedersen, C Flindt, N A Mortensen, M Brandbyge, T G Pedersen and A-P Jauho Splitting of critical energies in the n=0 Landau level of graphene Ana L C Pereira Double-gated graphene-based devices S Russo, M F Craciun, M Yamamoto, S Tarucha and A F Morpurgo Pinning and switching of magnetic moments in bilayer graphene Eduardo V Castro, M P López-Sancho and M A H Vozmediano Electronic transport properties of graphene nanoribbons Katsunori Wakabayashi, Yositake Takane, Masayuki Yamamoto and Manfred Sigrist Many-body effects on out-of-plane phonons in graphene J González and E Perfetto Graphene zigzag ribbons, square

  2. Simulations of neutralized final focus

    SciTech Connect

    Welch, D.R.; Rose, D.V.; Genoni, T.C.; Yu, S.S.; Barnard, J.J.

    2005-01-18

    In order to drive an inertial fusion target or study high energy density physics with heavy ion beams, the beam radius must be focused to < 3 mm and the pulse length must be compressed to < 10 ns. The conventional scheme for temporal pulse compression makes use of an increasing ion velocity to compress the beam as it drifts and beam space charge to stagnate the compression before final focus. Beam compression in a neutralizing plasma does not require stagnation of the compression, enabling a more robust method. The final pulse shape at the target can be programmed by an applied velocity tilt. In this paper, neutralized drift compression is investigated. The sensitivity of the compression and focusing to beam momentum spread, plasma, and magnetic field conditions is studied with realistic driver examples. Using the 3D particle-in-cell code, we examine issues associated with self-field generation, stability, and vacuum-neutralized transport transition and focusing.

  3. Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel.

    PubMed

    Heusser, Stephanie A; Yoluk, Özge; Klement, Göran; Riederer, Erika A; Lindahl, Erik; Howard, Rebecca J

    2016-07-01

    The superfamily of pentameric ligand-gated ion channels includes neurotransmitter receptors that mediate fast synaptic transmission in vertebrates, and are targets for drugs including alcohols, anesthetics, benzodiazepines, and anticonvulsants. However, the mechanisms of ion channel opening, gating, and modulation in these receptors leave many open questions, despite their pharmacological importance. Subtle conformational changes in both the extracellular and transmembrane domains are likely to influence channel opening, but have been difficult to characterize given the limited structural data available for human membrane proteins. Recent crystal structures of a modified Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in multiple states offer an appealing model system for structure-function studies. However, the pharmacology of the crystallographic GluCl construct is not well established. To establish the functional relevance of this system, we used two-electrode voltage-clamp electrophysiology in Xenopus oocytes to characterize activation of crystallographic and native-like GluCl constructs by L-glutamate and ivermectin. We also tested modulation by ethanol and other anesthetic agents, and used site-directed mutagenesis to explore the role of a region of Loop F which was implicated in ligand gating by molecular dynamics simulations. Our findings indicate that the crystallographic construct functionally models concentration-dependent agonism and allosteric modulation of pharmacologically relevant receptors. Specific substitutions at residue Leu174 in loop F altered direct L-glutamate activation, consistent with computational evidence for this region's role in ligand binding. These insights demonstrate conservation of activation and modulation properties in this receptor family, and establish a framework for GluCl as a model system, including new possibilities for drug discovery. In this study, we elucidate the validity of a modified glutamate

  4. Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain

    PubMed Central

    Scafidi, Susanna; Fiskum, Gary; Lindauer, Steven L.; Bamford, Penelope; Shi, Da; Hopkins, Irene; McKenna, Mary C.

    2016-01-01

    Acetyl-L-carnitine (ALCAR) is an endogenous metabolic intermediate that facilitates the influx and efflux of acetyl groups across the mitochondrial inner membrane. Exogenously administered ALCAR has been used as a nutritional supplement and also as an experimental drug with reported neuroprotective properties and effects on brain metabolism. The aim of this study was to determine oxidative metabolism of ALCAR in the immature rat forebrain. Metabolism was studied in 21 day old rat brain at 15, 60 and 120 minutes after an intraperitoneal injection of [2-13C]acetyl-L-carnitine. The amount, pattern, and fractional enrichment of 13C-labeled metabolites were determined by ex vivo 13C-NMR spectroscopy. Metabolism of the acetyl moiety from [2-13C]ALCAR via the tricarboxylic acid (TCA) cycle led to incorporation of label into the C4, C3 and C2 positions of glutamate (GLU), glutamine (GLN) and GABA. Labeling patterns indicated that [2-13C]ALCAR was metabolized by both neurons and glia; however, the percent enrichment was higher in GLN and GABA than in GLU, demonstrating high metabolism in astrocytes and GABAergic neurons. Incorporation of label into the C3 position of alanine, both C3 and C2 of lactate, and the C1 and C5 positions of glutamate and glutamine demonstrated that [2-13C]ALCAR was actively metabolized via the pyruvate recycling pathway. The enrichment of metabolites with 13C from metabolism of ALCAR was highest in alanine C3 (10%) and lactate C3 (9%), with considerable enrichment in GABA C4 (8%), GLN C3 (~4%) and GLN C5 (5%). Overall, our 13C-NMR studies reveal that the acetyl moiety of ALCAR is metabolized for energy in both astrocytes and neurons and the label incorporated into the neurotransmitters glutamate and GABA. Cycling ratios showed prolonged cycling of carbon from the acetyl moiety of ALCAR in the TCA cycle. Labeling of compounds formed from metabolism of [2-13C]ALCAR via the pyruvate recycling pathway was higher than values reported for other

  5. The Long and Winding Road to Gamma-Amino-Butyric Acid as Neurotransmitter.

    PubMed

    Avoli, Massimo; Krnjević, Krešimir

    2016-03-01

    This review centers on the discoveries made during more than six decades of neuroscience research on the role of gamma-amino-butyric acid (GABA) as neurotransmitter. In doing so, special emphasis is directed to the significant involvement of Canadian scientists in these advances. Starting with the early studies that established GABA as an inhibitory neurotransmitter at central synapses, we summarize the results pointing at the GABA receptor as a drug target as well as more recent evidence showing that GABAA receptor signaling plays a surprisingly active role in neuronal network synchronization, both during development and in the adult brain. Finally, we briefly address the involvement of GABA in neurological conditions that encompass epileptic disorders and mental retardation. RESUMÉ: Le chemin long et sinueux pour que le GABA soit reconnu comme un neurotransmetteur. Cette revue est axée sur les découvertes réalisées durant plus de six décennies de recherche en neurosciences sur l'acide gamma-aminobutyrique (GABA) comme neurotransmetteur. À cet effet, nous mettons une emphase particulière sur le rôle significatif de chercheurs canadiens dans ce domaine de recherche. En prenant comme point de départ les premières études qui ont établi que le GABA était un neurotransmetteur au niveau de synapses centrales, nous faisons le sommaire des résultats identifiant le récepteur GABA comme étant une cible thérapeutique ainsi que des données plus récentes montrant que la signalisation du récepteur GABAA joue, de façon surprenante, un rôle actif dans la synchronisation du réseau neuronal, tant au cours du développement que dans le cerveau adulte. Finalement, nous traitons brièvement du rôle de GABA dans les maladies neurologiques incluant les troubles épileptiques et l'arriération mentale. PMID:26763167

  6. Speeding chemical reactions by focusing

    NASA Astrophysics Data System (ADS)

    Lacasta, A. M.; Ramírez-Piscina, L.; Sancho, J. M.; Lindenberg, K.

    2013-04-01

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, and obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate ˜t-1/2 to very close to the perfect mixing rate, ˜t-1.

  7. "Only" and Focus.

    ERIC Educational Resources Information Center

    Vallduvi, Enric

    The relationship of the word "only," one of a class of words known as scalar particles, focus adverbs, focus inducers, or focus-sensitive particles, with the "focus" of the sentence is examined. It is suggested, based on analysis of discourse structure, that this "association with focus" is not an inherent property of this scalar particle. The…

  8. Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release

    PubMed Central

    Cho, Richard W.; Song, Yun; Littleton, J. Troy

    2010-01-01

    The SNARE-binding protein complexin (Cpx) has been demonstrated to regulate synaptic vesicle fusion. Previous studies are consistent with Cpx functioning either as a synaptic vesicle fusion clamp to prevent premature exocytosis, or as a facilitator to directly stimulate release. Here we examined conserved roles of invertebrate and mammalian Cpx isoforms in the regulation of neurotransmitter release using the Drosophila neuromuscular junction as a model synapse. We find that SNARE binding by Cpx is required for its role as a fusion clamp. All four mammalian Cpx proteins (mCpx), which have been demonstrated to facilitate release, also function as fusion clamps when expressed in Drosophilacpx null mutants, though their clamping abilities varies between isoforms. Moreover, expression of mCpx I, II or III isoforms dramatically enhance evoked release compared to mCpx IV or Drosophila Cpx. Differences in the clamping and facilitating properties of complexin isoforms can be partially attributed to differences in the C-terminal membrane tethering domain. Our findings indicate that the function of complexins as fusion clamps and facilitators of fusion are conserved across evolution, and that these roles are genetically separable within an isoform and across different isoforms. PMID:20678575

  9. Understanding the redox coupling between quantum dots and the neurotransmitter dopamine in hybrid self-assemblies

    NASA Astrophysics Data System (ADS)

    Ji, Xin; Makarov, Nikolay S.; Wang, Wentao; Palui, Goutam; Robel, Istvan; Mattoussi, Hedi

    2015-03-01

    Interactions between luminescent fluorophores and redox active molecules often involve complex charge transfer processes, and have great ramifications in biology. Dopamine is a redox active neurotransmitter involved in a range of brain activities. We used steady-state and time-resolved fluorescence along with transient absorption bleach measurements, to probe the effects of changing the QD size and valence on the rate of photoluminescence quenching in QD-dopamine conjugates, when the pH of the medium was varied. In particular, we measured substantially larger quenching efficiencies, combined with more pronounced shortening in the PL lifetime decay when smaller size QDs and/or alkaline pH were used. Moreover, we found that changes in the nanocrystal size alter both the electron and hole relaxation of photoexcited QDs but with very different extents. For instance, a more pronounced change in the hole relaxation was recorded in alkaline buffers and for green-emitting QDs compared to their red-emitting counterparts. We attributed these results to the more favorable electron transfer pathway from the reduced form of the complex to the valence band of the QD. This process benefits from the combination of lower oxidation potential and larger energy mismatch in alkaline buffers and for green-emitting QDs. In comparison, the effects on the rate of electron transfer from excited QDs to dopamine are less affected by QD size. These findings provide new insights into the mechanisms that drive charge transfer interactions and the ensuing quenching of QD emission in such assemblies.

  10. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed

    Jones, Peter D; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology-rather than microfluidic-will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years. PMID:27065794

  11. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed Central

    Jones, Peter D.; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology—rather than microfluidic—will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years. PMID:27065794

  12. Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters.

    PubMed

    Castaño-Alvarez, Mario; Fernández-Abedul, M Teresa; Costa-García, Agustín; Agirregabiria, María; Fernández, Luis J; Ruano-López, Jesús Miguel; Barredo-Presa, Borja

    2009-11-15

    A new SU-8 based microchip capillary electrophoresis (MCE) device has been developed for the first time with integrated electrochemical detection. Embedded electrophoretic microchannels have been fabricated with a multilayer technology based on bonding and releasing steps of stacked SU-8 films. This technology has allowed the monolithic integration in the device of the electrochemical detection system based on platinum electrodes. The fabrication of the chips presented in this work is totally compatible with reel-to-reel techniques, which guarantee a low cost and high reliability production. The influence of relevant experimental variables, such as the separation voltage and detection potential, has been studied on the SU-8 microchip with an attractive analytical performance. Thus, the effective electrical isolation of the end-channel amperometric detector has been also demonstrated. The good performance of the SU-8 device has been proven for separation and detection of the neurotransmitters, dopamine (DA) and epinephrine (EP). High efficiency (30,000-80,000 N/m), excellent precision, good detection limit (450 nM) and resolution (0.90-1.30) has been achieved on the SU-8 microchip. These SU-8 devices have shown a better performance than commercial Topas (thermoplastic olefin polymer of amorphous structure) microchips. The low cost and versatile SU-8 microchip with integrated platinum film electrochemical detector holds great promise for high-volume production of disposable microfluidic analytical devices. PMID:19782188

  13. Effects of ethanol on neurotransmitter release and intracellular free calcium in PC12 cells

    SciTech Connect

    Rabe, C.S.; Weight, F.F.

    1988-02-01

    The effect of ethanol on muscarine-stimulated release of l-(/sup 3/H)norepinephrine ((/sup 3/H)NE) was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose-dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any detectable effect of ethanol on (/sup 3/H)NE uptake or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca++ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced an increase in the basal release of (/sup 3/H)NE. Intracellular free Ca++ also was increased by ethanol concentrations greater than 100 mM. The elevation of basal transmitter release and intracellular free Ca++ by concentrations of ethanol greater than 100 mM occurred independently of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca++ and transmitter secretion. These results suggest that the effects of ethanol on neurotransmitter release are associated with the effects of ethanol on intracellular free Ca++.

  14. Ethanol's effects on neurotransmitter release and intracellular free calcium in PC12 cells

    SciTech Connect

    Rabe, C.S.; Weight, F.F.

    1988-01-01

    The effect of ethanol on muscarine-stimulated release of (/sup 3/H)NE was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any effect of ethanol on (/sup 3/H)NE uptake, metabolism or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca2+ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced both a stimulation of the release of (/sup 3/H)NE as well as an increase in intracellular free Ca2+. The increase in basal transmitter release and intracellular free Ca2+ occurred independent of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca2+ or transmitter section. These results demonstrate the relationship of the effects of ethanol on cellular free Ca2+ and neurotransmitter release.

  15. Detection of the inhibitory neurotransmitter GABA in macrophages by magnetic resonance spectroscopy.

    PubMed

    Stuckey, D J; Anthony, D C; Lowe, J P; Miller, J; Palm, W M; Styles, P; Perry, V H; Blamire, A M; Sibson, N R

    2005-08-01

    Macrophages are key components of the inflammatory response to tissue injury, but their activities can exacerbate neuropathology. High-resolution magnetic resonance spectroscopy was used to identify metabolite levels in perchloric acid extracts of cultured cells of the RAW 264.7 murine macrophage line under resting and lipopolysaccharide-activated conditions. Over 25 metabolites were identified including gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter not previously reported to be present in macrophages. The presence of GABA was also demonstrated in extracts of human peripheral blood monocyte-derived macrophages. This finding suggests that there may be communication between damaged central nervous system (CNS) tissue and recruited macrophages and resident microglia, which could help orchestrate the immune response. On activation, lactate, glutamine, glutamate, and taurine levels were elevated significantly, and GABA and alanine were reduced significantly. Strong resonances from glutathione, evident in the macrophage two-dimensional 1H spectrum, suggest that this may have potential as a noninvasive marker of macrophages recruited to the CNS, as it is only present at low levels in normal brain. Alternatively, a specific combination of spectroscopic changes, such as lactate, alanine, glutathione, and polyamines, may prove to be the most accurate means of detecting macrophage recruitment to the CNS. PMID:15908457

  16. Implantable Microprobe with Arrayed Microsensors for Combined Amperometric Monitoring of the Neurotransmitters, Glutamate and Dopamine.

    PubMed

    Tseng, Tina T-C; Monbouquette, Harold G

    2012-08-15

    An implantable, micromachined microprobe with a microsensor array for combined monitoring of the neurotransmitters, glutamate (Glut) and dopamine (DA), by constant potential amperometry has been created and characterized. Microprobe studies in vitro revealed Glut and DA microsensor sensitivities of 126±5 nA·μM(-1)·cm(-2) and 3250±50 nA·μM(-1)·cm(-2), respectively, with corresponding detection limits of 2.1±0.2 μM and 62±8 nM, both at comparable ~1 sec response times. No diffusional interaction of H(2)O(2) among arrayed microelectrodes was observed. Also, no responses from the electroactive interferents, ascorbic acid (AA), uric acid (UA), DOPA (a DA catabolite) or DOPAC (a DA precursor), over their respective physiological concentration ranges, were detected. The dual sensing microbe attributes of size, detection limit, sensitivity, response time and selectivity make it attractive for combined sensing of Glut and DA in vivo. PMID:23139647

  17. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine.

    PubMed

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K; Hardie, Roger C; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons. PMID:27047343

  18. Monoaminergic neurotransmitter alterations in postmortem brain regions of depressed and aggressive patients with Alzheimer's disease.

    PubMed

    Vermeiren, Yannick; Van Dam, Debby; Aerts, Tony; Engelborghs, Sebastiaan; De Deyn, Peter P

    2014-12-01

    Depression and aggression in Alzheimer's disease (AD) are 2 of the most severe and prominent neuropsychiatric symptoms (NPS). Altered monoaminergic neurotransmitter system functioning has been implicated in both NPS, although their neurochemical etiology remains to be elucidated. Left frozen hemispheres of 40 neuropathologically confirmed AD patients were regionally dissected. Dichotomization based on depression and aggression scores resulted in depressed/nondepressed (AD + D/AD - D) and aggressive/nonaggressive (AD + Agr/AD - Agr) groups. Concentrations of dopamine, serotonin (5-HT), (nor)epinephrine ((N)E), and respective metabolites were determined using reversed-phase high-performance liquid chromatography. Significantly lower 3-methoxy-4-hydroxyphenylglycol (MHPG) and higher homovanillic acid levels were observed in Brodmann area (BA) 9 and 10 of AD + D compared with AD - D. In AD + Agr, 5-hydroxy-3-indoleacetic acid (5-HIAA) levels in BA9, 5-HIAA to 5-HT ratios in BA11, and MHPG, NE, and 5-HIAA levels in the hippocampus were significantly decreased compared with AD - Agr. These findings indicate that brain region-specific altered monoamines and metabolites may contribute to the occurrence of depression and aggression in AD. PMID:24997673

  19. Body Mass Index in Multiple Sclerosis: Associations with CSF Neurotransmitter Metabolite Levels

    PubMed Central

    Evangelopoulos, Maria-Eleftheria; Davaki, Panagiota; Sfagos, Constantinos

    2013-01-01

    Body weight and height of patients with relapsing-remitting multiple sclerosis (RRMS) or clinically isolated syndrome suggesting MS (CIS) in the age range 18 to 60 years (154 males and 315 females) were compared with those of subjects (146 males and 212 females) free of any major neurological disease. In drug-free patients, CSF levels of the metabolites of noradrenaline (MHPG), serotonin (5-HIAA), and dopamine (HVA), neurotransmitters involved in eating behavior, were estimated in searching for associations with body mass index (BMI). Statistical evaluations were done separately for males and females. Lower BMI was found in female MS patients compared to female controls, more pronounced in RRMS. BMI was not associated with duration of illness, smoking, present or previous drug treatment, or disability score. Body height showed a shift towards greater values in MS patients compared to controls. Patients in the lower BMI quartile (limits defined from control subjects) had lower 5-HIAA and HVA compared to patients in the upper quartile. The results provide evidence for weight reduction during disease process in MS, possibly related to deficits in serotoninergic and dopaminergic activities that develop during disease course, resulting in impairments in food reward capacity and in motivation to eat. PMID:24205443

  20. Calcium and protons affect the interaction of neurotransmitters and anesthetics with anionic lipid membranes.

    PubMed

    Pérez-Isidoro, Rosendo; Ruiz-Suárez, J C

    2016-09-01

    We study how zwitterionic and anionic biomembrane models interact with neurotransmitters (NTs) and anesthetics (ATs) in the presence of Ca(2+) and different pH conditions. As NTs we used acetylcholine (ACh), γ-aminobutyric acid (GABA), and l-glutamic acid (LGlu). As ATs, tetracaine (TC), and pentobarbital (PB) were employed. By using differential scanning calorimetry (DSC), we analyzed the changes such molecules produce in the thermal properties of the membranes. We found that calcium and pH play important roles in the interactions of NTs and ATs with the anionic lipid membranes. Changes in pH promote deprotonation of the phosphate groups in anionic phospholipids inducing electrostatic interactions between them and NTs; but if Ca(2+) ions are in the system, these act as bridges. Such interactions impact the physical properties of the membranes in a similar manner that anesthetics do. Beyond the usual biochemical approach, we claim that these effects should be taken into account to understand the excitatory-inhibitory orchestrated balance in the nervous system. PMID:27362370

  1. Effects of Aromatic Fluorine Substitution on Protonated Neurotransmitters: The Case of 2-Phenylethylamine.

    PubMed

    Schütz, Markus; Bouchet, Aude; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta; Dopfer, Otto

    2016-06-01

    Fluorination of pharmaceutical compounds is a common tool to modulate their physiochemical properties. We determine the effects of site-specific aromatic fluorine substitution on the geometric, energetic, vibrational, and electronic properties of the protonated neurotransmitter 2-phenylethylamine (xF-H(+) PEA, x=ortho, meta, para) by infrared multiphoton photodissociation (IRMPD) in the fingerprint range (600-1750 cm(-1) ) and quantum chemical calculations at the B3LYP-D3/aug-cc-pVTZ level. The IRMPD spectra of all ions are assigned to their folded gauche conformers stabilized by intramolecular NH(+) ⋅⋅⋅π hydrogen bonds (H-bonds) between the protonated amino group and the aromatic ring. H→F substitution reduces the symmetry and allows for additional NH(+) ⋅⋅⋅F interactions in oF-H(+) PEA, leading to three distinct gauche conformers. In comparison to oF-H(+) PEA, the fluorination effects on the energy landscape (energy ordering and isomerization barriers) in pF-H(+) PEA and mF-H(+) PEA with one and two gauche conformers are less pronounced. The strengths of the intramolecular NH(+) ⋅⋅⋅F and NH(+) ⋅⋅⋅π bonds are analyzed by the noncovalent interaction (NCI) method. PMID:27210899

  2. Activity-dependent, homeostatic regulation of neurotransmitter release from auditory nerve fibers.

    PubMed

    Ngodup, Tenzin; Goetz, Jack A; McGuire, Brian C; Sun, Wei; Lauer, Amanda M; Xu-Friedman, Matthew A

    2015-05-19

    Information processing in the brain requires reliable synaptic transmission. High reliability at specialized auditory nerve synapses in the cochlear nucleus results from many release sites (N), high probability of neurotransmitter release (Pr), and large quantal size (Q). However, high Pr also causes auditory nerve synapses to depress strongly when activated at normal rates for a prolonged period, which reduces fidelity. We studied how synapses are influenced by prolonged activity by exposing mice to constant, nondamaging noise and found that auditory nerve synapses changed to facilitating, reflecting low Pr. For mice returned to quiet, synapses recovered to normal depression, suggesting that these changes are a homeostatic response to activity. Two additional properties, Q and average excitatory postsynaptic current (EPSC) amplitude, were unaffected by noise rearing, suggesting that the number of release sites (N) must increase to compensate for decreased Pr. These changes in N and Pr were confirmed physiologically using the integration method. Furthermore, consistent with increased N, endbulbs in noise-reared animals had larger VGlut1-positive puncta, larger profiles in electron micrographs, and more release sites per profile. In current-clamp recordings, noise-reared BCs had greater spike fidelity even during high rates of synaptic activity. Thus, auditory nerve synapses regulate excitability through an activity-dependent, homeostatic mechanism, which could have major effects on all downstream processing. Our results also suggest that noise-exposed bushy cells would remain hyperexcitable for a period after returning to normal quiet conditions, which could have perceptual consequences. PMID:25944933

  3. Preparation of Graphene-Modified Acupuncture Needle and Its Application in Detecting Neurotransmitters

    PubMed Central

    Tang, Lina; Du, Danxin; Yang, Fan; Liang, Zhong; Ning, Yong; Wang, Hua; Zhang, Guo-Jun

    2015-01-01

    We report a unique nanosensing platform by combining modern nanotechnology with traditional acupuncture needle to prepare graphene-modified acupuncture needle (G-AN), and using it for sensitive detection of neurotransmitters via electrochemistry. An electrochemical deposition method was employed to deposit Au nanoparticles (AuNPs) on the tip surface of the traditional acupuncture needle, while the other part of the needle was coated with insulation paste. Subsequently, the G-AN was obtained by cyclic voltammetry reduction of a graphene oxide solution on the surface of the AuNPs. To investigate the sensing property of the G-AN, pH dependence was measured by recording the open circuit potential in the various pH buffer solutions ranging from 2.0 to 10.0. What’s more, the G-AN was further used for detection of dopamine (DA) with a limit of detection of 0.24 μM. This novel G-AN exhibited a good sensitivity and selectivity, and could realize direct detection of DA in human serum. PMID:26112773

  4. Sources and consequences of oxidative damage from mitochondria and neurotransmitter signaling.

    PubMed

    Brennan-Minnella, Angela M; Arron, Sarah T; Chou, Kai-Ming; Cunningham, Eric; Cleaver, James E

    2016-06-01

    Cancer and neurodegeneration represent the extreme responses of growing and terminally differentiated cells to cellular and genomic damage. The damage recognition mechanisms of nucleotide excision repair, epitomized by xeroderma pigmentosum (XP), and Cockayne syndrome (CS), lie at these extremes. Patients with mutations in the DDB2 and XPC damage recognition steps of global genome repair exhibit almost exclusively actinic skin cancer. Patients with mutations in the RNA pol II cofactors CSA and CSB, that regulate transcription coupled repair, exhibit developmental and neurological symptoms, but not cancer. The absence of skin cancer despite increased photosensitivity in CS implies that the DNA repair deficiency is not associated with increased ultraviolet (UV)-induced mutagenesis, unlike DNA repair deficiency in XP that leads to high levels of UV-induced mutagenesis. One attempt to explain the pathology of CS is to attribute genomic damage to endogenously generated reactive oxygen species (ROS). We show that inhibition of complex I of the mitochondria generates increased ROS, above an already elevated level in CSB cells, but without nuclear DNA damage. CSB, but not CSA, quenches ROS liberated from complex I by rotenone. Extracellular signaling by N-methyl-D-aspartic acid in neurons, however, generates ROS enzymatically through oxidase that does lead to oxidative damage to nuclear DNA. The pathology of CS may therefore be caused by impaired oxidative phosphorylation or nuclear damage from neurotransmitters, but without damage-specific mutagenesis. Environ. Mol. Mutagen. 57:322-330, 2016. © 2016 Wiley Periodicals, Inc. PMID:27311994

  5. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    PubMed Central

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood–brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA. PMID:26500584

  6. Neurotransmitters as food supplements: the effects of GABA on brain and behavior.

    PubMed

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S; Alkemade, Anneke; Forstmann, Birte U; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood-brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA. PMID:26500584

  7. Schizophrenia-Associated MIR204 Regulates Noncoding RNAs and Affects Neurotransmitter and Ion Channel Gene Sets

    PubMed Central

    Cammaerts, Sophia; Strazisar, Mojca; Smets, Bart; Weckhuysen, Sarah; Nordin, Annelie; De Jonghe, Peter; Adolfsson, Rolf; De Rijk, Peter; Del Favero, Jurgen

    2015-01-01

    As regulators of gene expression, microRNAs (miRNAs) are likely to play an important role in the development of disease. In this study we present a large-scale strategy to identify miRNAs with a role in the regulation of neuronal processes. Thereby we found variant rs7861254 located near the MIR204 gene to be significantly associated with schizophrenia. This variant resulted in reduced expression of miR-204 in neuronal-like SH-SY5Y cells. Analysis of the consequences of the altered miR-204 expression on the transcriptome of these cells uncovered a new mode of action for miR-204, being the regulation of noncoding RNAs (ncRNAs), including several miRNAs, such as MIR296. Furthermore, pathway analysis showed downstream effects of miR-204 on neurotransmitter and ion channel related gene sets, potentially mediated by miRNAs regulated through miR-204. PMID:26714269

  8. Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors.

    PubMed

    Silva, Tiago A; Zanin, Hudson; May, Paul W; Corat, Evaldo J; Fatibello-Filho, Orlando

    2014-12-10

    Porous diamond-like carbon (DLC) electrodes have been prepared, and their electrochemical performance was explored. For electrode preparation, a thin DLC film was deposited onto a densely packed forest of highly porous, vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the carbon nanotubes to clump together to form a microstructured surface with an enlarged surface area. DLC:VACNT electrodes show fast charge transfer, which is promising for several electrochemical applications, including electroanalysis. DLC:VACNT electrodes were applied to the determination of targeted molecules such as dopamine (DA) and epinephrine (EP), which are neurotransmitters/hormones, and acetaminophen (AC), an endocrine disruptor. Using simple and low-cost techniques, such as cyclic voltammetry, analytical curves in the concentration range from 10 to 100 μmol L(-1) were obtained and excellent analytical parameters achieved, including high analytical sensitivity, good response stability, and low limits of detection of 2.9, 4.5, and 2.3 μmol L(-1) for DA, EP, and AC, respectively. PMID:25402230

  9. The impact of calcium current reversal on neurotransmitter release in the electrically stimulated retina

    NASA Astrophysics Data System (ADS)

    Werginz, Paul; Rattay, Frank

    2016-08-01

    Objective. In spite of intense theoretical and experimental investigations on electrical nerve stimulation, the influence of reversed ion currents on network activity during extracellular stimulation has not been investigated so far. Approach. Here, the impact of calcium current reversal on neurotransmitter release during subretinal stimulation was analyzed with a computational multi-compartment model of a retinal bipolar cell (BC) that was coupled with a four-pool model for the exocytosis from its ribbon synapses. Emphasis was laid on calcium channel dynamics and how these channels influence synaptic release. Main results. Stronger stimulation with anodic pulses caused transmembrane voltages above the Nernst potential of calcium in the terminals and, by this means, forced calcium ions to flow in the reversed direction from inside to the outside of the cell. Consequently, intracellular calcium concentration decreased resulting in a reduced vesicle release or preventing release at all. This mechanism is expected to lead to a pronounced ring-shaped pattern of exocytosis within a group of neighbored BCs when the stronger stimulated cells close to the electrode fail in releasing vesicles. Significance. Stronger subretinal stimulation causes failure of synaptic exocytosis due to reversal of calcium flow into the extracellular space in cells close to the electrode.

  10. Increased Expression of Alpha-Synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering After Endocytosis

    PubMed Central

    Nemani, Venu M.; Lu, Wei; Berge, Victoria; Nakamura, Ken; Onoa, Bibiana; Lee, Michael K.; Chaudhry, Farrukh A.; Nicoll, Roger A.; Edwards, Robert H.

    2011-01-01

    Summary The protein α-synuclein accumulates in the brain of patients with sporadic Parkinson’s disease (PD), and increased gene dosage causes a severe, dominantly inherited form of PD, but we know little about the effects of synuclein that precede degeneration. α-Synuclein localizes to the nerve terminal, but the knockout has little if any effect on synaptic transmission. In contrast, we now find that the modest over-expression of α-synuclein, in the range predicted for gene multiplication and in the absence of overt toxicity, markedly inhibits neurotransmitter release. The mechanism, elucidated by direct imaging of the synaptic vesicle cycle, involves a specific reduction in size of the synaptic vesicle recycling pool. Ultrastructural analysis demonstrates reduced synaptic vesicle density at the active zone, and imaging further reveals a defect in the reclustering of synaptic vesicles after endocytosis. Increased levels of α-synuclein thus produce a specific, physiological defect in synaptic vesicle recycling that precedes detectable neuropathology. PMID:20152114

  11. Live Imaging of Nicotine Induced Calcium Signaling and Neurotransmitter Release Along Ventral Hippocampal Axons.

    PubMed

    Zhong, Chongbo; Talmage, David A; Role, Lorna W

    2015-01-01

    Sustained enhancement of axonal signaling and increased neurotransmitter release by the activation of pre-synaptic nicotinic acetylcholine receptors (nAChRs) is an important mechanism for neuromodulation by acetylcholine (ACh). The difficulty with access to probing the signaling mechanisms within intact axons and at nerve terminals both in vitro and in vivo has limited progress in the study of the pre-synaptic components of synaptic plasticity. Here we introduce a gene-chimeric preparation of ventral hippocampal (vHipp)-accumbens (nAcc) circuit in vitro that allows direct live imaging to analyze both the pre- and post-synaptic components of transmission while selectively varying the genetic profile of the pre- vs post-synaptic neurons. We demonstrate that projections from vHipp microslices, as pre-synaptic axonal input, form multiple, reliable glutamatergic synapses with post-synaptic targets, the dispersed neurons from nAcc. The pre-synaptic localization of various subtypes of nAChRs are detected and the pre-synaptic nicotinic signaling mediated synaptic transmission are monitored by concurrent electrophysiological recording and live cell imaging. This preparation also provides an informative approach to study the pre- and post-synaptic mechanisms of glutamatergic synaptic plasticity in vitro. PMID:26132461

  12. Plastic changes of synapses and excitatory neurotransmitter receptors in facial nucleus following facial-facial anastomosis.

    PubMed

    Chen, Pei; Song, Jun; Luo, Linghui; Gong, Shusheng

    2008-12-01

    The remodeling process of synapses and neurotransmitter receptors of facial nucleus were observed. Models were set up by facial-facial anastomosis in rat. At post-surgery day (PSD) 0, 7, 21 and 60, synaptophysin (p38), NMDA receptor subunit 2A and AMPA receptor subunit 2 (GluR2) were observed by immunohistochemical method and semi-quantitative RT-PCR, respectively. Meanwhile, the synaptic structure of the facial motorneurons was observed under a transmission electron microscope (TEM). The intensity of p38 immunoreactivity was decreased, reaching the lowest value at PSD day 7, and then increased slightly at PSD 21. Ultrastructurally, the number of synapses in nucleus of the operational side decreased, which was consistent with the change in P38 immunoreactivity. NMDAR2A mRNA was down-regulated significantly in facial nucleus after the operation (P<0.05), whereas AMPAR2 mRNA levels remained unchanged (P>0.05). The synapses innervation and the expression of NMDAR2A and AMPAR2 mRNA in facial nucleus might be modified to suit for the new motor tasks following facial-facial anastomosis, and influenced facial nerve regeneration and recovery. PMID:19107374

  13. Preparation of Graphene-Modified Acupuncture Needle and Its Application in Detecting Neurotransmitters

    NASA Astrophysics Data System (ADS)

    Tang, Lina; Du, Danxin; Yang, Fan; Liang, Zhong; Ning, Yong; Wang, Hua; Zhang, Guo-Jun

    2015-06-01

    We report a unique nanosensing platform by combining modern nanotechnology with traditional acupuncture needle to prepare graphene-modified acupuncture needle (G-AN), and using it for sensitive detection of neurotransmitters via electrochemistry. An electrochemical deposition method was employed to deposit Au nanoparticles (AuNPs) on the tip surface of the traditional acupuncture needle, while the other part of the needle was coated with insulation paste. Subsequently, the G-AN was obtained by cyclic voltammetry reduction of a graphene oxide solution on the surface of the AuNPs. To investigate the sensing property of the G-AN, pH dependence was measured by recording the open circuit potential in the various pH buffer solutions ranging from 2.0 to 10.0. What’s more, the G-AN was further used for detection of dopamine (DA) with a limit of detection of 0.24 μM. This novel G-AN exhibited a good sensitivity and selectivity, and could realize direct detection of DA in human serum.

  14. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    PubMed Central

    Barth, Claudia; Villringer, Arno; Sacher, Julia

    2015-01-01

    Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo. PMID:25750611

  15. Molecular Imaging of Transporters with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  16. Chemically-modulated photoluminescence of graphene oxide for selective detection of neurotransmitter by "turn-on" response.

    PubMed

    Jeon, Su-Ji; Kwak, Seon-Yeong; Yim, DaBin; Ju, Jong-Min; Kim, Jong-Ho

    2014-08-01

    Designing artificial nanomaterials capable of selectively detecting targets without the use of expensive and fragile antibodies is of great interest in the applications of nanomedicine. Here, we show that the photoluminescence (PL) of graphene oxide (GO) was chemically modulated for the selective detection of a neurotransmitter without the use of antibodies. GO was functionalized with nitrotriacetic acid (NTA) on which four different metal ions were chelated (M-NTA-GO), which led to its different PL responses to neurotransmitters. In particular, the Cu-NTA-GO hybrid was able to selectively detect norepinephrine at nanomolar concentrations in a simple manner via its "turn-on" PL. Moreover, it was successfully applied to the selective detection of norepinephrine secreted from living PC-12 cells. PMID:25036980

  17. A toxic fraction from scolopendra venom increases the basal release of neurotransmitters in the ventral ganglia of crustaceans.

    PubMed

    Gutiérrez, María del Carmen; Abarca, Carolina; Possani, Lourival D

    2003-06-01

    A toxic fraction from centipede (Scolopendra sp.) venom was tested in neurotransmitter release experiments. The venom was fractionated by DEAE-cellulose with a linear gradient from 20 mM to 1.0 M of ammonium acetate pH 4.7. Lethality tests were performed by injections into the third abdominal dorsolateral segment of sweet water crayfishes of the species Cambarellus cambarellus. Only fraction V (TF) was toxic. Analysis by SDS-PAGE showed that this fraction contains at least seven proteins. It induces an increase of basal gamma-amino butyric acid (GABA) and glutamate release from ventral abdominal ganglia of C. cambarellus. Assays conducted with this fraction in the presence of several drugs that affect ion channel function suggested that TF modifies membrane permeability by increasing basal release of neurotransmitters was very likely through sodium channels. PMID:12860060

  18. Network analysis of neurotransmitter related human kinase genes: possible role of SRC, RAF1, PTK2B?

    PubMed

    Brys, Zoltan; Pluhar, Andras; Kis, Janos Tibor; Buda, Bela; Szabo, Attila

    2013-09-01

    Previous co-expression analysis of human kinase genes highlighted 119 genes in neurotransmitter-related activity (based on Go:Terms). Using a merged interactome dataset, we analyzed the network of these Neurotransmitter Related Human Kinase Genes. Using the full interactome dataset we extended the network and calculating degrees and closeness centralities we identified SRC, MAPK1, RAF1, PTK2B and AKT1 kinase genes as potentially relevant nodes which did not show relevant activity in the original experimental study. As AKT1 and MAPK1 have already been indicated in various neuronal functions, we hypothesize a potential direct or indirect role for SRC, RAF1, PTK2B genes in neurotransmission and in central nervous system signaling processes. PMID:24108181

  19. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    NASA Astrophysics Data System (ADS)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  20. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    PubMed

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects. PMID:26689865

  1. A continuous plasma final focus

    SciTech Connect

    Whittum, D.H.

    1989-11-01

    Scaling laws are set down for a plasma cell used for transport, focusing and current neutralization of fine, intense, relativistic electron beams. It is found that there exists a minimum beam spot size, {sigma}{sub min} {approximately} {var epsilon}{sub n}(I{sub A}/{gamma}I){sup 1/2}, in such a focusing system. Propagation issues, including channel formation, synchrotron radiation, beam ionization and instabilities, are discussed. Numerical examples are given for a proof-of-principle experiment at KEK, an application for luminosity enhancement at the SLC, and a hypothetical TeV electron-positron collider. For a TeV collider, it is found that the effect of ion-motion on focusing, and the effect of Buneman instability on current neutralization must be considered. 3 figs., 1 tab.

  2. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry.

    PubMed

    Shariatgorji, Mohammadreza; Strittmatter, Nicole; Nilsson, Anna; Källback, Patrik; Alvarsson, Alexandra; Zhang, Xiaoqun; Vallianatou, Theodosia; Svenningsson, Per; Goodwin, Richard J A; Andren, Per E

    2016-08-01

    With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyramine, serotonin, glutamate, glutamine, aspartate, γ-aminobutyric acid, adenosine) as well as neuroactive drugs (amphetamine, sibutramine, fluvoxamine) and drug metabolites in situ directly in brain tissue sections. The use of both positive and negative ionization modes increased the number of identified molecular targets. Chemical derivatization by charge-tagging the primary amines of molecules significantly increased the sensitivity, enabling the detection of low abundant neurotransmitters and other neuroactive substances previously undetectable by MSI. The sensitivity of the imaging approach of neurochemicals has a great potential in many diverse applications in fields such as neuroscience, pharmacology, drug discovery, neurochemistry, and medicine. PMID:27155126

  3. Interactions Between Bacteria and the Gut Mucosa: Do Enteric Neurotransmitters Acting on the Mucosal Epithelium Influence Intestinal Colonization or Infection?

    PubMed

    Green, Benedict T; Brown, David R

    2016-01-01

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include enteric neurons, whose activity is influenced by bacterial pathogens, and their secreted products. Neurotransmitters appear to influence epithelial associations with bacteria in the intestinal lumen. For example, internalization of Salmonella enterica and Escherichia coli O157:H7 into the Peyer's patch mucosa of the small intestine is altered after the inhibition of neural activity with saxitoxin, a neuronal sodium channel blocker. Catecholamine neurotransmitters, such as dopamine and norepinephrine, also alter bacterial internalization in Peyer's patches. In the large intestine, norepinephrine increases the mucosal adherence of E. coli. These neurotransmitter actions are mediated by well-defined catecholamine receptors situated on the basolateral membranes of epithelial cells rather than through direct interactions with luminal bacteria. Investigations of the involvement of neuroepithelial communication in the regulation of interactions between the intestinal mucosa and luminal bacteria will provide novel insights into the mechanisms underlying bacterial colonization and pathogenesis at mucosal surfaces. PMID:26589216

  4. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Shang, Li; Dong, Shaojun

    2008-03-01

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 × 10-7 M, 3.5 × 10-7 M, 4.1 × 10-7 M, and 7.7 × 10-7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  5. Vanillin-induced amelioration of depression-like behaviors in rats by modulating monoamine neurotransmitters in the brain.

    PubMed

    Xu, Jinyong; Xu, Hui; Liu, Yang; He, Haihui; Li, Guangwu

    2015-02-28

    Olfaction plays an important role in emotions in our daily life. Pleasant odors are known to evoke positive emotions, inducing relaxation and calmness. The beneficial effects of vanillin on depressive model rats were investigated using a combination of behavioral assessments and neurotransmitter measurements. Before and after chronic stress condition (or olfactory bulbectomy), and at the end of vanillin or fluoxetine treatment, body weight, immobility time on the forced swimming test and sucrose consumption in the sucrose consumption test were measured. Changes in these assessments revealed the characteristic phenotypes of depression in rats. Neurotransmitters were measured using ultrahigh-performance liquid chromatography. Our results indicated that vanillin could alleviate depressive symptoms in the rat model of chronic depression via the olfactory pathway. Preliminary analysis of the monoamine neurotransmitters revealed that vanillin elevated both serotonin and dopamine levels in brain tissue. These results provide important mechanistic insights into the protective effect of vanillin against chronic depressive disorder via olfactory pathway. This suggests that vanillin may be a potential pharmacological agent for the treatment of major depressive disorder. PMID:25595338

  6. What do drug transporters really do?

    PubMed Central

    Nigam, Sanjay K.

    2016-01-01

    Potential drug–drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication (‘remote sensing and signalling’) between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug–metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development. PMID:25475361

  7. Apparatus and method for performing electrodynamic focusing on a microchip

    DOEpatents

    Ramsey, John Michael; Jacobson, Stephen C.

    1999-01-01

    A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment.

  8. Apparatus and method for performing electrodynamic focusing on a microchip

    DOEpatents

    Ramsey, J.M.; Jacobson, S.C.

    1999-01-12

    A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment. 22 figs.

  9. Differential regulation of nicotinic receptor-mediated neurotransmitter release following chronic (-)-nicotine administration.

    PubMed

    Jacobs, Iris; Anderson, David J; Surowy, Carol S; Puttfarcken, Pamela S

    2002-10-01

    The objective of this study was to compare nAChR-mediated neurotransmitter release from slices of rat striatum, frontal cortex and hippocampus following chronic (-)-nicotine (Nic) administration (tartrate salt, 2 mg/kg twice daily for 10 days). Binding studies were also conducted to measure changes in receptor density. Relative to saline-treated animals, the number of nAChRs measured by [(3)H]-cytisine (CYT) binding was significantly increased in all brain regions examined by 15% to 25% following chronic Nic administration. Using a relatively high throughput method to measure neurotransmitter release, we found that Nic, CYT, and (+/-)-epibatidine (EB) evoked similar concentration-dependent striatal [(3)H]-dopamine (DA) and hippocampal [(3)H]-norepinephrine (NE) release from both saline (rank order of potency for [(3)H]-DA: EB>CYT>Nic; pEC(50) values, EB (9 +/- 0.1), CYT (8 +/- 0.13), Nic (7.3 +/- 0.19); rank order potency for [(3)H]-NE: EB>Nic=CYT; pEC(50) values, EB (8 +/- 0.18), Nic (5.5 +/- 0.09), CYT (5.12 +/- 0.1)) -and Nic-treated animals (pEC(50) values [(3)H]-DA, EB (9.5 +/- 0.15), Nic (8 +/- 0.16, CYT (6.6 +/- 0.52); [(3)H]-NE, EB (8.4 +/- 0.23), Nic (5.19 +/- 0.1), CYT (5.18 +/- 0.29)). Although no change in potency was detected between the two treatment groups, the agonist efficacies in both tissues were significantly reduced by approximately 17-54% following chronic Nic administration. In contrast to striatum, treatment with Nic did not affect the maximal [(3)H]-DA response (efficacy) in the frontal cortex. However, as observed in the striatum, no change in agonist potency was observed in the frontal cortex following chronic Nic administration (pEC(50) values, saline; EB (9.2 +/- 0.2), >CYT (6.95 +/- 0.75) = Nic (6.9 +/- 0.16); Nic-treated, EB (9 +/- 0.42)>CYT (6.88 +/- 0.27) = Nic (7.1 +/- 0.17)). Chronic Nic treatment did not significantly affect KCl-evoked [(3)H]-NE release from hippocampus or [(3)H]-DA release from frontal cortex or striatum. Since

  10. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  11. Anxiolytic action of neuromedin-U and neurotransmitters involved in mice.

    PubMed

    Telegdy, G; Adamik, A

    2013-09-10

    Peptide Neuromedin-U (NmU) is widely distributed in the central nervous system and the peripheral tissues. Its physiological effects include the regulation of blood pressure, heart rate, and body temperature, and the inhibition of gastric acid secretion. The action of NmU in rats is mediated by two G-protein-coupled receptors, NmU-1R and NmU-2R. NmU-2R is present mainly in the brain, and NmU-1R mainly in the periphery. Despite the great variety of the physiological action of NmU, little is known about its possible effects in different forms of behavior, such as anxiety. In the present work, NmU-23 (the rodent form of the peptide) was tested for its effect on anxiety in elevated plus maze test in mice. For detection of the possible involvement of neurotransmitters, the mice were pretreated with receptor blockers: haloperidol (a D2, dopamine receptor antagonist), propranolol (a β-adrenergic receptor antagonist), atropine (a nonselective muscarinic acetylcholine receptor antagonist), phenoxybenzamine (a nonselective α-adrenergic receptor antagonist) or nitro-l-arginine (a nitric oxide synthase inhibitor). The peptide and nitro-l-arginine were administered into the lateral brain ventricle, while the receptor blockers were applied intraperitoneally. An NmU-23 dose 0.5μg elicited anxiolytic action, whereas this action is faded away when the dose was increased. For further testing therefore 0.5μg i.c.v. was used. Propranolol and atropine fully blocked the NmU-induced anxiolytic action, while haloperidol, phenoxybenzamine and nitro-l-arginine were ineffective. The results suggest that β-adrenergic and cholinergic mechanisms are involved in the anxiolytic action of NmU. PMID:23892031

  12. New Findings on the Neurotransmitter Modulation of Defense in the Dorsal Periaqueductal Gray.

    PubMed

    Graeff, Frederico Guilherme; Sant'Ana, Ana Beatriz; Vilela-Costa, Heloísa Helena; Zangrossi, Hélio

    2015-01-01

    The dorsal periaqueductal gray (DPAG) has long been implicated in the pathophysiology of anxiety, particularly in panic disorder (PD). Evidence obtained with animal models indicates that different neurotransmitters/neuromodulators in this midbrain area are involved in the regulation of anxiety- (e.g. inhibitory avoidance) and panic- (e.g. escape) associated defensive behaviors. Earlier findings showed that activation of serotonin (5-HT) 1A and 2A receptors in the DPAG inhibits escape expression, a panicolytic-like effect. Recently gathered evidence shows that different classes of antipanic drugs, such as the selective serotonin reuptake inhibitor antidepressant fluoxetine or the benzodiazepine alprazolam, enhance the inhibitory action of 5-HT upon these receptors. They also show that opioidergic mechanisms, through the activation of μ-receptors, contribute to this process. As with 5-HT, activation of GABAA or GABAB receptors, or cannabinoid type 1receptors as well as the tropomyosin-related kinase B receptors by brain-derived neurotrophic factor in the DPAG also inhibits escape expression. There is evidence that chronic antidepressant treatment, besides facilitating 5-HT/opioid neurotransmission, also increases brain-derived neurotrophic factor levels in this area with an impact on its panicolytic effect. On the other hand, facilitation of corticotrophin releasing factor- or cholecystokinin-mediated neurotransmission in the DPAG, via CRF1 and CCK2 receptors, respectively, causes panicogenic-like effects with implications for the pathogenesis of PD. A better understanding of the neurochemical control of defense in the DPAG may foster the development of new strategies for pharmacological treatment of PD. PMID:26350338

  13. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine

    PubMed Central

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K.; Hardie, Roger C.; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1–R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1–R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1–R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons. PMID:27047343

  14. Platelet-induced neurogenic coronary contractions due to accumulation of the false neurotransmitter, 5-hydroxytryptamine.

    PubMed Central

    Cohen, R A

    1985-01-01

    The purpose of this study was to determine if 5-hydroxytryptamine released from aggregating platelets could be accumulated and released by canine coronary adrenergic nerves, and if the false neurotransmitter resulted in an abnormal response of the smooth muscle to nerve stimulation. Isometric tension was measured in rings of epicardial coronary suspended in organ chambers filled with physiological salt solution. The response to electrical stimulation or exogenously added norepinephrine was elicited after contraction with prostaglandin F2 alpha. Electrical stimulation and exogenous norepinephrine caused beta-adrenergic relaxation of control rings. However, after rings were exposed for 2 h to aggregating platelets or 5-hydroxytryptamine, electrical stimulation caused frequency-dependent contractions. These contractions were prevented by the serotonergic antagonists, cyproheptadine or ketanserin, or by the neuronal uptake inhibitor, cocaine. The relaxation caused by exogenously added norepinephrine was unchanged after exposure to platelets or 5-hydroxytryptamine, indicating that smooth muscle alpha- and beta-adrenergic responsiveness was unchanged. The electrically stimulated overflow of radiolabeled norepinephrine from superfused strips of coronary artery was not altered by prior exposure to 5-hydroxytryptamine, indicating that the effect of exposure on the response to electrical stimulation is primarily at smooth muscle serotonergic receptors. Canine coronary arteries accumulated and metabolized radiolabeled 5-hydroxytryptamine in vitro. The accumulation of 5-hydroxytryptamine was inhibited by cocaine or by adrenergic denervation with 6-hydroxydopamine but unaffected by removal of endothelium, indicating that the adrenergic nerves were the primary site of accumulation. Electrical stimulation of superfused strips of coronary artery preincubated with radiolabeled 5-hydroxytryptamine caused the release of the intact indoleamine; this was blocked by the neurotoxin

  15. Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive.

    PubMed

    Couchman, Kiri; Grothe, Benedikt; Felmy, Felix

    2012-02-01

    Neurons of the medial superior olive (MSO) code for the azimuthal location of low-frequency sound sources via a binaural coincidence detection system operating on microsecond time scales. These neurons are morphologically simple and stereotyped, and anatomical studies have indicated a functional segregation of excitatory and inhibitory inputs between cellular compartments. It is thought that this morphological arrangement holds important implications for the computational task of these cells. To date, however, there has been no functional investigation into synaptic input sites or functional receptor distributions on mature neurons of the MSO. Here, functional neurotransmitter receptor maps for amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA), N-methyl-D-aspartate (NMDA), glycine (Gly), and ionotropic γ-aminobutyric acid (GABA(A)) receptors (Rs) were compared and complemented by their corresponding synaptic input map. We find in MSO neurons from postnatal day 20-35 gerbils that AMPARs and their excitatory inputs target the soma and dendrites. Functional GlyRs and their inhibitory inputs are predominantly refined to the somata, although a pool of functional GlyRs is present extrasynaptically on MSO dendrites. GABA(A)R responses are present throughout the cell but lack direct synaptic contact indicating an involvement in volume transmission. NMDARs are present both synaptically and extrasynaptically with an overall distribution similar to GlyRs. Interestingly, even at physiological temperatures these functional NMDARs can be potentiated by synaptically released Gly. The functional receptor and synaptic input maps produced here led to the identification of a cross talk between transmitter systems and raises the possibility that extrasynaptic receptors could be modulating leak conductances as a homeostatic mechanism. PMID:22131383

  16. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    PubMed Central

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-01-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility. Images PMID:1697032

  17. [The production and coexistence of neurotransmitters in the neurons of the rat's locus coeruleus].

    PubMed

    Iijima, K

    1999-12-01

    The production and coexistence of neurotransmitters in the locus coeruleus is reviewed. Immunocytochemical and in situ hybridization evidence demonstrated that the LC consists mainly of a single cell population that is producing GABA and 5-HT in addition to noradrenaline (NA) simultaneously in single neurons. The coexistence of GABA, 5-HT and NA in single LC neurons was proved by identifying the same neurons in adjacent sections alternately immunostained by different antisera. In situ hybridization detected the signals of glutamic acid decarboxylase mRNA and tryptophan hydroxylase mRNA indicating the presence of GABA/GAD system and the ability to produce 5-HT in many LC neurons. Neuroanatomical studies strongly suggest that a single NA cell population produces multiple transmitters so that the LC can play a role in mechanism controlling the human's adaptation to environmental changes. The present author introduces three different recent works concerning the LC. Caffé concluded that the concept of a NA-ergic cell population in all mammals is questionable. In similar cases to the domestic pig's LC, acetylcholinesterase activity, muscarinic and nicotinic receptor proteins should be checked. Tohyama et al. examined various receptor proteins in the LC and found localization of GAGAA, glutamate and glycine receptors. Maeda et al. reported that doaminergic neurons in the hypothalamus play a powerful role in mechanisms controlling the activity of NA-ergic neurons in the LC. Senile dementia of Alzheimer type causes marked atrophy and cell loss in the LC as well as the frontal lobe of the cerebrum. Molecular biology of the cell has been devoted to clarify the pathology of this fatal disease. PMID:10659576

  18. Estradiol enhances learning and memory in a spatial memory task and effects levels of monoaminergic neurotransmitters.

    PubMed

    Luine, V N; Richards, S T; Wu, V Y; Beck, K D

    1998-10-01

    The effects of chronic estrogen treatment on radial arm maze performance and on levels of central monoaminergic and amino acid neurotransmitters were examined in ovariectomized (Ovx) rats. In an eight arms baited paradigm, choice accuracy was enhanced following 12 days but not 3 days of treatment. In addition, performance during acquisition of the eight arms baited maze task was better in estrogen-treated Ovx rats than in Ovx rats. Performance of treated rats was also enhanced in win-shift trials conducted 12 days postestrogen treatment. Working, reference, and working-reference memory was examined when four of the eight arms were baited, and only working memory was improved by estrogen and only after long-term treatment. Activity of Ovx rats on an open field, crossings and rearings, was increased at 5 but not at 35 days following estrogen treatment. In medial prefrontal cortex, levels of NE, DA, and 5-HT were decreased but glutamate and GABA levels were not affected following chronic estrogen treatment. Basal forebrain nuclei also showed changes in monoamines following estrogen. Hippocampal subfields showed no effects of estrogen treatment on monoaminergic or amino acid transmitters. Levels of GABA were increased in the vertical diagonal bands following chronic estrogen. Results show that estrogen enhances learning/memory on a task utilizing spatial memory. Effects in Ovx rats appear to require the chronic (several days) presence of estrogen. Changes in activity of both monoaminergic and amino acid transmitters in the frontal cortex and basal forebrain may contribute to enhancing effects of estrogen on learning/memory. PMID:9799625

  19. Modulation of pumping rate by two species of marine bivalve molluscs in response to neurotransmitters: Comparison of in vitro and in vivo results.

    PubMed

    Frank, Dana M; Deaton, Lewis; Shumway, Sandra E; Holohan, Bridget A; Ward, J Evan

    2015-07-01

    Most studies regarding the neuroanatomy and neurophysiology of molluscan ctenidia have focused on isolated ctenidial tissue preparations. This study investigated how bivalve molluscs modulate their feeding rates by examining the effects of a variety of neurotransmitters, including serotonin, dopamine, and the dopamine agonist apomorphine on both isolated ctenidial tissue and in intact members of two commercially important bivalve species: the blue mussel, Mytilus edulis; and the bay scallop Argopecten irradians. In particular, we examined the effect of changes in: 1) beat of the lateral cilia (in vitro), 2) distance between ctenidial filaments and/or plicae (in vivo), and 3) diameter of the siphonal openings (in vivo) on alteration of bulk water flow through the mantle cavity. Important differences were found between isolated tissue and whole animals, and between species. Drugs that stimulated ciliary beat in vitro did not increase water processing rate in vivo. None of the treatments increased water flow through the mantle cavity of intact animals. Results suggest that A. irradians was primarily modulating lateral ciliary activity, while M. edulis appeared to have a number of ways to control water processing activity, signifying that the two species may have different compensatory and regulatory mechanisms controlling feeding activity. PMID:25847101

  20. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders.

    PubMed

    Tachikawa, Masanori; Hosoya, Ken-Ichi

    2011-01-01

    Guanidino compounds (GCs), such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC) 6A8) expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6) and organic cation transporter (OCT3/SLC22A3) expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen in patients with

  1. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders

    PubMed Central

    2011-01-01

    Guanidino compounds (GCs), such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC) 6A8) expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6) and organic cation transporter (OCT3/SLC22A3) expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen in patients with

  2. Bovine neuronal vesicular glutamate transporter activity is inhibited by ergovaline and other ergopeptines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-Glutamate (Glu) is the major excitatory neurotransmitter responsible for neurotransmission in the vertebrate central nervous system, including the gastrointestinal tract (GIT) of cattle. Vesicular Glu transporters VGLUT1 and VGLUT2 concentrate (50 mM) Glu (Km = 1 to 4 mM) into synaptic vesicles (S...

  3. Secure Transportation Management

    SciTech Connect

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  4. Focus Curriculum Manual; A Focus Dissemination Project.

    ERIC Educational Resources Information Center

    Human Resource Associates, Inc., Hastings, Minn.

    This training manual is for use in preparing staff members to use the Focus Model, which is a "school within a school" for disaffected high school students. The material is designed to be used as a resource aid following participation in an in-service workshop. Information is presented to help implement a contracting system to establish and…

  5. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  6. Focus Intonation in Bengali

    ERIC Educational Resources Information Center

    Hasan, Md. Kamrul

    2015-01-01

    This work attempts to investigate the role of prosody in the syntax of focus in Bangla. The aim of this study is to show the intonation pattern of Bangla in emphasis and focus. In order to do that, the author has looked at the pattern of focus without-i/o as well as with the same. Do they really pose any different focus intonation pattern from…

  7. Focus screen optimization.

    PubMed

    Plummer, W T

    1975-11-01

    Ground glass used for camera focus screens often has far from optimum diffusion properties. An analysis of the function of the focus screen shows that a screen with random (Gaussian) diffusion properties can be constructed with both brightness and focus efficiencies above 84%. These considerations have led to the design of an unusually bright and effective focus screen for the Polaroid SX-70 Land camera. PMID:20155099

  8. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction

    PubMed Central

    Rudnick, Gary; Krämer, Reinhard; Blakely, Randy D.; Murphy, Dennis L.

    2014-01-01

    The human SLC6 family is composed of approximately 20 structurally related symporters (co-transporters) that use the transmembrane electrochemical gradient to actively import their substrates into cells. Approximately half of the substrates of these transporters are amino acids, with others transporting biogenic amines and/or closely related compounds, such as nutrients and compatible osmolytes. In this short review, five leaders in the field discuss a number of currently important research themes that involve SLC6 transporters, highlighting the integrative role they play across a wide spectrum of different functions. The first essay, by Gary Rudnick, describes the molecular mechanism of their coupled transport which is being progressively better understood based on new crystal structures, functional studies, and modeling. Next, the question of multiple levels of transporter regulation is discussed by Reinhard Krämer, in the context of osmoregulation and stress response by the related bacterial betaine transporter BetP. The role of selected members of the human SLC6 family that function as nutrient amino acid transporters is then reviewed by François Verrey. He discusses how some of these transporters mediate the active uptake of (essential) amino acids into epithelial cells of the gut and the kidney tubule to support systemic amino acid requirements, whereas others are expressed in specific cells to support their specialized metabolism and/or growth. The most extensively studied members of the human SLC6 family are neurotransmitter reuptake transporters, many of which are important drug targets for the treatment of neuropsychiatric disorders. Randy Blakely discusses the role of posttranscriptional modifications of these proteins in regulating transporter subcellular localization and activity state. Finally, Dennis Murphy reviews how natural gene variants and mouse genetic models display consistent behavioral alterations that relate to altered extracellular

  9. Immunohistochemical profile of some neurotransmitters and neurotrophins in the seminiferous tubules of rats treated by lonidamine.

    PubMed

    Artico, M; Bronzetti, E; Saso, L; Felici, L M; D'Ambrosio, A; Forte, F; Grande, C; Ortolani, F

    2007-01-01

    Lonidamine (LND) or [1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid] is an anticancer and antispermatogenic drug that exerts a large number of effects on tumor cells and germ cells. Sexually mature male Sprague-Dawley rats were housed at 22 degrees C on a 12-h light/12-h dark cycle 1 week before the experiments, with free access to food and water. LND was suspended in 0.5% methylcellulose at a concentration of 10 mg/mL and administered orally at the dose of 10 mL/kg (b.w.) as a single dose. Control rats received an equal amount of vehicle. Testes were removed, fixed for 24 h in 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium phosphate (pH 7.2 at 22 degrees C), rinsed with the same buffer, and stored at room temperature. From each sample, a block of tissue was removed by sectioning through the organ. After dehydration in ethanol at increasing concentrations (70-100%), each block was embedded in paraffin and serial 5 mm thick sections were cut using a rotatory microtome. The immunoreactivity for NTs has been observed in spermatogonia of untreated rats, while the rats treated with LND showed an immunohistochemical localization in all the stages of germinal cells. The generally well-expressed immunoreactivity for the neurotrophins receptors in treated rats observed in our study is presumably attributable to alterations of the receptors' structure and/or expression leading to changes of the activity, affinity, localization or protein interactions that may depend on sensitization of ion channels (induced by LND). Neurotrophins (NTs) appear to be interesting proteins for the modulation of sperm maturation and motility with a prominent role for the nerve growth factor (NGF), that may exert an autocrine or paracrine role. We therefore investigated the location and distribution of immunoreactivity for some neurotransmitters (SP, VIP, CGRP, nNOS, Chat), neurotrophins (NGF, BDNF, NT-3) and their own receptors (TrKA, TrKB, TrKC, p75) in the seminiferous tubules

  10. Fluorine Substitution in Neurotransmitters: Microwave Spectroscopy and Modelling of the Conformational Space and Non Bonding Interactions

    NASA Astrophysics Data System (ADS)

    Melandri, S.; Maris, A.; Merloni, A.

    2011-06-01

    Fluorine substitution in molecules is a common practice in bio-organic chemistry in order to modulate physicochemical properties and biological activity of molecules and an increasing number of drugs on the market contain fluorine, the presence of which is often of major importance to modify pharmacokinetics properties and molecular activity. The rationale for such a strategy is that fluorine is generally a stronger electron acceptor than the other halogen atoms and its size is intermediate between that of hydrogen and oxygen. We have studied two fluorinated analogs of 2-phenylethylamine (PEA), the prototype molecule for adrenergic neurotransmitters, namely: 4-Fluoro (4FPEA) and 2-Fluoro-2-phenylethylamine (2FPEA) by Molecular Beam Fourier Transform Microwave Spectroscopy in the frequency range 6-18 GHz and ab initio calculations at the MP2/6311++G** level. The aim is to obtain information on the spatial arrangement of the ethylamine side chain and the effects of fluorination on the energy landscape. The conformational space is dominated by low energy gauche conformations stabilized by weak interactions between the aminic hydrogens and the electron cloud of the benzene ring and anti conformations higher in energy. In 2FPEA the presence of the fluorine atom almost duplicate the number of possible conformation with respect to 4FPEA. We observed two conformers of 4FPEA and five conformers of 2FPEA which have been classified with the guide provided by accurate ab initio calculations. The identification of the conformational species was helped by the analysis of the quadrupole hyperfine pattern which is greatly influenced by the orientation of the amino group and acts as a fingerprint for each conformation. The orientation of the dipole moment within the principal axis frame and the order of stability of the different conformations are other independent pieces of evidence for the unambiguous assignment and identification of the conformers. The order of stability was

  11. Implantable Three-Dimensional Salivary Spheroid Assemblies Demonstrate Fluid and Protein Secretory Responses to Neurotransmitters

    PubMed Central

    Pradhan-Bhatt, Swati; Harrington, Daniel A.; Duncan, Randall L.; Jia, Xinqiao; Witt, Robert L.

    2013-01-01

    Radiation treatment in patients with head and neck tumors commonly results in hyposalivation and xerostomia due to the loss of fluid-secreting salivary acinar cells. Patients develop susceptibility to oral infections, dental caries, impaired speech and swallowing, reducing the quality of life. Clinical management is largely unsatisfactory. The development of a tissue-engineered, implantable salivary gland will greatly benefit patients suffering from xerostomia. This report compares the ability of a 2.5-dimensional (2.5D) and a three-dimensional (3D) hyaluronic acid (HA)-based culture system to support functional salivary units capable of producing fluid and phenotypic proteins. Parotid cells seeded on 2.5D, as well as those encapsulated in 3D HA hydrogels, self-assembled into acini-like structures and expressed functional neurotransmitter receptors. Structures in 3D hydrogels merged to form organized 50 μm spheroids that could be maintained in culture for over 100 days and merged to form structures over 500 μm in size. Treatment of acini-like structures with the β-adrenergic agonists norepinephrine or isoproterenol increased granule production and α-amylase staining in treated structures, demonstrating regain of protein secretion. Upon treatment with the M3 muscarinic agonist acetylcholine, acini-like structures activated the fluid production pathway by increasing intracellular calcium levels. The increase in intracellular calcium seen in structures in the 3D hydrogel culture system was more robust and prolonged than that in 2.5D. To compare the long-term survival and retention of acini-like structures in vivo, cell-seeded 2.5D and 3D hydrogels were implanted into an athymic rat model. Cells in 2.5D failed to maintain organized acini-like structures and dispersed in the surrounding tissue. Encapsulated cells in 3D retained their spheroid structure and structural integrity, along with the salivary biomarkers and maintained viability for over 3 weeks in vivo

  12. Quantification of neurotransmitters in mouse brain tissue by using liquid chromatography coupled electrospray tandem mass spectrometry.

    PubMed

    Kim, Tae-Hyun; Choi, Juhee; Kim, Hyung-Gun; Kim, Hak Rim

    2014-01-01

    A simple and rapid liquid chromatography tandem mass spectrometry method has been developed for the determination of BH4, DA, 5-HT, NE, EP, Glu, and GABA in mouse brain using epsilon-acetamidocaproic acid and isotopically labeled neurotransmitters as internal standards. Proteins in the samples were precipitated by adding acetonitrile, and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 mm × 100 mm, i.d., 3 μm) column by adding a mixture of 10 mM ammonium formate in acetonitrile/water (75 : 25, v/v, 300 μl/min) for BH4 and DA. To assay 5-HT, NE, EP, Glu, and GABA; a Luna 3 μ C18 (3.0 mm × 150 mm, i.d., 3 μm) column was used by adding a mixture of 1% formic acid in acetonitrile/water (20 : 80, v/v, 350 μl/min). The total chromatographic run time was 5.5 min. The method was validated for the analysis of samples. The calibration curve was linear between 10 and 2000 ng/g for BH4 (r(2) = 0.995) , 10 and 5000 ng/g for DA (r(2) = 0.997) , 20 and 10000 ng/g for 5-HT (r(2) = 0.994) , NE (r(2) = 0.993) , and EP (r(2) = 0.993) , and 0.2 and 200 μg/g for Glu (r(2) = 0.996) and GABA (r(2) = 0.999) in the mouse brain tissues. As stated above, LC-MS/MS results were obtained and established to be a useful tool for the quantitative analysis of BH4, DA, 5-HT, NE, EP, Glu, and GABA in the experimental rodent brain. PMID:25258696

  13. Alternating phase focused linacs

    DOEpatents

    Swenson, Donald A.

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  14. Rotating apparatus for isoelectric focusing

    NASA Technical Reports Server (NTRS)

    Bier, Milan (Inventor)

    1986-01-01

    This disclosure is directed to an isoelectric focusing apparatus, wherein stabilization of the fluid containing the isolated proteins is achieved by carrying out the separation in a rotating cylinder with the separation cavity of the cylinder being segmented by means of filter elements. The filter elements are constituted of a material offering some degree of resistance to fluid convection, but allowing relatively free and unhindered passage of current and transport of proteins. The combined effect of segmentation and rotation has been found to be superior to either segmentation or rotation alone in maintaining the stability of the migrated fractions.

  15. Membrane Transporters: Structure, Function and Targets for Drug Design

    NASA Astrophysics Data System (ADS)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  16. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    PubMed

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. PMID:26912364

  17. The role of voltage-gated calcium channels in neurotransmitter phenotype specification: Coexpression and functional analysis in Xenopus laevis

    PubMed Central

    Lewis, Brittany B; Miller, Lauren E; Herbst, Wendy A; Saha, Margaret S

    2014-01-01

    Calcium activity has been implicated in many neurodevelopmental events, including the specification of neurotransmitter phenotypes. Higher levels of calcium activity lead to an increased number of inhibitory neural phenotypes, whereas lower levels of calcium activity lead to excitatory neural phenotypes. Voltage-gated calcium channels (VGCCs) allow for rapid calcium entry and are expressed during early neural stages, making them likely regulators of activity-dependent neurotransmitter phenotype specification. To test this hypothesis, multiplex fluorescent in situ hybridization was used to characterize the coexpression of eight VGCC α1 subunits with the excitatory and inhibitory neural markers xVGlut1 and xVIAAT in Xenopus laevis embryos. VGCC coexpression was higher with xVGlut1 than xVIAAT, especially in the hindbrain, spinal cord, and cranial nerves. Calcium activity was also analyzed on a single-cell level, and spike frequency was correlated with the expression of VGCC α1 subunits in cell culture. Cells expressing Cav2.1 and Cav2.2 displayed increased calcium spiking compared with cells not expressing this marker. The VGCC antagonist diltiazem and agonist (−)BayK 8644 were used to manipulate calcium activity. Diltiazem exposure increased the number of glutamatergic cells and decreased the number of γ-aminobutyric acid (GABA)ergic cells, whereas (−)BayK 8644 exposure decreased the number of glutamatergic cells without having an effect on the number of GABAergic cells. Given that the expression and functional manipulation of VGCCs are correlated with neurotransmitter phenotype in some, but not all, experiments, VGCCs likely act in combination with a variety of other signaling factors to determine neuronal phenotype specification. J. Comp. Neurol. 522:2518–2531, 2014. PMID:24477801

  18. Changes in the expression of neurotransmitter receptors in Parkin and DJ-1 knockout mice--A quantitative multireceptor study.

    PubMed

    Cremer, J N; Amunts, K; Schleicher, A; Palomero-Gallagher, N; Piel, M; Rösch, F; Zilles, K

    2015-12-17

    Parkinson's disease (PD) is a well-characterized neurological disorder with regard to its neuropathological and symptomatic appearance. At the genetic level, mutations of particular genes, e.g. Parkin and DJ-1, were found in human hereditary PD with early onset. Neurotransmitter receptors constitute decisive elements in neural signal transduction. Furthermore, since they are often altered in neurological and psychiatric diseases, receptors have been successful targets for pharmacological agents. However, the consequences of PD-associated gene mutations on the expression of transmitter receptors are largely unknown. Therefore, we studied the expression of 16 different receptor binding sites of the neurotransmitters glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine by means of quantitative receptor autoradiography in Parkin and DJ-1 knockout mice. These knockout mice exhibit electrophysiological and behavioral deficits, but do not show the typical dopaminergic cell loss. We demonstrated differential changes of binding site densities in eleven brain regions. Most prominently, we found an up-regulation of GABA(B) and kainate receptor densities in numerous cortical areas of Parkin and DJ-1 knockout mice, as well as increased NMDA but decreased AMPA receptor densities in different brain regions of the Parkin knockout mice. The alterations of three different glutamate receptor types may indicate the potential relevance of the glutamatergic system in the pathogenesis of PD. Furthermore, the cholinergic M1, M2 and nicotinic receptors as well as the adrenergic α2 and the adenosine A(2A) receptors showed differentially increased densities in Parkin and DJ-1 knockout mice. Taken together, knockout of the PD-associated genes Parkin or DJ-1 results in differential changes of neurotransmitter receptor densities, highlighting a possible role of altered non-dopaminergic, and in particular of glutamatergic neurotransmission in PD pathogenesis. PMID

  19. Real-time monitoring of inhibitory effects on glutamate-induced neurotransmitter release using a potassium ion image sensor

    NASA Astrophysics Data System (ADS)

    Kono, Akiteru; Sakurai, Takashi; Hattori, Toshiaki; Okumura, Koichi; Ishida, Makoto; Sawada, Kazuaki

    2015-02-01

    To directly image the release of neurotransmitters from neurons, we combined a substance-selective layer with a 128 × 128-pixel ion image sensor based on CMOS technology. Using the substance-specific image sensors, we studied the dynamics of potassium ion ( K+) release from neurons and examined the effect of ouabain on K+ release. K+ transients were significantly inhibited by ouabain. The K+ image sensor used in this study demonstrated the dynamic analysis of ligand-operated signal release and the pharmacological assessment of secretagogues without requiring cell labeling.

  20. A review of monoamine transporter-ligand interactions.

    PubMed

    Immadisetty, Kalyan; Madura, Jeffry D

    2013-12-01

    Transporters of the monoamines serotonin, dopamine, and norepinephrine are plasma membrane proteins belonging to the neurotransmitter sodium symporter family (NSS). Monoamine transporters (MATs) by facilitating reuptake of neurotransmitters from the synapse into the presynaptic nerve terminal, regulate neurotransmitter chemical signaling and maintain homeostasis. MATs are targets for several psychostimulants such as cocaine and amphetamine; and also for drugs treating several psychiatric disorders such as depression, attention deficit hyperactivity disorder, Parkinson's disease, and schizophrenia. Since, currently available treatment has several limitations and side effects, novel treatment is highly desired. Efforts to develop better treatment have been hampered by the lack of crystal structures for MATs. However, leucine transporter (LeuTAa), a bacterial protein from Aquifex aeolicus, belonging to the same NSS family as MATs has recently been crystallized. LeuTAa is used as a template to develop homology models of MATs, which facilitates understanding of the structure, function and pharmacology of MATs. Experimental methods for drug discovery demand a significant amount of time, effort and money. Efficient utilization of computational techniques hastens the process of drug discovery and also significantly reduces the cost. Assessing the binding affinity of drugs to the receptors is a key aspect of drug design. Free energy calculations compliment the experiment by quantitatively assessing the affinity of ligands to receptors. These methods are highly beneficial in the lead identification and optimization stages of rational drug design. We review the currently available free energy methods to treat protein-ligand interactions along with several free energy studies performed on MATs. PMID:24138394

  1. Focusing the surgical microscope.

    PubMed

    Socea, Sergiu D; Barak, Yoreh; Blumenthal, Eytan Z

    2015-01-01

    A well-focused operating microscope addresses several needs that are all secondary to the surgeon's need to see clearly at all times. These needs include: the assistant; the sharpness of the video and monitor; as well as field of view, asthenopia, and focusing issues related to zoom, accommodation, and presbyopia. We provide a practical approach to achieve optimal focus that we call the sloping paper calibration method. PMID:25891029

  2. Transverse field focused system

    DOEpatents

    Anderson, O.A.

    1983-06-01

    It is an object of the invention to provide a transport apparatus for a high current negative-ion beam which will bend the beam around corners through a baffled path in a differential pump or a neutron trap. It is another object of the invention to provide a transport apparatus for a high current negative-ion beam which will allow gas molecules in the beam to exit outwardly from the transport apparatus. A further object of the invention is to provide a multi-stage accelerator for a high current negative-ion beam which will enable acceleration of the beam to very high energy levels with a minimum loss of current carrying capacity. A still further object of the invention is to provide an apparatus for transport or accelertion of a sheet beam of negative ions which is shaped to confine the beam against divergence or expansion.

  3. Discovery of a subtype selective inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive pharmacological profile.

    PubMed

    Kragholm, Bolette; Kvist, Trine; Madsen, Karsten K; Jørgensen, Lars; Vogensen, Stine B; Schousboe, Arne; Clausen, Rasmus P; Jensen, Anders A; Bräuner-Osborne, Hans

    2013-08-15

    The γ-aminobutyric acid (GABA) transporters (GATs) are essential regulators of the activity in the GABAergic system through their continuous uptake of the neurotransmitter from the synaptic cleft and extrasynaptic space. Four GAT subtypes have been identified to date, each displaying different pharmacological properties and expression patterns. The present study focus on the human betaine/GABA transporter 1 (BGT-1), which has recently emerged as a new target for treatment of epilepsy. However, the lack of selective inhibitors of this transporter has impaired the exploration of this potential considerably. With the objective of identifying novel compounds displaying selectivity for BGT-1, we performed a screening of a small compound library at cells expressing BGT-1 using a [(3)H]GABA uptake assay. The screening resulted in the identification of the compound N-(1-benzyl-4-piperidinyl)-2,4-dichlorobenzamide (BPDBA), a selective inhibitor of the human BGT-1 transporter with a non-competitive profile exhibiting no significant inhibitory activity at the other three human GAT subtypes. The selectivity profile of the compound was subsequently confirmed at cells expressing the four mouse GAT subtypes. Thus, BPDBA constitutes a potential useful pharmacological tool compound for future explorations of the function of the BGT-1 subtype. PMID:23792119

  4. Focus: Teaching by Genre.

    ERIC Educational Resources Information Center

    Wimer, Frances N., Ed.

    1974-01-01

    The focus of this bulletin is teaching the various literary genres in the secondary English class. Contents include "The Song Within: An Approach to Teaching Poetry,""Teaching Folk-Rock,""Approaches to Teaching Poetry,""Focus on an Elective Program: Twentieth Century Lyrical Poetry,""Hoffman and Poe: Masters of the Grotesque,""Plays: Shared and…

  5. FOCUS: Sustainable Mathematics Successes

    ERIC Educational Resources Information Center

    Mireles, Selina V.; Acee, Taylor W.; Gerber, Lindsey N.

    2014-01-01

    The FOCUS (Fundamentals of Conceptual Understanding and Success) Co-Requisite Model Intervention (FOCUS Intervention) for College Algebra was developed as part of the Developmental Education Demonstration Projects (DEDP) in Texas. The program was designed to use multiple services, courses, and best practices to support student completion of a…

  6. Microfabricated particle focusing device

    DOEpatents

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  7. Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling.

    PubMed

    Xie, Keqiang; Masuho, Ikuo; Shih, Chien-Cheng; Cao, Yan; Sasaki, Keita; Lai, Chun Wan J; Han, Pyung-Lim; Ueda, Hiroshi; Dessauer, Carmen W; Ehrlich, Michelle E; Xu, Baoji; Willardson, Barry M; Martemyanov, Kirill A

    2015-01-01

    In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly. PMID:26613416

  8. Influence of intraventricular application of baclofen on arterial blood pressure and neurotransmitter concentrations in the hypothalamic paraventricular nucleus of rats.

    PubMed

    Czell, David; Efe, Turgay; Preuss, Matthias; Schofer, Markus D; Becker, Ralf

    2012-02-01

    The hypothalamic paraventricular nucleus (PVN) is a key site for regulating neuroendocrine functions in the magnocellular part and autonomic activities in the parvocellular part. Its anatomical proximity to the third ventricle could be a good target for intrathecal injection of baclofen. We investigated the correlation of intrathecal application of baclofen (a specific GABAB receptor agonist) and the release of epinephrine, norepinephrine, dopac, homovanillinic acid (HVA), glutamate and aspartate from the PVN. The decomposition products HVA, dopa and dopac of norepinephrine, epinephrine and dopamine, respectively, were used as parameters for the secretion of dopamine. We implanted a microdialysis probe in the PVN of 25 Wistar rats. In 13 rats, 1.5 μg baclofen was injected in the lateral ventricle and the equivalent quantity of Ringer's lactate solution injected in the remaining 12 rats as a control group. Neurotransmitters and amino acids were quantified by high-performance liquid chromatography. There was a conspicuous but not significant effect of baclofen concerning the secretion of epinephrine, norepinephrine, dopac, glutamate and aspartate from the PVN. A significant increase in HVA concentration was observed only in rats treated with baclofen compared with the control group. These findings suggest that baclofen influences the secretion of neurotransmitters and amino acids involved in autonomic activities mediated by GABAB receptors. PMID:21984200

  9. Treatment of congenital neurotransmitter deficiencies by intracerebral ventricular injection of an adeno-associated virus serotype 9 vector.

    PubMed

    Lee, Ni-Chung; Chien, Yin-Hsiu; Hu, Min-Hsiu; Liu, Wen-Shin; Chen, Pin-Wen; Wang, Wei-Hua; Tzen, Kai-Yuan; Byrne, Barry J; Hwu, Wuh-Liang

    2014-03-01

    Dopamine and serotonin are produced by distinct groups of neurons in the brain, and gene therapies other than direct injection have not been attempted to correct congenital deficiencies in such neurotransmitters. In this study, we performed gene therapy to treat knock-in mice with dopamine and serotonin deficiencies caused by a mutation in the aromatic L-amino acid decarboxylase (AADC) gene (Ddc(KI) mice). Intracerebral ventricular injection of neonatal mice with an adeno-associated virus (AAV) serotype 9 (AAV9) vector expressing the human AADC gene (AAV9-hAADC) resulted in widespread AADC expression in the brain. Without treatment, 4-week-old Ddc(KI) mice exhibited whole-brain homogenate dopamine and serotonin levels of 25% and 15% of normal, respectively. After gene therapy, the levels rose to 100% and 40% of normal, respectively. The gene therapy improved the growth rate and survival of Ddc(KI) mice and normalized their hindlimb clasping and cardiovascular dysfunctions. The behavioral abnormalities of the Ddc(KI) mice were partially corrected, and the treated Ddc(KI) mice were slightly more active than normal mice. No immune reactions resulted from the treatment. Therefore, a congenital neurotransmitter deficiency can be treated safely through inducing widespread expression of the deficient gene in neonatal mice. PMID:24251946

  10. Validity of urinary monoamine assay sales under the “spot baseline urinary neurotransmitter testing marketing model”

    PubMed Central

    Hinz, Marty; Stein, Alvin; Uncini, Thomas

    2011-01-01

    Spot baseline urinary monoamine assays have been used in medicine for over 50 years as a screening test for monoamine-secreting tumors, such as pheochromocytoma and carcinoid syndrome. In these disease states, when the result of a spot baseline monoamine assay is above the specific value set by the laboratory, it is an indication to obtain a 24-hour urine sample to make a definitive diagnosis. There are no defined applications where spot baseline urinary monoamine assays can be used to diagnose disease or other states directly. No peer-reviewed published original research exists which demonstrates that these assays are valid in the treatment of individual patients in the clinical setting. Since 2001, urinary monoamine assay sales have been promoted for numerous applications under the “spot baseline urinary neurotransmitter testing marketing model”. There is no published peer-reviewed original research that defines the scientific foundation upon which the claims for these assays are made. On the contrary, several articles have been published that discredit various aspects of the model. To fill the void, this manuscript is a comprehensive review of the scientific foundation and claims put forth by laboratories selling urinary monoamine assays under the spot baseline urinary neurotransmitter testing marketing model. PMID:21912487

  11. Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling

    PubMed Central

    Xie, Keqiang; Masuho, Ikuo; Shih, Chien-Cheng; Cao, Yan; Sasaki, Keita; Lai, Chun Wan J; Han, Pyung-Lim; Ueda, Hiroshi; Dessauer, Carmen W; Ehrlich, Michelle E; Xu, Baoji; Willardson, Barry M; Martemyanov, Kirill A

    2015-01-01

    In the striatum, signaling via G protein-coupled neurotransmitter receptors is essential for motor control. Critical to this process is the effector enzyme adenylyl cyclase type 5 (AC5) that produces second messenger cAMP upon receptor-mediated activation by G protein Golf. However, the molecular organization of the Golf-AC5 signaling axis is not well understood. In this study, we report that in the striatum AC5 exists in a stable pre-coupled complex with subunits of Golf heterotrimer. We use genetic mouse models with disruption in individual components of the complex to reveal hierarchical order of interactions required for AC5-Golf stability. We further identify that the assembly of AC5-Golf complex is mediated by PhLP1 chaperone that plays central role in neurotransmitter receptor coupling to cAMP production motor learning. These findings provide evidence for the existence of stable G protein-effector signaling complexes and identify a new component essential for their assembly. DOI: http://dx.doi.org/10.7554/eLife.10451.001 PMID:26613416

  12. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.

    PubMed

    Yang, Xiaoting; Hu, Yufei; Li, Gongke

    2014-05-16

    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical method to selectively determine urinary monoamine neurotransmitters, which coupled the boronate affinity monolithic column micro-solid-phase extraction with high-performance liquid chromatography (HPLC). The boronate affinity monolithic column was prepared by in situ polymerization of vinylphenylboronic acid (VPBA) and N,N'-methylenebisacrylamide (MBAA) in a stainless capillary column. The prepared monolithic column showed good permeability, high extraction selectivity and capacity. The column-to-column reproducibility was satisfactory and the enrichment factors were 17-243 for four monoamine neurotransmitters. Parameters that influence the online extraction efficiency, including pH of sample solution, flow rate of extraction and desorption, extraction volume and desorption volume were investigated. Under the optimized conditions, the developed method exhibited low limit of detection (0.06-0.80μg/L), good linearity (with R(2) between 0.9979 and 0.9993). The recoveries in urine samples were 81.0-105.5% for four monoamine neurotransmitters with intra- and inter-day RSDs of 2.1-8.2% and 3.7-10.6%, respectively. The online analytical method was sensitive, accurate, selective, reliable and applicable to analysis of trace monoamine neurotransmitters in human urine sample. PMID:24703360

  13. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry

    PubMed Central

    Bledsoe, Jonathan M.; Kimble, Christopher J.; Covey, Daniel P.; Blaha, Charles D.; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M.; Horne, April; Bennet, Kevin E.; Lee, Kendall H.; Garris, Paul A.

    2009-01-01

    Object Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain. Methods The FSCV study consisted of a triangle wave scanned between −0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 μm) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by ~ 100 μm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system. Results The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer

  14. Role of astrocytic glutamate transporter in alcohol use disorder

    PubMed Central

    Ayers-Ringler, Jennifer R; Jia, Yun-Fang; Qiu, Yan-Yan; Choi, Doo-Sup

    2016-01-01

    Alcohol use disorder (AUD) is one of the most widespread neuropsychiatric conditions, having a significant health and socioeconomic impact. According to the 2014 World Health Organization global status report on alcohol and health, the harmful use of alcohol is responsible for 5.9% of all deaths worldwide. Additionally, 5.1% of the global burden of disease and injury is ascribed to alcohol (measured in disability adjusted life years, or disability adjusted life years). Although the neurobiological basis of AUD is highly complex, the corticostriatal circuit contributes significantly to the development of addictive behaviors. In-depth investigation into the changes of the neurotransmitters in this circuit, dopamine, gamma-aminobutyricacid, and glutamate, and their corresponding neuronal receptors in AUD and other addictions enable us to understand the molecular basis of AUD. However, these discoveries have also revealed a dearth of knowledge regarding contributions from non-neuronal sources. Astrocytes, though intimately involved in synaptic function, had until recently been noticeably overlooked in their potential role in AUD. One major function of the astrocyte is protecting neurons from excitotoxicity by removing glutamate from the synapse via excitatory amino acid transporter type 2. The importance of this key transporter in addiction, as well as ethanol withdrawal, has recently become evident, though its regulation is still under investigation. Historically, pharmacotherapy for AUD has been focused on altering the activity of neuronal glutamate receptors. However, recent clinical evidence has supported the animal-based findings, showing that regulating glutamate homeostasis contributes to successful management of recovery from AUD. PMID:27014596

  15. Role of astrocytic glutamate transporter in alcohol use disorder.

    PubMed

    Ayers-Ringler, Jennifer R; Jia, Yun-Fang; Qiu, Yan-Yan; Choi, Doo-Sup

    2016-03-22

    Alcohol use disorder (AUD) is one of the most widespread neuropsychiatric conditions, having a significant health and socioeconomic impact. According to the 2014 World Health Organization global status report on alcohol and health, the harmful use of alcohol is responsible for 5.9% of all deaths worldwide. Additionally, 5.1% of the global burden of disease and injury is ascribed to alcohol (measured in disability adjusted life years, or disability adjusted life years). Although the neurobiological basis of AUD is highly complex, the corticostriatal circuit contributes significantly to the development of addictive behaviors. In-depth investigation into the changes of the neurotransmitters in this circuit, dopamine, gamma-aminobutyricacid, and glutamate, and their corresponding neuronal receptors in AUD and other addictions enable us to understand the molecular basis of AUD. However, these discoveries have also revealed a dearth of knowledge regarding contributions from non-neuronal sources. Astrocytes, though intimately involved in synaptic function, had until recently been noticeably overlooked in their potential role in AUD. One major function of the astrocyte is protecting neurons from excitotoxicity by removing glutamate from the synapse via excitatory amino acid transporter type 2. The importance of this key transporter in addiction, as well as ethanol withdrawal, has recently become evident, though its regulation is still under investigation. Historically, pharmacotherapy for AUD has been focused on altering the activity of neuronal glutamate receptors. However, recent clinical evidence has supported the animal-based findings, showing that regulating glutamate homeostasis contributes to successful management of recovery from AUD. PMID:27014596

  16. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  17. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    PubMed Central

    Ali, Shah R.; Parajuli, Rishi R.; Balogun, Yetunde; Ma, Yufeng; He, Huixin

    2008-01-01

    Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid)/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to eliminate these

  18. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  19. Flat focusing mirror.

    PubMed

    Cheng, Y C; Kicas, S; Trull, J; Peckus, M; Cojocaru, C; Vilaseca, R; Drazdys, R; Staliunas, K

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  20. Transendothelial Transport and Its Role in Therapeutics

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review paper highlights role of BBB in endothelial transport of various substances into the brain. More specifically, permeability functions of BBB in transendothelial transport of various substances such as metabolic fuels, ethanol, amino acids, proteins, peptides, lipids, vitamins, neurotransmitters, monocarbxylic acids, gases, water, and minerals in the peripheral circulation and into the brain have been widely explained. In addition, roles of various receptors, ATP powered pumps, channels, and transporters in transport of vital molecules in maintenance of homeostasis and normal body functions have been described in detail. Major role of integral membrane proteins, carriers, or transporters in drug transport is highlighted. Both diffusion and carrier mediated transport mechanisms which facilitate molecular trafficking through transcellular route to maintain influx and outflux of important nutrients and metabolic substances are elucidated. Present review paper aims to emphasize role of important transport systems with their recent advancements in CNS protection mainly for providing a rapid clinical aid to patients. This review also suggests requirement of new well-designed therapeutic strategies mainly potential techniques, appropriate drug formulations, and new transport systems for quick, easy, and safe delivery of drugs across blood brain barrier to save the life of tumor and virus infected patients. PMID:27355037

  1. Focusing corner cube

    DOEpatents

    Monjes, J.A.

    1985-09-12

    This invention retortreflects and focuses a beam of light. The invention comprises a modified corner cube reflector wherein one reflective surface is planar, a second reflective surface is spherical, and the third reflective surface may be planar or convex cylindrical.

  2. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  3. Current focusing and steering

    PubMed Central

    Bonham, Ben H.; Litvak, Leonid M.

    2008-01-01

    Current steering and current focusing are stimulation techniques designed to increase the number of distinct perceptual channels available to cochlear implant (CI) users by adjusting currents applied simultaneously to multiple CI electrodes. Previous studies exploring current steering and current focusing stimulation strategies are reviewed, including results of research using computational models, animal neurophysiology, and human psychophysics. Preliminary results of additional neurophysiological and human psychophysical studies are presented that demonstrate the success of current steering strategies in stimulating auditory nerve regions lying between physical CI electrodes, as well as current focusing strategies that excite regions narrower than those stimulated using monopolar configurations. These results are interpreted in the context of perception and speech reception by CI users. Disparities between results of physiological and psychophysical studies are discussed. The differences in stimulation used for physiological and psychophysical studies are hypothesized to contribute to these disparities. Finally, application of current steering and focusing strategies to other types of auditory prostheses is also discussed. PMID:18501539

  4. Inertial Focusing in Microfluidics

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2015-01-01

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future. PMID:24905880

  5. Facility Focus: Food Service.

    ERIC Educational Resources Information Center

    College Planning & Management, 2002

    2002-01-01

    Describes the Hawthorn Court Community Center at Iowa State University, Ames, and the HUB-Robeson Center at Pennsylvania State University. Focuses on the food service offered in these new student-life buildings. Includes photographs. (EV)

  6. Planar-focusing cathodes.

    SciTech Connect

    Lewellen, J. W.; Noonan, J.; Accelerator Systems Division

    2005-01-01

    Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.

  7. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  8. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  9. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  10. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment.

    PubMed

    Deng, Lingxiao; Ruan, Yiwen; Chen, Chen; Frye, Christian Corbin; Xiong, Wenhui; Jin, Xiaoming; Jones, Kathryn; Sengelaub, Dale; Xu, Xiao-Ming

    2016-03-01

    After spinal cord injury (SCI), poor regeneration of damaged axons of the central nervous system (CNS) causes limited functional recovery. This limited spontaneous functional recovery has been attributed, to a large extent, to the plasticity of propriospinal neurons, especially the descending propriospinal neurons (dPSNs). Compared with the supraspinal counterparts, dPSNs have displayed significantly greater regenerative capacity, which can be further enhanced by glial cell line-derived neurotrophic factor (GDNF). In the present study, we applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of dPSNs. We also investigated the neurotransmitters expressed by dPSNs after labeling with a retrograde tracer Fluoro-Gold (FG). dPSNs were examined in animals with sham injuries or complete spinal transections with or without GDNF treatment. Bilateral injections of G-Rabies and FG were made into the 2nd lumbar (L2) spinal cord at 3 days prior to a spinal cord transection performed at the 11th thoracic level (T11). The lesion gap was filled with Gelfoam containing either saline or GDNF in the injury groups. Four days post-injury, the rats were sacrificed for analysis. For those animals receiving G-rabies injection, the GFP signal in the T7-9 spinal cord was visualized via 2-photon microscopy. Dendritic morphology from stack images was traced and analyzed using a Neurolucida software. We found that dPSNs in sham injured animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution with dorsal-ventral retraction and lateral-medial extension. Treatment with GDNF significantly increased the terminal dendritic length of dPSNs. The density of spine-like structures was increased after injury, and treatment with GDNF enhanced this effect. For the group receiving FG injections, immunohistochemistry for glutamate, choline

  11. Wireless Instantaneous Neurotransmitter Concentration System–based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring

    PubMed Central

    Agnesi, Filippo; Tye, Susannah J.; Bledsoe, Jonathan M.; Griessenauer, Christoph J.; Kimble, Christopher J.; Sieck, Gary C.; Bennet, Kevin E.; Garris, Paul A.; Blaha, Charles D.; Lee, Kendall H.

    2009-01-01

    Object In a companion study, the authors describe the development of a new instrument named the Wireless Instantaneous Neurotransmitter Concentration System (WINCS), which couples digital telemetry with fast-scan cyclic voltammetry (FSCV) to measure extracellular concentrations of dopamine. In the present study, the authors describe the extended capability of the WINCS to use fixed potential amperometry (FPA) to measure extracellular concentrations of dopamine, as well as glutamate and adenosine. Compared with other electrochemical techniques such as FSCV or high-speed chronoamperometry, FPA offers superior temporal resolution and, in combination with enzyme-linked biosensors, the potential to monitor nonelectroactive analytes in real time. Methods The WINCS design incorporated a transimpedance amplifier with associated analog circuitry for FPA; a microprocessor; a Bluetooth transceiver; and a single, battery-powered, multilayer, printed circuit board. The WINCS was tested with 3 distinct recording electrodes: 1) a carbon-fiber microelectrode (CFM) to measure dopamine; 2) a glutamate oxidase enzyme-linked electrode to measure glutamate; and 3) a multiple enzyme-linked electrode (adenosine deaminase, nucleoside phosphorylase, and xanthine oxidase) to measure adenosine. Proof-of-principle analyses included noise assessments and in vitro and in vivo measurements that were compared with similar analyses by using a commercial hardwired electrochemical system (EA161 Picostat, eDAQ; Pty Ltd). In urethane-anesthetized rats, dopamine release was monitored in the striatum following deep brain stimulation (DBS) of ascending dopaminergic fibers in the medial forebrain bundle (MFB). In separate rat experiments, DBS-evoked adenosine release was monitored in the ventrolateral thalamus. To test the WINCS in an operating room setting resembling human neurosurgery, cortical glutamate release in response to motor cortex stimulation (MCS) was monitored using a large-mammal animal

  12. Isolation of toxin TsTX-VI from Tityus serrulatus scorpion venom. Effects on the release of neurotransmitters from synaptosomes.

    PubMed

    Sampaio, S V; Coutinho-Netto, J; Arantes, E C; Marangoni, S; Oliveira, B; Giglio, J R

    1996-07-01

    A detailed procedure for the purification of Tityustoxin-VI, TsTX-VI, from Tityus serrulatus scorpion venom is described. For comparative purposes, a second toxin, CM-VI, obtained from the same fractionation procedure, was analyzed in parallel. Typical biochemical parameters, such as electrophoretic migration, mol.weight, amino acid composition and N-terminal sequence (first 42 amino acid residues out of a total of approx. 60) were determined for both. Our data showed that CM-VI is identical or extremely homologous to gamma-toxin (TsTX-I), the highly toxic major toxin from T. serrulatus venom. TsTX-VI was less toxic, although still effective at inducing an allergic reaction, lacrymation and contraction of the hind legs of mice. Both toxins produced a dose dependent release of the neurotransmitters glutamic acid and gamma aminobutyric acid from rat brain synaptosomes, this effect being blocked by tetrodotoxin. PMID:8843341

  13. Photolysis of a caged peptide reveals rapid action of N-ethylmaleimide sensitive factor before neurotransmitter release

    PubMed Central

    Kuner, T.; Li, Y.; Gee, K. R.; Bonewald, L. F.; Augustine, G. J.

    2008-01-01

    The time at which the N-ethylmaleimide-sensitive factor (NSF) acts during synaptic vesicle (SV) trafficking was identified by time-controlled perturbation of NSF function with a photoactivatable inhibitory peptide. Photolysis of this caged peptide in the squid giant presynaptic terminal caused an abrupt (0.2 s) slowing of the kinetics of the postsynaptic current (PSC) and a more gradual (2–3 s) reduction in PSC amplitude. Based on the rapid rate of these inhibitory effects relative to the speed of SV recycling, we conclude that NSF functions in reactions that immediately precede neurotransmitter release. Our results indicate the locus of SNARE protein recycling in presynaptic terminals and reveal NSF as a potential target for rapid regulation of transmitter release. PMID:18172208

  14. [Effect of phenibut on the content of monoamines, their metabolites, and neurotransmitter amino acids in rat brain structures].

    PubMed

    Borodkina, L E; Kudrin, V S; Klodt, P M; Narkevich, V B; Tiurenkov, I N

    2009-01-01

    Effects of the nootropic drug phenibut, which is a structural analog of gamma-aminobutyric acid (GABA), on the content of monoamines, their metabolites, and neurotransmitter amino acids in brain structures have been studied on Wistar rats. It is established that a single administration of phenibut in a dose of 25 mg/kg (i.p.) produces a statistically significant increase in the content of dopamine metabolite (3,4-dioxyphenylacetic acid) and the retarding amino acid taurine in striatum. At the same time, phenibut did not significantly influence the levels of GABA, serotonin, and dopamine in various brain structures and produce a moderate decrease in the level of norepinephrine in the hippocampus. PMID:19334514

  15. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  16. Sagittal focusing Laue monochromator

    DOEpatents

    Zhong; Zhong , Hanson; Jonathan , Hastings; Jerome , Kao; Chi-Chang , Lenhard; Anthony , Siddons; David Peter , Zhong; Hui

    2009-03-24

    An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

  17. Deliberative Discussion Focus Groups.

    PubMed

    Rothwell, Erin; Anderson, Rebecca; Botkin, Jeffrey R

    2016-05-01

    This article discusses a new approach for the conduct of focus groups in health research. Identifying ways to educate and inform participants about the topic of interest prior to the focus group discussion can promote more quality data from informed opinions. Data on this deliberative discussion approach are provided from research within three federally funded studies. As healthcare continues to improve from scientific and technological advancements, educating the research participants prior to data collection about these complexities is essential to gather quality data. PMID:26078330

  18. Differential alterations in the expression of neurotransmitter receptors in inner retina following loss of photoreceptors in rd1 mouse.

    PubMed

    Srivastava, Prerna; Sinha-Mahapatra, Sumit K; Ghosh, Abhinaba; Srivastava, Ipsit; Dhingra, Narender K

    2015-01-01

    Loss of photoreceptors leads to significant remodeling in inner retina of rd1 mouse, a widely used model of retinal degeneration. Several morphological and physiological alterations occur in the second- and third-order retinal neurons. Synaptic activity in the excitatory bipolar cells and the predominantly inhibitory amacrine cells is enhanced. Retinal ganglion cells (RGCs) exhibit hyperactivity and aberrant spiking pattern, which adversely affects the quality of signals they can carry to the brain. To further understand the pathophysiology of retinal degeneration, and how it may lead to aberrant spiking in RGCs, we asked how loss of photoreceptors affects some of the neurotransmitter receptors in rd1 mouse. Using Western blotting, we measured the levels of several neurotransmitter receptors in adult rd1 mouse retina. We found significantly higher levels of AMPA, glycine and GABAa receptors, but lower levels of GABAc receptors in rd1 mouse than in wild-type. Since GABAa receptor is expressed in several retinal layers, we employed quantitative immunohistochemistry to measure GABAa receptor levels in specific retinal layers. We found that the levels of GABAa receptors in inner plexiform layer of wild-type and rd1 mice were similar, whereas those in outer plexiform layer and inner nuclear layer combined were higher in rd1 mouse. Specifically, we found that the number of GABAa-immunoreactive somas in the inner nuclear layer of rd1 mouse retina was significantly higher than in wild-type. These findings provide further insights into neurochemical remodeling in the inner retina of rd1 mouse, and how it might lead to oscillatory activity in RGCs. PMID:25835503

  19. Carbon nanofiber multiplexed array and Wireless Instantaneous Neurotransmitter Concentration Sensor for simultaneous detection of dissolved oxygen and dopamine

    PubMed Central

    Marsh, Michael P.; Koehne, Jessica E.; Andrews, Russell J.; Meyyappan, M.; Bennet, Kevin E.; Lee, Kendall H.

    2014-01-01

    Purpose While the mechanism of Deep Brain Stimulation (DBS) remains poorly understood, previous studies have shown that it evokes release of neurochemicals and induces activation of functional magnetic resonance imaging (fMRI) blood oxygen level-dependent signal in distinct areas of the brain. Therefore, the main purpose of this paper is to demonstrate the capabilities of the Wireless Instantaneous Neurotransmitter Concentration Sensor system (WINCS) in conjunction with a carbon nanofiber (CNF) multiplexed array electrode as a powerful tool for elucidating the mechanism of DBS through the simultaneous detection of multiple bioactive-molecules. Methods Patterned CNF nanoelectrode arrays were prepared on a 4-inch silicon wafer where each device consists of 3 × 3 electrode pads, 200 μm square, that contain CNFs spaced at 1μm intervals. The multiplexed carbon nanofiber CNF electrodes were integrated with WINCS to detect mixtures of dopamine (DA) and oxygen (O2) using fast scan cyclic voltammetry (FSCV) in vitro. Results First, simultaneous detection of O2 at two spatially different locations, 200 um apart, was demonstrated. Second, simultaneous detection of both O2 and DA at two spatially different locations, using two different decoupled waveforms was demonstrated. Third, controlled studies demonstrated that the waveform must be interleaved to avoid electrode crosstalk artifacts in the acquired data. Conclusions Multiplexed CNF nanoelectrode arrays for electrochemical detection of neurotransmitters show promise for the detection of multiple analytes with the application of time independent decoupled waveforms. Electrochemistry on CNF electrodes may be helpful in elucidating the mechanism of DBS, and may also provide the precision and sensitivity required for future applications in feedback modulated DBS neural control systems. PMID:24688800

  20. The cost of transportation`s oil dependence

    SciTech Connect

    Greene, D.L.

    1995-05-01

    Transportation is critical to the world`s oil dependence problem because of the large share of world oil it consumes and because of its intense dependence on oil. This paper will focus on the economic costs of transportation`s oil dependence.